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Abstract—The indoor positioning technology plays a significant
role in the scenarios of the Internet of Things (IoT) which require
indoor location context. In this paper, the WiFi signals under
modern enterprise WiFi infrastructure, signal patterns between
coexisting access points (APs) and signals’ correlation with
indoor pathway map are investigated to address the problem of
inconsistent WiFi signal observations. The sibling signal patterns
(SSP) are defined for the first time and processed to generate
Beacon APs which have higher confidence in positioning. The
spatial signal patterns are used to bring the estimated location
into a limited area through signal coverage constraint (SCC).
A positioning scheme using SSP and SCC is proposed and
shows improved positioning accuracy. The proposed scheme
is fully designed, implemented and evaluated in a real-world
environment, revealing its effectiveness and efficiency.

Index Terms—indoor positioning, WiFi fingerprint, indoor
map, signal pattern, enterprise WiFi, context sensing.

I. INTRODUCTION

With the surge of IoT systems and its broad applications in
real life, the indoor location is valuable information to achieve
various context-aware services, and hence the demand of
indoor positioning solutions are on the increase dramatically.
The application scenarios of indoor positioning in IoT include
Smart Home, e.g. location-based automated heating or lighting
control, and E-Health Care, e.g. tracking and monitoring the
movement of patients. Indoor positioning is a well-known
problem and attracts a lot of research efforts in the last decade.
Researchers from both academia and industry are attempting
to seek the signals of opportunity for indoor positioning. The
work in this paper is extended based on work in [1].

In recent years various positioning technologies for indoor
use have emerged. Meanwhile, many hybrid solutions using
multiple technologies are proposed. The inertial sensors are
commonly fused with other technologies to provide prediction
or correction. Among existing technologies, the use of WiFi is
a popular approach to bring indoor positioning into practice,
because WiFi APs are already deployed extensively in most
public places like hospital and shopping mall and most off-
the-shelf mobile devices are already equipped with WiFi
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communication modules [2]. In the WiFi-based positioning,
the APs act as the ready-to-use beacons for positioning and
the off-the-shelf mobile devices are the targeted positioning
object. The wide deployment of WiFi infrastructure and the
ubiquity of WiFi-integrated mobile devices have provided an
enormous opportunity for indoor location-based services [3].

Fingerprinting is a widely-used technique for positioning
using WiFi. Fingerprinting technique is a process of collecting
signal and associating signal features with physical locations
on the premise that AP locations are not known. Based on the
association, various algorithms are applied to find the best-
matched signal features, i.e., the location of a user. The WiFi
fingerprint is defined as a mapping of APs’ received signal
strength (RSS) observations to locations. The RSS observation
is a vector of RSS from different APs that are reachable at
the location. Fingerprint-based positioning usually consists of
two stages: offline site survey and online positioning. The site
survey is conducted by a WiFi-compatible mobile handheld
(MH) to collect WiFi fingerprint at every reference point
(RP) in the interesting area. The fingerprints collected at all
the reference points constitute a fingerprint database to serve
online positioning. In positioning phase, the real-time RSS
observed by a WiFi-compatible MH is compared with RSS
observations in fingerprint database to find the best-matched
one. The corresponding location of the best-matched RSS
observation is returned as user’s location [4].

In this paper, a system named MapSense is proposed based
on two critical observations in conventional fingerprint-based
positioning systems. First, the RSS observations used in both
site survey and positioning stages are readings of absolute
values. However, the MHs involved in either stage are usually
different in hardware, and the MHs are held in the different
orientation and places, such as on the hand or in the pocket.
Both device diversity and usage diversity cause severe RSS
variance, which is well-known practical concerns in real-world
deployment [5]. The use of absolute RSS value could result
in an inevitable error of positioning accuracy. Second, in site
survey process the RSS observation is collected by an MH
at each discrete reference points. To obtain best observations
reflecting real RSS values, the user holding MH is usually
in stationary and collecting many samples at each reference
point. While in positioning process, the MH is in movement
and RSS is observed by the MH in moving state. Movement
causes fluctuation of RSS and much fewer samples at each
location depending on the speed of movement, which leads
to a massive error when comparing with RSS observations in
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site survey stage.
MapSense relies on one basic assumption that the indoor

map describing the indoor environment is available. The
assumption is made based on several considerations. First, with
the development of IoT, Smart Cities, Ambient Assisted Living
and so on, the location is a very useful context [6]. The widely-
used Google Map for outdoors was just launched in 2005, and
nowadays almost all the location-based services are based on
Google Map or similar platforms [7], [8]. Thus, we believe
the indoor map will continually be available in most indoor
places soon. Second, the map is an essential prerequisite to
support tracking or navigation services, which has been proved
by outdoor in-car navigation [9]. The indoor map system will
eventually be built up although the development of it is in early
stage and facing many difficulties. Third, in the last decade,
researchers proposed many indoor positioning solutions by
collecting and fusing various data, including different RF
signals, the inertial sensor, acoustic data, vision data and
indoor map. Among those data, apart from the indoor map the
availability and quality of them dependent on the positioning
technology. However, compared with other data, the indoor
map is always available and can work with any positioning
technology [10]. In conclusion, we believe the indoor map is
a key component to bring indoor positioning into practice so
it’s very worthy of investigation.

In summary, the major contributions of this paper are as
follows.

