
Match Memory Recurrent Networks
Spyridon Samothrakis

Institute for Analytics and Data Science
University of Essex

Wivenhoe Park
Colchester CO4 3SQ

Email: ssamot@essex.ac.uk

Tom Vodopivec
Faculty of Computer and Information Science

University of Ljubljana
Vecna pot 113, Ljubljana, Slovenia
Email: tom.vodopivec@fri.uni-lj.si

Maria Fasli
Institute for Analytics and Data Science

University of Essex
Wivenhoe Park

Colchester CO4 3SQ
Email: mfasli@essex.ac.uk

Michael Fairbank
Computer Science and Electronic Engineering

University of Essex
Wivenhoe Park

Colchester CO4 3SQ
Email: m.fairbank@essex.ac.uk

Abstract—Imbuing neural networks with memory and atten-
tion mechanisms allows for better generalisation with fewer data
samples. By focusing only on the relevant parts of data, which
is encoded in an internal “memory” format, the network is
able to infer better and more reliable patterns. Most neuronal
attention mechanisms are based on internal networks structures
that impose a similarity metric (e.g., dot-product), followed by
some (soft-)max operator. In this paper, we propose a novel
attention method based on a function between neuron activities,
which we term a “match function”, which is augmented by a
recursive softmax function. We evaluate the algorithm on the
bAbI question answering dataset and show that it has stronger
performance when only one memory hop is used in both terms
of average score and in terms the number of solved questions.
Furthermore, with three memory hops, our algorithm can solve
12/20 benchmark questions using 1000 training samples per task.
This is an improvement on the previous state of the art of
9/20 solved questions, which was held by end-to-end memory
networks.

I. INTRODUCTION

We have recently witnessed a surge in mechanisms and
methods that try to focus learning schemes on the most
relevant parts of the data – especially after the data has been
encoded in some internal memory form. These mechanisms
have been presented under various auspices and names (e.g.,
“Memory Networks” [1] and “Neural Turing Machines” [2]).
Though not explicitly stated, the internal structure of these
models is (at least partially) inspired by Reinforcement Learn-
ing (RL). A part of the network acts similarly to an agent tries
to identify and use only relevant patterns in the data. Thus,
a common characteristic of such networks, is the use of the
“softmax” function (for another example see [3]) for selecting
where to focus attention. The softmax activations are not used
exactly as in RL, where they encode probabilities of actions,
with only one action actually happening – but nevertheless
they smoothly “blank out” relevant parts of the data. Another

option is to use some kind of probabilistic max operation (as in
RL), but this is non-differentiable, and thus no easy end-to-end
solution exists. There are methods for addressing this, but they
require internal sampling in order to approximate gradients [4].

The creation of such attention-focusing internal structures
falls within a greater, wider effort to impose priors within
neural networks. These structures aim (at least in principle)
to heavily bias and/or limit the possible functions expressed
by a network in ways that are consistent with neuroscientific
observations. For example, we know that attentional mecha-
nisms play a crucial role in vision [5]. If one is to combine this
with the intuition proposed about the use of RL-like methods
internally, one can infer that perception might not be a passive
process, but rather more like an active search for relevant clues
and information.

Here we present an alternative structure, whose aim is to
help the network focus attention without explicitly comparing
each possible piece of data with all others – but rather
having each element stand out individually. Instead of taking
a softmax operation, we provide lower (i.e., closer to the
output) layers with a “match function” – which identifies the
vectorial difference between the relevant task the network has
to solve and the memory, thus identifying areas of “interest”
without using a similarity measurement between the two
vectors but rather operating on each individual vector element.
We evaluate such an architecture on the Basic Tasks for AI
(bAbI) dataset [6], an artificial benchmark of 20 questions. The
dataset provides an excellent substrate for testing language
modelling, memory, and attention tasks and it’s goal is to
create a generic AI substrate benchmark. We compare our
algorithm both to a set of baseline networks and to previous
research on weakly supervised memory networks [7] and show
that our method delivers superior performance.

