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A Appendix to Sections 1 and 2

In this appendix, we first provide additional formal definitions and assumptions required

for the main proof, Proposition 1. In doing so, we provide a generic recursivity proof

for models where the realised state next period can depend on the realisation of the

shock next period. Finally, we provide a discussion of the necessity of Assumption 3,

alternative power structures, and a recursive algorithm for FC with policies as state

variables, which can be used whenever the equivalence result holds.

A.1 Definition of competitive equilibrium

We define competitive equilibrium in the standard way:

Definition 3. Given an initial condition (b0, z0) ∈ B×Z and a policy sequence {τt(zt)}
∞
t=0,

a competitive equilibrium is a sequence of functions {ct(zt), pt(zt), bt(zt)}
∞
t=0 which

satisfy (2), (3) and (4) for all t = 0, 1, ... and histories zt ∈ Zt.

We summarise the variables of the economy in a vector yt(z
t) ≡ (ct(z

t), pt(z
t), bt(z

t), τt(z
t)),

and use the notation y ≡ {yt(zt)}
∞
t=0 to denote plans. Let Π∗(b0, z0) denote the set of

plans which are competitive equilibria. That is, y ∈ Π∗(b0, z0) if and only if it is a

feasible competitive equilibrium from initial state (b0, z0).

Define the truncation of any plan from time t as yt ≡ {ys(zs)}∞s=t. Once time t is

reached, a plan is feasible if and only if it satisfies the competitive equilibrium constraints

at times t, t+1, .... Importantly, constraints dated t−1 and before can be ignored, because

these are now in the past. Due to the recursive nature of the definition of competitive

equilibrium, it must be that any truncated plan yt is a valid competitive equilibrium

from t onwards if and only if yt ∈ Π∗(bt, zt).
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A.2 Further details: Full-Commitment Ramsey equilibrium

We maintain the following regularity assumption throughout the text:

Assumption 1. The environment is such that r is bounded over all competitive equilib-

rium paths. The discount rate is strictly less than one: 0 ≤ β < 1

This assumption serves two purposes. Firstly, it ensures that discounted utility is well

defined in the limit of an infinite horizon, in the sense that the limit is sure to converge.

More importantly, it rules out potential extraneous equilibria of the LTC game achieving

negative infinite utility.1 The assumption does not rule out unbounded utility functions,

such as the commonly used Constant Relative Risk Aversion (CRRA) form, as long as

the environment is such that the possible values of utility in equilibrium are themselves

bounded.

In a FC equilibrium, a single benevolent infinitely-lived government endowed with

the ability to credibly commit into the infinite future announces a contingent plan at

t = 0 and then implements it. Denote a policy plan by τ ≡ {τt(zt)}
∞
t=0.

In order for the government to be able to pin down a unique competitive equilibrium,

the following assumption on the mapping from policy plans to allocations is required.

Assumption 2. Given an initial condition (b0, z0) ∈ B∗ and a policy plan τ , there exists

a unique competitive equilibrium, y. That is, there is a unique sequence of functions

{ct(zt), pt(zt), bt(zt)}
∞
t=0 which satisfy (2), (3) and (4) for all t = 0, 1, ... and histories

zt ∈ Gt.

This assumption allows us to map an infinite sequence of policies to a single com-

petitive equilibrium, ensuring that the government knows exactly which equilibrium is

selected for a given policy choice.2 Under this assumption we can equivalently define the

government’s problem as choosing a conditional path for policies, τ , or simply choosing

the associated competitive equilibrium, y. This allows us to state the FC government’s

problem, for any (b0, z0) ∈ B∗, as (5).

Definition 4. Fix an initial condition (b0, z0) ∈ B∗. Let τFC(b0, z0) be the policy

sequence that solves (5). A Full-Commitment (FC) Ramsey equilibrium is the

competitive equilibrium, yFC(b0, z0), associated with τFC(b0, z0).

A.3 Further details: LTC game

In the definition of the LTC game in Section 1.3 we restricted the government to choose

policies consistent with competitive equilibrium. In particular, for the contingent case we

define C(st;
˜
τ) as the set of values for

˜
τt+L which are consistent with some competitive

1If the government today thinks that future governments will play a policy leading to negative infinite
utility, whatever policy the current government follows its value is negative infinity. Hence it is weakly
optimal for the government to pursue the same policy, leading to this policy being a Markov-Perfect
equilibrium.

2Bassetto (2005) argues that a full specification of out-of-equilibrium government strategies is nec-
essary to guarantee that the desired equilibrium is obtained. In this paper we implicitly assume that
there is a more general formulation of the government strategy, involving binding promises about out-
of-equilibrium paths, that guarantees uniqueness of the desired Ramsey equilibrium.
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equilibrium. That is, if and only if
˜
τt+L ∈ C(st;

˜
τ) then a competitive equilibrium exists

and implies the values for (bt+1, ct, pt) given in φ (st,
˜
τt+L;

˜
τ). Then, it is understood

that governments are restricted to choosing
˜
τt+L ∈ C(st;

˜
τ) in (10).

Given an equilibrium policy function
˜
τ of either the contingent or non-contingent

LTC game and an initial condition s0, we can iterate the policy function forwards to

solve for an implied contingent policy plan τ ∗(s0) = {τt(zt)}∞t=0. Importantly, when

L > 0 we must specify as part of our initial conditions the pre-committed policies from

the point of time 0: τL0 . Thus, we cannot solve for the paths generated by the LTC game

without specifying some rule for these initial conditions.

Definition 5. Given initial conditions s0 =
(
b0, z0, τ

L
0

)
, a symmetric Markov-Perfect

Limited-Time-Commitment (LTC) equilibrium is the competitive equilibrium, y∗(s0),

associated with the equilibrium policy plan τ ∗(s0)

Consider either non-contingent LTC in a deterministic environment, or contingent

LTC in a stochastic environment. Take as initial conditions the first L periods of the

optimal Full Commitment policy. That is, take τL0 = (τFC0 , τFC1 (z1), ..., τFCL−1(zL−1)),

where τFCt (zt) is the time-t element of τFC(b0, z0). Then, as L → ∞ the equilibrium

trivially coincides with the FC equilibrium, as in the limit the entire path of taxes

coincides with the initial conditions. In this case, LTC nests both NC (L = 0) and FC

(L→∞).

A.4 Equivalence proofs

In this section we provide proofs for our propositions regarding when LTC is able to

sustain FC. In the text we provided Proposition 1 for the case of non-contingent LTC

in deterministic economies. Below we restate the key assumption and proposition for

contingent LTC in stochastic economies before providing the proposition for this case.

A.4.1 Restatement for contingent LTC in stochastic economies

The equivalents to Definition 2, Assumption 3, and Proposition 1 for the case of

contingent LTC in general stochastic economies are:

Definition 2*. For any t and t′ > t, we say that the natural states (bt, zt) and a

partial policy sequence {τs(zst )}t
′

s=t uniquely determine a variable xt′′ from time t if

all possible competitive equilibria from time t onwards feature the same value of xt′′(z
t′′

t )

regardless of the future policy choices {τs(zst )}∞s=t′+1.

Assumption 3*. There exists an L, with N ≤ L < ∞, such that the following holds

for all t = 0, 1, ... and histories zt.

1. From time t, the state variables st = (bt, zt, τ
L
t ) uniquely determine all problematic

variables dated time t to t+N − 1.

2. From time t, the state variables st = (bt, zt, τ
L
t ) and the time-t government’s choice

˜
τt+L uniquely determine ct, pt and bt+1.

Proposition 1*. Consider an L such that Assumption 3* holds, and fix initial con-

ditions (b0, z0) ∈ B∗. If, in the contingent LTC game, either

3



1. τL0 = (τFC0 , τFC1 (z1), τFC2 (z2
1), ..., τFCL−1(zL−1

1 )), such that the initial L periods of

policies are restricted to be the optimal values from the FC solution, or

2. the time-0 government, in addition to choosing
˜
τL, is also allowed to choose τL0

then the unique equilibrium of the LTC game induces the value V FC(b0, z0) and generates

the Full Commitment policy sequence τFC(b0, z0), and the Full Commitment Ramsey

equilibrium path, yFC(b0, z0).

A.4.2 Proofs of Propositions 1 and 1*

We begin with the proof of Proposition 1* for the contingent LTC case, since Propo-

sition 1 follows as an immediate corollary. The proof is in two steps. Firstly, we apply

a standard recursivity proof (given in Appendix A.5) to show that the LTC equilibrium

is equivalent to the solution to a sequence problem we call the “Modified Problem”.

Secondly, we show that, with the right initial conditions, the Modified Problem is equiv-

alent to the Full Commitment solution. For expositional simplicity, we proceed under

the assumption that all maxima are attained by unique optimal polices, so that policy

correspondences are instead policy functions. All results go through if optimal policies

are not unique. Note that Assumption 2, which is required for the FC problem to be

well defined, is implied by Assumption 3*.

To build the recursivity proof, we must first define a transition correspondence in

terms of the state variable st. In the contingent LTC game, the government at t takes the

state st ≡ (bt, zt, τ
L
t ) as given and chooses the contingent values

˜
τt+L. This is equivalent

to choosing contingent values for the state tomorrow,
˜
st+1 ≡ ((bt+1, z̄

1, τLt+1(zt, z̄1)),

(bt+1, z̄
2, τLt+1(zt, z̄2), ...), as long as the choice of

˜
τt+L uniquely pins down bt+1, which is

guaranteed by Assumption 3*. Let TL denote the set of possible values for the state

τLt . Define the set

S = {s ∈ B × Z × TL : s lies on at least one path y ∈ Π∗(b0, z0) for some (b0, z0) ∈ B∗}
(A.1)

This is the set of values for the state st which are compatible with competitive equi-

librium. Let SZ ≡ SNz denote the set of possible choices for
˜
st+1, restricted such that

each choice lies on some competitive equilibrium. We use this to define the transition

correspondence for st:

Lemma 1. There exists a time-invariant transition correspondence Γ : S 7→ SZ such

that
˜
st+1 and st are consistent with competitive equilibrium iff

˜
st+1 ∈ Γ(st). For all

st ∈ S, Γ(st) is non-empty.

Proof. To show that such a definition is possible we first need to show that we can check

if
˜
st+1 is on at least one competitive equilibrium plan given st without knowledge of

˜
st+2,

˜
st+3, .... This is ensured by the restriction that

˜
st+1 ∈ SZ . (st,

˜
st+1) then lies on

a competitive equilibrium plan from t onwards iff it is consistent with equations (2),

(3), and (4) taken at time t. Assumption 3* implies that if (st,
˜
st+1) does lie on any

competitive equilibrium plans, they must all have the same values of (ct, pt, bt+1) and

all problematic variables dated t to t+N .3 These are all the variables needed to check

3Knowing the time-t choice of
˜
τt+L allows us to take the first half of Assumption 3* forward one
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whether equations (2), (3), and (4) hold, and thus we can establish whether
˜
st+1 lies

on at least one competitive equilibrium plan given st with knowledge of only (st,
˜
st+1).

