
IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, NOVEMBER 2016 1

Bubble Budgeting: Throughput Optimization for
Dynamic Workloads by Exploiting Dark Cores in

Many Core Systems
Xiaohang Wang, Member, IEEE, Amit Kumar Singh, Member, IEEE, Bing Li, Yang Yang, Hong Li

and Terrence Mak, Member, IEEE,

Abstract—All the cores of a many-core chip cannot be active at the same time, due to reasons like low CPU utilization in server
systems and limited power budget in dark silicon era. These free cores (referred to as bubbles) can be placed near active cores for
heat dissipation so that the active cores can run at a higher frequency level, boosting the performance of applications that run on active
cores. Budgeting inactive cores (bubbles) to applications to boost performance has the following three challenges. First, the number of
bubbles varies due to open workloads. Second, communication distance increases when a bubble is inserted between two
communicating tasks (a task is a thread or process of a parallel application), leading to performance degradation. Third, budgeting too
many bubbles as coolers to running applications leads to insufficient cores for future applications. In order to address these challenges,
in this paper, a bubble budgeting scheme is proposed to budget free cores to each application so as to optimize the throughput of the
whole system. Throughput of the system depends on the execution time of each application and the waiting time incurred for newly
arrived applications. Essentially, the proposed algorithm determines the number and locations of bubbles to optimize the performance
and waiting time of each application, followed by tasks of each application being mapped to a core region. A Rollout algorithm is used
to budget power to the cores as the last step. Experiments show that our approach achieves 50% higher throughput when compared to
state-of-the-art thermal-aware runtime task mapping approaches. The runtime overhead of the proposed algorithm is in the order of 1M
cycles, making it an efficient runtime task management method for large-scale many-core systems.

Index Terms—Online task management, power budget, dark silicon, many-core, dynamic resource allocation, temperature constraint,
dark cores, throughput optimization, frequency scaling.

F

1 INTRODUCTION

MANY-CORE chips are widely used in servers, data-
centers, clusters to provide high throughput com-

putation services. In such systems, applications or user
requests dynamically arrive and leave the system without
prior knowledge of future arrivals, which are referred as
open systems [12]. One phenomenon observed in such high-
performance many-core system is that, there are plenty of
free cores which are either not utilized or even shut down
from time to time. We have referred these free and powered-
off cores as dark cores or bubbles. Free cores exist due to two

• X. Wang, B. Li, and H. Li are with the School of Software Engineering,
South China University of Technology, China
Email: xiaohangwang@scut.edu.cn, l.b07@mail.scut.edu.cn,
hongli@scut.edu.cn

• A.K. Singh is with the School of Electronics and Computer Science,
University of Southampton, UK
Email: a.k.singh@soton.ac.uk

• Y. Yang is with the School of Data and Computer Science, Sun Yat-sen
University, China
Email: yangy266@mail.sysu.edu.cn

• T. Mak is with the School of Electronics and Computer Science, University
of Southampton, UK, Shenzhen Institute of Advanced Technology and
Guangzhou Institute of Advanced Technology, CAS, China
Email: tmak@ecs.soton.ac.uk
This research program is supported by the Natural Science Foundation
of China No. 61376024 and 61306024, Natural Science Foundation of
Guangdong Province 2015A030313743, Special Program for Applied
Research on Super Computation of the NSFC-Guangdong Joint Fund
(the second phase), and the Science and Technology Research Grant of
Guangdong Province No. 2016A010101011 and 2017A050501003.

reasons. First, in datacenters, the CPU usage is lower than
100% at most of the time, the average CPU utilization is as
low as 50%, as shown in Figure 1 [13]. Therefore, some cores
are not running useful applications at certain time period.
Second, the high density integration of cores within chips
leads to a possible dark silicon issue [17], where a large
portion of the cores have to be turned off to meet the thermal
and power constraints.

Several efforts have been made to exploit the bubbles
(dark cores) to boost performance of active cores and ap-
plications, by determining the number, position, and volt-
age/frequency levels of the active cores [18], [25]. An active
core can run at a higher level of frequency if bubbles are
located near it for heat dissipation. This helps to achieve
higher performance while meeting the temperature con-
straint. However, in a server system with open workloads
(workloads are defined as application programs or user
requests submitted to the many-core systems), the following
challenges need to be addressed so as to optimize the overall
system performance.

First, for a system handling open workloads, since the
number of available/free cores changes with the arrival
and departure of applications, the position of bubbles and
voltage/frequency of active cores need to be adjusted at run-
time under the temperature constraint in response to arrival
and departure of applications. Most of the approaches (e.g.,
[18], [25]) consider static workloads only, i.e., a fixed set of
applications known in advance and fixed number of bub-

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, NOVEMBER 2016 2

Fig. 1. CPU usage over several weeks [13].

bles, which does not reflect the dynamic feature of several
systems, e.g., a server.

Next, communication overhead between the active cores
executing communicating tasks is largely affected by plac-
ing bubbles near them. Communication distance between
two tasks increases if the corresponding two cores have bub-
bles (dark cores) inserted between them for heat dissipation.
Therefore, although active cores can possibly run at a higher
frequency level if bubbles are placed near them, the applica-
tions might suffer from increased communication overhead,
resulting in poor performance. Existing approaches (e.g.,
[18], [25]) ignore such communication overhead.

Furthermore, if most of the bubbles are placed near
active cores and used for heat dissipation, a newly arrived
application might need to wait for a longer time due to in-
sufficient free cores. Therefore, the decision of whether a free
core should be shut down for heat dissipation as a bubble,
or to be turned on to run tasks affects both the execution
time of current application and the possible waiting time
for future applications. Existing approaches ignore waiting
time incurred for each newly arrived application, which also
affects the overall system throughput.

Contribution: This paper addresses the aforementioned
challenges by proposing a lightweight dynamic resource
management approach that handles open workloads, where
applications containing dependent tasks arrive at different
moments of time. The tasks are assumed as fixed, i.e. not
malleable. This work tries to determine the number and
location of both free and active cores, so as to optimize
performance, communication cost and waiting time. A pre-
liminary version of this work has been published in [40],
which has the following main contributions:

1) Performance and waiting time models targeting
open workloads, where applications arrive and de-
part in the system at different times. Therefore, the
number of free cores vary in the system. These
models can be updated online.

2) An online algorithm to select the number and lo-
cations of free cores for each application. Instead
of optimizing each individual application’s perfor-
mance, this algorithm tries to optimize the system
throughput in terms of number of executed ap-
plications within a given time, which depends on
the waiting time for each newly arrived application
and the execution time of each application. Both
computation and communication performances are
optimized when determining the number and loca-
tion of bubbles and active cores.

Our previous work [40] has been significantly extended
by making the following new contributions:

1) A detailed thermal model is provided.
2) A power budgeting algorithm is provided which

serves as the last step of the whole online algorithm.
This algorithm is based on the Rollout algorithm
[5]. In the Rollout algorithm, when it is to make
a decision at each step, a heuristic is used to es-
timate the cost of all possible options at the next
step, referred as look ahead. The decision is made
based on the estimates of the next step. It tunes the
voltage/frequency of the cores after their locations
are determined.

3) The experimental results are substantially updated
while applying the new algorithm. Specially, results
for a variety of network sizes and communication
volumes are presented.

2 RELATED WORK

Allocating system resources to the tasks of multiple appli-
cations on on-chip many-core system has been an emerging
research direction [29], [35], [36]. Several resource allocation
approaches have been proposed while following different
policies. Most of these approaches map communicating
tasks of each application close to each other such that
communication overhead and power are reduced [2], [7],
[8], [9], [11], [21], [24], [33], [37]. Some of these approaches
also reduce computation power of the cores by employing
voltage/frequency scaling [9]. However, these approaches
do not consider a power budget for the whole chip, which
is desired in the dark silicon era.

There has been some efforts to perform the mapping
by taking the power budget into account [19], [23], [30],
[38]. Some of these efforts just try to respect the power
budget, whereas others try for the thermal design power
budget. However, using a single and constant value as a
power constraint for each core or for the entire chip in
the mapping process may result in either thermal violation
(e.g., the peak temperature is over a safe threshold), or
tremendous performance losses for many-core systems [25],
[32]. Therefore, temperature of the cores needs to considered
in order to avoid the thermal violations.

Thermal-aware resource allocation approaches have
been explored to reduce peak temperature and tempera-
ture gradient while directly considering the temperature of
cores [10], [27]. However, these approaches do not impose
any thermal constraint in the allocation process. Some ap-
proaches considering thermal constraint while optimizing
for the performance have been reported [15], [28]. However,
in [15], heat conductance amongst the neighboring cores is
ignored to simplify the problem and [28] considers only
one application. Further, these thermal-aware resource al-
location approaches do not consider dark silicon problem.

To address dark silicon problem while considering mul-
tiple applications, recently, some resource allocation ap-
proaches have been introduced [23], [25]. The approach in
[25] identifies the number, location and voltage/frequency
levels of active cores for each application to optimize the
overall system performance. It also leverages the position-
ing of dark cores, to efficiently dissipate the heat generated

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, NOVEMBER 2016 3

. . .