The rest of the paper is organised as follows; all the



necessary background is introduced in Section II. We explain
the new network architecture in Section III. In Section IV, we
analyse and discuss the experiments performed. We conclude
with a short discussion in Section V.

II. BACKGROUND

In this section, we introduce the relevant background for
this paper.

A. Memory Networks

Since our architecture is highly reminiscent of the ar-
chitecture of Sukhbaatar et. al. [7], it is worth revisiting
some basic concepts about memory networks. Let us start by
defining a memory network [1]. A memory network is a tuple
< I,G,O,R >, where, the role of the network is to:

1) Receive input x and convert it to an internal represen-
tation I(x).

2) Take the representation I(x) and update the state of
all memories m individually using function G, mi =
G(mi, I(x),m), ∀i – with i being a memory.

3) Given all the memories observed thus far, perform o =
O(I(x),m), which produces the output symbol in the
same feature space o.

4) Give a final response r = R(o), n the representation
expected by the system (e.g., an action, a word etc.).

This list of steps was partially inspired by the inability
of machine learning algorithms to deal with widely different
tasks. One can learn how to address a task, store it in some
kind of memory and recall it when needed. Most learning al-
gorithms have severe issues with dealing with non-stationarity
in timed data. Once the algorithm learns a new concept, it
forgets the old ones. Sometimes, such behaviour is desirable,
but most often, it is an unwanted byproduct. For example,
when a human learns to ride a bicycle, and afterwards learns
how to drive, he does not forget his bike-riding skills. Humans
somehow retain a memory of almost everything and are able
to recall relevant information on-the-fly. We refer to these
procedures of storing past information and selecting where
to focus as memory and attention, respectively; although note
that the terms are used somewhat loosely in this context.

The concept of memory as possibly distributed, but dis-
tinct “buckets” of past knowledge, is not unique to Memory
Networks. Memory has also been discussed as part of an
effort to create algorithms that learn incrementally to perform
widely different tasks without losing the ability to generalise.
This has been explored in the Neural Networks literature and
is closely aligned to catastrophic forgetting or catastrophic
interference [8]. When it comes to non-temporal patterns, the
most common solution is to train the network by interleaving
“pseudopatterns” alongside new data [9]. These are patterns
created by inserting random (but from the distribution of
previously presented examples) noise in the neural network
and getting some output. For temporal patterns [10] (like the
ones used in this article) the problem is more pronounced.
As Ans et al. [10] put it: “humans often forget, connectionist
systems forget catastrophically”. To this end, they introduced a

memory mechanism that only used the last output of a recur-
rent neural network (the attractor state) to generate pseudo-
sequences. Though the literature in catastrophic forgetting
and memory networks/attention is linked in scope, there are
considerable differences. Memory networks should not have
issues with forgetting as they were devised to avoid that
problem. However, in practice when the underlying technology
is a neural network, forgetting might occur. Thus it is better
to think of memory networks as “focus and recollection”
methods, rather than incremental learning methods.

Note that the “memory network” terminology does not refer
directly to neural networks – there is no requirement for any
kind of neural structure to exist within a memory network, and
thus memory networks are actually implementation agnostic
– however, is is often the case that researchers who deal
with these concepts use neural networks as the substrate.
From a neural network standpoint, we would like to link and
incorporate all these into a single network that is trainable end-
to-end through (some version of) stochastic gradient descent.

