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Abstract

Affective brain-computer interfaces (aBCIs) provide a method for in-
dividuals to interact with a computer via their emotions and without
needing to move.

This chapter will provide an introduction to the concept of aBCIs and
their uses in applications such as music therapy and affective computing.
We will first review the concept of aBCIs before going on to provide a
literature review of the current state-of-the-art research in affective state
detection methods and their uses in aBCI. Finally, we will describe a
case study; an affective brain-computer music interface (aBCMI) and its
potential for use in music therapy.

Emerging and established trends in aBCI, such as the use of pre-frontal
asymmetry measures of affective states, are identified. Additionally, a set
of recommendations are provided for researchers seeking to work in the
field of aBCI.

1 Introduction

Brain-computer interfaces (BCIs) seek to provide a channel for communication
and control of a computer system that does not rely on any movement and
instead uses signals recorded directly from the users brain to achieve interaction
with a computer [1]. Affective BCIs (aBCIs) seek to detect a users affective state
and use that information to interact with the BCI [2, 3, 4]. aBCIs may seek
to detect a users affective state either directly from their brain or via the use
of a hybrid approach that combines both brain activity and measures of other
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physiological processes. aBCIs have a wide range of potential applications,
including aiding with affective computing, entertainment, and therapy.

This chapter will first introduce affective states and how they may be cat-
egorized It will then go on to discuss methods for individuals to report their
affective states before introducing methods for affective state detection based
on recordings of neurological and physiological activity. A literature review of
the current-state-of-the-art in aBCIs will then be presented before a final case
study, which describes a recent development in aBCIs with potential applica-
tions for music therapy. Finally, a set of guidelines will be provided to aid with
the development of aBCIs.

2 Affective states

An affective state is defined as a psychological construct which seeks to catego-
rize the experience of feeling an emotion [5]. Affect is often measured along ei-
ther two or three different axes, of which the most commonly used are ‘valance’,
which refers to how pleasant or unpleasant an experience is, ‘arousal’, which
refers to how exciting or unexciting an experience is, and ‘tension’, which refers
to how much or little tension is felt during an experience [6].

Taken together these different axes may be used to model an affective space
that seeks to encompass the range of human emotion. Several different models of
the affective space exist, using different combinations of axes to attempt to allow
all possible affective states to be collated within the model and consequently
measured and analytically evaluated.

One of the more popular and frequently used such models is the valance-
arousal circumplex model [7]. This model uses two axes, valance and arousal,
to map the affective space onto a two dimensional plane. A range of different
discrete affective states are then mapped to this affective space by identifying
their locations on the valance and arousal axes. For example, ‘joy’ may be
mapped to the upper right hand corner of the space because it corresponds to a
high valance (very pleasant) state and a high arousal (very excited) state. The
valence-arousal circumplex model is illustrated in figure 1.

A range of other models of the affective space have also been proposed.
These include the Schimack and Grob 3-dimensional model, which describes the
affective space via the three dimensions of valence, energy-arousal, and tension-
arousal [8], and the Geneva Emotional Music Scale (GEMS), which seeks to
describe the affective space via a set of discrete state labels that were selected
for their relevance to the set of emotions commonly considered to be conveyable
via music [9].

GEMS differs from many other models of affect by utilizing labeled categories
to describe an affective state in place of a continuous space. For example,
the GEMS-45 system contains 45 discrete labels, grouped under 9 categories,
that describe affective states such as ‘wonder’ or ‘joyful activation’. Different
combinations of labels or individuals labels may be used to describe a single
affective state.
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Figure 1: An example of the valence-arousal circumplex that may be used to
model affective states along the two axes of valence and arousal.

Although affect may be described by discrete states or labels the actual
processes involved in the experience of affect are widely understood to be multi-
modal and involve multiple different neurological and physiological processes.
Specifically, when you feel an emotion this is the result of a complex interac-
tion of multiple neurological and physiological processes acting at different time
scales and influencing one another to together result in the embodied feeling of
an affect [10].

