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Abstract 

Smoking is a huge issue for social health and consequently there has been much research 

considering the relationship between tobacco use and many biological processes. One interesting 

field of study has identified epigenetic signatures of smoking using DNA methylation profiles. 

Up to this point, these studies were mostly carried out using the 450K BeadChip technology 

from Illumina. The new Infinium EPIC array is capable of quantifying DNA methylation at 

almost double the number of CpG sites and was used on whole blood from around 1200 

participants of Understanding Society. This allowed integration of the household study’s rich 

smoking-related data with DNA methylation levels spanning the entire genome using linear 

modelling. The R package limma was used for this and allowed the identification of novel, 

smoking-associated loci in this study that were differentially methylated between smokers and 

non-smokers. These regressions also revealed a decrease in the number, and thus significance, 

of probes differentially methylated with smoking in former smokers compared to current 

smokers, supporting the idea than these changes are reversed upon cessation. Additionally, this 

study showed that DNA methylation levels within smokers varied with increasing dosage 

whereby duration of tobacco use appears to be more important than intensity in driving changes 

to the methylome caused by smoking. Furthermore, this differential methylation was reversed 

once a person had quit smoking and the degree of this decay increased with cessation years. 

Taking these findings, it was then possible to create two quantifiable DNA methylation-based 

biomarkers of smoking capable of predicting both years spent smoking in current smokers and 

years since quitting in former smokers. This may then prove to be a useful tool in characterising 

disease risk given the number of differentially methylated loci located in important health-related 

genes, especially if DNA methylation is indeed related to their expression. 
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1. Introduction 

 

1.1. Smoking Epidemiology 

 

In 1964 the United States Surgeon General elucidated to the dangers of smoking in a landmark report (NIH, 

1964). Since then an overwhelming amount of evidence has led to the classification of smoking as the 

leading, preventable cause of morbidity and mortality worldwide and has been frequently linked to 

advanced aging and multiple cancers (Peto et al., 2000). The first link between smoking and lung cancer 

came from a group of German scientists in the late 1920's and led to the first anti-smoking campaign ever 

(Proctor, 1996). However, this was largely based on ideology rather than science and was discredited 

following World War 2 which may in part explain why many people continued smoking thereafter. In the 

present day, smoking is declining in most of the developed world however there are still an estimated 1.1 

billion tobacco users worldwide and this clearly presents a huge problem for public health (Doll et al, 2004). 

Therefore, an enormous amount of research has gone into the biology of tobacco smoking and ways to 

prevent its use. This work has revealed at least 98 chemicals found within tobacco smoke that are known 

to have specific toxic properties, with some directly leading to DNA damage and subsequently cancer 

(Kastan, 2008).  

 

Research into the genetics of smoking has disclosed a predisposition to nicotine dependence and this has 

now been firmly established (Ware et al., 2012). Nicotine exerts an overwhelming addictive effect on 

tobacco smokers but there is some variation in the extent of addiction between individuals. Twin studies 

have documented a heritability to nicotine dependence which gives some explanation to inter-individual 

differences in ability to quit smoking (Ingebrigtsen et al., 2011). Here, genetic variants can influence this 

risk where single nucleotide polymorphisms within genes coding for receptors and enzymes involved in 

neurotransmitter metabolism have been implicated through genome-wide association studies. The strongest 

associations came from a locus mapped to chromosome 15q24-                                                                                                                                                                                                                                                                                                                                                                                                                                            

25 that harbours a gene cluster coding for nicotinic acetylcholine receptor subunits. This is made up of 

CHRNA5-CHRNA3-CHRNB4, genes that mediate fast signal transmission at synapses (Hällfors et al., 
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2017). Moving on from this came gene-environment interaction studies, with the best example being the 

interaction of smoking with apolipoprotein E variants. The ε4 variant is a much poorer antioxidant than 

other variants and this reduced anti-oxidative resilience can lead to several diseases, namely cardiovascular 

disease, when in conjunction with the excessive oxidative stress of smoking (Stephens et al., 2003 and Isik 

et al., 2007). Recently a surge of interest in epigenetics has thus far focused on the epigenome’s response 

to pollutant, such as that found in cigarette smoke, and looked for signals common in all smokers. This 

differs to genetic research focusing on individual differences between smokers. The strongest signals here 

have involved the altered epigenetic modification to genes involved in the response to tobacco combustion 

products, such as AHRR. This was so robust in fact that measures of DNA methylation at such loci are able 

to distinguish between current, nascent and never smokers (Philibert et al., 2012). This also strengthens 

previous findings that smoke-less tobacco use was not associated with differential methylation at any sites 

in snuff users (Besingi et al., 2013). With this said, another finding suggested that even nicotine itself can 

alter the methylation levels of promotors in GABAergic neurons, those involved in the neurotransmission 

of GABA, whose principal role is to reduce neuronal excitability throughout the nervous system although 

the effects were fairly minor in comparison (Satta et al., 2008).  

 

The current understandings in smoking-related changes to the epigenome act to strengthen the link between 

genes and health-related phenotypes that is only possible through epigenetic research. Thus, using the 

wealth of smoking epidemiology study available, this project aims to build upon this and more specifically 

better comprehend how DNA methylation changes relate to smoking phenotype. Findings of this nature 

will allow the creation of a biomarker of smoking, a useful tool in disease risk management and prevention. 

Often self-reported data on smoking is unreliable and even accurate measures of environmental exposure 

can fail to fully account for the internal dose a person has been exposed to. Thus, using biological exposure 

measures can offer a much more sensitive and reliable biomarker that is more accurately related to the final 

health outcome of a smoker. 

 

1.2. DNA Methylation 
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Many biomarkers of tobacco smoke exposure have been utilized to characterize its biological effects and 

assess the subsequent impact on disease risk. One example is that of serum cotinine levels, an objective 

measure of nicotine exposure using a cutoff point of 14ng/mL but is one of many well-established 

biomarkers that fail to fully reveal the effects of past exposure. Epigenetic study however offers the 

potential for an early detection, sensitive and long term biomarker where measures of exposure, decades 

prior to the sample collection, can be observed (Zhang et al., 2016). This has enabled much better research 

into exposure induced risk of chronic diseases as it can reflect exposure to a variety of environmental factors 

linked to ill health and help in better understanding the underlying aberrant biology of smoking.  

 

Epigenetics is defined as heritable changes that can affect gene architecture and expression without altering 

the genetic sequence itself. The three pillars of epigenetic regulation are DNA methylation, histone 

modifications and non-coding RNA species. Modifications of these affect almost all nuclear processes, 

including gene transcription and silencing, DNA repair and replication and telomere function to name a 

few. DNA methylation is one such mechanism involving the addition of a methyl (CH3) group to DNA, 

often modifying the function of the genes at which it occurs (Lister et al., 2009). The addition of CH3 at a 

5-carbon of a cytosine ring, creating 5'-methylcytosine (5-mC), is the most widely characterized occurrence 

of any epigenetic mechanism. In mammalian DNA, this almost always occurs at 5'-CpG-3' dinucleotides, 

known as CpG sites. An exception of this occurs in embryonic stem cells where a lot of 5-mC is observed 

outside of CpG contexts (Ramsahoye et al., 2000). 

 

Within the human genome, CpG sites located inside of clusters, termed CpG islands, are mostly 

unmethylated whereas other CpG sites remain largely methylated. This acts to, at least in part, separatee 

the genome into transcriptionally active and inactive zones. CpG islands make up approximately 1-2% of 

the genome and around 50-60% of all genes contain a CpG island, encompassing gene promoters or exons 

most of the time. These are related to gene expression and when CpG islands in the promotor region 

becomes methylated, expression can be repressed. Noted exceptions to this include imprinted genes and 

those on the inactive X chromosome (Moore et al., 2012). Methyl groups are added to DNA by a family of 

enzymes called DNA methyltransferases (DNMTs) that catalyze the transfer of methyl groups from S-
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adenosylmethionine. DNMT1 is necessary to maintain already established DNA methylation patterns, 

whereas DNMT3a and DNMT3b seem to be required for the establishment of new or de novo DNA 

methylation patterns. Furthermore, deletion of any DNMT is lethal in murine and human cells, showing the 

indispensable functions methylation plays in mammals (Bestor et al., 2000).  

 

In conjunction with this comes DNA demethylation, the removal of the methyl group. This process is 

required for epigenetic reprogramming of genes and has been implicated in some disease mechanisms, such 

as tumor progression. It was previously thought that DNA demethylation only occurs passively through 

dilution of methylation marks via de novo DNA synthesis by DNMT1. Today it is known that methylation 

marks can in fact be actively erased through the direct removal of the methyl group, or through a 

combination of the two (Ohno et al., 2013). In mammals, direct excision of 5mC paired with G does not 

seem possible, so instead the methylated base undergoes sequential modifications that are converted by 

ten-eleven translocation enzyme-mediated oxidation. This family of 5-mC hydroxylases include TET1, 

TET2 and TET3 and may promote DNA demethylation by binding to CpG rich regions, preventing DNMT 

activity.  They work by producing 5-hydroxymethylcytosine (5-hmC) as the first intermediate and then 

further hydroxylating this intermediate to 5-formylcytosine (5-fC) and then 5-carboxylcytosine (5-caC). 

Thymine DNA glycosylase (TDG) can also directly excise 5-fC, allowing the subsequent base excision 

repair (BER) pathway to convert the modified cytosine back to its unmodified state (Bochtler et al., 2016).  

The biological significance of 5'-methylcytosine has been widely recognized and may reflect a global 

decrease of DNA methylation. This is likely a consequence of methyl-deficiency caused by a number of 

different environmental influences, including smoking, and quantification of global 5-mC could act as a 

molecular marker for disease (Robertson, 2005). Furthermore, a more recent study has shown small changes 

to levels of intermediate DNA methylation may be associated with complex disease phenotypes where 

these changes caused a cascade of events leading to altered glucocorticoid receptor (NR3C1) protein 

(Leenen et al., 2016). This is just two examples of a plethora of papers demonstrating not only the 

importance of DNA methylation but also how its role in disease phenotypes may be more far-reaching than 

previously thought. 
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1.3. Previous Findings 

 

The first discovery of a smoking-related DNA methylation marker came from Breitling et al (2011) and 

has since been followed by the identification of thousands of individual CpG sites with differential 

methylation between smokers and non-smokers. Smoking has also been linked to a small global decrease 

in DNA methylation as a whole (Ambatipudi et al., 2016). These sites span all 23 chromosomes of the 

human genome and have varying degrees of methylation changes when compared to those who have never 

smoked. The significance of the top hits is staggering and in terms of this and effect size, the mean 

difference in methylation values between smokers and non-smokers, the strongest signals are those located 

in AHRR and the 2q37.1 region. Furthermore, the large majority of significantly associated sites show 

reduced methylation levels in smokers. A notable exception to this are the strong positive effect sizes seen 

in MYO1G. This gene is a plasma membrane-associated class I myosin, abundant in T and B lymphocytes 

and mast cells and aids in cell elasticity. Thus, MYO1G could be associated with smoking-related fibrosis 

in several tissues (Olety et al., 2010). 

 

A large majority of smoking-related CpG sites are located within gene bodies. These were identified 

through epigenome-wide association studies (EWAS), and epidemiological studies have worked to further 

strengthen these findings and create biologically plausible associations with ill health. One way this has 

been done is by comparing DNA methylation at certain loci with disease phenotypes. A good example of 

this came with the discovery of the first smoking associated CpG site, cg0363183, located in the body of 

gene F2RL3, the coagulation factor II receptor-like 3 gene. The main function of this gene is to code for 

thrombin protease-activated receptor-4 (PAR-4). PAR-4 plays a role in platelet activation and cell signaling 

and is expressed in several tissues, including leukocytes and lung tissue. Thus, this could give some 

explanation as to why F2RL3 methylation is found to be related to risks of cardiovascular diseases (CVD), 

lung cancer and even mortality (Zhang et al., 2015) although DNA methylation’s role in this is still not well 

characterized. Perhaps stronger and more consistent associations have been made to CpG sites located in 

the genetic region of the aryl hydrocarbon receptor repressor (AHRR). This gene has been established as a 

possible tumor suppressor and it is suggested that smoking may affect the aryl hydrocarbon receptor when 
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tobacco smoking triggers the generation of polycyclic aromatic hydrocarbon (PAHs). These toxic 

chemicals can exert their effect through the aryl hydrocarbon receptor (AhR) and its binding partner, called 

aryl hydrocarbon receptor nuclear translocator (ARNT). AHRR competes with ARNT for binding to the 

AhR and can repress signal transduction. This then gives meaning to alterations in the methylation status 

and consequentially expression of the AHRR gene, suggesting its role as a mediator of PAH detoxification. 

Thus, AHRR may be involved in the metabolism of endogenous toxins found in cigarette smoke (Evans et 

al., 2008). 

 

Other identified probes were in fact not located in the transcriptional regions of a gene and instead observed 

in other locations in the genome which may not directly impact the coding sequence of the gene. DNA 

methylation at these loci is often more tightly linked to transcriptional silencing than elements further 

downstream, whose methylation does not always impact the magnitude of gene expression (Brenet et al., 

2011). Two examples of such sites, known to be associated with smoking, are cg19859270, located in the 

1st exon of G-protein coupled receptor 15 (GPR15) and several in the intergenic region of 2q37.1. The loci 

on chromosome 2q37.1 are adjacent to an alkaline phosphatase gene cluster. One of these genes, ALPPL2, 

is responsible for dephosphorylation of many proteins and nucleotides and is beneficial as a biomarker for 

many cancers, having already been well established as a tumor marker in ovarian and testicular cancers and 

seminoma (Albrecht et al., 2004). However, this is only reliable in non-smokers as ALPPL2 enzyme serum 

concentrations have been found to increase up to tenfold in cigarette smokers (Schmoll et al., 2004) but 

nevertheless this still hints at an underlying mechanism by which DNA methylation changes increase 

smokers risk to cancer. Additionally, smoking associations of GPR15 sites were first reported in a study by 

Wan et al. (2012), with suggestions about its correlation with current and long-term smoking. Afterwards, 

Tsaprouni et al. (2014) also showed that this gene was the only gene at the time that showed a clear trend 

of increased gene expression in smokers compared to non-smokers, and a negative correlation between 

gene expression and DNA methylation. This study then assumed that the decrease in DNA methylation at 

cg19859270 within GPR15 seen in smokers would likely lead to an increase in transcription. This finding 

was confirmed in two papers, published by Bauer et al. (2015) and Koks et al. (2015). This gene regulates 

T-cell migration and immunity and thus might explain its role in chronic inflammatory diseases and as a 
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HIV co-receptor. Further to this, GPR15 was also reported in interactions with ethnicity-dependent 

differentially prevalence of HIV, namely HIV2 in African Americans (Dogan et al., 2015), raising the 

possibility that, for certain loci, differential methylation could reflect a shift in blood cell mixture.  

 

Other strong signals have also been seen in the 5’ untranslated regions (5’UTR) of the PRSS23 and RARA 

genes, although their biological role in smoking has not thus far been well characterized. 5’UTRs are cis-

regulatory elements required to regulate translation. PRSS23 codes for serine protease 23 and is a member 

of the trypsin family. Trypsin is formed when the proenzyme form of trypsinogen, produced by the 

pancreas, is activated thus proposing a role for these enzymes in smoker phenotypes when differentially 

methylated and also their impact in pancreatitis of which smoking is a risk factor (Lankisch et al., 2015). 

RARA codes for retinoic acid receptor alpha. This is a nuclear receptor that transduces retinoid signaling 

alongside the retinoid X receptor (RXR) forming RXR/RAR heterodimers. In the absence of ligand these 

heterodimers repress transcription by recruiting co-repressors. If ligand binds to the complex, a 

conformational change is induced that allows recruitment of histone acetyltransferase co-activators. This 

rearrangement of the RARA gene is a feature of acute promyelocytic leukemia (Vitoux et al., 2007). 

 

Clearly a huge range of sites have been implicated in smoking-induced DNA methylation change, all with 

varying functions and importance in disease. As suggested in the studies mentioned, the genetic context of 

individually differentially methylated sites can help better understand pathophysiological processes that are 

activated or suppressed by changes in DNA methylation caused by smoking (Breitling et al., 2011). 

Consequently, such sites may contribute to a greater comprehension of smoking exposure by expounding 

smoking-related DNA methylation signatures or even help build a picture of an epigenetic mechanism that 

may lead to smoking-induced disease. In fact many of the mentioned sites have already been used in the 

construction of a reliable quantitative approach, with high specificity, for differentiating between the 

smoking status of individuals and this has been validated. One study created a predictor model of smoking 

exposure using bisulphite pyrosequencing of just four genomic loci that were differentially methylated 

between smokers and non-smokers. Combining these sites into a DNA methylation index gave a strong and 

positive prediction for previous smoking with an area under the curve (AUC) of 0.83 (Shenker et al., 2013). 
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However, given the huge variation of duration, intensity and years of cessation within smokers and ex-

smokers, using sites identified through a simply comparison of smokers and non-smokers will not fully 

divulge the consequences of DNA methylation changes and this project aims to build a more comprehensive 

methylation signature that takes this into account.  