B. Basic Tasks for AI (bAbI)

Several datasets have been used for benchmarking algo-
rithms that have attention mechanisms, ranging from caption
generation [11] to translation [12]. What makes these datasets
particularly appealing is that humans seem to intuitively focus
on small subsets of observed data, rather than try to explain
everything at once. One such dataset is bAbI [13]. bAbI
contains 20 different question answering tasks, each having
1000 training examples, followed by 1000 testing samples.
This results in a dataset of 20, 000 training and 20, 000 testing
instances. A single example sequence followed by a question is
provided below – for task 3, QA3 - Three Supporting
Facts:

Sentence: MARY MOVED TO THE BATHROOM. SANDRA
JOURNEYED TO THE BEDROOM. MARY GOT THE FOOT-
BALL THERE. JOHN WENT BACK TO THE BEDROOM. MARY
JOURNEYED TO THE OFFICE. JOHN JOURNEYED TO THE
OFFICE. JOHN TOOK THE MILK. DANIEL WENT BACK TO
THE KITCHEN. JOHN MOVED TO THE BEDROOM. DANIEL
WENT BACK TO THE HALLWAY. DANIEL TOOK THE AP-
PLE. JOHN LEFT THE MILK THERE. JOHN TRAVELLED TO
THE KITCHEN. SANDRA WENT BACK TO THE BATHROOM.
DANIEL JOURNEYED TO THE BATHROOM. JOHN JOURNEYED
TO THE BATHROOM. MARY JOURNEYED TO THE BATHROOM.
SANDRA WENT BACK TO THE GARDEN. SANDRA WENT
TO THE OFFICE. DANIEL WENT TO THE GARDEN. SANDRA
WENT BACK TO THE HALLWAY. DANIEL JOURNEYED TO THE
OFFICE. MARY DROPPED THE FOOTBALL. JOHN MOVED TO
THE BEDROOM.

Question: WHERE WAS THE FOOTBALL BEFORE THE
BATHROOM?

Answer: OFFICE

Notice that it is extremely hard even for a human to answer
the question properly. One has to scan through the text above
– memorize or write down sentences relevant to the word
football and then rescan the data a number of times before



being able to give an answer. Below we mark in bold the
relevant sentences:

MARY MOVED TO THE BATHROOM. SANDRA JOURNEYED
TO THE BEDROOM. MARY GOT THE FOOTBALL THERE.
JOHN WENT BACK TO THE BEDROOM. MARY JOURNEYED
TO THE OFFICE. JOHN JOURNEYED TO THE OFFICE. JOHN
TOOK THE MILK. DANIEL WENT BACK TO THE KITCHEN.
JOHN MOVED TO THE BEDROOM. DANIEL WENT BACK TO
THE HALLWAY. DANIEL TOOK THE APPLE. JOHN LEFT THE
MILK THERE. JOHN TRAVELLED TO THE KITCHEN. SANDRA
WENT BACK TO THE BATHROOM. DANIEL JOURNEYED TO
THE BATHROOM. JOHN JOURNEYED TO THE BATHROOM.
MARY JOURNEYED TO THE BATHROOM. SANDRA WENT
BACK TO THE GARDEN. SANDRA WENT TO THE OFFICE.
DANIEL WENT TO THE GARDEN. SANDRA WENT BACK TO
THE HALLWAY. DANIEL JOURNEYED TO THE OFFICE. MARY
DROPPED THE FOOTBALL. JOHN MOVED TO THE BED-
ROOM.

Notice how the problem becomes easier when sentences
relevant for the task are highlighted. Hence, if one manages to
identify the relevant part of the data, it becomes relatively easy
to find the correct answer. Attention mechanisms are exactly
that – a method for telling a neural network to only look
at limited parts of the data. But what is the network paying
attention to? The sentences can be encoded in an internal
vectorial form and be used as memory – an internal sentence-
by-sentence representation.

C. Weak vs. Strong Supervision

If one is to train a system to learn using examples such as the
one provided in the previous subsection, there are two possible
ways to organise the data. If one has access to metadata which
describes which parts of the main data are important, then
the metadata can be used to help the network learn where to
focus [14]. This is termed strong supervision. In the above
example, during training (but not during testing) the network
would be provided with the relevant sentences to the question.
However, it is possible that such information does not exist,
and the network has to infer what or where to attend even
during training. This is termed weak supervision. In this paper
we are only going to work with weakly supervised networks –
no information about where to attend is given to the algorithms
at any point.