For example, your heart rate changes with differing levels of arousal [11, 12,
13], while skin conductivity (measured by galvanic skin response (GSR)) has
been reported to change with changing levels of arousal, valence, and tension [14,
15, 16]. Additionally, respiration rate has been reported to change in response
to changing levels of both valence and arousal [17, 18]. Thus, an individual’s
affective state may be understood to be a combination of their brain and body
responding to changes in their situation (either triggered by external stimuli or
internal processes such as memory recall of emotive events) [5, 19].

With regards to external stimuli, affect can either be felt or perceived [20].
Perceived affect is an individuals understanding of the affective state a stimuli
is attempting to convey, while felt affect refers to the actual affective state
experienced by the individual when exposed to the stimuli. An illustrative
example of this is the enjoyment of ‘sad’ music. A listener may perceive that
a piece of music is attempting to convey sadness and yet derive considerable
pleasure from listening to it [20].
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Figure 2: Self assessment manikin (SAM) method of affective state reporting.

3 Affective state reporting

When studying affect (e.g. the affective response of an individual or group to
stimuli) it is often necessary to provide some mechanism for the individual to
report their current felt or perceived affective state. Consequently, a variety
of tools have been developed to allow the recording of users reports of their
affective states.

These tools are useful to consider in the development of aBCIs as, when
developing tools and component parts of an aBCI it is often necessary to have
a ground truth measure of an individuals current affective state. For example,
when developing a classifier to detect a user’s current felt affective state in an
aBCI user it may often be necessary to train the classifier on some ground truth
measure.

Affective state reporting tools may be described as either discrete or contin-
uous tools. Discrete tools are used for recording single discrete snapshots of a
users affective state at one particular moment in time or over one discrete time
window. By way of contrast, continuous affect reporting tools allow users to
provide a moment-by-moment report of their affective state as it changes over
time.

3.1 Discrete methods

There are a variety of discrete affective state reporting tools available. Two of
the most widely used in psychological studies of affect are the self assessment
manikin (SAM) and the Geneva Emotional Music Scale (GEMS).

The SAM provides a set of figures depicting different positions within the
valence arousal space [21]. These are illustrated in figure 2. Participants are
asked to select different positions on the space that match the affective state
they wish to report.

The SAM is able to provide a discrete snapshot of affect at a single moment
in time. Furthermore, it does so via the use of pictographic representations of
affect, which may be less susceptible to inter-personal differences in understand-
ing of linguistics descriptors of affect in different languages [22]. Thus, there is
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Figure 3: The FEELTRACE interface for continuous reporting of affective
states. The user control the position of the cursor via a mouse or joystick and
positions it at a location in the valence-arousal circumplex that best matches
how they are feeling at that moment in time.

no need to translate the SAM scale into different languages. However, the use
of SAM does require participants to understand the concepts of the valence and
arousal scales that are employed before they can use it effectively.

By way of contrast, the GEMS scale is comprised of a set of labels describing
different regions of the affective space [9, 23]. Individuals are asked to select
specific labels that correspond to the regions matching how they wish to report
their affective state. For example, they may be asked to select labels corre-
sponding to feelings of nostalgia after hearing a piece of music. This allows
for more immediate understanding by participants in an experiment, but re-
quires the GEMS scale to be translated into a language the participant is able
to understand.

3.2 Continuous methods

Several tools that are available for continuous reporting of affective states, some
examples include FEELTRACE and GTRACE.

The FEELTRACE tool allows participants to report an affective state on a
continuous basis [24]. The tool comprises a two dimensional on screen interface
with valence mapped to the horizontal axis and arousal mapped to the vertical
axis. Participants can report their current affective state by moving a mouse,
joystick, or other input system to position a cursor at a position on the space
that best matches the affective state they wish to report.

An example of the FEELTRACE reporting tool is illustrated in figure 3.
The tool allows individuals to report their affective state via a relatively simple
representation of the valence-arousal space, but can cause confusion in some less
computer literate individuals.

To resolve this, a new version of FEELTRACE has recently been developed
known as GTRACE [25]. GTRACE provides two one-dimensional reporting
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systems to allow individuals to report an affective state on either the valence or
arousal scales independently By separating the valence and arousal axes it has
also been reported that GTRACE can act to remove some potential sources of
confusion that are related to the simultaneous reporting of different axis in the
affective space [25].