 

When looking at dosage effects, much of the research up to this point in time has concentrated on the impact 

of pack years of smoking on the degree of DNA methylation changes within smokers. Pack years are 

calculated by multiplying the number of packs (20 cigarettes) smoked per day by the number of years 

smoked, and has been used to quantify lifetime cumulative exposure. This approach has achieved success, 

with one study by Zhang et al. (2015) disclosing a relationship between pack years and AHRR methylation 

in both current and lifetime exposure to tobacco smoke and even in smoking related mortality outcomes. 

Another by Ambatipudi et al. (2016) found that DNA methylation values fell in four loci within IER3 with 

an increasing number of pack years. However, there is some skepticism about this pack year model and 

some discrepancy in lung cancer incidence for those with the same amount of pack years. Two individuals 

may both have smoked for 20 pack years but if one of these persons has been smoking 0.5 packs per day 

for 40 years, they would likely have a hugely different risk compared to another person smoking 20 packs 

a day for 1 year even though in theory they have the same cumulative lifetime exposure. With this said, it 

would be better to include duration and intensity of smoking separately in any analyses looking into dosage 

effect (Peto et al., 2012). By doing so, some studies have found that intensity of smoking may be less 

proportional to incidences of smoking related disease than duration of smoking alone and genes 

differentially methylated in current smokers relative to never smokers are often significantly associated 

with duration of smoking as well (Ambatipudi et al., 2016). This suggests there may be more fundamental 

parameters, for instance age of onset or short periods of cessation, that should be taken into consideration 

to better characterize differential methylation and any successive health outcomes caused by tobacco use 

(Peto, 2012). One study supporting this theory found that an earlier age at smoking onset correlated with 

hypermethylation of RASSF1A which leads to a poor prognosis in primary non-small cell lung cancer (Kim 

et al., 2003). This all shows that further study of loci within other smoking related genes, and more complex 

modeling of smoking history is therefore necessary to explore precise dose response relationships with 



	

	

9	

DNA methylation and to give a more global understanding of smoking exposure in the hope to better 

understand the molecular mechanisms at play and this is another aim of this project.  

 

Figure 1.3.1. shows a comparison of effect sizes for the top 90 CpG loci reported in more than five studies 

from Joehanes et al. (2016), the largest analysis of epigenetic signatures of smoking to date. This paper 

made use of 16 independent cohort studies. This figure compares the average effect size between current 

and never smokers against former and never smokers and shows that a consistent pattern of differential 

methylation, in the same direction, is observed for former smokers as it was seen for current smokers 

although to a much smaller degree. In general, this suggests a reversibility of smoking-related changes to 

the epigenome upon smoking cessation. This finding was also confirmed in many other studies including 

those by Ambatipudi (2016), Guida (2015), Tsaprouni (2014) and Lee (2016) where they all demonstrated 

patterns of reversibility in DNA methylation level changes. Thus, this suggests that alterations in DNA 

methylation caused by active smoking are site specific, dynamic and reversible and this can be seen in the 

varying degrees of differences between current and former smoking DNA methylation values in Figure 

1.3.1. The clinical significance of smoking cessation has been well established and is known to reduce the 

increased risk smokers have of developing many diseases and cancers. It has been demonstrated that the 

ratio of lung cancer between current and former smokers increases sharply with time since quitting and it 

Figure	1.3.1.:	Effect	size	distributions	of	the	top	90	differentially	methylated	probes	from	Joehanes	et	al.	
(2016).Probes	are	ordered	in	relation	to	the		chromosome	it	is	located.	All	90	sites	were	identified	in	more	than	five	
studies,	from	Joehanes	et	al	(2016)	and	effect	size	here	is	a	measure	of	difference	in	Beta-values	between	smokers	

and	non-smokers	for	both	current	(red)	and	former	(green)	smokers.	
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is suggested that by stopping before middle age almost 90% of lung cancer risk attributed to tobacco use 

can be avoided later on in life (Peto et al., 2000). This effect remains even after adjusting for number of 

pack years (Vlaanderan et al., 2013). Furthermore, one paper showed an association of duration of smoking 

cessation with a significantly reduced risk of CIMP high colorectal cancer and suggested that quitting 

smoking induces a protective effect on the DNA methylation–related carcinogenesis pathway that leads to 

this cancer (Nishihara et al., 2013). However, the degree of this reduced risk may be over-estimated in 

many studies where risk is calculated by dividing the nearly constant smoker risk rate by the increasing 

non-smoker rate. When smoking ceases the rate of lung incidence does stops increasing steeply but still 

increases with age, much like most cancers where risk is often higher in older people (Peto et al., 2011). 

Some studies have also shown that it can take up to 20 years for some sites to reach full “methylation 

recovery” (Guida et al., 2015 and Zhang et al., 2014). Although demonstrating the reversibility of 

methylation marks is of great interest, it does not help explain what causes this site specificity, or the 

variation in DNA methylation. One aim of this project is to give a more in depth look into the decay of the 

DNA methylation signature. The hope is that this may garner a better idea of smoking induced methylome 

changes and the environmentally driven process that causes it. This, along with more complex dosage effect 

studies, may enable a quantification of smoking exposure that can better predict related disease risk.  

 

Although the pathological mechanisms underplaying many of these sites is poorly understood, they still 

pose benefits in their correlation with smoking exposure. In fact, there has been efforts made to use 

methylation at one CpG site, cg05575921 within AHRR, as a quantifiable biomarker for smoking cessation. 

Here this site was seen to be sensitive and specific to smoking status with a characteristic, receiver operated 

area under the curve (AUC) of 0.99 and this kind of study is ongoing (Philibert, 2015). A measurable 

increase in methylation at this site, taken at regular time points, could be used to help physicians accurately 

monitor time since quitting with the hope that this would encourage successful cessation of smoking 

(Philibert et al., 2016). 

 

Several studies have found other findings in their mining of smoking data that should be considered when 

studying variation in smoking-induced DNA methylation. Elliott (2014), Joehanes (2016), Lee (2016), 
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Zaghlool (2015) and Zhu (2016) all identified ethnic heterogeneity of smoking-related differential 

methylation patterns at several loci, such as cg05575921 in AHRR where differences in methylation were 

much higher in South Asian participants than those of a European origin. However, this may partly be down 

to generally higher statistically powered studies in European cohorts compared to other EWASs. Another 

study by Besingi et al (2013) investigated both tobacco and snuff smoking and showed that smokeless 

tobacco was not significantly involved in DNA methylation, indicating that the majority of epigenetic 

alterations may be caused by the burnt products of tobacco and not its basic components. Additionally, 

ppassive smoking may also impact DNA methylation. A recent paper has found that high levels (more than 

10 hours per week) of recent indoor second hand smoke exposure may be associated with lowered DNA 

methylation of AHRR in human monocytes, albeit with weaker associations than active smoking (Reynolds 

et al., 2016). All these factors will add to the differences in DNA methylation levels seen in smokers and 

thus can help produce a more reliable and highly applicable epigenetic signature of smoking. 

 

1.4. Understanding Society and EPIC Array 

 

This study will make use of a recently created genome-wide DNA methylation resource as part of the UK 

Household Longitudinal Study (UKHLS), Understanding Society. This has been funded primarily by the 

Economic and Social Research Council (ESRC). Understanding Society builds on the success of the British 

Household Panel Survey (BHPS) that was heavily used by researchers, generating hundreds of scientific 

publications. However, Understanding Society aims to support a wider range of research than BHPS and 

this DNA methylation resource aims to help in doing so (Buck and McFall, 2011). Longitudinal studies of 

this nature can provide understanding of the trajectories of individual life histories and this project focuses 

on the detailed recorded smoking information available from participant surveys. This comprised of sex, 

age, smoking status, number of cigarettes smoked per day, age when starting smoking and age when last 

smoked. The data used throughout this project was collected in the main survey in wave 3. Furthermore, 

upon blood collection, approximately 5 months after the main survey questionnaire, nurses also asked 

participants three more smoking-related questions which included if they had smoked within the past 30 

minutes, 24 hours and how many hours since last smoking. This will enable a more complex smoking 
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history to be elucidated that takes into account even short-term smoke exposure and is not limited to 

comparisons of smokers and non-smokers as is the case for many previous studies. Instead, models can be 

created that look into intensity, duration and years of smoking cessation and these factors alone could yield 

some interesting results that had not yet been fully established.  

 

Another huge benefit of Understanding Society comes with its longitudinal nature. The participants used 

in this study were also involved in the BHPS before joining with Understanding Society. Participants were 

visited once a year and thus complete data on the smoking status and number of cigarettes smoked by them 

is available for at least 9 consecutive years, from wave I through to R of BHPS, then followed by wave 2 

and 3 of Understanding Society. This allows a more precise smoking history to be deduced such as the 

differences in consistent, low smoking effects and those with lots of variation in the number of cigarettes 

smoked. Thus, Understanding Society will provide a great resource in the analysis of smoking and DNA 

methylation marks in this project.  
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2. Preprocessing and Modeling 

 

2.1. EPIC Methylation Array   

 

The participants used in this study were selected as they were part of BHPS before it was integrated into 

Understanding Society. This meant that the longest smoking histories prior to sample collection could be 

obtained and thus allowed the most comparisons to be made between this data and DNA methylation levels. 

To create this DNA methylation resource whole blood samples, taken from around 1200 participants in the 

wave 3 nurse visit of Understanding Society approximately 5 months after the main survey, were used. 

 

Most studies detailed thus far have made use of BeadChip technology in Illumina methylation arrays to 

quantify methylation at thousands of genomic loci at single-nucleotide resolution due to their low cost and 

high-throughput capabilities. These studies on smoking-associated DNA methylation have used the older 

450K array, however in this study methylome sequencing was carried out using the new Infinium 

Methylation EPIC BeadChip, with a coverage of over 850,000 CpG sites, almost double the size of its 

predecessor. These sites include over 90% of sites found in the 450K array and offer improved coverage of 

regulatory elements (Pidsley et al., 2016). The DNA from the samples was prepared, and the arrays 

processed, by Jon Mill’s laboratory at Exeter University using the protocol detailed by the manufacturer. 

The technology used in such microarrays first involves a bisulfite conversion of the genomic DNA to 

convert unmethylated cytosine to uracil which is then subjected to whole genome amplification (WGA) 

using hexamer priming and Phi29 DNA polymerase. The DNA is then enzymatically fragmented and 

purified primers, enzymes and dNTPs are then applied to a chip. This chip contains two bead types for each 

CpG locus and each bead type is attached to a single stranded 50-mer DNA oligonucleotide that differ in 

sequence at the free end, making them allele specific. One bead type corresponds to the methylated cytosine 

and the other to the unmethylated cytosine which after conversion to uracil is amplified as thymine in 

previous steps (Weisenberger et al., 2008). The fragmented DNA products are then denatured to single 

strands and hybridized to the chip via allele specific annealing to either the methylation specific probe or 

the non-methylation probe. This step is followed by single-base extension with hapten labeled 
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dideoxynucleotides where ddCTP is labeled with biotin and the others (ddATP, ddUTP and ddGTP) are 

labeled with 2,4-dinitrophenol (Steemers et al., 2006). At this point multi-layered immunohistochemical 

assays are performed by repeatedly staining with a combination of antibodies that differentiate between the 

two types. After, the chip is scanned to obtain intensities of the unmethylated and methylated bead types 

(Bibikova et al., 2011). The system further analyzes this microarray data to normalize the raw data and 

reduce experimental variation effects (Staaf et al., 2008). 

 

2.2. Pre-processing   

 

Pre-processing, quality control and normalization were carried out in the statistical environment of R (R 

Core Team, 2017). The bioconductor package bigmelon was used which has many methods for working 

with Illumina arrays. This package extends the capabilities outlined by Pidsley et al in the R package 

wateRmelon by adapting methods from the gdsfmt package for efficient memory use and management, 

overcoming the overheads associated with data handing in R (Gorrie-Stone et al., 2017).  

 

The entire dataset of 1187 samples was first normalized using the dasen function developed by Leonard 

Schalkwyk for the wateRmelon R package. This works by normalizing the methylated (M) and 

unmethylated (U) probe intensities. By doing so any technical variation can be more simply dealt with by 

adjusting these rather than the derived “raw” beta values which are the methylation level estimates 

calculated in the Illumina protocol with little normalization and adjustment. It also involves a combination 

of background adjustment of the M and U intensities and four separate, between-array quantile 

normalizations of methylated Type I, unmethylated Type I, methylated Type II and unmethylated Type II 

intensities (Pidsley et al., 2013).  To further elucidate any samples which are grossly affected by this 

process, the function qual, also by Schalkwyk, is used to assess the degree of which the normalized and 

raw beta values differ. It calculates and outputs the root mean square deviation, sum of squared differences 

(SSD), sum of absolute squared differences and root mean square error (RMSD) for each sample. A cutoff 

of >0.05 RMSD or >0.05 SSD was used as this appeared to allow good identification of samples which 
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were very obviously altered when normalised. Using this, 8 outliers were identified with large differences 

in their raw and normalized values, one of which had a drastically larger RMSD and SSD. 

 

After elucidating samples that had normalized badly, meaning those that showed discrepancies between the 

original and normalized intensities, the function outlyx was utilised to further compute data-outliers using 

a subset of probes from the large data set. This was developed by Tyler Gorrie-Stone for the wateRmelon 

package and first involves specifying the number of inter-quantile ranges to be discriminated from the upper 

and lower quantiles. This is identified from principal component analysis and in this case, was 2. These 

computed principal components are used to determine distance measures for each observation. Then, 

weights for location and scatter outliers are computed based on these distances and the combined weights 

are used to determine outliers (Filzmoser et al., 2008). In this case an arbitrary threshold of 0.15 for the 

final weight output was used meaning outliers were defined as samples with a combined weight of less than 

0.15. Here, 6 outliers were identified and these were also observed in the previous step using qual. These 

were thus removed from further analysis alongside the other two samples that had normalized poorly. 

 

The next step of quality control checked for sample quality with bscon, a function developed for 

wateRmelon by Louis El Khoury, Eilis Hannon and Leonard Schalkwyk. This function uses the green and 

red channel readings of the type I and type II bisulfite conversion data to return the median bisulfite 

conversion percentage value for each array. This quantity shows average conversion of unmethylated 

cytosine to uracil and is an important step in pre-processing the data as complete conversion is necessary 

for further study. It uses the intensities of sample-dependent controls included in the BeadChip to evaluate 

performance across arrays. Type I chemistry beta values are calculated by first dividing the first three 

control probes of the green channel and the second three control probes of the red channel by the sum of 

all six of these probes and the unconverted green channel probes (U4, U5, U6) and red channel probes (U4, 

U5, U6). Type II chemistry beta values are calculated by simply dividing the methylated red channels by 

the sum of methylated red and unmethylated green channels. This outputs a percentage value for bisulfite 

conversion. In general, most arrays achieved over 85% conversion however 4 samples had noticeably lower 

values than the rest of the data set and these were also removed from further analysis. It is important to note 
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here that updates to the EPIC array manifest removed control probes C6 and U6 but this thus far does not 

seem to hinder the function. 

 

Next, an R implantation of Horvath’s clock (Horvath, 2013), named agep, was used to predict the age of 

the samples. It forms a weighted average for measures of DNA methylation at 353 epigenetic markers on 

the human genome that were elucidated using an elastic net regression. This results in a linear regression 

model whose coefficients correspond to transformed age and this is used to predict “DNA methylation age” 

by plugging in the relevant beta values. Unfortunately, the Horvath clock was created using the older 450K 

microarray and thus 17 of the 353 CpG probe sites used in the DNA methylation-based age predictor are 

absent in the newer EPIC array but nevertheless prediction was still fairly accurate. However, one sample 

had a large age discrepancy of almost 30 years. Another quality check used was to visualize sex differences 

between samples. This was done by plotting principal component 1 against principal component 2 and 

showed that the sex of all participants was correctly matched. Finally, by plotting raw intensities per rack 

any obvious batch effects between the different plates are revealed. This showed some differences between 

plates and these also had varying methylation level (Beta-value) distributions suggesting some technical 

variation. It is then important to bear this in mind when carrying out downstream analyses and thus these 

have been counted for within the linear models, although normalization with dasen seems to correct for 

most of this variation.  Furthermore, one sample shows very low log2 methylated intensity and this was 

also identified in previous quality control steps and thus removed from further analysis. 