D. End-To-End Memory Networks

Our work picks up from the earlier efforts to create end-to-
end memory networks. These were introduced by Sukhbaatar
et.al. [7], who built on the work of [3].

Initially, the network encodes the sentences in an embed-
ding matrix (or, equivalently, a one-hot-encoding), which can
roughly be connected to G operations of a memory network.
Following that, it takes the input question q and uses another
embedding matrix to transform it internally to an embedding.
This corresponds to operation I of the tuple < I,G,O,R >,
which we detailed in the previous section. Each sentence (in
an internal memory form, corresponding to component G)

is aligned one by one with a single question (again, in an
internal memory form). For each combination of a question
and sentence, the system performs a dot product operation,
which can be understood as a similarity metric. Following the
dot product operations (i.e. one for each sentence), a softmax
function is applied to the set of dot product results – it attempts
to “choose” which sentence and question are “closest” to each
other, corresponding to component O. Finally, an output is
generated (corresponding to the operation R), which is the
final output of the network.

Compared to the model above, the one we propose in this
paper modifies how the comparison is performed and how
the attention mechanism operates. This is detailed in the next
section.

III. METHODOLOGY

In this section we introduce our architecture, which we term
match memory recurrent networks. Alongside the architecture,
we also note the implementation details, and provide general
comments. A pictorial depiction of the network is illustrated
in Fig. 1. The architecture is rather general and can be applied
with minor modifications to any data setup. For example, if
one was encoding real-valued data, then the initial embedding
layer would be redundant.

The model first encodes each word into a fixed-length
vector, of length F . This is done by two separate embedding
layers [15], one which encodes each word in the sentences and
one which encodes each word in the question. In this paper we
train the whole network end-to-end; however, the embedding
layers could be easily replaced by pre-trained layers, such as
the those provided by the popular word2vec [15] tool, which
was trained on 300GB of text data. This allows the use of
such an architecture in arbitrary text scenarios.

Since each word is encoded as a fixed-length vector of
dimension F , and the lengths of the sentences and question
are not known a priori, the hidden layers of the neural network
need to include some kind of recurrence to compress the
arbitrary length word sequences down into a fixed length. This
compression is performed slightly differently between the way
questions are handled and the way sentences are handled, as
explained below.

Each “sentence” is compressed into a fixed length using
a temporal max-pooling method [16]. Suppose a particular
sentence is of length T words. Each element of that sequence,
being an embedded word, is a vector of length F . Temporal
max-pooling takes this T×F sequence, and subsamples across
time, resulting in a single vector of length F , as follows:

If xt is the embedding of the t-th word of a sentence,
with components (xt)

k for k = 1 . . . F , then the max-pooled
combination of all words in the sentence vectors is given by
mp, a vector with components hk, defined by:

mpk = max
(
(xt)

k
)
, ∀k = 1...F. (1)

This results in the whole sentence being represented by a
single vector of length F . Intuitively, we hope to have reduced
each sentence down to its most important features. After



Fig. 1: The match memory recurrent network architecture. Non-Linearities might be applied in “time” if the input at this stage
has more than two dimensions.

applying this max-pooling method to each sentence, there will
be a set of vectors each of length F ; one corresponding to each
sentence. Thus, in our case each sentence is a pooling region
[16].

Questions are treated slightly differently. Suppose the ques-
tion contains T words, and the tth word is xt (in its embedded
form). A recurrent neural layer receives each xt as input, one
by one. As it receives each word (each vector xt), it combines
that word with its short-term memories of previous words,
using its recurrent connections. After all the words of the
question have been processed in this manner, the final hidden
values of the recurrent layer should represent, in some sense,
the “essence” of the question, in a single vector of length F .
We refer to this recurrent layer as the “Question-Compressor
RNN”, which is a subnetwork within the larger neural network
architecture shown in Fig. 1.

