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Summary

Chapter 1 examines the health benefits of the Winter Fuel Payment (WFP), an

unconditional but labelled cash transfer given to elderly people above the female

state pension age with the stated intent of help to deal with heating costs. We

exploit the eligibility age cut-off to estimate the causal effect of the WFP on self-

reports of chest infection, measured hypertension and biomarkers of infection and

inflammation, such as C-reactive protein and fibrinogen. We find a robust reduction

in the incidence of high levels of serum fibrinogen and some evidence of reductions

in other disease markers that point to health benefits.

In Chapter 2, we estimate the incidence of the housing subsidy on subsidised and

unsubsidised tenants. Using a reform of the housing subsidies in the UK, we inves-

tigate how the exogenous cut in the subsidy affected rents. We find that rents were

not significantly reduced by the subsidy cut and the incidence mostly fell on tenants.

These findings suggest that the rental market was not originally segmented between

subsidised and unsubsidised tenants and the fall in the demand of subsidised tenants

was offset by the recent expansion of the private rental market.

In Chapter 3, we revisit and offer a reassessment of the literature on the impact of UK

National Minimum Wage on employment. We highlight that this literature has em-

ployed difference-in-difference designs, which have significant challenges in conducting

appropriate inference and very low power when inference is conducted appropriately.

In addition, the literature has focused on the binary outcome of statistical rejection

of the null hypothesis, without attention to the range of employment effects. In our

reanalysis of the data, we find that the data are consistent with both large nega-

tive and small positive impacts of the UK National Minimum Wage on employment

offering little guidance to policy makers.
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Introduction

In the financial year 2016/17 the United Kingdom (UK) spent £216.1 billion on

welfare. This is around 11.5 % of the Gross Domestic Product and 28.7 % of the

Total Managed Expenditure (Department for Work and Pension, Benefit expenditure

and caseload tables 2017). In times of austerity it is very important that policy makers

know whether welfare spending achieves the intended goals. It is also important to

know whether welfare policies have unintended consequences. The scope of policy

evaluation is to answer these questions and this is why it has become increasingly

influential among governments. Policy evaluation literature has developed several

methods to estimate the causal effects of public policies. In this thesis we work with

three of the most common methods of this literature: regression discontinuity design,

instrumental variables and difference-in-differences design. We use the methods to

evaluate three policies that aim to improve health, housing and employment, three

areas that have a big impact on people’s well-being. The policy studied in Chapter 1

is the programme known as Winter Fuel Payment (WFP), a cash transfer to elderly

people in the UK that costs taxpayers around £2 billion a year. In Chapter 2, we

analyse housing subsidies in the UK, on which the UK government spends around

£24 billion a year. The third policy is the UK’s national minimum wage, one of the

policies to increase the wage of low-paid workers.

The health of elderly people is a primary concern of all governments. The UK spent
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around £133 billion in the financial year 2015/16 on healthcare services (HM Trea-

sury, Country and regional analysis: 2016) and more than two fifths of this expendi-

ture was allocated to people aged 65 or older (Nuffield Trust estimates in Robineau,

The Guardian, February 1st 2016). Every year, the UK experiences Excess Winter

Mortality (EWM) and faces a rise in the demand of care in winter among the elderly.

Notably, the UK experiences a higher level of EWM than Scandinavian countries

where winters are notoriously harsher. While outdoor temperatures play a decisive

role to explain EWM, living in a cold house has a direct impact on the health of

elderly people. In the UK, a key policy response to EWM and diseases associated

with cold temperatures is the Winter Fuel Payment (WFP), a labelled but uncondi-

tional cash transfer to households containing a member aged above the female state

pension age. From 2000 to 2009, the WFP was received by households containing

an older person above age 60. Previous work has shown that the WFP raises fuel

spending among eligible households. In Chapter 1, we study the causal effects of

the WFP on health outcomes associated with the main causes of EWM: cardiovas-

cular and respiratory diseases. The outcomes we examine are self-reports of chest

infection, measured hypertension, and two biomarkers of infection and inflamma-

tion (fibrinogen and C-reactive protein). To estimate the causal effect of the WFP,

we use two cross-sectional studies, the Health Survey for England and the Scottish

Health Survey, and a longitudinal study, the English Longitudinal Study of Aging.

We then employ a regression discontinuity design by comparing our health outcomes

just below and above the 60 year old eligibility cut-off. Our regression discontinuity

design estimates the causal effect of the WFP on the health of individuals living in

households where the oldest member of the household is just over 60 years old. We

find a robust and statistically significant reduction in the incidence of high concen-

tration of fibrinogen, one of the biomarkers of infection. Reductions in other health

outcomes also point to health benefits from the WFP programme, but the effects are
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less precisely estimated.

The 1948 Universal Declaration of Human Rights states that everyone should have

the right to a suitable living standard, and housing is recognised as one of the basic

needs that ensures citizens an adequate well-being. Housing subsidies are one of the

policies that aim to make housing affordable. However, the standard theory predicts

that when a housing subsidy is in place, the housing demand shifts upwards and,

unless the supply is perfectly elastic, rents rise for all tenants regardless of whether

they receive a housing subsidy. This change in rents implies that the incidence of

the housing subsidies is shared between tenants and landlords. In Chapter 2 we

study the incidence of housing subsidies by examining how they affect subsidised

and unsubsidised tenants. We exploit a reform implemented in 2011 in the UK that

reduced housing subsidies for around 1.5 million claimants. Our analysis uses the

exogenous cut in the housing subsidies as an instrument to address the endogeneity of

subsidy receipt. The main contribution of this chapter is the link between the effects

of the subsidy cut on subsidy recipients and the housing demand of unsubsidised

tenants. Using data from the Family Resource Survey and the English Housing

Survey, we find that the subsidy cut did not significantly reduce rents for subsidised

tenants and there was no spillover effect on rents paid by unsubsidised tenants.

Beside adequate housing, one of the basic principles recognised in the 1948 Universal

Declaration of Human Rights is the right to work with a fair remuneration that

ensures a suitable living standard. In the UK this is a highly discussed topic based

on the perception that a share of the working population does not earn enough to

afford a decent living standard. One of the key policies in response to this concern is

the National Minimum Wage (NMW) that was first introduced in 1999. Interestingly,

successive UK governments’ approach to setting the NMW has been evidence-based.

A statutory and independent body, the Low Pay Commission (LPC), commissions

and funds research on the impacts of the NMW, and then uses this evidence when

3



making its recommendations to government. A substantial body of research on NMW

has concluded that the NMW did not have a detrimental effect on employment, and,

in the light of this, successive governments have subsequently uprated the NMW and

recently introduced the National Living Wage. We revisit and reassess the literature

on the employment effect of the NMW on the basis of two concerns. First, much of

the literature uses a difference-in-difference strategy, although there are challenges

in conducting appropriate inference in such designs, and they can have very low

power when inference is conducted appropriately. Second, the literature has focused

on the statistical rejection of the null hypothesis of “no employment effect of the

NMW”, with no attention to the range of employment effects that are consistent

with the data. In our reanalysis of the data, we conduct difference-in-difference

inference using recent suggestions for best practice, and focus on confidence intervals

rather than the binary outcome of whether the null hypothesis of no employment

effects can be rejected. We also report job retention and employment elasticities and

calculate the Minimum Detectable Effects, the minimum employment effect size we

are able to detect with high probability. We find that the data are consistent with

both large negative and small positive effects of the UK National Minimum Wage on

employment, and so conclude that existing evidence in fact offers little guidance to

policy makers.
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Chapter 1

The Health Benefits of a Targeted

Cash Transfer: The UK Winter

Fuel Payment

1.1 Introduction

Each year, the U.K. experiences Excess Winter Mortality (EWM). The Office of

National Statistics computes EWM by comparing the number of deaths registered

between December and March with the average number of deceases in the foregoing

August-November and in the succeeding April-July. In 2014/15 the number of excess

winter deaths in England and Wales was estimated at 43,900, the highest level since

1999. EWM has also been documented in Europe (Kunst et al., 1993; Eng and

Mercer, 1998; Rose, 1966; Mackenbach et al., 1992; Keatinge and Donaldson, 1995),

the USA (Kloner et al., 1999; Lanska and Hoffmann, 1999) and Asia (Cheng, 1993;

Ornato et al., 1990). Most EWM occurs among the elderly and is due to respiratory
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and circulatory diseases (Donaldson, 2010; Lloyd, 2013; ONS Statistical Bulletin

2014/15). 1 In addition to EWM, cold weather is associated with increased demands

on health care systems through increased incidence of illness requiring hospitalization

or other treatment.

While outdoor temperatures may play a role in EWM, 2 living in a cold indoor

environment has a direct impact on the health of elderly people (Wilkinson et al.

2001; Marmot et al. 2011; Dear & McMichael 2011; Rudge & Gilchrist 2007). 3

In the U.K., a key policy response to EWM is the Winter Fuel Payment (WFP).

The WFP is a labelled but unconditional cash transfer to households containing an

older person (male or female) above the female state pension age. The stated intent

of the policy is help the elderly deal with the cost of keeping their dwelling warm

(Lloyd, 2013; Kennedy & Parkin, 2016) and the labelling of this cash transfer has

been shown to be effective in inducing eligible households to increase fuel spending

(Beatty, Blow, Crossley, & O’Dea, 2014). 4 However, the key policy question is

whether the WFP improves health of elderly people living in eligible households, and

there is little evidence on this point.

The female state pension age, and hence the age cut-off for WFP eligibility, was 60

prior to 2010. It then began to increase so that it will equal the male state pension

age of 65 in 2018 and then both will rise to 67 by 2028. Most EWM occurs among

1In the winter of 2014/2015 36 % of EWM was attributable to respiratory disease and 22.5 %
to cardiovascular disease (ONS, 2015).

2The strong association between exposure to outdoor cold temperatures and mortality or mor-
bidity is well documented in the epidemiological literature (Curwen, 1997; Wilkinson et al., 2001;
Keatinge, 1986, 1989, 2002).

3Wilkinson, Landon, Armstrong, Stevenson, and McKee (2001) show that deaths attributable
to cardiovascular diseases are 23 % higher in winter than the rest of the year and give evidence
of a positive association of the EWM with the age of the property and the thermal inefficiency
of the buildings. Rudge and Gilchrist (2007) find that their fuel poverty index which includes an
energy efficiency rates and income is a strong predictor of the excess winter morbidity measured
with number of emergency respiratory hospital admissions.

4Beatty et al. (2014) estimate that eligible households spend 47 % of their WFP on fuel. If the
payment were treated as other income, eligible household would be expected to spend 3 % of the
payment on fuel.
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individuals over 75, leading Lloyd (2013) to propose that increases in the eligibility

age could reduce the financial cost of the WFP with minimal if any reduction in

health benefits. But there has been no direct evidence on the health benefits foregone

through recent increases in the age cut-off or health benefits that may be lost through

further increases.

This paper reports the first tests for health benefits of the WFP based on individual-

level data. We measure health outcomes in the Health Surveys for England (HSE),

the Scottish Health Survey (SHeS) and the English Longitudinal Study on Ageing

(ELSA). These studies include nurse visits allowing us study biomarkers and physical

measures as well self-reports. To estimate the causal effect of the WFP, we follow

Beatty et al. (2014) in employing a regression discontinuity design (RDD). The RDD

is thought to be one of the most convincing of quasi-experimental designs (Lee &

Lemieux, 2010). 5 A RDD is possible where there is cut-off in eligibility for treatment,

as there is for the WFP: in the period we study, households with no member 60 or

above are ineligible. In addition, take up of the WFP is very high, so that there

is little difference between eligibility and receipt. 6 A RDD estimates the causal

effect of treatment by comparing outcomes just below and above the eligibility cut-

off. It estimates a local average treatment effect - at the eligibility cut-off. Thus

our design estimates the causal effect of the WFP on the health of individuals living

in households where the oldest member of the household is 61. These are precisely

the individuals who lost any health benefits of the WFP as the eligibility age was

incrementally increased from 2010, so our empirical strategy directly answers a key

policy question.

To the best of our knowledge, Iparraguirre (2014) is the only prior assessment of

5The Regression Discontinuity Design was first introduced in the Education literature (see
Thistlethwaite and Campbell (1960)) and has been widely adopted in economics (Lee & Lemieux,
2010)

6See Beatty et al. (2014) for further discussion.
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the health benefits of the WFP. Using aggregate mortality data, Iparraguirre (2014)

documents a decline in EWM in 2000/2001, coincident with the introduction of the

universal WFP. EWM fluctuates significantly from year-to-year with changing winter

weather conditions and viral environment. Using time-series econometric techniques,

Iparraguirre (2014) finds a structural break in the EWM time series for England and

Wales in 2000/2001 and estimates that half of the reduction in the EWM in that year

can be attributed to the introduction of the WFP. 7 This is an important finding, but

it does rest on the ability of the econometric methods to distinguish the policy effects

from the very substantial year-on-year fluctuations in EWM. Moreover, the aggregate

EWM time-series is necessarily silent on health effects that may precede mortality,

and on benefits to particular groups. We add to the evidence base significantly by us-

ing a convincing quasi-experimental design in conjunction with individual level data;

by considering a variety of measures of circulatory and respiratory illness, including

biomarkers 8; and by testing for health benefits particularly among the group that

have been made ineligible by recent changes to the age cut off.

We estimate the effect of the WFP on circulatory and respiratory illness measured

four ways:

(i) self-reports of chest infection in the last 3 weeks

(ii) hypertension measured during a visit

(iii) serum values of C-reactive protein (CRP) in excess of 10 mg/l

(iv) serum values of Fibrinogen in excess of 4 g/l.

Repeated exposure to a cold environment results in an increase in the blood pres-

7The WFP was introduced in 1997 but it was initially means-tested and the payment significantly
smaller. In 2000/2001 it took its current form (a universal payment to all households containing a
person above the female state pension age of between 200 and 300 pounds).

8Biomarkers have been increasingly drawing attention in the economic literature as an objective
measure of health and a complement of self-reported health measures (see Jürges et al., 2013; Evans
and Garthwaite, 2014; Michaud et al., 2016)
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sure, and high values of systolic and/or diastolic blood pressure (hypertension) is a

predictor of heart disease and stroke (Hoffman et al. 1983; Fraser 1986; Wilson et

al. 1998; Collins et al., 1985; Collins et al., 1990). CRP is a blood plasma protein

that is indicative of inflammation and infection and a risk predictor of cardiovascular

disease (Pepys, 2003; Pearson et al., 2003). Fibrinogen is glyco-protein and marker

of inflammation. It is strongly associated with exacerbations of chronic obstructive

pulmonary disease (Duvoix et al., 2012; Mannino et al., 2015). High values of CRP

or fibrinogen are considered evidence of current infection (Pearson et al., 2003).

Our principal finding is that, among those living in a household that just qualifies for

the payment, the WFP leads to a six percentage point reduction in the incidence of

high levels of serum fibrinogen (on a base of 12 %). This effect is statistical significant

(p < 0.01) and very robust. For the other health measures we consider, while point

estimates suggest health benefits, the estimated effects are less robust to changes in

sample or specification, and rarely statistically significant.

In the next section, we provide further detail on our data, outcomes measures, iden-

tification strategy and methods. Section 3 presents our results. Section 4 contains

additional discussion of the findings.

1.2 Data and Methods

1.2.1 Data

The analysis reported in this paper is based on data from the Health Surveys for

England (HSE) (2001, 2003, 2004, 2005, 2006, and 2009) 9 , the Scottish Health

Survey (SHeS) (2003, 2008, 2009) and the English Longitudinal Study of Ageing

9HSE 2001 contains hypertension measure and self-reports of chest infection only (not the
biomarkers).
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(ELSA) (wave 2, 2004-05, and wave 4, 2008-09). The HSE and the SHeS are annual

cross-sectional surveys of the health conditions of the population in England and

Scotland. ELSA is a longitudinal survey that captures the population in England

aged 50 and over. The ELSA sample is derived from the 1998, 1999 and 2001 HSE.

In the surveys a face-to-face interview is followed by a nurse visit. The sample

design of HSE, SHeS and ELSA is at household level. A face-to-face interview is

followed by a nurse visit for all members of the household. 10 In the interview the

respondents answer questions on their general health, smoking status and alcohol

consumption and other individual characteristics such as education and employment

status. After the interview an appointment for the nurse visit is arranged. In the

visit a trained nurse asks questions on the health condition of the respondent, takes

blood and saliva samples and reads the blood pressure and several other measures

(height, weight, waist, hip, lung function and grip strength). Blood samples are sent

to an external laboratory for analysis. ELSA, HSE and SHeS data contain several

biomarkers that are recovered from the analysis of the blood samples. Among the

biomarkers reported, there are two that are useful for our analysis because they are

correlated with inflammation processes and infection and are markers of circulatory

and respiratory illness. These are C-reactive and fibrinogen.

Following Beatty et al. (2014) we restrict the sample to single men and couples in

which the man is the oldest in the household. Over the period 2003-2009 the Female

State Pension age was 6011, coincident with the age of eligibility for the WFP. We

discard single women and couples in which the woman is the oldest member of the

household to avoid any confounding effect of receipt of the state pension on the fuel

expenditure and the health outcomes of the elderly.12

10We study the WFP effect on health of individuals. In this paper, we do not exploit the fact
that we have data for individuals of the same household and do not estimate the spillover effects of
the WFP.

11In the same period the male state pension age was 65.
12Our findings are not confounded by any other policy directed at elderly people. Free flu

10



1.2.2 Health Outcomes

We study four measures of circulatory and respiratory illness:

(i) self-reports of chest infection in the last 3 weeks

(ii) hypertension measured during a visit

(iii) serum values of C-reactive protein (CRP) in excess of 10 mg/l

(iv) serum values of Fibrinogen in excess of 4 g/l.

During the nurse visit, respondents are asked whether they have experienced any

respiratory infection in the preceding 3 weeks (influenza, pneumonia, bronchitis or a

severe cold). This self-reported outcome is available only in ELSA and SHeS.

Our second outcome is hypertension, a risk factor for strokes and heart attacks. The

World Health Organization (WHO) defines hypertension as systolic blood pressure of

140 mm Hg or above and/or diastolic blood pressure of 90 mm Hg or above (WHO,

2013). In our sample, around the cut-off age for WFP eligibility, about 35 % of

respondents are hypertensive.

The other outcomes in our study are CRP and fibrinogen, two acute-phase biomark-

ers. Serum concentrations of these two biomarkers increase sharply during an inflam-

matory process. CRP is considered an indicator of bacterial infection, pneumonia

and tissue damage (Tillet and Francis, 1930; Pepys, 2003; Pearson et al., 2003; Si-

mon et al., 2004). The median of CRP in our sample is 1.7 mg/l but its distribution

is highly skewed. The value rises within few hours of disease onset. Inflammation and

bacterial infection can produce a rise in CRP values up to 1,000-fold (Pepys, 2003;

Gruys et al., 2005). Fibrinogen is a coagulation protein produced by the liver that

helps the body in the formation of blood clots. The normal range of fibrinogen is 2-4

vaccination is offered to elderly aged 65 or over (Department of Health, 2000).

11



g/l, but the concentration increases up to 3-fold in the presence of an inflammatory

process, infection or tissue damage (Fenger-Eriksen et al., 2008; Gruys et al., 2005;

Schmaier, 2012). High concentrations of fibrinogen are also strongly associated with

chronic obstructive pulmonary diseases and moderately with coronary heart diseases

(Danesh et al., 2005; Duvoix et al., 2012; Mannino et al., 2015). In the epidemio-

logical literature a value of the C-reactive protein in excess of 10 mg/l is taken as

evidence that a person has an active infection or inflammatory process. Epidemiolo-

gists have often discarded observations with these high values because of their focus

on chronic processes (Pearson et al., 2003). However, as our interest is whether the

Table 1.1: Descriptive statistics. C-reactive protein, Fibrinogen, Hypertension and
Self-Reported Chest Infection.

Age Window Median 90th percentile Prob(Illness)
C-reactive protein

Prob(CRP > 10mg/l)
58-63 1.7 7 0.055

Fibrinogen
Prob(Fib ≥ 4g/l)

58-63 3.1 4 0.125

Hypertension
Prob(Hypertension)

58-63 - - 0.353

Self-reported Chest Infection
Prob(ChestInfection)

58-63 - - 0.101

Sample is pooled data from the English Longitudinal Study of Aging, Health Survey
for England and Scottish Health Survey.
Observations with a fractional probability of being eligible to the Winter Fuel Payment
are dropped.

WFP plays a role in reducing the incidence of a respiratory or circulatory disease

among the elderly, extreme values (in excess of 10 mg/l for CRP) are the appropriate

object of our analysis. The epidemiological literature has not defined an equivalent

disease threshold for fibrinogen but we take values in excess of the top the standard

range (2-4 g/l) as evidence of current infection or inflammation.

12



1.2.3 Regression Discontinuity Design

The RDD allows health outcomes to vary with the “forcing variable”, which is the

age of the oldest person in the household of subject i at the time of the interview t.

13 Denote this by (Ait). The econometric model includes smooth functions of the

value of the forcing variable relative to the cut-off age (Ait − 60). It also includes

an indicator (or dummy) variable, Dit, for whether a respondent’s household was

eligible for the last WFP payment before the interview at which health outcomes

were measured. Finally, it includes additional covariates Xit, to increase the precision

of the estimator by capturing individual background variation in health (unrelated

to the WFP). 14 As covariates we use individual characteristics (type of household,

gender, smoker status, alcohol consumption , education, income, employment status),

anthropometric measurements (Body Mass Index, waist), survey-wave dummies and

month of nurse visit. In particular, including month of nurse visit is important

because the incidence of illnesses is higher in winter months than in summer months.

Thus the econometric model is:

Hit = β0 + f(Ait − 60) + τDit + f(Ait − 60) ·Dit +Xitγ + εit (1.1)

13In health economics, Carpenter and Dobkin (2009) use age as forcing variable in a RDD setting
to estimate the effect of the minimum drinking age on mortality.

