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Abstract—Highly sophisticated artificial neural networks have
achieved unprecedented performance across a variety of complex
real-world problems over the past years, driven by the ability
to detect significant patterns autonomously. Modern electronic
stock markets produce large volumes of data, which are very
suitable for use with these algorithms. This research explores
new scientific ground by designing and evaluating a convolutional
neural network in predicting future financial outcomes. A visu-
ally inspired transformation process translates high-frequency
market microstructure data from the London Stock Exchange
into four market-event based input channels, which are used
to train six deep networks. Primary results indicate that con-
volutional networks behave reasonably well on this task and
extract interesting microstructure patterns, which are in line with
previous theoretical findings. Furthermore, it demonstrates a new
approach using modern deep-learning techniques for exploiting
and analysing market microstructure behaviour.

Index Terms—Deep Learning, Finance, Limit Order Book

I. INTRODUCTION

Modern financial markets are highly technology driven
industries, generating a plethora of data within very short
time frames. The interaction of multiple market participants
in electronic limit order book exchanges, creates rich granular
datasets. These are challenging to analyse and study, due to
their size and scatteredness. However, limit order book data
are known as the crudest and utterly raw form of market
information containing all buy and sell information of the
market. It is known that markets are inefficient at these levels
of granularity. As a result, it is assumed that limit order book
data are a promising source for predicting short-term price
moves, even though they are highly noisy and hence extremely
difficult to analyse.

Due to a dramatic increase in computational power, larger
structured data sources, and improvements in the learning al-
gorithms, a renaissance of neural networks in form of so-called
deep-learning algorithms occurred within the last few years
[1]. These powerful machine-learning techniques have been
proven to be successful mainly in areas of computer vision
and language processing, however, are meanwhile tested and
applied on diversified fields in computer science, especially
where large labelled datasets exist. Moreover, it turned out that

deep-learning algorithms are capable of dealing with noise in
data reasonably well.

Diverse studies already showed evidence of valuable infor-
mation included in microstructure data. Malik and Markose [2]
developed a method to determine mid-term, intraday price
trends based on extracted evolutions of demand and supply
price curves from full-depth limit order book snapshots. Lipin-
ski and Brabazon [3] concluded, after investigating thousands
of order-book snapshots, that order book shape patterns may
contain valuable information for automatic trading. Further-
more, Tóth et al. [4] found significant differences in execution
queue length as well as order and deletion occurrence, around
large price jumps. The fact that the vast majority of all orders
are cancelled nowadays leads to the assumption that order
cancellations play a crucial role in price finding mechanism
as well.

Although machine learning has been extensively studied in
the domain of financial forecasting, it was rarely applied to
market microstructure data so far. Cao et al. [5] used a k-
nearest neighbour clustering to track down price manipulations
in high-frequency datasets. Already mentioned Lipinski and
Brabazon [3] used self-organising maps to get their results.
Also, reinforcement learning showed acceptable success in
trade execution optimisation [6] and trading [7], based on
order-book states. Both publications by Kearns and Nevmy-
vaka used handcrafted features like bid-ask-spread, volume
imbalance and transaction volumes to accomplish these tasks.
Besides that, there are just some publications covering finan-
cial forecasting with deep learning methods. Shen, Chao and
Zhao [8] used Deep Belief Networks for forecasting foreign
exchanges rates and were able to outperform a classical feed-
forward network. Yoshihara et al. [9] were able to outperform
a support vector machine in stock-price prediction while using
news sentiment based features in combination with stacked Re-
stricted Boltzmann Machines. Also, Kuremoto et al. [10] used
Restricted Boltzmann Machines and achieved decent results
in modelling chaotic time series. Regardless, the combination
of deep learning and market microstructure seems not to have
been studied yet.



An artificial neural network (ANN) can be trained to classify
arbitrary patterns in data, so it is a useful candidate for finan-
cial forecasting. ANNs are generally layered, with each layer
of the neural network performing a non-linear transformation
of the data. By using a “deep” neural network, the subsequent
layers in the structure iteratively abstract and pool information
from one layer to the next, allowing the neural network to be
trained to discover any arbitrarily complicated function.

Our research uses a well known deep-learning technique
called Convolutional Neural Networks (CNNs). A CNN is
a specific type of neural network which has been proven
to be especially successful at classifying noisy datasets such
as images and speech [11], [12]. CNNs promote the use of
shared weights within the neural network, which can improve
recognition rates without suffering from overfitting. One key
advantage of using a CNN is that it automatically identifies
basic “features” which are useful for recognition, and which
otherwise would have to be hand-crafted. This gives an advan-
tage especially in areas where meaningful features are hard
to extract, as in automated trading. However, using a CNN
presumes that data includes some form repetitive structure that
can be transformed into meaningful features. Due to the fact
that the majority of trading in modern markets is undertaken
by algorithms, this assumption seems plausible.