Platform Resource Manager
(Allocate resources to Applications)

M
a

n
y
-co

re
 P

la
tfo

rm

Arrival Time

Applications

. . .

CoreCore

CoreCore

Core

Core

. . .

. . .

t1

t2 t3

t1

t2

App.1

App.2

t1

t2 t3

App.N

t4

CoreCoreCore

Fig. 2. System model.

by the active cores. However, static workload has been
assumed, i.e., a fixed set of applications are allocated at
the same time and thus the number of active/dark cores
are fixed. For open workloads, the number of active/dark
cores will vary depending upon the arrival and departure of
the applications. Further, applications containing dependent
tasks are not considered and thus communication overhead
between the active cores containing the communicating
tasks is ignored. In such cases, the appropriate location
of active cores not only help to optimize the peak tem-
perature but also the communication time/performance.
The approach in [23] leverages dark silicon to balance the
temperature of active cores to provide higher power budget
and better resource utilization, within a safe peak operating
temperature. Dynamic workloads are considered and this
approach aligns active cores along with dark cores that can
evenly distribute heat dissipation across the chip. How-
ever, the distribution of active/dark cores amongst multiple
applications at the same time is not considered, which
might degrade overall system throughput. Our approach
addresses above concerns by appropriately identifying the
number, locations and voltage/frequency levels of active
cores for the applications containing dependent tasks and
arriving at different moments of time as a dynamic work-
load.

3 SYSTEM MODEL AND PROBLEM DEFINITION

Figure 2 shows our target system model. The system con-
tains a many-core platform that executes a set of appli-
cations arriving at different moments of time. The appli-
cations are submitted to the platform resource manager
that allocates resources to them. This section provides a
brief overview of the platform, workload, thermal model,
and thermal power capacity model along with the problem
definition. The important notations used throughout the
paper are summarized in Table 1.

3.1 Many-core Platform Model

The many-core platform contains a set of cores connected
by an interconnection network, which is modeled as a 2D
mesh network with bidirectional links. The right hand side
of Figure 2 shows an example platform. Each core consists
of a processing unit, a cache and a network interface. It
is represented as a directed graph G(Q,L), where Q is
the set of cores and L represents the connections amongst
the cores. The system resource management is done by a
centralized platform resource manager. We consider that
one core works as the resource manager and this core
cannot be a bubble. Without loss of generality, the core in

TABLE 1
Notations used in this paper

Variables for the models and problem formulation
G(Q,L) The NoC model, Q is the set of cores, and L is

the set of links
AGi = (Ai, Ei) The task graph model for application i, Ai is the

set of tasks, and Ei is the set of communications
among the tasks

M(·) The task-to-core mapping function
Tr(e) The time for data communication of the two

tasks connected by edge e
D(·, ·) The Manhattan distance between two cores
ω(·, ·) The traffic volume between two tasks
ETi The execution time of the application i
Γ The set of all free cores in the system
Bi The set of bubbles associated with application i
τ The discrete time units
C The thermal capacitance matrix of on-chip com-

ponents
AC The thermal conductance matrix
T (τ) The temperature vector
P (τ) The power vector
PM (ti),
PM (x, y)

The power capacity of core ti whose coordinate
is (x, y)

T τ+1
x,y The temperature of a core located at (x, y) at

time instance τ + 1
fj The frequency of core j
σi The response time of application i
Aarrive
i The arrival time of application i

Afinish
i The finishing time of application i

σ The response time of running N applications
within a given time

Variables for the proposed method
bn The number of bubbles in an application
WTi The waiting time of application i
r The average percentage of bubble count
λ The average application arrival rate
RG(V,A) The state graph for the Rollout algorithm
J(vi,j , d) The cost-to-go of each vertex vi,j in the state

graph
TH Thermal thresold
s, d Dummy source and destination vertices in the

state graph
Experimental results

ε The error of the waiting time model

the left bottom corner is selected. However, any other core
can also be selected as the manager. The manager keeps
a table of the active/inactive status of the other cores and
the status is updated when tasks are allocated or complete
their execution on the cores. Every core can run at different
voltage/frequency levels similar to the one supported in
AMD Opteron. We assume a set of voltage/frequency levels
for each core, where there is a fixed frequency for a voltage
level.

3.2 Application Model

Each application i is represented as a directed graph AGi =
(Ai, Ei), where Ai is the set of tasks of the application and
Ei is the set of directed edges representing dependencies
amongst the tasks. A task can also be referred to as a
thread or process of an application. The left hand side of
Figure 2 shows some example application graph models.
The arrived applications are entered into First-In First-Out
(FIFO) queue. When a new application arrives in the system,
it is first placed in the system queue. The resource manager
core checks the queue. If one application is found to be
ready to execute, its program and data will be loaded to
the selected cores to run. The manager keeps a table of the

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, NOVEMBER 2016 4

active/inactive status of the cores and selects cores for each
application by following the proposed algorithm. Once an
application finishes execution and leaves the system, the
manager is notified and sets the active/inactive status of
the corresponding cores to be inactive. Each task a ∈ Ai
has a weight: execution time (ExecTime), when mapped
onto a core. The ExecTime for each task is considered as
its worst-case execution-time (WCET) and remains fixed at
a given frequency. Each edge e ∈ Ei represents data volume
communicated between the dependent tasks.

A mapping function M(a) = t, for a ∈ Ai, t ∈ Q binds
tasks to the cores, such that task a is mapped to core t.
Each edge e ∈ Ei has a weight of transmission time, when
the two communicating tasks are mapped. The transmission
time between two tasks depends on the communication
distance between the cores on whom they are mapped and
the traffic volume. We assume one task per core model
[6]. For each edge e = (ai, aj), the transmission time
Tr(e) = f(ω(ai, aj), D(M(ai),M(aj))), where ω(ai, aj) is
the traffic volume between the two tasks ai and aj , and
D(M(ai),M(aj)) is the distance (hop counts) between two
cores on whom tasks ai and aj are mapped. The function
f(·, ·) models the transmission time versus the traffic vol-
ume and the hop count distance of the two tasks, which can
be found by a linear regression as follows.

Tr(e) = α · ω(ai, aj) + β ·D(M(ai),M(aj)) (1)

where α and β are regression coefficients. The transmission
time model can be trained offline by transmitting packets to
measure the latencies. The execution time of each applica-
tion i is the makespan of task graph, denoted as ETi.

The set of all existing free cores in the system is denoted
as Γ. A set of bubbles Bi = {t1, t2, ...} are also associated
with application i, where t1, t2, ... are powered off cores for
cooling.

3.3 Thermal Power Capacity Model
We define the thermal power capacity (TPC) of a core
as the maximum power the core can consume given the
power distribution of other cores, such that the whole chip’s
maximum temperature and thermal gradient do not exceed
their respective thresholds. The TPC of each core can be
determined at offline. In the rest of the paper, we use PM (ti)
and PM (x, y) to denote the power capacity of the core ti at
the location (x, y) interchangeably.

The TPC of a core is bounded by the cooling capacity of
the system, and the power consumption or temperature of
other cores, i.e., thermal correlation. The thermal correlation,
indicating the inter-dependency of the temperature of dif-
ferent cores, can be modeled by a linear regression [20]. The
temperature Tπ+1

x,y at time instance tau+ 1 of a core located
at (x, y) can be determined by the temperature values of
those cores located at (x± l, y ± l) at time π [20],

Tπ+1
x,y = φ(T tx±l,y±l) (2)

where φ(·) is a linear function, and l can be 0, 1, representing
core (x, y)’s neighboring cores.

Similarly, the TPC of a core ti can be found as,

PM (x, y) = θ(P (x±l1, y±l2))+βqP =
∑
q

αq · P (ti)+βqP

(3)

where P (x±l1, y±l2) is the power consumption of the core
nq located at (x ± l1, y ± l2), which is thermally correlated
with ti. The function θ(·) can also be found by autoregres-
sive model (AR), using the lasso method [16]. In particular,
for each core at (x, y) we only keep the coefficients of
adjacent cores as non-zero. That is, (x ± l1, y ± l2) with l1
and l2 equal to 0, 1, 2, i.e., cores that are neighboring to the
core (x, y). These cores have the highest thermal correlations
with the core (x, y). We set the coefficients of other cores to
be 0, for core i. P is the average power consumption of the
other cores in the chip. βq is the regression coefficient.

Since the purpose of TPC model is for changing the
cores‘ V/F levels, we only consider the power related to the
instruction execution. The power consumption of remote
memory access and network, which is directly related to
the communication distance, is optimized in the virtual
mapping step in Section 4.4. The dynamic power of a core i
Pi is determined by the following equation.

Pi = ei · θi · fi · V 2
i (4)

where fi is the frequency of core ti, ei is the regression
coefficients, and θi is the instruction throughput (IPC) of
core ti, Vi is the voltage. The IPC of each core can also be
calculated from the many-core simulator. Therefore, with
Eqn. 4, one can compute the dynamic power Pi given
the IPC workload and frequency of core ti. It is compared
against the maximal allowed power PM (i) computed from
the TPC model in Eqn. 3. If Pi is higher than PM (i), the
frequency and voltage level of this core should be scaled
down until Pis is not higher than PM (i).