14The assumption behind the RDD is that all health determinants apart from WFP eligibility
should evolve smoothly with Ait, including (but not limited to) the covariates Xit. For the covariates
Zi, we can test this by estimating an RDD in Zi. There should be no discontinuity in the Zi at the
60 or, equivalently, observables should be balanced between eligible and not eligible in the region of
the cut-off (analogous to covariate balance in a randomized trial). We have tested this and cannot
reject for balance for any of the included covariates Zi (see the notes in Table 1.2 for a complete
list). The major concern here is that we can find a discontinuity in employment status at the age of
60 since the WFP eligibility cut-off is coincident with the female state pension age. For our sample
of single men and couples in which the men is the oldest the WFP effect on employment status is
0.001 (-0.098; 0.100). This implies that the point estimate of the treatment effect is not affected by
employment status. Our robustness checks confirm that covariates do not bias our estimates. The
inclusion of employment status and other covariates can, however, improve precision by reducing
the unexplained variation in the outcome variable (again, as in a randomized trial).
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We employ both linear and quadratic functions for f( ). The model is estimated by

ordinary least squares. Note that all of the health measures (Hit) we consider are

binary so that E[Hit] = Prob(Hit = 1) and this is a linear probability model. The

parameter of interest is τ , which measures the local causal effect of the WFP on

Prob(Hit = 1), around the cutoff. Formally:

τ = lim
A↓60

E[Hit|Ait = 60, Xit = x]− lim
A↑60

E[Hit|Ait = 60, Xit = x] (1.2)

As the Hit are measures of illness, if the WFP improves health τ should be negative.

We report standard errors that are robust to heteroscedasticity and clustering by the

age in years of the oldest member of respondent’s household. 15

The WFP was between £200 and £300 (about 300-450 USD) during the period

2002-2009 when our data were collected and it was paid in November-December. 16

Eligibility is determined by the age of the old household member in the preceding

September. Thus a respondent’s household will have received a WFP in the December

prior to the nurse visit date only if the oldest member of the household was 60 in the

September immediately before the December before that date. All households with

an oldest member aged 59 or less at the date of the nurse visit will not have received a

WFP. All households with an oldest member aged 62 or more at the date of the nurse

visit will have been eligible for at least one WFP, and, given the very high take-up of

this benefit, almost surely received it. For households with an oldest member aged 60

or 61, whether they have been eligible for a WFP will depend on both the date of the

nurse visit and the birthday of the oldest member of the household. A complication is

15We follow the discussion in Cameron and Miller (2015) and cluster standard errors at age of the
oldest member level rather than household level because we would otherwise assume independence
across households with same age of the oldest member. However, in the analysis we do not apply
standard error corrections to account for small number of clusters.

16From 2000 to 2007 the WFP was £200 for most eligible households but £300 for households
with an over-80s member. In 2008 the WFP was temporarily uplifted to £250 for over 60s and to
£400 for over 80s but this increase was reversed in the Budget of March 2011.
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that, although the month of the nurse visit is known, ages are recorded in the data in

years. That means, the WFP status of some households with an oldest member aged

60 or 61 can only be determined probabilistically. This is described in Table A1 in

the Appendix A1. 17 We deal with this in two ways. First, we define Dit according to

Table A1, so that Dit = 0 if Ait < 59, Dit = 1 if Ait > 61 and Dit ∈ [0, 1/12, 2/12, ...1]

if Ait ∈ [60, 61] following the mapping in Table A1. Second, as a robustness check, we

re-estimate the model dropping all observations for which WFP cannot be discretely

determined. Note that when these cases are dropped, Dit = 1[Ait > 60] (exactly),

where 1[.] is an indicator function.

1.3 Results

We begin with the now standard graphical presentation of the RDD in Figures 1

through 4. Each figure corresponds to one of our four measures of circulatory and

respiratory illness. The vertical axis measures the incidence of illness, after regression-

adjustment for covariates at the individual level. These covariates are listed in the

notes to the figure but of course exclude age and WFP eligibility. The horizontal axis

measures the age of the oldest member of a respondent’s household. Each plotted

point is the average value of the illness measure for a given year of age (of oldest

household member). As our illness measures are binary, this mean is a probability.

The cut-off for WFP eligibility (at age 61) is indicated in Figures 1 through 4 by the

vertical line and separate least-squares best-fit lines are plotted to the left and the

right of the cut-off. A treatment effect is indicated by a discontinuity between these

17For example, if an individual has the nurse visit in January, their household will have received
a WFP in December (one month before), as long as the oldest member is more than 60 years
and 4 months old, so that they were 60 in the preceding September. If the oldest member of the
household reports age 60 and was born in August, the household will have been eligible for a WFP in
December. However, if the oldest member of the household reports age 60 and was born in October,
the household will not have been eligible for a WFP in December. Of those oldest members of a
household aged 60 in years at a given nurse visit, 2/3 will be older than 60 years and 4months, and
1/3 will be 60 years four months or less.

15



Figure 1.1: Effect of the Winter Fuel Payment on the probability of having a C-
reactive protein level larger than 10 mg/l.

 

Figure 1.1 plots the residuals of a regression of the Prob(CRP > 10mg/l) on type
of household, gender, smoker status, alcohol consumption Body Mass Index, waist,
education, income, employment status, month of nurse visit, survey-wave dummies vs
age of the oldest person in the household.

Figure 1.2: Effect of the Winter Fuel Payment on the probability of having a fibrino-
gen level larger than 4 g/l.

 

Figure 1.2 plots the residuals from a regression of the Prob(Fibrinogen ≥ 4) on type
of household, gender, smoker status, alcohol consumption, Body Mass Index, waist,
education, income, employment status, month of nurse visit, survey-wave dummies vs
age of the oldest person in the household.
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Figure 1.3: Effect of the Winter Fuel Payment on the probability of having had a
recent chest infection.

 

Figure 1.3 plots the residuals from a regression of the Prob (Chest Infection in the last
3 weeks) on type of household, gender, smoker status, alcohol consumption, Body Mass
Index, waist, education, income, employment status, month of nurse visit, survey-wave
dummies vs age of the oldest person in the household.

Figure 1.4: Effect of the Winter Fuel Payment on the probability of having hyper-
tension

 

Figure 1.4 plots the residuals from a regression of the Prob(Hypertension) on type
of household, gender, smoker status, alcohol consumption, Body Mass Index, waist,
education, income, employment status, month of nurse visit, survey-wave dummies vs
age of the oldest person in the household.
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two best-fit lines at the cut-off. Three of the four figures indicate decline in illness

incidence with WFP eligibility. The exception is self-reported chest infection. The

plots also indicate that the paths of illness incidence across age of the old household

member are quite noisy, with significant year on year fluctuations. Although we

have substantial sample sizes (each point represents about 400 observations), we are

modelling relatively rare events (in our sample 5.5 % of the elderly just below the

cut-off present a CRP value larger than 10 mg/l and 12.5 % a fibrinogen value in

excess of 4 g/l, see 1.1). To assess the magnitudes and statistical significance of the

discontinuities visible in these figures we turn to formal RDD estimates (as described

above). These are reported in Table 1.2.

In Table 1.2 each column gives the estimate of the WFP effect on the health outcomes

in our preferred specification with linear functions of the forcing variable, f(), covari-

ates, and a sample age window (for the age of the oldest member in the household

window) of 55 to 65 years. The point estimates suggest that the WFP improved the

health of the elderly at age 61, reducing all our measures of illness. Effect sizes are 1

to 6 percentage points.

However, the WFP only has a statistically significant effect at 5 % level on having a

high concentration of fibrinogen. 18 It decreases the probability of a fibrinogen value

in excess of 4 g/l by 5.5 percentage points. As 12.5 % of the elderly just below the

cut-off have a value of fibrinogen in excess of 4 g/l, our estimate implies a 44 % reduc-

tion in the incidence of this measure of illness at the age cut-off. Data on the CRP

are noisier and the discontinuity effect at the cut-off is not statistically significant at

conventional levels. Nonetheless, the magnitude of the WFP effect (1.2 percentage

points) is sizeable and implies a 22 % reduction in the incidence of illness by this

measure, again at the cut-off. 19 In Column 3 we report the effect on self-reporting

18This finding is robust to the adjustment for multiple testing using the Romano-Wolf algorithm
(see the third line in Table 1.2).

19The fraction of elderly just below the age 61 cut-off with CRP value larger than 10 mg/l is
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Table 1.2: The impact of the Winter Fuel Payment on predictors of infection.

Effect of the WFP on Fibrinogen, C-reactive protein, Self-reported
Chest Infection and Hypertension

Fibrinogen C-reactive protein
Causal Effect of Eligibility -0.055*** -0.012
(95% Confidence Interval) (-0.077; -0.033) (-0.044; 0.020)
Minimum Detectable Effect ±0.028 ±0.040
(at 80% power)
Unadjusted P-Value 0.000 0.418
(Adjusted for Multiple (0.022) (0.221)
Testing)
Number of observations 3,974 4,517
Age Window 55-65 55-65

Self-reported Hypertension
Chest infection

Causal Effect of Eligibility -0.024* -0.018
(95% Confidence Interval) (-0.049; 0.001) (-0.049; 0.012)
Minimum Detectable Effect ±0.031 ±0.038
(at 80% power)
Unadjusted P-Value 0.058 0.207
(Adjusted for Multiple (0.091) (0.119)
Testing)
Number of observations 4,569 6,295
Age Window 55-65 55-65

*** p < 0.01 ** p < 0.05 * p < 0.1
Standard Errors clustered by age of the oldest household member. The RDDs have a linear
specification in the age of oldest member in the household. Additional covariates in the RDD:
type of household, gender, smoker status, alcohol consumption, Body Mass Index, waist,
education, income, employment status, month of nurse visit, survey-wave dummies vs age of
the oldest person in the household.
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a chest infection in the last 3 weeks and in Column 4 we report the effect on the

incidence of hypertension. The effects are about 2 percentage points, but neither is

statistically significant at 5 % level. The largest point estimate of an effect is for

Fibrinogen above the normal range. This is also the most precisely estimate effect.

To get an idea of the power of our tests, we calculate, for each outcome, the minimum

effect size we would have 80 % power to detect. These are displayed in the third row

of Table 1.2. Although we have quite large samples sizes, minimum detectable effects

are quite large. This is partly because we are examining the incidence of extreme

values, and partly because we only have clean identification of treatment effects at

the eligibility cut-off and must model the evolution of illness incidence on either side

of the cut-off.

In Table 1.3 we explore the robustness of our results by varying our RDD specification

in 5 ways. We first implement a quadratic polynomial for f( ), the function of the

forcing variable relative to the age cut-off. We then re-estimate the models without

including covariates in our specification. We further investigate whether our findings

are sensitive to a change in the choice of the sample age window (either wider or

narrower). Finally we drop the observations with the oldest member of the household

aged 60 or 61 for whom we cannot determine whether they received the WFP or not

exactly.

We find that our estimates of the discontinuity effect for the fibrinogen are robust

to any of these changes in the RDD specification. The coefficient of the WFP effect

is always statistically significant at 1 % level and the effect size lies between 4.4

percentage points and 8.7 percentage points. 20 This implies a reduction of 35 % to

70 % in the incidence of a high serum concentration of fibrinogen at the age cut-off.

For the other measures of illness we find a negative coefficient in all the specifications

6.3%.
20All estimates are statistically significant at 5 % level after adjusting for multiple testing except

for the specification with a quadratic function of the forcing variable, where p=0.074.
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indicating an improvement in health with WFP eligibility. However, the estimates

are variable and rarely statistically significant at conventional levels.

Table 1.4: Falsification Tests: Effect of a “placebo” eligibility at age 55
and age 65, and effect on above median fibrinogen concentration.

Effect of WFP on Fibrinogen

Cut-off age 55 -0.015

(95% Confidence Interval) (-0.057; 0.026)

Age Window 50-60

Cut-off age 65 0.004

(95% Confidence Interval) (-0.052; 0.060)

Age Window 60-70

Prob(Fibrinogen ≥ 3.1g/l) 0.009

(95% Confidence Interval) (-0.046; 0.065)

Age Window 55-65

Standard Errors clustered by age of the oldest member level. Additional covariates

in the RDD: type of household, gender, smoker status, alcohol consumption, Body

Mass Index, waist, education, income, employment status, month of nurse visit,

survey-wave dummies vs age of the oldest person in the household.

*** p < 0.01 ** p < 0.05 * p < 0.1

We now provide some further checks on our main finding of a WFP effect on the

incidence of high concentrations of fibrinogen. In Table 1.4 we present falsification

tests for an effect at age cut-offs of 55 and 65. As these are not the eligibility cut-off,

we should find no effect at these ages. As a further falsification test we check for an

effect on the incidence of fibrinogen concentrations above the sample median. The

idea here is that having an above-median concentration of fibrinogen is not a marker

of disease. If we are measuring a reduction in disease incidence, that effect should
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be observed only in the upper tail of the distribution (as in our main estimates) and

not around the median. 21 As Table 1.4 illustrates, we do not find any evidence of

an effect across these specifications. This increases our confidence in the main effect

reported in Table 1.2.

We also considered what our estimated effects for the incidence of fibrinogen concen-

tration in excess of 4 g/l imply for levels fibrinogen in the upper tail of the distribu-

tion. To do this we estimate a quantile regression version of the RDD. Note that our

base specification studies the probability that measured serum Fibrinogen exceeds a

specified cut-off, and how this probability differs with WFP eligibility holding the

cut-off constant at k :

Pit(WFPit) = Prob(HFib
it > k|WFPit) (1.3)

A quantile regression inverts this relationship, holding the probability constant (at

the chosen quantile, 1 - P) and asking, essentially, how the cut-off varies with WFP

eligibility.

kit = F1−P (HFib
it |WFPit) (1.4)

In our sample prob(HFib
it = 1) ≈ 12% and the RDD estimates show that this falls

by 6.1 percentage points with WFP eligibility. In this robustness check we consider

how the 85th and 90th conditional quantiles of HFib
it vary with WFP eligibility (cor-

responding to P = 0.15 and P = 0.1 ). We find in both cases a drop in Fibrinogen of

about 0.11 g/l. However the effects are less precisely estimated than the probability

models. 22

We finally follow Kling, Liebman, and Katz (2007) and create a Poor Health Index to

21The median fibrinogen in the neighbourhood of the age cut-off is 3.1 g/l (see Table 1.1).
22Inference for quantile regression is not straight forward. Asymptotic standard errors are not

regarded as reliable and we employ a bootstrap procedure. Full details and results are available
from the authors on request.
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Figure 1.5: Effect of the Winter Fuel Payment on the Poor Health Index.
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RD plot - Poor Health Index

Figure 1.5 plots the residuals from a regression of the Poor Health Index on type
of household, gender, smoker status, alcohol consumption, Body Mass Index, waist,
education, income, employment status, month of nurse visit, survey-wave dummies vs
age of the oldest person in the household.

improve the statistical power of detecting effects of the same sign and implement the

RDD on this new measure. The Poor Health Index synthetises in a single measure

our indicators of cardiovascular and respiratory diseases. We exclude self-reports

of chest infection and focus on our binary objective measures, serum-Fibrinogen in

excess of 4 g/l, serum-CRP in excess of 10 mg/l and Hypertension. 23 For each of

these outcomes we calculate the z-scores subtracting the mean of the group of people

just below the eligibility cut-off and dividing by the standard deviation of the same

group. The Poor Health Index is the average of the three z-scores and a low value of

the index is evidence of better health.

We first present the impact of the WFP on the Poor Health Index graphically in

Figure 1.5. As in the Figures reported before, we interpret a discontinuity at the

eligibility cut-off as evidence of an effect of the WFP on our index. The data in

23Self-reports of chest infection is the only measure that does not show a clear pattern in the
data and is not reported in HSE.
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Figure 1.5 are still noisy as in the analysis of the single objective health outcomes,

but there is a visible drop in the Poor Health index around the eligibility cut-off.

In Table 1.5 we show the size of the effect of the WFP on the Poor Health Index

implementing various specifications of the RDD. The analysis includes only obser-

vations with a valid measure of Fibrinogen, CRP and Hypertension. The reduction

of the Poor Health Index is in the range of 0.2 to 0.45 standard deviations with our

estimates all statistically significant at 5 % level. Our preferred specification is pre-

sented in Column 1 and shows a decrease in the Poor Health Index of 0.23 standard

deviations.

Table 1.6: Impact of the Winter Fuel Payment on the Poor
Health Index in sub-groups.

Excluding Low-Income: Low Educated

Summer Months 1st quartile

-0.367* -0.039 -0.460***

(-0.772; 0.039) [-0.433; 0.354] [-0.681; -0.239]

N= 2,351 N= 786 N= 980

Standard Errors clustered by age of the oldest member level. 95%

Confidence Interval. Linear Specification in age of oldest household

member. Age Window: 55-65. Summer months excluded : June, July,

August and September. Low-Educated highest qualification reported:

No Qualification, NVQ level 1, NVQ level 2. Additional covariates in

the RDD: type of household, gender, smoker status, alcohol consump-

tion, Body Mass Index, waist, education, income, employment status,

month of nurse visit, survey-wave dummies vs age of the oldest person

in the household.

*** p < 0.01 ** p < 0.05 * p < 0.1

We replicate the analysis on the Poor Health Index for three sub-samples of obser-

vations to investigate whether there are specific groups that drive our findings. In
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the first Column of Table 1.6, we report the estimates on a sample which excludes

observations with a nurse visit in summer. The rational is that we do not expect

any beneficial effect of the WFP on health in the summer months. Consistent with

this expectation we find a slightly larger reduction in the Poor Health Index than

in the full sample (a point estimate of 0.36 standard deviations that is statistically

significant at 10 % level.) Second, we estimate the effect of the WFP on the Poor

Health Index for low-income respondents. Beatty et al. (2014) show a particularly

significant increase in the fuel expenditure for poorer households. These households

should therefore experience larger health benefits. We find an effect magnitude of

-0.04 standard deviations that is not precisely estimated, in part because of the re-

duction in the sample size. Finally, we consider the effect of WFP eligibility among

low education respondents. Here we find a very large and statistically significant

effect of around 0.46 standard deviations.

1.4 Discussion and conclusions

We find evidence to suggest that raising the cut-off age for WFP eligibility had

a negative effect on the health of individuals made ineligible. We find a robust

and statistically significant effect for only one of the individual illness measures we

consider, though point estimates for all the markers we consider point in this direction.

Reductions of 1 to 6 percentage points (for fairly rare events) are large effect sizes.

Using a Poor Health Index that combines our illness markers, we find particularly

large effects for low educated individuals.

For healthcare providers, these results highlight the need to be sensitive to inadequate

indoor heating as a potential winter health risk, perhaps particularly among low

education individuals who fall just short of eligibility for the WFP.
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The eligibility for the WFP is tied to the Female State Pension age. As the Female

State Pension age is been rising, eligibility is being tightened to older ages. This will

be 65 in 2018.

Our RDD estimates the causal effect of the WFP on the health of individuals living

in households where the oldest member of the household is 61. This is very useful

because these are precisely the individuals who lost any benefits of the WPF as the

eligibility age was incrementally increased from 2010. Our results therefore challenge

the assumption of some analysts that raising the eligibility age would reduce program

costs without any health cost. At a minimum, further research is needed to determine

the loss of health benefits associated with potential future increases in the eligibility

age.
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Appendix

A1 Winter Fuel Payment eligibility

Table A1: Winter Fuel Payment eligibility.

WFP WFP WFP

Month of the Eligibility age eligibility eligibility eligibility

nurse visit Aged 60 Aged 61 Aged 62

January 60 + 4 months 8/12 1 1

February 60 + 5 months 7/12 1 1

March 60 + 6 months 6/12 1 1

April 60 + 7 months 5/12 1 1

May 60 + 8 months 4/12 1 1

June 60 + 9 months 3/12 1 1

July 60 + 10 months 2/12 1 1

August 60 + 11 months 1/12 1 1

September 61 0 1 1

October 61 + 1 months 0 11/12 1

November 61 + 2 months 0 10/12 1

December 61 + 3 months 0 9/12 1
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Chapter 2

Does a housing subsidy cut really

lower rents? Evidence from a

reform in the UK

2.1 Introduction

In-kind transfers such as housing subsidies and food stamps are provided to encour-

age consumption of goods that are believed necessary to improve the individual and

social well-being. By giving in-kind subsidies rather than cash transfers, governments

aim to induce recipients to consume more subsidised goods than they would do volun-

tarily. This paternalistic justification of in-kind transfers is based on the rational that

governments are concerned about the distribution of subsidised goods as well as the

reduction of income inequality (Tobin, 1970; Rosen, 1983; Currie & Gahvari, 2008).

Economic theory, however, predicts that in-kind transfers come at a cost. Subsidies

do shift upward the demand of subsidised goods, but unless the supply is perfectly
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elastic, the market price of subsidised goods increases in response to a rise in the

demand. This change in price implies that part of the benefit of subsidies accrues to

suppliers. To evaluate the extent to which the benefit is split between consumers and

suppliers, the literature commonly calculates the incidence of a subsidy, a measure

of how much the price of the subsidised good rises with a marginal increase in the

subsidy unit.

In this paper we focus on the incidence of a housing subsidy, a transfer that gov-

ernments assign to low-income households to help them to pay for the rent of an

adequate property. Governments allocate housing subsidies under the assumptions

that low-income households consume less housing than appropriate and housing is an

important determinant of quality of life. Indeed, better housing has a positive impact

on children educational attainment (Currie & Yelowitz, 2000; Goux & Maurin, 2005)

and living in less deprived neighbourhoods improves physical and mental health for

adults (Ludwig et al., 2011, 2012; Leventhal & Brooks-Gunn, 2003) and decreases

mortality (Jacob, Ludwig, & Miller, 2013).

However the standard theory predicts that housing subsidies affect rents when the

supply does not adequately respond to the new housing demand. The change in rents

due to the subsidy might not be limited to subsidy recipients and it might extend to

the whole rental market (Susin, 2002; Eriksen & Ross, 2015). This is the typical case

when some of the incidence of the housing subsidy is on tenants.

This paper investigates the incidence of housing subsidies on subsidised and unsub-

sidised tenants using a reform implemented in 2011 in the United Kingdom (UK)

that aimed at tackling the stark growth in housing assistance outlays. The amount

of subsidy that recipients received was to some extent linked to their rent and the

UK government believed the housing subsidy outlays were excessive because

“some unscrupulous landlords were charging benefit claimants over the

odds to make a quick buck at the expense of the taxpayer.”
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(Lord Freud, Welfare Reform Minister, 10/2010)

A series of changes in the housing subsidy system were introduced to reduce the

generosity of the subsidy and in the intention of the government the reform would

“bring an overall downward pressure on rents in the private sector.

As these rents come down, more properties would become available to

claimants and landlords would have certainty that their income would be

protected.”

(Lord Freud, Welfare Reform Minister, 11/2010)

However, the incidence of the subsidy might still fall on tenants if other factors than

the housing demand of subsidised tenants affect rents. Among them, we highlight

three factors that could explain why rents did not fall in response to the subsidy cut in

this context. First, landlords might be reluctant to let properties to housing subsidy

recipients and can replace them with unsubsidised tenants. The housing supply can

be relatively elastic whether the pool of houses is restricted or expanded on the basis

of landlords’ decisions of letting to subsidy recipients. Second, the rental market and

the home owner market are interconnected. When first-home buyers find difficult to

purchase a property because of credit constraints or policies that incentivise landlords

to invest in properties, the rental market of unsubsidised tenants expands and the

chances of landlords of finding a substitute for subsidy recipients increase. The third

factor is related to the nominal rigidity in the short term. Some contracts are agreed

on a multi-year basis and tenants might not be able to re-negotiate their rent with

landlords in the short term. In this latter case the incidence would entirely fall on

tenants.