In this paper, we train a deep CNN on a full limit-order book
dataset, obtained from the London Stock Exchange (LSE)
from 2007-2008. We investigate whether deep learning can
gain advantage out of the huge amount of available market
microstructure data for forecasting purposes. This is a fist step
in the direction of adapting this promising new area of machine
learning to algorithmic trading. The experimental results show
that the proposed method is applicable to deal with market
microstructure data, although further work is necessary to
improve results.

II. METHOD

A. Raw market data

A dataset describing all recorded market messages at the
London Stock Exchange for the stock GB0031348658 (Bar-
clays PLC), between June 2007 and June 2008, was available.
The dataset covered 217 days, with approximately 72000
events per day in average. These market events describe every
bid and ask order made in the limit order book, as well as every
order deletion and matched trade. A formal description of the
data format is given by [13] [14]. From this list of market
messages, it is possible to reconstruct the limit order book for
the market at any time, and also to see the current best bid
and ask price at any time, and also to see every trade as it
happened. To exclude the opening and closing auction which
are following slightly different mechanisms, we restricted our
data to the time of continuous trading (8:01 to 16:30).

B. Parsing market messages

Extensive data preparation was necessary to transform the
steady data flow of market messages into a suitable form for
training a CNN. First, we rebuilt the limit-order book for each

moment of time by simulating the market mechanism used at
LSE at the time of recording [14], [15]. As a result, the best bid
and ask prices, as well as a snapshot of the limit order book,
was made available at each point in time. This time series of
limit-order book snapshots, events, and prices allowed us to
calculate training targets and inputs for the CNN. The training
targets were forecasts of price movement and price volatility,
and the CNN inputs were previous snapshots of limit-order
book’s state and event flow.

C. Input matrices

The fact that CNNs require one or more input matrices
makes it necessary to define a mapping from the stream of
market data that we have into matrix form. We decided to
prepare four different input matrices, representing the limit
order book current state at time t (At), recently happened
trades (Bt), incoming buy and sell orders (Ct), and transmitted
order deletions (Dt). This four-state representation covers all
of the market microstructure inherent information available to
human and algorithmic limit-order book traders. Each of these
matrices has a time axis of recent events along the x-axis, and
price information in the y-axis.

At any given time t, a snapshot of the order book is given
by Ot. When presenting the order book in matrix form to the
CNN, we first rescale the prices in Ot to be relative to the
latest mid-price pt. To keep the order book size manageable,
we only include β price levels above and below price pt into
the order book, for some given price-depth truncation constant,
β. Hence a snapshot of the order book Ot can be represented
as a column vector of volumes corresponding to the total bid
and ask size at each price. By concatenating several column
vectors of this kind, side-by-side, from a time window of width
N , moving forward in chunks of time α, we can build the
matrix At of dimension 2β × N/α, sampled from times t −
N, t−N +α, ..., t. This matrix is shown at the bottom left of
Fig. 1.

Similarly, we can represent any matched trade at time t
as a column vector of zeros everywhere, except for at the
price level at which the order took place, with the magnitude
of this single non-zero number set to indicate log trade size.
Hence the matrix Bt is formed by concatenating these order
vectors from times t − N to t. We downsampled time into
chunks of size α by aggregating information, so the final
matrix size of Bt was again 2β × N/α. Downsampling was
necessary to reduce input size and thus, allows for training
in a reasonable amount of time. However, it remains to be
examined in later work whether or not the downsampling
process removes valuable information while blurring the exact
timing information of a specific event.

The matrices Ct and Dt were formed in an identical way.
All input matrices are represented along the bottom of Fig. 1.

The hyperparameters α, β and N needed to be decided in
advance. Each of them defines how much information the
network is presented and thus has a significant influence on
the probable outcome. Their selection addresses the sensible
question of how much information is necessary to build a



Fig. 1. Model of the designed data transformation process. A market data series (visualized, top) is transformed into four CNN-readable input matrices
(bottom), described in Section II-C. The forecasting task is to predict volatility or price trend after γ events into the future.

meaningful and comprehensive representation, in order to
learn the dedicated target. Here, we decided to use N = 180,
α = 3, and β = 30. This parameter selection was made
with consideration of the (limited) computational resources
available (N = 180, α = 3) and the assumption that the vast
majority of market activity happens in a small corridor around
the best bid and ask price (hence, β = 30).