The functionality of the question-compressor RNN is de-
fined by:

cmi = φ(Wxi + Ucmi−1 + b) ∀i = 1...T (2)

where φ is an activation function, W is a weight matrix of the
input connections and U is the weight matrix of the recurrent
connections, and where cm0 = 0. After this mini-RNN has run
through all the words of the question, the final hidden vector
cmT is retained and fed into the next stage of processing
(which is the match function, described next).

The data processing described so far has produced a se-
quence of vectors of length F ; one for each “sentence” and one
for the “question”. Let P be the number of sentences, and let
the sentence vectors be s1, s2, ..., sP . Let the question vector
be q. Now, we proceed to perform the match operation, which
calculates a match between each sentence and the question:
Define the match of the ath feature (component) of sentence
st, to the corresponding feature of the question q, as

ma
t = |sat − qa|(sat − qa) . (3)

This is what we call the match function. It is intended to tell
us how helpful each particular sentence st is in answering the
question q. Note that the match function is NOT a similarity
function or a distance measure between vectors - it does not
measure the difference between two vectors but between each
element of the vector.

The shape of the match function was chosen so that it pro-
vides an easy way to calculate a vector “difference”. Note that
the match function is very closely related to the usual squared-
difference function, (sat − qa)2; except in our match function,
the presence of the modulus function can flip the sign to a
negative, so that our match function gives a useful indication
of direction too. This specific choice of match function was
just an initial guess, and we expect more rigorously justified
match functions to be explored in the future. Examples of such
possible functions are given in Fig. 2. The idea is simple – we



(a) x− y (b) |x− y| (c) |x− y|(x− y)

Fig. 2: Three dimensional plots of possible match functions. We use (c) in this paper.

need some kind of function that will say how far apart each
feature is from each other in the memory space.

In the above manner, a match vector mt is obtained for
each sentence (i.e. for all t = 1 . . . P ). Each match vector mt

then gets pushed through a single neural-network layer (i.e. a
non-linearity), followed by another neural layer (i.e. another
non-linearity) of output dimension 2. Let the activations of the
two nodes of this neural layer (which correspond the match
for sentence number t) be represented by the two-dimensional
vector yt.

The components of the vector yt then get transformed by
a softmax function, to obtain a new 2-dimensional vector zt,
defined by:

zit =
exp yit

exp y0t + exp y1t
, for i ∈ {0, 1}. (4)

This softmax transformation is there to ensure that the
components of zt sum to 1. These two components of zt,
are used to express a preference of how important the current
sentence match mt is, compared to the previous sentence’s
match mt−1. This will hopefully enable the neural network to
pay attention to important sentences. Thus we update a hidden
vector ht (of dimension F ) via the recursive update:

ht = z0t ∗ ht−1 + z1t ∗mt , (5)

and where this recurrence is initialised with ht = 0.
Intuitively, at each time-step the network goes over the result

of the match function and decides whether it is important or
not. The softmax function creates a probability distribution for
each match.

This procedure of “match, activation function, attention”
completes one pass over the memory, or alternatively one
“hop”. In some cases, because information from the memory
sentences is needed in order to make any inference, it is
necessary to feed the data from the hop back to a new match
function. In such case, the second hop match function is
defined as

ma
t = |sat − ho1 − qa|(sat − ho1 − qa) , (6)

where ho1 is the vector that was produced in the last hop. This
can be repeated arbitrarily or for as long as the computing
resources allow. Note that after each layer we introduce a
dropout [17] procedure, for regularization purposes.

Following this, the network is augmented with three feed-
forward layers. Whenever an activation function/non-linearity
is mentioned we use the Leaky ReLU [18], a modern activation
function. Leaky ReLUs have exhibited better performance
[19] than standard rectifier units. The activation function is
given below:

φlri =

{
xi if xi ≥ 0 ,
xi

ai
if xi < 0 ,

(7)

Finally, a softmax layer produces the final output vector.
This output vector must have the same dimension as the
vocabulary of all of the possible answers . The interpretation is
that the component of the output vector with the highest value
gives the one-word answer to the question. During training, a
softmax activation function is used because it is differentiable,
but during testing we use the max to choose the correct output.