Several studies have examined the incidence of housing subsidies, but they have

focused on either subsidised tenants (Gibbons and Manning, 2006; Fack, 2006; Kan-

gasharju, 2010; Viren, 2013; Collinson and Ganong, 2015; Brewer et al., 2014) or
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unsubsidised tenants (Susin, 2002; Eriksen & Ross, 2015). Research on subsidised

tenants have shown that the incidence of the housing subsidy is shared between ten-

ants and landlords. However, empirical estimates are mixed and report an incidence

in the range of 10 % and 90 %. In particular, for the UK, Gibbons and Manning

(2006) examine the effect of a housing subsidy reform in the mid-90s and find that the

incidence of the subsidy on landlords was around 60 % . On the other hand, Brewer

et al. (2014) use administrative data exploiting the same reform as this paper and

estimate that the incidence was 10 % on landlords. The evidence on the effect of

housing subsidies on unsubsidised tenants is also heterogeneous. Analysing data on

rents of the US biggest metropolitan areas, Susin (2002) finds that an increase in

the number of housing vouchers raised rents in low income neighbourhoods for un-

subsidised households on average by 16 %. Eriksen and Ross (2015) report a much

smaller increase in rents of medium quality properties and a slight fall in lower-quality

properties in response to a higher provision of vouchers. As in the prediction of the

standard model, the magnitude of the incidence is, however, sensitive to the supply

elasticity in the metropolitan area.

This paper adds to the literature on the incidence offering a link between the stud-

ies on the incidence on subsidised tenants and the studies on unsubsidised tenants.

Using data from the Family Resource Survey (FRS) and the English Housing Survey

(EHS), two cross-sectional surveys that include rich information on property charac-

teristics, we exploit the housing subsidy reform in 2011 as a quasi-natural experiment

to estimate the incidence of the subsidy. For subsidised tenants we follow Brewer et

al. (2014) and Gibbons and Manning (2006) and run two separate regressions that

estimate the effect of the reform on subsidy receipts and rents. The incidence of the

housing subsidy is the ratio between the effect of the reform on rents and the effect

of the reform on subsidy receipts. A second strategy follows Fack (2006) and uses the

reform as an instrument for subsidy receipt. In this case the incidence is recovered
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from the second stage where rents are regressed on the predicted values of the subsidy

receipt. For unsubsidised tenants, the incidence is estimated through deviations from

a time trend that rents would have followed if the reform had not been introduced.

We find that the average subsidy receipt fell by 7 % after the reform, but rents of

subsidised tenants did not significantly fall in response to the subsidy cut. The esti-

mated incidence on landlords is 7 % in line with the finding of Brewer et al. (2014).

Unsurprisingly, the reform is estimated to have had hardly any impact on the rents

of unsubsidised tenants. 33 months after the UK government started to implement

the reform, the central estimate is that rents for unsubsidised tenants fell by 0.3 %,

and this effect fades away later. In the most deprived areas, where subsidy recipients

made up a larger share of the private rental market, the impact on unsubsidised ten-

ants was not significantly larger.

The remainder of the paper proceeds as follows. The next section describes how a

housing subsidy affects the rental market. Section 3 provides details of the LHA

reform. Section 4 discusses the the empirical strategy to estimate the incidence of

a housing subsidy cut. Section 5 describes the data and some descriptive statistics.

Section 6 presents the findings on the incidence on subsidised and unsubsidised ten-

ants. Section 7 and 8 conclude providing possible explanations on why the incidence

of a housing subsidy mostly fell on tenants.

2.2 The incidence of the housing subsidy

The purpose of a housing subsidy is to make adequate dwellings affordable for low-

income households. An housing subsidy is not a plain cash transfer, but it is often

related to the rent of a property up to a certain ceiling. In this perspective, a

subsidy cut should reduce the housing consumption of low-income households that

would otherwise opt for more expensive and higher quality dwellings. Landlords
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might charge a lower rent in response to the decreased demand of subsidy recipients.

However the drop in rents can be lower than the subsidy cut. The share of the subsidy

cut that is not covered by the reduction in rents and is paid out of pocket by claimants

is the incidence on tenants. The subsidy cut can also affect the equilibrium in the

whole rental market. In this case the subsidy has also an incidence on unsubsidised

tenants.

The incidence of the housing subsidy depends on the conditions of the rental market.

In particular, the incidence is higher when the housing supply is inelastic, the housing

demand is elastic and there is no nominal rigidity in rents. In the next sections, I

review the rental market models presented in the literature of the incidence of the

housing subsidy and describe the model of this paper.

2.2.1 Rental market models

The literature on the incidence of housing subsidies presents different models of the

rental market. All these models take the competitive rental market as a benchmark.

In a competitive setting, tenants are not discriminated according to whether they re-

ceive a subsidy to pay for their rents. Subsidised and unsubsidised tenants therefore

pay the same rent for a certain property. When a subsidy is reduced, the housing de-

mand of subsidised tenants decreases and rents fall. Interestingly, the model predicts

that the subsidy cut would lower the rent of a property by an equal amount regard-

less of the type of tenant. The extent of any fall in rents depends on the elasticity

of demand and supply for housing. The more responsive is the housing demand and

the more inelastic is the housing supply, the higher is the drop in rents caused by the

subsidy cut. In addition, rents would fall by more in areas with high concentration

of subsidised tenants.

However, several studies provide evidence of frictions in the rental market. Gibbons
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and Manning (2006) show that a reform implemented in the UK in 1996/97 reduced

rents only for recipients affected by the subsidy reduction, and had no significant

impact on unsubsidised tenants. This finding supports a matching model where

subsidised tenants have some bargaining power in negotiating a rent reduction with

landlords. However, the fall in rents for subsidised tenants does not fully cover the

subsidy cut because landlords can always opt for letting the property to unsubsidised

tenants that are willing to pay higher rents. In the matching model, unsubsidised ten-

ants also benefit from the subsidy cut but the effect on their rents is smaller compared

to subsidised tenants. In an analogous paper Fack (2006) assumes that the rental

market is divided into two separated sub-markets, one for low-income tenants and

the other for high-income tenants. With the introduction of a subsidy, the housing

supply in the low-income rental market plays a crucial role because subsidised tenants

cannot rent a property in the high income sub-market. If their increased housing de-

mand is not matched by a further and better provision of properties in the low-income

segment, the model predicts that the incidence of the subsidy is entirely on tenants.

Collinson and Ganong (2016) suggest a model where subsidy claimants have a lim-

ited time to find a suitable property in order to keep their subsidy eligibility. They

are risk adverse and prefer finding a suitable dwelling in a low-income neighbourhood

rather than searching a property in well-off neighbourhoods where landlords are more

likely to refuse subsidy claimants. In this setting, a policy that sets a flat rate across

neighbourhoods in a certain local area raises rents and traps subsidy recipients in

low-income neighbourhoods. On the other hand, a policy that changes the rates in

every neighobourhood within a local area leads some subsidy claimants to move from

low-income neighbourhoods to higher income neighbourhoods.

Other papers exclusively focus on the spillover effects on unsubsidised tenants. The

milestone study is Susin (2002) that suggests a rental market split in three segments

according to the income of the residents in the local area: low-, middle- and high- in-
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come neighbourhoods. The three rental markets are separated and subsidised tenants

are trapped in the low- income neighbourhoods. An increase in the housing subsidy

has the effect of bidding up rents only in the whole low-income market. In contrast

to Susin (2002), Eriksen and Ross (2015) suggest a rental market where claimants

effectively move across neighbourhoods. In their model, housing subsidies increase

rents of properties with a pre-subsidy rent near the subsidy rate and decrease rents

of low-quality properties. This is because subsidised tenants leave low-quality prop-

erties and instead demand properties near the subsidy rate. Moreover, the impact of

housing subsidies varies according to the supply elasticities of the local areas. Rents

only rise in local areas where constructors cannot adjust the supply of houses to

match the increased housing demand.

2.2.2 The incidence of a housing subsidy

Following Susin (2002), we set up a model to show how a housing subsidy affects

rents paid by subsidised and unsubsidised tenants in the private rental market. The

setting is a competitive market where subsidised and unsubsidised tenants rent their

dwellings choosing from the same pool of properties. In a setting with housing subsidy

in place, landlords provide QS properties and tenants demand QD housing . QS

depends on RS, the price that landlords receive to supply QS:

QS = A(RS)εSHS (2.1)

The demand of subsidy recipients QD
Su and the demand of unsubsidised tenants QD

U

are

QD
Su = (

RS

Sub
)−εDHD (2.2)
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QD
U = (RS)−εDHD (2.3)

where Sub is the housing subsidy and RD
Su = RS

Sub
is rent for recipients and RD

U = RS

is rent for unsubsidised tenants, HS and HD are supply and demand shifters, εS and

εD are the elasticity of supply and demand.

It is convenient to define the housing demand QD as the sum of lnQD
Su, the hous-

ing demand of subsidised tenants, and lnQD
U , the housing demand of unsubsidised

tenants:

lnQD = lnQD
Su + lnQD

U =
1

N
(
∑
i∈NU

qUi +
∑
i∈NSu

qSui ) (2.4)

Using the log format, the housing demand for subsidised and unsubsidised tenants is

expressed in terms of the demand elasticity εD :

lnQD
Su = pSu(hD − εD ln(RS) + εD ln(Sub) + ηSu) (2.5)

lnQD
U = (1− pSu)(hD − εD lnRS + ηU) (2.6)

where the proportion of subsidised tenants is pSu, the proportion of unsubsidised

tenants is (1− pSu) and hD = lnHD. The housing demand lnQD is defined as

lnQD = pSu(hD − εD ln(RS) + εD ln(Sub) + ηSu) + (1− pSu)(hD − εD lnRS + ηU)
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and re-arranging the terms on the right hand side

lnQD = hD − εD ln(RS) + pSuεD ln(Sub) + ηD

Likewise, using the log format and defining hS = lnHS, the housing is supply is

lnQS = hS + εS lnRS + ηS (2.7)

Setting lnQD = lnQS gives the following:

a+ εS lnRS + ηS = hD − εD ln(RS) + pSuεD ln(Sub) + ηD (2.8)

Rents in the steady state are

lnRS =
1

εS + εD
· [hD − hS − pSuεD ln(Sub) + ηD − ηS] (2.9)

and the incidence of the housing subsidy on landlords is

IL =
pSuεD
εS + εD

(2.10)

2.3 The Local Housing Allowance reform

Housing is an important component of the welfare state in the UK. In 2014 the UK

Government spent more than £24 billion on housing subsidies which made up 14

% of the total benefit expenditure and 0.5 % of the GDP 1. Of this amount, the

UK government spent nearly £9 billion to subsidise claimants in the private rental

1Housing subsidy figures are from the Department for Work and Pension (2015) and data on
GDP is from the Office for National Statistics
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market, whereas the rest funded social housing (Department for Work and Pension,

2015). In an attempt to control the sharp increase on housing expenditure seen in

the first decade of the 21st century (see Figure 2.1), the UK government reformed

the housing subsidy system in April 2011 by implementing a series of measures that

reduced the generosity of the subsidy.

The amount of housing subsidy that claimants received depended on their income

Figure 2.1: Housing Subsidy (HS) expenditure in the UK. 2000-2014

Source: Department for Work and Pensions.

and the Local Housing Allowance (LHA), a flat rate based on the composition of

the household and the local area - the Broad Rental Market Area (BRMA) - where

the claimant lived. The boundaries of the BRMAs were defined according to the

availability of a series of facilities and services in the local area. For each of the 152

BRMAs, a governmental institution - the Valuation Office Agency (VOA)- period-

ically released the LHA rates that varied with the number of bedrooms a claimant

was entitled to.

In the pre-reform system VOA determined six LHA rates. Single childless cus-
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tomers aged under 25 were entitled to the Shared Accommodation rate, whereas

other claimants could be eligible up to the five bedroom rate depending on the size of

their household. The LHA rates were set at the median of the BRMA rent distribu-

tion and claimants were allowed to keep the excess (up to £15) between the subsidy

and their actual rent if the rent charged by the landlord was lower than the LHA rate.

Table 2.1: Implementation of the LHA reform by month of claim

Claim Month Transitory period New System Rules

New Claim(April 2011-) - Since the claim

April April 2011-December 2011 January 2012

May May 2011-January 2012 February 2012

June June 2011-February 2012 March 2012

July July 2011-March 2012 April 2012

August August 2011-April 2012 May 2012

September September 2011-May 2012 June 2012

October October 2011-June 2012 July 2012

November November 2011-July 2012 August 2012

December December 2011-August 2012 September 2012

January January 2011-September 2012 October 2012

February February 2011-October 2012 November 2012

March March 2011-November 2012 December 2012

With the April 2011 reform the calculation of the maximum entitlement was shifted

to the 30th percentile of the BRMA rent distribution, the five bedroom rate was

abolished and the Shared Accommodation Rate was extended to cover single child-

less adults aged between 25 and 34. In addition, the reform established that the LHA

rates could not exceed some national caps and claimants were no longer entitled to
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keep the £15 excess.

The time when claimants were rolled onto the new system differed for old and new

claimants (see Table 2.1). LHA claimants that first claimed the subsidy after April

2011 or had a reassessment of their claim after that date were immediately subject to

the new rules.2. Old claimants that were receiving the subsidy before the implemen-

tation of the reform became part of the new system at the first anniversary of their

claim. In the first phase, they only lost the entitlement to keep the £15 excess. Nine

months after the anniversary of their claim, the transitory period ended and they

were fully rolled onto the new system. For example, an old claimant that had made

a claim in April 2010 was fully rolled onto the new system in January 2012, whereas

the new rules only applied in December 2012 for a claimant whose anniversary was

in March 2010.

2.4 Identification strategy

2.4.1 The incidence on landlords that let to subsidised

tenants

The empirical analysis of the incidence of a housing subsidy hinges on the quasi-

experimental design of the 2011 LHA reform. We first investigate whether the LHA

reform lowered the amount of subsidy received, as was the intentions of the UK

government. Second, we estimate how the reform affected rents paid by claimants

and calculate the incidence of the housing subsidy. Finally, we investigate whether

the subsidy cut had a spillover effect on rents paid by unsubsidised tenants.

We implement two strategies to examine the incidence of the subsidy on claimants.

2A reassessment of a claim could be triggered by a change in the circumstances or if claimants
moved to a new property
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The first methodology follows Gibbons and Manning (2006) and Brewer et al. (2015)

and estimate the impact of the reform on subsidy receipts and rents with two separate

regressions shown in equations (2.11) and (2.12):

lnSubst = β0 + β1tm + β2dst + x
′

stγ + εst (2.11)

lnRst = α0 + α1tm + α2dst + x
′

stδ + ηst (2.12)

where the subscript s denotes the subsidy recipient and t denotes the time of the

interview, Subst is the subsidy receipt, Rst is the rent paid by the recipient, tm is

a monthly time trend, dst is a binary variable that indicates whether the recipient

received the subsidy according to the post-reform rules and xst are control variables

such as property and household characteristics. The two regressions are estimated

with OLS and standard errors are clustered at BRMA level.

The identification strategy exploits the reform as an exogenous change in the subsidy

receipt. Indeed claimants observed before the implementation of the reform differed

from claimants observed after the implementation only for the LHA system they were

enrolled in.

All claimants observed before April 2011 were not affected by the reform and received

the housing subsidies with the pre-reform rules (dst = 0). Claimants observed after

January 2013 were all enrolled in the new LHA system (dst = 1). During the reform

enforcement (April 2011- December 2012) claimants could be in the pre-reform system

or the post-reform system depending on their claimant status. New claimants were

recipients that claimed the subsidy for the first time or had a reassessment of their

claim in the period the reform was enforced. They were immediately enrolled onto

the post-reform regime (dst = 1). Old claimants were recipients that had already

claimed the housing subsidy before the reform and were fully rolled onto the new

system at the end of the transitory period, nine months after their claim anniversary.
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3 However the data do not have information on the subsidy rules that applied to

claimants at the time of the interview. The strategy used to deal with this issue

varies with the survey. The FRS releases the month and the year when the last

subsidy claim was made. Matching this information with the date of the interview

allows to establish whether the claimant was in the pre- or post-reform system. In the

EHS the information on the claim anniversary is not available and the LHA regime of

the claimant cannot be established. In this case we assign to the post-reform regime

only recipients that moved to a new property after April 2011. 4. For the rest of the

sample, the LHA system status is determined parametrically. The reform variable

dst is (1/12, 2/12,...,12/12) according to the end-of-the-transitory-period probability.

As an example, old claimants observed in January 2012 have dst = 1/12 because only

claimants whose claim anniversary was in April were rolled onto the new system in

that month. The new rules applied to any claimants observed in December 2012 and

dst is therefore 12/12 (full details are described in Table B1 in Appendix B1).

The changes of the LHA reform could trigger an anticipatory response from subsidy

recipients. For example recipients could move to a cheaper house before the reform

to offset the subsidy cut. Or landlords could renew contracts shortly before the

reform agreeing lower rents in the wake of the forthcoming subsidy reduction. If

there was anticipatory response our estimates of the incidence would be downward

biased. However, in our specification we do not deal with anticipation effects.

After estimating the average effect of the reform on subsidy receipts and rents on

subsidised tenants, we can calculate the incidence of the housing subsidy. It estimates

how the burden of the subsidy is shared between tenants and landlords. A fall in rents

in response to the LHA reform implies that landlords are affected by the subsidy cut.

3Old claimants had a nine-month transitory period in which they lost only the the entitlement
to keep the £15 excess

4Claimants that moved to a different accommodation are assigned to the post-reform system
because a change in the address led to a reassessment of their claim. We determine whether a
claimant moved to a new property after April 2011 matching the information on the length of
tenancy and the interview date.
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The incidence on landlords is calculated as the proportion of the cut in the subsidy

receipts that is covered by the rent decrease. In this specification the coefficient α2

and β2 in equation (2.11) and (2.12) represent how much the reform affected rents

and subsidy receipts Subst. The incidence on landlords IL is estimated through the

ratio of these coefficients:

IL =
α2

β2

(2.13)

My second strategy follows Fack (2006), and regresses rents on subsidy receipt using

the reform as an instrument. 5 The amount of subsidy received is endogenous

because it is correlated with unobserved characteristics that determine rents. The IV

approach is implemented in two stages.

In the first stage I regress subsidy receipts Subst on the reform dst and control variables

as in equation (2.14)

lnSubst = ρ0 + ρ1tm + ρ2dst + x
′

stµ+ ηst (2.14)

The second stage is a regression of rents Rst on the fitted values of subsidy receipts

l̂nSubst obtained in the first stage.

lnRst = θ0 + θ1tm + θ2 l̂nSubst + x
′

stπ + νst (2.15)

The coefficient θ2 in the second stage represents the rent percentage change in re-

sponse to a 1 % increase of the subsidy. θ2 is therefore an estimate of the incidence of

the subsidy on landlords. The classical assumption of the exclusion restriction holds

if the reform dst is uncorrelated with the idiosyncratic shock in the second stage.

Cov(dst, νst) = 0 (2.16)

5The equivalence of the two regression strategy and the IV approach is shown in Appendix B2.
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The reform dst satisfies the exclusion restriction assumption because it caused the

exogenous change in housing subsidies occurred in 2011. Although all claimants were

affected by the LHA reform, they were not affected evenly by the new rules. The

introduction of the national caps affected people living in areas of London where

the 30th percentile of the rent distributions was higher than the national LHA lim-

its (2011-2014 LHA rates, VOA). 6 Singles aged between 25 and 34 were no longer

entitled to the One Bedroom Rate but instead to the less generous Shared Accommo-

dation Rate, whereas large households faced the abolition of the Five Bedroom Rate.

In the equation (2.14) and (2.15) we avoid any source of bias including dummies for

these categories in the controls xit.

2.4.2 The incidence on unsubsidised tenants

After estimating the incidence of the housing subsidy on subsidised tenants, we ex-

amine whether the subsidy cut affected rents of private tenants that do not receive

any subsidy. In a competitive rental market there is a single price for subsidised and

unsubsidised tenants and a fall in rents for subsidised tenants should lead to a fall in

rents for unsubsidised tenants. The effect of the reform for unsubsidised tenants is

estimated through deviations from the linear time trend that rents would have had

if the reform had not been implemented (see Figure 2.2).

The implementation of the LHA reform can be split in three different time windows:

the first nine months after April 2011 when only the new claimants were rolled onto

the new system, the period from January 2012 to December 2012 when claimants

gradually flowed to the new system depending on their anniversary claim and the

period after January 2013 when the reformed system was fully implemented. Thus,

we allow for three deviations from the monthly linear trend tm that rents would have

6Over the period 2011-2014 the national caps were binding in Central London and for most of
the rates in the BRMAs in Inner London
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Figure 2.2: Impact of the LHA reform on rents of unsubsidised tenants

Apr 2011 Jan 2012 Jan 2013

Impact after 

21 months

Impact after 

9 months

had if the reform had not been implemented (the black dashed line in Figure 2.2):

Rut = α0 + α1tm + α2ta + α3tb + α4tc + +x
′

utγ + εit (2.17)

where the subscript u denotes the unsubsidised recipient, Rut are rents paid by un-

subsidised tenant, ta is the deviation from the linear trend tm due to the first phase

of the reform, tb shows how the rent trend changes because of the gradual flow of

claimants in the new system and tc is the deviation from the linear trend tm after the

full enforcement of the reform changes. The pre-reform linear trend tm is estimated

with data from April 2008 to March 2011. The incidence on unsubsidised tenants is

identified under the assumption that the rent time trend would have not changed if

the reform had not been introduced.
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2.5 Data

In order to estimate the incidence of the housing subsidy on subsidised and unsub-

sidised tenants, the analysis pools data from the Family Resource Survey (FRS) and

the English Housing Survey (EHS). The FRS and the EHS are two annual cross-

sectional surveys that collect information on rents, length of tenancy, household and

dwelling characteristics. The purpose of using two sources of information is to boost

the sample size for LHA claimants. The data we use span from April 2008 to March

2014, an interval of time that gives us enough observations in the pre- and post-

reform period to estimate the time trend for rents in the private rental market.