The TPC model are trained at offline. Eqn.3 can be used
at runtime to estimate the maximum power a core can run
given the power consumption of its neighboring eight cores
with low computing cost. This model is trained as follows.

• At offline,

– Multiple test vectors including
tvj =< P1, , P12, P > are generated, where
P1, ..., P12 denote the power consumptions
of neighboring cores as in Fig. 3. P is the
average power consumption of the remaining
cores (the blank (white) cores in Fig. 3).

– For each tvj , the maximal power consumption
PM (i) of core ti can be calculated by iteratively
increasing the power consumption of core ti
(setting its V/F level from the lowest level to
the highest one) until its temperature is going
to violate the threshold. In other words, each
input vector tvj generates an output PM (i).

– After generating multiple inputs and outputs,
we use the maximal likelihood methods to find
the coefficients in Eqn. 3 and store them to be
used at runtime.

• At runtime, the above coefficients are used to com-
pute the TPC.

3.4 Problem Statement
Within a given time period, for N applications arriving
at different moments of time, the objective is to minimize

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, NOVEMBER 2016 5

P2 P3

P6 ti

P4

P7

P9 P10 P11

P1

P5 P8

P12

Fig. 3. The non-zero coefficients of Eqn. 3 corresponding to the neigh-
boring cores.

the response time of each application in order to optimize
throughput that is computed as the number of applications
executed within a fixed amount of time. The decision vari-
ables are the position and number of the bubbles to be
allocated to each application, together with the task-to-core
mapping of each application. The response time of each
application is computed as follows:

σi = Afinish
i −Aarrive

i (5)

where, σi is the response time of application i, Aarrive
i and

Afinish
i are respectively the arrival time and the finishing time

of application i.
For each application, its response time is related to both

the execution time and the waiting time. Waiting occurs
when an application arrives at the system but there are no
sufficient cores to run it. Execution time is related to both
the communication and computation performances of the
application.

The response time of running N applications within a
given time is then computed as:

σ = ANfinish (6)

where N is the number of applications arrived at the system
within a given time, and ANfinish represents finishing time of
N th application within this given time.

The objective is to
minσ (7)

The constraint is that, each core is running with it’s
power consumption below the maximum power capacity,
which is obtained from the TPC model in Eqns. 3.

The complexity of the problem can be analysed as fol-
lows. Suppose the many-core system has n cores and there
are B bubbles (spare cores) at a certain time. If a total of
m applications are to be executed in the system, in the
worst case, there are Bm possible ways of assigning the
bubbles to the applications. Once each application gets the
bubbles, there is nB possible ways of placing the bubbles.
In summary, the worst case complexity of the problem is
O(BmnB), which indicates that the complexity increases
with the number of applications and cores. Thus it is a
NP-hard problem and motivates the need for an efficient
heuristic.

4 PROPOSED DYNAMIC RESOURCE ALLOCATION
APPROACH

4.1 Overview
Fig. 4 shows the overview of our proposed approach. Ap-
plications dynamically arrive in the system. The bubble
count (number of bubbles) included in each application’s

core region (the region including active cores and bubbles)
is used as a control variable, which determines both the
communication distance and the running frequency of the
active cores such that the system thermal constraint is not
violated. Based on this, an application’s region is defined as
the cores that are dedicated to this application, including
the cores running the tasks of the application and the
bubbles budgeted to it. A virtual mapping process is first
called to estimate the performance of each application when
using different number of bubbles. For each application,
core regions with different numbers of bubbles are selected,
such that the region’s core count is possibly larger than
the number of tasks in the application. The tasks of the
application are mapped virtually to this core region in order
to estimate the performances given different bubble counts
(bn) for the application, i.e., the table from the performance
model achieved as shown in Fig. 4. The running frequency
of each active core can be determined to confine to thermal
constraint. During virtual mapping, no task is running on
the cores, i.e., the tasks are not actually mapped to the cores.
The waiting time model also generates a table indicating the
waiting time given different bubble counts. Finally, during
the real or final mapping, the bubble count for each applica-
tion is chosen which can result in the minimum application
execution time (including communication and computation
performances) and waiting time. Once the application fin-
ishes execution, the cores in the region is released and sent
back to the available resource pool.

The reason to use the virtual mapping is as follows. The
communication performance of each edge depends on the
distance of the two cores running the communicating tasks,
and the computation performance of each task depends on
the frequency and TPC of each core, which is affected by
the bubble count and location. Therefore, the calculation of
execution time of an application requires knowing the task-
to-core mapping scheme. To find the core region with the
optimal number of bubbles, we need to consider both the
execution time and waiting time of each application with
different number of bubbles (the decision variable). Virtual
mapping serves for this purpose. It iterates the bubble num-
ber 0, 1, ...,min{|Ai|,Γ} for each application to generate the
performance and waiting time models as shown in Fig. 4.
The waiting time and performance models are stored in
tables whose entries are < bn,WTi > and < bn,ETi >,
respectively. That is, given bn bubbles to be inserted into
the application i, the two tables return the corresponding
expected waiting time and execution time of the application.
The mapping scheme with bn is also stored in a database.
Based on the two models, during the final or real mapping,
the system can choose the best bn value (bubble number)
in the core region and the corresponding mapping scheme
from the database for each incoming application, which can
result in the minimal expected response time.

The various steps of the proposed approach are intro-
duced in subsequent sub-sections and highlighted in Fig. 4.

4.2 Waiting Time Estimation
We target server systems whose workloads exhibit period-
ical behaviours [13], such that we can predict the waiting
time from history data. In many server systems, there are
some peak time when the CPU utilization is close to 100%,

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, NOVEMBER 2016 6

Waiting time model

Performance model
Virtual

mapping

Mapping results

database

Choose

the best

bn for

min

response

time

bn Mapping results

1

...

...

Final (real) mapping

results

Thermal power

capacity model

min{|Ai|, Γ}

bn Execution time

1 200

...

...

min{|Ai|, Γ} 120

bn Waiting time

1 100

...

...

min{|Ai|, Γ} 3000

ET

WT

MS

Section 4.2

Section 3.3

Section 4.3

Section 4.4

Section 4.5

Fig. 4. Overview of the proposed approach.

and some off-peak time when there are fewer running
applications. In addition, waiting time depends on various
system parameters including the application arrival rate
(average number of applications arriving in the system per
cycle), system size, and how many free cores are used as
bubbles.

The waiting time can thus be modeled by a polynomial
regression model as in Eqn. (8), where |Q| is the network
size, |Ai| is the average number of tasks in each application,
r is the average percentage of bubble count in an appli-
cation’s core region, defined as bubble count divided by
the core count in each application’s core region, ETi is the
average execution time of the tasks, and λ is the average
application arrival rate. Using this model, r can be a decision
variable such that, when the waiting time is estimated to be
high, a smaller r is preferred.

WTi =

z∑
j=1

cj · |T |j +

z∑
j=1

dj · |Ai|j +

z∑
j=1

ej · rj+

z∑
j=1

fj · ETij +

z∑
j=1

gj · λj + a0

(8)

To find the coefficients of c, d, e, f, g, and a0, the maximum
likelihood methods can be used [16].

4.3 Performance Estimation

To estimate the performance of each application, we need
know the communication performances of the edges and
the computation performances of tasks in the task graph.
These performances can only be determined after the tasks
are mapped to cores. The number of bubbles in a core region
is an important control variable which is related to both
the communication distance and the computation power
of each core/task. Given a virtual mapping of tasks to a
core region with j bubbles, the execution time of each task
and transmission time of each communication edge can be
determined as in Sections 3.2 and 3.3. The execution time
of each task is related to the instructions to be executed
and the running frequency and power of the core while
satisfying the thermal constraint, which can be derived from
Section 3.3. The communication time of each edge in task
graph can be determined by Eqn. 1. The performance of the
application (referred to as makespan) can be determined by

finding the maximum execution path along the application’s
task graph. Therefore, the performance estimation needs
the virtual mapping algorithms which will be introduced
in Section 4.4.

The output of the performance model as shown in Fig. 4
is a table ET where each item ET[j] is the execution time
with j bubbles.

4.4 Virtual Mapping Algorithms

During the mapping process, we virtually find core regions
whose core count equals to |Ai| plus j bubbles, where
j = 0, 1, 2, ...,min{|Ai|,Γ}. At each iteration with j bubbles,
the applications are virtually mapped to the core region and
the execution time is stored in the performance model table.
Once the iteration stops, the performance model generates
a table indicating the execution times with j bubbles, where
j = 0, 1, 2, ...,min{|Ai|,Γ}. The corresponding mapping
schemes with up to j bubbles are also stored in a database.
Note that, this process only virtually maps the tasks to the
cores to get the performance model table and the mapping
scheme database as shown in Fig. 4. Tasks are not actually
bound to and run on the cores. No migration is involved.
Other running application is intact.