 

In total, 12 samples were removed from the dataset based on poor normalization and low bisulfite 

conversion during the making of the DNA methylation profile. This left a total of 1175 samples of good 

quality and that act normally when transformed. These were used in downstream analyses in conjunction 

with the smoking data. However, when creating smoking variables to be used in further analyses, 4 samples 

gave negative values for duration and a further 138 had incomplete smoking data and therefore these were 

also removed from the dataset to allow for the most comparative analyses. This left 1033 samples with 

reliable descriptive information to be used in linear models. When carrying these out, the ratio between the 

now quality checked methylated and unmethylated intensities were used to obtain an estimate of the 
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methylation level for each probe. This is calculated by dividing the methylated intensity with the sum of 

unmethylated and methylated intensity plus 100 (M/U+M+100). This is called a Beta-value where a value 

of 0 is equal to non-methylation, 1 equal to total methylation and a 0.5 value suggests one copy is 

methylated but not the other in the diploid human genome.  Logit transformed Beta-values, termed M-

values, have been used in the analyses outlined in this chapter. Beta-values have been shown to have high 

heteroscedasticity for sites that are highly methylated or unmethylated, meaning that the ability of a linear 

regression model to predict dependent variables are not consistent across all values of the dependent 

variable. Therefore, M-values are used throughout this project when elucidating differentially methylated 

probes and regions as these perform much better in terms of detection rate and true positive rate and their 

performance can be improved even further by applying a minimum threshold of difference whereas Beta-

values cannot (Du et al., 2010). Beta-values were only used when looking at effect sizes, which in this case 

constitutes the difference in average methylation between two groups. 

 

2.3. Linear Models 

 

Linear models were carried out in the statistical environment R, using the Bioconductor software package 

limma. This package allows differential methylation analysis of large-scale microarray data and the 

identification of differentially methylated CpG sites. Although originally created for gene expression 

analyses, it has proved to be a valuable tool for studying DNA methylation arrays of which the package’s 

linear modelling strategy works well and has been used by other studies (Ambatipudi et al, 2016). In this 

case, the package operates on a matrix of methylation values, the calculated and quality controlled M-

values, where rows represent a probe for each genomic feature, here these are CpG sites, and each column 

represents the participant sample. The limma function lmFit then fits a linear model to each row of data, 

taking into account a specified design matrix that details relevant information related to each sample array, 

and specifies the hypothesis to be tested. Within this study, the treatment-contrasts parametrization method 

was used to construct design matrices using the model.matrix function. This includes a coefficient for the 

comparison of interest itself rather than extracting the contrast after using a contrast matrix. Although the 

data is from two colour oligonucleotide arrays, linear modeling that compares DNA methylation between 



	

	

18	

two groups is effectively the same as analysis of variance (ANOVA) or multiple regression except that a 

model is fitted for every probe (Ritchie et al., 2015). 

 

For assessing differential methylation, limma uses an empirical Bayes method to moderate the standard 

errors of the estimated log-fold change and is implemented in the eBayes function.. This enables more 

stable inference and better statistically powered analysis. This is because the statistical methods 

implemented by the lmFit function can produce imprecise results when sample sizes are small but the data 

is of a high dimension, as with microarray data. Thus, the Empirical Bayes (EB) technique can offer gains 

in performance by leveraging information from the entire dataset, across the CpG sites in this case, when 

making assumptions about individual probes. EB in limma moderates genewise, or probe-wise, variance 

estimators by assuming a Bayesian hierarchical model for these variances and estimates the prior 

distribution from the marginal distribution of the inputted data itself rather than basing it on prior knowledge 

(Smyth et al., 2005, Phipson et al., 2016). The resulting fitted models, which have borrowed information 

across probes, were summarized using the topTable function to obtain a list of probes most likely to be 

differentially methylated between the groups specified in the design matrix. The resulting object also shows 

the p-values adjusted using the Benjamini-Hochberg method to control the expected false discovery rate 

(FDR) as well as the the corresponding log2-fold-change, average log2-expression for each probe over all 

arrays and channels and t and F statistics (Ritchie et al., 2015). The large majority of functions used in 

package were authored by Gordon Smyth.  

 

In short, limma allows the construction of both simple baseline and complex experimental design matrices 

where both categorical and continuous variables may be handled in much the same way and where all 

included variables can be studied at the same time. It also expands this using its empirical Bayes method to 

average variability of DNA methylation over all CpG sites used in the comparisons of interest leading to 

hopefully truer variances. This makes it an accessible, powerful R package for differential methylation 

analysis.  
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2.4. Kernel Smoothing 

 

To better understand the association of individual CpG sites found to be differentially methylated between 

smokers and non-smokers via limma, differentially methylation regions (DMRs) were identified using the 

Bioconductor package DMRcate. DMRs are stretches of DNA within the genome that involve a minimum 

of 2 adjacent sites or groups of sites in close proximity that have different methylation patterns between 

samples. DMRs are often of more value than single CpG sites that are not contextualized by the methylation 

status of neighbouring probes. DMRcate identifies these using kernel smoothing, a statistical method to 

estimate a function reflecting DMRs as the weighted average of neighbouring differential methylation 

signals identified using the same design matrices and corresponding M-values used within limma. These 

CpG sites are first annotated with their chromosome position and test statistic through the function 

cpg.annotate. This makes the method agnostic to other site annotations other than spatial ones and passes 

the square of the moderated t statistic, calculated for each EPIC probe to the next stage in the DMRcate 

protocol. To control for multiple testing an FDR cutoff of 0.05 was used to specify which CpG sites are 

individually significant, as done before. This is also used to index default thresholding in the following 

steps (Peters et al., 2015). The resulting object is then passed to dmrcate, the main function of the package, 

which compares two smoothed estimated per chromosome, one weighted with the test statistic and one not, 

for null comparison, to identify significantly differentially methylated regions. The recommended values 

for lambda, the number of nucleotides for the gaussian kernal bandwidth used in smoothed-function 

estimation, and C, the scaling factor for bandwidth, was used and set to 1000 and 2 respectively. This meant 

that half a kilobase represents 1 standard deviation of support which has been shown to hold near optimal 

prediction of sequencing-derived DMRs for 450K experiments. No empirical testing has yet been done for 

the best parameters when using EPIC array data and thus it is necessary to be cautious about results from 

this analysis or risk type I errors. Lambda here also informs the DMR bookend definition where gaps greater 

than or equal to lambda between significant CpG sites will be in separate DMRs. The Gaussian kernel is 

calculated where lambda over C is equal to sigma.  
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This approach then first applies standard linear modelling to the data and then applies gaussian smoothing 

to the resulting CpG sites test statistics using a given bandwidth. It then models these smoothed test statistics 

using the method outlined by Satterthwaite (Satterthwaite, 1946) and computes P values based on this 

model. These are then adjusted and a threshold employed, giving FDR-corrected significantly associated 

sites and those nearby each other are finally agglomerated using the specified bandwidth. The resulting 

DMRs were then obtained using the extractRanges function that takes the dmrcate output to create a 

GRanges object, annotating the DMRs to promotor overlaps using the specified reference genome hg19 

(Peters et al., 2015).  
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3. Qualitative Smoking 

 

To determine the differences in the DNA methylation of smokers, ex-smokers and non-smokers, whole 

blood was collected from participants of Understanding Society. Participants were then divided into three 

qualitative categories; never, former and current smokers, based on self-report data collected in the wave 3 

questionnaires. For the purpose of these analyses a sample of participants were taken from each category 

to create three equal sized groups of 175 each and the general characteristics of those who contributed this 

data are shown in Table 3.1. This was done to prevent spurious associations that might occur from differing 

sample sizes of the smoking strata.  At the time of blood collection, the 525 participants used were aged 

between 28 and 96, with a mean age of 57.04 ± 14.88. As the methylation profiles were carried out using 

whole blood, DNA methylation based estimates of the leukocyte subpopulations were calculated using the 

estimateCellCounts function from the minfi R package. This implements the reference-based algorithm 

created by Houseman and team (2012) using DNA methylation profiles from purified leukocyte samples 

by which the algorithm performs linear constrained projection (CP) to calculate the distribution of white 

blood cells within a sample. This showed that those who had quit smoking had lower proportions of CD8T 

cells and a higher proportion of monocytes than both current smokers and those who had never smoked. 

Smokers and former smokers also had slightly higher proportions of granulocytes and CD4T cells, and 

current 

Table	3.1.:	General	characteristics	of	participants	used	in	qualitative	smoking	analyses	

Characteristic All Never Former Current 

Sample size 525 175 175 175 

Sex (Male:Female) 228:297 68:107 95:80 65:110 

Age, years (Mean±SD) 57.04±14.88 56.79±13.98 62.37±15.56 51.95±13.20 

CD8T (Mean±SD) 0.073±0.041 0.075±0.045 0.067±0.038 0.079±0.039 

CD4T (Mean±SD) 0.123±0.059 0.119±0.054 0.123±0.064 0.126±0.059 

NK (Mean±SD) 0.040±0.037 0.047±0.042 0.046±0.037 0.028±0.030 

Bcell (Mean±SD) 0.052±0.027 0.051±0.025 0.051±0.029 0.054±0.026 

Mono (Mean±SD) 0.040±0.021 0.040±0.019 0.042±0.023 0.036±0.019 

Gran (Mean±SD) 0.686±0.084 0.682±0.080 0.685±0.089 0.691±0.081 
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smokers had much lower levels of natural killer cells than both never and former smokers. Given the effect 

smoking has on innate immunity, it makes sense to see such changes in white blood cell distributions 

(Mehta et al., 2008).  

 

3.1. Current vs Never Smokers 

 

To start considering the relationship between smoking and methylation within Understanding Society, a 

sample of 175 current smokers and 175 never smokers were first compared. To do so, linear regression 

analysis was used within the limma package in R to identify changes in DNA methylation levels between 

these two categories, coded as 0 for current smokers and 1 for never smokers. To regress out known 

confounders, age, sex, blood process day and counts for CD4+ and CD8+ T cells, natural killer cells, B 

cells, monocytes and granulocytes were included in the model. Furthermore, batch effects were observed 

between samples on different plates during pre-processing and thus this information was also included in 

the model although, as stated earlier, normalization of the data corrected for most of these differences. 

 

To control for type 1 errors, or “false positives”, the FDR-controlling procedure was used at a false 

discovery rate of 0.05 (Benjamini and Hochberg, 1995). All adjusted P-values below this point were 

deemed as significant and this revealed 5198 differentially methylated probes (DMPs) between current and 

never smokers. These consisted of 3058 hypomethylated and 2140 hypermethylated CpG sites spanning 

the whole genome at varying methylation states and degrees of difference. Of these, 3838 probes were 

annotated to 2640 genes found in the UCSC database, leaving 1360 unannotated sites contained within 

intergenic regions. The average effect size, or methylation difference, of each of these probes, along with 

their significance and chromosome location, are summarized in Figure 3.1.1.  A more stringent cutoff of 

Bonferroni 5% level (Dunn, 1961), which in this case with 866,895 genomic loci being tested and compared 

is 5.76 x 10-8, revealed 610 probes that were differentially methylated. The effect sizes seen in the DMPs 

between current and never smokers ranged from -0.256 to +0.154, with a huge surplus of negative over 

positive directions of change. This is in line with previous findings. These hypomethylated sites also tended 

to have the strongest significance values and largest effect sizes. Further still, looking at the average 
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methylation difference of all >850,000 probes, more than half were hypomethylated in smokers. A simple 

and interesting explanation of this could be the activation of a number of “clean up” systems to aid in the 

removal of harmful toxins found in cigarette smoke. If DNA methylation does indeed impact the gene 

expression and resulting protein products than hypomethylation of such genes would cause this activation. 

 

 

Over one quarter of the identified DMPs are located in non-coding regions of the genome which consist 

largely of repetitive DNA, including many tandem repeats such as mini- and microsatellites. These make 

up more than 50% of the genome and CpGs in these regions have been shown to remain mostly methylated. 

This includes transposable elements (TEs) that may change chromosome locations and alter the genetic 

identity of cells. TEs are often hypermethylated, silencing transcription of the TE-encoded enzymes needed 

for their transposition.  DNA methylation thus acts to protect the genome’s integrity and loss of DNA 

methylation at these regions thus may reactive transposable elements (Levin and Moran, 2011). Given that 

Figure	3.1.1.:	Summary	of	5198	significant	CpG	sites	differentially	methylated	between	current	and	never	
smokers	at	false	discovery	rate	P	<	0.05.	Red	line	indicates	Bonferroni	threshold.	Each	CpG	site	is	

represented	by	significance	as	shown	by	their	–log(P-value)	values	(y-axis)	and	effect	size	and	direction	(x-
axis),	the	mean	β	value	difference	between	groups.	Associations	are	colour-coded	in	reference	to	the	

chromosome	the	CpG	site	is	located	on.	
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DNA hypomethylation most commonly arises outside of promotors, in repetitive elements and peri-centric 

DNA, chromosomal rearrangements may play a large role in the aberrant nature of methylome changes and 

indeed that of smoking (Ehrlich, 2008). In fact, global genome-wide hypomethylation has also been seen 

to induce genome instability and is one of the earliest molecular abnormalities seen in cancer. It has also 

been described following carcinogen exposure and in cells with altered differentiation and proliferation 

states (Issa et al., 1999 and Lisanti et al., 2013). 

 

Cigarette smoke exposure itself is one of the most powerful modulators of DNA methylation and may aid 

in the understanding of DNA hypomethylation seen in smokers. Firstly, carcinogens found in cigarette 

smoke, such as arsenic and polycyclic aromatic hydrocarbons (PAHs) can lead to DNA damage and the 

recruitment of DNMT1 where CpG sites adjacent to repaired nucleotides become methylated (Cuozzo et 

al., 2007). Secondly, nicotine can affect gene expression when it binds to nicotinic acetylcholine receptors, 

activating cAMP response element-binding protein. This pathway has been shown to downregulate 

DNMT1 (Satta et al., 2008). Thirdly, smoking may indirectly impact DNA-binding factors which in turn 

prevent de novo methylation of CpG sites in these motifs (Han et al., 2001). Lastly, cigarette smoke is 

known to induce hypoxia where carbon monoxide binds to haemoglobin and decreases oxygenation of 

many tissues. This then caused HIP-1α-dependent upregulation of methionine denosyltransferase 2A, 

known to synthesis S-adenosylmethionine, the major methyl donor used for DNA methylation (Liu et al., 

2011). This together can help understand the cause of altered epigenetic landscapes found in smokers within 

this study and the large supply of hypomethylated sites. 

 

Hypomethylation of some genes also makes sense biologically, for example the strongest smoking-

associated CpG site cg05575921 is located in the AHRR gene on chromosome 2 which acts to detoxify 

toxins found in cigarette smoke. In this study a total of 39 DMPs were situated in this gene, including some 

novel probe associations from the EPIC array. These sites had FDR adjusted P-values ranging from 3.06 x 

10-102 to 4.18 x 10-2 and all were featured in the gene body, between the ATG and stop codon, with the 

exception of cg26954197 found in the 3’UTR of AHRR, between the stop codon and poly A signal. This 

has been well established in a number of papers (Shenker et al., 2013, Philibert et al., 2012). DNA 
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methylation in gene bodies has even been associated with altered DNA transcription and is common in 

ubiquitously expressed genes (Suzuki and Bird, 2008). Additionally, the effect size, a measure of mean 

difference in beta values between current and never smokers, ranged widely from -0.256 to 0.061. This 

suggests CpG sites within AHRR become both hypermethylated and hypomethylated and may be explained 

with context within the gene as the hypomethylated sites tended to be closer to CpG islands which are 

known to be unmethylated for the most part.  