Table B2 in Appendix B3 compares the characteristics of the pre-reform and the

post-reform groups. The pre-reform group is made up of claimants who were ob-

served before the implementation of the reform (April 2011) and old claimants who

were observed at most 8 months after the anniversary of their claim in the reform

phase-in period (April 2011-December 2012).7 The post-reform group is composed

of subsidy claimants who were observed after the full implementation of the reform

(December 2012), claimants who were observed at least 9 months after the anniver-

sary of their claim, and claimants who moved to a new property during the phase-in

period. Among the claimants observed during the phase-in of the reform, 829 are

assigned to the pre-reform group and 440 to the post-reform group. For 735 claimants

there is no sufficient information to establish if they received the LHA according to

the new or old rules. 8 As we can see from Table B2, claimants before and after the

reform pay a very similar rent. However, there is a significant drop of around 10 % in

subsidy receipts after the reform. The pre- and the post-reform groups have similar

characteristics. The t-tests reject the null hypothesis of equality of the means for

7Claimants are fully rolled onto the new LHA regime 9 months after their claim anniversary.
8This occurs if claimants do not report information on their claim anniversary or they do not

move to a new property in the reform phase-in period.

48



some variables but the magnitude of the means is not substantially different.

Table B3 in Appendix B3 shows the same descriptive statistics for unsubsidised ten-

ants. Rents are not very different before and after the reform. The other variables

present very similar means. When we find difference in the means, this is for the

same variables and in the same direction of claimants (see for example the variables

lenght of tenancy, HRP age and furnished/unfurnished property). This is reassuring

that there is no selection in the post-reform group of claimants.

2.6 Results

The purpose of the LHA reform was to lower the aggregate expenditure on housing

subsidies. The expectation of the government was that the subsidy cut would reduce

rents in the private rental market leading to a minimum loss for recipients and ben-

efits for unsubsidised tenants. In other words, the government assumed the housing

subsidy to be mainly incident on landlords. In this section, we first explore whether

the effects of the reform matched the expectations of the government with a graphical

analysis and then we report the estimates of the incidence of the housing subsidy on

subsidised and unsubsidised tenants.

2.6.1 The incidence on subsidised tenants

The graphical analysis shows that the reform only affected the subsidy receipts. Fig-

ure 2.3 gives evidence that subsidy receipts remained constant over the pre-reform

period and then they fell after the implementation of the subsidy cut. Unlike the ex-

pectations of the government rents did not respond to the subsidy cut. Indeed, rents

of subsidised tenants were slightly falling in the pre-reform period, and the trend was
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Figure 2.3: Median weekly Log(Subsidy) and Median weekly Log(Rent) in 2008 prices
for LHA claimants in the private rental sector, Q2 2008- Q1 2014
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Source: English Housing Survey and Family Resource Survey.
The two vertical lines mark the introduction of the LHA reform in April 2011 and the
full implementation of the reform in December 2012.

not significantly different in the post-reform period.9

The upper panel of Table 2.2 gives the estimates of the impact of the reform on

subsidy receipts and rents using the equations (2.11) and (2.12). 10 Subsidy receipts

and rents are expressed in log terms and the coefficients of the reform can be inter-

preted as semi-elasticities. In Column (1) and (2) we only condition on the local area

fixed effect, housing subsidy rate entitlement and a survey dummy. The estimates

confirm the conclusions drawn in the graphical analysis. The reform cut the average

subsidy receipt by nearly 7 %, but rents were not affected. The inclusion of property

and demographics characteristics and the housing price index reduces the magnitude

of the effect on subsidy receipts to 5.5 % (Column (3)), whereas the effect on rents

9Subsidy receipts and rents are deflated to 2008 prices with the Consumer Price Index.
10Estimates of the reform effects do not account for a possible anticipatory behaviour of subsidy

recipients.
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Table 2.2: Effect of the reform on Log-Subsidy Receipt and Log-Rent and Incidence
of the Housing Subsidy

Log Subsidy Log Rent Log Subsidy Log Rent
(1) (1) (2) (2)

Reform −0.069*** 0.000 −0.054** −0.004
(−0.119;−0.019) (−0.031;0.030) (−0.104;−0.005) (−0.034;0.026)

Monthly −0.001 −0.001 0.000 0.000
time
trend

(−0.002;0.000) (−0.001;0.000) (−0.001;0.001) (−0.0010.000)

Incidence − 0.006 − 0.071
− (−0.426;0.437) − (−0.446;0.589)

Incidence − 0.006 − 0.071
using IV − (−0.425;0.435) − (−0.445;0.587)

N 7629 7629 7085 7085

*** p < 0.01 ** p < 0.05 * p < 0.1
Confidence Intervals at 95 % in parentheses. Cluster Robust Standard Errors at BRMA level.
Control variables in Specification (1): BRMA, subsidy rate entitlement, survey dummy.
Control variables in Specification (2): controls in Specification (1), shared accommodation with
other households, length of tenancy, type of dwelling, rural-urban classification, house rented
furnished, type of utility included in the rent, age of the HRP, housing price index, deprived
area dummy, number of rooms, number of bedrooms, log-income, other benefits recipient,
non-dependant living in the household.
The incidence in the third line is calculated through the ratio between the effect of the reform
on rents and the effect on subsidy receipts as shown in equation 2.13. Point estimates and
standard errors are based on the delta method using the Stata command nlcom.

remained unaltered at around -0.4% (Column (4)). The implied estimate of the in-

cidence on landlords is around 7%, suggesting that the burden of the subsidy cut

was mainly borne by tenants. Although the estimate of the incidence is not precisely

estimated, findings are consistent with Brewer et al. (2014) that estimate a 10 %

incidence on landlords using the same reform of this paper. 11 It is however very

different compared to the 60 % estimate in Gibbons and Manning (2006).

In Table 2.3 we replicate the analysis for two subgroups to check whether there is

heterogeneity in the incidence of the housing subsidy. The first subgroup are people

living in London where the reform had a larger impact due to the introduction of the

11The incidence is not precisely estimated regardless of using the two separate regression approach
or the instrumental variable strategy. The confidence interval of the incidence contains implausible
negative values.
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subsidy caps. Brewer et al. (2014) report that the average receipt in London fell by

£13.40 per week compared to £6.80 in Great Britain. In the London BRMAs where

the caps were binding the average receipt decreased by a much higher £41.90 per

week. The point estimate of the incidence in London is 45 %, although it lacks again

precision. This suggests that some negotiation between landlords and tenants took

place in areas where caps heavily affected subsidy receipts. The second subgroup are

recipients that moved to their current property at most 3 years before the interview.

The rational to analyse this group is that the subsidy cut might induce recipients to

rent cheaper properties leading to a higher incidence on landlords. Column (2) of

Table 2.3 however shows that this is not the case suggesting that other factors such

as the housing demand of other recipients or unsubsidised tenants prevented them

from finding a cheaper accommodation.

Table 2.3: Incidence of the Housing Subsidy in subgroups

London Recently Moved

Incidence 0.448 0.019
(−0.119; −0.019) (−0.580 ; 0.617)

N 1020 4091

*** p < 0.01 ** p < 0.05 * p < 0.1
Confidence Intervals at 95 % in parentheses. Instrumen-
tal Variable approach. Cluster Robust Standard Errors at
BRMA level
Control variables: BRMA, subsidy rate a household is en-
titled to, survey dummy, shared accommodation with other
households, length of tenancy,type of dwelling, rural-urban
classification, house rented furnished, type of utility in-
cluded in the rent, age of the HRP, housing price index,
deprived area dummy, number of rooms, number of bed-
rooms, log-income, other benefits recipient, non-dependant
living in the household.

2.6.2 The incidence on unsubsidised tenants

We now estimate the incidence of the housing subsidy on non-recipients. Figure 2.4

shows rents of subsidised and unsubsidised tenants. The median rent of unsubsidised
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Figure 2.4: Median weekly Log(Rent) for subsidised and unsubsidised tenants in the
private rental market, Q2 2008- Q1 2014

 

Source: English Housing Survey and Family Resource Survey.
The two vertical lines mark the introduction of the LHA reform in April 2011 and the
full implementation of the reform in December 2012.

tenants was higher than the median rent of recipients through all the period, but

differences were minimal. Until the full implementation of the reform the trend for

both series was downward. However, rents paid by unsubsidised tenants began to

grow after January 2012, whereas rents were roughly constant for subsidy recipients.

The reform did not lower overall rents for claimants, so no effect is expected on

rents for unsubsidised tenants. Table 2.4 reports the effect of the reform on un-

subsidised tenants estimated using equation (2.17). Each line is the estimate of the

deviation from the pre-reform trend due to the three phases of the reform. Rents for

unsubsidised tenants fell by -0.3 % per week after 33 months the LHA reform was

implemented.12 Column (2) shows the estimates for the most deprived areas where

12The decrease in rents are obtained by multiplying the coefficients in Table 2.4 with the
number of the months elapsed since the reform was implemented. For example the de-
crease in rents in January 2013-33 months after the introduction of the reform- is 33*(-

53



Table 2.4: Incidence of the Housing Subsidy on unsubsidised tenants

Log Rent Log Rent
All Sample Most Deprived Areas

First Reform -0.00032 -.00047
period (-0.0088 ; 0.00024) (-0.00163; 0.00068)

Second Reform 0.00021 -0.00004
period (-0.00029 ; 0.0072) (-0.00103; 0.00095)

Third Reform 0.00025 0.00056
period (-0.00013 ; 0.00063) (-0.00010 ; 0.00121)

Monthly time 0.00028 -0.00001
trend (-0.00067 ; 0.00124) (-0.00202 ; 0.00199)

N 16256 2702

*** p < 0.01 ** p < 0.05 * p < 0.1
Confidence Intervals at 95 % in parentheses. Cluster Robust Standard
Errors at BRMA level.
Control variables: BRMA, , survey dummy, shared accommodation with
other households, length of tenancy,type of dwelling, rural-urban classifi-
cation, house rented furnished, type of utility included, in the rent, age
of the HRP, housing price index, deprived area dummy, number of rooms,
number of bedrooms, log-income, other benefits recipient, non-dependant
living in the households.
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a larger share of recipients are expected to live. Their rents fell by 1 % per week 33

months after the implementation of the reform.

Table 2.5: Differences in rents between subsidised and unsubsidised tenants

Log Rent
All Sample

Unsubsidised tenants -0.174***
(-0.205; -0.143)

Reform -0.007
(-0.043; 0.030)

Reform*Unsubsidised tenants 0.010
(-.016; .036)

Monthly time trend -0.0010
(-.0017; -.0003)

Monthly time trend*Unsubsidised tenants 0.0010
(.0003; .0018)

N 23330

*** p < 0.01 ** p < 0.05 * p < 0.1
Confidence Intervals at 95 % in parentheses. Cluster Robust Standard Er-
rors at BRMA level.
Control variables: BRMA, , survey dummy, shared accommodation with
other households, length of tenancy,type of dwelling, rural-urban classifica-
tion, house rented furnished, type of utility included, in the rent, age of the
HRP, housing price index, deprived area dummy, number of rooms, number
of bedrooms, log-income, other benefits recipient, non-dependant living in
the households

To understand the small incidence on landlords, we supplement the analysis with an

equation that aims to explain the differences between rents paid by subsidised and

unsubsidised tenants. We pool together data on subsidised and unsubsidised tenants

and estimate the equation

lnRit = δ0 + δ1UTit + δ2tm + δ3tm ∗ UTit + δ4dit + δ5dit ∗ UTit + x
′

stφ+ ξst (2.18)

0.00032)+21*0.00021+0.00025*12=-0.003
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where UTit is a dummy that indicates whether tenant i is a subsidy recipient. Equa-

tion (2.18) allows for different trend in rents and impact of the reform between sub-

sidised and unsubsidised tenants. The price of property characteristics φ is assumed

constant among the two groups.

Table 2.5 shows that subsidy recipients pay on average 17 % more than unsubsidised

tenants for a property. The correlation between recipient status and unobserved

property characteristics can bias this estimate. However, it can be interpreted as an

indicator that landlords accept subsidised tenants only if they pay a premium to rent

their property. If the demand of unsubsidised tenants is high and recipients can be

easily replaced with other tenants, landlords can refuse to agree a discount to the

premium and ask recipients to pay the full rent.

2.7 Discussion

A considerable number of studies exploit housing subsidy reforms to scrutinize the

incidence on landlords of housing subsidies. The reported estimates vary between

10 % and 90 % but the reasons of the large heterogeneity in the estimates are not

discussed in the literature. A possible explanation for this range is that every reform

has been implemented in a specific rental market and housing subsidies differently

affect the housing demand and the decisions of claimants.

Fack (2006) assesses the impact of an early 90s reform in France that extended the

eligibility of housing subsidies to low-income singles, couples without children and

students. The reform sharply increased the housing demand for these new groups

of subsidised tenants. Students that lived with their parents and singles that shared

their accommodation with other tenants could claim support to rent an independent

accommodation. This substantial rise of the housing demand and the low response

of the supply led to only 22 % incidence on landlords. Kangasharju (2010) and Viren
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(2013) study the housing subsidies in Finland and find that the incidence on landlords

varies between one-third and 50 %. The housing subsidy programme in Finland is

peculiar because a share of the rents is always paid by claimants regardless of their

income and the payment is made directly to landlords. The reform implemented in

2002 increased the ceiling of the subsidy and accordingly landlords, that held infor-

mation on the amount of the subsidy, rose rents. ‘More recently, Eerola, Lyytikäinen,

et al. (2017) estimate the incidence of housing subsidies exploiting discontinuities in

subsidy receipts at certain property size and property age thresholds. They find only

small differences in rents at the cut-offs in line with this study and Brewer et al.

(2014). Collinson and Ganong (2016) examine various housing voucher policies in

the US and find that the incidence on landlords is around 80-90 % for tenants that

remained in the same property and around 40 % when subsidy recipients moved to

a new property. The nominal price rigidity and the active role of the government in

bargaining rents with landlords could explain why prices did not soar when recipients

stayed in their property.

In the UK Gibbons and Manning (2006) estimate the incidence of the housing subsidy

using a reform implemented in the mid 90s. This reform cut the subsidy rates but it

did not affect recipients who claimed their subsidy before the reform. The fact that

Gibbons and Manning (2006) identify treated claimants as new tenancies that moved

to a new property might explain why they find that more than 60 % of the incidence

fell on landlords. 13 One factor that helps to understand the much lower incidence

found in this paper is the nominal rigidity in the short run. The LHA reform in

2011 reduced the generosity of the subsidy but unlike the reform in the mid 90s it

affected new and continuing tenancies. Tenants in multi-year contracts were not able

to move to a new property or negotiate a reduced price with landlords. Genesove

(2003) show that rents do not change for 29 % of the dwellings within a year and this

13Unlike recipients that stay in their properties, recipients that move to a new house have a
reservation price for moving that
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figure increases to 36 % for continuing tenants. This observation is supported by the

evidence in Collinson and Ganong (2016) with rents rising by only 9 cents per dollar

of subsidy for recipients that stayed in the same properties after a housing voucher

reform.

Figure 2.5: Dwelling stock by tenure in Great Britain, 1992-2014

Source: ONS.

If nominal rigidity might be the reason for the low incidence in continuing tenancies,

this does not explain why rents did not fall for affected claimants that recently moved

to a new property (see Table 2.3). 14 However, there are other important facts that

help to figure out the small incidence on landlords for this group. The first fact is the

sharp growth of the private rental market that started in 2004 and continued over

the period of the LHA reform (Figure 2.5).

This increase in the private rental market compensated for the decline in the social

14The assumption here is that claimants affected by the reform that moved to a new property
should rent cheaper dwellings to compensate the effect of the subsidy cut.
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Figure 2.6: Housing Subsidy (HS) Caseloads, 1992-2014

Source: Department for Work and Pensions.

housing sector and the more recent reduction in the home-ownership. The second

fact is that the number of subsidy claimants quickly rose in the private rental market

after the financial crisis in 2008 and stabilized in 2013 when the reform was fully

implemented (Figure 2.6). Therefore recipients that moved to a new property faced

the increase in the housing demand generated by unsubsidised tenants and new recip-

ients and they might have not had any bargaining power to negotiate a reduced rent

with landlords. These two facts did not occur in the mid 90s, the period analysed

in Gibbons and Manning (2006). The number of subsidy recipients started falling

when the reform was introduced in 1996 and in that period there was no additional

pressure from unsubsidised tenants. New subsidy recipients could therefore rent a

cheap property and share the burden of the subsidy cut with landlords.

Another important factor that determines the incidence of the subsidy is the housing
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Figure 2.7: Vacant Dwellings, 2004-2016

Source: Department for Communities and Local Government.

supply. In times of high housing demand, landlords could decide to move from the

subsidy recipient market to the unsubsidised tenant market. This fact is exacerbated

when recipients and non-recipients are not perceived as equivalent. Indeed, subsidy

recipients were associated with anti-social behaviour and rent arrears and only 50 %

of landlords were eager to let them a property (Private Landlords Survey 2010). The

LHA reform increased the reluctance of private landlords to accept claimants and

rose the number of evictions and not-renewal of tenancies (Support for housing costs

in the reformed welfare system, Fourth Report of Session ). In addition, the decline

in the number of vacant properties (Figure 2.7) could be an indicator of restrictions

in the housing supply and might be a further element to explain why the reform did

not reduce rents of subsidised and unsubsidised tenants.
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2.8 Conclusions

In 2011 the UK government implemented a housing subsidy reform with the aim of

reducing the welfare expenditure on housing and lowering rents in the private rental

market. The justification given by the UK government for this reform was that land-

lords were charging claimants by far more than a fair rent. However, this study shows

that the LHA reform did not significantly affect rents for subsidised and unsubsidised

tenants and the incidence of the subsidy was mostly on tenants. An explanation for

this finding might be the nominal rigidity of rents in the short run. Rents may not

adjust because rental contracts are typically renewed annually or on a multi-year

basis. In addition, claimants could not have enough bargaining power to obtain a

lower rent. This mainly applies in rental markets where the high housing demand

from unsubsidised tenants and new subsidy recipients outweighs the decrease in de-

mand due to a subsidy cut and landlords have preferences for letting to unsubsidised

tenants.

The findings of this paper are consistent with Brewer et al. (2014) but in contrast

with most of the literature on the incidence of the housing subsidy. In the UK con-

text, Gibbons and Manning (2006) use a reform in the mid 90s and find that the

incidence on landlords was 60 %, larger than the 7 % estimate of this paper or the

10 % in Brewer et al. (2014). However, their identification strategy and the housing

market in the mid 90s were very different. Indeed the reform exploited in Gibbons

and Manning (2006) affected only claimants that moved to new properties. Assuming

that rents they could afford depended on the reduced subsidy, they targeted on aver-

age cheaper houses. Secondly, the rental market in the mid 90s was not characterised

by an increase in the demand from unsubsidised tenants and new recipients.

From a policy perspective, it is important to bear in mind the unintended conse-

quences of the 2011 reform. If rents did not respond to the reform, subsidy recipients
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offset the subsidy cut by cutting consumption of other goods or increasing the labour

supply (as Jacob and Ludwig (2012) show in the US). However, a subsidy cut does

not only have an economic impact but it can also affect health of recipients. The

fear of losing house can indeed cause mental distress and increase the pressure on the

health system (Reeves, Clair, McKee, & Stuckler, 2016).

This paper has shown that cutting the housing subsidy is not enough to drive prices in

the rental market. A more effective policy could be incentivising the private construc-

tion of affordable houses in areas with high housing demand. A second important tool

could be increasing the bargaining power of subsidy recipients giving them support

when they negotiate a rental agreement.
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Appendix

B1 LHA regime status

Table B1: LHA regime status dit by month of the interview

Month of the interview Old Claimants New Claimants

Before LHA reform (Jan 2008-Apr 2011) 0 0

April 2011 0 1

May 2011 0 1

June 2011 0 1

July 2011 0 1

August 2011 0 1

September 2011 0 1

October 2011 0 1

November 2011 0 1

December 2011 0 1

January 2012 1/12 1

February 2012 2/12 1

March 2012 3/12 1

April 2012 4/12 1

63



May 2012 5/12 1

June 2012 6/12 1

July 2012 7/12 1

August 2012 8/12 1

September 2012 9/12 1

October 2012 10/12 1

November 2012 11/12 1

December 2012 1 1

After LHA reform (Jan 2013-Dec 2014) 1 1
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B2 Equivalence between the IV estimator θ2 and

the two regressions approach

Define X as a N ×K matrix of the K − 1 exogenous independent variables and the

endogenous regressor (the subsidy S), Z a N ×K matrix of the K − 1 independent

variables and an instrument (the reform dummy d) and y a N × 1 vector of the

dependent variable rent.

The vector of parameters θ from the model 2.15 is obtained through the instrumental

variable (IV) estimator. θ is defined as

θ = (Z
′
X)−1Z

′
y = (Z

′
X)−1(Z

′
Z)(Z

′
Z)−1Z

′
y (2.19)

Since (Z
′
X)−1(Z

′
Z) = ((Z

′
Z)−1(Z

′
X))−1

(Z
′
X)−1(Z

′
Z)(Z

′
Z)−1Z

′
y = ((Z

′
Z)−1(Z

′
X))−1(Z

′
Z)−1Z

′
y (2.20)

θ2 is the coefficient associated to the endogenous regressor S and represents the in-

cidence on landlords of the subsidy. It is obtained by multiplying the second row of

the matrix ((Z
′
Z)−1(Z

′
X))−1 by (Z

′
Z)−1Z

′
y.

Define x a N × 1 vector of the endogenous variable S.