Since equations (2), (3), and (4) are time invariant, defining Γ without time dependence

is possible. Γ(st) is non-empty for all st ∈ S because being in S implies that st lies on

at least one competitive equilibrium plan.

Let A = {(s,
˜
s′) ∈ S × SZ :

˜
s′ ∈ Γ(s)} be the graph of Γ(s), and redefine the utility

function as F : A 7→ R such that F (st,
˜
st+1) = r(ct, bt, zt, τt). Again, note that As-

sumption 3* allows us to back out unique values of (ct, pt, bt+1) given (st,
˜
st+1), which

is what allows this reformulation.

We can use Lemma 1 to restate the equations defining the Markov-Perfect equilib-

rium, (10) and (11), as a standard Bellman equation:

v(st) = max

˜
st+1∈Γ(st)

F (st,
˜
st+1) + βEtv(st+1) (A.2)

The key to this restatement is that we have shown that under Assumption 3* the

transition correspondence Γ and return function F can be written as functions only of

the state and current government’s choice. Without this assumption, these functions

also potentially depended on the actions of future governments (recall the dependence

on
˜
τ in the function (bt+1, ct, pt) = φ (st,

˜
τt+L;

˜
τ). With this assumption, this dependence

disappears). Let
˜
st+1 = G(st) denote the optimal policy function associated with the

solution to (A.2). This defines a policy function for government policies,
˜
τt+L = τ(st),

and for the associated competitive equilibrium, yt = y(st).

We next define the Modified Problem (MP). Intuitively, this is the problem of a

government with Full Commitment choosing a sequence of policies, but who must take

the first L periods’ policies as given. Since Lemma 1 holds, we can write the problem

in terms of sequences of the state variable, st. The initial state variable, s0 = (b0, z0, τ
L
0 )

is taken as given, and includes the given initial policies in the variable τL0 .

The Modified Problem chooses paths for st, summarised in a plan π ≡ {πt(zt)}
∞
t=0

such that st = πt(z
t). Feasible plans are defined as in Definition 7 and discounted

expected utility in (A.4). This allows us to define the maximised value function as

VMP (s0) = max
π∈Π(s0)

u(π, s0) (A.3)

This is solved by a policy sequence τMP (s0) with implied competitive equilibrium

yMP (s0). We can now state the first half of the proof:

Lemma 2. (LTC = MP) The function VMP is the unique solution to the LTC game

in (A.2). For any s0 ∈ S, the policy and competitive equilibrium sequences generated

by iterating forward on the LTC policy functions τ and y are equal to τMP (s0) and

yMP (s0).

Proof. The proof follows immediately from the generic recursivity proof, Proposition 2,

after noting that the LTC game in (A.2) is simply the recursive form of the Modified

Problem in (A.3). Assumption A1 and Assumption A2 are implied by Lemma 1

period. Thus we uniquely determine all problematic variables from both t to t + N − 1 and t + 1 to
t+N .
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and Assumption 1. This implies that the unique value function which solves the LTC

game is VMP , and that the policy function describing the transition for the state, G,

generates paths for the state equal to the MP paths. Since the paths for the state,

st, are the same, it follows immediately that the paths for the policies and competitive

equilibria are also the same, since 1) the paths for the policies are directly defined by

the path for the state, and 2) these imply a unique path for the competitive equilibrium

according to Assumption 3*.

Importantly, while in general there may be multiple symmetric Markov-Perfect equi-

libria of the LTC game, this result implies that whenever Assumption 3* holds there

is a unique equilibrium. This establishes equivalence between LTC and a Modified Prob-

lem which is a sequence problem constrained so that the initial policies must take some

arbitrary values. The second half of the proof, given below, establishes that as long as

these initial policies are chosen correctly, the same paths solve the Modified Problem

and Full Commitment problem, and lead to the same maximised value.

Lemma 3. (MP = FC) For any (b0, z0) ∈ B∗,

1. If τL0 = (τFC0 , τFC1 (z1), τFC2 (z2
1), ..., τFCL−1(zL−1

1 )), then VMP ((b0, z0, τ
L
0 )) = V FC(b0, z0).

2. supτL
0
VMP ((b0, z0, τ

L
0 )) = V FC(b0, z0)

In both cases, the implied optimal policies and competitive equilibria are equal: τMP (s0) =

τFC(b0, z0) and yMP (s0) = yFC(b0, z0).

Proof. The FC problem is a less restricted maximisation than the MP problem, being

identical in all respects except that the FC problem is free to choose τL0 while the MP

problem is not. In both cases, if equality did not hold this would imply that one of

either the MP or FC problems had not achieved their maximum, which is a contra-

diction. Equality of yMP (s0) = yFC(b0, z0) follows from the equality of policies given

Assumption 3*.

Combining the two equivalences between FC and MP, and MP and LTC establishes

the equivalence between LTC and FC, and delivers the proof of Proposition 1.

Proof of Proposition 1*. Equivalence between FC and MP is established in Lemma 2,

and between MP and contingent LTC in Lemma 3, establishing the equivalence between

FC and contingent LTC.

Finally, the proof of Proposition 1 follows as an immediate corollary of Proposi-

tion 1* in the case without uncertainty.

Proof of Proposition 1. This follows as a corollary of Proposition 1* in the case

without uncertainty, since in deterministic economies their is no distinction between

contingent and non-contingent LTC. Additionally, note that Assumption 3 is simply

the restatement of Assumption 3* in the case without uncertainty.
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A.5 A generic recursivity proof

This is a proof of recursivity in a stochastic environment. It draws heavily on Lucas and

Stokey’s (1989, Chapter 9) proofs, but with a few tweaks to make it applicable to our

setup. Most importantly, the proofs are written for the case where the state tomorrow

can depend on the shock tomorrow, in contrast to their core proof, which is written for

the case where the state tomorrow does not depend on the realisation of uncertainty.

For simplicity, we also make the technical assumptions that: 1) Uncertainty is re-

stricted to the discrete probability model. Thus, shocks are finite or countably infinite,

but not uncountably infinite. 2) We assume a bounded state space and discount factor

less than one. This removes the need for additional proofs in the case where value is

infinite, and ensures that the only solution to the recursive formulation is the sequence

solution without having to also impose a transversality condition on the value function.

3) We assume the supremum is always attained, and write the problems instead in terms

of the “max” operator.

A.5.1 Environment

The analysis is restricted to a discrete probability model, where the shocks each period

are drawn from either a finite or countably infinite set. Each period, the value of the

shock, zt, is drawn from the sample space Z = {z̄1, z̄2, ...}, with Nz denoting the (integer,

possibly infinite) number of elements of Z. The σ-field Z is the set of all subsets

of Z.4 Denote the product spaces (Zt,Z t), t = 1, 2.... We work with the discrete

probability spaces (Zt,Z t, µt) where µt : Z t 7→ [0, 1] are probability measures. Let

zt = (z1, ..., zt) ∈ Zt denote a partial history of shocks from periods 1 to t. Let PZ
denote the Markov probabilities of transitioning from state z̄i to z̄j between periods t

and t+ 1. For any state i at time t, µti computes the unconditional (time-0) probability

that the system will be at that state at that time, which can be computed by iterating

on the Markov chain once the initial state, z0, is known.

Let X denote the set of possible values for the endogenous state, xt. Let st = (xt, zt)

denote the combined state variable. This is restricted to take values from some set

S ⊂ X × Z.

At time t the agent chooses a value for the endogenous state tomorrow, xt+1, condi-

tional on each possible shock realisation. These are denoted by xit+1, which is defined as

the choice of xt+1 conditional on the realisation zt+1 = z̄i tomorrow. These choices are

summarised in a vector
˜
xt+1 = (x1

t+1, x
2
t+1, ...). Analogously, the agent chooses a vector

for the overall state
˜
st+1 = (s1

t , s
2
t , ...), where sit ≡ (xit+1, z̄

i). We denote by SZ ≡ SNz

the set of possible values for
˜
st.

This is done subject to restrictions, summarised by the transition correspondence

Γ : S 7→ SZ . That is, a vector of next-period states
˜
st+1 is permissible if and only if

˜
st+1 ∈ Γ(st). Note that this correspondence does not determine the value of zt+1 given

the value of zt, since z is stochastic: the probability of transitioning to different states

is given by the Markov matrix PZ . The correspondence Γ captures any restrictions on

4This is the natural choice of all possible combinations of events that could happen. With this choice
of σ-field, all functions defined on Z are Z measurable, so we can ignore measurability discussions (See
Lucas and Stokey (1989) Exercise 7.10).
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what can and cannot be state contingent. For example, if one of the states is capital,

kt, produced with time-to-build, then Γ would specify that kt+1 must be the same in all

states tomorrow: k1
t+1 = k2

t+1 = ... = kt+1.

Let A be the graph of Γ. That is, A = {(s,
˜
s′) ∈ S × SZ :

˜
s′ ∈ Γ(s)}. Let F : A 7→ R

be the one-period return function. F (s,
˜
s′) is the return if the state is s and

˜
s′ is chosen.

The discount factor is β ≥ 0. The primatives for this problem are X, Z, PZ , Γ, F , and

β.

A.5.2 Sequence form problem

The agent chooses a contingent plan for the evolution of the state variables:

Definition 6. Denote a policy plan by π ≡ {πt(zt)}
∞
t=0. The functions πt : Zt 7→ S map

shocks into contingent values for the state: st = πt(z
t).

Define the vector
˜
πt+1(zt) = (πt+1(zt, z̄1), πt+1(zt, z̄2), ...) as the collection of planned

values for the state next period (from the perspective of time t) depending on the realised

shock zt+1. Any chosen plan must be feasible:

Definition 7. A plan π is feasible from s0 ∈ S if: 1)
˜
π1 ∈ Γ(s0), and 2)

˜
πt+1 ∈ Γ(πt),

for all t = 1, 2, ... and zt ∈ Zt. Denote by Π(s0) the set of plans that are feasible from

s0.

Trivially, any feasible plan must feature π0 = s0. The first assumption is to ensure

that there are always feasible plans starting from any state:

Assumption A1. Γ(s) is nonempty for all s ∈ S.

This means that there is at least one feasible path starting from any state s0 ∈ S, and

hence also Π(s0) is non-empty on S. The second and final assumption is a boundedness

restriction:

Assumption A2. The environment is such that the return function F is bounded over

all feasible paths. The discount rate is such that 0 ≤ β < 1.