 

 

The top ten hypomethylated and hypermethylated probes, all showing more than a 5% difference in DNA 

methylation between current and never smokers, are shown in Table 3.1.1. These include well known 

smoking-associated methylation differences in the AHRR, F2RL3 and RARA as well as those in the 

Table	3.1.1.:	Top	10	hypomethylated	and	hypermethylated	DMPs	associated	with	smoking	(current	vs	never	
smokers)	

Illumina	Probe	
ID	

Chr	
Number	

Chromosome	
position	(bp)	

Design	
Type	

UCSC	Gene	
Name	

UCSC	Gene	
Region	

Present	
in	450K	
Array	

FDR	
Adjusted	P	
Value	

Mean	
Effect	
Size	

Hypomethylated	in	current	smokers	

cg05575921	 5	 373378	 I	 AHRR	 Body	 TRUE	 3.06E-102	 -0.26		

cg21566642	 2	 233284661	 I	 	  TRUE	 1.24E-82	 -0.17		

cg01940273	 2	 233284934	 II	 	  TRUE	 3.89E-77	 -0.13		

cg03636183	 19	 17000585	 II	 F2RL3	 Body	 TRUE	 2.17E-55	 -0.13		

cg17739917	 17	 38477572	 II	 RARA	 5'UTR	 FALSE	 4.98E-52	 -0.10		

cg21161138	 5	 399360	 II	 AHRR	 Body	 TRUE	 3.22E-41	 -0.10		

cg14391737	 11	 86513429	 II	 PRSS23	 5'UTR;Body	 FALSE	 1.18E-39	 -0.09		

cg25648203	 5	 395444	 II	 AHRR	 Body	 TRUE	 7.07E-36	 -0.08		

cg18110140	 15	 75350380	 II	 	  FALSE	 6.96E-35	 -0.10		

cg22812571	 2	 233286229	 II	 	  FALSE	 1.03E-34	 -0.10		

Hypermethylated	in	current	smokers	

cg12803068	 7	 45002919	 II	 MYO1G	 Body	 TRUE	 8.92E-20	 0.11		

cg05009104	 7	 45002980	 II	 MYO1G	 Body	 FALSE	 2.82E-15	 0.06		

cg13039251	 5	 32018601	 II	 PDZD2	 Body	 TRUE	 2.53E-11	 0.06		

cg15542713	 1	 42385581	 II	 HIVEP3	 TSS1500	 TRUE	 8.29E-11	 0.06		

cg04414766	 3	 22412963	 II	 	  FALSE	 1.85E-10	 0.09		

cg24049493	 1	 42385941	 II	 HIVEP3	 TSS1500	 TRUE	 5.68E-10	 0.05		

cg22635676	 2	 241975971	 I	 SNED1	 Body	 TRUE	 1.12E-09	 0.15		

cg08035323	 2	 9843525	 II	 	  TRUE	 1.14E-09	 0.06		

cg26718213	 2	 241976080	 II	 SNED1	 Body	 TRUE	 1.49E-09	 0.08		

cg11207515	 7	 146904205	 II	 CNTNAP2	 Body	 TRUE	 1.54E-09	 0.05		
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intergenic region of 2q37.1. Here, both probes seen in studies using the older 450K array and new probes 

unique to the EPIC array were differentially methylated in these genes and thus their strong links with 

smoking has not only been replicated but strengthened by this study. The top 20 DMPs also included less 

reported genes such as the hypermethylation of CpG sites in HIVEP3, located on chromosome 1, but little 

is known about its role in smoking phenotypes. It is however a member of the human immunodeficiency 

virus type 1 enhancer-binding family of proteins and binds the recognition signal sequence for 

recombination of immunoglobulin and T-cell receptor gene segments (Mak et al., 1998) suggesting a role 

in immunity which is impacted by smoking. It is also of note that hypermethylated sites had much smaller 

significance values than the top hypomethylated loci despite their equally large effect sizes.  

 

The second most commonly observed annotated gene, second only to AHRR, was ZMIZ1. With 18 

smoking-related DMPs ranging in FDR adjusted P-values from 3.03 x 10-23 to 4.61 x 10-2 and effect sizes 

ranging between -0.042 and 0.061 it is definitely of interest. The association of ZMIZ1 with smoking has 

been previously identified (Besingi et al., 2013) and its encoded protein has been shown to regulate the 

activity of some transcription factors, including the androgen receptor (AR). ZMIZ1 interacts with the 

transactivation domain of AR and has been found to augment its transcriptional activity in human prostate 

cancer cells and moreover, it co-localizes with SUMO-1 to enhance sumoylation of AR. Thus, decreased 

methylation of ZMIZ1 may decrease AR-mediated transcription and lead to a number of downstream 

consequences (Sharma et al., 2003). One study found that smokers had a significantly higher mean number 

of CAG repeats within the AR gene and lower levels of testosterone than non-smokers. It also found that 

the sperm of those who smoke had lower motility and increased morphological defects (Mitra et al., 2012).  

 

ZMIZ1 is also a known diabetes susceptibility gene, a disease of which smoking is a risk factor, with 

suggestions that tobacco use may cause increased inflammation and even directly impact insulin resistance 

(Xie et al., 2009). Other DMPs were located in ANPEP, another gene linked to diabetes in which 

methylation was significantly associated with gene expression, suggesting that the four smoking DMPs 

located in this gene may then be linked to altered gene function. ANPEP codes for the alanine 

aminopeptidase enzyme, a membrane-associated peptidase involved in a broad range of cellular processes 
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which could be impacted by smoking (Ligthart et al., 2016). The presence of smoking-related DMPs in 

these two genes offers support for the increased risk of diabetes many smokers have and hints at the 

potential biological mechanisms effected in those with diabetes.  

 

Of the 5198 significant CpG sites associated with smoking at FDR < 0.05, 2780 were unique to the Illumina 

EPIC array. Given the increased coverage of this BeadChip, this offers huge potential for the identification 

of novel associations between smoking and DNA methylation changes. Within the annotated sites, this 

includes many genes that were not previously covered in the older 450K array. The novel gene with the 

largest number of DMPs was GNMT on chromosome 6, seen in 8 probes differentially methylated between 

current and never smokers. Probe targets to the GNMT gene ranged little in their significance, from 1.12 x 

10-4 to 4.73 x 10-2. Although these may not be as strongly linked with smoking as other sites, these probes 

were located in gene regions of particular interest. Most were seen within 200 bases upstream of the 

transcription start site (TSS) or just downstream within the 5’UTR of the first exon. As stated previously, 

DNA methylation of sites in these components may be more closely linked to the transcription of genes 

like GMNT than those further downstream and thus are more likely to impact gene expression. GMNT codes 

for an enzyme called glycine N-methyltransferase which acts to regulate the ratio of S-adenosylmethionine 

(SAM), the methyl donor for DNMTs, and S-adenosylhomocystein (SAH). It does so by competing with 

tRNA methyltransferases for SAM, increasing SAH levels which in turn acts as an inhibitor for tRNA 

methyltransferases, reducing methylation. Thus, GNMT is important for maintaining cellular homeostasis 

and deficiency of this enzyme has been linked to liver disease and hepatomegaly (Luka et al., 2009). All 8 

GNMT CpG sites became hypermethylated in smokers with relatively small effect sizes where differences 

in mean Beta-values between smokers and never smokers ranged from 0.009 to just 0.003. Hypomethylated 

GNMT could be linked to the aberrant and widespread hypomethylation seen in smokers which may be 

exaggerated if this gene became over expressed. Furthermore, GNMT has been suggested to detoxify 

environmental carcinogens such as polyaromatic by binding to these hydorcarbons and inhibiting the 

formation of DNA adducts (Yen et al., 2013) although this does not help explain why this is seen to be 

hypermethylated in smokers. However, given the difference in DNA methylation seen in smokers the 
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associations of GNMT with tobacco use make sense biologically and present a novel insight into the 

underlying mechanism causing such changes. 

 

Stronger novel associations were observed in probes cg00045592 (FDR 2.71 x 10-22) and cg04009575 (FDR 

7.56 x 10-6) which were not present in older microarrays by Illumina. These are located in CpG sites within 

the 5’UTR of the signalling lymphocytic activation molecule (SLAMF7) gene on chromosome 1. 

Expression levels of SLAMF7 have been shown to correlate with smoking behaviour (Charlesworth et al., 

2010) but its association with smoking-induced methylation changes has not been shown until now.  This 

gene is a receptor present on immune cells and is known to be expressed on multiple myeloma cells. This 

finding lead to the production of elotuzumab, an anti-SLAMF7 antibody used in its treatment and works 

by enhancing natural killer cell activation leading to cell cytotoxicity of myeloma cells. SLAMF7 also 

mediates both the inhibitory and activation effects on natural killer cells depending on the expression of its 

adaptor, sarcoma-associated transcript 2 (EAT-2). The association of this gene with smoking may then 

relate to the large amount of research on the consequences of cigarette smoke inhalation on inflammation 

and immune suppression (Guo et al., 2015 and Lee at al., 2012). Methylation change at SLAMF7 may then 

in part relate to the drastically lower proportions of natural killer cells observed in current smokers 

compared to both never and former smokers within this study and the impact this would have on their innate 

immune system. 

 

The genetic contexts of some novel probes identified in this study have already been previously reported 

in papers. These studies used the chromosomal coordinates of unannotated smoking DMPs, for instance 

those lying in within intergenic regions, to obtain their nearest corresponding gene symbol. However, given 

the wider coverage of the EPIC array compared to the previous 450K, confirmation of DNA methylation 

changes at some of these genes has been established in this study and strengthens their role in smoking-

induced epigenetic landscapes. One such gene is ELMSAN1 (Ambatipudi et al., 2016). This gene, located 

on chromosome 14, contained at least 6 of the identified smoking DMPs and codes for the ELM2 And 

Myb/SANT Domain Containing 1 protein. A histone deacetylase complex (HDAC) called the MiDAC 

complex was identified fairly recently and given its name, Mitotic Deacetylase Complex, after higher levels 
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of this complex were observed in cells arrested in mitosis. This complex contains histone deacetylase 1 and 

2, a MIDEAS corepressor protein, otherwise known as ELMSAN1 and also DNTTIP1.  The ELM-SANT 

domain units act to scaffold this HDAC and given that protein lysine acetylation plays a key role in 

controlling gene expression, ELMSAN1 is thus also involved in transcription binding and activation (Itoh 

et al., 2015). Furthermore, HDACs can be targeted by selective histone deacetylase inhibitors to find those 

with anti-cancer and anti-inflammatory properties and present a therapeutic avenue of research (Bantscheff 

et al., 2011). This finding, along with the altered DNA methylation state of the ELMSAN1 gene in smokers, 

may strengthen the role of epigenetic regulation in disease, especially in those caused by tobacco use. 

 

The 610 DMPs meeting the Bonferroni genome-wide significance threshold were located in roughly 305 

genes. To better understanding the biological mechanisms implicated by smoking, these were inputted into 

the STRING database. This web tool looks for association networks between the gene’s protein products 

based on evidence of fusion, co-expression, co-occurrence, presence in the same neighbourhood or from 

text mining.  This showed 134 interactions between the encoded proteins at the highest confidence threshold 

of 0.9, and this association network is shown in Figure 3.1.2. 

 

STRING also shows any KEGG pathways in which the inputted proteins are involved and these 

relationships are displayed within the interaction network. One example includes the eight proteins of 

GNG7, GNG12, GNAQ, KCNQ1, AKT3, CACNA1D, ITPR1 and ADCY9 which are involved in the 

cholinergic synapse. The corresponding neurotransmitter, acetylcholine, plays a critical  part  in  brain  

maturation  and  is  detectable  even before neurulation,  much  like nicotinic acetylcholine receptors 

(nAChRs). Acetylcholine also later promotes the transition from replication to differentiation and thus 

modulates neuronal development by promoting or preventing apoptosis. This continues into adolescence, 

a time most smokers begin using tobacco (Slotkin et al., 2004). Nicotine enhances cholinergic synaptic 

transmission by activating presynaptic nAChRs that then increase presynaptic calcium concentration which 

in part explains the excitatory effects of nicotine on the central nervous system and its highly addictive 

nature. Additionally, nicotine impacts cholinergic signalling within key nodes of the reinforcement circuitry 

and learning. This suggests differential methylation at these loci thus may be a product of nicotine and its 
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indirect promotion of acetylcholine and dopamine neurotransmitter release as most of these genes are also 

implicated at the dopaminergic synapse. AKT3, KCNQ1, CACNA1D, GNAQ and ADCY9, along with 

SCN7A, MYH6, CACNA2D2 and CACNA2D4 were also implicated in the adrenergic signalling in the 

cardiomyocyte pathway. Acute sympathetic stimulation of cardiac adrenergic receptors (ARs) is necessary 

for the appropriate output of the heart but when this becomes chronic a number of complications may arise 

that is detrimental to health and may induce apoptosis and cardiomyocyte hypertrophy (Lohse et al., 2003). 

Figure	3.1.2.:	STRING	interaction	network	of	the	134	interacting	proteins	encoded	by	the	genes	enclosing	
smoking-associated	DMPs	seen	at	a	Bonferroni	genome-wide	significance	threshold.	Only	shows	
interactions	that	meet	the	highest	confidence	threshold,	with	an	interaction	score	of	0.9.	Lines	are	
coloured	by	the	type	of	evidence	the	interaction	is	based	on.	Red	-	presence	of	fusion,	Green	-	

neighborhood	evidence,	Blue	-	cooccurrence,	Purple	-experimental,	Yellow	-	textmining	evidence,	Light	
blue	-	database,	Black	–	coexpression.	
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Decreased methylation of such sites may be linked to the increased risk of heart disease found in smokers. 

DNA methylation changes may then be able to reflect the signals stimulated by nicotine and tobacco use. 

  

Another enriched KEGG pathway is that of platelet activation in which genes ITGA2B, AKT3 and F2RL3 

are involved. Smoking is a major risk factor for coronary thrombosis and seems to impact the hemostatic 

process that maintains circulatory integrity after vascular injury. One way this occurs is through altered 

platelet function. Two distinct pathways occur during thrombus formation which may initiate platelet 

activation. The first occurs through exposure to subendothelial collagen, resulting in adhesion of platelets 

to the site of injury. The second involves tissue factors that establish a proteolytic cascade that produces 

thrombin. Thrombin then cleaves and activates receptors on the surface of platelets. Activated platelets in 

turn drive further thrombus formation. Cigarette smoke contributes to both pathways and the resulting clots 

seen in smokers appear to be more resistant to thrombolysis. Two key factors that contribute to the 

activation of these pathways is the free radical-mediated oxidative stress and loss of NO protection 

associated with smoking (Barua and Ambrose, 2013). Thus, differences in methylation in the ITGA2B, 

AKT3 and F2RL3 genetic loci of smokers may be related in the process of platelet activation when 

responding to the environmental stress of cigarette smoke.  

 

With this said however, the biological processes affected by smoking are certainly not limited to the 

synapses and platelets and these are just two of the most strongly enriched pathways. The fact that just the 

top 664 genome-wide significant DMPs inputted into the database can show the severe and far-reaching 

impact of smoking on health suggests that changes in DNA methylation are important biomarkers of such 

diseases. It then makes sense that so many KEGG pathways, ranging from regulation of the actin 

cytoskeleton to Huntington’s disease, be associated with smoking-related genes given the widespread 

impact it has on the methylome. 

 

3.2. Current vs Former Smokers 
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A similar trend of smoking-induced methylome changes were seen when comparing same-sized groups of 

current and former smokers whereby 826 probes were differentially methylated at a cutoff of 0.05 after 

FDR adjustment for multiple testing. 137 DMPs also remained significant after bonferroni correction, with 

a cutoff of 5.76 x 10-8. Figure 3.2.1. summarizes the adjusted P-values and effect sizes for the loci seen in 

this comparison, showing 513 hypomethylated and 313 hypermethylated CpG sites. Again, the strongest 

signals were seen in the AHRR, RARA, F2RL3 genes, the 2q37.1 region and others that have been well 

characterized (Joehanes et al., 2016). However, for all of these sites, both their significance values and 

effect sizes are much smaller when using former smokers rather than current smokers, suggesting some 

reversal of DNA methylation change upon cessation.  

 

Of the total 826 identified DMPs, 222 were not observed, i.e. were not statistically significantly 

differentially methylated, when comparing the same current smokers to never smokers. As seen in Figure 

Figure	3.2.1.:	Summary	of	826	significant	CpG	sites	differentially	methylated	between	current	and	former	
smokers	at	false	discovery	rate	P	<	0.05.	Red	line	indicates	Bonferroni	threshold.	Each	CpG	site	is	represented	
by	significance	as	shown	by	their	–log(P-value)	values	(y-axis)	and	effect	size	and	direction	(x-axis),	the	mean	β	
value	difference	between	groups.	Associations	are	colour-coded	in	reference	to	the	chromosome	the	CpG	site	

is	located	on.	



	

	

33	

3.2.2., 191 of these sites showed greater differences in DNA 

methylation between current and ex-smokers than there was 

between current and never smokers. Here, sites that were 

hypomethylated in current smokers compared to never 

smokers are in fact hypermethylated in former smokers 

when compared to the same never smokers and vice versa. 

For these sites, perhaps smoking cessation not only caused 

a reversal of smoking-related changes but this may go so far 

as to surpass non-smoker levels. For the remaining 31 sites, 

little difference is observed in the methylation levels 

between current, former ad never smokers and effect sizes 

for these sites remain around zero. This suggests that these 

sites simply met the FDR threshold when comparing current 

and former smokers by chance. 

 

In general, sites where this phenomenon was the most 

obvious were also the sites with the strongest effect sizes in 

the current and never smoker observation.  This suggests 

that these sites are more susceptible to changes in DNA 

methylation as a response or reflection of smoking status. A 

notable outlier is cg11025972 located on chromosome 13. 