The ratio between the vector of parameters β from model 2.11 and α from model

2.12 is defined as

β

α
=

(Z
′
Z)−1Z

′
y

(Z ′Z)−1Z ′x
= ((Z

′
Z)−1Z

′
x))−1(Z

′
Z)−1Z

′
y (2.21)

65



B3 Descriptive Statistics

Table B2: Descriptive statistics for LHA claimants in the pre- and post- reform
period, showing means and t-tests on the equality of means

Pre-Reform Post-Reform t-test

Log Rent per week 4.778 4.772 0.006

Log Housing Subsidy per week 4.452 4.354 0.098***

Shared Accomodation Rate 0.014 0.013 0.001

One Bedroom Rate 0.370 0.309 0.061***

Two Bedroom Rate 0.400 0.414 -0.014

Three Bedroom Rate 0.161 0.197 -0.036***

Four Bedroom Rate 0.041 0.052 -0.011**

Five Bedroom Rate 0.014 0.015 -0.000

Share Accomodation 0.007 0.007 0.000

Tenancy < 1 year 0.260 0.230 0.030***

1 year <= Tenancy < 2 years 0.189 0.164 0.026**

2 years <= Tenancy < 3 years 0.144 0.147 -0.002

3 years <= Tenancy < 5 years 0.143 0.174 -0.031***

5 years <= Tenancy < 10 years 0.138 0.180 -0.041***

Tenancy >= 10 years 0.124 0.105 0.019**

Detached House 0.052 0.052 -0.000

Semi Detached House 0.208 0.207 0.001

Terraced House 0.433 0.424 0.009

Flat 0.296 0.309 -0.014

Room 0.008 0.006 0.002

Couple with no Children 0.072 0.068 0.004
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Couple with Children 0.170 0.191 -0.021**

Lone Parents 0.370 0.387 -0.017

Single Aged 16 to 24 0.013 0.011 0.002

Single Aged 25 to 34 0.036 0.026 0.010**

Single Over 34 0.253 0.205 0.047***

Other Type of Family 0.087 0.113 -0.026***

HRP Age 16 t o24 0.119 0.093 0.026***

HRP Age 25 to 34 0.256 0.288 -0.031***

HRP Age 35 to 44 0.250 0.254 -0.004

HRP Age 45 to 54 0.150 0.158 -0.007

HRP Age 55 to 64 0.091 0.095 -0.004

HRP Age Over 64 0.133 0.113 0.020**

Furnished 0.118 0.092 0.026***

Partial Furnished 0.189 0.164 0.025**

Unfurnished 0.694 0.744 -0.050***

Male 0.388 0.385 0.003

Number of rooms 4.56 4.52 0.04

Number of bedrooms 2.31 2.35 -0.04

Log income 9.218 9.307 -0.089***

Non dependant in the household 0.128 0.165 -0.038***

Multiple deprivation index 0.292 0.285 0.007

Sample Size 4,170 2,292

*** p < 0.01 ** p < 0.05 * p < 0.1

The statistics regarding the proportion of subsidised tenants with a certain LHA rate are based on

the rules of the pre-reform system.

HRP is the Household Reference Person.

Log Income in 2008 prices.

The Multiple Deprivation is a binary variable that indicates whether the HB claimant lives in the 15

% (FRS data) or 20 % (EHS data) most deprived areas.
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Table B3: Descriptive statistics for unsubsidised tenants in the pre- and post- reform
period, showing means and t-tests on the equality of means

Pre-Reform Post-Reform t-test

Log Rent per week 4.76 4.79 -0.03***

Share Accomodation 0.099 0.059 0.040***

Tenancy < 1 year 0.379 0.370 0.009

1 year <= Tenancy < 2 years 0.216 0.183 0.033***

2 years <= Tenancy < 3 years 0.139 0.139 0.000

3 years <= Tenancy < 5 years 0.121 0.143 -0.022***

5 years <= Tenancy < 10 years 0.081 0.111 -0.030***

Tenancy >= 10 years 0.064 0.055 0.009**

Detached House 0.096 0.096 0.000

Semi Detached House 0.186 0.188 -0.002

Terraced House 0.328 0.335 -0.007

Flat 0.375 0.362 0.013

Room 0.013 0.014 -0.001

Couple with no Children 0.263 0.235 0.029***

Couple with Children 0.220 0.229 -0.009

Lone Parents 0.051 0.073 -0.022

Single Aged 16 to 24 0.034 0.044 -0.010***

Single Aged 25 to 34 0.079 0.084 -0.005

Single over 34 0.156 0.153 0.003

Other Type of Family 0.197 0.182 0.015**

HRP Age 16 to 24 0.154 0.128 0.026***

HRP Age 25 to 34 0.365 0.381 -0.016**

HRP Age 35 to 44 0.232 0.237 -0.005
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HRP Age 45 to 54 0.135 0.146 -0.011*

HRP Age 55 to 64 0.067 0.064 0.003

HRP Age over 64 0.048 0.043 0.005

Furnished 0.231 0.187 0.044***

Partial Furnished 0.189 0.171 0.018***

Unfurnished 0.579 0.642 -0.063***

Isolated 0.027 0.026 0.001

Male 0.648 0.628 0.020**

Number of rooms 4.620 4.530 0.090***

Number of bedrooms 2.38 2.35 0.03*

Log income 10.140 10.139 0.001

Non dependant in the household 0.100 0.146 -0.046***

Multiple deprivation index 0.172 0.156 0.016**

Sample Size 10,062 5,149

*** p < 0.01 ** p < 0.05 * p < 0.1

HRP is the Household Reference Person.

Log Income in 2008 prices.

The Multiple Deprivation is a binary variable that indicates whether the HB claimant

lives in the 15 % (FRS data) or 20 % (EHS data) most deprived areas.
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Chapter 3

What do we really know about the

employment effects of the National

Minimum Wage?

3.1 Introduction

The conduct of minimum wage policy in the UK is unusual for its very formal connec-

tion to an evidence base. Each year, a body called the Low Pay Commission (LPC),

which was established to advise the UK government on the setting of the NMW,

commissions and funds research on the impacts of the NMW, and then uses evidence

from those studies to help determine its recommendations to the government. Those

recommendations are almost always adopted. A broad conclusion from this body of

research has been that the introduction of the NMW and its subsequent up-ratings

has not had detrimental effects on employment (Stewart, 2004a,b; Dickens & Draca,

2005; Dickens, Riley, & Wilkinson, 2012; Bryan et al., 2013), with the LPC affirming
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in 2016 that:

The Low Pay Commission is generally thought to have succeeded in its

broad aims, ending extreme low pay, without damaging jobs or the wider

economy. Businesses have had to respond to a higher pay floor that some

have, on occasion, found uncomfortable – but the evidence set out in this

and in previous reports shows that they have generally adapted well.

In light of this evidence and the analysis of a report by the Office for Budget Re-

sponsibility (OBR, 2015)1, in 2016 the Government introduced the National Living

Wage, which rose the minimum wage rate for workers aged 25 or older by 7.5 %, and

set the target of the new rate at 60 % of the median earnings by 2020.

The NMW is often cited as a good example of policy that reduces inequality with

no adverse effect on employment (King, Anthony and Crewe, Ivor, 2014). However,

there are reasons to question whether the evidence base on the employment impact of

the UK NMW is as strong as its influence suggests. First, much of that literature is

based on difference-in-difference (DiD) designs (Stewart, 2004a,b; Dickens & Draca,

2005; Dickens et al., 2012; Bryan et al., 2013; Dickens, Riley, & Wilkinson, 2015). Re-

cent work has highlighted the challenges of conducting appropriate inference in such

designs (Bertrand, Duflo, & Mullainathan, 2004; Donald & Lang, 2007; Cameron,

Gelbach, & Miller, 2008) and, when inference is conducted properly, such designs

may have very low power (Brewer, Crossley, & Joyce, 2013). Second, the literature

on the NMW has focussed on the binary outcome of the statistical rejection of the

null hypothesis, without attention to the range of employment effects that are con-

sistent with the data. Commentators in both the social and medical sciences (such

as Cohen (1994), Sterne, Smith, and Cox (2001), Ziliak and McCloskey (2004) and

Ioannidis (2005)) have long noted that an excessive focus on rejecting or failing to

1The OBR report in July 2015 forecast a 1.1 million growth in employment by 2020 and a
minimal impact on employment of the NLW estimated at only 60,000 job loss.
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reject a null hypothesis can result in a very misleading interpretation of the statisti-

cal evidence. One of the recommendations of the American Statistical Association’s

statement is that researchers present confidence intervals, as this summarises what

values of the parameters of interest would be rejected (in a statistical sense) by this

data (Wasserstein and Lazar, 2016).

In this paper we re-evaluate the employment effects of the UK’s NMW taking full

account of these concerns. We use the two most common specifications/approaches

in the literature. One estimates the impact of the NMW on transitions from employ-

ment using a DiD-style design. Examples of studies using this approach are Stewart

(2004a,b), Dickens and Draca (2005), Dickens et al. (2012), Bryan et al. (2013) and

Dickens et al. (2015). These studies typically estimate the impact that an up-rating

of the NMW has on the transition rate from employment into non-employment by

comparing outcomes for a treatment group of employees directly affected by a NMW

uprating with outcomes for workers in a control group that are located slightly higher

up the wage distribution. The other exploits geographical variation in the bite of the

living wage that arises because the minimum wage is set for the whole of the UK.

Exemplars of this approach are Stewart (2002), Dolton, Bondibene, and Wadsworth

(2012) and Dolton, Bondibene, and Stops (2015). In these studies, the employment

rate in a region is related to the bite of the minimum wage within that region; Dolton

et al. (2015) tackle comprehensively how best to account also for the state of the re-

gional labour market, the endogeneity of the level of the minimum wage, and spatially

or temporally correlated errors.

We develop previous findings in four ways. First, we follow recent suggestions for

best practice for undertaking inference in DiD designs. Second, we focus explicitly

on confidence intervals, rather than reporting p-values or focusing on the binary

outcome of whether the null hypothesis of “no impact of the NMW on employment”

can be rejected; this means we show, given appropriate inference techniques, what
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magnitude of effects can be ruled out given the available data. Third, we show

what the estimated coefficients mean for economically-meaningful concepts, such as

elasticities of employment with respect to the minimum wage. Finally, we calculate

minimum detectable effects (MDEs), following Bloom (1995), which indicate how

large the true employment effects would have to be (or how large would the true

labour demand elasticity have to be) for the methods employed in this literature to

detect them with high probability.

The existing literature has consistently failed to reject the null hypotheses that the

UK’s NMW wage has no impact on employment or job retention. This study is no

different (so, like the past literature, we fail to routinely find a “statistically significant

effect”). However, we show that the data cannot exclude large negative (and also

small positive) effects. Our preferred specification for implementing the approach,

in which we follow the recent literature on inference in DiD designs and calculate

the standard errors using methods designed to ensure that associated tests have the

correct size, gives a 95 % confidence interval within which a 10 percent rise in the

NMW could lower the job retention rate for NMW workers by as much as twenty-

two percent (or reduce it by as much as 0.5 percent). Considered another way, our

calculations of MDEs indicate that the tests and data employed in the literature

would have only an eighty percent chance of detecting a non-zero impact of the

NMW if the true effect of a ten percent increase in the NMW was to decrease the job

retention rate of NMW workers by no less than sixteen percent. We also highlight that

this commonly-used specification is not informative about the underlying elasticity

of employment with respect to the minimum wage, because it relates employment

rates to changes in, not levels of, the NMW. 2 The second empirical strategy does

provide an estimate of the underlying elasticity of employment with respect to the

minimum wage. Having such an estimate is important, not least because it allows

2We therefore think the back of the envelope calculation in the concluding section of Dickens et
al. (2015) is incorrect.
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for comparison with the rest of the literature. Here, we show that the power of this

design is low and so minimum detectable effects are large.

The rest of the paper proceeds as follows. Section 2 outlines the most important

features of the UK NMW and past literature related to it with an emphasis on

why this research has been influential on LPC and Government. Section 3 describes

the empirical strategies that we use to revise the evidence on UK NMW. Section 4

presents and discusses our findings. Section 5 concludes.

3.2 Background

3.2.1 The minimum wage in the UK3

The UK’s National Minimum Wage (NMW) was introduced on the 1st of April 1999,

and it covers all workers who are not self-employed, regardless of industry, size of firm,

occupation and region. The adult rate (for workers aged 22 or over) was set at £3.60

per hour, the rate for workers aged between 18 and 21 was £3.00, whereas a “trainee”

level for adults who received an accredited training in the first six months of a new

work was set at £3.20. Apprentices, workers on a government scheme under age 19

and young workers aged 16-17 were initially exempt. A year before the introduction

of the NMW, the coverage of the adult rate was around 5.6% and the youth rate was

estimated to affect 8.2% workers aged 18-21. 4 After a month from the introduction

of the NMW, the vast majority of employers were meeting their obligation to pay the

proper hourly rate (LPC Report 2000).

3This section is drawn on Low Pay Commission Report 1998, Lourie (1999), Coats (2007), Finn
(2005).

4Coverage of the NMW is defined as the proportion of employees in working age paid below the
NMW in April preceding the NMW review. Coverage estimates are calculated using Annual Survey
of Hours and Earnings (ASHE) data. ASHE is conducted in April of each year.
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Table 3.1: The UK National minimum wage for adults

Date Adult NMW Coverage AWE Inflation
rate % change growth

Apr 1999 £3.60 - 5.61 - -
Oct 2000 £3.70 2.78 2.98 - 1.2
Oct 2001 £4.10 10.81 5.03 4.5 1.1
Oct 2002 £4.20 2.44 3.76 2.7 1.4
Oct 2003 £4.50 7.14 4.21 4.0 1.5
Oct 2004 £4.85 7.78 5.87 5.3 1.2
Oct 2005 £5.05 4.12 5.23 4.0 2.3
Oct 2006 £5.35 5.94 6.23 4.3 2.4
Oct 2007 £5.52 3.18 5.59 4.4 2.1
Oct 2008 £5.73 3.80 5.76 3.5 4.4
Oct 2009 £5.80 1.22 4.01 0.2 1.5
Oct 2010 £5.93 2.24 5.05 2.0 3.2
Oct 2011 £6.08 2.53 6.23 2.2 5.0
Oct 2012 £6.19 1.81 5.81 1.1 2.6
Oct 2013 £6.31 1.94 6.22 1.1 2.2
Oct 2014 £6.50 3.01 7.28 2.1 1.3
Oct 2015 £6.70 3.08 7.63 2.1 -0.1
Apr 2016 £7.20 7.46 - 1.8 -0.1
Apr 2017 £7.50 4.17 - - -

The adult rate refers to workers aged 22 and over until 2009 and aged 21 and
over afterwards. In April 2016 the National Living Wage replaced the National
Minimum Wage for workers aged 25 and over. NMW change, Coverage, AWE
growth and Inflation are expressed as percentages. Earnings in ASHE are recorded
in April every year. Coverage in 1999 is relative to earnings recorded in April 1998.
Sources: Low Pay Commission, Annual Survey of Hours and Earnings (ASHE),
CPI series D7BT (ONS), Average Weekly Earnings (ONS) series KAB9.
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Figure 3.1: Annual growth rates of the UK National Minimum Wage, 2000 to 2015.

Sources: Low Pay Commission, Annual Survey of Hours and Earnings (ASHE), Aver-
age Weekly Earnings (ONS) series KAB9.

The level of the NMW is reviewed annually (and we describe this process in more

detail below), with the government announcing each Spring the rate that will apply

from the following October. Table 3.1 shows the history of the NMW up-ratings.

In the first years after its introduction, the government announced sizeable increases

in the NMW: the adult rate rose by nearly 11% in October 2001, and by between

7 and 8% in both 2003 and 2004, at a time when Average Weekly Earnings (AWE)

increased by just 4 to 5%. Since the onset of the financial crisis and subsequent

downturn, although upratings have not always kept pace with inflation, they have

largely outpaced growth in average earnings. Coverage of the adult NMW rate has

been most of the years between 4 and 6% of the employees in working age with a

slightly increasing trend over time.

In April 2016 the government applied a new rate to workers aged 25 and above,
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increasing the minimum hourly wage by 7.5%. With this change, the NMW was

relabelled as the National Living Wage (NLW) and the government announced a

target of setting the NLW at 60% of median earnings by 2020 (LPC Report 2016).

These are much larger changes than those between 1999 and 2016 but the decision of

the NLW introduction was taken on the basis of the evidence that the NLW would

not harm employment and partly to limit the Work Tax Credit outlays.

3.2.2 Research on the impact of the National Minimum

Wage

A considerable number of studies have examined whether the NMW has affected

employment. Typically, these have made use either of the period just before and

after the introduction of the minimum wage, or the variations over time in the level

of the minimum wage caused by the annual changes shown in Table 3.1. Two main

approaches have been commonly employed in this research. The first approach uses

individual panel data and estimates the effect of a change in the NMW on job reten-

tion.5 The second strategy relies on the regional variation of the NMW impact on

the wage distribution and estimates the effect of the minimum wage on employment

rate.

The studies that examine the impact of the NMW on job retention use a Difference-

in-Differences (DiD) design, typically comparing workers whose wage is increased

to comply with the NMW with an unaffected group of workers with higher wages.

This is done because it allows researchers to identify a group of employees who will

be directly affected by a change in the NMW; the main alternative to this is to

look at employment rates amongst groups of individuals likely to be affected by the

minimum wage were they to work, such as young low-skilled adults.6 For example,

5Job retention is defined as the probability of making a transition out of employment
6Machin, Manning, and Rahman (2003) and Machin and Wilson (2004) examine the impact
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Stewart (2004b) assesses the impact of the introduction of the NMW on job retention

with a DiD design, comparing job retention probabilities of the group who have an

initial wage below the 1999 NMW (the treatment group) with a group who earn

a slightly higher wage (the control group). He used three different data sources

- the Labour Force Survey Data (LFS), the British Household Panel Survey Data

(BHPS) and the New Earnings Survey (NES), now known as the Annual Survey of

Hours and Earnings (ASHE) - all with their own strengths and weaknesses. Stewart

reports mostly positive, but statistically insignificant, effects of the NMW on job

retention across all data-sets; only for women, and only in some specifications, does

he find disemployment effects of the NMW, and these are statistically insignificant.

A companion paper, Stewart (2004a), extends this analysis to the 2000 and 2001

upratings. Again, the study does not find any statistically significant effect of the

two subsequent upratings on job retention probabilities.

Dickens and Draca (2005) examine the employment effects of the 2003 minimum

wage uprating. The authors find no statistically significant effects on employment,

although they note that the 2003 uprating affects fewer workers than previous uprat-

ings, which they helpfully note diminishes the power of the analysis. Dickens et al.

(2012) analyse the NMW effects on employment using individual data and exploiting

geographical variation in the bite of the national minimum wage. Using the NES,

they find that the introduction of the minimum wage may have had a small negative

impact on job retention for women working part-time. However, their conclusions

are not consistent across specifications, and are not confirmed using the LFS.

Bryan et al. (2013) provide one of the most comprehensive assessments, as the authors

estimate the effect on job retention of each of the NMW upratings from 2000 to

2011. They extend the previous DiD design by not only comparing individuals who

of the NMW on workers employed in residential or nursing care homes, a sector with very high
incidence of low rates of pay. They find some evidence of disemployment effects.
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were directly affected by a NMW increase to those who earned slightly more (as in

Stewart (2004b)), but also comparing job retention rates over periods that do, and

do not, span the annual October increase in the NMW: the idea is that retention

rates measured over a period that spans October are potentially affected by the

NMW uprating, and retention rates measured over a period that does not span

October are not affected by any NMW uprating. They find a statistically significant

detrimental effect for the 2001 uprating - corresponding to the largest year-on-year

increase observed to date, with a rise of over 10% - for men. For some specifications,

they also obtain positive coefficients for the 2006 and the 2011 upratings, but the

statistical significance of these is not robust across specifications.

Dickens et al. (2015) use a DiD design that compares job retention rates of workers

affected by the minimum wage and job retention rates of a group of workers with

a pay that is slightly higher the forthcoming NMW in a period when the NMW

was enacted (1999-2010) and in a base period that precedes the minimum wage

introduction (1994-1997). Findings suggest that the NMW reduces job retention and

in particular harms part-time women whose job retention decreases by 3 percentage

points.

The second of the two approaches focuses on the impact of the NMW on employment

rate and exploits the fact that the minimum wage is set at the national level, but the

wage distribution varies across local areas. This strategy assumes that the bite of

the minimum wage on employment is larger in areas where the increase of the NMW

has an important impact on the wage distribution relative to areas where only few

workers are affected by a change in the minimum wage.

In the UK the first exemplar of this type of studies is Stewart (2002). In his paper

he reformulates the model proposed in Card (1992) and estimates a reduced form

equation that derives from a structural model of the labour demand. Local area
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employment changes are explained by the wage variation due to the different impact

of the introduction of the NMW across local areas. Stewart (2002) uses the share

of workers paid below the minimum wage rate in a local area as an instrument

for the endogenous wage variation. He reports positive and negative employment

elasticities but none of them is statistically significant at conventional levels. In a

second specification, Stewart (2002) uses an indicator for areas with the highest share

of workers paid below the NMW as alternative instrument for the endogenous wage

variation but findings do not lead to different conclusions.

Dolton et al. (2012) examine the effect of the minimum wage on employment with

an incremental Difference-in Differences design. They compare employment in a

period when the NMW was in place with employment before the NMW introduction

regressing the employment rate at local area level on the Kaitz Index -a measure

of the bite of the minimum wage on the wage distribution in the local area- area

fixed effects and other area characteristics. The Kaitz Index is also interacted with

an indicator for the annual NMW uprating allowing for an effect of the minimum

wage that changes over time. Interestingly, Dolton et al. (2012) find positive and

statistically significant effects of the minimum wage over the years 2004-2006.

Dolton et al. (2015) is the most recent study of the second approach and revisits the

incremental Difference-in Differences in Dolton et al. (2012) adding some important

contributions. They first present the same static model as in Dolton et al. (2012)

but they control for regional aggregate demand shocks and spatial dependence in

the error terms to account for common shocks that affect contiguous areas. Then

they implement a dynamic model that includes a lag of the employment rate in

the regressors applying the System GMM IV estimator to deal with the possible

endogeneity of the Kaitz Index. Dolton et al. (2015) stress that the incremental

Difference-in Differences design disentangles the (negative) underlying effect of the

minimum wage and the (positive) effect of the annual upratings. They claim that
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this divergent effect explain why the literature has found a detrimental effect of the

introduction of the minimum wage but also some null or positive effects when a longer

period is brought in the analysis.

The research summarised above has had an unusually large influence on policy be-

cause of the institutional structure around the NMW, and the particular role played

by a body known as the Low Pay Commission (LPC). The LPC is a statutory body,

independent of government, and exists to advise the government about policy towards

the NMW (it is not responsible for enforcement). As discussed earlier, the decisions

about the level of the NMW are made on an annual cycle. The LPC produces a set

of recommendations each year (usually in February), including a recommendation

on by how much the NMW should increase, and the government makes its decision

later in the Spring, with the new NMW rate applying from the following October.

7 Although the government is not obliged to accept its recommendations, successive

UK governments have, since 1999, mostly followed the LPC’s advice on by how much

to increase the NMW in each year.

And it is the LPC that provides the link between research and policy decisions, as

the LPC’s recommendations are heavily based on its reading of the research evidence.

The LPC has a continuous programme of monitoring and evaluation of the NMW,

and in each year since its inception, it has directly commissioned a considerable

volume of research on the impacts (in a broad sense) of the UK NMW; typically

commissioning some 6-10 projects each year, the results which are published alongside

their recommendations to government. Speaking in 2007, the incoming Chairman of

the LPC, Paul Myners, declared that his predecessors “established a way of working

within the Commission based on partnership, openness and a respect for evidence.

I am determined that, under my chairmanship, the Commission will continue to be

7In April 2016 the UK government introduced the National Living Wage, the minimum hourly
rate for workers aged 25 and over. Since then the NLW and the other rates for young workers are
reviewed in April.
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evidence-driven.” (LPC Report 2007).