IV. EXPERIMENTS

In this section we detail the experimental configuration and
present our results.

A. Setup

We compare the performance of our match memory recur-
rent neural network (MMRNN) with the performance of a
standard recurrent long short term memory (LSTM) neural
network and the performance of a end-to-end memory network
(MemNN), at different numbers of hops over the data. This is
done on the bAbI dataset [13]. We measure each method in two
ways: (1) experimentally determine the mean overall accuracy,
and (2) count the number of solved tasks, where solved is
defined by the authors of the benchmark [6] to represent an
accuracy above 0.95.

Each experiment uses all of the 20 available questions/tasks,
which results in 20, 000 training examples and 20, 000 testing
examples. First, each network is trained for 1000 epochs, and
then we measure the accuracy on the test set, which was not



TABLE I: Results for several architectures, expressed as accuracy of correct prediction (i.e. percentage of correct predictions).
Results on previous baselines [20] are presented as well (LSTM, MemNN). The rest of the columns are our results from this
paper.

Task Number and Name LSTM MemNN-
1

MemNN-
2

MemNN-
3

MMRNN-
1

MMRNN-
2

MMRNN-
3

QA01 - Single Supporting Fact 0.5 0.992 1 1 1 1 1
QA02 - Two Supporting Facts 0.2 0.38 0.844 0.886 0.362 0.812 0.966
QA03 - Three Supporting Facts 0.2 0.231 0.684 0.781 0.346 0.707 0.748
QA04 - Two Arg. Relations 0.61 0.772 0.978 0.866 0.891 0.885 0.891
QA05 - Three Arg. Relations 0.7 0.89 0.866 0.856 0.847 0.838 0.834
QA06 - Yes/No Questions 0.48 0.928 0.977 0.972 0.999 1 1
QA07 - Counting 0.49 0.841 0.746 0.817 0.881 0.767 0.862
QA08 - Lists/Sets 0.45 0.868 0.883 0.907 0.95 0.969 0.965
QA09 - Simple Negation 0.64 0.949 0.98 0.981 1 1 1
QA10 - Indefinite Knowledge 0.44 0.894 0.95 0.935 0.997 0.999 0.999
QA11 - Basic Coreference 0.62 0.916 0.988 0.997 0.926 0.928 0.955
QA12 - Conjunction 0.74 0.996 1 0.999 1 1 1
QA13 - Compound Coreference 0.94 0.937 0.998 0.998 0.946 0.954 0.969
QA14 - Time Reasoning 0.27 0.631 0.919 0.931 0.784 1 1
QA15 - Basic Deduction 0.21 0.536 0.995 1 0.839 1 1
QA16 - Basic Induction 0.23 0.526 0.487 0.973 0.467 0.457 0.457
QA17 - Positional Reasoning 0.51 0.556 0.588 0.596 0.56 0.522 0.544
QA18 - Size Reasoning 0.52 0.904 0.897 0.906 0.914 0.907 0.913
QA19 - Path Finding 0.08 0.093 0.101 0.12 0.133 0.109 0.141
QA20 - Agent’s Motivations 0.91 1 0.999 1 1 1 1

Overall mean 0.487 0.742 0.844 0.87605 0.7921 0.8427 0.8622
Count above 0.95 threshold 0 3 9 9 6 10 12

used during training. The loss function is categorical cross
entropy.

The initial infrastructure was developed on top of a Keras
example 1. Note that breaking down the input into sentences
happens through padding as a pre-processing step . Each layer
had 128 units. Notice that we do not use LSTM or GRU or any
other gate architecture in the recurrent layers. Batch normal-
isation [21] is used on each layer. Weights where initialised
using Gaussian Glorot initialisation [22], whereas recurrent
layer weights are initialized using orthogonal initialisation.
Attention layers have a dropout rate of 0.1, whereas deep,
non-linear layers have a rate of 0.5. The training algorithm is
Adam [23], with a learning rate of 0.001. Adam is a member
of a newer iteration of algorithms that augment stochastic
gradient descent by tuning the learning rates of individual
weights on the fly. The time it takes to process one iteration
is 20, 50 and 90 seconds on an Nvidia 980ti for 1-hop, 2-
hop and 3-hop examples, respectively. As defined earlier, hops
are passes over memory – in our case, passes over encoded
sentences.