The virtual mapping process has two objectives, i.e.,
minimizing the communication distance and maximizing
the computation frequency/performance of the tasks. These
two objectives might be contradicting in the sense that,
communication distance is minimal when tasks are mapped
in close proximity, while each task’s frequency or compu-
tation performance is maximized when the temperature is
low indicating hot tasks are distant from each other. We
propose a heuristic based virtual mapping algorithm, where
the two optimization objectives are tried to be achieved
simultaneously.

Algorithm 1 shows the virtual mapping flow. At each
iteration with j bubbles, the tasks are mapped to a core
region of size |Ai| + j. The results are the two lookup
tables ET and MS, where ET[j] returns the execution time
and MS[j] returns the best virtual mapping scheme when
inserting j bubbles, respectively.

Our proposed virtual mapping algorithm has the follow-
ing steps.

1) Determine the computation to communication ratio
(CCR), which is defined as the average computation
workload (instructions to be executed) divided by
the data volume to be sent in one application.

2) If CCR is over a threshold, call the computation bi-
ased virtual mapping sub-routine. Otherwise, call the
communication biased virtual mapping sub-routine.

A larger CCR indicates each task computation perfor-
mance contributes more to the overall application perfor-
mance, while a small CCR means communication has more
contribution to the application performance. Based on the
CCR value, two virtual mapping sub-routines are called
which are computation or communication biased. Both of
the two mappings have two steps as follows. An initial
mapping is set up first, followed by an iterative replacement
procedure to optimize computation and communication
performances. The inputs to both of the virtual mapping

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, NOVEMBER 2016 7

ALGORITHM 1: Online Virtual Mapping
Input: j: The bubble number.
Output: ET[j]: The execution time when inserting j

bubbles.
MS[j]: the best mapping scheme when inserting j
bubbles.
Function: Find the best virtual mapping scheme and the

execution time for an incoming application given the
bubble number is j, where 0 ≤ j ≤ min{|Ai|,Γ}.

begin
if CCR < Threshold then

Call the Communication Biased Virtual
Mapping Sub-routine;

end
else

Call the Computation Biased Virtual
Mapping Sub-routine;

end
end

sub-routines are 1) the task graph of the incoming applica-
tion, 2) the available cores in the system, and 3) the bubble
number j, where j = 0, 1...,min{|Ai|,Γ}.

4.4.1 Communication Biased Virtual Mapping Sub-routine

Algorithm 2 shows the communication biased virtual map-
ping sub-routine.

4.4.1.1 Initial Mapping: In the initial mapping, the
objective is set to be minimal communication distance. A
convex core region is first found, followed by tasks with
larger communication volume mapped in closer proximity
virtually. The mapping algorithm in [14] is used as the
initial mapping with minimal communication distance as
the optimization objective.

4.4.1.2 Inserting Bubbles: In each iteration, j bub-
bles are virtually inserted into the core region of this ap-
plication to boost the computation performance of certain
tasks, where j = 0, 1...,min{|Ai|,Γ}. The application’s core
region is bounded by a convex hull. At each iteration with
j bubbles, first, a location (x1, y1) inside the current convex
hull is found, then a location (x2, y2) outside the convex
hull is found that is adjacent to its boundary, and has
the minimum distance to (x1, y1). The bubble is virtually
moved from (x2, y2) to (x1, y1) using the path migration
algorithm in [31]. As an example, Fig. 5 shows the process
of inserting two bubbles iteratively. At each iteration, when
a new bubble is to be inserted, each task is selected as the
candidate to be replaced by the bubble. A bubble with the
minimal distance to each task is virtually replaced with
the task. Then, the maximum power/thermal budget and
frequencies of the cores running the tasks are updated
following the thermal power capacity model. After deter-
mining the frequency of each core and the communication
distance of each edge in task graph, the computation and
communication performances are updated following the ap-
plication model in Section 3. The task replacement with the
minimal execution time is recorded. For example, in Fig. 5,
in the first step to insert one bubble, suppose replacing task
1 with a bubble leads to the minimal execution time. So
task 1 is moved to the location of the bubble. The region is
enlarged each time a bubble is inserted.

Bubbles

1Active Node

4

1

32

4

3

2

1

4 2

1

3

Convex hull

Task graph

Initial mapping

Adding two bubbles

Busy Node 4

3 1

2

Adding one bubble

4

3

2

1

Nodes in

other regions

Fig. 5. Adding bubbles virtually to get the expected maximum speedup.

ALGORITHM 2: Communication Biased Virtual Map-
ping Sub-routine

Output: ET[j]: The execution time when inserting j
bubbles.

MS[j]: the best mapping scheme when inserting j
bubbles.
Function: Find the best mapping scheme and the

execution time for an incoming application given the
bubble number is j, where 0 ≤ j ≤ min{|Ai|,Γ}.

begin
/* Initial Mapping */
Map the tasks with communication-awareness by

using [14] without bubble insertion;
ET[j] = INFINITY; // Recording the best

performance
/* Inserting Bubbles */
for j = 0, ...,min{|Ai|,Γ} do

for each active core tk inside the core region do /* k
= 0, 1, ...,min{|Ai|,Γ}, start with the
hottest location */

Find a bubble b on the boundary of the core
region returned by the mapping with the
minimal distance to tk;

Virtually move b to tk using [31];
Update the performance Ex;
if Ex < ET[j] then

ET[j] = Ex;
Virtually migrate b to tk using [31] and

update MS[j];
end

end
end

end

4.4.2 Computation Biased Virtual Mapping Sub-routine
Algorithm 3 shows the computation biased virtual mapping
sub-routine.

4.4.2.1 Initial Mapping: If the task computation per-
formance contributes more to the application performance,
the initial mapping begins with a region of min{2× |Ai|,Γ}
cores, where |Ai| or Γ cores are powered off as bubbles.
The tasks are sorted by their weight (each node’s worst-case
execution time in the task graph) in descending order. The

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, NOVEMBER 2016 8

ALGORITHM 3: Computation Biased Virtual Map-
ping Sub-routine

Output: ET[j]: The execution time when inserting j
bubbles.

MS[j]: the best mapping scheme when inserting j
bubbles.
Function: Find the best mapping scheme and the

execution time for an incoming application given the
bubble number is j, where 1 ≤ j ≤ |Ai|.

begin
/* Initial Mapping */
Find a core region with size of min{2× |Ai|,Γ};
for each unmapped task ak do

Virtually map ak to core t such that t has the
maximum distance to other mapped tasks;

end
ET[j] = INFINITY; // Recording the best

performance
/* Removing Bubbles */
for j = 1, ..., |Bi| do

for edge ek = (am, an) do
Virtually move an to tk, i.e., a core closest to
M(am) using [31];

Update the performance ET;
if ET < ET[j] then

ET[j] = ET;
Virtually migrate an to tk using [31] and

Update MS[j];
end

end
end

end

tasks are mapped as distant as possible to each other. The
mapping can be done as follows. For each unmapped task
ai in the sorted list, find a core t with maximal distance to
the mapped tasks, i.e.,

∑i−1
k=1D(M(ak), t). D(M(ak), t) is

the distance of the core to a previous virtually mapped task.
This equation finds the core that has the maximum distance
to those running the virtually mapped tasks.

4.4.2.2 Removing Bubbles: To get the performances
with different bubble counts for each application, the bub-
bles are virtually migrated out from the initial mapping re-
gion one by one at each iteration. The communication edges
in the task are sorted by their volume in descending order.
For each edge e = (am, an), an is migrated to a free core vir-
tually and the application performance is recalculated. If the
performance is improved, an is virtually migrated to that
free core and the bubble is migrated to the original location
of an. Then, the bubble is excluded from the application.
Fig. 6 shows two steps of virtually migrating task 3 towards
task 1, and tasks 2 towards task 3. After virtually migrating
one task to a bubble, the original core hosting the task
is excluded from the region of this application. Then, the
computation and communication performances are updated
following the application model at each iteration.
4.4.3 Complexity Analysis
The worst-case complexity of the virtual mapping pro-
cess can be analyzed as follows. In the communication
biased virtual mapping algorithm, the initial mapping step
has a complexity of O(|Ai|2 · |Ei| · K) [14], where K =
max{|Ai|, |Γ|}. In the second step, the algorithm has to
iterate up to K times, corresponding to the bubble count.

4

1

2

3

4

3 1

2

4

3

2

1

Initial mapping

Edge 1 3, fix task 1

4

3 1

2

Moving 2 towards 4

Edge 2 4, fix task 4

Moving 3 towards 1

bubbles

Fig. 6. Migrating bubbles virtually to optimize the communication dis-
tance.

For each bubble count j, it takes O(|Ai|2) steps to virtually
migrate the tasks. In the computation biased virtual map-
ping algorithm, the initial mapping step has a complexity of
O(|Ai|2 ·K), with K = max{|Ai|, |Γ|}. In the second step,
it also has to iterate up to |Ai| times, corresponding to the
bubble count. For each bubble count j, it takes O(|Ei|) steps
to virtually migrate the tasks. Overall, the worse case com-
plexity is O(|Ai|2 · |Ei| ·K), where K = max{|Ai|, |Γ|}. For
the other two approaches, DsRem [25] and PAT [23], their
overhead or complexities are independent of the number of
bubbles. However, the overhead of our proposed approach
is comparable to that of PAT, and lower than that of DsRem.