4 Affective state detection

A key component of aBCI systems is the ability to identify a users current
affective state [4]. By detecting a users affective state it is possible for BCIs to
respond to a users changing emotions. However, this provides a potentially very
personal insight into how an individual is feeling and it is important to consider
related privacy and ethical issues (see (?Chapter link: privacy and ethics in
brain-computer interface research?)). To do this a variety of different approaches
have been developed. These can be based on either just neurophysiological
activity or a combination of neurophysiological activity and other physiological
activity (a hybrid BCI approach [26, 27]).

BCIs (and by extension aBCIs) can be developed using a variety of different
neurological signal types such as near infrared spectroscopy (fNIRS), magnetic
encephlography (MEG), or functional magnetic resonance imaging (fMRI) [28].
However, one of the most frequently used methods for measuring neurological
activity used in BCI is the electroencephalogram (EEG) [29]. Consequently, the
majority of affective state detection methods developed for aBCIs have been
developed for EEG, with relatively fewer affective state detection methods for
aBCI developed for use with other modalities, such as fMRI [30].

When considering only the EEG as the signal from which to detect affective
states the affective state detection methods that have been developed for aBCI
systems and other affective computing applications use a range of different types
of features. These features may be grouped into the following categories.

1. Band-power based features

2. Asymmetry features

3. Network features

4. Event-related potentials

The first three feature types are not phase locked to the stimulus and can
be used on a continuous basis, while event-related potentials (ERPs) are phase
locked to a particular stimuli presentation time. Thus, the first three feature
types can be used with either synchronous or asynchronous BCI, while ERPs
can only be used with synchronous (cue-based) BCIs [31]. These different types
of features and their use in affective state detection are detailed in Table 1,
along with references to studies that employ these features for identifying an
individuals affective state.
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Table 1: Different types of features that may be used in identifying affective
states in aBCIs.

Feature type Description Measured by References
Band power
features

Relative or absolute changes
in the magnitude of ongoing
non-phase locked oscillatory
activity within one or more
frequency bands over specific
cortical regions.

FFT,
Wavelets
etc.

[32, 33, 34,
35, 36, 37,
38, 39, 40,
41, 42, 43,
43, 44, 45,
46, 47, 48,
36, 16]

Asymmetry
features

Relative differences in neural
activity between different re-
gions of the cortex, most typ-
ically between the left and
right hemispheres.

FFT,
Wavelets,
Absolute
or relative
magnitude
differences
etc.

[49, 34, 35,
37, 50, 51,
52, 42, 53,
47, 54, 55]

Network fea-
tures

Connectivity or associativity
between different regions of
the cortex.

PLV, Coher-
ence etc.

[56, 57, 55,
58]

Event-
related
potentials

Phase locked changes in EEG
amplitude.

Amplitude
averaging

[59, 60, 61,
62]
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Band-power based features measure changes in ongoing oscillatory activity
within the EEG. They are not phase locked to a stimulus and, consequently, may
be used to measure ongoing changes in affective states in response to continu-
ously changing stimuli. They are most frequently measured via a fast Fourier
transform (FFT) or a Wavelet decomposition of the EEG signals. The specific
frequency and spatial regions over which these band-powers may be measured
differ from study to study. However, there are common regions over which they
are most frequently measured.

Table 2 lists the spatial and frequency regions that band-power features are
measured over and lists the number of participants over which these features
have been demonstrated to relate to changes in affective states. It may be
observed that the EEG band-powers over the prefrontal cortex in a wide range
of frequency bands and the band-powers in the parietal cortex in the alpha band
are most often reported to relate to affective state changes.

Asymmetry features make use of a difference in the relative intensity of
activity, typically, between the left and right hemispheres when experiencing
different affective states. Specifically, when experiencing changing levels of va-
lence or arousal the mean amplitude of EEG recorded over the right hemisphere
differs significantly from the left hemisphere [63]. This effect is most pronounced
in the pre-frontal cortex [55].

Network features are used to provide a measure of the amount of commu-
nication between different cortical regions [64, 65, 66]. This gives an indication
of which cortical regions are either in direct communication with one another
or are influenced by a common (but potentially unobserved) neural generator
[67]. Changes in ongoing neural network activity have been observed to reflect
changes in both valence and arousal and may be exploited for use in aBCIs [55].