This site has a near zero effect size between current and 

never smokers but showed obvious differences in DNA 

methylation when comparing current and former smokers as 

well as former and never smokers. Thus, this site had similar 

Beta-values for current smokers and non-smokers but was 

hypermethylated in former smokers. This site lied within an 

unannotated region of the genome so, using the humarray 

Figure	3.2.2.:	Summary	of	effect	sizes	for	222	
DMPs	observed	when	comparing	current	and	
former	smokers	but	not	between	current	and	

never	smokers.	
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package (Cooper, 2017), the closest gene symbol was found to be SOX1. This codes for a transcription 

factor involved in the neurogenesis of the central nervous system. It is particularly expressed in the striatum, 

a major component of the reward system, receiving glutaminergic and dopaminergic inputs (Guth & 

Wegner, 2008). This system is hugely impacted when a person ceases smoking and hypermethylation of 

this region may be related to the withdrawal symptoms ex-smokers experience. 

 

3.3. Former vs Never Smokers 

 

The decreased number of significantly differentially methylated sites seen when comparing current and 

former smokers as opposed to current and never smokers suggests that smoking-induced methylation is 

reversible upon smoking cessation and this has been shown in several studies (Tsaprouni et al., 2014 and 

Guida et al., 2015). To further test this, another model was run to compare methylation between the 175 

former and 175 never smokers used previously. This revealed 17 CpG sites with significant DNA 

methylation differences, with only 7 meeting the Bonferroni significance threshold (Figure 3.3.1.). All of 

Table	3.3.1.:	17	DMPs	associated	with	former	smoking	(former	vs	never	smokers)	

Illumina	
Probe	ID	

Chr	
Number	

Chromosome	
position	(bp)	

Design	
Type	

UCSC	
Gene	
Name	

UCSC	Gene	
Region	

Present	in	
450K	
Array	

FDR	
Adjusted	P	
Value	

Mean	
Effect	
Size	

cg14391737	 11	 86513429	 II	 PRSS23	 5'UTR;Body	 FALSE	 1.30E-15	 -0.07		

cg21566642	 2	 233284661	 I	 	  TRUE	 3.67E-13	 -0.07		

cg06644428	 2	 233284112	 I	 	  TRUE	 2.02E-11	 -0.05		

cg01940273	 2	 233284934	 II	 	  TRUE	 2.67E-11	 -0.05		

cg05575921	 5	 373378	 I	 AHRR	 Body	 TRUE	 6.13E-11	 -0.06		

cg03636183	 19	 17000585	 II	 F2RL3	 Body	 TRUE	 5.12E-05	 -0.04		

cg22812571	 2	 233286229	 II	 	  FALSE	 7.74E-05	 -0.05		

cg00475490	 11	 86517110	 II	 PRSS23	 5'UTR;Body	 FALSE	 6.43E-03	 -0.02		

cg16047567	 1	 12664243	 II	 DHRS3	 Body	 TRUE	 7.95E-03	 -0.02		

cg01692968	 9	 108005349	 II	 	  TRUE	 1.90E-02	 -0.03		

cg18110140	 15	 75350380	 II	 	  FALSE	 1.90E-02	 -0.03		

cg17739917	 17	 38477572	 II	 RARA	 5'UTR	 FALSE	 1.90E-02	 -0.04		

cg16841366	 2	 233286192	 II	 	  FALSE	 2.41E-02	 -0.05		

cg25189904	 1	 68299493	 II	 GNG12	 TSS1500	 TRUE	 2.41E-02	 -0.04		

cg15342087	 6	 30720209	 II	 	  TRUE	 2.41E-02	 -0.02		

cg15420926	 8	 132929147	 II	 EFR3A	 Body	 TRUE	 3.27E-02	 -0.01		

cg23771366	 11	 86510998	 II	 PRSS23	 TSS1500	 TRUE	 3.45E-02	 -0.03		
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these sites were also seen in the current vs never smoker model and this small number of significant hits 

suggest that almost all change to the epigenome caused by smoking becomes insignificant when quitting, 

especially as the effect sizes of the 17 DMPs were minimal, ranging from -0.069 to -0.014. Furthermore, 

no site had a higher significance than 1.30 x 10-15 after FDR adjustment as shown in Table 3.3.1. 

 

However, this does show that there is a long-lasting effect on DNA methylation at certain sites that remains 

even once smoking has ceased. Also, given that all but one DMP was hypermethylated in former smokers, 

this suggests that DNA hypomethylation represents more persistent changes to the methylome than those 

involving hypermethylation. The strongest site observed here is cg14391737 on chromosome 11, located 

within the serine protease 23 (PRSS23) gene along with multiple other DMPs. PRSS23 is a member of the 

trypsin family of serine proteases and coordinates many physiological functions, including the immune 

Figure	3.3.1.:	Summary	of	17	significant	CpG	sites	differentially	methylated	between	former	and	never	
smokers	at	false	discovery	rate	P	<	0.05.	Red	line	indicates	Bonferroni	threshold.	Each	CpG	site	is	

represented	by	significance	as	shown	by	their	–log(P-value)	values	(y-axis)	and	effect	size	and	direction	
(x-axis),	the	mean	β	value	difference	between	groups.	Associations	are	colour-coded	in	reference	to	the	

chromosome	the	CpG	site	is	located	on.	



	

	

36	

response and blood coagulation. Changes in the methylation state of this gene may contribute to the known 

protease-antiprotease imbalance observed in the emphysema of smokers. This causes an increased number 

of neutrophils and macrophages to be induced, causing these cells to release proteolytic enzymes that are 

not completely inhibited by antiproteases. These in turn lead to damage of connective tissues within the 

lung and has also been implicated in chronic obstructive pulmonary disease (COPD), a disease very closely 

associated to tobacco use. There is also strong evidence for this hypothesis in those with antitrypsin 

deficiency as it is the main inhibitor of neutrophil elastase (Abboud and Vimalanatha, 2008). However, 

there is a potential role of macrophage proteases in those without such a deficiency and serine proteases 

have been shown to contribute to elastolysis by alveolar macrophages in vitro, although it is difficult to 

identify a single protease that causes such lung destruction (Russell et al., 2002). Although this analysis 

was carried out on whole blood samples, the fact that former smokers had high estimates of monocyte 

number may in part explain the strong significance of PRSS23 when comparing former and never smokers. 

It may also suggest a prolonged impact of smoking on protease activity, even after smoking cessation.  

 

Another point to note in this comparison is the presence of one site, cg16047567, located in the DHRS2 

gene on chromosome 1. When comparing current and never smokers this site did not seem very important, 

ranking much lower on the list of DMPs compared to stronger signals but seems to one of the few sites that 

remain significantly differentially methylated after cessation. Dehydrogenase/Reductase 2 (DHRS2) codes 

for the Hep27 protein and is involved in carbonyl reductase (NADPH) activity. Smoking has been shown 

to stimulate the production of reactive oxygen species (ROS) which in turn causes oxidative stress and 

consequently many other related pathologies of the cardiovascular system. Some ROS-generating NADPH 

oxidases have been suggested to produce ROS and the reductive reaction of the Hep27 enzyme may work 

to prevent the toxic action of such species by converting them to less toxic compounds and thus help quench 

the effects of oxidative stress (Monge et al., 2009). The hypomethylation of such a site in former smokers 

compared to never smokers may then be related to the process.  

 

The presence of DMPs in AHRR, F2RL3, RARA and intergenic loci in the 2q37.1 region when comparing 

former and never smokers suggests that these genes also become permanently differentially methylated in 
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those who have smoked and represent a long-term biomarker of past exposure to smoking which has already 

been shown for AHRR and F2RL3 (Shenker et al., 2013).  

 

3.4. Differentially Methylated Regions 

 

DNA methylation change at individual CpGs often has a high dependence on its regional context and thus 

levels of methylation tend to correlate with neighbouring CpG sites. This co-methylation occurs in sites 

within close proximity to eachother and this is strongest for sites up to 1000bp from one another and 

especially in the context of CpG islands (Eckhardt et al., 2006). Regional clusters of neighboring CpGs that 

are differentially methylated with smoking are termed differentially methylated regions (DMRs) and may 

help better understand the biological processes affected by smoking and how the process of global  DNA 

methylation change might occur. Using the DMRcate package in R, 836 DMRs were identified between 

current and never smokers through kernel smoothing and these again spanned the entire genome, as 

0.090 -0.053
-5

 

Figure	3.4.1.	Genome-wide	distribution	of	836	differentially	methylated	regions	between	current	and	
never	smokers.	DMRs	are	colour	coded	in	relation	to	the	mean	beta	fold	change	within	the	region	with	red	

representing	negative	associations	and	blue	showing	positive.	
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expressed in Figure 3.4.1. The 836 DMRs included 4806 individual CpG sites, 1457 of which were DMPs 

found to be differentially methylated between current and never smokers suggesting only a 28.03% 

coverage of the 5198 smoking-related DMPs in these DMRs. The chromosomal coordinates of the 836 

DMRs were inputted into the Genomic Regions Enrichment of Annotations Tool (GREAT) online (McLean 

et al, 2010). This is particularly good for assigning biological meaning to non-coding genomic regions by 

analyzing annotations of nearby genes and is useful here given that almost a quarter of the identified DMPs 

were not annotated to a coding gene. GREAT also incorporates 20 different ontologies. Focusing on the 

enriched health-related ontologies, 3 diseases were found to be associated with the inputted smoking 

DMRs, including alpha 1-antitrypsin deficiency, crescentic glomerulonephritis and myelofibrosis. 

 

Firstly, alpha 1-antitrypsin deficiency (A1AD) is a rare genetic condition in which decreased alpha-1 

antitrypsin activity in the blood and lungs often leads to panacinar emphysema or COPD in adult life, 

especially in those exposed to cigarette smoke (Needham, 2004). Second, crescentic glomerulonephritis 

(RPGN) is a condition of the kidney characterized by rapid renal failure and with glomerular crescent 

formation involving layers of proliferating skin. In more than 50% of cases it is associated with another 

underlying disease such as Goodpasture syndrome (GPS). GPS is a rare autoimmune disease where the 

immune system attacks the basement membrane of the lung and kidneys and is likely caused by insults to 

the blood vessels connecting the lungs and heart, and one such possible insult is cigarette smoking (Greco 

et al., 2015). Lastly, myelofibrosis is a fairly rare cancer of the bone marrow where proliferation of an 

abnormal clone of hematopoietic stem cells leads to the replacement of marrow with scar tissue (Tefferi, 

2014). Smoking can cause up to a 25% increase in peripheral blood leukocytes and has been shown to 

stimulate the bone marrow by shortening the transit time of polymorphonuclear leukocytes (Eeden and 

Hogg, 2000). Although not directly linked to smoking, these diseases all show some association between 

their pathology and cigarette smoke exposure and may help in understanding the downstream consequences 

on health caused by DNA methylation change in these particular DMRs. With that said, the lack of expected 

disease ontology is likely due to the small coverage of CpGs included within the microarray. The human 

genome has approximately 28 million CpG sites meaning the EPIC array only reflects a minute fraction of 
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5-mC DNA methylation. The accuracy of kernel smoothing in estimating real regions of differential 

methylation will thus be greatly hindered by this.   
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4. Dosage Effects 

 

It is clear through the qualitative analysis of the previous chapter that smoking has a huge impact on DNA 

methylation, especially in current smokers. What is not clear are the factors that contribute to methylome 

variation in the same group of current smokers. Thus, in this chapter a more quantitative look at the impact 

of cigarette smoke on DNA methylation was used and considered the effects of dosage. This involved 

running linear models between transformed DNA methylation beta values, termed M-values, and data on 

number of cigarettes smoked per day and years spent smoking. This was done using 175 participants who 

currently smoked in wave 3 of Understanding Society, the same used in the qualitative linear models, as 

DNA methylation changes are known to be reversed in former smokers and thus may negatively impact the 

statistical strength of the model. These data were inputted as continuous, numeric variables in the design 

matrix with age, sex, white blood cell counts and batch as covariates. Methylation data was also restricted 

to the 5198 significant DMPs identified between current and never smokers to prevent any spurious 

associations. 

 

4.1. Duration 

 

The measure of duration used in these analyses was calculated by subtracting the age participants started 

to have first started smoking, a single time-point variable from wave 3, from their age at the time of blood 

collection. This gave the number of total years spent smoking which was then used in the linear model 

alongside the other stated variables. This initially only gave 1 significant association between duration and 

DNA methylation change, in the cg2030125 probes on chromosome 5, with an FDR adjusted P-value of 

just 0.02. 

 

However, when looking at the interdependence between duration and other variables within the model a 

high amount of correlation was found, at 0.94, between years spent smoking and age. This makes sense 

given that most people start smoking in their teens, where the mean age of smoking initiation for current 

smokers was 16.78 ± 4.72. Thus, the older a smoker is the longer they have smoked and this hinders the 
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duration model greatly. To counteract this, age was then removed from the model as the two variables 

supply quite redundant information when together given their correlation and thus removal did not 

drastically impact the R-squared value. Once this was done 1331 significant DMPs were found to be 

associated with years spent smoking, although it is not completely clear whether these sites are differentially 

methylated with age instead or in fact both.  

 

4.2. Epigenetic Age and Smoking Duration 

 

To understand which of the 5198 smoking associated probes, seen when comparing current and never 

smokers, are in fact associated with age an age-only model was run using the 175 non-smokers used 

throughout these analyses. This yielded 2020 sites with an FDR adjusted P-value below 0.05, compared to 

1422 age-associated sites seen when using current smokers. Furthermore, the top sites seen in the current 

smoker age model were much the same as those seen in the duration model but not the same as in the never 

smoker age model. For example, the most significantly associated probe with duration, cg19965693, 

located in the IFIH1 gene, was much further down the list, being the 486th strongest age-associated site in 

never smokers. This suggests that differential methylation at these sites are in fact more a consequence of 

smoking duration and not age and thus works to demonstrate the huge impact of smoking on the methylome 

whereby tobacco is a stronger driver of epigenetic modifications.  

 

To further study the relationship of DNA methylation with age and smoking duration, the age of the 175 

current smokers was predicted using DNA methylation data. Many different measures to do this have been 

created and used within the literature using a wide range of tissues but the most accurate thus far, especially 

in whole blood, seems to be Horvath’s epigenetic clock (Horvath, 2013). The predicted ages and actual 

ages of the currently smoking participants had a correlation of 0.88. The age acceleration of these same 

participants, or difference in actual age and DNA methylation age, was then calculated and ranged widely 

from -15.46 to 23.53 at the two extremes, although most estimations were much closer to the chronological 

age of the participants. Here, quite a strong negative trend of -0.69 was observed between age acceleration 

and actual age where younger participants tended to have underestimated predicted ages and older 
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participants had overestimated predicted ages. Interestingly, this occurrence was more pronounced in non-

smokers who had a correlation of -0.76 between age acceleration and actual age and more still in former 

smokers who had a correlation of -0.79. It is unclear at present why this occurs and may suggest that the 

Horvath clock does not fit well on EPIC methylation array data or that the missing probes from the 450K 

array on which the clock was built might have some impact. Another reasoning might be an issue within 

the Understanding Society data itself. In the latter, perhaps a “survival bias” is present where those that 

have survived to old age are more likely to be healthier and generally biologically younger than others who 

had not reached old age. With this reasoning perhaps smokers do not tend to reach older age and thus do 

not display survival bias to the same degree as non-smokers, explaining the lower correlation of smoker’s 

age with age acceleration. 

 

When comparing age acceleration with years spent smoking a similar negative trend was observed between 

the two. This would initially suggest that the DNA methylation age acceleration of early smokers is reversed 

with duration but this clearly is not the case but a consequence of the strong correlation between duration 

and age. Taken together it is clear that age and duration are highly intertwined but given the strong 

associations of smoking with DNA methylation it is acceptable to assume that by dropping age from the 

model, duration-associated sites can be observed and insights into the impact of dosage on the methylome 

can be made.  

 

4.3. Duration-related DMPs 

 

The FDR adjusted P-values and estimated log2-fold changes of the 1331 duration-associated DMPs are 

summarized in Figure 4.3.1. and the top 10 hypomethylated and 10 hypermethylated sites are shown in 

Table 1. The top hit, with an adjusted P-value of 4.91 x 10-15 was cg19965693, located upstream of the TSS 

in the IFIH1 gene on chromosome 2. The IFIH1 gene encodes the Interferon Induced with Helicase C 

Domain 1 protein and is also known as Melanoma Differentiation-Associated protein 5. It functions as a 

pattern recognition receptor (PRR) that senses viruses and is consequently an essential part of the immune 

system (Takeuchi and Akira, 2008). Antibodies against MDA5 are associated with amyopathic 
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dermatomyositis with rapidly progressive interstitial lung disease (Fiorentino et al., 2011), providing a link 

between the hypomethylation of this CpG site and smoking duration. Furthermore, inhibiting DNA 

methylation has been shown to induce the response of such interferons in cancer through dsRNA sensors 

(Chiappinelli et al., 2015). Given that both age and smoking are risk factors for a number of cancers, 

differential methylation observed at this gene may then relate to interferon function and thus strengthens 

the importance of DNA methylation, among other mechanisms, in controlling health. Furthermore, as this 

differential methylation is highly associated with smoking duration, perhaps this correlates with the extent 

of health impacts caused by cigarette smoke.  

