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Abstract

Cloud computing provides beneficial services to users, enabling them to share large

amounts of information, employ Storage Nodes (SN), utilise Computing Nodes (CN)

and gather knowledge for research. Virtual Machines (VMs) usually host data-intensive

applications, which submit thousands of jobs that access subsets of the petabytes of data

distributed over Clouds Datacentres (DCs). The VMs scheduling allocation decisions in

cloud environments are based on different parameters, such as cost, resource utilisation,

performance, time and resource availability. In the case of application performance, the

decisions are often made on the basis of jobs being either data intensive or computation

intensive. In data-intensive situations, jobs may be pushed to the data; in computation-

intensive situations, data may be pulled to the jobs. This kind of scheduling, in which

there is no consideration of network characteristics, can lead to performance degradation

in a cloud environment and may result in large processing queues and job execution

delays due to site overloads.

This thesis proposes a novel service framework, the network- aware VM placement

approach for data- intensive applications (NADI), to address the need for improved ap-

plication performance . NADI takes into account a jobs time cost based on a mechanism

that maps VMs against the resources when making scheduling decisions across multiple

DCs. So, it not only allocates the best available resources to a VM to minimise the

time needed to complete its jobs but also checks the global state of jobs and resources

so that the output of the whole cloud is maximised.

The thesis begins with a statement of the problem addressed and the objectives

of the research. The methodology adopted for the research is described subsequently,

and the outline of the thesis is presented. This is followed by a brief introduction

highlighting the current approaches in VM placement and migration in cloud computing.

Next, this thesis presents a framework for the proposed NADI with a description of

its various components and enabling functionalities, which are required to realise this

framework. Multi-objective strategies suitable for the problems in NADI are presented.

iv



v

Novel algorithms for managing applications and their data are proposed; they aim to

improve each jobs performance and minimise the traffic between the application and its

related data. The results indicate that there are considerable performance improvements

and that the completion time is reduced by 25% to 51%, which can be gained by adopting

the NADI scheduling approach.
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1
Introduction

The main objective of this thesis was to design a framework for managing cloud

resources in order to ensure an optimised delivery for data-intensive applications in a

cloud computing model. For that purpose, the NADI framework was created; it takes

the network, size and location of the data and computes the information from various

information resources, helping to select the optimum site for job execution. It also

includes each CN’s CPU loads, and the CN with the least cost is selected. To this

end, the novel NADI framework is proposed. Algorithms to evaluate the elements of

the proposed framework are presented as well as mathematical models to validate the

algorithms.

This chapter gives an overview of the research context to be presented in this thesis

and the motivation for developing the proposed model. It discusses a description of the

1
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problem as well as the objectives of the thesis. It then presents the primary contributions

of this thesis. The chapter ends with a presentation of the organisation of the rest of

this thesis.
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1.1 Motivation

The cloud computing model has been very popular due to its flexibility in providing

resources efficiently and quickly. In Infrastructure-as-a-Service (IaaS), the VMs serve

the resource requests according to the specifications of the underlying infrastructure. If

it takes a long time to place the VMs in the underlying infrastructure or if the requests

that are accepted cannot get served , then the cloud computing paradigm loses its

flexibility. When there is on-demand access to the services in cloud computing, the

available infrastructure serves the requested resource within a short time span. One

cannot predict the number of resource requests within a certain interval of time for an

on-demand request unlike in spot-market access. VMs run on a single host; therefore,

when there is on-demand access to serve more requests, the available resources should

be used optimally [7].

VMs have arisen as tools that test, manage and consolidate servers as well as support

services that can scale from one to as many VMs as required in both public and private

DCs [8]. Currently, the size of modern DCs is growing, which provides a good reason

to optimise the efficiency algorithms, placing VMs that can reduce operating expenses,

defer upgrades, cloud tenants and applications performance . All these options will at-

tract thousands of cloud customers, who compete for the same infrastructure resources;

this is because a large data centre costs several hundred million dollars to build and

operate. Nowadays, data-intensive applications for processing big data are being hosted

in the VMs. Data-intensive workflows may take advantage of infrastructure, which is

offered by the surroundings (such as the data cloud) [9, 10].

The data cloud offers services like data replication and low latency transport proto-

cols, which dispense applications that are data intensive and that require the accessing,

processing and transferring of huge datasets that are stored in the distributed repos-

itories. The main aim of executing the data-intensive applications on the distributed

resources is to optimise the overall time needed for completing the applications work-

flow. Workflow completion time refers to the overall time taken or required to finish all
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the jobs in the workflow. Apart from the completion time, execution cost is another

objective function of scheduling the applications . Communication time taken in stag-

ing both input and output files as well as the computation time required to execute

them determines the completion time. The two objectives affect each other; therefore,

when the tasks are scheduled to achieve only one objective, there will be a sub-optimal

result [11].

Most of traditional planning algorithms were based on a pull paradigm, whereby the

algorithm focused on staging the data into the computation resources. They ignored the

data’s location, which in turn resulted in a high cost of bandwidth utilisation [12, 13].

Therefore, a dissimilar paradigm is required where the choice of both the compute host

and the data host should be considered first instead of selecting the compute host first

and then the data host (or vice versa). The cloud setting offers the virtualised resources

necessary for computation, and the data-intensive applications need to communicate

between the nodes that are computing. Therefore, the data location as well as the

VM placement affects the whole computation time. Most of the research that has been

reported in the literature review prefers choosing the physical nodes to place data as

well as viewing VMs as autonomous problems [14].

1.2 Problem Description and Objectives

Traditionally, the workflow decisions during data-intensive jobs have been made by the

transmission of executables to the data while the computation-intensive jobs are trans-

mitting data to the executables . Data-intensive applications, through which several

workloads are submitted, allow the analysis of a large dataset that is replicated to glob-

ally distributed systems. Where there is no replication of the data to the computation

site, the data is generated from the remote sites. The transfer of data from the other

site slows the performance of the job [15]. The cloud has a large number of SNs and

CNs (each with an unique ID ), which supports the fact that if a computing activity

runs at a remote site, the output data that is produced is supposed to be transmitted

for the analysis of its results remotely by the user. Each data-intensive job has its
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own distinct method of data production and consumption. To ensure high performance

during job execution and maximisation of the cloud throughput, the computation input

and output data should be aligned and scheduled concurrently [16].

These processes communicate effectively, which allows for a minimal data trans-

fer cost and a reduced execution duration of the application (which consists of large

dataset). Depending on the characteristics and the potential of the networks, the com-

puting resources and the storage resources, It can be settled on sending data and the

executables to the third location . It becomes less challenging when viewed from a local

resource management perspective but much more challenging based on the scheduling

perspective since it is supposed to generally increase the output of the cloud through-

put. Scheduling is considered since it is a process that allows the user to organise a task

across several sites. Increasing the complexity to the cloud, by increasing the number

of tasks and predominantly geographically dispersed nodes, results in the data transfer

service and the schedulers making a contradictory decision compared to the one that

is reached from a local scheduling point of view. Therefore, the scheduling technology

was invented earlier under the assumption that all systems that work together used

the same local area network (LAN) [17]. It can be clearly seen that the limitations of

the global decision-making system by extending the scheduling system and the local

resource management system over a long distance.

To optimise the tasks performed through a scheduling algorithm, the algorithm is

needed and it should consider various factors, such as the number of processors, data

transfer, length of the queue and various network relations. Basically, the algorithm

needs to allocate various weight values upon computation for each capable location

targeted that represents the available network characteristics, queue length, processing

cycle, output and input (in which the one with minimal cost is considered). Thus, the

scheduling algorithm should then consider the cloud since it is composed of combined

active network fundamentals, choosing the network as the first condition in the matrix

of the scheduling decision. Based on the network and the strategic view of the whole

cloud system, the process of moving data from one point to another is executed as
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required by scheduling resources and supervision to ensure job completion.

Thus, optimisation of work distribution is performed, and the job scheduler is sup-

posed to make the right decision by taking into consideration the changes in the clouds

system, the total number of tasks, the location and size of the data, and the pool

of the processing sequence. Consequently, the result should bring cloud applications

and the network together , which will assist in understanding the importance of each

other by bringing the applications closer to one another though they were developed

independently [15,18].

Allocating the VMs (data-intensive applications) in the right place can significantly

improve jobs performance especially when taking into consideration a combination of the

network, data and compute costs for these jobs. This thesis will address the following

objectives:

• To investigate the requirements and specifications of building a framework for

managing cloud resources.

• To investigate a cloud architectural framework and the functionalities suitable for

deploying VMs in a virtual infrastructure.

• To propose multi-objective VM polices suitable for resources organised in a holistic

manner.

• To investigate the effectiveness of applications’ performance when the VM al-

location algorithm includes the network, data and compute costs in scheduling

decisions.

• To demonstrate the best benefits to the jobs’ performance by having multi-option

decisions, which are moving data towards the applications or where both the data

and applications are moved toward a third location.
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1.3 Thesis Contribution

This thesis proposes an architectural framework for the delivery of next-generation cloud

computing services. The model presented is built on the concept of a holistic resource

view. It presents provisioning and automation algorithms to validate the proposed

framework. The multi-objective optimisation suitable for the model is presented and

tested in a simulation environment in the thesis. The main contributions of this thesis

can be summarised as follows:

• Proposed and described NADIs various components, actors and roles in the virtual

infrastructure. All the architectural components presented are modelled based on

the existing matured cloud architectures and standards. Possible market opportu-

nities in the model are identified and related to developments in cloud economics

and business models.

• Formulated multi-objective polices suitable for allocating VMs in the Virtual in-

frastructure. These objectives are aimed at minimising the jobs completion time

by calculating the cost time, which is divided into two costs. These costs are the

computational cost and the data and network cost.

• Proposed the VM allocation algorithms using multiple objective optimisation that

tried to enhance jobs’ performance. The proposed algorithms take into consider-

ation the datas location, network status, the CPUs load, and attributes

� Y. Alharbi and K. Yang, Optimizing jobs’ completion time in cloud sys-

tems during Virtual Machine Placement. 3rd MEC International Con-

ference on Big Data and Smart City (ICBDSC)-2016. Muscat, Oman.

Published

• Developed the allocation algorithms by considering the replication service in order

to enhance the jobs performance and minimise the traffic between the application

and its related data. The replication of data can help improve the scheduling and

execution optimisation by reducing the frequency of remote data access.
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� Y. Alharbi and S. Walker, Data-Intensive, Computing and Network

Aware (DCN) cloud VMs Scheduling Algorithm, Future Technologies

Conference (FTC2016). IEEE, 2016, pp. 18. San Francisco, USA. Pub-

lished

• Proposed an adaptive scheduling algorithm that takes into consideration both the

data requirements and the computation requirements of the tasks when making

scheduling decisions. In this algorithm, the transfer of data is viewed in par with

computation and explicitly considered when scheduling. The tasks are distributed

to the optimal sites in terms of computation and transfer time. Additionally, the

algorithm overlaps the transfer time of the job with its own queuing time as well

as other tasks’ computation time.