• The WiFi signal observations under modern enterprise
WiFi infrastructure are analysed, and WiFi sibling signal
pattern is defined for the first time and processed to
generate Beacon APs which have higher confidence in
positioning.

• An indoor pathway map is introduced and path segments
are intensively utilised. The feature of spatial signal
patterns over pathway map is used to reduce the search
space during location estimation.

• A positioning approach using Beacon AP and signal
coverage constraint is proposed to reduce the influence
of signal RSS fluctuation and eventually improve the
positioning accuracy.

This paper is organised as follows. Section II discusses the
related work in literature and signal patterns in particular.
In Section III, the analysis of WiFi signal observations is
presented and sibling signal pattern is defined. The indoor
pathway map and WiFi signal collected on pathway map are
given in Section IV. The algorithm of Beacon AP generation is
provided in Section V. The Beacon AP is mapped to pathway
map and the concept of signal coverage constraint is discussed
in Section VI. The positioning schemes using Beacon AP
and signal coverage constraint is presented in Section VII.
Performance evaluation and analysis of the proposed scheme
are reported in Section VIII before the paper concludes in
Section IX.

II. RELATED WORK

This section presents a brief overview of recent works on
indoor positioning and discusses several works utilising signal

patterns. The approaches used for WiFi-based positioning can
be classified into two categories, range measurement and
fingerprinting. Both methods are facing numerous challenges
to achieve their expected performance for indoor positioning
[11]. In the two approaches mentioned above, they require
the targeted device to participate in the positioning work.
There are also some other positioning approaches without the
involvement of targeted device, which is named device-free
passive positioning [12].

A. Technologies and Performance

The positioning performance needs to be evaluated in real-
world experiments, and there are different possible factors for
the various accuracy. The accuracy can be affected under dif-
ferent environments with possible factors including furniture
setup, building structure, people density and the evaluation
locations. There are several metrics used to evaluate the
accuracy, such as CDF (Cumulative Distribution Function) ac-
curacy in certain percentile or average location error. Previous
study [3] has revealed that the metrics and evaluation process
of todays indoor positioning system are not well defined
to consider the variations in the real world. The different
positioning approaches also have the distinct robustness of the
environment changes. The Microsoft competition introduced in
[3] discusses the influence of different environments, which
is the reason to organise the competition under the same
environment. Thus, more standardisation of accuracy and
evaluation is needed to be conducted.

RSS is the most commonly used signal feature for position-
ing, which reflects the distance between transmitter and re-
ceiver, but wireless signals often propagate via multiple paths
in a dynamic indoor environment, which leads to unpredictable
RSS fluctuations. Thus, the accuracy of RSS-based positioning
is decreased mainly because of inconsistent RSS signals [13].
Recent years have seen the channel state information (CSI)
as the signal feature of a location [14]. CSI is an emerging
technique to replace RSS information. Compared with RSS,
which is only a single-value MAC (Media Access Control)
layer information, CSI is obtained from the PHY (Physical)
layer and provide more information that represents the multi-
path propagation. CSI describes how a signal propagates
from the transmitter to the receiver and reveals the effect
of multi-path. Finer-grained and more robust signal features
can be extracted from CSI. CSI can work with either range
measurement or fingerprinting technique. However, compared
with RSS that is easy to be obtained in most mobile devices by
calling the API of the operating system, CSI is not available in
most mobile device platforms such as Android and iOS, and
more importantly, CSI brings high computation complexity
[15].

B. Signal Patterns

The main problem leading to insufficient positioning accu-
racy is the inconsistent WiFi signals, which is caused by signal
fluctuation, changes in the indoor environment and mobile
device heterogeneity. Thus, in recent years various solutions
are proposed to mitigate the influence of inconsistent WiFi
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signals. If only considering the signal samples collected at
a single location and time, some approaches using statistics
of RSS to address the RSS instability are proposed [16].
Otherwise, observing the signals from a broader view (such as
from a spatial or temporal point of view) to generate patterns
can help improve positioning accuracy [2]. The discovery and
usage of several signal pattern are discussed as follows.

Even though in the fingerprinting-based positioning system
the RSS values are broadly used as the metric of fingerprint
and not used to calculate the distance between the receiver
and AP, the RSS values still correlate to the location of APs.
As the APs are usually scattered in the indoor environment,
the novel RSS values measured at specific area can be used as
the WiFi landmarks to identify this area uniquely. These WiFi
landmarks can be discovered when the site survey is finished
and the RSS measurements of the whole site are available.
Inspired by such observation, people are investigating the
patterns of WiFi signals from the spatial aspect, which is called
spatial signal pattern.