This assumption does two things. Firstly, it rules out cases of infinite utility for

which additional proofs must be supplied, and ensures that the limit of expected utilities

is well defined in the limit of an infinite horizon. Secondly, it ensures that the unique

solution to the recursive problem is the sequence problem, without the need for additional

transversality conditions on the solution.

Expected discounted utility is defined as

u(π, s0) = E0

∞∑
t=0

βtF (πt(z
t),

˜
πt+1(zt)). (A.4)

The expectations operator is defined as the sum over discrete probabilities: E0(xt) =∑
i∈Z xt(zt = zi)µti, and conditional expectations are defined in the usual way. Under

the above two assumptions utility is well defined: the limit in the infinite sum exists,

and there is at least one feasible path on which utility can be calculated for any initial

state s0 ∈ S.
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The sequence problem maximises the discounted sum of expected utility by choosing

the whole path of policies π at time 0. We restrict ourselves, by assumption, to situations

where there is a well defined optimal path (i.e. the supremum is assumed to be achieved

for all s0 ∈ S) and hence express the optimisation in terms of a maximisation. We can

define the maximum function v∗ : S 7→ R by

v∗(s0) = max
π∈Π(s0)

u(π, s0). (A.5)

A.5.3 Recursive problem

The recursive problem is defined by the functional equation

v(st) = max

˜
st+1∈Γ(st)

F (st,
˜
st+1) + βEtv(st+1). (A.6)

The optimal policy correspondence is given by the set

G(st) = arg max

˜
st+1∈Γ(st)

F (st,
˜
st+1) + βEtv(st+1). (A.7)

Any optimal policy
˜
g(st) ∈ G(st) specifies a vector of values for the state tomorrow,

˜
st+1 =

˜
g(st), alternatively written as st+1 = g(st, zt+1). The set of optimal policies is

always non-empty, by our maintained assumption that the maximum is achieved. We

say that a plan π is generated from G if it is formed by recursively applying policies

from G.

A.5.4 Proof of recursivity

For our purposes it is only necessary to prove that the solution to the recursive problem

solves the sequence problem, and not vice versa.5 Thus, we summarise the required

result in the following proposition.

Proposition 2. Let Assumption A1 and Assumption A2 hold, and let v∗ be defined

by the sequence problem, (A.5). Let v be a function satisfying the functional equation

(A.6), and let G be the policy correspondence defined by (A.7). Then v = v∗ and any

plan π∗ generated by G attains the maximum in (A.5).

Proof. To show that v = v∗ we must show that v solves (A.5). Start by iterating forward

on (A.6) one period:

v(s0) = max

˜
s1∈Γ(s0)

F (s0,
˜
s1) + βE0v(s1)

= max

˜
s1∈Γ(s0)

F (s0,
˜
s1) + βE0

[
max

˜
s2∈Γ(s1)

F (s1,
˜
s2) + βE1v(s2)

]
= max

˜
s1∈Γ(s0)

˜
s2∈Γ(si1)

{F (s0,
˜
s1) + βE0 [F (s1,

˜
s2) + βE0v(s2)]} ,

5The inverse proof is very similar, and closely follows the related proof in Lucas and Stokey (1989)
Chapter 9.
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where we have combined the two maximisations using the Law of the Iterated Supremum,

and combined the expectations using the Law of Iterated Expectations. It is understood

that the constraint
˜
s2 ∈ Γ(si1) actually represents Nz constraints, one for each i =

1, ..., Nz. Repeating this step n times, taking the limit as n → ∞, and writing this in

plan notation, this is equivalent to

v(s0) = max
π∈Π(s0)

{
u(π, s0) + lim

n→∞
βn−1E0v(sn)

}
. (A.8)

According to Assumption A2, the return function is bounded along any feasible path,

which implies that there is a finite F̄ < ∞ for which |F (s,
˜
s′)| < F̄ for any feasi-

ble s and
˜
s′. This implies that |v(s)| ≤ F̄/(1 − β), and hence that the limit of dis-

counted value must converge to zero since β < 1 and hence limn→∞ βn−1 = 0. That is,

limn→∞ βn−1E0v(sn) = 0. Plugging this in gives the final result:

v(s0) = max
π∈Π(s0)

u(π, s0). (A.9)

Which, by comparison to (A.5) proves that v = v∗. Additionally, any plan in G(s0),

which by definition achieves value v(s0), must thus also achieve value v∗(s0) and hence

achieve the maximum in the sequence problem.

A.6 Necessity of Assumption 3

Our equivalence result, Proposition 1, is one of sufficiency: Assumption 3 is sufficient

for LTC to support the FC path as its only equilibrium. One may ask whether the

assumption is also necessary for LTC to support the FC path as an equilibrium. In

particular, we focus on the following question: for a FC equilibrium outcome to be

supported with a finite commitment horizon, does it have to be the case that policy

plans over such a horizon uniquely pin down all problematic variables? A failure of

necessity would mean that it may sometimes be possible to support the FC path as the

outcome of some Markov-Perfect equilibrium of the LTC game even if Assumption 3

does not hold.

It is worth pointing out a simple counterexample first, to show why Assumption 3 is

not always necessary. This is that, even in models which have structures which may lead

to time inconsistency, some FC paths may in fact be time consistent. As an example,

consider the economy considered in Section 3.2 (as in Lucas and Stokey, 1983, but with

endogenous government spending). In general, the FC plan is time inconsistent in this

model. However, in the case where initial government debt is zero (b0 = 0) the FC

solution features debt which remains constant at zero forever. Without debt there is no

incentive to twist interest rates, and a future government would not reoptimise if given

the chance. This is true if a government was allowed to reset the sequence at any time

t > 0 (and retain commitment from then on). Debortoli and Nunes (2013) analyse a

smooth Markov-Perfect equilibrium of the NC game in this model and show that when

initial government debt is zero (b0 = 0) the NC equilibrium also features zero debt in

all periods. However, the NC and FC solutions differ for initial debt not equal to zero.

Here, NC represents a special case of LTC (with L = 0) where Assumption 3 fails, but

the equilibrium still supports the FC path for a specific initial condition.

Answering this question more generally is challenging due to the possibility of there

being multiple Markov-Perfect equilibria of the LTC game when Assumption 3 fails.
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We start by considering a one-shot deviation argument in a model featuring differentia-

bility and argue that in general it is not possible to support the FC solution with limited

commitment if the assumption fails. We then move on to discussing equilibria of the

LTC game. We argue that there are special cases where LTC can support FC without

Assumption 3, but provide proof of what we call a weaker “functional necessity”.

A.6.1 Does time inconsistency in FC imply time inconsistency in MP?

Suppose that the government at time 0 announces an FC plan for a sequence of policies,

expecting that no future government will reoptimise. We now allow for an ex-post

reoptimisation by the government at time 1, but suppose that we have L periods of

commitment, so that the government at time 1 cannot change policies dated time 1 to

L. Is this finite commitment enough to remove the incentive for the time-1 government

to deviate from the original FC plan, even in the absence of Assumption 3?

It is relatively straightforward to show that this is not generically the case, at least

in problems with continuous choice variables for which Lagrangian methods can be used.

For simplicity, we restrict our exposition to a model with no uncertainty and a single

policy choice. Suppose we want to convert the return function, r(ct, bt, zt, τt), and com-

petitive equilibrium restrictions (2), (3) and (4) into indirect functions, solving out for

endogenous variables and expressed only in terms of policy sequences. If Assumption 3

fails, then (by the definition of the assumption) this implies that it is not possible to

pin down the current equilibrium of the economy as a function of a finite sequence of

policies.

We split the economy into equations at and after time 0 in order to facilitate the

analysis of the deviation. Let ũ0(b0, τ0, τ1, ...) = r(c0, b0, z0, τ0) denote the indirect period

return at time 0, computed as a function of the infinite sequence of policies, recognising

that the endogenous variables in c0 could potentially depend on all future policies. This

is constructed by using the competitive equilibrium restrictions (2), (3), and (4) for

t = 0, 1, ... to calculate c0 given a sequence (τ0, τ1, ...). Similarly, let ṽ1(b1, τ1, τ2, ...) be

the discounted sum of utility starting at time 1 computed by again using the competitive

equilibrium sequence to convert a sequence of policies in to utilities. ṽ1(b1, τ1, τ2, ...) is

calculated using all of the competitive equilibrium constraints from t = 1 onwards, and

the state b1 inherited from the last government. Finally, let b1 = h̃(b0, τ0, τ1, ...) denote

the implied value of b1 given the initial government’s plan and all competitive equilibrium

constraints from t = 0 onwards. Note that ṽ1(b1, τ1, τ2, ...) depends only on the inherited

state, and does not need to respect the forward looking constraint (4) from t = 0, which

is now in the past. The effect of this constraint on the equilibrium from t = 1 onwards

is summarised only by the constraint b1 = h̃(b0, τ0, τ1, ...).

The FC problem of maximising discounted utility at time 0 can be expressed using a

Lagrangian:

L = min
λ

max
{τt}∞t=0

ũ0(b0, τ0, τ1, ...) + βṽ1(b1, τ1, τ2, ...) + λ(h̃(b0, τ0, τ1, ...)− b1) (A.10)

The first order condition for any policy at time t ≥ 1 is given by

ũ0
t + βṽ1

t + λh̃t = 0 (A.11)

where ũ0
t refers to the derivative of ũ0(τ0, τ1, ...) with respect to the time-t policy, and

similarly for ṽ1
t and h̃t. Consider now the problem of the government at t = 1 who is
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allowed to reoptimise. We first ignore any limited commitment, and suppose they are

allowed to change all policies dated t = 1 and onwards. They ignore the initial forward

looking constraint, h̃, and simply take the inherited state b1 as given. They perform the

unconstrained maximisation

max
{τt}∞t=1

ṽ1(b1, τ1, τ2, ...). (A.12)

This gives the first order condition

ṽ1
t = 0. (A.13)

Comparing the first order conditions (A.11) and (A.13) reveals the source of the time

inconsistency. The initial FC government takes into account the effect of its choices

of τ1, τ2, ... on both initial utility, u0(b0, τ0, τ1, ...), and the initial constraint, b1 =

h̃(b0, τ0, τ1, ...), while the government at t = 1 does not. More concretely, the reopti-

mising government’s optimal plan sets the marginal change in discounted utility from

adjusting any policy equal to zero. This may not be the case in the initial FC plan, if

the sum ũ0
t + λh̃t is non-zero. In the following, we assume that the there is meaningful

time inconsistency in all future periods, so that the FC and reoptimised solutions differ

for every t = 1, 2, ....