• Enhanced the jobs execution time by staging the data in and out in advance,

which is before it starts to execute.

� Y. Alharbi and S. Walker, Virtual machine placement using pre-fetching

data transfer, Computing Conference 2017. IEEE, 2017, pp. 16. London,

UK. Published
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1.4 Thesis Methodology

The approach chosen for this research involves a review of the relevant literature, NADI

specifications, design of the cloud framework for NADI, simulation and implementation.

The phases involved in the methodology adopted are shown in Figure 1.1. The main

reasons why this methodology was used are outlined in this section.

1.4.1 Review of Relevant Literature

Extensive literature relevant to the chosen topic of research was reviewed and clas-

sified under cloud computing, related works, DCs networking, virtualisation, closely

related technologies, modelling and cloud development. The literature review starts

by presenting the key issues and a general overview of networks, cloud computing,

service oriented architectures, virtualisation, optimisation problem-solving approaches

and related projects. Conference papers as well as journal articles were found using

keywords. The relevant papers were categorised into general concepts, modelling and

simulation, and enabling technologies. Such classifications of the research papers led to

the contributions of prior knowledge . The variables and significant tools relevant to the

development of cloud environments were identified in the literature review from various

cloud computing projects and publications. The service specifications of the environ-

ment (problem-solving) that was studied led the research to identify the requirements of

enabling NADI with a heterogeneous network and multi-objective design optimisation.

It also enabled the identification of gaps in the Virtual requests of cloud computing

requirements. The literature review fulfils the first objective of the research.

1.4.2 NADI Specifications and Design

The literature review enabled the discovery of the specifications as well as the design

stage process. The design describes service specifications for the computation, network

and storage service as shown in Figure 1.1. The specifications identified the compo-

nents that are needed to design a framework for the Virtual infrastructure container
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using the graphical input interfaces parameters which define a request. Given the rela-

tively new features of cloud computing and its application, the relevant scenarios that

can be activated by the chosen research area have been identified in terms of their re-

spective requirements. Part of the description of the scenarios and their requirements

have been inspired by relevant literature materials, which were published by the Inter-

national telecommunications union (ITU) [19] and the National Institute for Standards

and Technology (NIST) [20].

1.4.3 Developing a Cloud Framework for NADI

A novel NADI framework was developed to conform to existing cloud computing archi-

tectures. The components of the framework were envisioned to provide all the proposed

functionalities desired in a Virtual resource request. The specifications developed in sec-

Figure 1.1: Methodology phases
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tion 3.2 of chapter three illustrated the building blocks needed to convey a framework

to support the specified services for NADI. The framework was developed to provide

services and implement the services practically using the modules that are mentioned in

section 3.3 to support NADI applications. For the simulation, various experiments have

been conducted to demonstrate the ideas proposed in the thesis. Cloud provisioning

and allocation, optimisation strategies, and DC allocation scheduling algorithms have

been tested in a simulation environment. The concepts proposed in this thesis were

applied in solving a problem that requires a large-scale data analysis.

1.5 Thesis Outline

Chapter 2 introduces the cloud computing and various enabling technologies, including

networks and virtualisation. Current trends in the design of cloud DCs architecture are

presented and explored in more detail. Additionally, the chapter presents the facilities

needed to develop a cloud service using modelling and simulation. It also identifies

research efforts in VM placement and migration in cloud management. The chapter

concludes with a summary of the research efforts in the cloud computing field and

identifies the specific areas that the research has focused on.

Chapter 3 outlines the mathematical and theoretical explanation of the NADI schedul-

ing framework and describes the various components, actors and roles in the NADI

framework. It has been demonstrated that, with the aid of mathematical equations, a

matrix of various scheduling costs can substantially enhance the process of scheduling

when every task is submitted and executed after considering particular related costs. In

addition, this chapter offers a general overview of the requirements of NADI scheduling

and names the salient characteristics of such a system. Of those characteristics, it was

noted that the location of the data is the most important consideration for an opti-

mum cloud; therefore, it should be one of the considerations when making scheduling

decisions. It was also concluded that the best network path for storage and comput-

ing should be acknowledged. Then, the scheduler should incorporate and calculate the

measurements of the network when planning to submit jobs.
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Chapter 4 proposes the first version of a network-aware VM allocation algorithm for

applications that are data intensive in a cloud setting (NADI). Then, it shows the rela-

tionships between NADI design components, including the broker, data location service,

network monitoring service, information service and discovery service. The algorithms

used in this contribution were also presented and explored in greater detail, and sim-

ulation tests were performed to examine the NADI algorithm. Through these tests,

it was demonstrated that data location, network latency and computational resources

can significantly affect application performance. Thus, the VM allocation scheduler

should be capable of optimising the data-intensive scheduling process. It is important

to control a VM’s location so that the applications that are hosted by the VM will

have a shorter access time when obtaining the data. It was also demonstrated that the

keys to cloud optimisation include network-managed services and a suitable selection of

the network links between DC locations before making scheduling decisions. Also, the

overall queue and execution times can be significantly reduced if job data requirements

and completion times are taken into account. Based on simulation results on CloudSim

3.0, it was also concluded that NADI is better in scalability and consistency compared

to other contemporary scheduling approaches.

Chapter 5 describes the second version of NADI by considering computation power

and its load, less network traffic and replicas locations. This approach is offered to obtain

an optimised completion time of jobs in each VM. The NADI scheduling optimisation

approach has been developed to generate the time cost matrix for the overall time

needed for jobs completion and optimised among these values. Then, it allocates the

VMs to the optimal site with the smallest time cost. If there are any performance

enhancements for jobs using the replication service, the NADI uses the decision to

replicate the required replica to the chosen location. Otherwise, it optimises the best

replica . Additionally, the changeable component in NADI was in the Data Management

Service (DMS), which deals with the data and the replicas information. The DMS’s

main role is to manage replicas, produce new replicas (if needed), and provide the access

and location for these replicas. The algorithms used in this chapter are explained in
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depth. The results show a significant improvement on the average completion time by

adopting the NADI scheduling approach.

Chapter 6 proposes a final version of the NADI scheduling that considers both the

computation and the data requirements in order to make the allocation decisions of

VMs. Additionally, NADIv3 overlaps between staging the data and execution for the

jobs. So, it transfers the data in advance of a task that has its own queuing time

while other tasks are being executed. This technique significantly improves the average

turnaround time of jobs. This version is considered to be the final version; it considers

the data location, computation power and load, replication service, available bandwidth,

and pre-fetching the data in advance . The design of this approach has been changed

slightly in the DMS’s components. These components respond to managing, tracking

and transferring data between the source and the execution node. Then, the algorithms

that are used in this chapter are explained in depth. The results obtained from the

simulation experiment indicate considerable improvement of jobs performance. When

compared with the previous approach, it can be observed that the jobs execution has

been enhanced. Sequentially, the overall completion time is significantly improved.

Chapter 7 draws the conclusions of this thesis and gives a critical and concise sum-

mary of the work that has been carried out. The chapter also describes the application

areas and limitations of the thesis, and it suggests potential future extensions for the

work.

1.6 Chapter summary

The chapter presented the motivation for the research and stated the objectives of the re-

search, which include developing specifications and a framework for the proposed model

and the study of optimisation strategies for the proposed framework. The methodology

chosen was modelling and simulation. The modelling stage ensured that the proposed

ideas could be verified against well-established mathematical principles, making the

research easily replicable by any researcher.



2
Background and Literature Survey

This chapter gives a brief summary of cloud computing. Then, it investigates recent

advances in cloud computing. Basic enablers for the new paradigm are investigated and

relevant scholarship on the topic reviewed. The main aim of this chapter is properly to

identify the chosen research in the light of developments in computing as a whole. The

chapter investigates definitions, concepts, and architectures proposed for the emerging

paradigm of cloud computing. It then reviews various advances in network and virtu-

alisation, and concludes with a presentation of relevant efforts to facilitate the design

and implementation of a cloud system.

14



Chapter 2. Background and Literature Survey 15

2.1 Introduction

Cloud computing is a novel revolution in the information technology field. This rev-

olution has rapidly increased in both industrial and academic areas. Therefore, these

two areas have been establishing projects within the area of cloud computing. Cloud

computing is a combination of applications, platforms, and infrastructures to provide

certain services to customers via the internet. Cloud computing has recently turned to

employ many Datacentres (DCs) rather than several Personal Computer (PC), laptops,

and mobile computers [21].

The cloud computing concept is not easily defined because it has been applied to

different architectures and many technologies. The NIST [22] has, however, defined

Cloud Computing as:

Cloud computing is a model for enabling convenient, on-demand network access

to a shared pool of configurable computing resources (e.g. networks, servers, storage,

applications, and services) that can be rapidly provisioned and released with minimal

management effort or service-provider interaction.

2.1.1 Related technologies:

2.1.1.1 Grid Computing

Grid computing is a federation of computer resources from different locations that co-

ordinates networked resources to achieve the common computational objective [23].

Technical problems usually require several computer processing cycles or access to large

amounts of data. Cloud computing has a similar function to that of Grid computing,

and it is also concerned with how to achieve application-level objectives in distributed

resources. However, Cloud computing differs from Grid computing in virtualization

technologies at multiple levels, such as hardware and application platforms that are

realizing resource sharing and dynamic provisioning for these resources [3] abd [24].



Chapter 2. Background and Literature Survey 16

2.1.1.2 Utility Computing

Utility computing is a provisioning model that provides resources such as computing

or storage with infrastructure management. So, it is available for a customer who will

only pay for their usage instead of a flat rate, known as pay-per-use. Utility computing

is similar to any type of on-demand computing, e.g. Grid computing and Cloud Com-

puting. Furthermore, the Utility model attempts to achieve the maximum efficiency of

using resources and minimizing operating costs [3].

2.1.1.3 Virtualization

Virtualization is the creation of a virtual Operating System (OS) that can be used as

a CN (commonly known as a virtual machine (VM), storage device, network resources,

or even as an OS). Virtualization software is a layer between a physical CNs OS and

the VMs OS. It also allows any VMs OS to access and use the physical CN hardware

such as the RAM, CPU, and bandwidth, which is similar to what the physical CNs OS

does [25]. There are two information technology (IT) areas that use virtualization:

Autonomic computing and Cloud computing architecture.