Initially, the spatial patterns of individual APs are investi-
gated and used to correct or constrain the location estimation,
which typically needs to work with motion information from
inertial sensors and may not always be available since the APs
are not densely deployed to form sufficient landmarks [17].
Later on, the spatial patterns of multiple APs are considered
to investigate more reliable approaches. The order of RSS
values from different APs is used in HALLWAY [18] as
a location-dependent measurement to distinguish the rooms,
which can reduce the influence of various mobile devices
and signal fluctuation. The effectiveness of the order of RSS
values depends on the use scenarios and indoor floor plan
because the granularity of its location estimation is limited to a
certain level and if the rooms are too small, the adjacent rooms
cannot be discriminated. Except for the order of RSS values,
another approach to mitigating the measurement uncertainty
is to identify the target location using a range of RSS values
rather than the absolute RSS values. Based on this observation,
Sectjuntion [19] is proposed to partition the coverage of each
AP to sectors according to discrete signal levels from the
location where the AP shows maximum RSS value. The
RSS sector calculation is conducted after the site survey
is completed and takes the RSS measurements at RPs of
the whole site into the calculation. The APs with a narrow
range of RSS observations are filtered out for RSS sector
calculation because it discriminates fewer sectors. Finally, the
target location is estimated using the intersection of the sectors
from multiple APs. The spatial signal pattern can help narrow
down the search space and reduce the maximum error distance
(i.e., in the positioning process to prevent the search space
being a dispersed set of RPs, which are quite distant apart
geographically).

Observing the signal pattern for a continuous period to
investigate the temporal signal patterns is also an approach
widely adopted. Kim et al. [5] propose a smartphone-based
pedestrian-tracking system using WiFi, which utilises both
spatial and temporal signal patterns. They deeply investigate
the inconsistent RSS problem, and their analysis shows that
fingerprint-based indoor tracking suffers significant perfor-

mance degradation due to the RSS variance, while the po-
sitioning of a stationary location is more robust to the RSS
variance. In their system, an approach named Peak-based WiFi
Fingerprinting (PWF) is proposed to overcome the inconsistent
RSS problem. In the site survey the RSS vectors at different
locations are collected as the traditional fingerprinting system,
then the locations with maximum RSS of each AP are selected
and recorded with the maximum RSS values. In the tracking
phase, the peak RSS is detected from a sequence of observed
RSS values and compared with the maximum RSS value
recorded in the site survey. If the RSS value difference between
the observed peak and recorded maximum value is less than
a predefined threshold, the location with the detected peak
is determined as the estimated location. Because RSS peak
locations are limited and PWF has only about 20% occurrence
ratio, other schemes such as traditional KNN method are
used in the positioning in other areas. The PWF method
improves the system accuracy by detecting the signal strength
peak from temporal signal patterns but has the problem of
potential missing scan of peak values. Walkie-Markie [20] is a
system that aims to generate the map of indoor pathway using
the WiFi signal and IMU data crowd-sourced from multiple
mobile phone users. The WiFi-defined landmark (WiFi-Mark)
is introduced in Walkie-Markie to act as the anchor to merge
large volume of partial trajectories and limit the drift of IMU-
based tracking. WiFi-Mark is defined as a location where
the trend of an APs RSS reverses, i.e., as the user moves
along a pathway, the RSS reading is changing from increasing
to decreasing. This approach by examining the RSS trend
instead of RSS readings turns out that no matter how the
devices are different and how the user is holding the device,
the WiFi-Mark occurs at the same location, which shows the
effectiveness of temporal signal patterns.

C. Research Gaps
In summary, the spatial signal patterns can help reduce

the problems caused by signal fluctuation and improve the
positioning accuracy. However, the signal patterns only work
well under a specific area of an indoor floor plan. Meanwhile,
the site survey needs accommodate the required approach of
collecting signals, and these signals need to be processed to
generate the features of signal patterns. Thus, in this paper, the
information of indoor map is used to assist the discovery and
usage of signal patterns in both site survey and positioning to
achieve better accuracy and efficiency.

The only work in the literature utilised the virtual AP
feature for positioning is [21], where they mentioned that
averaging the RSS values of signals from the same physical AP
over time can obtain more stable RSS values. However, they
failed to provide details about how the signal observations are
processed to identify the virtual APs and afterwards used for
positioning. This work will investigate the ubiquitous signals
from sibling APs under enterprise WiFi infrastructure for
positioning.

III. ANALYSIS OF WIFI SIGNAL OBSERVATIONS

To decide how to use the WiFi signals efficiently and
adequately, analysing WiFi signals is conducted in our ex-
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perimental site, i.e., central campus building at University
of Essex Colchester Campus. Each single AP is uniquely
identified by the Basic Service Set Identifier (BSSID). Around
200 APs are observed during the 25 seconds’ movement, i.e.,
a walking trajectory, rather than at a single location. The
Fig. 1 (left) pie chart shows the percentage of observed APs
with different appearance frequency (denoted by N) when a
mobile handheld is moving along a corridor for 25 seconds.
With the increase of appearance frequency, the number of APs
decreases significantly. Around one-third of APs are observed
only once and about a quarter of APs are observed for more
than three times. The AP appearing fewer times means its
signal strength typically are weak and it can be observed only
within a short period. The Fig. 1 (right) bar chart shows the
distribution of observed APs in 2.4 GHz and 5 GHz frequency
band respectively. APs of 5 GHz dominates the observations
with smallest and largest appearance frequency, which reveals
that 5 GHz channels may be less crowded and weak signals
in 5 GHz are more likely to be observed than that in 2.4 GHz
[22].
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Fig. 1. Occupancy of 195 observed APs with a different number of
observation (left) and frequency band (right).