  

Table	4.3.1.:	Top	10	hypomethylated	and	hypermethylated	probes	associated	with	smoking	duration	

Illumina	
Probe	ID	

Chr	
Number	

Chromosome	
position	(bp)	

Design	
Type	

UCSC	Gene	
Name	

UCSC	Gene	
Region	

Present	
in	450K	
Array	

FDR	
Adjusted	
P	Value	

Estimated	
Log2	Fold	
Change	

Hypomethylated	in	current	smokers	

cg19965693	 2	 163175743	 II	 IFIH1	 TSS1500	 FALSE	 4.91E-15	 -0.02		

cg16267679	 2	 145278615	 II	 LINC01412;ZEB2	 TSS1500;TSS1500	 FALSE	 2.75E-11	 -0.02		

cg00602811	 2	 145278564	 II	 ZEB2	 TSS1500	 TRUE	 2.75E-11	 -0.02		

cg18826637	 2	 145116633	 II	 	  TRUE	 1.13E-10	 -0.03		

cg21323642	 22	 31709724	 II	 	  FALSE	 2.10E-09	 -0.01		

cg12919873	 21	 38929815	 II	 	  FALSE	 2.92E-09	 -0.02		

cg03834786	 7	 80571772	 II	 	  FALSE	 3.31E-09	 -0.01		

cg00573770	 2	 145278485	 I	 ZEB2	 TSS1500	 TRUE	 9.91E-09	 -0.02		

cg19344626	 19	 16830749	 I	 NWD1	 TSS200	 TRUE	 1.68E-08	 -0.02		

cg11649376	 12	 81473234	 II	 ACSS3	 Body	 TRUE	 1.68E-08	 -0.01		

Hypermethylated	in	current	smokers	

cg04738965	 3	 147127662	 I	 ZIC1	 1stExon;5'UTR	 TRUE	 2.02E-09	 0.02		

cg15466862	 13	 112722333	 I	 SOX1	 1stExon	 TRUE	 2.55E-08	 0.02		

cg26422458	 1	 79472452	 I	 ELTD1	 5'UTR;1stExon	 TRUE	 3.53E-08	 0.02		

cg10906284	 12	 63544430	 I	 AVPR1A	 1stExon	 TRUE	 3.53E-08	 0.02		

cg23621097	 17	 1962236	 I	 HIC1	 3'UTR	 TRUE	 7.00E-08	 0.02		

cg19942495	 17	 32484027	 II	 ACCN1	 TSS1500	 TRUE	 9.86E-08	 0.01		

cg02926165	 5	 3595963	 II	 IRX1	 TSS1500	 FALSE	 9.96E-08	 0.02		

cg17953764	 4	 48492845	 I	 ZAR1	 1stExon	 TRUE	 1.04E-07	 0.01		

cg24125828	 6	 32117049	 I	 PRRT1	 Body	 TRUE	 2.02E-07	 0.02		

cg16001722	 6	 127836159	 II	 C6orf174	 Body	 TRUE	 2.09E-07	 0.02		

 

When comparing age-associated and duration-associated DMPs, 353 loci that were related to time spent 

smoking were not significantly differentially methylated with age at an FDR threshold of 0.05. The most 
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commonly occurring genes within these probes included four in the well characterized smoking-associated 

gene of AHRR and another four in the less reported SLC24A3 gene on chromosome 20. SLC24A3 is a 

potassium-dependent sodium/calcium exchanger on the plasma membrane. Excess salt intake has been 

implicated in the pathology of hypertension and one study showed epistatic interactions of SNPs in 

SLC24A3 with pressure-natriuresis (Citterio et al., 2011). Given that smoking increases blood pressure, the 

hypomethylation of these sites with increasing duration may provide a link between this disease and 

calcium homeostasis.  

 

The 353 CpG “duration-only” sites with available annotation were located in roughly 236 genes. To better 

understand the mechanisms these genes are involved in, they were inputted into the STRING database to 

visualize any interactions between their protein products. At the highest confidence, with a minimum 

required interaction score of 0.9, 53 interactions were found as shown in Figure 4.3.2. 

 

Figure	4.3.1.:	Summary	of	1331	significant	CpG	sites	differentially	methylated	with	smoking	duration	at	false	
discovery	rate	P	<	0.05.	Red	line	indicates	Bonferroni	threshold.	Each	CpG	site	is	represented	by	significance	

as	shown	by	their	–log(P-value)	values	(y-axis)	and	effect	size	and	direction	(x-axis),	the	mean	β	value	
difference	between	groups.	Associations	are	colour-coded	in	reference	to	the	chromosome	the	CpG	site	is	

located	on.	
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These interactions are involved in a number of KEGG pathways. Firstly, NRP1, EPHA7, SEMA7A, NCK2, 

RAC1 and PAK4 are all important in axon guidance. Some of these, especially members of the semaphorin 

family like SEMA7A, make up molecules that guide the outgrowth of axons, called axonal guidance cues. 

These in turn promote normal alveolar growth and many lung disease have been characterised by damage 

to the alveolar, linking this gene function with disease phenotypes caused by smoking (Vadivel et al., 2013). 

One such disease is bronchopulmonary dysplasia (BPD). This suggests that changes in DNA methylation 

might act as a biomarker for BPD and other smoking-related diseases. Furthermore, given the association 

of these sites with dosage, perhaps this can provide a quantifiable risk predictor to such diseases. 

 

Another interesting KEGG pathway is glutathione metabolism which ANPEP, MGST1, LAP3 and GGT1 

are involved in. Smoking causes damage to respiratory tract tissues and it is known that glutathione and 

related thiols can help perturb this and is an antioxidant component of the tract lining. This occurs when 

Figure	4.3.2.:	STRING	interaction	network	of	the	53	interacting	proteins	encoded	by	the	genes	enclosing	
duration-associated	DMPs	seen	at	a	FDR	significance	threshold	and	not	associated	with	age.	Only	shows	

interactions	that	meet	the	highest	confidence	threshold,	with	an	interaction	score	of	0.9.	Lines	are	
coloured	by	the	type	of	evidence	the	interaction	is	based	on.	Red	-	presence	of	fusion,	Green	-	

neighborhood	evidence,	Blue	-	cooccurrence,	Purple	-experimental,	Yellow	-	textmining	evidence,	Light	
blue	-	database,	Black	–	coexpression.	
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cigarette smoke reacts with glutathione-aldehyde derivatives and depletes the amount of available 

glutathione (Toorn et al., 2007). The duration-related changes to DNA methylation seen in genes related 

glutathione metabolism might then be related to the gradual worsening of health seen with increasing years 

of tobacco use.  

 

4.4. Intensity 

 

Another important dosage measure is that of intensity, or how much a person smokes as opposed to how 

long. To see if this influences DNA methylation, two measurements of intensity were used from the same 

currently smoking participants used above. The first is a single time-point variable from wave 3, the same 

year of the nurse visit where blood samples were collected. Here participants were asked how many 

cigarettes smoked per day. The second measurement involved taking an average of this same variable 

between waves J through to R of BHPS. This gave the mean number of cigarettes smoked by participants 

in the nine years leading up to wave 3 in Understanding Society.  

 

When the single time-point measure was used in the linear model, 33 CpG sites were significantly 

differentially methylated with number of cigarettes smoked. The strongest association was seen in the 

cg10590512 probe located in the DIO3;MIR1247 gene region on chromosome 14. Alternatively, the 

average measure of number of cigarettes yielded 23 DMPs with the most significant probe, cg25992330, 

located in the SPOCK2 gene on chromosome 10. The top ten loci for both measures are summarized in 

Table 2. It appears that the single time-point measure reflects a wider range of DNA methylation changes 

however the mean variable gave more significant P-values and thus suggests that by taking the mean a 

more sensitive and less noisy indication of cigarette smoke intensity can be measured. Therefore, this was 

used for the remaining analyses. 

 

The SEPT9 CpG site, cg11328665, was observed in both models suggesting that methylation at this site 

may be highly sensitive to intensity. 11 probes within this gene were also differentially methylated between 

current and never smokers, strengthening its association with smoking. SEPT9 codes for the Septin-9 
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protein. The v2 region of the gene’s promotor has been shown to become hypermethylated compared to 

healthy individuals in both the tissue of those with colorectal cancer as well as in the blood. This altered 

methylation pattern may indicate aberrant activation or repression of this gene and may have downstream 

consequences on pseudopod protrusion, tumor cell migration and invasion, processes known to rely on the 

function of SEPT9 (Tetzner et al., 2009). Smokers are known to have a significantly higher risk of 

developing colorectal cancer than those who do not smoke. Additionally, a dose-relationship between 

colorectal cancer risk with increasing number of cigarettes has also been reported, but only after 30 years 

of smoking (Botteri et al., 2008). Thus, this may provide a link between changes in  DNA methylation at 

SEPT9 with intensity of smoking and in turn cancer.  

 

 

Table	4.4.1.:	Top	10	hypomethylated	and	hypermethylated	DMPs	associated	with	smoking	intensity	

Illumina	
Probe	ID	

Chr	
Number	

Chromosome	
position	(bp)	

Design	
Type	

UCSC	Gene	
Name	

UCSC	Gene	
Region	

Present	
in	450K	
Array	

FDR	
Adjusted	
P	Value	

Estimated	
Log2	Fold	
Change	

Single	time-point	

cg10590512	 14	 102026939	 I	 DIO3;MIR1247	 TSS1500;TSS200	 FALSE	 3.15E-03	 0.02		

cg03440944	 7	 45023329	 II	 C7orf40	 Body	 TRUE	 1.90E-02	 -0.01		

cg11328665	 17	 75446304	 II	 SEPT9	 TSS1500;Body	 FALSE	 1.90E-02	 -0.01		

cg17567838	 6	 33167488	 II	 SLC39A7	 TSS1500;Body	 TRUE	 2.36E-02	 -0.01		

cg09945032	 3	 38871019	 II	 	  FALSE	 2.80E-02	 -0.01		

cg06532880	 5	 176731545	 II	 PRELID1;RAB24	 Body;TSS1500	 TRUE	 2.80E-02	 -0.01		

cg05575921	 5	 373378	 I	 AHRR	 Body	 TRUE	 2.80E-02	 -0.02		

cg03220447	 11	 19745293	 II	 NAV2	 Body	 TRUE	 2.80E-02	 -0.01		

cg11320225	 1	 161709963	 II	 	  FALSE	 2.80E-02	 -0.01		

cg17731696	 8	 66734530	 II	 PDE7A	 Body	 FALSE	 3.83E-02	 -0.01		

Mean	of	multiple	time	points	

cg25992330	 10	 73830099	 II	 SPOCK2	 Body	 FALSE	 1.23E-03	 0.01	

cg05575921	 5	 373378	 I	 AHRR	 Body	 TRUE	 1.29E-02	 -0.03	

cg26341457	 11	 72523885	 II	 	  FALSE	 1.29E-02	 -0.01	

cg10590512	 14	 102026939	 I	 DIO3;MIR1247	 TSS1500;TSS200	 FALSE	 1.29E-02	 0.02	

cg03707168	 19	 49379127	 II	 PPP1R15A	 Body	 TRUE	 1.37E-02	 -0.01	

cg11328665	 17	 75446304	 II	 SEPT9	 TSS1500;Body	 FALSE	 1.37E-02	 -0.01	

cg03440944	 7	 45023329	 II	 C7orf40	 Body	 TRUE	 1.37E-02	 -0.01	

cg09945032	 3	 38871019	 II	 	  FALSE	 1.37E-02	 -0.01	

cg07954423	 9	 130741881	 II	 FAM102A	 Body	 TRUE	 1.37E-02	 -0.01	

cg00475490	 11	 86517110	 II	 PRSS23	 5'UTR;Body	 FALSE	 1.37E-02	 -0.02	
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However, by far the site with the strongest association with mean number of cigarettes smoked, with an 

FDR adjusted P-value of 0.001, is cg25992330 located in the SPOCK2 gene. This encodes a member of a 

calcium binding proteoglycan family, important components of the extracellular matrix. It is also a known 

susceptibility gene for bronchopulmonary dysplasia, formerly known as chronic lung disease of infancy 

(Hadchouel et al., 2011) and this disease was also elucidated to in the enriched axon guidance KEGG 

pathway with duration DMPs.  

 

Clearly increasing number of cigarettes causes changes in DNA methylation at important disease-related 

genes associated with smoking. However, all other sites were very close to the 0.05 cutoff and thus raises 

concerns about the reality of their associations with smoking intensity. In fact, this suggests that intensity 

all together may not have much influence on DNA methylation and instead the drastically larger number 

of associations seen with smoking duration suggests that years spent smoking may have a far larger impact 

on the methylome. Nevertheless, this shows that different CpG sites, even those located in the same region, 

respond differently to duration and intensity. This may provide an insight into the different biological 

mechanisms at play when studying how environmental factors and dosage influence DNA methylation.  

 

4.5. Duration vs Intensity 

 

As there is such a large difference between duration and intensity in both the number and location of dosage-

related DMPs, the two were compared further. The aim of doing this was to better classify these differences 

and hopefully identify which dosage measure might be more important in DNA methylation. Firstly, Figure 

4.5.1. compares the distribution of significance values and log2-fold change estimates between duration 

and intensity for all 5198 smoking-associated CpG sites. These plots show far more significant changes in 

DNA methylation with duration compared to intensity as expressed before in the two models. However, 

the estimates of the log2-fold-change for each probe, which in a way gives a measure of effect size with 

increasing dosage, do not show such large differences. In fact, both dosage measures saw estimates that 

were very low in comparison to the more than 1.0 log2-fold changes seen when comparing current and 

never smokers but this may be a consequence of using continuous variables instead of categorical factors. 
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These log2-fold change estimates do show that the duration-associated DMPs had slightly larger estimates 

than intensity. It also shows that positive coefficients also tended to have larger estimates of log2-fold-

change and this seemed to be independent of their significance. Furthermore, both measures of dosage show 

a greater representation of negative over positive coefficients, but to a smaller extent when using intensity 

data. Given that hypermethylated sites in smokers tended to have modest significance values compared to 

the hypomethylated probes, this could suggest that the mechanism driving this change causes larger 

differences in DNA methylation and may, in a small way, explain why number of cigarettes smoked per 

day makes less of an impression on DNA methylation. Either way, by looking at these funnel plots it is 

clear that the number of significant DMPs does not fully reflect the actual, measurable changes to the 

methylome caused by increased duration or intensity. Instead it simply states how many probes met a 

certain threshold and this number is also highly sensitive to the covariates included in the model.  

 

To overcome this and further test the effects of duration and intensity on DNA methylation, the current 

smokers were split by quantiles into four equal-sized groups of 40 based on number of cigarettes smoked 

Figure	4.5.1.:	Funnel	plots	summarizing	the	associations	of	DNA	methylation	with	smoking	intensity	and	
duration	for	the	5198	smoking-associated	probes.	Each	CpG	site	is	represented	by	significance	as	shown	by	
their	–log(P-value)	values	(y-axis)	and	the	direction	and	change	in	DNA	methylation,	represented	by	their	

estimated	log2-fold	changes	(x-axis),	a	measure	of	effect	for	the	dosage	coefficient.	
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per day, and another four based on years spent smoking. Then, the difference in DNA methylation between 

each smoker group and an equal-sized sample of 40 never smokers, termed here as the absolute effect size, 

was calculated. By doing so it is possible to measure the extent of DNA methylation differences between 

non-smokers and smokers with varying dosage exposures. These differences were calculated using Beta-

values for the top 10 probes associated with years spent smoking in the duration groups and the top 10 

probes associated with mean number of cigarettes for the intensity groups. The total mean DNA methylation 

difference between the eight smoker groups and never smokers are outlined in Figure 4.5.2. 