2.1.1.4 Autonomic Computing

Nowadays, advances in the field of computing, e.g. networking, computing technology,

and software tools have produced a rapid growth in information services and appli-

cations. These services and applications have become complex, heterogeneous, and

aggregate a huge number of computing communication and data storage resources.

Autonomic computing in the Cloud aims to manage these resources with a high-level

guidance and reduce the operation cost without human intervention. Then, automation

manages the system status when any changing or unpredictable condition happens [3]

and [26].



Chapter 2. Background and Literature Survey 17

2.1.2 Cloud Computing Architecture

This section shows all different Cloud Computing Architectures such layered model,

Business model, Cloud Computing Classification and Network Architecture.

2.1.2.1 Layered model

Basically, the cloud computing architecture as shown in fig 1 can be divided to first, the

core stack and second, the management. In the core stack, there are three layers Re-

sources, Platforms and Applications. The resources are all infrastructure which are com-

posed of physical and virtualized computing, storage and networking resources [1]. This

layer consist of all hardware resources including physical servers, routers and switches

and Virtualization layer that partition the hardware resources and the creates a virtual

pools of computing and storage resources [3]. The famous virtualization technologies

are Xen [27], KVM [28] and VMware [29].

Figure 2.1: Cloud Computing Architecture [1]

The platform layer is built on top of the resources layer that consists of two layers

for operating systems and apps frameworks. This layer has created to reduce the appli-

cations deployment burden into VM containers. E.g. Google App Engine is operated

in this layer to provide API that supports the storage implementation, database and
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business logic in web applications [3].

The application layer is the highest level of this model that consists of the cloud

applications. This layer supports the distributed transactions and management for

massive data volumes. Cloud applications can achieve high performance, availability

and in same time reducing the operating cost by using the automatic scaling feature

that often cannot find in traditional applications [3] and [1]. Some examples for these

layers in Commercial Cloud Systems are shown in table 2.1.

Table 2.1: Examples of Commercial Cloud Systems [6]

Cloud Layer Examples of Commercial Cloud Systems

Cloud Application
Google Apps And Salesforce Customer Relation
Management(CRM) system

Cloud Platform Environment Google App Engine and Salesforce Apex System

Cloud resources Infrastructure

Computational Resources: Amazon’s,EC2,
Enomalism Elastic Cloud.
Storage: Amazon S3, EMC Storage Managed
Service.
Communication: Microsoft Connected Ser-
vice Framework

2.1.2.2 Business model

Cloud computing services in business can be divided into three models, and every model

can be defined as different layer. Cloud services models are Software as a Service SaaS,

Platform as a Service PaaS, and Infrastructure as a Service IaaS [30]. Basically SaaS, is

the application that delivered to customer who uses it via the internet. PaaS generally,

is all resources that needed to build services and applications which customs use them

via the internet without install or download them. IaaS is the computer foundations

hardwares that use to deliver certain services to customer. Usually consist of Servers,

Datacentres, storages and networking technologies. Also, it includes operating system

and some technologies that use to manage these resources [30,31].

2.1.3 Cloud Computing Classification

Moving the enterprise applications to Cloud arises many issues to be considered. E.g.

some of cloud providers are interested in how to reduce operation cost, however; other
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gets the highest reliability and security. From these concerned, it shows the differences

between cloud classifications that are Private cloud, Public Cloud and Hybrid Clouds.

Private cloud is owned by a company or organization that has to control and manage

the all Apps run in the datacentre. Public Cloud Usually runs by third parties e.g.

Amazon that provides all resources as services to the general public. These resources

expose to user cloud via the internet and uses pay-as-you-go to Cloud Users. Hybrid

Cloud is combination of both Private and Public Cloud that allow a company runs apps

on internal Cloud infrastructure or in a Public Cloud infrastructure [22].

Figure 2.2: Cloud Computing types [2]

2.1.4 Datacentre Network Architecture

Network topologies in DCs usually share a three-tier architecture [4], as shown in Figure

2.3. At the bottom level in this figure is the access tier that organizes CNs in racks. In

addition, each CN in the rack is connected to one or two Top of Rack (ToR) switches.

Each ToR switch is also linked to one or two switches at the aggregation time. The top

level in the figure is the aggregation switch, which is connected with multiple switches

at the top level, which is known as the core tier [32]. Examples of this architecture are

Tree, Fat-Tree, and VL2.
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Figure 2.3: DC topology [3]

2.1.4.1 Tree:

The DC network architecture is the original three-tier architecture. This three-tier

architecture is also labelled as a Tree. The physical tree architecture topology is a

multirooted forest topology. Usually, the Tree architecture is rooted at one of the core

switches [4].

2.1.4.2 Fat-Tree:

The Fat-Tree is considered as the extended version of the three-tier topology that is

based on a complete binary tree between nodes. The Fat-Tree tries to solve the failure

of nodes that is appear on the Tree topology. The Fat-Tree has two forms:

2.1.4.2.1 VL2:

VL2 is one form of Fat-Tree topology. It introduces a new routing schema called

Valiant Load Balancing. VL2 has some similar features to Fat-Tree architecture [33].

However, the unique difference that distinguishes VL2 is the complete bipartite graph

between core and aggregation switches.
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Figure 2.4: Common Data Centre Network Topologies [4]

2.1.4.2.2 Portland:

The Portland is also one of Fat-Tree topology form that is based on bipartite graphs

[34]. The main difference distinguishing this topology is the block building, which is

called a Pod. Each Pod is a combination of access and aggregation switches connected

in a complete bipartite graph (see dotted areas in Figure 2.4 ). Each Pod has links

between the aggregation switches and is connected to all core switches [4].

2.1.4.3 DCell:

DCell [35] is a network infrastructure to interconnect CNs. Each CN is connected to a

different level of DCells via its multiple links, but all the CNs act equally. DCell incurs

significant cabling complexity that may prevent large deployments. DCell uses only

miniswitches to scale out, and it scales doubly exponentially with the CN node degree.

Therefore, a DCell with a small CN node degree can support up to several million CNs

without using core routers. BCube [36] builds on DCell, incorporating switches for

faster processing and active probing for load spreading as shown in figure 2.5.

2.2 Cloud Simulation

2.2.1 CloudSim

CloudSim [37], a framework built by the GRIDS laboratory (University of Melbourne),

enables simulation, modelling and practising design of cloud computing infrastructures.

CloudSim is a self-contained platform used in modelling DCs, allocation services, and
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Figure 2.5: Advanced Topologies [5]

service brokers and scheduling of high scaled cloud podium. At the DC, it offers a

virtualization engine that has extensive characteristics for modelling the creation of

virtual engines life cycle management. CloudSim framework is created on top of the

GridSim [38] framework built by the GRIDS laboratory.

2.2.2 Greenloud

Greencloud [39] can be defined as a erudite packet-level simulator used by the energy

aware cloud computing DCs that emphasizes communications of the cloud. It provides a

fine-grained modelling that is detailed on matters regarding the energy consumed by the

DCs IT equipment such as communication links, network switches and CNs. Greencloud

can be very useful in developing unique solutions in resource allocation, optimization of

network infrastructures and communication protocols, workload scheduling and mon-

itoring. It is an extension of NS2 network simulator published under General Public

License Agreement.

2.2.3 Virtual Machine VM Placement

VM placement is defined as the process of mapping a virtual machine to a physical

machine. In other words, the placement of the VM process is the selection of the most

suitable host for the virtual machine. This method includes categorization of VMs and

hardware resource requirements and the anticipated use of resources and placement
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target. The placement aims either to maximize the use of available resources or to

save power through the ability to shut down some CNs. Autonomous virtual machine

placement algorithms have been designed, taking into account the above-mentioned

objectives [40, 41]. In cloud computing environments, there are some parameters that

should be considered to make the right decision, i.e. when and where the VMs should

be placed or reallocated as described in the following paragraphs.

• Performance: this aims to improve the utilization in DCs that have a large num-

ber of applications running on CN platforms. VM placement approaches are also

applied to achieve the highest performance, which could make a potential differ-

ence [41].

• Cost: cloud markets show that dynamic pricing is being increased so that some of

the approaches try to modify VM sizes without any impact on service performance

[42].

• Locality: VMs should be located close to users because it is the optimal solution

for legal issues and security reasons [43].

• Reliability and availability: Because the main objectives of VM placement are reli-

ability and availability, VMs in some cases may be placed, replicated, or migrated

across multiple DCs that are spread over geographical zones [43].

2.2.4 Virtual Machine Migration

Migration of a VM is simply moving the VM that is running on a CN to another CN

(which is normally called the destination node). The trick to do this while the VM is

running on the source node and without an interruption is to move all active network

connections even after the VM to the destination node. It is live as the original VM is

running while the migration is in progress.

The great advantage is that the live migration has extremely little downtime, in the

order of a few seconds. Thus, the main reason for using live migration is for resource

management in cloud computing. For example, cloud computing providers, such as
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Amazon elastic computing cloud for Amazon elastic compute cloud for amazon (EC2),

have thousands of VMs running in their DCs. To save energy costs and balance load,

those providers can move VMs using live migration without their customer applications

in the VMs. Moving VMs from the source node to the destination node needs to consider

these contents: CPU state, storage capacity, and network connections [40].

The benefits of using VM migration are to achieve one of these scenarios as described

in the following paragraphs:

• Load balancing: this is to adjust VM placement to achieve critical business goals,

such as high throughput [44].

• IT maintenance: Administrators move VMs to free certain hosts and shut down

for maintenance [45].

• Power management: this is to consolidate VMs via live migration on an optimal

number of CNs and selectively switch off [46].

2.3 Cloud Applications and Datacentre Traffic Patterns

Recently, different cloud services such as Microsoft Azure and Amazon Web Services

(AWS) have become extremely popular because of instant payment options, widespread

presence, dependability, and ability to provide storage facilities and various software

options. Many different sectors are using the cloud, for example the healthcare sector,

social networking, search websites, video transmission in compressed form, internet

surfing, and many applications that provide information and many others as well [47–49].

Different types of VMs supported by a large quantity of data form the backbone of

these applications that combine a large number of functions. With many information

hubs utilizing applications dependent on the exchange of information, the data flowing

through the intertraffic network has risen by leaps and bounds. The amount of traffic

on a cloud application in the context of information exchange and computing is the

basis of categorization of applications into three different varieties [50]:
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2.3.1 Data-Intensive Workloads:

In these workloads, a large amount of data is exchanged but very few computations

are required. An example is sharing of video files in which every single user initiates

an individual video streaming procedure. In this scenario, the main obstacle lies in the

interconnecting network whereas the ability to perform computing is not important.