Through empirical investigation of the WiFi networks in
our experimental site, one primary reason caused the excessive
number of APs is the virtual access point (VAP) functionality
of enterprise WLAN infrastructure, which allows one physical
AP to have multiple separate WLAN with its BSSID and SSID
(service set identifier). Another reason is the AP’s Simulta-
neous Dual-Band functionality that enables each WLAN to
operate in both 2.4 GHz and 5 GHz frequency band, which
uses two different BSSID but the same SSID. In this paper,
we name the APs from the same physical AP as sibling APs.

The idea of fingerprint-based positioning was initially pro-
posed based on the principle that several APs located at dif-
ferent places can provide different signal strength observations
in different observation point. However, nowadays the APs
observed by users are heterogeneous, and some of them are
coming from the same physical AP at the same location. Thus,
the concept of sibling signal patterns (SSP) is proposed to
describe the correlation between the sibling APs.

The sibling signal patterns are investigated in our work.
Since the VAPs from the same physical AP share the same
radio frequency, which has been verified in our experiment, we
believe the signals of these VAPs suffer similar interference
in the environment and the RSS of them at the same place
are supposed to be the same. This thought is proved by
the real data collected in our experiment, which is depicted
in the Fig. 2. The top and bottom bar chart in the Fig. 2

respectively shows the time-series RSS observations of VAPs
operating in both 2.4 GHz and 5 GHz frequency band, which
are observed by a mobile device moving along a corridor for
25 seconds. In total, there are 9 BSSID coming from the
same physical AP. The bar charts illustrate that the RSS of
VAPs coming from the same physical AP and operating in the
same frequency band are almost identical at the same time and
location. Apart from fluctuation caused by noisy environment,
the minor difference of RSS between VAPs may also come
from the measurement tolerance in the mobile device. At
certain locations, the APs with weak signals are not observed.
In general, the observations in 5 GHz has better integrity than
that in 2.4 GHz.

Time of RSS Observation (s)
0 5 10 15 20 25

R
S

S
 (

d
B

m
)

-80

-60

-40

-20

0

9c:1c:12:1c:75:14 EventEssex
9c:1c:12:1c:75:11 BT Openzone
9c:1c:12:1c:75:12 Essex Uni Welcome
9c:1c:12:1c:75:10 eduroam

Time of RSS Observation (s)
0 5 10 15 20 25

R
S

S
 (

d
B

m
)

-80

-60

-40

-20

0
9c:1c:12:1c:75:1a Essex Uni Welcome
9c:1c:12:1c:75:1c EventEssex
9c:1c:12:1c:75:19 BT Openzone
9c:1c:12:1c:75:1b VoIP
9c:1c:12:1c:75:18 eduroam

Fig. 2. The RSS observations of VAPs operating in 2.4 GHz (top) and 5 GHz
(bottom) frequency band from the same physical AP when moving along a
corridor for 25 seconds.

IV. PATHWAY MAP

A. Introduction of Pathway Map

Like the outdoor map in which the road is the skeleton, and
the points of interests (PoI) are referenced by road name and
number, we believe in the indoor space the pathway is the vital
part of the indoor map, and most indoor activities are related
to people’s movement along the pathway.

Path Node

Room Node

Path Segment

Fig. 3. Illustration of pathway map.

The data of indoor map is structured by the Scalable Vector
Graphic (SVG) format and contains the polygons representing
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rooms’ outline, coordinates of rooms’ door and polylines
indicating the corridors. Based on these data the pathway map
is generated to represent the available indoor walking routes
between rooms, i.e., the possible path people may move along.
Fig. 3 shows the structure of pathway map. Pathway map
is depicted in diagrammatic form as a set of dots for the
nodes, joined by lines for the path segments. The nodes are
constituted by path nodes and room nodes. Path nodes and
room nodes are represented by its ID and its coordinates are
stored in a table of nodes entries. Each path segment is directed
and expressed by its start node ID, end node ID, length and
type.

B. Data Structure of Pathway Map

The pathway map is G = (V,E), where V is a non-empty
set of nodes and E is a set of ordered pairs of these nodes
to represent path segments. A path segment e ∈ E ⊂ V × V ,
where e = (u, v) and u, v ∈ V . A path segment (u, v) is
considered to be directed from u to v, where u is start node
and v is end node.

The data of nodes are stored as an array, and the path
segments are stored as an adjacency matrix to represent the
connectivity between nodes. As the illustration in Fig. 4, a
pathway map with n nodes {v1, v2, . . . vn} can be represented
by an n× n adjacency matrix A, in which aij is the number
of path segments joining vi and vj . As the path segment is
directed, in the adjacency matrix the entry in the row is the
start node, and the entry in the column is the end node.

Fig. 4. Illustration of pathway’s nodes and its adjacency matrix representing
the connectivity between nodes.

C. WiFi Signal Collected on Pathway Map

TABLE I
PART OF THE NOTATIONS.

Notation Description

G A pathway map
v A node in the pathway map
e A path segment
Si RSS values observed from ei
Ti Observation timestamps from ei
K Number of APs
N Number of observations
xk RSS values from kth AP
xn RSS value of the nth observation
bk BSSID of kth AP
fk Frequency of kth AP

Start

Corridor

WiFi
Access Point

End

Path Segment

Mobile Device

Fig. 5. Illustration of a path segment where the WiFi signals are collected.

A path segment is a directed line segment consisting of a
sequence of points in the corridor and defined by a start node
and an end node, as illustrated in Fig. 5. When the mobile
handheld of a surveyor is moving along a path segment, a set
of continuously observed raw RSS from surrounding APs are
collected.