The research on the effect of the NMW on employment has typically failed to reject

the null that the NMW has had no impact on employment, or on job retention

probabilities. Crucially, though, this “failure to reject the null” has been interpreted

in policy circles as “evidence of no adverse impact”. For example, in the LPC’s 2003

report, the then-chairman stated that:

The National Minimum Wage has brought benefits to over one million

low-paid workers. It has done so without any significant adverse impact

on business or employment. Far from having the dire consequences which

some predicted, the minimum wage has been assimilated without major

problems even though it has been a challenge for some businesses. It has

ceased to be a source of controversy and become an accepted part of our

working life. LPC Report 2003.

In 2006, the LPC said that

since its introduction in 1999 the minimum wage has been a major

success. It has significantly improved the wages of many low earners;

it has helped improve the earnings of many low-income families; and it

has played a major role in narrowing the gender pay gap. But it has

achieved this without significant adverse effects on business or employment

creation. (LPC Report 2006).

Finally, in their 2009 report, the LPC concluded that “a large volume of research

has demonstrated that the minimum wage has not had a significant impact on either

measures (unemployment and wage inflation) over its first ten years.”

And this impression about the benign impact of the NMW on employment is, in

general, shared by government. In 2001, the Secretary of State for Trade and Industry
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at the time said that “the second report of the LPC, published in February 2000,

looked at these matters but found no indication so far of significant effects on the

economy as a whole as a result of the introduction of the national minimum wage.”

(House of Commons Debates,15 May 2000 : Column: 26W ). Announcing the 2004

uprating, the Prime Minister at the time said: “Some people said unemployment

would go up as a result of the minimum wage. Actually we have one-and-three-

quarter million more jobs in the British economy as well.”

Of course, these UK policy-makers are not alone in wrongly interpreting a p-value of

more than 0.05 as strong evidence in favour of a null hypothesis (Sterne et al., 2001).

As Cohen (1994) observes, what policy-makers want to know is how likely is it, given

the available data, that policy does not have an adverse effect (i.e. P (H0|D)); what

a p-value tells us is how extreme the data is if the null hypothesis was true (i.e.

P (D|H0)). Furthermore, as Ziliak and McCloskey (2004) argue, we should consider

the magnitude of effects when interpreting findings, in order to establish whether

findings are economically significant. In the case of the NMW, we might want to

know not whether we can reject the null of “the NMW has no effect on employment”,

but whether we can reject the null of “the NMW has economically-meaningful large

negative impacts on employment”.

3.3 Data and Models

Our approach is motivated by two concerns. First, we contend that too much weight

has been placed on a body of research that has mostly failed to reject the null hy-

pothesis that “the NMW has no effect on employment”, with policy-makers wrongly

interpreting p-values as telling us how likely it is that the NMW does have an adverse

effect on employment. Second, this literature has employed difference-in-difference

(DiD) designs, even though there are significant challenges in conducting appropriate
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inference in such designs, and they can have very low power when inference is con-

ducted appropriately. Our hypothesis is that the existing research has under-stated

the statistical imprecision of its key parameter estimates.

We proceed by estimating a model very similar to that in Bryan et al. (2013), one

of the most recent and comprehensive studies on the impact of the NMW on em-

ployment, and commissioned by the LPC for their 2013 report. Our identification

strategy and data are the same as in Bryan et al. (2013), but we depart from that

study’s approach - and that of previous studies cited in Section 2 - in four ways. First,

we follow recent suggestions for best practice for undertaking inference in difference-

in-difference designs, and show that the standard errors estimated in (some of the)

previous UK literature - although we do not make this claim about Dolton et al.

(2015) - are downward-biased. Second, we focus explicitly on confidence intervals,

rather than reporting p-values or focusing on the binary outcome of whether the

null hypothesis of no impact of the NMW on employment can be rejected. Third,

we show what the estimated coefficients mean for economically-meaningful concepts

such as labour demand elasticities. Finally, we calculate minimum detectable effects

(Bloom, 1995), which indicate how large the true employment effects would have to

be (or how large would the true labour demand elasticity have to be) for the methods

employed in this literature to detect them with high probability.

3.3.1 Two approaches for assessing the impact of the

NMW on employment

In this paper we re-evaluate the employment effects of the UK’s NMW taking full

account of these concerns, and using the two most common specifications/approaches

in the literature. One estimates the impact of the NMW on transitions from employ-

ment using a DiD-style design, and the other exploits geographical variation in the
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bite of the minimum wage. We describe these two approaches below.

3.3.1.1 Estimating the impact of the NMW on employment transitions

using difference-in-differences

Studies following this approach typically estimate the impact that an uprating of the

NMW has on the transition rate from employment into non-employment by compar-

ing outcomes for a treatment group of employees directly affected by a NMW uprating

with outcomes for workers in a control group that are located slightly higher up the

wage distribution. Examples of studies using this approach are Stewart (2004a,b),

Dickens and Draca (2005) and Dickens et al. (2012), Bryan et al. (2013), Dickens et

al. (2015).

We proceed by describing the model set out in Bryan et al. (2013), which we choose

as a recent example of the method: much of what we say below applies to the

other examples cited above. This estimates the impact of changes in the NMW

on employment transitions with a multi-group, multi-period, difference-in-differences

(DiD) design.

The model is estimated on data from the Labour Force Survey (LFS), which is com-

parable to the Current Population Survey (CPS) in the US, and collects information

on employment status and other issues for a sample of the UK population. Indi-

viduals in the LFS are surveyed in five consecutive quarters, but, as information on

earnings is asked only in the first and in the last interview and we need to measure

earnings at the beginning of the period over which we measure employment transi-

tions, the outcome measure is an individual’s transition from employment over a 6

month period using the first and the third observation for each individual. These

6-month intervals either do or do not straddle a NMW increase on 1 October; this is

denoted with s. The maintained assumption by the literature is that retention rates

85



measured over a period that spans 1 October are potentially affected by a NMW

uprating, and retention rates measured over a period that does not span 1 October

are not affected by any NMW uprating.8 Individuals are allocated into one of four

different groups, g, according to the starting wage: the treatment group is composed

of workers who earn a wage wit between the existent NMW enforced in year t and

the upcoming year t+1 NMW uprating (NMWt ≤ wit < NMWt+1), and individuals

in the control group have a salary that is slightly higher than the upcoming year

t + 1 NMW (NMWt+1 ≤ wit < m(NMWt+1); we set m = 1.1, so workers in our

control group earn up to 10% more than the year t upcoming NMW up-rating. There

is also a Below NMW group that contains people who report an hourly wage wit

below the existent NMW (wit < NMWt), and an Above NMW group that is made

up of workers paid more than m times the upcoming NMW (wit ≥ m(NMWt+1)).

The specification allows their wage to be affected by changes to the NMW, but the

impacts on these groups is allowed to be different from that on the treatment group.

The equation that is estimated is:

yigts = δts + αgt + βgtdgs + x
′

igtsγ + εigts (3.1)

i = 1, ..., N ; g = C,B, T,A; s = 0, 1; t = 2000, ..., 2011

where yigts is a dummy variable that records whether individuals in work at time

t are also in work 6 months later, g subscripts the 4 groups defined according to

the individual’s initial wage, s denotes whether the 6-month intervals straddle a

NMW increase on 1 October, δts is an interaction of the year and whether or not the

transition straddles a NMW increase, αgt is a time-varying group effect, dgs is a binary

policy variable that denotes whether the observation is affected by a minimum wage

8As NMW increases happened always on 1 October in the period we consider, 6-month transi-
tions from Q1 to Q3 and from Q4 to Q2 do not span an uprating, and transitions from Q2 to Q4
and from Q3 to Q1 do.
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uprating (this varies by group g and whether the transition spans a NMW increase

on 1 October, s), and x are individual-level control variables. βTt can be interpreted

as the impact on job retention for the treatment group of the year t NMW up-rating

effect.

An alternative specification estimates the impact of a 1% rise in the NMW on job

retention. The motivation for this is the large variation in the growth rate of the

NMW: in 2001, the NMW rose by 10.8%, nine times as much as the rise in 2010 of

1.2%. In this alternative specification, we multiply the binary policy variable dgs by

the percentage change in the NMW at time t, ωt. This alternative model is:

yigts = δts + αgt + βgtdgsωt + x
′

igtsγ + εigts (3.2)

i = 1, ..., N ; g = C,B, T,A; s = 0, 1; t = 2000, ..., 2011

where βTt is now the estimated impact of a 1% rise in the NMW at time t on job

retention.

We replicate the sample and point estimates described in Bryan et al. (2013), but we

estimate different standard errors, following concerns raised in the literature about

the accuracy of the inference in DiD designs when using the näıve estimates of the

standard errors provided by OLS. The first concern, dating back to Moulton (1990),

relates to the grouped error structure. In DiD designs, the error term εigts in Equation

3.1 is unlikely to be i.i.d., because an individual may have unobservable characteristics

that are correlated with other individuals of the same group, or may be affected by

common group shocks. In the case of these studies of the minimum wage, members

of the treatment group are all located at the bottom of the wage distribution, and so

it is highly plausible that they may have some common unobservable characteristics

(low ability, low skills, etc.) or are influenced by the same economic shocks. As far as

we have been able to work out, none of the research cited in Section 2 addresses this
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issue: most studies use heteroscedasticity-robust standard errors, but do not allow for

any dependence between different individuals. A second concern, as initially noted

by Bertrand et al. (2004), is that the level of uncertainty surrounding the estimated

policy effect in DiD designs will likely be increased by positive serial correlation in the

group-time shocks, as the variable of interest in DiD designs is itself highly serially-

correlated. We describe our approach in further details in Appendix C1.

An approach that is commonly used to calculate standard errors that account for

the common group structure in the error term is the Donald and Lang (2007) two-

step estimator. When we calculate the standard errors with the Donald and Lang

(2007) approach equations 3.1 and 3.2 are exactly identified. This requires to place

restrictions in the two models and we constraint the impact of the NMW for the

treatment group on job retention βT to be time-invariant (further details in Appendix

C1). The constrained version of the model that estimates the impact of a NMW

uprating on job retention is

yigts = δts + αg + βgdgs + x
′

igtsγ + εigts (3.3)

i = 1, ..., N ; g = C,B, T,A; t = 2000, ..., 2011

and the amended model that estimates the impact of a 1% NMW rise on job retention

is

yigts = δts + αg + βgdgsωt + x
′

igstγ + εigst (3.4)

i = 1, ..., N ; g = C,B, T,A; t = 2000, ..., 2011

88



3.3.1.2 Estimating the impact of the NMW on employment transitions

using geographical variation in its bite

The second approach arises because the minimum wage is set for the whole of the UK

but the impact or as commonly named in this literature the “bite” of the NMW on

the wage distribution varies across geographic areas of the country (Stewart, 2002;

Dolton et al., 2012; Dolton et al. 2015). This approach is based on the idea that a

larger effect of the NMW on employment is expected in areas where a change in the

minimum wage significantly affects the wage distribution compared to more thriving

areas where fewer workers earn the minimum rate.

We follow Dolton et al. (2015), the most recent study of this strand with a compelling

econometric strategy that accounts for the state of the regional labour market, the

endogeneity of the level of the minimum wage and spatially or temporally correlated

errors. The effect of the NMW on employment rate at local area level 9 is estimated

applying an incremental DiD design that compares a period with annual increases of

the minimum wage to a period prior to the introduction of the NMW. The variable

that measures the bite of the minimum wage on employment of a local area j is the

Kaitz index Kjt, the ratio of the NMW to the median wage of the local area j. 10 If

the index is nearly 1, the NMW has a strong impact on the wage distribution and

possibly on employment of the local area j. Conversely, a small value of the index is

an indicator that the wage distribution doesn’t significantly vary with the NMW.

To calculate the employment rate at local area level and the Kaitz index, Dolton et al.

(2015) use two sources of data: the employment rate is derived from the LFS and the

Kaitz index is calculated using data from the Annual Survey of Hours and Earnings

9Dolton et al. (2015) report two distinct definitions of local area, the 140 unitary authorities
and counties and the 138 travel-to-work areas. Our findings are derived from Dolton et al. (2015)’s
estimates that use travel-to-work as definition of local area. Our conclusions do not change when
local areas are the unitary authorities and counties.

10The Kaitz index in the years preceding the introduction of the NMW is calculated deflating
the 1999 NMW by the wage inflation.
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(ASHE). The model that estimates the relationship between the two variables is

Ejt = π0 + Aj + πt

t∑
k=1999

Ik + θ0Kjt + θt

t∑
k=1999

IkKjt + x
′

jtρ+ εjt (3.5)

t = 1997, ..., 2010; j = 1, ..., 138

where Ejt is the log of the employment rate in the local area j at time t, Aj is the area

fixed effect, Ik is a set of year dummies from the introduction of the NMW in 1999, xjt

are a set of time-varying area characteristics. To overcome any spurious correlation

between the business cycle and the NMW, the model controls for a measure of the

regional aggregate demand at a geographic level broader than the local area defined

for employment and Kaitz index. Two parameters identify the effect of the NMW:

θ0 captures the time-invariant effect of the existence of a minimum rate and θt picks

up the additional effect of the annual uprating on employment rate.

The model allows for correlation between error terms of different local areas. This

is to account for spatial correlation generated by commuting patterns and common

economic shocks that influence contiguous areas. The error εjt is a weighted average

of contemporaneous errors of the other local areas: 11

εjt = λ
138∑
i=1

wijεit + νjt

t = 1997, ..., 2010; j = 1, ..., 138; i = 1, ..., 138; i 6= j

where weights wij measure the strength of the economic relationship between local

areas.

A second specification addresses the possible endogeneity of the Kaitz index adding

a dynamic component. The minimum wage and accordingly the Kaitz index are

endogenous whether the UK government sets the minimum rate according to past

11Spatial Error Model (SEMP, Elhorst, 2010)
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shocks of employment or any omitted variable correlated with employment. The

dynamic model attempts to overcome this issue controlling for the lag of the em-

ployment rate at local area level Ejt−1. The formal equation of the dynamic model

is

Ejt = γEjt−1 + π0 + Aj + πt

t∑
k=1999

Ik + θ0Kjt + θt

t∑
k=1999

IkKjt + x
′

jtρ+ εjt (3.6)

t = 1997, ..., 2010; j = 1, ..., 138

The model is estimated with the System of Generalized Method of Moments (SGMM)

to cope with the common issue in the dynamic models of the endogeneity arised by

the inclusion of the lag dependent variable in the regressors (Holtz-Eakin et al., 1988;

Arellano and Bond, 1991; Arellano and Bover, 1995). The SGMM estimator uses

lags of levels and differences of the endogenous variables as instruments. Dolton et

al. (2015) consider lags of levels and differences of employment rate and some area

characteristics as pre-determined instruments and obtain robust estimates and correct

standard errors implementing a two step SGMM procedure with the Windmeijer

correction (Windmeijer, 2005).

3.3.2 Minimum detectable effects

Following Bloom (1995) and Brewer et al. (2013), we use the concept of Minimum

Detectable Effects (MDEs) as a way of illustrating the power of the research designs

that have been used to study the impact of the UK’s NMW on employment. The

MDE combines the concepts of significance level α and power π with the standard

error of the parameter of interest β, and is the smallest true effect that would lead a

test with size α to reject the null hypothesis of no treatment with a certain probability

π. We can view high values of the MDE as suggesting that the estimator is low
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powered, whereas low values show that the analyst should be able to detect even

small effects with a certain probability π. The MDE is defined as

MDE(x) =
ˆ

se(β̂)[c1−α/2 − pt1−x]

where ŝe(β̂) is the estimated standard error for the coefficient β̂, cu is the critical

value of the (1 − α/2)-th percentile of the tC−1 distribution and pt1−x is the (1 −

x)th percentile of the t-statistic under the null hypothesis of no treatment effect.

The formula makes clear that either large standard errors, or a “high” threshold for

determining statistical significance (i.e. a low value of α) both lead to large MDEs.12

3.3.3 From the impact of the minimum wage on job

retention to employment demand elasticities

Studies of the minimum wage effect on employment implement different approaches

and report estimates that are rarely comparable. To facilitate comparisons between

studies we translate the estimated coefficients from Equations 3.1-3.6 into their im-

plied elasticities.

For the Dolton et al. (2015), this is straightforward: because equation 3.5 relate log-

employment to the Kaitz index Kjt, the resulting employment elasticity with respect

to the minimum wage at time t calculated at the median wage in the static model

(derivation in Appendix C2.1) is

η̄ER(t) = (θ0 + θt)K̄t (3.7)

12For the Bryan et al. (2013) method, our implementation of this notes that C is the number of
cells in our second stage (i.e. 80), and a standard value for π in the literature is 0.8, so pt1−x turns
into the 20th percentile of a t-distribution with 79 degrees of freedom.
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In the dynamic model the employment elasticity (derivation in Appendix C2.2) is

η̄ER(t) =
θ0 + θt
(1− γ)

· K̄t (3.8)

The employment elasticity in the dynamic model differs from the static model for

a scale factor 1 − γ - a measure of how much past employment affects current em-

ployment. A strong relation between current employment and previous employment

implies a larger employment elasticity.

For the Bryan et al. (2013) method, we turn our estimates of the impact of the NMW

on 6-month retention rates βT into an estimate of the elasticity of the 6-month job

retention rate to the NMW. This elasticity, ηJR, is defined in the usual way:

ηJR = ∆RR/RR/∆NMW/NMW (3.9)

For the model in which we estimate the average impact of a NMW up-rating, then

∆RR is the coefficient βT (i.e. the change in the retention rate for the treatment

group thanks to an increase in the NMW), RR is the counterfactual retention rate

(i.e. the proportion of workers who would have remained in employment if the NMW

had not been changed, which we can calculate as the observed retention rate less

βT )13, and ∆NMW/NMW is 0.049, the average size of the NMW upratings in the

2000-2010 period. 14

A considerable drawback of the specifications in equations 3.1-3.4 , though, is that

one cannot infer from them what is the underlying relationship between the level

of the NMW and the level of the employment rate (or even the retention rate). To

calculate an elasticity of employment with respect to the wage or to the minimum

13We estimate the counterfactual job retention probability RR to be 0.875 for men and 0.902 for
women.

14For the model in which we estimate the impact of a 1 % rise in the NMW, then ∆RR is the
coefficient βT and ∆NMW/NMW is 0.01.

93



wage, one needs to know the shape of the function that relates the level of employment

to the level of minimum wages. Instead, equations 3.2 and 3.3 relate the level of

employment to the rate of change of the minimum wage. 15 Another way of seeing

this is to consider a sequence of 4 annual changes to the minimum wage of 0%, +25%,

+25% and 0%. If the predicted retention rate in the second year, when ωt = 0 is E∗,

then the predicted retention rates in the following 3 years would be E∗, E∗− 0.25βT ,

E∗ − 0.25βT , E∗. In other words, the equation would predict that the retention rate

would fall while the minimum wage was rising, but then would return to its original

level even though the minimum wage was over 56% higher.

3.4 Results

We revisit two papers that are representative of the UK literature on the impact

of the minimum wage on employment. We first present the estimates of the NMW

effect on job retention using the modified DID-style specification of Bryan et al.

(2013) applying the best practices for inference in DID designs and comparing them

with standard inference. We report confidence intervals and MDEs and translate the

estimates into job retention elasticities providing a benchmark with the rest of the

literature. Finally, we calculate employment elasticities for the estimates in Dolton

et al. (2015), a study that examines the impact of the minimum wage on employment

transitions using geographical variation in its bite.

15It would be possible to write down a version of 3.2 that included NMWt as an additional
regressor, but it would not be possible to identify the coefficient on such a variable, as it would be
collinear with the time effects.
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3.4.1 The estimated impact on a NMW uprating on job

retention

Table 3.2 shows estimates of the (weighted) average impact of an NMW uprating on

the probability of remaining employed. We report estimates of βT from equation 3.3

for men in the top panel and for women in the bottom panel. In the first line we

conduct inference using the Donald and Lang (2007) two-step estimator; in the other

lines we present estimates of βT that come from estimating equation 3.3 with OLS

and calculating heteroscedasticity- and cluster-robust standard errors and standard

errors with no correction.

Table 3.2: Estimates of Average Impact of a NMW Uprating on Job Retention

Method Std. Errors βT s(βT ) C.I. at 95 % MDE
Men
Two Step - 0.004 0.026 (-0.047 0.056) ±0.073

OLS Cluster Robust 0.013 0.019 (-0.025 0.051) ±0.054
OLS Het. Robust 0.013 0.017 (-0.021 0.046) ±0.049
OLS No Correction 0.013 0.014 (-0.014 0.040) ±0.039

Women
Two Step - -0.001 0.018 (-0.036 0.034) ±0.050

OLS Cluster Robust -0.002 0.009 (-0.019 0.015) ±0.024
OLS Het. Robust -0.002 0.008 (-0.018 0.014) ±0.023
OLS No Correction -0.002 0.007 (-0.016 0.013) ±0.021

∗p < 0.10∗∗p < 0.05∗∗∗p < 0.01
Control variables are age, gender, marital status, highest level of education, region,
ethnicity, number of children, age left education, and whether the respondent has
health problems, industry, public sector, occupation, and tenure. Two-step estimates
are from equation (3.14); OLS estimates are from equation (3.3)

OLS estimates on the micro-data suggest that a NMW uprating increases the proba-

bility of remaining employed. When the Donald and Lang (2007) two-step estimator

is implemented (and controls are included in the specification), then the estimated

impact of an NMW uprating is to increase the job retention rate by 0.4 percentage

95



points for men and cut it by 0.1 percentage points for women. 16 17

None of the estimates is statistically different from zero: like the previous UK litera-

ture, we fail to find an impact of the NMW on the probability of remaining employed.

But it is extremely instructive to look at the confidence intervals associated with our

estimates. These reveal two things. First, the Donald and Lang (2007) two-step

standard errors are more than twice as large as the OLS standard errors for women,

and 88% larger for men: this is consistent with our belief that within-cell correlation

in the error terms is an important issue in the DiD. Second, the confidence intervals

in Table 3.2 reveal that large positive and negative impacts of a NMW uprating on

employment would also not fail to be rejected by this data at a significance level

α = 0.05. For example, we cannot reject that an average NMW uprating reduces the

probability of remaining employed by 4.7 percentage points for men, or that it in-

creases the job retention rate by 5.6 percentage points. These confidence intervals are

wide, and illustrate that the data and the research design are not especially helpful in

allowing us to make inferences about the existence of a negative impact of the NMW

on job retention. The corollary of these large standard errors is that the DiD designs

typically used in the UK NMW studies has a low power to detect a plausibly-sized

true NMW effect. Our calculations of the MDEs show that an NMW uprating would

need to decrease (increase) job retention rate for men by 7.3 percentage points to

have an 80 % chance of being detected, and by 5.0 percentage points for women.