All tools used in the circuit (e.g. switches) have to work within the framework of a

feedback system with the placement manager and work scheduler present in the central

position so that the application is able to generate high efficiency and work in accordance

with the Service Level Agreement (SLA). After receiving the feedback, the scheduler

distributes the amount of work depending on the time taken to complete a workload

and the size of incoming traffic in the interconnecting network. So, the application tries

to function via links with low traffic, although a CN with high traffic can still handle the

additional demand by virtue of its computational ability. So, the traffic can be diverted

in a way that all links receive equal traffic and the time taken to complete the functions

and minimum time required to initiate the process are reduced.

2.3.2 Computationally Intensive Workloads

The Computationally Intensive Workloads (CIW) present as a high performance Com-

puting application (HPC) and their main purpose is to find solutions to complicated

problems requiring a high degree of expertise and a large amount of computational

power capacity. Such applications do not need a transfer of data via the communication

link but an ability to handle a large number of computations and functions is required.

So, all these applications can be compiled and can function via very few CNs using the

method of VM consolidation so that they become energy efficient. Because the VMs

have a very small amount of data flow, networks are generally free and a large number of

network switches can be set to power saving mode (such as sleep mode), thus reducing

the amount of power used by the DC.
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2.3.3 Balanced Workloads

The Balanced Workloads (BW) stand for those applications that require the exchange

of a large amount of data via VMs and the ability to perform extensive computing

as well. An example of this variety is the Geographic Information System (GIS) in

which information in graphical form has to be transferred and much computational

power is needed to analyse this information. In this situation, the size of data flowing

through the intercommunicating link determines the load on the CN. For the purpose of

these applications, the scheduling strategies and VM placement have to consider both

the CPU’s loads and the amount of traffic in DCs links to avoid any congestion or

heavy loads on the CN. As long as the DCs have heterogeneous on cloud platforms,

CNs’ power, applications, services and different traffic patterns variation between nodes

(CNs and SNs), The network usages in DCs usually are found to be as the following

points: [32, 51,52].

1. There is only a weak interrelationship between the total cost incurred in commu-

nicating through the entire extent of VMs and the flow of traffic through paired

VMs.

2. The VMs have different traffic rates.

3. It is seen that for the VMs where traffic rate was high the trend was a constant

one and the same was true for VMs with low traffic rates.

2.4 Network-Aware VM Placement and Migration

VM placement and migration scheduling approaches are considered among the most

challenging problems in Cloud management and recently have been categorized as a hot

topic because by considering these approaches, the DCs will get improved resource

utility and minimize the energy consumption depending on the objectives that are

chosen [53,54]. This has resulted in substantial research with different motives. So, this

chapter consider the VMs network-aware algorithms in both allocation and migration
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scheduling. In the next four sections, the most credible and latest scientific research

will be reviewed, analysed, and commented on as shown in Figure 2.6.

Figure 2.6: Categorization of network-aware VM placement and migration approaches

2.4.1 Traffic-Aware VM Approaches

2.4.1.1 Network Topology-Aware VM Placement

Georgiou et al. [55] conducted a study on the advantages of using in advance the in-

put for the bandwidth requirements and the communication between VMs in the stage

where decisions were being taken regarding VM allocation. According to the authors,

it would be best to use two off-line VM cluster algorithms so that the least number of

networks is used in the physical dimension while ensuring that the entire process can be

completed within the limits of CNs capacity and its constraints. The arrangement of

VMs is in a manner that it follows the principles of virtual infrastructure (VI) keeping

in consideration the guidelines laid down for the resource setup and facilities (storage

capacity, memory, core of CPU), bandwidth requirement of inter-VM communication

working with reference to VI and set up as virtual link (vLink) and taking into account

the limitations dealing with ensuring that the system does not fail for VM pairs. The



Chapter 2. Background and Literature Survey 28

setup of physical parts is a collection of CNs that are arranged in accordance with Port-

land topology [56]. According to the authors, it has been seen that a tree-like network

configuration that has been in use most commonly can lead to overuse and competition

for network connection most commonly at the highest level, which ultimately hinders

and increases the time taken to access the services. The use of Portland structural

arrangement can help cloud centres use their available data resources efficiently and

handle bandwidth requirements in a better manner.

This approach has two-layered structural arrangement, which is a physical infras-

tructure made up of homogeneous CNs arranged in accordance with Portland topology

and a layer of bridging middle-ware placed above the infrastructure. Deployer and

planner are the two main parts that form the middle-ware. The planner receives the

requirement for VM specification and discovers the available resources information in

the DCs infrastructure. After, the running of the VM placement algorithms to deter-

mine the mapping for both VM-to-CN and vLink-to-physical, it sends this information

to the Deployed to make the decision. The VM deployment on physical layer compo-

nents can be handled by the deployer, which may have been considered as a third-party.

The main objective of this approach is to maximize the available bandwidth in DCs

links in the stage-in which decision for VI deployment is being taken. Thus, there are

two algorithms to provide this objective. The first algorithm is Virtual Infrastructure

Opportunistic fit (VIO), which is used to allocate the communicated VMs side by side

to minimize the traffic in the DCs.

Vicinity-Based Search (VIBES) is the second algorithm and is structured on the

basis of Portland network principles, this algorithm tries to search for the best possible

Portland area in which VMs and Virtual links can be accommodated in each request.

In the next step, VIO is then tailored according to this area. VIBES uses the concept

of pods (clusters of CNs that are under the same level of switches) to detect where the

Vls can be fitted. The researchers also proposed that all neighbourhoods should be

listed by keeping in consideration the CN resources and bandwidth capacity. The first

pod that is picked up by VIBES has the highest number of resources and then VIO is
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activated. If VIO does not accept the request more pods are approached in descending

order of availability of resources. This process continues till a neighbourhood that has

the required resources is found or when the area of search exceeds the maximum limit,

in this scenario the demand for VI placement is not accepted.

Various simulation models have been used to assess the efficiency of VIBES and

VIO and the results compared with networks of similar structures using the First Fit

decreasing (FFD) algorithm. Three different data-flow structures are used to mimic

removal and activation of VI, namely Epigenomics, Data Aggregation, and Pipeline [57].

According to the results, the algorithm gave better results than the FFD as far as

utilization of network is concerned. There is an approximately 75% reduction in the

network traffic travelling through the Portland architectures uppermost layer and use of

VIBES leads to 20% more reduction. It is the view of the authors that further studies are

needed to evaluate methods used to decreases the load on networks and more efficient

use of power in network switches evaluating VIBES and VIOs performance in Bcube [36]

and VL2 [33].

2.4.1.2 Stable Network-Aware VM Placement

Biran et al. [4] have proposed a VM placement algorithm to reduce the highest amount

of bandwidth requirement and volume in all networks while simultaneously tapping

into unused network links that can handle unexpected increase in the traffic, the study

utilized the different communication trends, changes in amount of traffic in cloud plat-

forms and non-trivial datacentres structural arrangement. They have pointed out many

important factors related to the structural arrangement and traffic:

1. There is a large variation in the amount of traffic at different times by virtue of

the impact of several factors like the time of day and occasional sudden increase

in traffic.

2. The majority of DCs architectures use non-trivial form such as Fat-tree [34] and

VL2 [33] or a different modification of the multipath routing process.
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Taking into account the previous two points, Biran et al. [4] have designed two

VM allocation algorithms to predict the communication requirements and deal with

the changeable amount of network traffic. The Min Cut Ratio-aware VM placement

(MCRVMP) concept was given by the study and the Integer Quadratic Programming

model was used to set it up taking into account the limitations of the CN and net-

work resource constraints using the dynamic routing process and complicated network

configuration. They have also put forward a graph transformation method to enable

MCRVMP application on different network configurations overriding the limitations of

applicability of MCRVMP on tree configuration alone. Because MCRVMP belongs to

the category of NP-Hard (NPH) problems, two different algorithms have been put for-

ward by researchers to provide a solution to the problem of placement and they also

drew up a comparison between random and optimal placements.

The principles of connected components (CCs) of functioning algorithms were used

in setting up the heuristic algorithms. The VMs that interchange data among each

other and with external output (VMs made of multilayer approach) are grouped to-

gether and it becomes easier to find a workable solution. The first algorithm is called

2-Phase Connected Component-based Recursive Split (2PCCRS) and follows the prin-

ciples of recursive integer programming and works on a tree network configuration to

find solutions to minor problems on a single-level tree. Because the 2PCCR uses a

method comprised of two parts, the CCs are set up in the network and then the CCs

are increased in scope and then the VMs are fixed on the CNs. So, by use of 2PC-

CRS the complex MCRVMP problem is divided into smaller parts and then solutions

are found using the mixed integer programming solver in the two phases. The Greedy

Heuristic (GH) is the second algorithm and in it there are no mathematical computa-

tions and every VM is allocated individually. The GH works in two stages. The first

stage of GH takes into account the traffic congestion and arranges CCs in descending

order in the first phase depending on the total traffic requirement in VM set up in a

CC. The second stage handles the requirement of traffic by allocating every VM on CN

that has the lowest load. During the second stage of the evaluation, the consistency of
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MCRVMP-based placements in accordance with changing traffic patterns was proven by

use of simulations framed on the basis of NS-2 whose primary focus was on the average

time taken to deliver packets and the percentage of dropped packets. According to the

results obtained, GH and 2PCCRS are able to handle three times higher traffic than

nominal value if there are no dropped packets.

2.4.1.3 Joined Traffic-Aware and Networks Scalability Improvement

The work of Meng et al. [32] has focused on the problem of scalability being faced by the

DCs and worked out techniques to solve the problem by best possible placement of VMs

on CNs. The researchers adopted a new approach, which did not include altering the

structural array of the network or the routing methods and put forward the hypothesis

that an improvement in scalability can be brought by decreasing the distance between

interlinked VMs. The trend of traffic in functional DCs was studied via a quantitative

study and the conclusions brought three some important points:

1. There is only a weak interrelationship between the total cost incurred in commu-

nicating through the entire extent of VMs and the flow of traffic through paired

VMs.

2. The VMs have different traffic rates.

3. It is seen that for the VMs where traffic rate was high the trend was a constant

one and the same was true for VMs with low traffic rates.