ERPs provide a phase-locked measure of a change in amplitude of ongoing
oscillatory activity in the EEG that relates to a time-locked event [68]. They
may only be used with synchronous BCIs (BCIs that rely on a stimuli presenta-
tion at a specific time) [31]. Thus, they are most commonly used in conjunction
with emotive images to improve classification accuracies in BCIs designed to
allow selection between different choices [59, 61, 62].

An alternative approach to affective state detection is to use a hybrid ap-
proach which combines EEG based features with one or more other physiological
features [26]. Examples of this approach include the use of ECG and EEG for
improved classification accuracies [69] and the combination of EEG and NIRS
to understand affective responses to speech [56].

5 Affective BCIs

5.1 Categories of aBCI

BCIs, and by extension aBCIs, may be categorized as being either passive BCIs
or active BCIs.

Passive BCIs use some measure of the users neurological activity to affect
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Table 2: Use of EEG band-power features to identify an individuals affective
state in different frequency bands and spatial regions of the cortex. For each
region of the cortex and EEG frequency band the total number of participants
involved in all studies providing evidence of an involvement of that cortical
region is listed, along with references to the supporting studies.

Regions
Front. Cent. Occip. Temp. Pari. Left Right All

D
el

ta
(0

-4
H

z)

93
[34,

37, 42,
16]

20
[32,

34, 42]

79
[39, 42]

39
[34,

42, 47]

1
[32]

51
[47,
16]

63
[39]

T
h

et
a

(4
-8

H
z)

241
[34,

35, 37,
38, 39,
42, 43,
44, 47,

36]

77
[34,

35, 38,
42, 44]

97
[39,

42, 44]

81
[34,

35, 38,
42, 43]

22
[43]

22
[48]

F
re

q
u

en
cy

b
an

d
s

A
lp

h
a

(8
-1

3
H

z)

329
[33,

34, 35,
36, 37,
38, 39,
41, 42,
44, 45,
47, 36]

141
[33,

34, 35,
38, 39,
41, 42,

44]

35
[33,

42, 44]

63
[39]

153
[33,

34, 35,
38, 41,
42, 45]

1
[33]

92
[33,

43, 45]

22
[48]

B
et

a
(1

3-
30

H
z) 218

[34,
35, 36,
37, 39,
42, 36,

16]

77
[34,

35, 42,
46]

16
[42]

63
[39]

112
[34,

35, 39,
42]

31
[16]

G
am

m
a

(3
0+

H
z) 213

[34,
35, 37,
39, 40,
42, 36,

16]

140
[34,

35, 37,
39, 42,

46]

79
[39,
42]

74
[39,
40]

49
[34,

35, 42]

94
[39,
16]

63
[39]
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passive control over a system [70, 71, 72]. Thus, the BCI responds to the users
current state without the user actually actively intending or willing the control
to happen. An example of this may be a pBCI that uses a measure of the
users current level of frustration to adjust the type of options presented to them
[47]. A more frustrated user may be making lots of errors and may benefit
from a reduced number of control options, which can lead to increased control
accuracies.

By contrast, active BCIs allow the user to actively effect control over the
system via their affective state. An example of this is the use of affective imagery
to select between different control options [33]. For example, participants may
be asked to imagine either low or high valence affective states in order to select
between two control options.

5.2 Use of affect in aBCI

Affect may be employed in many different ways within both active and passive
aBCIs. These different approaches may be grouped into the following categories.

1. Boosting classification performance.

2. Understanding the users emotions.

3. Modulating the users emotions.

Classification boosting refers to the use of affect to improve the classification
accuracy of an active BCI that is intended for aiding a users ability to commu-
nicate or control their environment. For example, affect may be employed to
identify incorrect selections (by identifying increases in user frustration). Alter-
natively, affect may be used directly to allow the user to select different options,
for example affective imagery may be used to select between different choices
made available to the user [33].

Understanding of user emotions can allow both active and passive aBCIs
to respond better to a users needs [4]. For example, an understanding of a
users current affective state can be used to modulate the contents of an aBCI
controlled game [32].