16These point estimates of βT are slightly different under the two methods because the coefficient
βT represents the weighted average of the impact all of the NMW upratings on job retention rates,
and the effective weights in this calculation are different when using OLS on the micro-data in
equation 3.3, and when using OLS on cell-level averages in equation 3.12 (see Appendix C1).

17The point estimates in Table 3.2 do not correspond to the results presented in Bryan et al.
(2013). As discussed in Appendix C1, the model estimated in Bryan et al. (2013), corresponding
to our equation 3.1, is exactly identified under the two-step approach. However, we are able to
replicate results in Bryan et al. (2013) to the 2nd decimal point when we also estimate equation 3.1
with OLS, and calculate heteroscedasticity-robust standard errors: see Table C3 in Appendix C3.
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3.4.2 The estimated impact on a 1% rise in the NMW on

job retention

The specification in equation 3.3 that estimates the average impact of a NMW up-

rating does not take into account that the size of the up-ratings has varied over time

(see Table 3.1). Table 3.3 therefore presents estimates of the impact of a 1% rise

in the NMW on transitions from employment. We present estimates from equation

3.2 using OLS and the two-step estimator. The point estimates are that a NMW

increase lowers the probability of remaining employed for both men and women, with

a 10 % growth in the minimum wage estimated to reduce the job retention rates

by as much as 10 percentage points for men, and by 1 percentage point for women.

Since the average up-rating size over 2000-2011 is 4.9%, the annual review of the

NMW reduces on average job retention by 4.9 percentage points for men and by 0.4

percentage points for women.

Table 3.3: Estimates of Impact of a 1% rise in the NMW on Job Retention

Method Std. Errors βT s(βT ) C.I. at 95 % MDE
Men
Two Step - -0.010** 0.005 (-0.020 -0.000) ±0.014

OLS Cluster Robust -0.010*** 0.004 (-0.017 -0.002) ±0.010
OLS Het. Robust -0.010*** 0.003 (-0.016 -0.003) ±0.010
OLS No Correction -0.010*** 0.003 (-0.015 -0.005 ) ±0.007

Women
Two Step - -0.001 0.003 (-0.007 0.006) ±0.009

OLS Cluster Robust -0.001 0.002 (-0.005 0.002) ±0.005
OLS Het. Robust -0.001 0.002 (-0.004 0.002) ±0.004
OLS No Correction -0.001 0.001 (-0.004 0.002) ±0.004

∗p < 0.10∗∗p < 0.05∗∗∗p < 0.01
Control variables are age, gender, marital status, highest level of education, region, ethnicity,
number of children, age left education, and whether the respondent has health problems,
industry, public sector, occupation, and tenure. Two-step estimates are from equation
(3.15); OLS estimates are from equation (3.2) and are associated to heteroscedasticity-
robust standard errors. NMW in 2000 prices.

As in Table 3.2, the size of the standard errors sharply increases when the Donald
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and Lang (2007) two-step estimator is implemented: in the specification that includes

controls, the standard error under the two-step is 87% larger than the OLS standard

errors for men, and 127% larger for women. However, the point estimate for men is

large enough to be statistically significant at 5 % significance level. In addition, the

large standard errors obtained through the Donald and Lang (2007) two-step estima-

tor lead to wide confidence intervals: the range of impacts that cannot be rejected

includes that the job retention rate might decline by 20 percentage points, or be close

to no effect, in response to a 10 % NMW rise. The estimated MDEs in column (5)

indicate that one would need a true effect on the probability of remaining employed of

about 14 percentage points for men, and 9 percentage points for women, in response

to a 10 % NMW increase to have 80 % probability of detecting it.

3.4.3 Implied elasticities of job retention and elasticity of

employment

As discussed in Section 3, it is easier to assess whether the point estimates, and

the range of estimates inside the confidence intervals, are large or small if they are

expressed in terms of elasticities that can be compared to those from other studies.

In Tables 3.4, we report the elasticities of job retention to the NMW that are implied

by our estimated coefficients in (respectively) Table 3.2 and 3.3, using the formula

in equation 3.9. The elasticities implied by the point estimates for βT are in the

range of 0.11 and −1.15 for men, and −0.02 and −0.09 for women depending on the

specification. The confidence intervals for these elasticities include large positive and

negative elasticities, especially for men. As a result, the estimated MDEs are very

large. Even if we take the smaller of the 2 MDEs in Table 3.4, our estimates imply

that this DiD design would detect a true effect with 80% probability only if the true
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job retention elasticity was greater than 1.6 for men, and greater than 1 for women.

Table 3.4: Implied elasticities of job retention with respect to the minimum wage,
ηJR

Method Specification ηJR C.I. at 95 % MDE
Men
Two Step Average Uprating 0.11 (-1.19 1.41) ±1.88
Two Step 1% rise -1.15** (-2.25 -0.05) ±1.60

Women
Two Step Average Uprating -0.02 (-0.86 0.83) ±1.23
Two Step 1% rise -0.09 (-0.78 0.60) ±1.00

∗p < 0.10∗∗p < 0.05∗∗∗p < 0.01
Elasticities calculated using equation (3.9). Standard Errors calculated using
the delta method.

For comparison, Table 3.5 reports the range of job retention elasticities observed

in the minimum wage literature that uses individual longitudinal data from the US

and Canada. Unlike some studies that have used aggregate data and find small

insignificant positive effects of the minimum wage on employment (e.g. Card, 1992;

Card and Kruger, 1994, 1995, 2000), studies using individual longitudinal data tend

to find that the minimum wage has a significant detrimental impact on job retention

rates for workers likely to be affected by a minimum wage hike (e.g. young people).

Table 3.5: Estimated elasticities of job retention with respect to the minimum wage,
ηJR, from studies using US and Canadian data

Study Country Group ηJR
Currie and Fallick (1996) USA Workers -0.19 to -0.24

affected by MW
Yuen (2003) CAN Teenagers -0.75 to -0.84

Young Adults -1.23 to -1.77
Neumark and Wascher (2004) USA Teenagers -0.12 to -0.17

Campolieti, Fang, and Gunderson (2005) CAN Young Adults -0.33 to -0.54
Sabia, Burkhauser, and Hansen (2012) USA Young Adults -0.7

Our estimate of βT from equation 3.4 implies a job retention elasticity of -1.15 for

adult men, this is statistically significant at 5 % level. Our finding is close to Yuen

(2003), and larger than what Currie and Fallick (1996), Neumark, Schweitzer, and
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Wascher (2004), Campolieti et al. (2005) and Sabia et al. (2012) obtain for teenagers

and youths. The minimum wage literature in the US and Canada that uses individual

longitudinal data does not apply techniques to account for within-cell shocks or serial

correlation in the treatment status. Despite of following the best practices to conduct

inference in DiD designs, we still find a statistically significant job retention elasticity

that strengthens our idea that research should be cautious to draw the conclusion

that the NMW has no detrimental effect on employment.

We now convert Dolton et al. (2015)’s point estimates of the effect of the NMW on

employment into elasticities and calculate standard errors with the delta method (see

Appendix C2.1-C2.2). Compared to the models of the transition from employment

3.3 and 3.4, the specifications in Dolton et al. (2015) allow for a time-varying impact

of the minimum wage, so we derive the employment elasticity for every year. Table

3.6 presents the employment elasticities using the estimates derived in the static

model of equation 3.5. All the elasticities are negative and imply a reduction of

the employment rate that varies between 0.17 % and 0.83 % in response to a 10 %

increase in the minimum wage.

Although these employment elasticities are relatively small, standard errors are quite

precise and we cannot reject the null hypothesis of no effect at the 5 % level in three

cases (years 2001, 2006, 2009). And again, for the smallest (in magnitude) of our

employment elasticities in Table 3.6, the confidence intervals cannot exclude that

the employment rate declines by 0.8 % or increases by 0.5 % with a 10 % rise in the

minimum wage. The MDEs for the employment elasticities reflect the relatively small

standard errors. The minimum size of the employment elasticity we would have 80 %

power to detect is around ±0.1 that corresponds to a 1 % change in the employment

in response to a 10 % increase in the NMW.

Table 3.7 reports the employment elasticities derived from the dynamic model 3.6.
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Table 3.6: Employment elasticity with respect to the the year t minimum wage
uprating. Estimates of η̄ER(t) derived from the static model of equation 3.5.

t η̄ER(t) sη̄ER(t)
C.I. at 95 % MDE

1999 -0.054* 0.032 (-0.117 0.009) ±0.091

2000 -0.041 0.032 (-0.103 0.022) ±0.091

2001 -0.074** 0.033 (-0.140 -0.008) ±0.095

2002 -0.055* 0.033 (-0.120 0.009) ±0.094

2003 -0.023 0.034 (-0.090 0.045) ±0.098

2004 -0.017 0.036 (-0.087 0.053) ±0.102

2005 -0.054 0.037 (-0.127 0.018) ±0.105

2006 -0.077** 0.038 (-0.152 -0.003) ±0.108

2007 -0.049 0.037 (-0.122 0.024) ±0.106

2008 -0.035 0.037 (-0.107 0.038) ±0.105

2009 -0.083** 0.036 (-0.155 -0.012) ±0.103

2010 -0.051 0.037 (-0.124 0.023) ±0.106

∗p < 0.10∗∗p < 0.05∗∗∗p < 0.001
Standard errors for the employment elasticity are calculated as

sη̄ER(t)
= K̄t ·

√
σ̂2
θ0

+ σ̂2
θt

, assuming σθ0θt = 0
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Compared to the static model this specification accounts for the autoregressive struc-

ture of employment. Although the employment elasticities are small in the range of

-0.086 and no effect they are never statistically significant at conventional levels. This

is because standard errors are less precise in the dynamic model than in the static

model and produce wider confidence intervals. Taking the estimate with the lowest

standard error (i.e. 2000), the confidence interval includes a range of employment

elasticities that include a reduction by 1.4 % or a rise by 0.8 % in the employment

rate with a 10 % growth in the NMW. MDEs are quite large and indicate that we

would detect a true effect with 80 % probability only if the true employment elasticity

was greater than 0.15.

A note of caution should be done regarding the interpretation of the confidence in-

tervals and MDEs in Table 3.6 and Table 3.7. We calculate standard errors assuming

that the parameters involved in the estimation of the elasticities are uncorrelated. In

Appendix C2.1 and C2.2 we relax this assumption and set several degrees of corre-

lation between the parameters to calculate standard errors, confidence intervals and

MDEs of the elasticity in 2001, one of the years in which we found a statistically

significant elasticity at conventional level. Regardless of the degree of correlation the

2001 elasticity derived from the static model is always statistically significant at 10

% level. In the dynamic model we do not reject the null hypothesis of no effect in

most of the cases but the confidence intervals can be very large.

In Table 3.8 we report the range of the employment elasticities recovered in studies

of the USA literature on the minimum wage. Despite the considerable number of

studies, the debate on the employment effect of the minimum wage has not reached

an unanimous consensus. Some scholars find employment elasticities in the range of

[-0.1; -0.3] as in the series of studies reported in the earliest minimum wage review

(Brown, Gilroy, & Kohen, 1983), others point out that some specifications show no
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Table 3.7: Employment elasticity with respect to the the year t minimum wage
uprating. Estimates of η̄ER(t) derived from the dynamic model in equation C2.2.

t η̄ER(t) sη̄ER(t)
C.I. at 95 % MDE

1999 -0.019 0.056 (-0.129 0.091) ±0.159

2000 -0.029 0.054 (-0.136 0.077) ±0.154

2001 -0.082 0.059 (-0.197 0.033) ±0.166

2002 -0.059 0.057 (-0.170 0.051) ±0.160

2003 -0.016 0.063 (-0.140 0.108) ±0.179

2004 -0.023 0.070 (-0.160 0.114) ±0.198

2005 -0.032 0.065 (-0.159 0.095) ±0.184

2006 -0.063 0.068 (-0.196 0.071) ±0.193

2007 -0.029 0.070 (-0.167 0.108) ±0.199

2008 0.000 0.065 (-0.128 0.128) ±0.185

2009 -0.086 0.069 (-0.221 0.049) ±0.195

2010 -0.030 0.073 (-0.174 0.113) ±0.208

∗p < 0.10∗∗p < 0.05∗∗∗p < 0.001
Standard errors for the employment elasticity are calcu-

lated as sη̄ER(t)
= K̄t

1−γ̂ ·
√
σ̂2
θ0

+ σ̂2
θt

+ ( θ̂0+θ̂t
1−γ̂ )2σ̂2

γ , assuming

σθ0θt = 0, σθ0γ = 0 and σθtγ = 0
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detrimental effect of the minimum wage on employment. The elasticities derived from

Dolton et al. (2015) posit between -0.1 and no effect leading to conclude that if any

the minimum wage in the UK has had a modest impact compared to in the USA.

However, it is important to note that the literature in the USA has focused on the

employment rate of groups likely to be at the bottom of the earning distribution such

as teenagers and low-wage industries (e.g fast-food and retailer sectors). In the UK

a study on a low-wage sector, the residential care homes industry, finds elasticities

in the range of -0.15 to -0.40 (Machin et al., 2003), although a later paper finds less

robust evidence (Machin & Wilson, 2004). The design in Dolton et al. (2015) correctly

estimates the impact of the NMW on employment for the working age population

but ignore the fact that the effect is possibly larger for groups likely affected by the

minimum wage.

Table 3.8: Estimated employment elasticities with respect to the minimum wage,
ηER, from studies using US data

Study Group ηJR
Brown et al. (1983) Teenagers -0.23 to -0.02

Card (1992) Teenagers -0.06 to 0.19
Neumark and Wascher (1992) Teenagers -0.2 to -0.1

Young Adults (15-24) -0.2 to -0.15
Neumark and Wascher (2004) Teenagers -0.24 to -0.18

Young Adults (15-24) -0.16 to -0.13
Dube, Lester, and Reich (2010) Low Wage Sector -0.21 to 0.06

Employees
Allegretto, Dube, and Reich (2011) Teenagers -0.12 to 0.05

Neumark, Salas, and Wascher (2014) Restaurant Employees -0.15 & -0.05
and Teenagers

Meer and West (2015) Working Age (15-59) -0.19 to 0.01
Bazen and Marimoutou (2016) Teenagers -0.43 to -0.13
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3.5 Discussion and Conclusions

The UK is unusual for the fact that economic research on the impact of the NMW

on employment has played a decisive role in the setting of the NMW each year. Our

concern is that too much weight has been placed on a body of research that has mostly

failed to reject the null hypothesis that “the NMW has no effect on employment”:

policy-makers seem to have wrongly interpreted p-values as telling us how likely it

is that the NMW does have an adverse effect on employment, and have not paid

attention to the range of values that would also not be rejected. And this concern is

compounded by the fact that much of the UK literature has employed difference-in-

difference (DiD) designs, even though there are significant challenges in conducting

inference appropriately in such designs, meaning that the existing research has likely

under-stated the statistical imprecision of its key parameter estimates.

In this paper, we re-evaluate the UK research on the employment effects of the mini-

mum wage following two common approaches in the literature. Our study first follows

Bryan et al. (2013), one of the most recent and comprehensive reports commissioned

on the NMW effects on employment and, as in the UK NMW literature, we also

cannot reject the null that the NMW up-ratings had no impact on job retention.

However, when we apply the Donald and Lang (2007) two-step estimator to conduct

correct inference, the range of effects that also cannot be rejected is extremely large,

and include large positive and negative values of the NMW impacts on employment.

Moreover, using Bloom (1995)’s minimum detectable effects, we find that the DiD

design typically used in the literature has low power to detect a real NMW impact.

For example, in our preferred specification, one would need that the job retention

rate in reality falls by 16 % in response to a 10 % NMW rise to be able to detect it

with 80 % probability using the data and research design typically used in the UK

work. This impact would correspond to a job retention elasticity with respect to the
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minimum wage of about −1.2. In the second part of our analysis we use Dolton et

al. (2015)’s approach that exploits geographical variation in the impact of the NMW

and calculate employment elasticities. In the preferred dynamic specification the em-

ployment elasticities vary between -0.083 and 0. However, we find again relatively

large minimum detectable effects that point to low power of the design. Indeed, one

would need a fall in employment of more than 1% in response to a 10 % NMW rise

to detect the NMW effect with 80 % probability.

Our study raises concerns for the routine application of a DiD designs when assessing

the impact of the NMW on employment. Although we also do not find any statisti-

cal significant impact, the confidence intervals we obtain suggest that the standard

research design used in the assessment of the UK’s NMW is not very informative.

In turn, this casts doubt on the consensus that the UK NMW does not harm em-

ployment. We therefore recommend a reconsideration of the combined use of a DiD

designs with existing UK data sources when evaluating the NMW impact on em-

ployment. Better evidence may come from the large recent change occurred with the

introduction of the National Living Wage but it would be unfortunate if it turns out

to have deleterious effects on employment.
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Appendix

C1 Inference in Difference-in-Differences with

Grouped Errors

A broad literature has raised concerns about the accuracy of the inference in DiD

designs when using the näıve estimates of the standard errors provided by OLS.

The first concern relates to the grouped error structure. In DiD designs, the error term

εigts is unlikely to be iid, because an individual may have unobservable characteristics

that are correlated with other individuals of the same group, or may be affected by

common group shocks. In the case of these studies of the minimum wage, members

of the treatment group are all located at the bottom of the wage distribution, and so

it is highly plausible that they may have some common unobservable characteristics

(low ability, low skills, etc.) or are influenced by the same economic shocks. A

comprehensive specification of equation (3.1) which includes common group shocks

ϕgts is:

yigts = δts + αgt + βgtdgsωt + x
′

igtsγ + ϕgts + ξigts (3.10)

i = 1, ..., N ; g = C,B, T,A; s = 0, 1; t = 2000, ..., 2011

and εigts = ϕgts + ξigts.
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A well-known result is that, in designs where the errors are within-group correlated

and where a variable of interest does not vary within the group, the conventional

OLS estimates of standard errors are seriously downward biased: this produces t-

statistics that are too large and, accordingly, leads analysts to over-reject the null

hypothesis of no treatment effect (Moulton, 1990). To the best of our knowledge,

though, none of the research cited in Section 2 addresses this issue: most studies

use heteroscedasticity-robust standard errors, but do not allow for any dependence

between different individuals.

Various standard error corrections have been proposed to account for the common

group structure in the random disturbances εigts and thus produce tests of the correct

size: these include a parametric adjustment using intra-class correlations (Moulton,

1990), the Liang and Zeger (1986) generalization of the White (1980) heteroskedas-

tic robust covariance matrix, a feasible GLS estimator (Hansen, 2007), and methods

based on the bootstrap (Cameron et al., 2008). However, many of these techniques

lead to t-statistics for the null hypothesis of no treatment effect that are asymptoti-

cally normal distributed only as the number of groups tend to infinity (e.g. Donald

and Lang (2007), Angrist and Pischke (2008), Cameron et al. (2008), Brewer et al.

(2013)). When the number of groups is small - and we have only 4 - the critical

values of the asymptotic normal distribution will be a poor approximation to the

critical values for the Wald tests, and using critical values from the standard normal

distribution when the number of groups is small will lead us to over-reject the null

hypothesis. But a method that does lead to Wald tests with a known distribution in

cases with few clusters is a two-step estimator: under specific circumstances where the

common group shock ϕgts is normal, homoscedastic and uncorrelated between groups

and over time, Donald and Lang (2007) show this two-step estimator produces tests

of the correct size.

The two-step estimator consists in retrieving estimates in two stages: in the first step,
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the dependent variable is regressed on dummies that identify cell membership and

all the variables which vary within cells. In the second stage, the set of parameters

associated with the cell membership are regressed on the variables which do not vary

within cells. In the Donald and Lang (2007) two-step estimator, the concept of cell

or cluster is essential: errors within a cell are allowed to be correlated, but shocks

between cells are assumed to be independent.

In our study, we define a cell as the interaction of group, year and transition-type,

giving us 96 cells (4 groups, 12 years of data, and 2 transition types). The first stage

regression is then:

yic = x
′

icγ +
96∑
c=1

Icµc + εic (3.11)

i = 1, ..., N ; c = 1, ..., 96

where Ic is a dummy variable which identifies the c-th cell, and x are the controls

that vary within-cell. 18

In the second stage, the coefficients associated with the cell membership dummies µc

are regressed on the cell-invariant variables. In our example, this second step is:

µ̂c = δts + αgt + βgtdc + εc (3.12)

c = 1, ..., 96; t = 2000, ..., 2011

where dc is a dummy indicating whether the c-th cell is affected by a minimum wage

uprating.

As Donald and Lang (2007) observe, standard errors cannot be estimated with this

approach for a two-by-two DiD design, as the second step is an exactly-identified

18All the control variables x in the equation 3.10 vary within-cell.
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regression, with 4 coefficients (2 time effects, 1 group effect and 1 policy effect) being

estimated from 4 data points. Clearly, the same is true for other types of DiD where

the second step is an exactly-identified regression. What might not be immediately

clear is that this situation also holds when we apply the two-step to the unrestricted

equation 3.10. The argument runs as follows: in equation 3.10, identification of the

impact of the NMW arises because, in every year, we observe transitions that either

do or do not span an uprating, and where these transitions can come from 1 of 4

groups, three of whom are deemed to be affected by the uprating (but in different

ways). Accordingly, each year of data effectively provides us with a 4-group, 2-period

DiD (if we understand the 2 periods to refer to whether or not a transition spans

an uprating) where the policy affects 3 groups in the second period with impacts

that are allowed to be different. This means that applying the two-step method to

such data would lead to a second step regression with zero degrees of freedom (with

2 time effects, 3 group effects and 3 policy effects estimated from 8 data-points).

Accordingly, equation 3.10, which is the main specification in Bryan et al. (2013),

and which allows both for the group effects to be different in each year and for the

impact of each year’s uprating on the three treated groups to be different, would

also give a second-step regression in equation 3.12 with zero degrees of freedom (it

is equivalent to estimating 10 separate, exactly-identified, DiDs, where each DiD is a

4-group, 2-period DiD that is producing 8 coefficients). To address this problem, we

make two restrictions to the (overly) flexible model in equation 3.10 so as to be able

to undertake inference, notably: each group has a constant effect on job retention

over time (so we estimate αg rather than αgt, and the impact of an NMW uprating

effect is constant over time (but different for each group) (so we estimate βg rather
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than βgt). This gives us the following:

yigts = δts + αg + βgdgs + x
′

igtsγ + εigts (3.13)

i = 1, ..., N ; g = C,B, T,A; t = 2000, ..., 2011

and the second stage is:

µ̂c = δts + αg + βgdc + εc (3.14)

c = 1, ..., 80; t = 2000, ..., 2011

βT can then be interpreted as the (weighted) average impact of a NMW uprating on

job retention for the treatment group.