We can now ask, given that there is time inconsistency in this model, can adding a

limited amount of commitment deal with this? Specifically, suppose that we introduce

limited commitment in the spirit of LTC, so that the reoptimising government cannot

change the L initial policies (τ1, ..., τL) from their FC values. In this case, the reopti-

mising government inherits the constraints τt = τFCt for t = 1, ..., L, and the Lagrangian

becomes

L = min
{δt}Lt=1

max
{τt}∞t=1

ṽ1(b1, τ1, τ2...) +

L∑
t=1

δt(τt − τFCt ) (A.14)

with first order conditions

ṽ1
t + δt = 0 (A.15)

for t = 1, ..., L and

ṽ1
t = 0 (A.16)

for t = L+1 onwards. The first order conditions now contain an additional multiplier, δt,

from the constraint fixing the value of the initial policies for the first L periods. However,

since these multipliers are absent for t > L, the optimal solution still does not replicate

the initial FC solution for the same reason that for t > L we must have v1
t = 0 while

this may not be the case in the initial FC solution.

Suppose that a reoptimising government without limited commitment would adjust

all future policies, (τ1, τ2, ...). Then adding a limited amount of commitment, so that

(τ1, ..., τL) cannot be changed, will not remove the incentive to adjust (τL+1, τL+2, ...) in a

model with continuous choice variables. While removing the ability to change (τ1, ..., τL)

might reduce or alter the incentives to change (τL+1, τL+2, ...), it can never remove it

fully. For example, if ct+1 appears in the time-t constraints, a deviating government will

still have the incentive to adjust policies hundreds of periods in the future to influence

this variable if it can. Hence reoptimisations will still lead to deviations from the FC

path.
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How does this analysis differ when Assumption 3 holds? In this case, it is possible

to express the initial utility and constraint as functions of only a finite sequence of L

taxes: ũ0(b0, τ0, τ1, ..., τL) and b1 = h̃(b0, τ0, τ1, ..., τL). This means that the first order

conditions in the initial FC problem now become

ũ0
t + βṽ1

t + λh̃t = 0 (A.17)

for 0 < t ≤ L and

β̃ṽ1
t = 0 (A.18)

for t > L. Comparing these to the first order conditions of the reoptimising government

with L periods of commitment, we can guess and verify that it is optimal to replicate

the FC allocation because the multipliers δt can soak up the effect of the extra terms

by setting δt = u0
t + λh̃t for t = 0, ..., L. Note that these argument also hold for cases

where Assumption 3 holds for some L, but the government only has L′ < L periods of

commitment. In this case L′ periods of commitment will not be able to sustain the FC

path.

In terms of the equilibrium concepts introduced in this paper, we have shown that if

Assumption 3 fails, the solution to the Modified Problem will still be time inconsistent

for any finite amount of commitment. Of course, this does not answer the ultimate

question of whether LTC can support FC when Assumption 3 fails, because even if

the Modified Problem features time inconsistency, it could be that LTC game is able

to overcome this, for example by using discontinuous equilibrium policy functions which

punish deviations. We turn to this question in the next section.

It is worth noting that the restriction to problems with continuous choice variables

is not innocuous. In models with discrete choices, it could be that restricting initial

policies to their FC values is enough to reduce the benefit of adjusting future policies

below the threshold at which it is beneficial. That is, in the above continuous model we

have shown that there is always a marginal incentive to adjust future policies, which can

always be realised which choice variables are continuous. If choice variables are discrete,

it could be that restricting a few choices is enough to reduce this marginal benefit below

the level at which deviating from the FC plan is profitable.

A.6.2 Can LTC support MP when Assumption 3 fails?

The result of the previous subsection seems to suggest that if Assumption 3 fails there

is no way that a finite amount of commitment can support the FC solution. In this

section we move on to analysing the LTC game itself, and argue that this is not strictly

true. This is because when Assumption 3 fails there is no guarantee that there is a

unique Markov-Perfect equilibrium of the LTC game. Thus, for every possible initial

state, it is hard to rule out that there is not some Markov-Perfect equilibrium of the

LTC game that could support the FC solution.6

We can instead prove a weaker form of functional necessity. This form states that,

if the Modified Problem remains time-inconsistent when Assumption 3 does not hold,

6Krusell et al. (2004) argue that a discontinuous “step function” equilibrium exists in the NC game
in a model without capital (Lucas and Stokey, 1983). This equilibrium replicates the FC path for certain
initial conditions even when the path is time inconsistent.

13



then there is no single LTC policy function which can support the MP paths for all initial

states. We provide a discussion below for the case of deterministic economies, but the

same result holds in the case of uncertainty.

To see this, consider any initial state s0 = (b0, z0, τ
L
0 ) ∈ S for which the MP path

is time-inconsistent, meaning that it would be reoptimised at t = 1. Let
{
τMP
t (s0)

}∞
t=0

denote the optimal policy sequence in the MP problem, starting from initial state s0.

Construct the time-1 state sMP
1 = (bMP

1 , z1, τ
L,MP
1 ), where τL,MP

1 gives the required

policy state variable using the optimal sequence of policies from t = 1 to L from the MP

policy plan.

Let
{
τMPR
t (s0)

}∞
t=0

denote the observed policy sequence starting from state s0 if

the government carries out the original MP plan at time 0, but is allowed to reopti-

mise everything, except for the pre-committed states in τL,MP
1 , at time 1. By defini-

tion, the solution from time 1 onwards must be the same as a government who starts

at time 0 with the same state. Hence the whole path is given by
{
τMPR
t (s0)

}∞
t=0

=(
τMP
0 (s0),

{
τMP
t (sMP

1 (s0))
}∞
t=0

)
. Time inconsistency means that{

τMP
t (s0)

}∞
t=1
6=
{
τMPR
t (s0)

}∞
t=1

=
{
τMP
t (sMP

1 (s0))
}∞
t=0

. (A.19)

This states that the continuation of the time-0 plan from time 1 onwards is not the same

as the reoptimised problem starting with the state variable sMP
1 (s0) from the MP plan.

Suppose that some LTC policy function
˜
τt+L =

˜
τ(st) can replicate the original MP plan.

This means that we can replicate the sequence
{
τMP
t (s0)

}∞
t=0

by iterating forward on

˜
τt+L =

˜
τ(st) starting from initial state s0. In particular, this also means that we can

replicate the plan from time 1 onwards,
{
τMP
t (s0)

}∞
t=1

, starting from state sMP
1 (s0).

Suppose as well that this function can also replicate the reoptimised plan starting from

time 1, which is another valid MP solution. This means that iterating forward on
˜
τt+L =

˜
τ(st) from initial state sMP

1 (s0) must generate the plan
{
τMP
t (sMP

1 (s0))
}∞
t=0

. However,

by the definition of time inconsistency these two paths are different, meaning that they

cannot both be generated by iterating forward on
˜
τt+L =

˜
τ(st) from the same initial

state, giving a contradiction.

In conclusion, in this section we have explored the necessity of Assumption 3 for

sustaining Proposition 1 along several dimensions. While the main focus of our equiv-

alence result is sufficiency, this discussion may further clarify the role of Assumption 3

in the relationship between LTC and FC.

A.7 Multi-period governments and stochastic changes of govern-
ment

We proved our equivalence result for a specific power structure, with one-period lived

governments: The government at time t chooses only policies dated t+L, the government

at t + 1 chooses policies dated t + L + 1, and so on. Clearly, this assumption may

appear restrictive, as there are several alternative plausible power structures one could

consider: governments stay in power for multiple years, for example, or one could imagine

probabilistic changing of governments, as in Debortoli and Nunes (2010).

We will now argue that, as long as one crucial feature of our setup is preserved, our

results go through for a much more general class of power structures. For example, it is

straightforward to show that if Assumption 3 holds for some L, then it also holds for
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any L′ > L. That is, if it can be established for some L then this simply represents a

lower bound on the amount of commitment required, and the LTC game naturally also

supports FC for greater amounts of commitment.

In the next proposition, we focus on the case of governments lasting for multiple

periods.

Proposition 3. Consider a model where Assumption 1 and Assumption 3 hold for

some L > 0. There is a sequence of governments who remain in power for M ≥ L periods

each. They have the ability to choose (and commit to) all policy variables while they are

in power, except for or the first L periods after coming to power. They also choose the

first L policy variables applying during the following term. The unique equilibrium of

this game supports the FC solution.

Informally, the source of time inconsistency here is that the current government

disagrees with the past governments about the choice of the policies dated t to t+L. As

long as these variables are pinned down, giving the government extra commitment, for

example inside a fixed term of office, does not change the result that LTC can support FC.

A formal proof is available on request from the authors. This proposition clarifies that

it is not who is in power, or for how long, that is important, but rather the inability to

change initial policies after coming to power. In this sense, our results apply naturally to

situations of institutional delay: under sufficient conditions on the environment, a certain

amount of institutional delay may improve the commitment ability of the government,

and return us to the FC outcome. Equivalent propositions can be established for other

power structures, including probabilistic changes of government. The key assumption is

that at any time t, the next L periods’ policies cannot be changed. It does not matter

whether the current government stays in power or whether it is replaced, as long as both

governments agree on all the possible policies that both of them could choose.

A.8 Numerical algorithm when LTC supports FC

In this section we briefly discuss how our results can be used to solve for a recursive

solution to the time-inconsistent FC problem whenever our theorem holds. In particular,

whenever there exists a degree of commitment, L, such that LTC and FC lead to the same

outcomes, it is possible to solve for the time-inconsistent solution to the FC problem using

standard dynamic programming tools. We first give a general outline of the algorithm,

and then apply it to the Lucas and Stokey (1983) model.

A.8.1 Description of algorithm

Whenever our equivalence result holds, the FC plan has a recursive form given by (12).

This recursive form takes as state variables st ≡ (bt, zt, τ
L
t ), which are precisely the state

variables of the LTC problem. The policy and value functions of this recursive form of

the FC game can be found by applying standard dynamic programming tools to (12). An

appealing intuitive feature of this recursive form is that it uses the previously-committed

choices (e.g. today’s tax rates) as state variables, rather than promised utilities or

Lagrange multipliers.

The only complication is that the state space must be appropriately restricted to rule

out choices which violate competitive equilibrium. Note that the statement of the LTC
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game restricts st, and consequently choices for st+1, to lie in the set S, defined as the set

of st which lie on some competitive equilibrium path. Rather than having to compute

all CE paths and checking whether any st lies somewhere on one of them, in the next

subsection we provide an algorithm which solves for the set S recursively. This can be

done “once and for all” before solving for policy and value functions.

Once the set S is solved for, one can apply standard dynamic programming tools to

(12) to solve for the “recursified” FC policy functions. Since the LTC policy functions

take pre-committed policies as states, one also has to solve for the initial policies, τL0 . This

is done by by maximising the LTC value function at time zero, v(s0) = v((b0, z0, τ
L
0 )),

over τL0 .