The RSS observation collected at path segment ei from K
number of APs is denoted as

Si ≡ (x1, ...,xK) , (1)

where x denotes a vector of time-series RSS observation value
x with size of N , which is denoted as

x ≡ (x1, ..., xN )
T
. (2)

The number of observations N can be different in xk from
different APs.

With the RSS observation Si, the corresponding observation
timestamp of the RSS values are collected as well, which is
denoted as

Ti ≡ ( t1, ..., tK) , t ≡ ( t1, ..., tN )
T (3)

Meanwhile the BSSID and frequency of APs are also
recorded and denoted as

b ≡ ( b1, ..., bK)
T (4)

and
f ≡ ( f1, ..., fK)

T
. (5)

V. BEACON AP GENERATION

A. Introduction of Beacon AP
The analysis of WiFi signals concludes that the overall

quantity of available APs is massive and the appearance
frequency of APs differs significantly. Using all the observed
APs for positioning leads to high computation complexity and
may cause additional errors. Thus, the overall quantity of APs
need to be reduced, and quality of APs needs to be evaluated
and filtered. Eventually, only a small portion of high-quality
WiFi signals are used for positioning.

The analysis reveals that the VAPs from the same physical
AP present similar observed RSS. Thus, the concept of Beacon
AP is proposed and a Beacon AP is defined as a delegation
to the VAPs from the same physical AP and in the same
frequency. The fingerprints of Beacon APs are finally saved
into fingerprint database and used for positioning.
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B. Beacon AP Generation Algorithm

Algorithm 1 Beacon AP Generation Algorithm
Input: S,T,b, f
Output: W - RSS values of Beacon APs.

// Step 1: remove APs appearing few times.
1: Max← maximum size of xk in S.
2: for each xk ∈ S do
3: if sizeof(xk) < Max× 0.7 then
4: remove xk from S
5: end if
6: end for

// Step 2: group remaining APs by frequency.
7: q ← number of different frequency appeared in f .
8: v← a vector of size q to store the unique frequencies.
9: M← initialize q number of groups.

10: for each xk ∈ S do
11: add xk to group mq where fk == vq
12: end for

// Step 3: cluster the VAPs in each frequency group.
13: for each mq ∈M do
14: r← initialize a vector of size k.
15: rk ← bk without last 4 bits.
16: D← cluster xk of the same rk
17: for each d ∈ D do
18: uk,l ← Euclidean distance between xk and xl

19: if uk,l > Et & sizeof(d) > 2 then
20: C← add cluster d into C
21: end if
22: end for
23: end for

// Step 4: generate Beacon AP of each cluster.
24: p← sizeof(C)
25: W← initialize to store RSS values of Beacon APs.
26: for each cp ∈ C do
27: sn ← add xn which has less than 1s difference in tn
28: wpn ← mean(sn)
29: end for
30: return W

The steps to generate Beacon APs using sibling signal
patterns are as the pseudocode in Algorithm 1. The Beacon
AP generation algorithm takes the raw observations of WiFi
signals from each path segment as input and generates Bea-
con APs of the path segment as output. Firstly, considering
strong signal (i.e., signals with large RSS value) shows higher
confidence than weak ones and APs appearing fewer times are
relatively weak. Therefore APs with low appearance frequency
are filtered out. A threshold indicating appearance frequency is
used to control the APs which need to be removed. Secondly,
the remaining APs are divided into groups by their frequency.
Each group may contain APs of the same frequency but from
more than one physical APs because more than one APs may
operate at the same frequency. Thus, thirdly, the APs in each
group are grouped again to form the cluster of APs which are
at the same frequency and from the same physical AP, i.e., the
VAPs from a physical AP. The approach to cluster the VAPs

is based on empirical practice and theoretical verification.
Finally, each VAP cluster is processed to generate a Beacon
AP. The processed observation of signals in different stages are
illustrated in Fig. 6 using one path segment of our experimental
site as an example.

C. Clustering VAPs

The empirical practice is that the BSSID of VAPs from
the same physical AP normally has a certain correlation.
The MAC address of AP is usually used as the BSSID and
contains 48 bits. The MAC addresses of VAPs in the same
physical AP are usually the same except last 4 bits. Thus,
VAP key is defined as {BSSID[1 : 44], F requency}, for
example, {24:de:c6:c3:5b:b, 2412}. The VAPs are identified
and clustered based on their keys. To make sure the empirical
practice always work correctly, the clustered VAPs are veri-
fied by checking the similarity between signal patterns. The
similarity between temporal signal patterns from two APs is
determined based on the Euclidean distance between them,
which is denoted as

ukl =

√√√√ M∑
m=1

{xk,m − xl,m}2 (6)

where M is the number of RSS observations in which both
APs appear at the same timestamp and in the same channel.
If the Euclidean distance between any two APs in the cluster
is larger than the threshold, the VAPs in this cluster may not
be from the same physical AP, and this cluster is abandoned
and not used for the further process.