Finally, a measurement of affect in an aBCI can be used to allow a passive
aBCI to modulate the users emotions. This allows aBCI system to potentially
be used for therapeutic purposes, where the aBCI is used to attempt to produce
either short or long term improvements in an individuals emotions or moods
[73]. An example of this approach is presented in the case study in section 6.

There are several different potential applications of these various categories
and types of aBCI. Specifically, aBCIs have been proposed for use in the follow-
ing areas.

1. Therapy

2. Affective computing
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3. Entertainment

4. Communication and control

Therapeutic uses of BCI are diverse and range from rehabilitation of motor
control after stroke through to treatment of attention deficit hyperactivity dis-
order. Chapter (?chapter link: Therapeutic applications of BCI technology?)
provides an overview of the range of different therapeutic uses of BCI systems.

aBCIs have potential applications as aids and assistive tools in therapy.
Specifically, by identifying and responding to an individuals current affective
state an aBCI has the potential to be able to deliver stimuli to that user that
is therapeutically beneficial. An example of this potential use in the case of a
passive aBCI is discussed in section 6.

Affective computing is the development of computer systems that can re-
spond to a users affective state [74]. This allows a computer system to dynam-
ically change its operating principles in order to meet the affective needs of a
user. For example, an affective computing system may be used in e-learning
applications in order to detect changes in a users affective state related to bore-
dom (when the material is already known) or frustration (when the material is
poorly understood) [75]. The system could then respond to these changes in
affect by adapting the material presented to the student.

aBCIs have also been proposed for use in entertainment devices. For exam-
ple, by identifying a users current affective state a passive aBCI is able to more
effectively adapt an entertainment media (such as film, music, or stories) to bet-
ter entertain the user. An example of this is described by Brouwer et al., who
have developed an aBCI that responds to changes in user affect while they read
passages from a novel [76]. The novel was written to contain multiple branching
sections and different routes through the story were selected depending on the
users changing affective state as the story progresses.

Finally, active aBCIs may also be used for communication and control. In
this application type the user may attempt to actively modulate their affective
state or engage in affective state imagery in order to select between different
control options. Alternatively, affective states may be detected and used to
inform the selection of control options via other means, such as ERP-based
BCI.

6 Case study: An affective BCMI

We describe one example of an aBCI system developed for use as a passive
BCI that uses a measure of a users current affective state in order to attempt
to modulate their future affective state. Specifically, we describe an affective
brain-computer music interface (aBCMI) developed in [69]. This aBCMI system
is designed to detect a users current affective state and, given that affective state
and a target affective state, use music generator in order to modulate the user’s
affective state.
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Figure 4: An affective brain-computer music interface (aBCMI).

The aBCMI provides a potential tool for use in music therapy by utilizing
the feedback loop provided by the BCI system to allow modulation of a users
affective state. BCMIs are an emerging form of BCI system designed to allow
their users to interact with or create music. Chapter (?chapter link 29, BCI for
music making?) provides an overview of the history and current state-of-the-art
in the development of BCMI systems. The aBCMI system we describe here
(illustrated in figure 4) includes four stages.

First, EEG and other physiological signals are recorded from the user and
preprocessed to remove artefacts. Second, these preprocessed signals are used
to identify the user’s current affective state. The third step is then a case-based
reasoning system, which is used to identify the specific modulations of the music
played to the user in order to move them from their current affective state to
a new target affective state. Finally, the fourth stage of the system is a music
generator, which is used to generate music in order to attempt to move the user
closer to the target affective state.

This aBCMI system was evaluated on a population of 20 healthy participants
in order to determine whether it was able to successfully modulate their current
affective states. Participants were asked to attend 5 separate sessions, the first
four of which were used to train the aBCMI system and the fifth of which was
used to evaluate the systems ability to achieve 4 key targets.