As per the work in [32], the Traffic-aware VM Placement Problem (TVMPP) is

a member of the Quadratic Assignment Problem group and deals with the concept of

optimization [58] and is also considered complex enough to be granted the categorization

of NPH. The communication costs matrix deals with the communication between the

CNs whereas the traffic matrix stores the amount of traffic between VMs. These values

in the matrices are considered to be the input components for TVMPP and the entire

exercise is aimed at deriving the VM placement that would reduce the average traffic

at the level of individual switches. The standard definition of communicating cost in
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relation to two interlinked VMs envisages it as the total number of hops or switches that

are present on the best possible path between the two interlinked VMs. The definition

of slots has also been put forward by the researchers as a memory or CPU that is

designated as the actual CN and a CN can have many such slots and any VM can take

up any slot.

The present solutions in the context of TVMPP, which is an NPH problem, cannot

be extrapolated to modern data hubs; to solve this problem researchers have used

the concept of design to formulate an approximate algorithm with two layers, namely

Cluster-and-Cut.

1. The similar concept is used both in VM-PM mapping and solving TVMPP because

in both situations the two PMs that are attached to the physical hardware that

is easy to use are arranged in proximity to two VMs with high network traffic.

2. Utilizing the concept of divide and rule.

The Slot Clustering and VMMinKcut are the two main parts of the Cluster-and-Cut

heuristic. The number of hops that are present between the slots is the basis of division

of n slots into k clusters by slot clustering. After this process of division is completed,

the slots come out to be arranged in descending order of total costs (includes costs of

both directions). The basis of decision of n slots in k clusters by using VMMinKcut is

the amount of traffic in VM pairs, the division is done in a manner that the traffic flow

in between the cluster is reduced to the minimum and the two VMs that are placed in

one cluster have high exchange of traffic between each other. The minimum k-cut graph

algorithm is used for this purpose [59] and the size of the k clusters is the same as the

size of the k-slot clusters. In the next step, the Cluster-and-Cut maps individual VM

clusters to slot clusters and as far as the combination of VM clusters is concerned, a

solution is derived for a smaller TVMPP problem and then VMs are mapped to slots.

In addition, the value of mathematical ability has been derived by the researchers for

Slot Clustering and VMMinKcut and the values are O(nk) and O(n4), respectively,

with total value coming out to be O(n4).



Chapter 2. Background and Literature Survey 33

The Cluster-and-Cut heuristic is assessed via simulation using trace-driven principles

that take into account the hybrid traffic and the traffic flowing between VMs (traffic

travelling in both directions is taken into account), all the data are collected from DCs

that deal with day-to-day activities. According to the findings of the study, the Cluster-

and-Cut leads to an objective function with a value that is almost 10% less than its

counterparts in various network configurations and the time taken to solve the problem

is decreased by 50%.

The weak point of the research is that some of the theoretical arguments do not hold

good when used in practical situations in DCs. The limitations of the interconnecting

network are not taken into account by TVMPP so the placement of VMs can be done

in networks with high traffic [4]. It should also be remembered that a single VM is

placed in one CN by the Cluster-and-Cut algorithm, thus causing wastage of the DCs

resources. The concepts proposed are also based on the presumption that both static

layers 2 and 3 are functioning in the DCs. It is also important to note that the migration

costs due to VM shifts off-line are also not taken into consideration.

The closest related work to TVMPP [32] is the Integer Non-linear Program (INLP)

approach [60]. The INLP is aimed to keep the reliability of communications between

VMs. So, in this case, the distance between VMs should be not far and provide more

than a path in case of a links failure report between them. This approach helps to

increase the DCs reliability and minimize the communication delay between communi-

cated VMs. As a precautionary procedure, this work creates backup VMs replicas at

near CNs to guarantee the reliability and availability among VMs. The limitations of

this approach are, first, they considered communication only between CNs while the

SNs have been ignored. In case of the like between the data and application has a low

rate of throughput, degrades the performance for both jobs and application. Second,

creating many replicas for the VMs could cause network burdens and squandering of

the DCs resources.
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2.4.2 Network Aware and Energy-Efficient Approaches

2.4.2.1 Multi-Objective VMs Migration

The situation of excessive congestion in VMs of DCs whose functioning is dependent on

interlinks between CN has been proposed by Huang et al. [61]. So far, the majority of

research in the field of VM migration has dealt with the limitations of CN resources and

aimed at finding a method to set up the VM in a manner that utilizes the least possible

number of CNs, which will make the process more energy efficient and optimize the use

of resources.

Huang et al. [61] have declared that most VMs that are in use at present share

an interrelationship via exchange of information and traffic. So, it is essential that

the technique used for online VM migration is two pronged and aims at optimization of

resources along with decreasing the load of traffic on DCs by providing a multi-objective

algorithm. These researchers have worked on the same concept as Huang et al. [48] and

put forward three steps that can help in creating a structure in which resources are

utilized to the best of their capacity.

1. The configuration where the first optimization takes place aims to optimize the CN

resources by decreasing the number of CNs, thus reducing the energy consumption;

the principles used here are the maximum minimum fairness mode and sharing of

resources at hand.

2. In the second step of optimization, an attempt is made to decrease the costs of

data exchange between VMs once the VM migration has taken place. Here, the

traffic flow between VMs and the functional use of the application is taken into

consideration.

3. The third step is an amalgamation of the above two steps, provided that the

optimization is performed within the limits of the CN and the value of the total

load of communication in the CN does not exceed the total bandwidth volume.

A further solution to the defined optimization problem has been put forward by
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researchers using a GH algorithm composed of two stages, namely the Extension and

Base algorithms. The input values of the base algorithm involve VMs groups, CNs

groups, and heavily congested VMs along with the majority of resources utilized by user

CNs. In the next step, the heavily congested VMs are arranged in descending order of

the amount of resources used prior to completion of migration. The extension algorithm

tries to pick the best option as the CN for placement, which has the least resource

utilization and the lowest amount of load; this process on initiation takes into account

the interrelationships and links between VMs. The VM migration effect is defined as

the effect of both distance and cost of traffic between VMs. The total communication

weight for each congested VM is calculated as the total of all VM communication weights

and then the congested VM is transferred to the CN that shows the minimum effect of

migration.

The study has also dealt with assessment of the concept of multi-objective VM

allocation by comparing with the application-aware VM migration approach (AppAware

[62]). The topology configuration of DCs can be set up in four different forms: Tree ,

Fat-Tree, VL2 , and BCube. The capacity of the CN, the demand resources for VMs,

and the amount of traffic in VM are calculated artificially using the normal distribution

with a change in the value of the mean. According to the study, the Bcube configuration

resulted in more reduction of traffic volume than the tree configuration. The traffic load

is also decreased to a higher extent in DC that has been put forward in this paper in

comparison to AppAware as it produces migrations, which decrease the amount of traffic

volume by 82.6% (this is true for a few VMs). The capacity of CN and the effect of

migration are inversely proportional. The cause of this has been postulated to be the

incorporation of the maximum value of resources utilized in the multiplier factor, which

is reduced once the migration is completed. The increased load on VM resources is

directly proportional to the effect of migration. The cause for this has been attributed

to the effect of increased load on the intercommunication between VMs, especially in

applications with many levels. The weight of communication affects the traffic load

between network switches, leading to an increase in the effect of migration and increase
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in the inter-VM weights.

2.4.2.2 Power-Aware and Communication Traffic Minimization

The static greedy placement of resources to VMs has been studied by [63] and did not

take into account the effect of utilization of resources by CNs and VMs. According to

the authors, all the VMs that have a high traffic load can be grouped together to utilize

the least possible number of CNs, which will lead to a decrease in the hosts’ external

traffic as VMs that are in close proximity can transfer information to each other. The

work puts VM dynamic placement in the position of an optimization problem so as to

reduce the traffic load in the DCs. Mapping of CNs and VMs can provide a solution to

this problem and a minimum k-cut problem [64] seems to be NPH. Around one-third

of the total energy is saved if a CN is in an idle mode [65]. The research proposed that

the second objective of VM placement would be to decrease the energy usage.

A theoretical simulation was put forward using computations to reduce the traffic

load in the DCs while satisfying the resource limits of the CN. The solution to this

problem is grouping the VMs with high traffic load together so that one CN can host

all of them. So, they have proposed using the K-means clustering algorithm [64], which

would help in the mapping of VM on CNs. The authors put forward a GH titled K-

Means Clustering for VM consolidation, which from its start used the CN as a cluster.

There are many advantages associated with this approach:

1. The detrimental effects of randomization are reduced by bringing about changes

in the initial clusters and their number K.

2. The maximum limit for each cluster is equal to the highest possible capacity of

the CN.

3. A decrease in the number of migrations can be obtained by fixed clusters.

Every round of K-Means clustering in the VM consolidation algorithm is analysed

to calculate the distance between a CN and VM. Then, the VM is allocated to the

CN that is closest to it. The entire process is redone till all VMs are placed on their
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respective CNs. According to the research, the value of polynomial complex of the

greedy algorithm is Ot,m,n and the number of rounds is denoted by t, n stands for the

total number of VMs and the total number of CNs in DCs is denoted by m. It has also

proposed algorithms that can calculate the VM cluster distance and can help GHs deal

with the VMs requests.

An assessment of the performance of three algorithms with the proposed algorithm

was carried out in terms of calculating the amount of load on DCs both via simulation

and synthetic methods. The three algorithms that were compared were:

1. First Fit (FF) heuristic

2. Random placement

3. Method of using simple greedy technique (the VM is placed on the CN that has

a communication with the VM)

Exchange of information between VMs does not play a role in the FF heuristic and

random placement. The two characteristics that were evaluated were

1. The total number of CNs needed (or energy used) after consolidation

2. The total traffic in DCs and the greedy algorithm shows the best reduction in

both the above-mentioned parameters.

As far as the online VM deployment is concerned, the greedy and cluster algorithms

give similar results even though the greedy algorithm has to function with a higher

number of migrations and in spite of that, it can handle a request for new VMs quickly

with no impact on other nodes.

2.4.2.3 Energy-Aware VM Placement

Nowadays, the DCs that are providing a platform for communication applications have

been plagued by the problem of power consumption used by CNs and network devices,

as stated by [48]. In this work, many important points related to DCs have been put
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forward to stress the significance of VM placement that can fulfil the multi-objectives

approach.

1. Using complicated applications that are made up of many intercommunicating

VMs.

2. Increase in the size of DCs.

3. The methods for VM placement in use at present cannot perform many simulta-

neous functions efficiently.