D. Beacon AP Finalisation

Before the clustered VAPs are used to generate Beacon
AP, the number of VAPs in each cluster is checked against a
threshold, and if it is too few, we can believe the VAPs in this
cluster have fewer opportunities to be spotted. Our experiment
also shows the VAPs in the cluster of small size have relatively
weak signal strength. Thus, only the clusters with more than
two VAPs are kept to generate Beacon APs. Finally, in each
cluster, if the observations of different VAPs are captured in
the same time, the mean of their RSS values is computed
and used as the RSS value of Beacon AP at that timestamp,
which is then used to construct the RSS map (i.e., fingerprint
database) for positioning.

VI. BEACON AP OVER PATHWAY MAP

A. Construction of Beacon AP RSS Map

To map the signal observations to the spatial locations,
the reference points are employed like most fingerprint-based
approaches. However, the RPs proposed in our work are
closely associated with pathway map, and the nearby RPs can
easily be identified, which can ease the prediction and reduce
the searching space if needed in the positioning phase. Each
RP’s identity is coded as [P.S.I], where P is the ID of path
segment where the RP exists, S is the number of RPs existing
in this path segment, and I is the sequential number of this
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Fig. 6. Illustration of processing signal patterns from raw RSS samples
observed from APs in one path segment of our experimental site.

RP in S. For example, RP [238.5.2] and [238.5.3] are adjacent
to each other. Furthermore, RPs from adjacent path segments
can also be retrieved by querying the pathway map.

The RSS of Beacon APs processed from raw signal ob-
servations are mapped to the indoor map to form RSS map
of Beacon APs. The RSS map consists of RSS from Beacon
APs at RPs of each path segments. The RSS from P number
of Beacon APs at N number of RPs of path segment ei is
denoted as

Wi =

w1,1 · · · w1,N

...
. . .

...
wP,1 · · · wP,N

 (7)

where wpn = −100 if Beacon AP p is not observed at RP n,
because the weakest signal observed is close to -100 but not
less than -100. Because in the Beacon AP generation algorithm
the APs appearing few times in the path segment have been
removed, we believe the Beacon AP can be seen in the path
segment for most of the time. The number of RPs of each path
segment is determined based on its length. Since Beacon APs
are elected based on path segment and just represent signal
patterns over that path segment, size and identity of Beacon
APs in different path segments are not consistent.

B. Signal Coverage Constraint

By processing the raw signal observations using sibling
signal pattern, the Beacon APs are generated as quality-
improved metrics to represent the surrounding signal mea-
surements along path segments. The same Beacon AP may
appear in different path segments, most probably in adjacent
path segments. The number of RPs of each path segment is
determined based on the length of path segment and walking
speed of the surveyor in the process of the site survey. The
number of Beacon APs depends on the number of available
raw APs and length of the path segment. At our experimental
site about 7-10 Beacon APs are elected in a path segment of 10
meters’ length. The Fig. 7 illustrates the distribution of beacon
APs’ appearance in the RPs using some of our experimental

samples in a two-dimension scatter diagram, where the AP
with RSS of -100 (i.e., AP unobserved) is not shown to reveal
the real-world observations. As the illustration in the Fig. 7,
there are 41 RPs in the 4 continuous path segments and 28
Beacon APs in total are elected over these path segments.
Each Beacon AP is typically shown in a group of continuous
RPs, which can take up one or two adjacent path segments.
The geographical distribution of RPs from the same Beacon
AP shows strong aggregation. Thus, the spatial patterns of
multiple Beacon APs can be used to constrain the searching
space of user’s location.
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Fig. 7. Illustration of mapping Beacon APs to reference points based on the
signals collected at our experimental site.

To obtain a better visualised insight of the spatial signal
pattern, the Fig. 8 illustrates the geographic mapping between
beacon APs’ appearance and pathway map using the signal
observations collected over several continuous path segments
in our experimental site. Based on spatial signal pattern, the
concept of signal coverage constraint (SCC) is proposed.
The signal coverage constraint is intended to check if the
current observed Beacon APs match the Beacon APs elected
for each path segment in the fingerprint database. Through
signal coverage constraint the user’s potential location can
be limited to one specific path segment, or more than one
in some cases when the Beacon APs of more than one path
segment are similar and all match the current observation. The
approach we define the match is that the Beacon APs of current
observation can take up that of the path segment for more than
a threshold, which is signal coverage constraint ratio (SCC
ratio). For example, when SCC ratio is 80%, if 8 out of 10
Beacon APs of a path segment are shown as Beacon APs of
current observation, then this path segment is considered as the
area of users’ potential location. In such approach, the search
space can be reduced to a small area consisting of the RPs of
this path segment.

VII. POSITIONING USING BEACON AP AND SIGNAL
COVERAGE CONSTRAINT

The system consists of three modules: site survey, SSP
processing and positioning, as the system architecture depicted
in Fig. 9. In the offline phase, a dedicated surveyor holding
an MH running site survey module is walking along the
corridors to collect raw observations. Then the server-side SSP
Processing module processes the collected raw data to produce



2327-4662 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2018.2797061, IEEE Internet of
Things Journal

8

2600
2400

Longitude of Indoor Map

2200
2000

1800
1600

1400
1800

1700
1600

Latitude of Indoor Map

1500
1400

1300
1200

1100
1000

5

10

25

0

15

30

20

900

In
d
e
x
 o

f 
B

e
a
c
o
n
 A

P
s

Fig. 8. Illustration of mapping Beacon APs to pathway map based on the
signals collected at our experimental site.