 

This showed a relationship between increases in both duration and intensity and increased DNA 

hypomethylation in smokers compared to non-smokers, at least for the top 10 sites associated with each 

measure. However, duration was associated with a much greater change in DNA methylation compared to 

intensity. Here, absolute effect sizes across the duration quantiles ranged from 0.14 to -0.65 showing a huge 

decrease in DNA methylation, of almost 0.79, between those who have smoked less than 26 years and those 

having smoked more than 44 years. On the other hand, the absolute effect sizes between the intensity groups 

and never smokers ranged from -0.42 to -0.21. This shows a much smaller decrease in DNA methylation, 

Figure	4.5.2.:	Mean	absolute	effect	size	between	smokers	and	non-smokers	per	dosage	quantile.	
Shows	mean	difference	between	the	40	smokers	and	40	non-smokers	in	each	group,	calculated	using	
DNA	methylation	values	for	the	top	10	DMPs	associated	with	duration	(right)	and	intensity	(left).	
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around 0.21, between those who smoke less than 11.1 cigarettes a day and those who smoke more than 20. 

Furthermore, the steepest methylation difference for intensity was observed between the first and second 

quantile groups. Thereafter, smaller decreases in DNA methylation are observed which suggests that the 

methylome of those who smoke less than 11.1 cigarettes a day is less effected than those who smoke more 

but not by much. As for duration, changes in DNA methylation between smokers and non-smokers were 

more gradual, with similar decreases in absolute effect sizes with each increasing dosage group. This 

suggests DNA methylation is more highly correlated with years spent smoking than number of cigarettes 

smoked. Taken together, this analysis suggests that duration rather than intensity is more important in 

driving changes to the methylome and thus may be more influential in smoking-related illness in the cases 

where DNA methylation influences the expression of important health-associated genes. 

 

To look at the interplay between duration and intensity the analyses above were repeated, splitting the four 

duration quantiles into eight groups based on intensity, where four consisted of participants smoking less 

than 16 cigarettes per day and another four consisted of those who smoke more than 16. Equal sized samples 

of 15 participants were then used in each analysis and the same was carried out for intensity where the 

groups were split by who reported to have smoked for less or more than 35 years. The absolute effect size 

between these 16 groups and another subset of 15 non-smokers are outlined in Figure 4.5.3.  
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In all four scenarios increasing dosage led to DNA hypomethylation in smokers compared to non-smokers. 

However, duration again showed the biggest changes in DNA methylation with a steady decline in absolute 

effect size across years spent smoking. As for intensity, a steep decline in DNA methylation was again seen 

between the first and second quantiles but thereafter DNA methylation difference varied greatly and at 

some points even seemed to increase. This is likely caused by the small sample size used to calculate the 

average effect size between the intensity groups and never smokers. Here, increasing number of cigarettes 

seemed to have little impact on DNA methylation change and thus was not able to overcome this shortfall. 

Figure	4.5.3.:	Mean	absolute	effect	size	across	between	smokers	and	non-smokers	per	dosage	
quantile	split	by	median	duration	(top)	and	intensity	(bottom).	Shows	mean	difference	between	the	
15	smokers	and	15	non-smokers	in	each	group,	calculated	using	DNA	methylation	values	for	the	top	

10	DMPs	associated	with	duration	(bottom)	and	intensity	(top).	
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Increasing duration on the other hand still showed a strong negative trend with DNA methylation change 

despite the small group sizes.  

 

The two dosage measures seemed to make little impact on DNA methylation differences. The one exception 

to this being in those who had smoked for up to 26 years within the first quantile. Beta values for participants 

who fell into this group and also smoked more than 16 cigarettes a day were higher by around 0.11 than 

other participants who smoked less but for similar durations. This suggests than intensity only impacts 

DNA methylation in the early years of smoking and thus for the majority of cases it appears than intensity 

and duration are independent of one another. 

 

4.6. Predicting Smoking Duration 

 

Throughout this chapter it is clear that years spent smoking is highly correlated with DNA methylation 

levels at a number of CpG sites. This might then allow for smoking duration to be estimated using measures 

of DNA methylation at duration-associated sites. To attempt this, a similar procedure was used to that 

developed by Horvath for the well-known epigenetic age clock (Horvath, 2013). The general principle to 

this is to form a weighted average of DNA methylation at a number of duration-related CpG dinucleotides 

and then transform this into years spent smoking. This is done using a penalized regression model which 

uses an elastic net regularization approach to regress self-reported duration years from a sample of 85 

current smokers, termed as the training set, onto the 1331 EPIC array probes associated with duration. 

Elastic net regularization makes use of the “elastic net” that combines the L1 and L2 penalties of the lasso 

and ridge method and hence overcomes the limitations of many modelling techniques. The elastic net then 

automatically selects the CpG sites most associated with duration and these are then used in the prediction.  

 

The regression model was run using the glmnet package from R (Friedman et al., 2010). To do so, first a 

10 fold cross validation was carried out, using the cv.glmnet function, to find an estimate of the lambda 

parameter to be used. Then, a generalised linear model, with elastic net regularization, was fitted to the 

training set data using the glmnet function. This function uses a penalized maximum likelihood approach 
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and requires specification of the alpha parameter, which was set to 0.5 as the elastic net predictor was used, 

and the lambda value, which was set to 1.120921 as estimated by the cross-validation. This model then 

enabled the calculation of estimates for years spent smoking by using the usual predict function. This last 

step was carried out on methylation Beta-values from the other half of current smokers, the test set. The 

predicted and actual years since quitting are shown in Figure 4.6.1. 

 

This shows a correlation of 0.76 between the predicted and actual years spent smoking in former smokers. 

The mean difference between the actual and predicated duration values in this group was 0.31 with a 

standard deviation of 9.30. This variation is likely caused by the small sample size used when creating the 

model and thus DNA methylation data from a larger number of active smoker participants would likely aid 

in improving this prediction. Nevertheless, this predictor also showed some correlation with duration in 

former smokers, with a Pearson of coefficient of 0.43. This smaller correlation is likely a reflection of the 

reversal of DNA methylation changes that occurs when a person stops smoking. Together this suggests that 

this prediction has value as a biomarker of smoking duration and can be used to estimate the extent of 

Figure	4.6.1.:	Goodness	of	fit	for	predictor	of	years	spent	smoking.	Shows	actual	years	spent	
smoking	(x-axis)	against	predicted	years	spent	smoking	(y-xis).	Pearson	correlation	coefficient	=	

0.76.	
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changes to the methylome caused by duration. Furthermore, for disease-associated genes whose expression 

is influenced by DNA methylation, this model may even help predict risk to health caused by tobacco use. 
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5. Cessation 

 

The best tactic for preventing smoking-related illness is clearly to not smoke in the first place but given that 

there are still appropriately 1 billion smokers worldwide, the second best option is to quit smoking as soon 

as possible. By doing so the impact on the methylome associated with years of tobacco use may be 

minimized. In the third chapter, it was apparent that DMPs still exist when comparing former and never 

smokers and thus cessation may not completely recover DNA methylation to that of someone who has 

never smoked. It does however reduce the degree of differences between ex-smokers and non-smokers 

drastically, including changes to epigenetic loci located in important disease-associated genes. DNA 

methylation then is very sensitive to smoking status and thus may have potential as a biomarker for years 

of cessation. To further study this a number of analyses were carried out using the 356 participants of 

Understanding Society who stated in wave 3 that they had previously smoked but do not do so anymore. 

These were also selected on the availability of their cessation data which included self-reported variables 

on age of quitting. The number of years since cessation was thus calculated by taking the age of quitting 

and subtracting this from their age at the time of blood sample collection in wave 3 of the study.  

 

5.1. Cessation-related DMPs 

 

Years since quitting ranged from 1 to 66 years and this data had some correlation with both age (0.57) and 

smoking duration (-0.45). Despite this, age was kept in the model alongside sex, blood process day, batch 

and white blood distribution estimates to avoid any fictitious associations with cessation. First, a linear 

model was used to look at the relationship between DNA methylation levels and years since quitting 

smoking. This was restricted to the 5198 smoking-associated loci identified when comparing current 

smokers and participants who had never smoked. The model yielded 192 significantly differentially 

methylated sites with years since quitting, and the significance and log2-fold-change values of these sites 

are summarized in Figure 5.1.1. 171 of the sites became hypermethylated with years since quitting leaving 

21 hypomethylated sites.  This makes sense as a reversal of the huge surplus of hypomethylated probes 

seen in smokers compared to non-smokers. It also suggests that these sites gradually recover their 
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methylation states with increasing cessation years. Of the 192 DMPs, 82 were also associated with duration. 

This suggests that the process by which the reversal of DNA methylation changes occur may be related but 

is not simply the reverse process driving such changes with increasing duration and instead there are more 

factors at play here.  

 

The top 10 hypermethylated and 10 hypomethylated cessation-associated DMPs are shown in Table 1. The 

most strongly associated probe, cg05575921 within the AHRR gene, is also the most strongly associated 

site with smoking in general. Sites within this gene had weak associations with duration but had the second 

strongest association with intensity. Its presence as a cessation-related DMP may then be caused by the 

now zero number of cigarettes smoked by former smokers. This site also becomes hypermethylated very 

quickly after cessation for most participants, as show by a steep curve between Beta-values for this site and 

Figure	5.1.1.:	Summary	of	192	significant	CpG	sites	differentially	methylated	with	smoking	cessation	at	false	
discovery	rate	P	<	0.05.	Red	line	indicates	Bonferroni	threshold.	Each	CpG	site	is	represented	by	significance	as	
shown	by	their	–log(P-value)	values	(y-axis)	and	effect	size	and	direction	(x-axis),	the	mean	β	value	difference	
between	groups.	Associations	are	colour-coded	in	reference	to	the	chromosome	the	CpG	site	is	located	on.	



	

	

58	

years since quitting, strengthening the idea that DNA methylation at this site is influenced by number of 

cigarettes.  

 

Interestingly, sites located in the PRSS23 gene were also strongly associated with years of quitting and were 

also present in the DMPs between former and never smokers. The DNA methylation of sites in this gene 

may then be reversed very slowly after cessation. Furthermore, PRSS23 encodes the serine protease 23 

enzyme, and is responsible for a huge range of biological processes, including blood clotting, food 

digestion, infection fighting and fertilization (Neitzel, 2010). This then hints that the changes in DNA 

methylation observed at this gene may be linked to the increased good health seen in ex-smokers, especially 

after many years of cessation. Other strongly associated sites lied in the 2q37.1 intergenic region. The 

closest genetic feature, found using the nearest.gene function from the humarray CRAN  package, was 

Table	5.1.1.	Top	10	hypomethylated	and	hypermethylated	DMPs	associated	with	smoking	cessation	

Illumina	
Probe	ID	

Chr	
Number	

Chromosome	
position	(bp)	

Design	
Type	

UCSC	
Gene	
Name	

UCSC	Gene	
Region	

Present	
in	450K	
Array	

FDR	
Adjusted	P	
Value	

Estimated	
Log2	Fold	
Change	

Hypermethylated	in	current	smokers	

cg05575921	 5	 373378	 I	 AHRR	 Body	 TRUE	 3.35E-17	 0.027		

cg14391737	 11	 86513429	 II	 PRSS23	 5'UTR;Body	 FALSE	 5.27E-17	 0.018		

cg21566642	 2	 233284661	 I	 	  TRUE	 6.60E-17	 0.017		

cg16841366	 2	 233286192	 II	 	  FALSE	 2.33E-09	 0.014		

cg06644428	 2	 233284112	 I	 	  TRUE	 3.52E-09	 0.021		

cg01940273	 2	 233284934	 II	 	  TRUE	 4.42E-09	 0.010		

cg03636183	 19	 17000585	 II	 F2RL3	 Body	 TRUE	 4.42E-09	 0.009		

cg22812571	 2	 233286229	 II	 	  FALSE	 1.58E-08	 0.013		

cg00475490	 11	 86517110	 II	 PRSS23	 5'UTR;Body	 FALSE	 3.32E-08	 0.012		

cg11660018	 11	 86510915	 II	 PRSS23	 TSS1500	 TRUE	 4.35E-06	 0.007		

Hypomethylated	in	current	smokers	

cg09375092	 12	 26576047	 II	 ITPR2	 Body	 FALSE	 4.63E-04	 -0.010		

cg12803068	 7	 45002919	 II	 MYO1G	 Body	 TRUE	 4.86E-03	 -0.013		

cg08035323	 2	 9843525	 II	 	  TRUE	 6.96E-03	 -0.007		

cg10819708	 15	 90735422	 II	 SEMA4B	 5'UTR	 TRUE	 8.41E-03	 -0.003		

cg05009104	 7	 45002980	 II	 MYO1G	 Body	 FALSE	 1.39E-02	 -0.006		

cg02327909	 12	 53009774	 II	 KRT73	 Body	 FALSE	 1.63E-02	 -0.003		

cg07790294	 19	 928287	 II	 ARID3A	 5'UTR	 FALSE	 1.89E-02	 -0.003		

cg19459791	 15	 65363022	 II	 	  TRUE	 1.93E-02	 -0.004		

cg01756827	 20	 47923790	 II	 	  FALSE	 1.93E-02	 -0.005		

cg10874644	 5	 83898708	 II	 		 		 TRUE	 2.07E-02	 -0.006		
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ALPPL2, an alkaline phosphatase. Levels of this enzymes have been show to increase up to tenfold in 

cigarette smokers and cancer patients (Koshida et al., 1990) and thus with increased length of cessation 

these levels may fall and this again shows a possible link between the reversion of DNA methylation 

changes and the improved health, and reduced cancer risk, seen in former smokers compared to current 

smokers.  

 

Interestingly, other sites in genes strongly associated with smoking, such as ZMIZ1 and ELMSAN1, were 

not associated with cessation. In fact, DNA methylation of only a handful of smoking-related CpG sites 

seemed to be influenced by smoking cessation, leaving well over 5000 sites that were not related with years 

since quitting. One line of reasoning for this is that for these sites DNA methylation is permanently altered 

by tobacco use. This then suggests that the site-specific manner by which DNA methylation changes happen 

may actually be split into two distinct groups of reversible and permanent smoking-related DMPs. 

However, this would then suggest a huge surplus of permanently altered CpG sites but only 15 probes were 

found to be significantly differentially methylated between former and never smokers so this seems 

unlikely. A more plausible explanation relates to the fact that this this model looks into changes in DNA 

methylation across all years of smoking cessation, starting at 1 year. Perhaps some sites are reversed very 

early after quitting, within the first year where no such data is available. Thus, these sites would quite 

rightly not be associated with cessation in this analysis and instead the 192 identified DMPs show sites that 

have a longer time-span for reversal, taking some decades to be restored to anywhere near non-smoker 

levels. 

 

The 192 significantly associated probes with available annotation were located in 104 genes. To look at the 

relationship between these gene,s and more specifically their protein products, interactions were searched 

using the STRING database. This showed 21 of the 104 proteins interacted with at least one other inputted 

protein using the highest confidence threshold, where all interactions had a score of at least 0.9. This 

network is shown in Figure 5.1.2. and consists of 5 distinct clusters of proteins. Five of these proteins, 

including AKT3, HTRA2, ITPR2, TNF and BIRC3, were implicated in the apoptosis pathway from KEGG. 

In fact, one apoptotic pathway is directly mediated by the death receptor of the tumor necrosis factor (TNF) 



	

	

60	

receptor family. Lack of functional apoptotic pathways can lead to harmful cell proliferation and survival, 

a distinctive feature of cancer. Previous studies have seen aberrant methylation at important, apoptosis-

related CpG sites in cancer cell lines including that of the lung. These were located in the promotor regions 

of O-6-methylguanine-DNA-methyltransferase (MGMT), a DNA repair enzyme, and RAS-associated 

domain family protein 1A (RASSF1A), a tumor suppressor gene. Methylation of promotors is suggested to 

be a mechanism of gene silencing and tumorigenesis and in this case caused decreased DNA repair capacity 

and decreased cell cycle control in cells, leading to reduced apoptosis (Koutsimpelas et al., 2012). This 

shows that a strong link between differential DNA methylation and apoptosis exists. Furthermore, the fact 

that these genes are associated with cessation, and become hypermethylated with years since quitting, may 

mean effective apoptotic processes can be regained by stopping smoking and this in turn would lead to 

better health outcomes. The implication of pathways in cancer was also seen for these genes from KEGG, 

strengthening their associations with health. 

 

 

 

 

Figure	5.1.2.:	STRING	interaction	network	of	the	21	interacting	proteins	encoded	by	the	genes	enclosing	
cessation-associated	DMPs	seen	at	FDR	genome-wide	significance	threshold.	Only	shows	interactions	that	
meet	the	highest	confidence	threshold,	with	an	interaction	score	of	0.9.	Lines	are	coloured	by	the	type	of	
evidence	the	interaction	is	based	on.	Red	-	presence	of	fusion,	Green	-	neighborhood	evidence,	Blue	-	

cooccurrence,	Purple	-experimental,	Yellow	-	textmining	evidence,	Light	blue	-	database,	Black	–	
coexpression.	
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5.2. DNA Methylation with Years Since Quitting 

 

As stated, the linear model that compared DNA methylation and years of quitting can only reveal sites 

whose DNA methylation levels change with increasing time since quitting within former smokers. It does 

not show which of these loci are still significantly differentially methylated compared to never smokers nor 

at which year of cessation these loci might lose this significance. To counteract this the 356 participants 

used in these analyses were split by quantiles into five equal-sized groups, each containing 60 participants.   