4.5 Choosing the Best Number of Bubbles
Given the waiting time and the performance models versus
bubble count, we can determine the number and locations of
bubbles for each incoming application such that the overall
system performance is optimized. To achieve the same, the
following two steps are performed. First, using the above
two models, we can select the number of bubbles |Bi| for
each application i with the minimum sum of execution time
and waiting time, i.e., min{ETi + WTi}, with 0 ≤ |Bi| ≤
min{|Ai|, |Γ|}, where |Γ| is the total number of free cores.
Second, with a bubble count of |Bi|, the mapping results
can be retrieved from the database MS[|Bi|] as shown in
Fig. 4.

4.6 Power Budgeting for the Cores
Once the locations of the cores are determined by the above
steps, the voltage/frequency (V/F) of the cores need to be
set to appropriate levels so that they can run at a high speed
without violating temperature constraint. One challenge in
choosing the V/F levels of the cores is that, the TPC of
one core depends on the heat generated from it’s neighbor
cores, and thus we cannot separately set each core’s V/F
level to achieve the optimal power budgeting scheme. In
this section, we propose a Rollout algorithm based power
budgeting method. The main idea of Rollout algorithm is as
follows. In Rollout algorithm, a base heuristic algorithm is
used first to set the V/F levels according to a simple rule (for
example, set the V/F level of a core to a maximum that is
allowable by it’s TPC). To choose a particular V/F level of a
core, the Rollout algorithm uses this base heuristic to “look
ahead”, i.e., estimate the possible application performance if
this V/F level is chosen for the core. Fig. 7 shows the illus-
tration of Rollout algorithm. At each step i (corresponding
to choosing the V/F level of a core i), the decisions can be

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, NOVEMBER 2016 9

Step i

a

Step i+1

b

...

...

Step n...

Rollout
decision

making at
step i

Use a base
heuristic

as looking
ahead Base heuristic estimates

costs-to-go from steps i+1 to
n

cost-to-go

cost-to-go

...

Fig. 7. Overview of the Rollout algorithm.

τ1

τm

...

...

...s d

τ1

τm

...

τ1

τm

...

Stage 1 Stage 2 Stage n

Fig. 8. The state space model of Rollout algorithm.

made to either choose a or b. The costs-to-go of choosing a
and b are estimated using a base heuristic starting at a and b,
respectively, and iterates toward the last step. The decision
of Rollout at step i depends on the heuristic that iterates
from steps i+ 1 to n.

In what follows, a state space model is first defined
for the power budgeting problem, followed by the Rollout
algorithm.

4.6.1 State space model for the power budgeting problem
For an application mapped to n active cores each of which
can run at m V/F levels, an undirected graph RG(V,A) is
defined as in Fig. 8.

1) The vertex set V has cardinality of n×m + 2. Each
column of m vertices form a stage, and there are
n stages, corresponding to the n cores. Each vertex
vi,j ∈ corresponds to core i running at V/F level j.

2) Two dummy vertices, s and d are added before
the first stage and after the last stage. The edges
connecting s to the vertices in stage 1 have a weight
of 0.

3) Each vertex vi,j has a value J(vi,j , d) indicating the
estimated cost-to-go returned from the base heuris-
tic, corresponding to the execution time of setting
core i’s V/F level to be τj .

4.6.2 Base heuristic
The base heuristic is presented in Algorithm 4, which starts
with an input vertex vi,j and iterates toward d. The policy is
to choose the highest V/F level that is not violating the TPC
of core k at each stage k. At stage q, the computation can be
estimated as follows.

uq,x = arg max
∀vq+1,y∈Π1

{y} (9)

where Π1 is a set of vertices in stage q + 1 corresponding
to the V/F levels such that the TPC of core q is below the
thermal threshold TH ,

Π1 : {PM (q + 1, y) ≤ TH} (10)

ALGORITHM 4: Base Heuristic
Input: vi,j : The starting vertex vi,j .
Output: vi+1,x, ..., d: The vertex selected at each stage

from i + 1 to n, corresponding to V/F level of
each router.

Function: Find an edge connecting each vertex vq,x to a
vertex at stage x + 1, corresponding to the V/F level
selection of the core q

begin
for each stage q from i + 1 to d do /* current
vertex is vq,x */

for each edge (vq,x, vq+1,y) parallel do
if PM (q + 1, y) ≤ TH then

uq,x = arg max∀vq+1,y∈Π1{y} ;
end

end
end

After the base heuristic makes decision at each stages, a
path from vi,j to d is obtained representing the V/F levels
selection for cores i, i+ 1, ...n.

4.6.3 Rollout
The Rollout algorithm (Algorithm 5) improves the base
heuristic iteratively from s to d. To make decision at stage
i, it calls the base heuristic to estimate the costs-to-go of
vertices from stages i + 1 to d. Then it chooses the vertex
with the best estimated cost-to-go at stage i.

At each vertex vi,j , the V/F levels of cores 1, 2, ..., i − 1
are set by Rollout in previous steps. Decision needs to
be made to choose among the vertices vi+1,1, ..., vi+1,m,
corresponding to setting one of them possible V/F levels for
core i. For each choice vi+1,t, Rollout calls the base heuristic
to estimate the cost-to-go of choosing vi+1,t, corresponding
to tentatively setting the V/F levels of cores i + 1, ..., n by
the base heuristic. With the V/F levels of all the cores to
be known, the cost-to-go of vi+1,t can be computed which
is the execution time of the task graph. The computation at
each vertex vi,j can be given as,

u∗i+1,t = arg min
∀vi+1,k∈Π2

{ET} (11)

where ET is the execution time of the application after
setting the V/F levels of cores 1, 2, ..., i − 1 by Rollout in
previous steps, setting core i’s V/F to be t, and tentatively
setting the V/F levels of cores i + 1, ..., n by the base
heuristic. Π2 is a set of vertices in stage i+ 1 corresponding
to the V/F levels that the TPC of core i is below the thermal
threshold TH .

Π2 : {PM (i+ 1, k) ≤ TH} (12)

Fig. 9 shows an example of the Rollout algorithm at
decision making for vertex v2,2. The V/F levels of core 1
is already set at previous iteration. The next vertex can be
v3,1 or v3,2. The base heuristic is called for both of the two
vertices. The lower part of the figure shows the process of
calling the base heuristic from v3,2. The base heuristic selects
the maximum V/F level under core 3’s TPC. One the base
heuristic finishes running, the V/F levels of cores 3 and 4
are tentatively set. The Rollout algorithm at v2,2 knows the
V/F levels of cores 1, 3, 4 and makes decision for core 2 that
results in the minimum application execution time.

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, NOVEMBER 2016 10

ALGORITHM 5: Rollout Algorithm
Output: v1,j , ..., vn,jn : The V/F level setting of each core.
Function: Find an edge connecting each vertex vi,j to a

vertex at stage i + 1, corresponding to the frequency
assignment of the core i

begin
for each stage i from s to j do /* current vertex
is vi,j */

for each edge (vi,j , vi+1,k) parallel do
if PM (i + 1, k) ≤ TH then

call the Base Heuristic routine in
Algorithm 4 with input vi+1,k

u∗i+1,t = arg min∀vi+1,k∈Π2{ET};
end

end
end

τ1

s

τ2

τ1

τ2

τ1

τ2

τ1

τ2

Stage 3 Stage 4

Stage 3

d

v2,2

Stage 4

τ1

d

τ2

τ1

τ2v3,2

Base

heuristic

Stage 1 Stage 2

?

?

?

Decision

making

Decision

making

Base heuristic

v3,1

Fig. 9. An example of Rollout algorithm.

Assume each processor core has m V/F levels. Since the
base heuristic traverses the O(|Q|m) vertices and thus its
complexity is O(|Q|m). At each stage, the Rollout algorithm
calls the base heuristic and there is a total of Q stages.
Therefore, the overall complexity of the Rollout algorithm
is O(m|Q|2).

5 EXPERIMENTAL EVALUATION

5.1 Experimental Setup
We implemented a modified version of POPNET, which is
an open source event-driven C++ network simulator [1],
[34]. To simulate the temperature, we use an Alpha EV 6
like core floorplan, including L1 cache. The floorplan of
each tile in NoC is shown as in Fig. 11, as in [41]. The
dimension of the Alpha core is adopted from [42], which is
scaled down to 45nm as in [22]. The area of a router can be
obtained by running DSENT [39]. Table 2 lists the simulation
configuration for Hotspot. We used discrete frequency levels
from 1GHz to 3 GHz with 166MHz step size [26]. We use
McPAT to compute the power consumptions of cores run-
ning the threads of each application. DSENT is integrated
as the power model and Hotspot is used as the temperature
simulator. Task graphs are modeled in this simulator, which
can dynamically arrive at the system. The simulator system
includes a network simulation subsystem which can model
the package delay and energy of the communications. The
configuration of the network-on-chip is listed in Table 3. The
many-core system floorplanning can be found in [41]. The
temperature threshold is 60 oC.