1. Make the user happier (increase the valence they report).

2. Make the user calmer (decrease arousal).

3. Reduce the users stress (increase valence and decrease arousal).

4. Excite the user (increase arousal).

The success of the system was evaluated by measuring participants self-
reports of their current felt emotions, which were reported on a continuous
basis using the FEELTRACE reporting tool [24]. Participant reports during
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Figure 5: Mean FEELTRACE reports from all users of the aBCMI under the
’make happier’ condition.

trials in which the aBCMI attempted to achieve each of the four goals were
compared against the trajectory of the change in affective state that is intended
during each of the key system goals. For example, in trials for which the goal
of the aBCMI was to induce an increase in the users valence (make the user
happier) the valence reported by the users was evaluated to determine whether
it significantly increased over the course of the trial.

This is illustrated in figure 5, which shows the mean FEELTRACE reports
from all aBCI users during the ‘make happier’ condition. Note that the report
of valence increases over the course of the trial, a change that was observed to
be statistically significant (p < 0.01).

The aBCMI was able to significantly increase the valence reported by its
users during online evaluation. It was also able to significantly decrease users
arousal and reduce the reported stress of its users (simultaneously decreasing
arousal and increasing valence). However, it was unable to increase the arousal
reported by its users, which may be due to the type of music generated by
the aBCMI. Specifically, classic monophonic piano music was generated by the
system and this genre of music may be less likely to induce excitement and,
therefore, increases in arousal levels in listeners.

7 Guide for developing aBCIs

Based upon our observations from the literature a set of guidelines are provided
to highlight key considerations when developing an aBCI.

First, identify the purpose of the aBCI. There are a wide range of
different possible application areas for aBCI, such as aiding with communication
or movement, therapy, or aiding with artistic expression, as well as new and
previously unexplored areas. The first step in developing the aBCI should be
to clearly identify the application area and the purpose of the aBCI.

Second, the category the aBCI falls into should be identified. aB-
CIs can be categorized as either active or passive (or a hybrid approach that
combines both) and determining this category impacts significantly on how it
is designed.

Third, identify how affect will be used within the aBCI. Measures of
affect can be used in a wide range of different ways in aBCI, from aiding with
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communication / control accuracy, to providing a form of therapeutic feedback
to the user. Additionally, affect may be the only control signal in your aBCI or
it may be used in combination with other signals (such as ERPs).

Fourth, define how affect will be categorized and measured within
the aBCI. Affect can be described within a range of different frameworks and
measured via a variety of different metrics and it is important to identify which
framework is to be used prior to constructing an aBCI.

Fifth, identify the affective state detection method to use in the aBCI
and verify that it works correctly. This may involve offline studies, simulations,
or pilot experiments, depending on the type of affective state detection method
employed.

Sixth, it is important to consider inter-trial and inter-user variabil-
ity in affective state responses. Affect is a fluid process that changes non-linearly
over time and with respect to multiple factors. It also varies hugely between
people. Thus, an affective stimuli may have very different effects on different
users.

Seventh, it is also important to consider non-stationarity of affect.
Affective state changes are not stationary over time and such non-stationarity
needs to be considered when designing an aBCI. For example, in the case study
described in section 6 the affective brain-computer music interface uses gen-
erated music to avoid the well-known effects of repeat exposure to the same
stimuli on affective responses.

Eighth, it is important to remove artefacts from the neurological
data used to control the aBCI. Artefacts are a problem for all BCI systems
and need to be removed to ensure intention / affective state detection is accurate.
However, they can be more of a problem for aBCIs where the most frequently
used affective state detection methods are based on the pre-frontal asymmetry,
a measure recorded from the EEG electrodes positioned closest to the eyes, and
therefore the most susceptible to interruption by blink artefacts.

Finally, it is important to plan an appropriate testing strategy.
Validating the efficacy of an aBCI can be more challenging than other types
of BCI due to the inherent challenges in identifying a users ‘ground truth’, a
measure of their actual affective state. Thus, experiments need careful designing
in order to allow the aBCI to be rigorously evaluated.

8 Summary

Affective BCIs incorporate a measure of the user’s affective state in order to
provide a method for either improving BCI performance or widening the range
of applications to which BCI can be applied. Specifically, aBCIs have been
developed as tools for entertainment, aids to communication, and as therapeutic
devices.

By including an understanding of affect an aBCI has the potential to respond
more dynamically to a user’s needs. This allows BCI applications to be expanded
in scope and variety and, ultimately, has the potential to lead to improvements

14



in the quality of life for a large number of people.
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