A.8.2 Algorithm to construct feasible set, S

In this section we construct a procedure to calculate the set S, on which the LTC prob-

lem is defined. Recall that the set S was defined in (A.1). The procedure is iterative,

and based on Phelan and Stacchetti’s (2001) procedure for solving for the value corre-

spondence in their setup. First we define a transition correspondence.

Definition 8. Γ̃ : B × Z × TL 7→ (B × Z × TL)Nz is defined such that
˜
st+1 ∈ Γ̃(st)

iff there exists some {ys(zs)}t+Ns=t consistent with the allocations pinned down by st and

˜
st+1, and which satisfies the constraints (2), (3) and (4) at time t.

Note that this is closely related to the correspondence Γ, but is defined on the more

general set B×Z ×TL, since we do not know the set S at this point. Now, for a generic

set Sn ∈ B × Z × TL, define the mapping over sets

B(Sn) =
{
s ∈ B × Z × TL : there exists

˜
s′ ∈ Γ̃(s) s.t.

˜
s′ ∈ (Sn)Nz

}
. (A.20)

B(Sn) is the set of st = (bt, zt, τ
L
t ) such that it is possible to find a

˜
st+1 which satisfies

today’s CE constraints (given st) and leaves next period’s states which are in Sn. We

first prove two preliminary lemmas.

Lemma 4. S = B(S)

Proof. Suppose that S ⊃ B(S) strictly. Then there exists some ŝ ∈ B(S) and ŝ /∈ S such

that there exists
˜
s′ ∈ Γ̃(ŝ) with

˜
s′ ∈ SZ . Since

˜
s′ is on a CE path and is reachable from

ŝ, ŝ must also be on a CE path which features ŝ and
˜
s′ as its first and second elements.

This contradicts ŝ /∈ S. Now suppose that S ⊂ B(S) strictly. Then there exists some

ŝ ∈ S such that there exists no
˜
s′ ∈ Γ̃(ŝ) with

˜
s′ ∈ SZ . Thus ŝ cannot be on a CE path,

contradicting ŝ ∈ S. Thus it must be that S = B(S).

Lemma 5. If Sn+1 ⊂ Sn, then B(Sn+1) ⊂ B(Sn).

Proof. Consider a generic s ∈ Sn+1. To be in B(Sn+1) there must exist an
˜
s′ such that

˜
s′ ∈ (Sn+1)z and

˜
s′ ∈ Γ̃(s). Since Sn+1 ⊂ Sn, we must have

˜
s′ ∈ (Sn)z, and hence also

s ∈ B(Sn). Since this is true for any s ∈ Sn+1, we have B(Sn+1) ⊂ B(Sn).

We are now ready to state the main result:

Lemma 6. Suppose that S0 ⊃ S, and B(S0) ⊂ S0. Define the recursion Sn+1 = B(Sn).

Then limn→∞ Sn = S.

16



Proof. The proof is recursive. 1) S1 = B(S0) ⊂ S0 ⇒ B(S1) ⊂ B(S0) ⇒ S2 ⊂ S1.

Carrying this on, we find that Sn ⊂ Sn−1 ⊂ ... ⊂ S0 for any n. 2) Also, S ⊂ S0 ⇒
B(S) ⊂ B(S0) ⇒ S ⊂ S1. This inductively implies that S ⊂ Sn for any n. Combining

points 1 and 2 gives S ⊂ Sn ⊂ Sn−1 ⊂ ... ⊂ S0. Since this sequence of sets is decreasing

it has a limit in the sense of set inclusion: S∞ ≡ limn→∞ Sn. By a simple limit argument,

S∞ = S.

This recursion is thus guaranteed to converge to S for an appropriately chosen S0.

A simple example of an S0 which satisfies the required conditions is S0 = B × Z × TL.

A.8.3 Illustration: Lucas and Stokey (1983)

This section demonstrates the equivalence of the LTC and FC solutions numerically in

the Lucas and Stokey (1983) economy. For simplicity we focus on the case of one period

bonds with constant government spending. We consider a government who starts with

an initial stock of debt b0 > 0. As previously discussed, the solution to the FC problem

in this case involves a tax cut at time 0, followed by higher but constant taxes from time

1 onwards. We denote the optimal time 0 tax rate by τ l0,FC and the time 1 and onwards

tax rate by τ lFC . This policy leads to a constant level of debt from time 1 onwards, which

we label bFC .

Utility is parameterised as u(c, l) = log(c)−Dl2/2. We set β = 0.96 as standard. We

calibrate g, b0 and D to a fictional steady state were taxes to be constant. We target

l = 1/3 by appropriately choosing D, and set g to 20% of output. We target debt to

GDP of around 60% and choose b0 accordingly, leading to required constant taxes of

around 22% in the fictional steady state.

The solution to the LTC problem is given by a policy function τ lt+1 = g(bt, τ
l
t ), and an

associated transition for debt from the implementability condition. The policy function

is solved for on the set S of values of (bt, τ
l
t ) consistent with at least one competitive

equilibrium. This set restricts us to values of initial debt such that the government can

actually afford to repay without violating any limits on borrowing or taxes.

The recursive form is solved using value function iteration. We discretise the state,

(b, τ l), and maximise over (τ l)′ using a grid search procedure, with b′ solved for explicitly

using the implementability constraint. Future values off the grid are interpolated using

splines. The set S is solved for using the iterative procedure described above. We solve

for explicit maximum and minimum feasible b values on the τ l grid. During the value

function iteration, we restrict the government from making (τ l)′ choices which would

lead ((τ l)′,b′) to be outside of S. To choose grids for the LTC game, we first solve the

FC problem starting from b0. We then take the maximum and minimum values for the

grids for b and τ l to be 5% above and below the largest values observed along the FC

path respectively.

Figure D.1 illustrates the solution. The left panel shows the set S, represented as

an upper and lower limit for debt for a given tax rate: all values between the dashed

and solid lines are consistent with at least one competitive equilibrium. The horizontal

portions of the set are simply the exogenously imposed upper and lower bounds, but

the top-left corner reveals values which are endogenously inconsistent with competitive

equilibrium. Values with high initial debt and low initial taxes are not feasible, since
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they imply the lowest initial resources for the government, which it is not feasible to

finance.

The right panel plots three slices of the policy function g
(
bt, τ

l
t

)
for different values

of bt. The optimal tax rate tomorrow is increasing in government debt, and decreasing

in today’s pre-committed tax rate. This is because increasing debt or reducing today’s

tax both worsen the fiscal position of the government, requiring higher taxes tomorrow

to balance the intertemporal budget constraint.

Since our theorem holds in this setup, iterating on this policy function starting from

initial state
(
b0, τ

l
0,FC

)
must replicate the FC path for taxes and debt. That is, we must

have that τ lFC = g
(
b0, τ

l
0,FC

)
for time 0, and τ lFC = g

(
bFC , τ

l
FC

)
, meaning that the FC

plan appears as points which lie on the LTC policy functions. This is shown in Figure

D.2. The left panel plots g
(
b0, τ

l
0

)
, giving a slice of the LTC policy function across

different τ l0 values for debt equal to the initial value. The cross plots the (independently

calculated) FC optimal taxes for t = 0 and t = 1. The cross lies on the LTC policy

function, confirming that the LTC game replicates the FC choice of τ l1 if the initial tax

is restricted to be τ l0,FC .

The right panel repeats the exercise for t = 1, which is also identical for any t > 0.

This time the LTC policy function is drawn for debt equal to bFC , which is the value

inherited at time 1 for both the LTC and FC policies. Again, the FC cross lies on

the LTC line, confirming that the LTC game replicates the FC choice of τ l2 since the

government inherits a pre-committed choice for τ l1 equal to τ lFC .

B Appendix to Section 3

In this appendix, we first discuss a regularity condition in the benchmark model. Next,

we apply the equivalence results in additional models with respect to the ones discussed

in the main text. Finally, we discuss the role of initial policy conditions for equilibrium

outcomes under LTC.

B.1 Boundedness restrictions

The boundedness restriction in Assumption 1 is satisfied in the applications as long as

there are no competitive equilibria leading to (positive or negative) infinite value, which

is a relatively weak restriction. Competitive equilibrium places an upper bound on pe-

riod utility, since consumption must ultimately be produced according to the economy’s

production technology, which is bounded every period if we assume an upper bound for

labour supply and capital.

To ensure a lower bound on period utility is less straightforward, since governments

in these models may be able to “shut down” the economy by issuing arbitrarily high

taxes. This can push consumption towards zero, which leads utility to tend to −∞
without bound with, for example, CRRA utility over consumption. This can be ruled

out by an appropriate upper bound on taxation, such as requiring that the government

must remain to the left of the peak of the dynamic Laffer curve, or by an arbitrary lower

bound on utility. These bounds can always be chosen to be non-binding along an optimal

path.
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B.2 Equivalence in further special cases of the benchmark model

In this section we provide proofs of equivalence in additional specialisations of the general

taxation model of Section 3.

B.2.1 Capital and balanced budgets with Greenwood, Hercowitz and Huff-

man (1988, GHH) preferences

GHH preferences provide an interesting specialisation of the model with capital and

balanced budgets (Case 2) because it is still possible to prove equivalence of LTC and

FC in this case, but the required degree of commitment increases to L = 2 periods.

Assume preferences of the form u(ct − v(lt)) + w(gt). The labour optimality condition

and capital Euler equation are now

v′(lt) =
(
1− τ lt

)
(1− α)ztk

α
t l−αt (B.1)

u′(ct − v(lt)) = βu′(ct+1 − v(lt+1))
[
1 +

(
αzt+1kα−1

t+1 l1−αt+1 − δ
) (

1− τkt+1

)]
(B.2)

and the model is closed with the resource constraint, (18), and balanced budget con-

straint, (25). Both ct and lt are still problematic variables. With separable preferences

we had previously shown that L = 1 periods of commitment allow LTC to support

FC. Importantly, with GHH preferences the labour condition (B.1) no longer contains

consumption, ct. Hence the strategy of determining the problematic variables (ct, lt)

by determining lt from the budget constraint (25) and consumption from the labour

condition (15) no longer works.

However, consider extending to L = 2 periods of commitment, so that the govern-

ment at t chooses policies (τkt+2, τ
l
t+2, gt+2) and takes (τkt , τ

l
t , gt, τ

k
t+1, τ

l
t+1, gt+1) as fixed.

Taking (B.1) and (25) forward one period gives

v′(lt+1) =
(
1− τ lt+1

)
(1− α)zt+1kαt+1l−αt+1 (B.3)(

ατkt+1 + (1− α)τ lt+1

)
zt+1kαt+1l1−αt+1 − τkt+1δkt+1 = gt+1. (B.4)

Notice that for fixed policies (τkt+1, τ
l
t+1, gt+1) these two equations pin down unique values

of (kt+1, lt+1) consistent with the government’s balanced budget and the amount of

labour the household will provide. Using the time-t resource constraint, (18), this also

pins down current consumption, ct, since lt is also pinned down by (B.1). Hence L =

2 periods of commitment to policies pins down both problematic variables, ct and lt,

allowing LTC to support the FC solution.