Cycle accurate

many-core simulator

Network

simulator

Traces Final

results

Fig. 10. Simulation flow.

Alpha

core

L2

NoC router

Fig. 11. The floorplan of each tile in NoC.
TABLE 2

The simulation configuration for Hotspot

Thermal conduc-
tance

Heat capac-
ity)

Depth

(W/mK) (J/m3K) (um)
Active layer 160.11 1.66× 106 50
Interface
layer

6.83 3.99× 106 10

Heat sink 400 3.55× 106 6900
Cwire(fF/mm) 212.12
Ambient
temperature

318K

We compare our approach with the following two run-
time thermal-aware mapping algorithms that aim to dark
silicon era, (1) DsRem [25], where the cores on/off patterning
are identified followed by tasks mapped to active cores,
and (2) PAT [23], where a core region including inactive
cores is found for each application. To augment existing
algorithms, we assign a maximum of max {|Ai|,Γ} bubbles
to each application, where |Ai| is the number of tasks of
each application and Γ is the number of available bubble in
the system.

Both random and real applications are used in the
experiments as tabulated in Table 3 in order to evaluate
the performance of the proposed and relevant algorithms
considered for comparison. The task graphs of the real
applications are generated from the traces of SPLASH-2 [3]
and PARSEC [4]. These traces are collected by executing
these applications in a 8×8 NoC-based cycle accurate many-
core simulator. Then, a network simulator process the traces
to achieve quick results for various system sizes. The net-
work simulator models the package delay and energy of the
communications based on the traces. The simulation flow is
shown in 10. In particular, we compare throughput (defined
as the average number of applications finished within a
time unit), communication cost, and average waiting time
for each application which occurs when there is insufficient
cores to run the tasks that arrive in the system at run-time.
The communication cost is defined as the network energy
consumption, which is measured by DSENT. The run-time
execution costs of the algorithms are also evaluated.

5.2 Testing Thermal Violation of Different TPC Models

TPC models in Eqn. 3 differ in time and space complex-
ities. The more lightweight model in Eqn. 3 has lower
time and space complexities, at the cost of ignoring the
thermal impact of distant cores. Therefore, in this section,
we perform a set of experiments to test the probability

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, NOVEMBER 2016 11

TABLE 3
Simulation Configurations

Configuration of System Simulator for Extracting Traces
Core Architecture 64 bit Alpha 21264
Baseline frequency 3 GHz
Fetch/Decode/Commit size 4 / 4 / 4
ROB size 64
L1 D cache (private) 16KB, 2-way, 32B line,

2 cycles, 2 ports,
dual tags

L1 I cache (private) 32KB, 2-way, 64B line,
2 cycles

L2 cache (shared) 64KB slice/core, 64B
MESI protocol line, 6 cycles, 2 ports
Main memory size 2GB

Network parameters
Flit size 128 bits
Latency Router 2 cycles, link 1 cycle
Buffer depth 4 flits
Routing algorithm XY routing
Baseline topology 8× 8

Random benchmark parameters
Number of tasks [15, 45]
Communication volume [10, 200] (Kbits)
Degree of tasks [1, 15]
Task number distribution Bimodal, uniform

Task graphs of real applications
barnes, blackscholes, fluidanimate, freqmine, ferret, vips, dedup,

swaptions, canneal, streamcluster, raytrace

of thermal violations (i.e., the peak temperature is over
the temperature threshold). The experiments are performed
as follows. We perform N experiments using TPC models
in both Eqn. 3 with each core’s power consumption set
randomly. We count the number of cases VT that the peak
temperature is over the threshold. We define the probability
of thermal violation PV T as,

PV T = VT /N × 100% (13)

We run 108, 800 experiments, where in each experiment,
the power consumptions of the cores are randomly set
except a particular core ti. The maximum allowed power
(TPC) of core i PM (i) is computed by Eqn. 3. The maximum
power consumption of core ti together with the power
consumptions of other cores are feed into Hotspot as input
power trace to calculate the temperature. After performing
108, 800 experiments for TPC models in Eqn. 3, we find
that using Eqn. 3 leads to no thermal violation in our
experiments.

5.3 Validation of the Estimations
For errors in the waiting time estimation, Fig. 12 compares
the linear regression and polynomial regression models.
Fifty experiments are run with |Q|, |Ai|, r, ETi and λ set
randomly. The error of a single experiment is defined as,

ε =
|WT − ŴT |

WT
× 100% (14)

where WT and ŴT are the waiting times obtained from the
simulator and the waiting time estimate model, respectively.

From this figure, one can see that quartic regression has
the lowest error. Therefore, in the following experiments,
we use the quartic regression model as the waiting time
estimation. This indicates that the maximum order of the
terms in Eqn. 8 is four.

linear quadratic cubic quartic quintic
0

10

20

30

40
Errors of the waiting time estimation model (%)

Fig. 12. Errors of different regression models.

0.5 1 1.5
1

1.5

2

2.5

Normalized execution time

CCR threshold

Fig. 13. CCR threshold selection.

5.4 Finding the CCR Threshold

Our approach (Algorithm 1) calls different sub-routines
based on the CCR threshold and we have identified its
value. Fig. 13 evaluates the CCR threshold which is used
to classify an application as computation or communication
biased. The communication volumes of the applications
range from 20 to 1000 Kbits. CCR is defined as the sum
of node weights divided by the sum of edge weights in each
application’s task graph. From this figure, one can see that,
a CCR threshold of 1 generates the best performance. There-
fore, in the following experiments, we set CCR threshold to
be 1.

5.5 Performance Comparison

5.5.1 Evaluation on Random Benchmarks

Fig. 14 compares the throughput, waiting time, and com-
munication cost at different network sizes, for the three
methods. One can see that, when the network size is large,
e.g., 16× 16, our approach can improve throughput by 1.7×
and 3.8× over DsRem and PAT, respectively. The reason
is that, our approach can optimize both the communication
and computation intensive applications. For communication
intensive applications, tasks with high traffic volumes are
mapped closer, while for computation intensive applica-
tions, more bubbles are inserted. Therefore, our approach
can achieve better performance. It can also be seen from
Fig. 14 that the waiting time of our approach is shorter than
the other two approaches because our approach balances
the waiting time and the execution time of each application
when inserting bubbles. The other two approaches only
consider the performance of each individual application.
Among the three approaches, DsRem has the worst com-
munication cost, since it does not take the communications
among the tasks into account.

Fig. 15 compares the considered metrics at different ap-
plication communication volumes when the three methods
are employed. It can be seen that when each application’s
average communication volume increases, e.g., 150Kbits, our
approach’s throughput is about 1.6× and 1.8× over DsRem
and PAT, respectively. As DsRem does not consider com-
munications among the tasks, it’s performance gets worse

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, NOVEMBER 2016 12

0

0.5

1

8
×
8

1
0

×
1
0

1
2

×
1
2

1
6

×
1
6

(a)

Normalized throughput

0

5

10

8
×
8

1
0

×
1
0

1
2

×
1
2

1
6

×
1
6

(b)

Normalized waiting time

0

2

4

6

8

8
×
8

1
0

×
1
0

1
2

×
1
2

1
6

×
1
6

(c)

Normalized comm cost

PAT DsRem proposed

Fig. 14. The throughput, waiting time, and communication cost compar-
ison at different network sizes.

50 100 150 200
0

0.5

1

(a)

Normalized throughput

PAT DsRem proposed

50 100 150 200
0

0.5

1

1.5

2

2.5

(b)

Normalized waiting time

50 100 150 200
0

0.5

1

1.5

2

(c)

Normalized comm cost

Fig. 15. The throughput, waiting time, and communication cost compar-
ison at various communication volumes (in K bits).

when communication volume is large. Although PAT con-
siders communication among the tasks, it does not consider
budgeting the bubbles that affects the waiting time of future
applications. Therefore, the waiting time of PAT is worse
than ours, leading to a degraded throughput performance.

Fig. 16 compares the performances of the three methods
with different application arrival rates. Application arrival
rates is defined as the number of applications arrived at
the system per 100 cycles, which measures the workloads
of the system. When the arrival rate is high, e.g., 2 appli-
cations arrive in the system per 100 cycles, our approach’s
throughput is about 2.16× and 2.24× over DsRem and PAT,
respectively. A higher arrival rates means more applications
arrive at the system, indicating the system workload is
high. In such cases, DsRem and PAT might lead to long
waiting time when applications arrive, since the free cores
are used as coolers for currently running applications. For
example, when the arrival rate is 2 applications per 100
cycles, the waiting times of PAT and DsRem are 2.64×
and 2.66× of that of the proposed method. Further, DsRem
and PAT optimize only for each individual application’s
performance. On the other hand, when the system workload
is high, our approach budgets fewer bubbles to currently
running applications and thus more free cores can be used to
run the incoming applications, reducing their waiting time.

Fig. 17 compares the peak temperatures of the three
methods. From Fig. 17, the peak temperature of the three
approaches are close, and all of them are below the thresh-
old of 60oC .