For the variant where we estimate the impact of a 1% rise in the NMW on job

retention, the amended model is:

yigts = δts + αg + βgdgsωt + x
′

igstγ + εigst

i = 1, ..., N ; g = C,B, T,A; t = 2000, ..., 2011

and the second stage in the Donald and Lang two-step estimator is:

µ̂c = δts + αg + βgdcωt + εc (3.15)

c = 1, ..., 80; t = 2000, ..., 2011

where βT is the (weighted) average effect of a 1% NMW rise on the probability of

remaining employed.

A second concern about inference in DiD studies, as initially noted by Bertrand et al.

(2004), is that the level of uncertainty surrounding the estimated policy effect in DiD
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designs will likely be increased by positive serial correlation in the group-time shocks,

as the variable of interest in DiD designs is itself highly serially-correlated. Put more

directly, if the group-time shocks ϕgts exhibit positive serial correlation that is ignored

in estimation, then the resulting estimates of the standard errors will likely be biased

downwards; it is for this reason that the Bertrand et al. (2004) recommendation is

that analysts NOT cluster errors at the level of the group-time interaction, as doing

so leads to incorrect inference if there is serial correlation in the ϕgts. In principle,

this could cause a problem for our approach based on the Donald and Lang (2007)

two-step, as we assume that each cell, given by a group-time-span interaction, is

independent of the others. But we test for serial correlation by estimating a first

order auto-regressive model of the residuals by group. The results are shown in

Table C4 (Appendix C3), which displays the first order auto-regressive coefficients

from our estimates of equation (3.2). Residuals for the treatment group exhibit small,

negative degree of serial correlation for men, although that for women is larger, at

0.40 (the confidence intervals for both span zero). However, our research design is

much less subject to problems caused by positive serial correlation in the group-time

shocks because our variable of interest is negatively serially correlated, as it turns on

and off repeatedly (recall our analysis uses data that covers 12 years, within each of

which we observe two 6-month transitions that span an uprating, and two 6-month

transitions that do not).
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C2 Derivation of formulas for the elasticity of

employment with respect to the minimum

wage

C2.1 Static Model

The static model in Dolton et al. (2015) is

log(Ejt) = π0 + Aj + πt

t∑
k=1999

Ik + θ0Kjt + θt

t∑
k=1999

IkKjt + x
′

jtρ+ εjt

t = 1997, ..., 2010; j = 1, ..., 138

Since the dependent variable Ejt is expressed in log- terms and Kjt = NMWt

med(wagejt)
, the

partial derivative of Ejt with respect to NMWt is

∂Ejt
∂NMWt

=
θ0 + θt

med(wagejt)
· Ejt

Plugging this expression in the definition of employment elasticity

ηER(t) =
∂Ejt

∂NMWt

· NMWt

Ejt
=

(θ0 + θt)Ejt
med(wagejt)

· NMWt

Ejt
=

θ0 + θt
med(wagejt)

·NMWt

= (θ0 + θt)Kjt

The employment elasticity η̄ER(t) at the median of the wage distribution of employees

in working age med(waget) is

η̄ER(t) = (θ0 + θt)K̄t
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where K̄t = NMWt

med(waget)

The variance of η̄ER(t) is

V ar(η̄ER(t)) = V ar((θ0 + θt)K̄t)

= (
∂η̄ER(t)

∂θ0

)2σ2
θ0

+ (
∂η̄ER(t)

∂θt
)2σ2

θt + 2
∂η̄ER(t)

∂θ0

∂η̄ER(t)

∂θt
σθ0θt

= (K̄t)
2 · [σ2

θ0
+ σ2

θt + 2σθ0θt ]

Table C1: Employment elasticity with respect to the the year 2001 minimum wage
uprating. Estimates of η̄ER(2001) derived from the static model of equation 3.5.

η̄ER(2001) A σθ0θ2001 = A ∗ sθ0sθ2001 sη̄ER(2001)
CIs MDE

-0.074** 0 0 0.033 (-0.140 -0.008) ±0.095

-0.074*** -0.6 -0.0025 0.021 (-0.116 -0.032) ±0.060

-0.074*** -0.3 -0.0013 0.028 (-0.129 -0.019) ±0.080

-0.074** -0.1 -0.0004 0.032 (-0.136 -0.012) ±0.090

-0.074** 0.1 0.0004 0.035 (-0.143 -0.005) ±0.100

-0.074* 0.3 0.0013 0.038 (-0.149 0.001) ±0.108

-0.074* 0.6 0.0025 0.042 (-0.157 0.009) ±0.120

∗p < 0.10∗∗p < 0.05∗∗∗p < 0.001
Standard errors for the employment elasticity are calculated as

sη̄ER(2001)
= K̄2001 ·

√
s2
θ0

+ s2
θ2001

+ 2σθ0θ2001

The standard error of η̄ER(t) sη̄ER(t)
depends on σθ0θt , the covariance of θ0 and θt.

Assuming σθ0θt = 0 the estimate of sη̄ER(t)
is

sη̄ER(t)
= K̄t ·

√
s2
θ0

+ s2
θt

where ŝ2
θ0

and ŝ2
θt

are the standard errors of θ0 and θt. The direction of the bias of
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sη̄ER(t)
depends on the sign of σθ0θt . sη̄ER(t)

is overestimated if σθ0θt is negative and

underestimated if the covariance of θ0 and θt is positive. In Table C1 we show how

standard errors, confidence intervals and MDEs of the 2001 elasticity change varying

the correlation between θ0 and θ2001 .

C2.2 Dynamic Model

The dynamic model in Dolton et al. (2015) is

log(Ejt) = γEjt−1 + π0 + Aj + πt

t∑
k=1999

Ik + θ0Kjt + θt

t∑
k=1999

IkKjt + x
′

jtρ+ εjt

t = 1997, ..., 2010; j = 1, ..., 138

where Ejt is the employment of area j.

In the dynamic model the minimum wage at time t has an effect on employment that

stretches over time. The partial derivative of Ejt+s with respect to NMWt is

∂Ejt+s
∂NMWt

= γs
θ0 + θt

med(wagejt)
· Ejt+s

s = 0, ...,∞

and the employment elasticity ηt+sER(t) at time t+ s with respect to NMWt is

ηt+sER(t) =
∂Ejt+s
∂NMWt

· NMWt

Ejt+s
= γs

(θ0 + θt)Ejt+s
med(wagejt)

· NMWt

Ejt+s

= γs
θ0 + θt

med(wagejt)
·NMWt = γs(θ0 + θt)Kjt

s = 0, ...,∞

The employment elasticity η̄t+sER(t) at the median of the wage distribution of employees
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in working age med(waget) is

η̄t+sER(t) = γs(θ0 + θt)K̄t

The total employment elasticity η̄ER(t) with respect to the minimum wage at time t

is the sum of the employment elasticities over time

η̄ER(t) =
∞∑
s=0

η̄t+sER(t)

=
∞∑
s=0

γs(θ0 + θt)K̄t

= (θ0 + θt)K̄t

∞∑
s=0

γi

=
θ0 + θt
1− γ

K̄t

The variance of η̄ER(t) is

V ar(η̄ER(t)) = V ar(
θ0 + θt
1− γ

· K̄t) = (
∂η̄ER(t)

∂θ0

)2σ2
θ0

+ (
∂η̄ER(t)

∂θt
)2σ2

θt + (
∂η̄ER(t)

∂γ
)2σ2

γ

+ 2
∂η̄ER(t)

∂θ0

∂η̄ER(t)

∂θt
σθ0θt + 2

∂η̄ER(t)

∂θ0

∂η̄ER(t)

∂γ
σθ0γ + 2

∂η̄ER(t)

∂θt

∂η̄ER(t)

∂γ
σθtγ

= (
K̄t

1− γ
)2 · σ2

θ0
+ (

K̄t

1− γ
)2 · σ2

θt + (
θ0 + θt

(1− γ)2
· K̄t)

2 · σ2
γ

+ 2(
K̄t

1− γ
)2σθ0θt − 2

K̄t
2

(1− γ)3
(θ0 + θt)σθ0γ − 2

K̄t
2

(1− γ)3
(θ0 + θt)σθtγ

The standard error of η̄ER(t) depends on σθ0θt , σθ0γ and σθtγ the covariances between

θ0, θt and γ. Assuming that σθ0θt = 0, σθ0γ = 0 and σθtγ = 0 the standard error of

η̄ER(t) is
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sη̄ER(t)
=

K̄t

1− γ̂
·

√
s2
θ0

+ s2
θt

+ (
θ̂0 + θ̂t
1− γ̂

)2s2
γ

where θ̂0, θ̂t, γ̂ are the estimates of θ0, θt, γ and sθ0 , sθt and sγ are the standard errors

of θ0, θt and γ. In Table C2 we report how standard errors, confidence intervals and

MDEs of the 2001 elasticity change when we relax the assumption of no correlation

between θ0, θ2001 and γ .
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Table C2: Employment elasticity with respect to the the year 2001 minimum wage
uprating. Estimates of η̄ER(2002) derived from the dynamic model of equation 3.5.

η̄ER(2001) σθ0θ2001 σθ0γ σθ2001γ sη̄ER(2001)
CIs MDE

-0.082 0 0 0 0.059 (-0.197 0.033) ±0.166

-0.082** -0.0006 -0.005 -0.004 0.039 (-0.159 -0.005 ) ±0.111

-0.082 -0.0006 -0.005 0.004 0.053 (-0.185 0.021) ±0.149

-0.082 -0.0006 0.005 -0.004 0.055 (-0.190 0.025) ±0.156

-0.082 -0.0006 0.005 0.004 0.060 (-0.210 0.046) ±0.185

-0.082 0.0006 -0.005 -0.004 0.051 (-0.182 0.018) ±0.145

-0.082 0.0006 -0.005 0.004 0.062 (-0.204 0.040) ±0.176

-0.082 0.0006 0.005 -0.004 0.064 (-0.207 0.043) ±0.182

-0.082 0.0006 0.005 0.004 0.073 (-0.225 0.061) ±0.207

-0.082 0.006 -0.005 -0.004 0.086 (-0.252 0.088) ±0.246

-0.082 0.006 -0.005 0.004 0.093 (-0.265 0.101) ±0.265

-0.082 0.006 0.005 -0.004 0.095 (-0.268 0.104) ±0.269

-0.082 0.006 0.005 0.004 0.101 (-0.280 0.116) ±0.286

∗p < 0.10∗∗p < 0.05∗∗∗p < 0.001
Standard errors for the employment elasticity are calculated as

sη̄ER(2001)
= K̄2001

1−γ̂ ·
√
s2
θ0

+ s2
θ2001

+ ( θ̂0+θ̂2001
1−γ̂ )2s2

γ + 2σθ0θ2001 − 2 θ̂0+θ̂2001
1−γ̂ σθ0γ − 2 θ̂0+θ̂2001

1−γ̂ σθ2001γ

where σθ0θ2001 = A ∗ sθ0 ∗ sθ2001 , σθ0γ = B ∗ sθ0 ∗ sγ , σθtγ = C ∗ sθ0 ∗ sγ ,
A = −0.01, 0.01, 0.1;B,C = −0.1, 0.1
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C3 Supplementary results

Table C3: Replication of impact of NMW on job retention presented in Bryan et al.
(2013)

Bryan et al. Replication Bryan et al. Replication
Year t Men Men Women Women

2000 -0.040 -0.040 0.012 0.013
2001 -0.177** -0.179** -0.028 -0.028
2002 0.069 0.072 0.018 0.018
2003 -0.106 -0.105 -0.010 -0.009
2004 -0.033 -0.074 -0.010 -0.002
2005 -0.002 -0.002 -0.016 -0.016
2006 0.103** 0.104** 0.001 0.001
2007 0.057 0.056 0.037 0.037
2008 0.098* 0.095* -0.017 -0.016
2009 0.009 0.010 0.037 0.037

∗p < 0.10∗∗p < 0.05∗∗∗p < 0.001
Control variables used in the DIDs model are age, gender, marital status, highest level
of education, region, ethnicity, number of children, age left education, and whether
the respondent has health problems, industry, public sector, occupation, and tenure.
Bryan et al. (2013) results are from their Tables 7-8
Model that identifies the uprating effect is yigts = δts + αgt + βgtdgs + x

′

igtsγ + εigts
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Table C4: Estimates of first-order autoregression coefficient of the residuals from
equation (3.2).

Autoregressive Coefficients
ρ̂C -0.12 -0.24 0.34 0.44
ρ̂T -0.03 -0.17 0.32 0.40
ρ̂A 0.28 0.23 0.49 0.51
ρ̂B 0.26 0.19 0.31 0.43

Gender Men Men Women Women
Controls No Yes No Yes

We estimated the model εgt = ρgεgt−1 + νt
ρC is the autoregressive coefficient for control group,
ρT for treatment group, ρA for Above NMWt group,
ρB for Below NMWt group
∗p < 0.10∗∗p < 0.05∗∗∗p < 0.001
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Conclusions

This thesis sheds light on important aspects of three public policies that are among

the cornerstones of the UK welfare system: the Winter Fuel Payment (WFP), the

Housing Benefits (HB) and the National Minimum Wage (NMW). In the case of

the WFP, we examine whether it has any impact on its ultimate goal: the health of

elderly people. For Housing Benefits, we investigate the response of the rental market

to a cut in housing subsidies. Studying the NMW, we offer a re-assessment of the

literature on the effects of the minimum wage on employment.

In Chapter 1 we employ a regression discontinuity design exploiting the 60 year

old eligibility cut-off of the WFP. We estimate the local average treatment effect

of the WFP on health outcomes including self-reports of chest infection, measured

hypertension and fibrinogen and C-reactive proteine, two markers of infection and

inflammation. Overall, the Winter Fuel Payment does appear to have had some

health benefit among those just eligible. We find a robust and statistically significant

reduction in the incidence of high concentration of fibrinogen. The point estimates

for all other markers point to health benefits but they are less precisely estimated. In

terms of reduction in the incidence of our measures of illness for people in the early

sixties, this varies between 5 % for hypertension and 44 % for fibrinogen. Using a

health index that combines our illness markers, we find particularly large effects for

low education individuals. Although we could estimate the health benefits only for
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people at the 60 year old eligibility cut-off, our findings are relevant from a policy

perspective. Following the recent increase in the Female State Pension Age, the

eligibility age for the WFP is now 64. Therefore the health benefits documented

in Chapter 1 will have been eliminated by these increases in the eligibility age. In

light of our findings we think that policy makers should be sensitive to ensure a

warm indoor environment to elderly people. Adequate indoor heating may prevent

illnesses reducing the pressure on the healthcare system through a fall in the number

of hospitalizations and visits to physicians.

In Chapter 2 we exploit an exogenous cut in housing subsidies in the UK as a quasi-

experimental design to estimate the incidence of housing subsidies on subsidised and

unsubsidised tenants. The expectation of the UK government at the time of the

reform was that rents would fall, benefiting all tenants. However, the reform of

the housing subsidy did not affect rental market prices, and so the incidence fell

almost entirely on tenants. This finding may be explained by a series of factors.

Among them, there are the nominal rigidity of rents in the short term and the general

conditions of the housing market. In recent years we observed an expansion of the

demand in the private rental market due to an increase in number of unsubsidised

tenants and new subsidy recipients. The bargaining power of tenants might be low if

landlords could choose among a large pool of potential tenants. Policies that support

tenants in the process of the rental agreement or incentives to supply affordable

houses in areas of high demand could prevent that the incidence of housing subsidies

falls on tenants.

In the final Chapter we make a point on the NMW. The conduct of the NMW in

the UK has been evidence-based, and the research has broadly concluded that the

NMW has no detrimental effect on employment. We re-evaluate this literature in

light of two concerns. The first concern is that the literature has mostly failed to

reject the null hypothesis of “no effect on employment” but has never commented
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on the range of values that lie within the confidence intervals. The second concern

is that the studies have employed a difference-in-differences design, although there

are challenges in conducting inference with such designs and this can lead to low

power of the designs. In our re-analysis we find that the data are consistent with

both large negative and small positive effects of the UK National Minimum Wage

on employment. Minimum Detectable Effects also show that difference-in-difference

designs used in the literature have low power to detect a real NMW impact. Our

findings cast doubt on the consensus that the UK NMW does not harm employment

and suggest a reconsideration of the combined use of difference-in-differences design

and the existing data in evaluating the NMW effects.

Overall we think we have provided some useful insights on three UK public policies:

the Winter Fuel Payment, the Housing Benefits and the National Minimum Wage.

We indeed offer policy makers important elements to assess whether the policies have

the expected effects and inputs for policy reforms.

Three useful considerations for policy makers can be inferred from this thesis. First,

policy makers should clearly outline the goals of policies and conduct a systematic

evaluation of the achievements of these policies. If the policy produces unexpected

consequences, policy makers should promptly set out appropriate changes. The sec-

ond suggestion is that policy makers should consider all the environmental conditions.

Similar policies could have very different effects in different contexts. The third con-

sideration is that policy makers should monitor the power of the research design.

They should focus more on the size of the policy effect rather than whether the effect

is statistical significant.
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canadienne d’économique, 38 (1), 81–104.

Card, D. (1992). Using regional variation in wages to measure the effects of the

federal minimum wage. Industrial & Labor Relations Review , 46 (1), 22–37.

Card, D., & Krueger, A. B. (1995). Myth and Measurement: The New Economics of

the Minimum Wage. Princeton University Press.

Card, D., & Krueger, A. B. (2000). Minimum Wages and Employment: A Case Study

125



of the Fast-Food Industry in New Jersey and Pennsylvania: reply. American

Economic Review , 1397–1420.

Carpenter, C., & Dobkin, C. (2009). The effect of alcohol consumption on mortality:

regression discontinuity evidence from the minimum drinking age. American

Economic Journal: Applied Economics , 1 (1), 164–182.

Chen, G. (1993). Investigation on the correlation between the mortality of cerebrovas-

cular diseases and the meteorological factors in Zhanjiang City. Zhonghua liu

xing bing xue za zhi= Zhonghua liuxingbingxue zazhi , 14 (4), 234–236.

Coats, D. (2007). The National Minimum Wage: Retrospect and Prospect. Work

Foundation.

Cohen, J. (1994). The Earth is Round (p ≤ .05). American Psychologist , 49 (12),

997.

Collins, K. J., Easton, J. C., Belfield-Smith, H., Exton-Smith, A. N., & Pluck, R. A.

(1985). Effects of age on body temperature and blood pressure in cold environ-

ments. Clinical Science, 69 (4), 465–470.

Collinson, R. A., & Ganong, P. (2016). The incidence of housing voucher generosity.

Currie, J., & Fallick, B. C. (1996). The Minimum Wage and the Employment of

Youth Evidence from the NLSY. The Journal of Human Resources , 31 (2), pp.

404-428.

Currie, J., & Gahvari, F. (2008). Transfers in Cash and In-Kind: Theory Meets the

Data. Journal of Economic Literature, 333–383.

Currie, J., & Yelowitz, A. (2000). Are public housing projects good for kids? Journal

of Public Economics , 75 (1), 99–124.

Curwen, M. (1841). Excess Winter Mortality in England and Wales with special

reference to the effects of temperature and influenza. The Health of Adult

Britain, 1994 , 205–216.

Danesh, J., Lewington, S., Thompson, S. G., Lowe, G., Collins, R., Kostis, J., . . .

126



others (2005). Plasma fibrinogen level and the risk of major cardiovascular

diseases and nonvascular mortality: an individual participant meta-analysis.

JAMA: the Journal of the American Medical Association, 294 (14), 1799–1809.

Dear, K. B., & McMichael, A. J. (2011). The health impacts of cold homes and fuel

poverty. BMJ , 342 , d2807.

Department for Communities and Local Government. (2011). Private Landlords

Survey 2010.

Department for Communities and Local Government. (2017). English Housing Sur-

vey, 2008-2014: Secure Access. ([data collection]. 6th Edition. UK Data Service.

SN: 6923, http://doi.org/10.5255/UKDA-SN-6923-6)

Department for Work and Pensions. (2017). Benefit expenditure and

caseload tables 2017. https://www.gov.uk/government/publications/

benefit-expenditure-and-caseload-tables-2017.

Department for Work and Pensions, Office for National Statistics. Social and Vital

Statistics Division, NatCen Social Research. (2016). Family Resources Survey,

2005/06-2015/16 and Households Below Average Income, 1994/95-2015/16:

Safe Room Access. ([data collection]. 6th Edition. UK Data Service. SN: 7196,

http://doi.org/10.5255/UKDA-SN-7196-8)

Department of Health. (2000). Major changes to the policy on influenza immunisa-

tion. CMO’s Update 26 May 2000.

Dickens, R., & Draca, M. (2005). The Employment Effects of the October 2003

Increase in the National Minimum Wage (Tech. Rep.). Research Report for

the Low Pay Commission. Centre for Economic Performance, London School

of Economics and Political Science.

Dickens, R., Riley, R., & Wilkinson, D. (2012). Re-examining the impact of the

National Minimum Wage on earnings, employment and hours: the importance

of recession and firm size (Tech. Rep.). Research Report for the Low Pay

127



Commission.

Dickens, R., Riley, R., & Wilkinson, D. (2015). A Re-examination of the Impact

of the UK National Minimum Wage on Employment. Economica, 82 (328),

841–864.

Dolton, P., Bondibene, C. R., & Stops, M. (2015). Identifying the employment effect

of invoking and changing the minimum wage: A spatial analysis of the UK.

Labour Economics , 37 , 54–76.

Dolton, P., Bondibene, C. R., & Wadsworth, J. (2012). Employment, Inequality and

the UK National Minimum Wage over the Medium-Term. Oxford Bulletin of

Economics and Statistics , 74 (1), 78–106.

Donald, S. G., & Lang, K. (2007). Inference with Difference-in-Differences and Other

Panel Data. The Review of Economics and Statistics , 89 (2), 221–233.

Donaldson, L. (2010). 2009 Annual Report of the Chief Medical Officer. London:

Department of Health.

Dube, A., Lester, T. W., & Reich, M. (2010). Minimum wage effects across state

borders: Estimates using contiguous counties. The Review of Economics and

Statistics , 92 (4), 945–964.

Duvoix, A., Dickens, J., Haq, I., Mannino, D., Miller, B., Tal-Singer, R., & Lomas,

D. A. (2013). Blood fibrinogen as a biomarker of chronic obstructive pulmonary

disease. Thorax , 68 (7), 670–676.
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