Beacon AP RSS map. In the online phase, positioning module
is running on the targeted MH to observe the real-time signal
and compare it with the Beacon AP RSS map in the database
to compute the location of the MH.

Fig. 9. System Architecture.

A. Robust Searching Scheme

In the robust searching scheme, the search space is the
RSS map of the whole site, consisting of all the reference
points over the path segments. All the RPs are candidate RPs
and the similarity between the fingerprint of RP and the real-
time measurement is the Euclidean distance between the RSS
vectors of all the APs shown at the RP. If any AP is not shown
in the real-time measurement, the RSS value of -100 is given
to the AP. The K-Nearest Neighbors (KNN) algorithm is used
to find the best-matched fingerprint of RPs where K=1, and
the location of the best-matched RP is the estimated location.

B. Selective Searching Scheme

A massive search space can lead to not only dispersed
positioning results but also very high computation cost. Thus,
inspired by spatial signal pattern, a selective searching scheme
is introduced by adding the signal coverage constraint function
to the robust searching algorithm. In the selective searching
scheme, the candidate RPs are selected by checking the APs’
signal coverage, which narrows down the search space. For

each path segment in the RSS map, the mutual APs appeared
in both the path segment and current observation are obtained.
The number of mutual APs is checked against the total number
of APs of this path segment because the path segment is
possible to be the estimated location only when most of the
APs in the path segment are present. The selective searching
scheme works as the pseudocode in Algorithm 2.

Algorithm 2 Selective Searching Algorithm
Input:
h0 - RSS observation values;
W - RSS map;
r - SCC ratio.
Output:
L - coordinate of user’s location.

1: a← get all the APs of h0

2: e← initialize an array to save similarity to each xk

3: for each xk ∈W do
4: b← get all the APs of xk

5: n← get number of APs in a
6: c = a ∩ b
7: if sizeof(c)/sizeof(b) > r then
8: eo ← calculate Euclidean distance between xk(c)

and h0(c)
9: ek ← eo/sizeof(c)

10: end if
11: end for
12: L ← get location of xmin(e)

13: return L

The selective searching algorithm takes current RSS ob-
servation and RSS map as inputs and outputs the estimated
location. The SCC ratio is used to control the proportion
of mutual APs. If the path segment passes the SCC ratio
check, the RPs of the path segment becomes candidate RP
and the Euclidean distance between the RSS vectors from
mutual APs is calculated. The Euclidean distance divided by
the number of mutual APs is used as the similarity between
the RP and current observation. Finally, the candidate RP of
smallest similarity value is elected as the estimated location.

VIII. EVALUATION

A. Experimental Setup

We develop the prototype in which the site survey and
positioning modules are implemented on Android platform
and the Beacon AP generation module on Matlab. All the
data collected on Android smartphone are saved into SQLite
database, which is retrieved by Matlab to process and then
send back to the smartphone to eventually fulfil positioning.
The experiments are conducted on the 5th floor of the central
campus building at the University of Essex Colchester Cam-
pus, which is about 50 meters’ length, as depicted in Fig. 10.
Since the positioning performance of movement in corridors
is our main concern and corridors are just all accessible area,
the office or seminar rooms are not covered in our experiment.
The experimental site is covered by signals from about 50
wireless APs (250 VAPs) of Aruba which belongs to the
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Fig. 10. Illustration of the indoor
map of the experimental site.

Fig. 11. Illustration of the user in-
terface of site survey.

Fig. 12. Illustration of positioning
scheme selection.

Fig. 13. Illustration of the position-
ing result shown on Android app.

campus WiFi infrastructure mounted on the ceiling. In other
words, the APs observed and used for positioning in this paper
are existing and deployed by the university to provide the
Internet access, rather than deployed explicitly for experiments
of indoor positioning. Empirically speaking, there are around
two-thirds of APs deployed in the six-floor building where the
experiments are c, and the other one-third of APs are from
other surrounding buildings.

The performance of the work in this paper is evaluated
from two aspects, positioning accuracy and energy efficiency.
The benchmark is the raw AP RSS approach used by most
systems nowadays. The proposed work of this paper, Beacon
AP and Spatial Signal Constraint, are deeply evaluated by
comparing with the raw AP RSS approach. Because the differ-
ent positioning approaches need to be evaluated in the same
environment and evaluation points, the benchmark approach
and proposed schemes are implemented and evaluated under
the same condition. The different positioning schemes are
implemented in the Android app and allow users to select
on the setting menu. In raw RSS scheme, reference points
are sampled approximately every 3-5 meters, and each RP is
trained for around 10 seconds. In the Beacon AP RSS scheme
involving sibling signal patterns, the environment is profiled
by site survey at a steady speed (about 1 meter per second),
as shown in Fig. 10. The user interface of the site survey
service running on a mobile phone is shown as Fig. 11. In
the positioning stage, no matter what scheme is applied, the
positioning result is shown as a red dot on the map, as shown
in Fig. 13. To evaluate the accuracy, ground truth is marked by
tapping the real location on the map and saved into positioning
logs. Location error is defined as the Euclidean distance from
the estimated location to ground truth. Meanwhile, some other
data such as real-time observed APs and candidate RPs in
positioning algorithm are also recorded into positioning log
sat in SQLite database.