All work is done in Python, Theano and Keras 0.22. The
full implementation is available at https://github.com/ssamot/
distnet. Note that the comparison might not be entirely fair, as
we do not make a comparison using the same learning method
and number of parameters. On the other hand, we are trying
to improve a baseline of results we think that any combination
of architecture and results should be acceptable.

1https://github.com/fchollet/keras/blob/master/examples/babi rnn.py
2https://github.com/fchollet/keras

B. Results

The results are presented in Table I. The column headers list
the evaluated architectures, where the number at the end of an
architecture label signifies the number of hops over the data.
The rows present the accuracy for each task and the overall
performance expressed with the two metrics described earlier.

The first three tasks have in common that one can easily
infer the answer by processing and focusing on the relevant
parts – whereas little more post-processing is needed when
the final fact is discovered. At the task Q01 - Single
Supporting Fact all the methods, with the exception
of LSTM, perform adequately. This is the basic task where
only one hop is needed. MMRNN-1 performs better than
MenNN-1, it does not make mistakes. At the task Q02 -
Two Supporting Facts there is a higher variance in the
results. LSTM and 1-hop operations fail, which is understand-
able, because the task is devised to require two memory passes.
Despite this, the best results are obtained by MMRNN-3,
followed by MemNN-3 – both being better than their 2-hop
variants. This is somewhat counter-intuitive when considering
that the extra hop is redundant and that in such 3-hop networks
one might expect overfitting. At the task QA03 - Three
Supporting Facts MemNN outperforms MMRNN at 3-
hops, but not at the lower two numbers of hops.

The second group of tasks involves relationships where a
bag of words is not enough to answer the question. Consider,
for examples, the questions “What is north of the bedroom?”
vs. “What is the bedroom north of?” – both questions have
very similar words, but different meaning. The goals of



the tasks QA04 - Two Arg. Relations and QA05 -
Three Arg. Relations is to capture such a relationship
between two and three arguments, respectively. Note that in
both tasks only one relevant fact is needed – it is the com-
plexity of the questions/sentences that makes them difficult. A
surprising result here is that only MemNN-2 solves QA04 with
high accuracy, which might suggest that this is a regularization
problem. At QA05, the performances are similar across every
network/hop combination – around 0.84, which indicates lack
of data and the possibility of overfitting.

The task QA06 - Yes/No Questions tries to capture
the ability of the methods to answer simple yes/no ques-
tions (“Is John in the Playground?”) that only need 1-hop
operations. All MMRNN versions outperform their MemNN
counterparts by achieving top accuracy.

The tasks QA07 - Counting and QA8 -
Lists/Sets aim at effectively capturing the basic
database operations of “count” and “select”. For the counting
task, no network achieves perfect performance, which is
expected, as it requires more than 3 hops. At QA08, MMRNN
performs significantly better than MemNN, with the task
being solved irrespective of the number of hops.

The task QA09 - Simple Negation tests for the abil-
ity to understand negation, for example, “Fred is no longer
in the office” vs. “Fred travelled to the office”. Task QA10 -
Indefinite Knowledge tests for knowledge that is of an
indefinite type, for example, “John is either in the classroom or
the playground”. MMRNNs solve both tasks and outperform
MMRNNs.

The tasks QA11 - Basic Coreference, QA12 -
Conjunction and QA13 - Compound Coreference,
check for co-reference – the ability to distinguish between
expressions that refer to the same thing. For example, “Daniel
was in the kitchen. Then he went to the studio”. Both “he”
and “Daniel” refer to the same object. Here, MemNNs slightly
outperform MMRNNs, except at QA13, where the latter
achieve perfect performance regardless of the number of hops.