4. Increase in the price of electricity.

To get an in-depth understanding of the above-mentioned points, the researchers

tried to compare the energy used by the CNs themselves and the energy consumed

in DCs by switching networks and data transferring. The authors proposed a multi-

objective VMs allocation approach that has three phases. The first framework approach

takes into consideration the resources of the CN (storage, RAM, and CPU) and the

VMs capacities of required resources to maximize the CNs resources and decrease the

use of energy by decreasing the number of CNs. This framework used the principles

of proper fairness and in a condition where no significance is attached to the exchange

of information between VMs. The second framework focuses on the pattern of traffic

between VMs and the constraints set up by the CNs bandwidth capacity. It is designed

as a convex programming problem whose aim is to reduce the communication costs

between VMs. Lastly, the VM placement in the energy-aware approach is designed

using a fuzzy logic concept with a balance achieved between the two objectives, which

in combination can negate each other. A further prototype technique is to join the VMs

allocation with each VM being fitted with a local controller and the DC fitted with a

global controller that decides the placement of VMs on the CNs resources.

Two different concepts have been proposed to find the optimum solution, namely

VMGrouping and SlotGrouping. The VMGrouping functions in a manner where the VM

and CN links are set up in such a way that VM pairs that have high load are connected
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to those CNs whose set up in physical form entails less cost. This setup is simulated in

the form of a Balanced Minimum k-cut Problem [59] and a k-cut with minimum weight.

The amount of k-cut that has the lowest possible value of weight is also fixed to divide

the VMs to k disjoint subsets that are unequal in size. Then, the SlotGrouping connects

the VM to the CN located in proximity keeping in consideration the limits of the CN.

Proof of the efficiency of multi-objective VM placement techniques has been provided

by the authors by using simulation experiments conducted under different values of VM

loads, traffic, and physical CNs under a normal distribution for different values of mean,

topology configuration, and architectures (e.g. Tree, VL2 , Fat-tree, and BCube.

Taking the formulation of total traffic volume of DC according to performance met-

rics and objective function into consideration, a comparative study was conducted be-

tween the joint policy of VM placement and arbitrary placement along with the policies

of FFD, which is based on heuristics. The outcomes bring in notably decreased traffic

frequency (50- 81%) and greater objective values in the joint VM placement that are

further resolved into reduced resource wastage and transport cost. Viewed from the

point of reduction of energy consumption, the performance is evaluated by comparing

the proposed approach of placement with arbitrary placement, Grouping Genetic Al-

gorithm (GGA) [66], optimal placement with the consideration of the number of used

PMs as a performance metric, FFD, and a two-stage heuristic algorithm [67]. The

results indicate that in terms of performance the method of energy-aware joint place-

ment is ahead of the two-stage heuristic algorithm, arbitrary placement and GGA and

lags behind optimal placement and FFD. Various objectives (meaning a simultaneous

reduction of both traffic volume and resource wastage) trade off with each other to

rationalize that pattern of performance, which is to be achieved by the joint policy of

VM placement.

The focus of this study was the contemporary issue of bringing equilibrium between

network awareness and energy during decision-making in VM placement. Nevertheless,

the effect of required live migrations of VM and reconfigured performance of the hosted

application and network links has not been accounted for in the work. This can result
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in a malignant impact on network performance and SLAs with the consideration of the

necessity of large VM migrations while deciding on new VM placement.

2.4.3 Application-Aware Approaches

2.4.3.1 Communication-Aware Approaches

The issues in scheduling VMs were first highlighted by [68], which are related to HPC

applications and shared networks (at the time of positioning into different CNs) and

a shared memory bus (at the time of positioning into the same CN) is used for com-

munication. The researchers have observed a few drawbacks in the existing migration

approaches and VM placement in relation to HPC and similar applications:

1. The approaches of VM placement effectively using the resources of the CN itself

(such as memory and CPU) do not have any cognizance regarding the patterns

of inter-VM communication and result in lower efficiency from the viewpoints of

network utilization and final application performance.

2. The focus of the present network-aware VM placement is the optimal primary VM

placement and the patterns of real-time communication as well as traffic demands

are overlooked and therefore do not produce any reaction to changes.

The work in [68] looked into those setbacks through the proposal of the scheduling

technique of energy-efficient VM and communication-aware that concentrate on similar

applications using different models of programming in regard to inter-VM communi-

cation (such as Message Passing Interface (MPI) and OpenMP). The communication

patterns and the duration of inter-VM bandwidth needs are ascertained by the pro-

posed technique after inefficacious placement, rescheduling of VM placement by VM

live migrations being recognized.

The researchers have accounted for the system framework in a brief note for man-

aging VM migration requests encompassing peerVM information (such as VMs with

mutual communication) and a central Migration Manager (MM). The execution of HPC

jobs is carried out in individual VMs and every VM is enlisted with its peer-VM at the
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time of the run. The responsibility of determining the communication pattern of the

entire application lies upon MM. The physical CN is moreover expected to consist of

adequate free resources (10-20% CPU) for controlling prospective VM migration. A

frequently used greedy algorithm, called the Peer VMs Aggregation (PVA), has been

offered by the researchers, which is to be driven by MM as VMs send requests for

migration. The PVA algorithm principally aims at grouping the communication VMs

along with mutual traffic within the same CN for their communication through a shared

memory bus and also the flow of inter-VM traffic in the network can be reduced. The

communication halts in VMs due to mutual communication reliance (and therefore re-

sults in elevated performance of application) would be reduced to a minimum and the

traffic (and therefore yield decreasing the usage of the network) would be localised by

it. The four parts below form the PVA algorithm:

1. Sort: On the basis of input/output traffic flows, the VMs requesting migration are

arranged into a descending order and the requests of VMs allocated to the same

CN are ignored.

2. Select: the VM with the highest rank is selected by the MM to be migrated to

the destination CN with its peers.

3. Check: The credibility of VM migrations to the destination CN are assessed by

the MM having been considered as a CN resource (such as network I/O, memory,

and CPU).

4. Migrate: First, MM looks into the suitability of the CN regarding the VM mi-

gration and in finding alright the selected VM is directly migrated to that CN;

else, a VM from destination CN is attempted to be migrated by the MM for

obtaining adequate resources to place the selected VM into the same CN as its

peer-VMs (but they should be suitable for migration in that VM). Nevertheless,

upon the destination CN not hosting any VM enables the MM to allocate the se-

lected VM to a CN comprising the same edge switch where the CN of its co-VMs

is incorporated.
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It is observed that total traffic of the DC is significantly decreased in the PVA ap-

proach as the traffic of network usage goes down by 25%. The researchers have reported

the implementation of memory sub-systems and network topology with the well-known

simulation toolkit CloudSim [69] and the NAS Parallel Benchmarks (NPB) in place of

HPC application being segmented into two sections, namely pseudo-applications and

kernel benchmarks [70]. At the point of being weighed up with the random placement

algorithm based on CPU utilization, the implication indicates PVA to unify each VM

in relation to an application within the same CN and hence yield an exact VM place-

ment as the traffic pattern of interacting VMs gets decided. In addition, as far as the

reduction of network usage is concerned through relocating inter-VM communication

between the shared network and shared memory by unifying communicating VMs, the

proposed approach seemed to have surpassed the placement based on CPU. In addition,

the computation performance degradation of the application is carried out and weighed

up with the perfect time for executing the individual jobs. According to observation,

use of PVA causes 18% performance degradation of VMs, becoming 20% while using

placements based on CPU.

The location of VM migration is prompted by the PVA approach but it does not

clarify the time of migrating request by the VM. Furthermore, the related overhead of

VM migration has not been included. Besides, unifying each VM with a HPC or parallel

application into one CN would not always be possible. Ultimately, the aspect of energy

efficiency from the proposed approach is not shown in the assessment, although the

proposed algorithm tries to reduce the energy consumption as one of the considerations

in this work.

2.4.3.2 Application-Aware VM Approaches

A problem in an application-aware VM placement has been pointed out by Song et

al. [71] that focuses on scalability and energy efficiency of advanced DCs. Many factors

involved in the management of modern DCs have been propounded by the researchers:

1. In the DCs, an excessive application of the services of large-scale data processing
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is utilized.

2. Considering the increasing demands of inter-VM bandwidth in modern applica-

tions, many studies of network architecture scalability have been initiated so that

the level of network connectivity can be increased through scheming dynamic

routing to reduce the costs of the DC network.

3. Some mechanisms have also been proposed in many studies accounting for the

minimisation of power and energy consumption so that utilization of CN resources

could be enhanced and inactive CNs could be turned into lower states of power

to reduce energy consumption.

4. Novell Plate Spin [72] and VMware Capacity Planner [73] are examples of the

existing tools for VM placement. These tools do not consider the traffic pat-

terns between nodes (CN or SN) and therefore can determine the placement of

extensively communicating VMs into physical CNs having communication in a

long-distance network.

Similarly, [48] and [71] proposed a problem of VM placement on the basis of convex

optimization and proportional fairness for pointing the problem which combines to

minimize the amount of DC traffic and DC power consumption so that scalability can

be improved. Both demands of application-level inter-VM traffic and the constraints of

CN resource capacity have been taken into account at the time of problem formulation.

Moreover, evaluation based on simulation is shown and it is reported that VM placement

algorithms based on FFD and random are outperformed by the aggregated algorithm

of VM placement.

The problem of load balancing in the DCs through overloaded VMs migration to

underloaded CNs and the migration being aware of the network has been acknowledged

by Shrivastava et al. [62]. As proclaimed by these researchers, auxiliary network over-

head can be brought in during the migration of VMs (part of multi-tiers applications)

for eliminating hotspots as the inherent pairing of VMs is the basis of communication,

specifically after being shifted to CNs with long network distance for the VM. The VM
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migration has been formulated by the researchers in terms of an optimization problem

aiming at detecting destination CNs regarding overloaded VMs resulting in reduced net-

work traffic following the migration and ultimately a GH of network topology-awareness

has been offered by them.

The name of the optimization problem in the proposal is application-aware as the

migration decision regards the entire context of application moving above the overloaded

VM. An outlook of VM interconnections with multi-tier application is constructed upon

a dependency graph with VMs and VM communications as vertices and edges, respec-

tively, of the graph. The function of network cost has been designed by the researchers

in terms of traffic demand in the distance of network and edge for concerned host CNs

defining that network distance as delay, latency, or number of hops in between any two

CNs. Besides, the problem formulation also accounts for the capacity limitations of CNs

resource.

AppAware, a greedy probable solution has been offered to optimize the problem,

which is defined as NP-Complete (NPC). It tries to minimize the time cost at every

deciding step of migration with the consideration of the network topology underly and

inter-VM dependencies of the application level. There are four stages in AppAware:

1. Base Algorithm: Computation of the entire communication weight is conducted

regarding all overloaded VMs of the system and it arranges all the VMs in descend-

ing order. This is further followed by the computation of a factor of migration

effect regarding every chosen destination.