B.2.2 Capital and balanced budgets with inelastic labour supply

Here we prove that the LTC supports FC in the model used in the numerical application

of Section 4 with L = 2 periods of commitment. This model features labour inelastically

supplied at lt = 1 and no labour taxation. The model does not have a labour optimality

condition, and the government’s balanced budget reduces to

(αkαt − δkt) τkt = gt (B.5)

where we also assume for simplicity that zt = 1. The other equations of the model

correspond to (16) and (18) with the appropriate restrictions. Apart from the policy
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variables, consumption is the only problematic variable. The proof of equivalence with

L = 2 follows closely the proof for GHH preferences from the last section.

Notice that for fixed policies (τkt+1, gt+1) the balanced budget constraint taken at time

t+1 pins down a unique value of kt+1 consistent with the government’s balanced budget.

Using the time-t resource constraint, (18), this then pins down current consumption, ct.

Hence, L = 2 periods of commitment to policies pins down the problematic variable ct,

allowing LTC to support the FC solution.

B.2.3 Capital and unbalanced budgets with linear utility from consumption

In the main two specialisations, we showed that LTC could support the FC solution if

either the resource constraint, (18), or government budget constraint, (19), was converted

into a static equation. In this section, we present a special case showing that it is possible

to support FC if neither condition holds. This specialisation features production with

capital, an arbitrary government budget, but linear utility in consumption.

The model equations are all the same as in the general model of subsection 3.1, with

the restriction that u(ct) = ct, implying that u′(ct) = 1. The equations of the model are

now:

ct + kt+1 − (1− δ) kt + gt = ztk
α
t l1−αt . (B.6)

v′(lt) =
(
1− τ lt

)
(1− α)ztk

α
t l−αt (B.7)

βbt+1 +
[
ατkt + (1− α) τ lt

]
ztk

α
t l1−αt = gt + bt (B.8)

1 = β
[
αztk

α−1
t+1 l1−αt+1

(
1− τkt+1

)
+ 1− δ

]
. (B.9)

Even with linear utility from consumption, there is still time inconsistency and a mean-

ingful distinction between the FC and NC solutions to this model. A government with

FC will choose to have the time-0 capital tax at the maximum level, and then set capital

taxes from time 1 onwards to zero. A government with NC, on the other hand, will

always have the temptation to tax capital once it is installed, and raise capital taxes to

the maximum level.

To see that LTC can support FC in this special case, note that the only problematic

variables are now labour and the capital tax, coming from (lt+1, τ
k
t+1) in the Euler equa-

tion. In the notation of our general formulation we have N = 1, with variables one period

ahead appearing in the constraints, and bt = (kt,bt), ct = (ct, lt), and τt = (τkt , τ
l
t , gt),

and zt = zt. We need to show that Assumption 3, holds in this model for L = 1. To

show point (i) of the proof we must show that the state st = (kt,bt, zt, τ
k
t , τ

l
t ) pins down

(lt, τ
k
t ). To see that this is the case note that, given kt, zt, and τ lt , (B.7) pins down a

unique lt, defining a function lt = l(kt, τ
l
t ). Part (ii) of the proof is left to the reader.

What is the economic reason why one period of commitment can sustain FC in this

model, while it cannot when the agent has concave utility from consumption? In the

case of linear utility, consumption is no longer a problematic variable. Hence, even

though the government cannot pin down ct with just one period of commitment, this

does not matter. The remaining sources of time inconsistency are the capital tax itself,

for which commitment is then assumed, and lt+1, which can be pinned down with one

period of commitment since the labour supply curve is independent of consumption under

linear utility. Intuitively, with linear utility the household does not want to smooth

consumption. The Euler equation (B.9) shows that they choose the level of capital only
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thinking about the return, and hence taxes, at time t+ 1, which is why only one period

of commitment is needed.

This example is instructive for two reasons. Firstly, it demonstrates that LTC can

sometimes support FC in the absence of static resource or budget constraints. Secondly,

it provides an example where the general model was modified to enable LTC to support

FC not by adding an extra static equation, but by removing a problematic variable.

B.3 Equivalence in extensions to the benchmark model

In this section we discuss two extensions of the general models where our theorem also

holds, and which provide further intuition about the economic forces determining the

required length of commitment to sustain the FC solution.

B.3.1 Capital and multi-period balanced budgets

In this section we consider a government who faces the constraint that she must balance

her budget every M periods. There are many ways to implement this which lead to LTC

supporting FC, and we illustrate one method here. In particular, we suppose that the

government can issue one-period bonds, denoted bt, which are priced according to the

agent’s Euler equation qtu
′(ct) = βu′(ct+1). The government’s budget is now

[
ατkt + (1− α) τ lt

]
ztk

α
t l1−αt − τkt δkt + β

u′(ct+1)

u′(ct)
bt+1 = gt + bt. (B.10)

We implement the balanced budget assumption by assuming that the government cannot

issue bonds once every M periods. Give each period an index mt ∈ {1, 2, ...,M} denoting

its position in the cycle, with mt = M denoting the last period of the cycle (where the

government can’t issue debt) and mt = 1 denoting the first (where there is thus no

inherited debt to repay). Whenever mt = M , the government cannot issue debt and

hence bt+1 = 0. To fix ideas, if one period is a quarter, and the government must

balance her yearly budget, this means that M = 4, and the government cannot issue any

bonds in the fourth quarter of every year.

The rest of the model equations are the same as the second specialisation in Section

3.3: (15), (16), and (18), to which we add the government budget, (B.10), and the

restriction that bt+1 = 0 if mt = M . We now prove that we can support FC with

LTC with L = M periods of commitment. In this case, the policy states are τLt =

(τkt , τ
l
t , gt, ..., τ

k
t+M−1, τ

l
t+M−1, gt+M−1).

To prove equivalence, we need to show that Assumption 3, holds in this model. In

other words, we need to show that (i) if we fix st = (kt,bt, zt, τ
L
t ) then we pin down

the problematic variables (ct, lt, τ
k
t ), and (ii) st and (τkt+M , τ

l
t+M , gt+M ) additionally pin

down (kt+1,bt+1).

This has do be done separately for each position in the cycle, but the procedure is

similar in all cases. First consider any t where mt = 1, at the beginning of the cycle.

Then in period t + M − 1 it will be the end of the cycle, meaning that no debt can be

issued and bt+M = 0. To check point (i), we can forward (B.10) from t to t+M − 1 to
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yield

M−1∑
s=0

u′(ct+s)
([
ατkt+s + (1− α) τ lt+s

]
zt+sk

α
t+sl

1−α
t+s − τkt+sδkt+s

)
=

M−1∑
s=0

u′(ct+s)gt+s,

(B.11)

where we have used bt = 0 and bt+M = 0. Given the committed policy states (τkt , τ
l
t , gt, ...,

τkt+M−1, τ
l
t+M−1, gt+M−1) and combining this with 1) M resource constraints, (18), from

t to t + M − 1, 2) M labour FOCs, (15), from t to t + M − 1, and 3) M − 1 capital

Euler equations, (16), from t to t+M − 2, gives 3×M equations in 3×M unknowns,

{ct+s, lt+s, kt+s+1}M−1
s=0 . While the number of equations does equal the number of un-

knowns, given the nonlinearity of the system we are unable to generically prove that this

system admits a unique solution, and must maintain sufficient functional form restric-

tions as an additional assumption to be checked case by case. Under this assumption, this

system thus pins down (ct, lt), as required for point (i). The problematic policy variables

τkt are trivially pinned down as part of the policy state τLt . For part (ii), (kt+1,bt+1)

were already solved for in the last step.

A similar procedure can be applied for periods at different points in the cycle, by

iterating equations forward until a future period where mt+s = M . For the first period

of the cycle, that involves using equations from t to t + M − 1, for the second we use

equations from t to t+M − 2 and so on, until in the last period of the cycle we can just

use the equations at period t.

B.3.2 Capital and balanced budgets with longer time-to-build

In this section we consider an extension of the model of Section 3.3 with single-period

balanced budgets but N period time to build. By N period time to build, we mean that

investment today, it, creates capital which becomes productive at time t+N :

kt+N = (1− δ)kt+N−1 + it. (B.12)

Note that kt+N−1 is predetermined at time t, since it is determined by past investment

rates. The resource constraint is now

ct + kt+N − (1− δ) kt+N−1 + gt = ztk
α
t l1−αt . (B.13)

In this case the agent’s Euler equation for capital becomes

uct = βuct+1
(1− δ) + βNuct+N

αztk
α−1
t+N l1−αt+N

(
1− τkt+N

)
. (B.14)

The model is now described by (B.13), (B.14), (15), and (25). The problematic variables

are now consumption, labour, utilisation, capital taxes, and government spending, due to

the appearance of ct+N , lt+N , vt+N , gt+N , and τkt+N in the constraints. In the notation

of our general formulation we have variables up to N periods ahead appearing in the

constraints. The time-to-build structure now means that all of (kt, kt+1, ..., kt+N−1) are

natural state variables at time t.

As in the original model with one period time to build, given
(
kt, kt+1, ..., kt+N−1, τ

k
t , τ

l
t , gt, zt

)
,

equations (15) and (25) still form a system of two equations in two unknowns, (ct, lt),

which admits a unique solution under the original assumptions. However, note that to

satisfy part (i) of Assumption 3 we need problematic variables up to (ct+N−1, lt+N−1)

22



to be uniquely determined by the state st = (kt, kt+1, ..., kt+N−1, zt, τ
L
t ). Thus, by the

same logic we need commitment to all of (τkt , τ
l
t , gt, ..., τ

k
t+N−1, τ

l
t+N−1, gt+N−1) to fully

satisfy the assumption. Part (ii) of the proof is left to the reader. Thus, N periods of

commitment are sufficient to recover FC in this extension.

B.4 The role of initial conditions

The equivalence between LTC and FC outcomes proved in Section 2 relies on initial

policy instruments being consistent with the FC plan. We now discuss the consequences

of letting governments with LTC inherit arbitrary initial policies. By Lemma 2, we

know that under our assumptions, the LTC outcome coincides with the outcome of a

FC Ramsey plan restricted to start from the same arbitrary initial policy (the Modified

Problem). Hence even if the LTC game is initialised with “incorrect” initial policies,

the remaining policies will be chosen optimally in the sense that a FC Ramsey planner

restricted to the same initial policies would choose the same sequence. In models where

the key distinction between the NC and FC solutions is a difference in the average level

of a policy rather than the timing (e.g. capital taxes being high on average under NC in a

model with capital) this suggests that much of the benefit of LTC in sustaining FC-type

policies will be retained even if initial policies are incorrectly set. However, for specific

versions of our general model, we are able to provide a more detailed characterisation of

the equilibrium.