CNNs are set up to be able to receive several different
input “channels”. In image analysis, these might represent the
different red-green-blue content of an image. In our case, the
matrices At, Bt, Ct and Dt were each treated as a different
input channel. To investigate their relative relevance to our
forecasting problem, we trained three different combinations
of these input matrices.

D. Labelling data with training targets

The objective for learning was a forecasting task, with look-
ahead γ events. There were two learning tasks used: a volatility
prediction task, and a price-trend prediction task.

The price-trend prediction problem was constructed by
trying to predict the direction of simple realised return, defined
by

rt =
pt+γ − pt

pt
, (1)

and the volatility-prediction task consisted of trying to predict

the velocity of realised price volatility, defined by

σt = StdDev (pt, pt+1, ..., pt+γ) (2)

For these forecasts, we used a look-ahead of γ = 20
events into the future. For the sake of simplicity, all values
were calculated based on mid prices. Regarding the usually
very-tiny returns on a high-frequency data basis, σt in (2)
is calculated using future prices instead of future returns,
i.e. differing from the definition of volatility usually used in
finance. Hence σt serves rather as a measurement of range of
the future prices.

Finally, calculated rt and σt were divided into a classes
using fixed thresholds thr and thσ , as follows:

class(rt) =


1 if rt < −thr
3 if rt > +thr

2 otherwise
(3)

and

class(σt) =

{
1 if σt ≤ thσ

2 if σt > thσ
(4)

For the sake of training optimisation, the class thresholds
thr = 1 × 10−7 and thσ = 0.05, were determined on the
best possible, equal distribution of all classes. That leads to a



three-class problem for price-trend forecasting, and a two-class
forecasting problem for price-volatility forecasting1.

E. Architecture of CNN

Our neural-network architecture was based upon Caf-
feNet [16] and GoogleNet [17], both of which have been
proven successful on difficult image recognition tasks already.
We adapted our architecture based on preliminary experiments
done on a small sub-sample of the data to make sure that
the network started learning. Our architecture is shown in
Fig. 2. The model consists of three convolutional layers
(kernel=5× 5, stride=1), three ReLU layers, and two pooling
layers (kernel=2× 2, stride=2). The bottom of the network is
built by two fully connected layers and a final softmax-layer
for classification. To prevent overfitting, dropout layers [18]
with a ratio of 75% (except last drop-out layer which has a
ratio of 50%, following [18]) were interconnected.

III. RESULTS

We created three different training datasets: I containing just
order book inputs (At), II containing order flow inputs (Bt +
Ct + Dt) and III containing all combined (At + Bt + Ct
+ Dt). A network was trained on each of the three training
datasets, and for each of the price-trend and price-volatility
prediction tasks, i.e. leading to six networks being trained in
total.

All networks were implemented as well as trained using the
high-level framework Caffe [16]. The cross-entropy function
was chosen as the loss function. Training used RMSProp [19]
with a base learning rate of 0.0005 and an RMS decay value
of 0.98. Training took over 200,000 iterations, corresponding
to about 100 hours of training time for each network, on a
Tesla K80 GPU setup.

We split the datasets into training, validation and test sub-
sets, in ratio 80:15:5. Figs. 3 and 4 show training progress on
the price-prediction and price-volatility prediction tasks. The
training progress was almost homogeneous with decreasing
loss for the training and validation sets during the training
period.

Training progress was validated using the kappa statistic.
The kappa statistic κ evaluates current prediction accuracy
about the actual class frequency, therefore showing the im-
provement a classifier gives as a proportion of that of a perfect
classifier [20]. More generally, the kappa statistic shows the
improvement of a classifier over simple random labelling,
whereas a κ ≤ 0 indicates no improvement (respective to
random labelling) and a κ = 1 indicates a perfect classifier.
κ was calculated over a full epoch on the test dataset every
20,000 iterations.

Finally, for each dataset, the best performing network snap-
shot, as judged by kappa on the validation set, was taken to
measure accuracy on the retained test set. These results are

1In the following the classes are also referred to as (down, equal, up) for
price trend and (high, low) for price-volatility. The threshold was chosen with
respect of a best possible equally distribution of training targets over possible
classes.

listed in Table I. The performance on the test set was similar to
the performance we observed during training on the validation
set, shown in Table II.

A. Discussion

Accuracy and kappa statistics indicate that all networks
started to learn, although with different success. While some
networks improved prediction accuracy over time, others had
already reached peak performance in the beginning or show
fairly unstable behaviour.

In general, three main findings are to highlight.
1) The results indicate that CNNs are able to deal reason-

ably well (κ > 0) with the forecasting tasks provided,
and start to extract meaningful features.