B. Effectiveness of Beacon APs
As the RSS variance is a significant problem of WiFi-

based positioning, the effectiveness of sibling signal pattern

is evaluated against different device setups. As described in
Table II, two devices with different physical setup and software
setting are employed to evaluate positioning performance
while the site survey is conducted by Huawei P9. As shown
in Fig. 14, in this test Beacon AP RSS leads raw RSS in
the overall performance. Beacon AP RSS scheme provides
positioning result within 2 meters from the ground truth in
over 90%. The maximum location error distance is reduced by
2 meters to just over 3 meters against raw RSS scheme. The
critical point is how two different schemes are affected in M4
setup. Based on raw RSS the location error is amplified when
the MH running positioning module is not the MH performed
the site survey. Under such situation using Beacon AP RSS,
the positioning accuracy is also affected, but just a small drop,
which reveals Beacon APs generated by sibling signal patterns
are more robust to device variance.

TABLE II
DEVICE SETUPS

Setup Device Model Platform Version WiFi Scan Frequency
P9 Huawei P9 Android 6.0 every 4s
M4 Xiaomi 4 Android 5.0 every 6s

Since the Beacon APs are generated based on RSS ob-
servations collected in the movement while the raw RSSs
are collected in the stationary, the positioning accuracy is
evaluated in both stationary and moving state. As illustrated in
Fig. 15, Beacon AP RSS scheme offers the best performance
when the MH is in movement. When the Beacon AP RSS
scheme is used in the stationary, the performance decreases
a bit, and its maximum error distance overtakes raw RSS
scheme in the stationary. We believe the Beacon AP RSS
scheme performs better in the movement because the Beacon
APs and their RSSs are generated from RSS observations in
the movement. While the raw RSS scheme in the movement
performs worst. From which we can see Beacon AP RSS
scheme are more suitable for application scenarios of moving
MH.
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C. Effectiveness of Signal Coverage Constraint

The selective searching scheme utilizes the signal coverage
of APs to narrow down the search space by filtering the candi-
date RPs through the SCC ratio. To evaluate the effectiveness
of signal coverage constraint and the influence of different
SCC ratio, experiments of robust searching scheme and selec-
tive searching scheme using different SCC ratio are conducted.
As the CDF shown in the Fig. 16, the robust searching scheme
(i.e., none SCC) performs worst overall and with the maximum
error distance of more than 12 meters. With signal coverage
constraint, the accuracy is improved dramatically. Even though
with SCC ratio of 40%, the maximum error distance is reduced
to around 6 meters. With the increase of SCC ratio, the
accuracy keeps increasing. When the SCC ratio is 80%, the
accuracy is within 1 meter in all cases, which means the
estimated location is always the nearest RP. The change of
positioning accuracy affected by SCC reveals that constraining
the estimated location through the signal coverage of APs can
give the positioning accuracy huge boost, especially it can
reduce the maximum error distance significantly.

The signal coverage constraint can improve the positioning
accuracy massively, but it can lead to the problem that no
candidate RP matches the online measurements, and hence no
estimated location can be provided. In the positioning phase,
for every location estimation job when the latest WiFi scan
results are available, the number of measured APs, number
of APs used in estimation and the candidate RPs are saved
into logs. The Fig. 17 illustrates the CDF of the number of
candidate RPs occurred when it is filtered using different SCC

ratio. From which we can see that, with the increase of SCC
ratio the probability that no candidate RPs are available is
increasing at a growing pace. When the SCC ratio is 80%
there is about 60% probability that no positioning result can
be given. Thus, a trade-off between accuracy and availability
is existing, and we think SCC ratio of 60% is the best choice.

D. Efficiency Comparison

Apart from positioning accuracy, the system efficiency is
becoming another significant concern in the real-world deploy-
ment. In the site survey stage, the Beacon AP RSS approach
can cover corridor of 20-meter length for less than 30 seconds.
However, the traditional predefined RP iteration method can
take more than 5 minutes depending on the grid size of RPs
and sample size at each RP.

As the plot in Fig. 18, compared with the size of all raw
APs detected, by using Beacon APs as the fingerprints of
RPs the number of APs is reduced dramatically. At each path
segment, the number of APs is only about one-fifth of all raw
APs detected, which can reduce the dimension of fingerprint
database significantly.

In the positioning stage, the RSS matching algorithm that
calculates the similarity between RP and real-time RSS obser-
vation spends most computational resource and energy [23].
The computation cost of RSS matching algorithm mainly
depends on the size of RSS vector (i.e., the number of APs)
and the number of candidate RPs to search for the best-
matched location. As shown in Fig. 19, the number of APs
used for location estimation in the Beacon AP approach is
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about 30% of that using raw AP. Using Beacon AP reduces
the size of RSS vector to less than 20 in most cases. With the
assistance of signal coverage constraint, the size of candidate
RPs is also decreased significantly, as illustrated in Fig. 17.
Beacon AP and SCC together reduce the computation cost
dramatically.

IX. CONCLUSION AND FUTURE WORK

In this paper, the sibling and spatial signal patterns are
investigated. A positioning approach using Beacon APs and
signal coverage constraint is proposed and shows better per-
formance in both positioning accuracy and efficiency. In the
experiments, for the path segment which is relatively short-
distance, it has just a few number of RSS observations, in
which case the Beacon AP cannot be generated, so other
strategies like limiting the minimum length of path segment
are necessary to be considered in the future work.
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