2. Incorporation of Application Dependency: The cost of VM migration to a desti-

nation CN is entirely computed in this stage of AppAware in terms of the summed

corresponding individual cost for every peer VM to VM communication.

3. Topology information and CN Loads: Contiguous CN loads and network topology

are accounted for in this stage of AppAware when migration is decided due to a CN

being nearer (as per topological distance) to different underloaded CNs that would

be preferable as a destination respective of VM for its ability to accommodate
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dependent VMs into closer CNs.

4. Iterative Refinements: two extensions are further infused for enhancing AppAware

so that DC traffic can be reduced. Several values for the migration effect across

several iterations in the base algorithm of AppAware are computed in the first

extension and the previous extension is further filtered in the second extension as

the anticipated migration of future mapping in other VMs are regarded in respect

of a provided postulated destination CN for every iteration.

The researchers have evaluated the performance of AppAware on the basis of nu-

merical simulations through contrasting with a grey-box migration scheme, Sandpiper

black-box, and the optimal solution [51]. The normal distribution is used to gener-

ate residual resources capacity of run-time CN (such as storage, RAM, and CPU) and

usual, consistent, and increasing distribution including variance and fluctuating mean

are used to generate inter-VM communication dependencies. The sole purpose of jux-

taposing Sandpiper and AppAware against decisions of optimal migration is AppAware

and small-scale centres of data (having 10 CNs) being claimed to provide solutions in an

approximation of optimal solutions. AppAware and Sandpiper are compared with each

other in regard to large DCs (having 100 CNs) and AppAware is claimed consistently to

outperform Sandpiper through the generation of migration decisions decreasing traffic

volume as the transportation of network by up to 81%. Furthermore, the suitability of

AppAware is evaluated in respect of several network topologies by juxtaposing with de-

cisions of optimal placement regarding VL2 and Tree network topologies. As reported,

AppAware stays very near to optimal placement of Tree topology while performing but

it distances itself from VL2. The capacity constraints of CNs resources are counted by

AppAware in VM migration whereas capacity limitations of physical link bandwidth

are disregarded. This can result in congested network links of low distance caused by

VM migrations.
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2.4.4 Network-Aware and Data-Aware Approaches

2.4.4.1 Coupled Placement in Modern Datacentres

The issue regarding positioning of data components and computation of applications into

the SNs and CNs of virtualized DCs has been indicated by Korupolu et al. [74]. Various

factors have been put forward heralding the introduction of heterogeneous advanced

DCs and leading to non-trivial placing for each pair of compute-data in the optimization

problem [74]:

1. There is an evolution over time in the DCs of enterprise, and performance can

vary in separate parts of DCs (such as one network can be switched more recently

and there can be higher I/O throughput and lower latency than with others).

2. Popular multi-purpose hardwired equipment (such as storage equipment having

built-in resources).

3. The I/O rates between SNs and CNs of modern applications vary greatly.

The Coupled Placement Problem (CPP) can be officially categorized under opti-

mization problems that aim at reducing overall cost related to each application only

with the accomplishment of constraints of CN capacity after accounting for the factors

mentioned above. A function defined by any user can be a cost function and concep-

tually the network cost is captured through it and positioning the components of the

application (such as the VM) makes it occur in particular data components and CNs

(such as file system or data block) of some SNs. Three separate heuristic algorithms

were offered below in [74] for the initially provided CPP in terms of the NPH problem:

1. Individual Greedy Placement (INDV-GR) followed a greedy approach for posi-

tioning storage of application data arranged on the basis of their I/O rate for each

data storage unit having SNs sorted according to their minimum distances to any

CN that is connected. Therefore, as it has the nearest CNs, SNs are positioned

with much greater throughput applications by the INDV-GR algorithm.
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2. The affinities of CN-SN are regarded by Pairwise Greedy Placement (PAIR-GR),

which is another greedy algorithm and puts effort so that data components and

computers in every application can be positioned at the same time through the

allocation of applications that are arranged according to the I/O rate being sta-

bilized with the requirements of data storage and CPU for pairs of CN-SN being

ordered through the in-between network gap of node pairs.

3. Lastly, a Coupled Placement Algorithm (CPA) with CPP was offered being rep-

resented bearing identical properties as the Stable-Marriage Problem [75] and the

Knapsack Problem [76] to overlook the results of the greedy nature in the initial

two algorithms that are early decisions of sub-optimal placement. After finding

solutions for the Stable-Marriage Problem and the Knapsack Problem, placement

decisions are frequently chosen by the CPA algorithm so that CPP problem can

be mended in three stages:

• CPA-Stg phase, which decides data storage placement.

• CPA-Compute phase, which decides the placement of computation compo-

nents on the basis of present storage placements.

• CPA-Swap phase, which finds out application pairs so that their pairs of

CNSN can be alleviated in terms of performing the swap and cost function.

Optimal solutions were experimented on the basis of simulation to compare the

performance of CPA, PAIR-GR, and INDV-GR. The researchers for the larger problem

and minor issues have applied the MINOS solver on the basis of LP relaxation and

CPLEX ILP solver, respectively. The times of placement computation and values of cost

function play the function of performance benchmarks and occurrence of the experiment

includes the spheres of four dimensions:

1. The level of complication or size of problem by various simulated size of DC,

2. Integrity of fit by various data demands and mean application computation,
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3. Difference in data demands and application compute, and The factor of link dis-

tance of physical network.

The proposition of the CPA algorithm is realized by deeply analyzing the outcomes and

discussion so that it can be evaluated in terms of both placement computation time and

optimization quality and also various workload features can be incorporated to make it

stronger. On average, CPA is observed to generate placements with only 4% optimal

lower limits acquired through LP formulations.

Nevertheless, the limitations of resource capacity and application models are per-

ceived very simply in the optimization framework. First of all, in CPP there are one

computer and one data storage component and modern applications are already in-

fused with a synthesis of several computer components communicating with each other

and also with numerous data storage components. Next, the CPU solely accounts for

the demand of computing resources while the problem becomes multidimensional with

memory and other characteristics dependent on the OS [77]. Moreover, the cost in-

volved in reconfiguration or overhead is not assumed because of decisions regarding new

placement, where the factors of data movement and VM migrations would be prevalent.

Lastly, CPP formulation does not consider any capacity limits of network connection.

2.4.4.2 Network and Data Location-Aware Approaches

Several works on Virtual Machine placement have considered the physical node re-

sources, e.g. CPU and memory with different objectives [78] placement of the VMs that

have similar page content in one physical to reduce the aggregate memory footprint, [79]

minimize the number of VMs in hosts to improve the effectiveness of dynamic place-

ment, and other approaches focus on how to minimize CNs resources cost usage [80] [81].

None of these approaches consider data access time, which may impact on the applica-

tion performance.

2.4.4.2.1 Fetching Data remotely

An issue is related to obtaining and sustaining the desired level of performance in the
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applications of the data-intensive cloud where data need to be frequently transmitted

from storage blocks [82]. The focus of this research area is modern centres of cloud

data, including storage clouds (e.g. Amazon S3, EMC Storage Managed Service, iCloud,

Dropbox and Google Drive) and compute clouds (e.g. Amazon EC2, Enomalism Elastic

Cloud, Google Compute Engine and Microsoft Azure) where the related data can be

accessed by hosted applications through intranet or internet using logical or physical

communication paths. Furthermore, according to the researchers, random storage of

data is possible and can be disseminated through many storage clouds or a single storage

cloud. In addition, time of data access is not considered while assigning the applications

by the brokers. It can result in such decisions of placement to be allowed to access data

going a redundant distance.

Two algorithms were aimed at after searching extensively for solving the problem

mentioned above: the VM migration approach and VM placement approach. Models

of each application for the solutions bear a set of data blocks that are disseminated

throughout various physical storage nodes having different distances (either of physical

and logical) from the nodes of physical computing. A Speed(s, ∆t) function has been

used in modelling network speed between SN and CN on the basis of packet transfer

time slot ∆t and size of data s. Ultimately, data access time is calculated corresponding

to every CN in terms of product sum of the size of every data block and the inverse

value of commensurate network speed. All the new requests for application deployment

are operated by the VM placement algorithm, which also searches extensively through

each credible CN so that one with the lesser data access time can be found in regard

to commensurate data blocks of submitted VM, which depends on the fulfilment of the

resource capacity limits of the compute node. The boundary specified with SLA being

exceeded by the application execution time activates the VM migration algorithm. At

this point, one having less data access time commensurate with data blocks of migrat-

ing VM, can be found through another extensive search into credible CNs, which also

depends on the fulfilment of capacity limits of the computer node resource.

The simulation toolkit of CloudSim confirms the effectiveness of the proposition of
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the algorithm [37]. The centre of this assessment is the average time taken for task

completion and the proposition of the algorithm is verified through the default policy

of VM placement of CloudSim 2.0, such as on the most rarely used host abiding a load

balancing approach to the VM is assigned by the VMAllocationPolicySimple. The small

scale of DC consisting of three CNs having fixed capacities of resource, three data blocks,

three VMs, and two SNs construct the simulation. The proposed approaches seemed to

require less average time for task completion and it is signified by the optimized location

of hosted VMs. Changes are brought into the network status matrix for activating the

proposed algorithm of VM migration, which consequently migrates a few VMs to hosts

out of which a more minimized average time of task completion emerged.

Apart from focusing on a much less complicated perception of allied DCs of the

cloud, migration algorithms and the idea of VM placement carries out an extensive

exploration where a larger DC may not be measured. Furthermore, the performance

of the experimental evaluation is limited in a very small scale compared with the com-

pletely network-agnostic VM placement. In addition, the solution strategy or problem

formulation does not regard reconfiguration overhead or VM migration. In addition,

there are one computer and one data storage components and modern applications are

already infused with a synthesis of several computer components communicating with

each other and also with numerous data storage components.

The work of Hallett et al. [83] designs an optimized algorithm for VMs placement

that considers large-scale data in distributed cloud computing infrastructure. Their

approach takes into account some network factors, e.g. bandwidth availability and

latency between source and destination. The case used for The paper is healthcare,

so the consultant can view and process images (e.g. X-ray or ultrasound) to make a

diagnosis through a web browser using HTTP protocol and at the same time download

all patient records, which include images to his workstation using FTP protocol. If the

workstation does not have enough resources, it migrates all data to fulfilment DCs. [84]

proposes a job allocation approach that is based on Particle Swarm Optimization. The

approach is used to minimize the application total completion time for the jobs execution
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time and data transferring time among nodes on DC. This approach does not use VM

placement and assumes they are placed statically where NADI approach places VMs

dynamically based on network condition and CNs resources availability.