B.4.1 Initial conditions in Case 1 (Lucas and Stokey (1983) model)

Consider the Lucas and Stokey (1983) model of Section 3.2. We further simplify the

exposition assuming exogenous, constant government spending.7For this economy, we

have established that, starting from initial conditions given by the FC policy sequence,

LTC sustains FC outcomes with a single period of commitment. We now ask what

happens if a government in the LTC game inherits an arbitrary initial policy, potentially

different from the one implied by the FC policy path.

The FC policy for this model is fully characterised by two functions: τ l0,FC(b0) for

t = 0 and τ lFC(b0) with τ lt = τ lFC(b0) for all t ≥ 1. The government chooses a perfectly

smooth tax from t = 1 onwards and uses the tax rate at t = 0 to affect the utility value

of initial debt by distorting the initial allocation in order to decrease the amount of tax

distortions needed to finance expenditure and service the debt. The rest of the allocation

is also constant from t = 1 onwards.

Moving on to the LTC game, from the intratemporal optimality condition (20), im-

posing constant g, we can obtain hours as an implicit function of the tax rate only:

lt = l(τ lt ). Using this function, the government budget constraint in period t can then

be expressed as

u′(l(τ lt )− g)
(
bt + g − τ lt l(τ lt )

)
= βu′(ct+1)bt+1. (B.15)

Let at ≡ u′
(
l
(
τ lt
)
− g
) (

bt + g − τ lt l(τ lt )
)

and note that this variable is a function only

of the inherited level of debt and the current tax rate: at = a
(
bt, τ

l
t

)
. The economic in-

terpretation of this variable is the (marginal utility) value of the resources that the time-t

7This assumption can be easily relaxed without affecting the main insight.
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government needs to raise on the bond market. Let s
(
τ lt
)
≡ u′

(
l
(
τ lt
)
− g
) (

g − τ lt l
(
τ lt
))

.

Adding and subtracting s
(
τ lt+1

)
on the right-hand side of (B.15) and rearranging yields

at+1 = β−1at − s
(
τ lt+1

)
. (B.16)

Note that the problem of the government at t = 0 is affected by
(
b0, τ

l
0

)
only through

their effect on a0. This is because this government cannot affect hours worked at t = 0.

The solution to the LTC game can be formulated in the following recursive form.8

W (at) = max
at+1,τ l

t+1

β
[
u
(
l
(
τ lt+1

)
− g
)
− v

(
l
(
τ lt+1

))
+W (at+1)

]
(B.17)

subject to the transition (B.16). Note that this recursive form ignores contempora-

neous utility, which is in any case fixed from the government’s point of view. Con-

sider an LTC game starting from arbitrary initial conditions (b0, τ
l
0), which imply a0 =

u′
(
l
(
τ l0
)
− g
) (

b0 + g − τ l0l(τ lt )
)
. Starting from time 0 and any a0, the optimal solution

to this problem implies that a0 = a1 = .... Since optimal (next-period) taxes are a policy

function with at as the only state, optimal taxes from time 1 onwards must be constant

too, and so the solution inherits a key property of the FC solution. We can find the

optimal tax rate from time 1 onwards from (B.16): τ∗(a0) = s−1
(

1−β
β a0

)
. The value

function satisfies

W (a0) =
β

1− β
[u (l (τ∗ (a0))− g)− v (l (τ∗ (a0)))] . (B.18)

Time-0 welfare starting from arbitrary initial conditions (b0, τ
l
0) is then given by

V
(
b0, τ

l
0

)
= u

(
l
(
τ l0
)
− g, l

(
τ l0
))

+W (a0). (B.19)

We now argue that the LTC policy and allocation starting from
(
b0, τ

l
0

)
, with τ l0 6=

τ l0,FC (b0) converges to another FC policy (and allocation), indexed by a different ini-

tial debt level. Let b̃0 be the solution to the non-linear equation a
(

b̃0, τ
l
0,FC

(
b̃0

))
=

a
(
b0, τ

l
0

)
.9 Then, in the equilibrium of the LTC game starting from

(
b0, τ

l
0

)
, we will

have τ lt = τ∗ (a0) = τ lFC

(
b̃0

)
for all t ≥ 1. That is, the LTC solution replicates the FC

solution for the different initial debt level b̃0 for all t ≥ 1. In order to assess the welfare

cost of starting from any initial tax, it is sufficient to compare the value attained by the

FC policy starting from t = 0 with the value defined in (B.19).

B.4.2 Initial conditions with capital, debt, and linear utility from consump-

tion

Consider the special case given in Section B.2.3. For simplicity also assume that zt = 1

and that government spending is exogenous and equal to a constant g. We can prove

that the equilibrium of the LTC game converges to a different FC solution if a generic

8This is an alternative formulation relative to the more general recursive formulation used to prove
Proposition 1. It holds in this model because the welfare-relevant component of the allocation (ct, lt)
is fixed from the point of view of the government dated t.

9Under standard parametrisations of the utility function there is a unique solution.
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time-t government inherits “incorrect” policies. Recall that in this model the FC solution

for t > 0 features zero capital taxes and constant labour taxes.

To prove this, we need to characterise the LTC solution. It is convenient to combine

the competitive equilibrium constraints into a single implementability constraint:

1

β
kt + bt = ct − vl,tlt + kt+1 + βbt+1. (B.20)

This constraint combines all the time-t constraints except for the capital Euler equa-

tion, and uses the Euler equation from time t − 1. Along any LTC path with rational

expectations we can use (bt, kt, lt) as the only states since we can use the time-t labour

condition, (B.7), and t− 1 Euler, (B.9) to infer what time-t taxes they imply, instead of

holding the taxes as additional states. Since the theorem holds, we can write the LTC

problem recursively as

W (bt, kt, lt) = max
bt+1,kt+1,lt+1

kαt l1−αt + (1− δ) kt − g − kt+1 − v(lt) + βW (bt+1, kt+1, lt+1)

(B.21)

where the maximisation is subject to (B.20). This is true for any LTC path from time

t = 1, since capital and the capital tax will be consistent (through the t − 1 Euler)

allowing us not to use the taxes as states. At time 0 this is not true, since the inherited

initial taxes and capital level might not be consistent with the time-0 capital tax, so the

following applies for any t ≥ 1. Denote by λt the multiplier on (B.20), then the capital,

bond and labour first order conditions give respectively:

1− λt = β
(
αkα−1

t l1−αt + 1− δ
)
− λt+1 (B.22)

λt = λt+1 (B.23)

(1− α)kαt+1l−αt+1 − v′(lt+1)− λt+1(v′′(lt+1)lt+1 + v′(lt+1)) = 0. (B.24)

We can combine the capital and bond first order conditions to give

1 = β
(
αkα−1

t l1−αt + 1− δ
)
. (B.25)

This is just the household’s capital Euler equation with zero capital taxes. Hence we have

shown that, for any time t ≥ 1, regardless of the initial condition, a government with

LTC will always immediately set τkt+1 = 0. Labour taxes will be constant from period

t + 1 onwards because both the multiplier and capital in (B.24) are constant, implying

constant hours, and hence constant labour taxes. Taking t = 1, the above logic thus

implies that by period 2 the solution will have converged to one with zero capital taxes

and constant labour taxes. Since the level of labour taxes must satisfy the intertemporal

budget constraint, these taxes must be the long-run solution to a FC game for a different

value of the initial state variables.

C Appendix to Sections 4 and 5

In this appendix, we first provide the complete set of optimality conditions (including

Generalised Euler Equations) under FC, NC and LTC for the model of Section 4. Next,

we study the effects of commitment to different fiscal instruments. Finally, we describe

our numerical algorithm to compute the LTC equilibrium of the model of Section 4.
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C.1 Competitive equilibrium and LTC game

The competitive equilibrium equations of this model can be compactly stated as

ct + kt+1 + gt = f (kt) (C.1)

u′ (ct) = βu′ (ct+1)

(
f ′ (kt+1)− gt+1

kt+1

)
(C.2)

where f(kt) = kαt + (1− δ)kt, and the capital tax rate rate has been solved out for using

the balanced budget constraint, τkt (f ′ (kt)− 1) kt = gt.

In the model of Section 4, and allowing for the shock to the value of government

spending, the natural state variables of the LTC equilibrium with L periods of commit-

ment are st = (kt, ξt, τ
L
t ). τLt is the inherited fiscal plan to be enacted from time t to

t + L − 1, consistent of a sequence of (possibly state contingent) pre-committed values

for government spending. In a symmetric equilibrium, all governments play the same

policy function,
˜
gt+L = g(st), which is either contingent or not depending on the form

of LTC chosen. Consumption is given by an associated policy function ct = c(st) and

the value function of the government is v(st). If all future government’s play this policy

function, the time-t government chooses
˜
gt+L to maximise

u (ct) + w (gt, ξt) + βEtv (st+1) (C.3)

subject to the pre-committed policies, and the value of ct implied by all competitive

equilibrium equations (C.1) and (C.2) from t onwards. The continuation value is given

by

v(st) = u (c(st)) + w (gt, ξt) + βEtv (st+1) (C.4)

with st+1 computed by updating st with the policy function g(st).

C.2 Optimality conditions and GEE

We now state three maximisation problems related to the deterministic model of Section

4, namely the optimal policy with FC, with NC and with LTC. We derive the first order

conditions for each of these problems.

C.2.1 Full Commitment

Given k0, the problem of the government with FC is to choose {gt, kt+1}∞t=0 in order to

maximise
∞∑
t=0

βt [u (f (kt)− gt − kt+1) + w (gt)] (C.5)

where we have replaced ct using (C.1), and subject to (C.2) with attached multiplier

γFCt . The first order conditions for g0, gt (with t > 0), and kt+1 are, respectively,

w′ (g0)− u′ (c0)− γFC0 u′′ (c0) = 0 (C.6)

w′ (gt)− u′ (ct)− γFCt u′′ (ct)− γFCt−1

[
−u′′ (ct)

(
f ′ (kt)−

gt
kt

)
− u′ (ct)

kt

]
= 0 (C.7)
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u′ (ct) = β
[
u′ (ct+1) f ′ (kt+1) + γFCt+1u

′′ (ct+1) f ′ (kt+1)
]

+

−γFt
[
u′′ (ct) + β

(
u′′ (ct+1) f ′ (kt+1)

(
f ′ (kt+1)− gt+1

kt+1

)
+ u′ (ct+1)

(
f ′′ (kt+1) +

gt+1

k2
t+1

))]
.