 

After, linear models were repeated as before but this time used to compare each of these groups of former 

smokers, each with similar years since quitting smoking, to an equal sized reference sample of never 

smokers. This analysis was limited to the 192 cessation-associated probes identified before to ensure 

assumptions are only made about DNA methylation decay related to time since quitting. Figure 5.2.1. shows 

the number of DMPs observed between each cessation quantile and the non-smoker sample.  

Figure	5.2.1.:	Number	of	significantly	differentially	methylated	probes	seen	between	former	smokers	and	
non-smokers	per	cessation	quantile.	Each	group	of	60	former	smokers	were	seperated	based	on	years	

since	quitting	and	were	compared	to	an	equal	sized	group	of	non-smokers.	
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142 of the 192 cessation-related DMPs were differentially methylated with smoking status in at least one 

group. The largest number of significant DMPs observed were the 136 seen in former smokers who had 

quit between 1 and 7 years ago. This number then decreased to 52 in participants who quit between 7 and 

15 years and further still to just 2 DMPs in those quitting between 15 and 26 years before. Thereafter, no 

significantly differentially methylated CpG sites were found. This suggests that DNA methylation changes 

in participants with a cessation period longer than 26 years are almost completely reversed. Furthermore, 

the steepest drop in the number of significant DMPs occurs in the first 15 years of quitting. This shows that 

the differences in DNA methylation between ex-smokers and non-smokers are most apparent in those 

quitting for fewer years. It also suggests that the methylome may make an almost full recovery back to non-

smoker levels and that this largely occurs in the first two or three decades after cessation. However, it is 

important to note the impact of age on DNA methylation as the mean age gradually increased in each 

quantile group, from 55.01 to 66.48. There was also a correlation of 0.57 between age and years of cessation 

as stated before. Given that many age-related differences in DNA methylation have been observed there is 

still some chance that the differences observed with cessation are actually caused by the complex 

relationship between age and DNA methylation. However, with the inclusion of age in the models, and the 

fact that more than half of the cessation-assocatied DMPs were not seen in the age-only model, it is likely 

that the decrease in DMP number represents real cessation effects on smoking-related changes to the 

methylome. 

 

5.3. Quantifying Methylome Change Across Years Since Quitting 

 

It is hard to quantify the differences in DNA methylation with years since smoking cessation by simply 

stating the number of significant probes that met an FDR threshold. Significance measures can be highly 

sensitive to the linear model in question and make it difficult to study the real differences in DNA 

methylation at play. To overcome the absolute effect size was calculated between each group of former 

smokers, split by years since quitting, and non-smokers. For each of the five groups, DNA methylation 

levels were averaged across the 60 former smokers used and the absolute effect size was measured between 

these groups and the average DNA methylation of the never smoker reference sample. Absolute effect size 
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is the sum of these differences for the top 10 cessation-associated probes and these are shown in Figure 

5.3.1. along with the standard deviations for each quantile. For all five groups, the 10 probes were 

hypomethylated in former smokers compared to non-smokers. However, the degree of this 

hypomethylation decreases with increasing years of cessation, at least up to 36 years. In fact, there is a quite 

a strong linear relationship between DNA methylation differences at these 10 CpG sites and time since 

quitting, as shown in the first four quantiles. This suggests a strong association between DNA methylation 

and cessation length where absolute effect sizes return closer to 0 with increasing cessation, but only up to 

36 years. The fifth quantile, containing participants who stopped smoking from 36 to 66 years ago, shows 

a slight increase in hypomethylation compared to the fourth quantile of participants quitting 26 to 36 years 

ago. This may be a consequence of the large range of cessation years within this group as few participants 

in Understanding Society had quit more than 36 years ago. This measurement may also be hindered by the 

higher mean age within this group.  

Figure	5.3.1.:	Mean	absolute	effect	size	between	former	smokers	and	non-smokers.	Shows	mean	
difference	between	the	60	former	smokers	and	60	non-smokers	in	each	group,	calculated	using	DNA	

methylation	values	for	the	top	10	DMPs	associated	with	cessation.	
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Clearly measuring absolute effect size provides a good insight into the real effects of cessation on DNA 

methylation. However, this is also sensitive to outlying data and other factors. A better way to quantify the 

total methylation difference of former smokers is to use these 10 sites in the creation of a smoking index 

(SI), detailed in the following equation from Teschendorff’s work in 2015; 

 

 

 

This gives a measure of deviation from a normal reference, standardized by the deviation of DNA 

methylation, and takes into account the directionality of such changes. In this case the reference group 

consisted of the 60 non-smokers used in the above analyses, and was created using the DNAm Beta-values 

for the top n (10) number of cessation-related probes. Here, µc is the mean beta-value, and σc the standard 

deviation, for each probe across the reference samples. For any given s sample, Wc is +1 if the probe in 

question is hypermethylated and -1 if hypomethylated in former smokers across years since quitting. Βcs is 

the beta value of the CpG site c in sample s. This summation is over all 10 most strongly cessation-

associated DMPs and was calculated for all 356 ex-smoker participants. This is shown in Figure 5.3.2.  

 

The computed SI scores for the majority of former smokers was negative, showing the strong influence of 

previous smoking on DNA methylation. In general, there is more variation in smoking index scores in the 

early years of smoking cessation than those who have quit for longer periods of time. This suggests that 

smoking may cause increased variation in DNA methylation and this has been commented on before 

(Ambatipudi et al., 2016). As time since quitting increases, the SI scores of former smokers tends to get 

closer to a score of 0 meaning DNA methylation gets closer to non-smoker levels. It also supports the 

finding that sites become hypermethylated with years since quitting. This is shown in the small but real 

correlation of 0.25 between SI scores and length of cessation. There was also an even stronger correlation 

of -0.55 between duration dosage and the calculated smoking index scores. This supports the associations 
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between DNA hypomethylation and years spent smoking and again shows the huge impact of smoking on 

DNA methylation as well as the complexities in reversing duration-induced changes to the methylome. It 

also hints at an interaction between duration and cessation in their impact on DNA methylation. 

Furthermore, the mean SI score for each cessation quantile was calculated and again DNA methylation 

change decreases across the first four quantiles, consisting of participants with 1 to 36 years of smoking 

cessation. Clearly this is an effective biomarker in showing the decay of changes to the methylome upon 

quitting smoking and this is even sensitive enough to be observed in only 10 CpG sites. It also suggests 

that this reversal may not fully reach non-smoker levels, even after 36 years of cessation and supports 

previous findings showing similar results (Guida et al., 2015).  

 

5.4. Role of Duration in Cessation-related Decay 

Figure	5.3.2.:	Distribution	of	smoking	index	(SI)	scores	for	all	356	former	smoker	partipants..	Light	blue	
dots	represent	distribution	of	SI	scores	within	each	of	the	five	cessation	quantile	groups	(top	axis).	The	

mean	SI	score	for	each	group	was	calculated	and	shown	as	a	dark	blue	triangle.		
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Multiple sites associated with cessation were also 

associated with duration. For these sites, most are 

hypomethylated with increasing duration and 

hypermethylation with increasing years since quitting. 

Furthermore, previous studies have showed a 

relationship at some sites, such as those in the F2RL3 

and GPR15 genes, where methylation increases with 

cumulative exposure, i.e. pack years, and decreases with 

time since quitting (Wan et al., 2012). To try and 

replicate these findings in this study, the 356 former 

smokers were split into equal-sized groups based on 

quartiles for years of smoking and years since quitting. 

This created 16 groups with varying duration and 

cessation histories. Duration measures were used 

instead of cumulative exposure due to the weak 

associations of DNA methylation change with intensity. 

 

The sum of average DNA methylation was then 

measured for the three smoking-associated probes 

located in the F2RL3 gene, identified when comparing 

current and never smokers, in an attempt replicate the 

findings of Wan. Unfortunately, there were no 

participants that fell into both the fourth duration and 

fourth cessation quantiles and thus the average 

methylation could not be calculated for this group. 

However, for the other 15 groups there is a clear 

increase in DNA methylation with more years since 

quitting across all four duration quantile groups. The 

Figure	5.4.1.:	Relationship	between	duration	and	
cessation	on	DNA	methylation	at	three	loci.	Average	
DNA	methylation	for	each	of	the	16	groups,	split	
based	on	duration	and	cessation,	for	smoking-

associated	sites	located	in	F2RL3	(green,	top),	PRSS23	
(blue,	middle)	and	AHRR	(red,	bottom).	
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opposite is also true where DNA methylation is reduced with increasing years of smoking across all four 

cessation quantile groups. Therefore, average DNA methylation with increasing duration was greater for 

those who had the longest time since quitting and vice versa for increasing cessation.  This shows that 

participants who had smoked the longest and quit for the least number of years ago had the lowest average 

methylation at this F2RL3 locus. The same was also observed for the 8 smoking DMPs located on 

chromosome 11 in the PRSS23 gene and the top 10 DMPs located on chromosome 5 in the AHRR gene. 

The average methylation of the 16 groups at these three loci are displayed in Figure 5.4.1. Average DNA 

methylation had more variation for the PRSS23 and AHRR loci and thus the trend seen observed in F2RL3 

was not as clear. This may be caused by the small sample sizes within each group or perhaps different 

directional changes in DNA methylation on probes located in the same gene. Regardless, the obvious 

relationship between duration and cessation seen in the DNA methylation averages og the F2RL3 locus 

show that this gene is highly sensitive to both dosage and decay. It also hints at an interaction whereby the 

effect of one variable on DNA methylation is different at different values of other variables. Therefore, it 

is important to bear this in mind when creating a biomarker of cessation as this finding suggests that the 

rate and degree of DNA methylation change decay following smoking cessation is dependent on the years 

the individual had spent smoking before quitting, at least for some sites. This also strengthens the view that 

the reversal of methylome changes is more effective in those who have smoked for fewer years and, given 

the genes impacted by smoking, also argues that the best health outcomes can be proposed for those who 

quit as soon as possible after smoking initiation, regardless of the intensity of smoking during those years 

of tobacco use.  

 

5.5. Predicting Years Since Quitting 

 

A clear link between DNA methylation levels and smoking cessation has been established in this chapter. 

This offers an opportunity to use this quantification of DNA methylation in the creation of another predictor 

but this time for years since smoking cessation. This was carried out using the same protocol that Horvath 

developed when producing his epigenetic clock of age (Horvath, 2013) and as detailed in the previous 

chapter when predicting smoking duration.  
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The penalized regression model, with elastic net regularization, consisted of regressing a transformed 

version of cessation years from the training set, a sample of 178 former smokers, onto the 192 EPIC array 

probes associated with cessation. The elastic net predictor then automatically selects the CpG sites most 

associated with cessation and these were then used in the prediction. Before carrying out the regression, the 

cessation data was transformed by taking the cube root of each value. This altered the distribution shape of 

the data to make it perform better when carrying out the regression and also corrected for the slight right 

skewness of the data. The regression model was then run using the glmnet package from R as before 

(Friedman et al., 2010). Here the alpha parameter was again set to 0.5 and the lambda value set to 

0.03116628 as elucidated in a 10 fold cross validation using the same training set. The prediction of 

cessation was carried out using a test set consisting of the remaining former smokers and these values are 

compared to self-reported cessation lengths in Figure 5.5.1. 

 

This shows a correlation of 0.69 between the predicted and actual years since cessation, with a mean 

difference between the two of just 0.71 and a large standard deviation of 11.85. This large variation may 

Figure	5.5.1.:	Goodness	of	fit	for	predictor	of	years	since	quitting	smoking.	Shows	actual	years	
since	quitting	(x-axis)	against	predicted	years	since	quitting	(y-xis).	Pearson	correlation	coefficient	

=	0.69.	
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be explained by the varying duration these former smokers had spent smoking as it was observed that this 

can have an impact of the rate of DNA methylation change decay. It may also be the case that the reversal 

of DNA methylation is a multifaceted process and is more complicated than the accumulation of DNA 

methylation changes seen with increasing duration in current smokers. This might also explain the stronger 

correlation seen between predicted and actual years spent smoking despite the smaller sample size of 

current smokers available when creating it. Another limitation of the model comes from the lack of 

participants with a cessation period over 36 years. This may also explain why the model generally fits better 

in those with less than 36 years since quitting. With this said, the cessation predictor is still able to 

distinguish between those quitting for shorter or longer periods of time and this aspect may be beneficial 

as a biomarker of cessation. Furthermore, given the plethora of disease-related loci associated with 

smoking, such a biomarker may also give some indication of health outcomes for former smokers and 

relative risk of disease and cancer.  
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6. Summary 

 

This dissertation set out to consider the impact of smoking on DNA methylation in almost 1200 participants 

of the Understanding Society household study. Firstly, a simply qualitative comparison was made using 

linear models in the R package limma (Ritchie et al., 2015) which including the covariates of age, sex, 

blood process day, batch and estimates of blood leukocyte proportions (Houseman et al., 2012). This was 

run between beta methylation values, measured in whole blood using the Infinium MethylationEPIC 

BeadChip (Illumina, 2016) from participants with differing smoking statuses as reported in the wave 3 

questionnaires in the study. This revealed 5198 differentially methylated probes (DMPs) between current 

and never smokers, 826 between current and former smokers and 17 between former and never smokers 

after FDR adjustment for multiple testing. The majority of these loci were hypomethylated in smokers and 

ex-smokers compared to non-smokers and for the sites seen in all models, a reduction in their significance 

value and effect size was observed in each comparison. Within these DMPs came some novel probes 

located in genes whose DNA methylation state had not yet been linked to smoking. This included GNMT, 

related to the methyl donor for most cellular methylation reactions (Yen et al., 2013), and SLAMF7, a self-

ligand receptor in the signalling lymphocytic activation molecule family that is important in immunity (Guo 

et al., 2015). What this analysis could not show is any smoking-related variation in DNA methylation within 

active smoker and ex-smoker participants. To overcome this, a second set of analyses used quantitative 

data that detailed information on dosage, including the years spent smoking and the mean number of 

cigarettes smoked per day by participants. This was limited to participants who currently smoke given the 

reversal of DNA methylation changes observed in the qualitative analysis which may have hindered the 

linear models. Here a strong correlation between age and smoking duration became apparent and thus had 

to be removed from the model which then showed 1331 DMPs associated with years spent smoking. The 

intensity measure only yielded 23 DMPs. Additionally, effect sizes rose with increasing measures of both 

dosages however this was more strongly influenced by duration. Taken together this suggested that years 

of smoking is more closely linked to DNA methylation changes than number of cigarettes smoked. It also 

hints that duration rather than intensity is important in smoking-related disease as several genes associated 

with years spent smoking are crucial for good health. This suggested that DNA methylation levels might 
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offer potential as a biomarker for smoking years. Such a predictor was then created using a similar penalized 

regression approach, with elastic net regularization, to Horvath in his epigenetic clock of age. This was 

carried out in the glmnet R package (Friedman et al., 2010) where the predicted lengths of duration had a 

good correlation of 0.76 with the actual years spent smoking. The third and final analysis considered 

cessation and how it is involved in the decay of differential methylation between current and former 

smokers when compared to never smokers. A linear model yielded 192 DMPs associated with years since 

quitting in former smokers, most of which were hypermethylated. Looking at effect sizes, this 

hypermethylation of probes increased with increasing cessation, at least up to 36 years. The degree of 

reversed differential methylation was then quantified for each participant who had previously smoked by 

creating a smoking index (SI) using an equation created by Teschendorff et al. (2015). This measured the 

deviation of DNA methylation of the top 10 cessation-related probes from a non-smoker reference sample. 

In general, this showed that former smokers with the longest years since quitting had SI scores closer to 

zero than those with shorter cessation periods. As DNA methylation was clearly shown here to reflect the 

length of cessation of the participant, another predictor was created, using the same procedure as before, 

but this time for years since quitting. This showed a slightly weaker correlation of 0.69 between predicted 

and actual values for cessation but was still able to distinguish between long-term and short-term ex-

smokers. 

 

The work outlined in this dissertation has not only considered but perhaps advanced understandings of the 

relationship between DNA methylation and smoking. This has been done by identifying novel associations 

between DNA methylation at many CpG sites and tobacco use and further still through the creation of 

predictors capable of estimating years of duration in current smokers and years of cessation in former 

smokers. Thus, the aims of this project were met and has reinforced previous findings in this field of study. 
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