5.5.2 Evaluation on Real Benchmarks

Fig. 18 compares the throughput, waiting time, and com-
munication cost at different network sizes when the three
methods are employed. When the network size is large,
e.g., 28 × 28, our approach’s throughput is about 1.41×
and 1.42× over DsRem and PAT, respectively. Our approach

0.1 0.4 1 2
0

0.5

1

(a)

Normalized throughput

DsRem PAT proposed

0.1 0.4 1 2
0

1

2

3

(b)

Normalized waiting time

0.1 0.4 1 2
0

0.5

1

1.5

2

(c)

Normalized comm cost

Fig. 16. The throughput, waiting time, and communication cost com-
parison at different application arrival rates (defined as the number of
applications arrived per 100 cycles).

0.05 0.1 0.2 1
55

56

57

58

59

60
Peak Temperature (

o
C)

PAT DsRem proposed

Fig. 17. The peak temperature comparison at different application arrival
rates (defined as the number of applications arrived per 100 cycles).

also reduces waiting time by 41% and 42% over DsRem and
PAT, respectively.

Fig. 19 compares the considered metrics at different
arrival rates for the three methods. When the arrival rate is
high, e.g., 2 applications arrive in the system per 100 cycles,
our approach’s throughput is about 1.4× over DsRem and
PAT, respectively. The reason is similar as in the case of
random benchmarks.

5.6 Cost Analysis

The runtime cost of our algorithm is in the order of 1M
cycles for the applications listed in table 3. This is averaged
by running the algorithm fifty times with different system
parameters. After the evaluation, it has been observed that
the running times of PAT is also in the order of 1M cycles.
DsRem, on the other hand, is designed for offline compu-
tation which takes longer time for computation. It has also
been observed that the average application execution takes
hundreds of millions of cycles in comparison to the 1M
cycles for the algorithm runtime.

The runtime cost of the algorithm can be evaluated with
respect to the average execution time of the applications. It
has been observed that the average application execution
takes 107 to 109 cycles in comparison to the 1M cycles of the
algorithm runtime. Therefore, from the perspective of the
application execution time, the overhead of the mapping
algorithm is low.

The frequency of algorithm execution depends upon
the workload arrival rate, i.e. it is applied as soon as an
application arrives into the system. The arrival rate also
defined the average time between two applications arrival.
Based on the algorithm overhead, we recommend that our
algorithm is suitable for systems with arrival interval larger
than 10M cycles, which is 0.03 sec with CPU clock frequency
of 3 GHz.

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, NOVEMBER 2016 13

0

1

2

3

1
6

×
1
6

2
0

×
2
0

2
4

×
2
4

2
8

×
2
8

(b)

Normalized waiting time

0

0.5

1

1.5

2

1
6

×
1
6

2
0

×
2
0

2
4

×
2
4

2
8

×
2
8

(c)

Normalized comm cost

0

0.5

1

1
6

×
1
6

2
0

×
2
0

2
4

×
2
4

2
8

×
2
8

(a)

Normalized throughput

PAT DsRem proposed

Fig. 18. The peak temperature comparison at different arrival rates.

0.050.1 0.2 1
0

0.5

1

(a)

Normalized throughput

DsRem PAT proposed

0.05 0.1 0.2 1
0

1

2

3

4

(b)

Normalized waiting time

0.05 0.1 0.2 1
0

0.5

1

1.5

(c)

Normalized comm cost

Fig. 19. The throughput, waiting time, and communication cost compar-
ison at various application arrival rates.

6 CONCLUSION

We proposed an online algorithm to budget free cores
(referred as bubbles) to each application so as to optimize
the system throughput. The system throughput is related
to each application’s communication and computation per-
formances, as well as the waiting time incurred when it
finds insufficient cores to run its tasks. Performance and
waiting time models are first set up for the applications.
An online algorithm was proposed to find the best number
and locations of the bubbles to each application, according
to whether the new application is computation or commu-
nication intensive. The algorithm also trades the execution
performance of each running application with the waiting
time of new applications. A Rollout algorithm is proposed
to budget power to the cores by setting the cores’ V/F
levels. Our experiments confirmed that, compared with
two existing runtime resource management approaches, our
approach can improve the system throughput by as much
as 50%. The runtime overhead of our approach is mod-
erate, making it a suitable runtime resource management
approach to achieve high system throughput for many-core
systems running open workloads.

REFERENCES

[1] Popnet, https://github.com/karellincoln/popnet.git.
[2] I. Anagnostopoulos, V. Tsoutsouras, A. Bartzas, and D. Soudris.

Distributed run-time resource management for malleable applica-
tions on many-core platforms. In Proc. Design Automation Conf.,
pages 1–6, 2013.

[3] J. M. Arnold, D. A. Buell, and E. G. Davis. Splash 2. In In Proc.
Int’l Conf. SPAA, pages 316–322, 1992.

[4] R. Bagrodia, R. Meyer, M. Takai, Y.-A. Chen, X. Zeng, J. Martin,
and H. Y. Song. Parsec: a parallel simulation environment for
complex systems. IEEE Trans. Computer, 31(10):77–85, 1998.

[5] D. Bertsekas. Rollout algorithms for constrained dynamic pro-
gramming. Lab. for Information and Decision Systems Report, 2646,
2005.

[6] S. Boyd-Wickizer, H. Chen, R. Chen, Y. Mao, M. F. Kaashoek,
R. Morris, A. Pesterev, L. Stein, M. Wu, Y.-h. Dai, et al. Corey:
An operating system for many cores. In OSDI, volume 8, pages
43–57, 2008.

[7] E. L. d. S. Carvalho, N. L. V. Calazans, and F. G. Moraes. Dynamic
Task Mapping for MPSoCs. IEEE Design Test, 27(5):26–35, 2010.

[8] J. Castrillon, A. Tretter, R. Leupers, and G. Ascheid.
Communication-aware mapping of kpn applications onto hetero-
geneous mpsocs. In the 49th Annual Design Automation Conference,
pages 1266–1271, 2012.

[9] C.-L. Chou, U. Y. Ogras, and R. Marculescu. Energy-and
performance-aware incremental mapping for networks on chip
with multiple voltage levels. IEEE Trans. Computer-Aided Design
of Integrated Circuits and Systems, 27(10):1866–1879, 2008.

[10] A. K. Coskun, T. S. Rosing, K. A. Whisnant, and K. C. Gross.
Temperature-aware mpsoc scheduling for reducing hot spots and
gradients. In Proc. Asia and South Pacific Design Automation Conf.,
pages 49–54. IEEE Computer Society Press, 2008.

[11] M. Fattah, M. Daneshtalab, P. Liljeberg, and J. Plosila. Smart hill
climbing for agile dynamic mapping in many-core systems. In
Proc. Design Automation Conf., pages 1–6, 2013.

[12] D. G. Feitelson and L. Rudolph. Metrics and benchmarking for
parallel job scheduling. In Workshop on Job Scheduling Strategies for
Parallel Processing, pages 1–24, 1998.

[13] D. Gmach, J. Rolia, L. Cherkasova, and A. Kemper. Workload anal-
ysis and demand prediction of enterprise data center applications.
In Pro. Int’l Symp. Workload Characterization, pages 171–180, 2007.

[14] M.-H. Haghbayan, A. Kanduri, A.-M. Rahmani, P. Liljeberg,
A. Jantsch, and H. Tenhunen. Mappro: proactive runtime mapping
for dynamic workloads by quantifying ripple effect of applica-
tions on networks-on-chip. In Proc. Int’l Symp. Networks-on-Chip,
page 26, 2015.

[15] V. Hanumaiah, S. Vrudhula, and K. S. Chatha. Performance
optimal online dvfs and task migration techniques for thermally
constrained multi-core processors. IEEE Trans. Computer-Aided
Design of Integrated Circuits and Systems, 30(11):1677–1690, 2011.

[16] T. Hastie, R. Tibshirani, J. Friedman, T. Hastie, J. Friedman, and
R. Tibshirani. The elements of statistical learning. Springer, 2009.

[17] J. Henkel, H. Khdr, S. Pagani, and M. Shafique. New trends in
dark silicon. In Proc. Design Automation Conf., pages 1–6, 2015.

[18] W. Huang, M. R. Stant, K. Sankaranarayanan, R. J. Ribando, and
K. Skadron. Many-core design from a thermal perspective. In Proc.
Design Automation Conf., pages 746–749, 2008.

[19] D.-C. Juan, S. Garg, J. Park, and D. Marculescu. Learning the op-
timal operating point for many-core systems with extended range
voltage/frequency scaling. In Proc. Int’l Conf. Hardware/Software
Codesign and System Synthesis, pages 1–10, 2013.

[20] D.-C. Juan, H. Zhou, D. Marculescu, and X. Li. A learning-based
autoregressive model for fast transient thermal analysis of chip-
multiprocessors. In Proc. Asia and South Pacific Design Automation
Conf., pages 597–602, 2012.