2) Different learning behaviour is observable between both
target groups. In general, predicting price-volatility led
to better performance than forecasting price-trend direc-
tion.

3) Presenting all available information to the CNNs led
to the best performance for both price-trend and price-
volatility prediction. Moreover, it seems that both fea-
tures encourage different learning behaviour.

Although the prediction period is short and the prediction
accuracy just slightly higher than random labelling, the results
are relevant due to the extreme inherent difficulty of the
problem. The highest achieved kappa statistic κ = 0.223
for price-prediction on combined information source shows
that the network makes correct decisions far above random
guessing.

Analysing the feature maps learned by the network allows
for getting an idea about what the network might be de-
tected [21]. In this case, it seems like the networks extracted
features like possible algorithmic patterns as well as detectors
for volatility gaps. The latter is already a well-documented
phenomenon for having an impact on price moves [22]. Once
more, this is an indication of reasonable learning.

The different behaviour in learning and prediction indicates
that event-flow and order-book snapshots contain different
exploitable types of information. Whereas the network trained
on order flow for price-move prediction shows a reasonable
distinction between class up and down, the network trained on
order-book states only learned to detect if the price stays fairly
equal. It is fair to assume that higher prediction accuracy, in the
case of using all four input matrices, comes from combining
patterns of both sides.

As assessed in preliminary tests, the use of dropout as a
regularisation method reduced overfitting significantly. How-
ever, overfitting is still observable in almost all networks and
remains a challenge for this class of financial-data forecasting.

IV. CONCLUSIONS

In this work, a deep convolutional neural network was
trained on market microstructure data for financial forecasting
purposes. While analysing different structures and scopes, this
study has shown that the selected deep-learning technique, in
combination with the developed data transformation, works



Fig. 2. Schematic overview of the architecture of the CNN as generated by the used Caffee framework

TABLE I
RESULTS OF THE NETWORK PERFORMANCE ON THE TEST SET (OUT-OF-SAMPLE DATA). THE “ITERATION” COLUMN INDICATES WHEN THE NETWORK

SNAPSHOT WAS TAKEN. THE * INDICATES MAX-VALUE OF EACH COLUMN.

Dataset Price-trend Price-volatility

Iteration Accuracy Kappa Iteration Accuracy Kappa

I (order book) 120000 0.414 0.122 20000 0.630 0.261
II (order flow) 160000 0.400 0.102 200000 0.563 0.124
III (combined) 120000 0.483* 0.223* 140000 0.682* 0.364*

Fig. 3. Training progress of the price-trend prediction network, using the
combined inputs of order book and event flow information.

TABLE II
MAXIMAL PERFORMANCE DURING THE TRAINING PERIOD FOR THE

VALIDATION DATASETS. THE * INDICATES THE MAX-VALUE OF EACH
COLUMN. THE NUMBER IN BRACKETS SHOWS THE CORRESPONDING

(BEST) TRAINING ITERATION.

Dataset Price-trend Price-volatility

Accuracy Kappa Accuracy Kappa

I (order book) 0.430 0.128 0.649 0.243
(156400) (120000) (41000) (20000)

II (event flow) 0.400 0.093 0.639 0.137
(143000) (160000) (142000) (200000)

III (combined) 0.487* 0.226* 0.673* 0.342*
(79000) (120000) (78000) (140000)

reasonably well for this problem. The results indicate that in-
cluding both limit order book and order-flow information leads
to decent prediction accuracy. This is even more surprising

Fig. 4. Training progress of price-volatility prediction network, using the
combined inputs of order book and event flow information.

because we did not need to handcraft meaningful input features
in advance. Although the basis of decision making is hard
to follow, and thus extracting usable theoretical knowledge is
difficult, this work constructs a potential proof of concept for
a deep-learning system based on market microstructure data.

However, it remains to be seen if the results hold for longer
forecasting periods as well as for other stocks and for up-
to-date data. Promisingly, informal preliminary experiments
using much longer forecasting periods (γ = 500) showed
comparable results. In further work, different setups and
network structures could be tested to get a broadened picture
about possible fields of applications.

Through the definition of more specific training sets, it is
probably possible to make use of the feature extraction ability
for gaining theoretical insights about market microstructure
patterns around specific market events. First strong indications



of clear extractable patterns were given in this work. Finally, in
consideration of the high computational cost, it also remains to
be seen if the technique used performs clearly better than other
machine learning methods or even methods of econometrics,
even though those methods require the manual choice of
meaningful input features first.

Altogether, it can be said that deep learning seems to be
legitimate as a potential analysis method and is applicable for
high-frequency market data.
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