(C.8)

C.2.2 Limited-Time Commitment

Without uncertainty, the LTC problem with L periods of commitment can be stated as

follows. Given states (kt, gt, ..., gt+L−1), choose (gt+L, kt+1) to maximise

u (f (kt)− gt − kt+1) + w (gt) + βv (kt+1, gt+1, ..., gt+L) (C.9)

subject to

u′ (f (kt)− gt − kt+1) = βu′ (c (kt+1, gt+1, ..., gt+L))

[
f ′ (kt+1)− gt+1

kt+1

]
(C.10)

with attached multiplier γt, and with continuation value given by

v(kt, gt, ..., gt+L−1) = u (c(kt, gt, ..., gt+L−1)) +w (gt) + βv (kt+1, gt+1, ..., gt+L) . (C.11)

Taking the first order condition for gt+L, and using the envelope condition to substitute

out vgt+L
(kt+1, gt+1, ..., gt+L), we can derive a Generalised Euler Equation:

w′ (gt+L)− u′ (ct+L)

(
1− γt+L−1

kt+L

)
− γt+Lu′′ (ct+L) =

L−1∑
j=0

βj−L+1γt+ju
′′ (ct+j+1)

(
f ′ (kt+j+1)− gt+j+1

kt+j+1

)
∂ct+j+1

∂gt+L
. (C.12)

Similarly, we can express the first order condition for kt+1 as a second Generalised Euler

Equation:

u′ (ct) = β (u′ (ct+1) f ′ (kt+1) + γt+1u
′′ (ct+1) f ′ (kt+1))− ...

−γt
[
u′′ (ct) + β

(
u′′ (ct+1)

(
f ′ (kt+1)− gt+1

kt+1

)
ck,t+1 + u′ (ct+1)

(
f ′′ (kt+1) +

gt+1

k2
t+1

))]
.

(C.13)

C.2.3 No Commitment

No commitment is the special case of LTC with L = 0 periods of commitment. The GEE

for government spending, gt now reduces to the simpler condition

w′ (gt) = u′ (ct) + γNCt u′′ (ct) . (C.14)
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The GEE for capital, kt+1 is similar to that under LTC with L ≥ 1, but now additionally

features a derivative of the government spending policy function:

u′ (ct) = β
(
u′ (ct+1) f ′ (kt+1) + γNCt+1u

′′ (ct+1) f ′ (kt+1)
)
− γNCt

[
u′′ (ct) + ...

+β

(
u′′ (ct+1)

(
f ′ (kt+1)− gt+1

kt+1

)
cNCk,t+1 + u′ (ct+1)

(
f ′′ (kt+1) +

gt+1

k2
t+1

−
gNCk,t+1

kt+1

))]
.

(C.15)

C.3 Commitment to taxes or spending?

In the model described in Section 4, there is no difference between committing to future

taxes or future spending: the government balanced-budget constraint pins down spending

given the tax rate and vice versa, because the tax base depends on the capital stock only,

which is a pre-determined state variable.

In the real world, we sometimes observe different institutional arrangements for the

determination of tax rates and public spending. For instance, there is often a component

of government spending that is discretionary and can potentially be changed relative to

previous plans without incurring the institutional costs and delays that are typically

associated with a reform of the tax code.

In order to introduce a distinction between commitment to taxes and to spending

in our model, we now extend the model to allow for endogenous labour supply. This

modification of the model implies that the tax base (capital income) is not predetermined,

as it depends on hours worked, which respond endogenously to contemporaneous changes

in fiscal policy. Hence, we can consider commitment to taxes or spending separately.

We replace the period utility function with log (ct)+B log (1− lt)+D log (gt), where

lt are hours worked. The government balanced-budget constraint becomes

τkt
(
αkαt l1−αt − δkt

)
= gt (C.16)

and households set the marginal rate of substitution between leisure and consumption

equal to the wage (ie, the marginal product of labour, using firms’ profit maximisation):

Bct
1− lt

= (1− α) kαt l−αt . (C.17)

We solve this model under two alternative specifications of LTC. In the first case, which

we denote LTCg′(1), the government in power at time t takes as given the state vector

(kt, gt) and chooses the tax rate that applies at time t, τkt , and the level of spending

that applies at time t + 1, gt+1. In the second case, which we denote LTCτ ′(1), the

government in power at time t takes as given the state vector (kt, τt) and chooses the

level of spending that applies at time t, gt, and the tax rate that applies at time t + 1,

τkt+1.

In Table E.2 we compare the steady-state results for these two alternative institu-

tional arrangements with the results obtained under FC.10 Interestingly, we find that

10These are also the results if the government has one period of commitment to both taxes and
spending, as our equivalence result applies in this version with endogenous labour supply.
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commitment to future taxes lead to lower taxes and spending, inducing a higher level of

output and consumption, with a similar amount of hours worked. Overall, the welfare

loss of LTCτ ′(1) relative to FC equals 3.9% (in terms of permanent consumption), while

LTCg′(1) induces a larger welfare loss, equal to 5%. To our knowledge, this is the first

result in the literature on fiscal policy that could provide support for differential degrees

of commitment for taxes and spending. Relatedly, Klein and Ŕıos-Rull (2003) consider

the trade-off between commitment to labour or capital income taxes. Based on these

result, we think that LTC is a promising framework to develop a positive theory of the

timing of different fiscal instruments.

C.4 Algorithm for LTC

We now describe the key steps of the algorithm we use to compute the LTC equilibrium

of the model of Section 4. We refer to the model with shocks and non-contingent LTC

with L = 1, and briefly explain the differences for the other cases below. We solve

the model by approximating the policy functions using projection methods with Cheby-

shev polynomials of the state variables of the problem, namely capital k, government

expenditure g and the shock ξ.

1. We discretise the sets of k, g with Chebyshev nodes. As ξ takes two values, all

polynomials mentioned below have two different sets of coefficients on k and g,

depending on the realization of ξ.

2. We set a Chebyshev polynomial order S (in our case, S = 3) and guess a future

policy function g ≈ P (k, g, ξ;φg), where φg are the coefficients of the polynomial.

3. We solve the households’ consumption-saving problem by iterating on the Euler

equation (C.2) and approximating the consumption function c ≈ P (k, g, ξ;φc),

where φc are the coefficients of the polynomial.

4. We approximate the continuation value function on a grid by iterating on (C.4).

5. We solve the maximisation problem of government t on a grid for (k, g, ξ), choos-

ing g′ on a fine grid. Next, we approximate the associated decision rule with a

polynomial with coefficients φ′g

6. We update the guess for g as follows: φg = ψφ′g + (1 − ψ)φg for some ψ ∈ (0, 1].

We iterate on these steps until convergence of all policy functions.

For the contingent LTC model, we follow the same steps, with the exception that the

future policy g′ is also a function of the future shock realisation ξ′ (the policy function

is now formed of two sets of polynomials, one for each ξ′). The deterministic model with

L = 1 is a special case with constant ξ. For the deterministic model with multiple periods

of commitment L > 1, we follow the same steps (with a suitably defined state vector

that includes all pre-committed policies), with the exception that the consumption policy

function is obtained by projection on all the Euler equations between time t and time

t+L. We jointly minimize the residuals of these private sector optimality conditions and

thus obtain current consumption as a function of the state and the announced policy to

be implemented at t+ L.

29



We verify that higher order polynomials produce quantitatively negligible differences

in the solution. We also compute the FC and NC versions of the model using projection

with third-order Chebyshev polynomials. For the NC model, we adapt the method

described above: the state variables are (k, ξ) and the government maximisation is over

g. Klein et al. (2008) solve the NC version of the model numerically exploiting the

Generalised Euler Equation (GEE). In the interest of comparison, we also verify that

a projection method that uses the GEE for NC produces negligible differences relative

to our method. Finally, we check the accuracy of our results for the deterministic LTC

model by evaluating the LTC GEE residuals using our solution and verifying that they

are sufficiently small.
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D Additional figures

Figure D.1: Feasible set and LTC policy function in the LS economy
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Left panel represents the feasible set S via upper and lower limits bmin(τ l) and
bmax(τ l). Right panel plots slices from the policy function τ lt+1 = g(bt, τ lt) at

given values of bt, where τ lt and τ lt+1 are represented on the x- and y-axes re-
spectively. bL, bM , and bH represent low, medium, and high debt levels corre-
sponding to 20% above the bottom of the grid for b, 50% above, and 80% above.

Figure D.2: LTC and FC in the LS economy
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Lines give LTC policy function τ lt+1 = g(bt, τ lt) at a given value of bt, where τ lt
and τ lt+1 are represented on the x- and y-axes respectively. Crosses denote the
t and t + 1 values of the optimal FC plan. The left panel plots the t = 0
problems, showing the LTC plicy function for state b0 and the time-0 and 1 FC
taxes. The right panel plots the t > 0 problems, showing the LTC plicy func-
tion for state bFC and the time-1 and 2 FC taxes, which are both equal to τ lFC .
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E Additional tables

Table E.1: Parameter values

Parameter Interpretation Value

β discount factor 0.96

ξ public good utility 0.5

α capital share 0.36

δ depreciation 0.08

pHH = pLL transition prob. for ξt 0.974

ξH high realization of ξt 0.556

ξL low realization of ξt 0.444

B utility from leisure 2.33

Parameter values for the model in Section 4. The first block of the table displays the
parameters used in the baseline analysis of the deterministic model. The second block
displays the additional parameters used in the stochastic model. The third block displays
the additional parameters used in the model with endogenous labour. We follow the
yearly calibration in Klein et al. (2008) for the deterministic version of the model, both
with exogenous and with endogenous labor. In the stochastic version, we parameterise
the process for the shock ξt in order to match the volatility and persistence of the ratio
between public consumption and private consumption in US data 1960:2017, as described
in the text.

Table E.2: Deterministic model with endogenous labour: steady-state comparison

Variable FC LTCg′(1) LTCτ ′(1)

y 1 0.907 0.920

k/y 1.540 1.203 1.244

c/y 0.731 0.705 0.708

g/c 0.200 0.283 0.273

l 0.281 0.289 0.288

τ 0.694 0.840 0.825

welfare loss – 0.050 0.039

Steady-state results for the model with endogenous labour supply described in Appendix
C.3. We consider three versions of the economy: FC, LTC with commitment for one year
only to future spending (“LTCg′ (1)”), and LTC with commitment for one year only to
future taxes (“LTCτ ′ (1)”). We report steady-state output, capital-output ratio, private
consumption-output ratio, public consumption-private consumption ratio, hours worked,
tax rate and welfare loss, measured as the fraction of permanent consumption that would
make the representative household indifferent between the economy considered and the
FC economy.
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