[21] H. Jung, C. Lee, S.-H. Kang, S. Kim, H. Oh, and S. Ha. Dynamic
behavior specification and dynamic mapping for real-time embed-
ded systems: Hopes approach. ACM Trans. Embed. Comput. Syst.,
13(4s):135, 2014.

[22] M. Kadin. Frequency planning for multi-core processors under
thermal constraints. In Proc. Int’l Symp. Low Power Electronics &
Design, pages 213–216, 2008.

[23] A. Kanduri, M.-H. Haghbayan, A.-M. Rahmani, P. Liljeberg,
A. Jantsch, and H. Tenhunen. Dark silicon aware runtime mapping
for many-core systems: a patterning approach. In Proc. IEEE Int’l
Conf. Computer Design, 2015.

[24] S. Kaushik, A. Singh, W. Jigang, and T. Srikanthan. Run-time
computation and communication aware mapping heuristic for
NoC-based heterogeneous mpsoc platforms. In Proc. Int’l Symp.
Parallel Architectures, pages 203–207, 2011.

[25] H. Khdr, S. Pagani, M. Shafique, and J. Henkel. Thermal con-
strained resource management for mixed ilp-tlp workloads in dark
silicon chips. In Proc. Design Automation Conf., pages 1–6, 2015.

[26] S. Kim, J. Lee, and C. Kyung. 3D-stacked L2 cache configuration
for DVFS-enabled processor to minimize overall energy consump-
tion. In Int’l Conf. Convergence and Hybrid Information Technology,
pages 1–4, 2010.

[27] P. Kumar and L. Thiele. Thermally optimal stop-go scheduling
of task graphs with real-time constraints. In Proc. Asia and South
Pacific Design Automation Conf., pages 123–128. IEEE Press, 2011.

[28] J. Lee and N. S. Kim. Optimizing throughput of power-and
thermal-constrained multicore processors using DVFS and per-
core power-gating. In Proc. Design Automation Conf., pages 47–50.
IEEE, 2009.

[29] P. Marwedel, J. Teich, G. Kouveli, I. Bacivarov, L. Thiele, S. Ha,
C. Lee, Q. Xu, and L. Huang. Mapping of applications to MPSoCs.

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, NOVEMBER 2016 14

In the IEEE/ACM/IFIP international conference on Hardware/software
codesign and system synthesis, pages 109–118, 2011.

[30] T. S. Muthukaruppan, M. Pricopi, V. Venkataramani, T. Mitra, and
S. Vishin. Hierarchical power management for asymmetric multi-
core in dark silicon era. In Proc. Design Automation Conf., pages
1–9, 2013.

[31] J. Ng, X. Wang, A. Singh, and T. Mak. DeFrag: defragmentation
for efficient runtime resource allocation in NoC-based many-core
systems. In Prpc. Euromicro Int’l Conf. Parallel, Distributed and
Network-Based Processing, 2015.

[32] S. Pagani, H. Khdr, W. Munawar, J. J. Chen, M. Shafique, M. Li,
and J. Henkel. TSP: thermal safe power: efficient power budgeting
for many-core systems in dark silicon. In Proc. Int’l Conf. Hard-
ware/software Codesign and System Synthesis, pages 10:1–10, 2014.

[33] E. Paone, F. Robino, G. Palermo, V. Zaccaria, I. Sander, and
C. Silvano. Customization of OpenCL applications for efficient
task mapping under heterogeneous platform constraints. In Proc.
Design, Automation and Test in Europe, pages 736–741, 2015.

[34] L. Shang, L. S. Peh, and N. K. Jha. Dynamic voltage scaling with
links for power optimization of interconnection networks. In Proc.
Int’l Symp. High-Performance Computer Architecture, pages 91–102,
2003.

[35] A. Singh, M. Shafique, A. Kumar, and J. Henkel. Mapping on
multi/many-core systems: Survey of current and emerging trends.
In Proc. Design Automation Conf., pages 1:1–1:10, 2013.

[36] A. K. Singh, P. Dziurzanski, H. R. Mendis, and L. S. Indrusiak. A
survey and comparative study of hard and soft real-time dynamic
resource allocation strategies for multi-/many-core systems. ACM
Computing Surveys (CSUR), 50(2):24, 2017.

[37] A. K. Singh, T. Srikanthan, A. Kumar, and W. Jigang.
Communication-aware heuristics for run-time task mapping on
NoC-based MPSoC platforms. J. Syst. Archit., 56:242–255, 2010.

[38] T. Somu Muthukaruppan, A. Pathania, and T. Mitra. Price theory
based power management for heterogeneous multi-cores. ACM
SIGARCH Computer Architecture News, 42(1):161–176, 2014.

[39] C. Sun, C.-H. Chen, G. Kurian, L. Wei, J. Miller, A. Agarwal, L.-S.
Peh, and V. Stojanovic. DSENT - A Tool Connecting Emerging
Photonics with Electronics for Opto-Electronic Networks-on-Chip
Modeling. In Proc. Int’l Conf. NoCS, pages 201–210, 2012.

[40] X. Wang, A. K. Singh, B. Li, Y. Yang, T. Mak, and H. Li. Bubble
budgeting: throughput optimization for dynamic workloads by
exploiting dark cores in many core systems. In Proc. IEEE/ACM
Int’l Symp. Networks-on-Chip, pages 1–8, 2016.

[41] A. Y. Yamamoto and C. Ababei. Unified reliability estimation and
management of NoC based chip multiprocessors. Microprocessors
& Microsystems, 38(1):53C63, 2014.

[42] C. Zhu, Z. Gu, L. Shang, R. Dick, and R. Joseph. Three-
dimensional chip-multiprocessor run-time thermal management.
IEEE Trans. Computer-Aided Design of Integrated Circuits and Sys-
tems, 27(8):1479–1492, 2008.

Xiaohang Wang received the B.Eng. and Ph.D
degree in communication and electronic engi-
neering from Zhejiang University, in 2006 and
2011. He is currently an associate professor at
South China University of Technology. He was
the receipt of PDP 2015 and VLSI-SoC 2014
Best Paper Awards. His research interests in-
clude many-core architecture, power efficient ar-
chitectures, optimal control, and NoC-based sys-
tems.

Amit Kumar Singh (M09) received the B.Tech.
degree in Electronics Engineering from Indian
Institute of Technology (Indian School of Mines),
Dhanbad, India, in 2006, and the Ph.D. de-
gree from the School of Computer Engineering,
Nanyang Technological University (NTU), Singa-
pore, in 2013. He was with HCL Technologies,
India for year and half before starting his PhD
at NTU, Singapore, in 2008. He worked as a
post-doctoral researcher at National University
of Singapore (NUS) from 2012 to 2014 and at

University of York, UK from 2014 to 2016. Currently, he is working as
senior research fellow at University of Southampton, UK. His current
research interests include system level design-time and run-time opti-
mizations of 2D and 3D multi-core systems with focus on performance,
energy, temperature, and reliability. He has published over 50 papers in
the above areas in leading international journals/conferences. Dr. Singh
was the receipt of ISORC 2016 Best Paper Award, PDP 2015 Best
Paper Award, HiPEAC Paper Award, and GLSVLSI 2014 Best Paper
Candidate. He has served on the TPC of IEEE/ACM conferences like
DATE, ISED, MES, NoCArc and ESTIMedia.

Bing Li received the bachelor degree in soft-
ware engineering from South China University
of Technology(SCUT), Guangzhou, China. She
is pursuing her master degree in the department
of software engineering, SCUT. Her research
interest is task mapping for NoC-based systems.

Yang Yang received the bachelor degree from
the School of Data and Computer Science, Sun
Yat-sen University, China. Currently, he is pur-
suing master degree in the School of Data and
Computer Science, Sun Yat-sen University. His
research interest is mapping of applications on
large scale multi-core architectures.

Hong Li is currently an associate professor at
South China University of Technology. His re-
search interests include many-core architecture,
power efficient architectures, optimal control,
and NoC-based systems.

Terrence Mak is an Associate Professor at
Electronics and Computer Science, University of
Southampton. Supported by the Royal Society,
he was a Visiting Scientist at Massachusetts
Institute of Technology during 2010, and also,
affiliated with the Chinese Academy of Sci-
ences as a Visiting Professor since 2013. Pre-
viously, He worked with Turing Award holder
Prof. Ivan Sutherland, at Sun Lab in California
and has awarded Croucher Foundation scholar.
His newly proposed approaches, using runtime

optimisation and adaptation, strengthened network reliability, reduced
power dissipations and significantly improved overall on-chip commu-
nication performances. Throughout a spectrum of novel methodolo-
gies, including regulating traffic dynamics using network-on-chips, en-
abling unprecedented MTBF and to provide better on-chip efficiencies,
and proposed a novel garbage collections methods, defragmentation,
together led to three prestigious best paper awards at DATE 2011,
IEEE/ACM VLSI-SoC 2014 and IEEE PDP 2015, respectively. More
recently, his newly published journal based on 3D adaptation and
deadlock-free routing has awarded the prestigious 2015 IET Computers
& Digital Techniques Premium Award. He has published more than 100
papers in both conferences and journals and jointly published 4 books.