The task QA14 - Time Reasoning focuses on answer-
ing the question “when?”. Here, MMRNNs perform best, with
2- and 3-hops achieving accuracy 1.

An example task from QA15 - Basic Deduction is:
“sheep are afraid of wolves”, “Gertrude is a sheep. What is
Gertrude afraid of?’. Whereas an example task from QA16
- Basic Induction is: “Lilly is a swan, Lilly is white,
Greg is a swan, what colour is Greg?” Both tasks are closely
related to mathematical reasoning. MMRNNs and MemNNs
achieve similar performance at deduction; however, MMRNN
fails at understanding induction, whereas MemNNs solves it at
3-hops. We suspect a possible reason for the poor performance
of the former is the type of match function we used in this
study – further experiments might solve this issue.

The tasks QA17 - Positional Reasoning and
QA18 - Size Reasoning aim at inferring spatial and
size relationships. An example of the former is “The football
fits in the suitcase. The suitcase fits in the cupboard. The box is
smaller than the football. Will the box fit in the suitcase?” All

algorithms perform badly at positional reasoning, but better
at size reasoning, although below the 0.95 threshold. This is
because positional reasoning might require more than 3 hops.

The task QA19 - Path Finding is highly reminiscent
of standard artificial intelligence benchmarks – finding the
way from a maze. It is a difficult task, where all evaluated
algorithms fail. Peng et al. [24] present more recent results,
but these are not directly comparable, because they have been
tested only on two tasks (rather than the full benchmark).

The task QA20 - Agent’s Motivations assumes
that an agent performs an action and the goal is to infer
why that action has taken place. Surprisingly, all algorithms
perform very well here.

C. Summary

Our 3-hop network, MMRNN-3, is able to solve 12 tasks
(i.e., accuracy above 0.95), compared to 9 of MemNN-3.
Its slightly lower overall mean is mostly due to its bad
performance at task QA16. Note that, unlike the memory net-
works, there is very little/no preprocessing happening outside
the network (with the exception of padding). We train the
network end-to-end. We do not inject dummy memories, we
do not perform linear starts or use positional encodings or
any other ad-hock procedures used in memory networks. The
only additional knowledge we imbued is when to “split” (i.e.
knowing when a sentence finishes). Furthermore, contrary to
standard memory networks, we did not train several times and
pick the best solution. We optimised hyperparameters on the
3-hop network and have trained only once on the 1-hop and
2-hop networks. Therefore, we suggest our solution is more
generic, while still pertaining or improving the performance
on most tasks. The results also show it is more stable, as
it achieves an accuracy of 1 on seven tasks, compared to
MemNN with 3-hop achieving this on three tasks. Finally, it is
critical that our 1-hop architecture is superior as well, because
doing more than one pass over the memories might be time
consuming and, thus, not always applicable.

V. CONCLUSIONS

In this paper, we proposed a novel type of recurrent ar-
chitecture, termed match memory recurrent networks. It is
a more general method of memory networks, which seems
more stable,, requires less prepossessing, and achieves better
performance. The architecture combines a softmax recurrency
with a match function to encode, decode, and answer questions
on memories. Even without the heavy preprocessing used in
standard memory networks, our architecture achieves a better
performance on the standard benchmark set bAbI, both in
terms of the number of solved tasks, and in terms of the overall
mean accuracy when employing a one-hop architecture.

Future work will focus on finding better match functions
between unit activations, which will push the rest of the
network towards focusing attention only on appropriate in-
formation. We also plan to evaluate our architecture on its
ability to retain information when trained in a stepwise fashion.
Currently all training happens with all tasks being trained



at once, which is unlike humans, who not only focus and
remember, but train incrementally as well. Another future task
is to evaluate the architecture on more classic time series
prediction benchmarks.
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