Work by Karimi et al. [85] investigates VM placement and migration that consider

about bandwidth availability using CloudSim simulator 2.0. This algorithm chooses

the optimal CN that has the smallest data transfer time between CN and SN for the

required data and allocates the VM on it. In this respect, the algorithm is moving

only the placement for a VM based on lowest data transfer time, whereas, the data are

still resident in the same SNs. Similarly, the work done by Chang et al. [86] has the

same idea and results as [85]; however, the network concerned is a wireless network for

datacentres and applied for mobile applications only. The wireless network is only the

concern in this approach and applied to mobile applications. The limitations of these

approaches are not about the CPU attributes, how CPUs speed to finalise applications

jobs, and how long jobs need to wait in the queue. These may lead to the degradation

of applications performance, especially if jobs have to wait much longer in the processor

queues.

The above works [82, 86] are the recent works most closely related to NADI, con-

sidering data location and attempting to find the optimal CN with the minimal data

transfer time. However, these works only consider one file for every VM, while the work

here considers more than one file and may be distributed on different SNs. Another dif-

ference is the computing, CPU power and loads needed for the job. Every applications

jobs need data and computing resources, and these jobs have different processing times,

based on the CN processor and different starting times and depending on the processor

queues. Unlike previous works, which focus only on data transfer time for completion

time, this paper provides a general solution by considering both the computing and

data transfer times, aiming to minimise the average completion time and maximise the

application performance.

The works [85, 86] are the closest and most recent related works to the work here,

which considers data location and tries to find the optimal CN that has the minimal data
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transferring time. These works only consider one file for every VM; however, this work

considers more than one file and may be distributed on different SNs. In addition, the

second difference is the job’s computing needs and CPU’s attributes. Every application’s

jobs need data and computing resources. These jobs have different processing time

based on CN’s processor and different starting times depend on processors queues.

Unlike previous works that focus on data transferring time only for completion time,

this approach provides a general solution by considering both computing time and data

transfer time that aims to minimize the average completion time and maximize the

application performance.

Work by Sato et al. [87] proposes VM migrations based on I/O intensive cloud

applications. This work focuses on minimizing access time for files by migrating the

VM that has application to a proper CN. The objective is to enhance applications

performance during VMs reallocation, where target files are still resident in the same

SNs. This approach has a very weak assumption to improve network performance by

migrating VMs between CNs. In addition, it should consider the VM placement first to

avoid unnecessary migration that may affect network performance. Meng et al. [32] have

investigated traffic awareness for VMs to improve the network scalability by allocating

VMs with heavy traffic at the CNs that have the minimum of total communication

cost. The total communication load in their work is defined as the total number of

hops between CNs; however, CNs with a small number of hops usually do not mean the

communication cost and internal traffic are also small. In addition, their work does not

consider data location to minimize data transfer time, network bandwidth and processor

time for jobs, which may lead to the degradation of application performance.

In [32], the authors have investigated traffic-aware VM placement in DC networks.

The main motivation for this approach is to improve the network scalability by placing

the VMs with heavy traffic at the servers that have the minimum of total communication

cost. The communication cost is defined as the number of hops between host machines.

However, the hosts with a small number of hops usually do not mean the communication

cost and internal traffic is also small. In [88], the authors consider minimizing the
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routing cost between VMs for the long term. This approach has optimized the VMs

placement to reduce the cross traffic among VMs and routing over multiple paths to

increase efficiency in link utilization. The limitation in this approach does not consider

data location to minimize data transfer time and network bandwidth and CPU utilities,

which may lead to the degradation of application performance.

2.4.4.2.2 Data Replication

Replication technology is very beneficial for distributed systems that enhance re-

liability and availability. Replication helps in minimising the time of user waiting in

cloud computing, alleviating data availability and reducing bandwidth consumption of

cloud system through providing several replicas of a particular service at various nodes

in the context of cloud computing. For example, if a node failed to carry out the user’s

request, The scheduler will replicate the request to another node to ensure that the

application progress is not affected [89]. Two categories can be deduced out of data

replication: dynamic replication algorithms and static replication optimisation. The

replicas according to their numbers and locations are predetermined in a static repli-

cation. On the contrary, replicas are dynamically developed and omitted in dynamic

replication following the change in the conditions of environmental load [90,91].

The proposal in [87] consisted of a model-based algorithm on an approach centred

on data where VM-based migrations are used on the ground of I/O cloud applications.

This research mainly dealt with finding ways to diminish the file access time with the

use of a reallocation algorithm to bring out the most effective strategy to transfer a VM

to the location of target file within the storage while minimising the file access time.

The location and size of the target file are provided, which allows for estimation of the

network throughput between the sites; this offers a weak assumption for migrating a

VM from one host to another to elevate the network performance. Thus, unnecessary

migration should be avoided in the VM placement in the present work to preserve

network performance.

Bandwidth hierarchy-based replication (BHR) was constituted by Park et al. [92]

where data access time gets reduced as network-level locality gets increased by circum-
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venting network congestion. The sites have been segmented into multiple regions and

here network bandwidth of a region is more than the bandwidth between regions. Thus,

the file will be fetched faster if the necessary file is dropped into the same region. There

are two demerits of BHR. First, it aborts if a region is found with an existing replica

and second, instead of the appropriate sites each requested site gets incorporated with

the replicated files. The performance of the BHR strategy is good only with a small

capacity of the storage elements. The BHR strategy [92] is extended in the modified

BHR [93], which carries out replication of mostly accessed files and it may be applicable

in the coming days as well.

This approach comprises a scheduling algorithm and a replication algorithm for

a three-level hierarchy [94]. A hierarchical network structure with three levels came

to their mind. The criterion for selection from the candidate replicas was one with

the highest bandwidth for the requested file. Likewise, it deleted files using the same

method. Comparatively, this enhances the performance over the least recently used

(LRU) method. The most effective LAN, site, and region are chosen by them to develop

a competent scheduling. A region having the highest number of requested files is defined

as the best region (LAN and site).

A dynamic hierarchical replication (DHR) strategy was developed by Mansouri and

Dastghaibyfard [95] that reserves replicas within the appropriate sites that access a

specific file most compared with file storage in several sites. Here, the access latency is

also reduced as the best replica is selected during replicas being held in various sites.

The most useful replica location is chosen by the proposed strategy of replica selection

for conducting the jobs of users and the replica requests that wait at data transfer time

and storage are accounted for as well. According to the simulation outcomes, its job

execution time is briefer than other strategies with a considerably smaller storage size

of grid sites.

A system for improving the authenticity of other QoS is offered by Hussain and

Mousa [96]. A schedule broker handles the replication process and all information

regarding the number of replicas and their location spread into several DCs are found
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in it. The following data file to be asked for is predicted by the current data file

request pattern. The access frequency of data due to its low computation time is

assumed in prior by using the linear series technique called Holts Linear and Exponential

Smoothing (HLES). Replication is initiated through the less replication factor of those

popular files than threshold. A file is no longer requested for data access if it loses its

popularity and in this case replicas of those files should necessarily be erased. This

work only considers replication for job completion time, where our approach has two

mechanisms for accessing data fetching or replication based on shorter completion time

plus considering the queuing and processing time for every job.

2.4.4.2.3 Pre-Fetching Data transferring time

The effective running and management of scientific workflows is made possible by

distributed computing platforms. Some of the well-known systems for management of

workflows include DAGMan [97], Pegasus [98], Taverna [99], and makeflow [100]. The

Pegasus system is mainly used for parallel job scheduling [101], where it provides a

task clustering technique for grouping parallel jobs according to a selected and fixed

parameter such as the number of groups. However, this technique has many limitations

because significant properties such as job properties may be ignored. Nevertheless, the

dynamic task clustering approach has been developed to curb this limitation. One such

approach is the Falkon Project [102]. In the Falkon approach, workflows are generated

dynamically and tasks are clustered for computer resource sites. The provision of in

advance network path reservation utilizing OSCARS by networks that are connection

oriented, for example ESnet [103] and Internet2 [104] and the expectation of rapid

growth of the amount of data in the future, the importance of data movement and

placement become more significant factors in work scheduling algorithms. As such, the

latest work scheduling programs pay attention to the optimal computation of resource

allocation and efficient movement of data [105].

Compared to NADI, these approaches do not take into account the data location

or the time cost for transferring these data, especially when a number of jobs require

fetching data from remote sites or even sending the data output back. In such a case,
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the overall performance can be improved significantly by mapping data to a common

site, overlapping it, and transferring it in a pipelined manner.

Based on multiple simultaneous requests, Subramani et al. [106] proposed a greedy

meta-scheduling algorithm. Their meta-scheduler that had the capacity to identify the

sites that had the ability to start the job first. However, this approach is only suited

for resources that are homogeneous besides disregarding data requirements. Neverthe-

less, authors such as Wldrich et al. [107] proposed a meta-scheduler with the ability to

co-allocate resources that are of the random type. They wanted to realize a sequential

allocation of multiple resources having particular QoS requirements while considering

heterogeneity and site policies that are different. However, the work did not pay par-

ticular attention to data-intensive applications.

Other researchers, such as Ranganathan and Foster [108], came up with a data-

intensive application based on data movement algorithms and a family of job scheduling.

The application improves performance by use of data replication. Data duplication

or data scheduling strategies and computation scheduling in the proposal of [108] are

independent of each other. The two are not incorporated to ensure the job is done

using the best resources. For the data grid environment, Chameleon [109], a resource

broker was developed. Based on the job turnaround time, the broker proposed a family

of cost models. These are used in making decisions on how a job should be scheduled

when it is submitted. To obtain the most suitable scheduling performance, the data

or the application code can be shifted. Bent et al. [110] provided a discussion on the

scheduling of a jobs collection with data requirements. They presented an extended

version of the Condor ClassAd mechanism that allowed the worker node to include

information on the files that are present on the node. However, their work was mainly

designed for cluster environments and thus unsuitable for grid computing, which is more

distributed. Besides, their objective was throughput maximization and the reduction

of data movement costs, whereas the objective here is the improvement of turnaround

time of the job.

Jung et al. [111] are the closest and most recent related works to this work that
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considers the overlapping data transfers during the computation phase. The mechanism

is to execute multiple jobs across multiple computation nodes CNs. Basically, a job has

a sequence of three phases; stage-in, executing, and stage-out. In the stage-in, the input

data for the computation are moved to the CN and computation on the data follows.

Then, the output data of the computation is sent out to a Storage node SN where

data are resident. This overlapping mechanism improves the jobs execution times in

distributed systems.

In comparison with the contribution here, we both design an efficient parallel exe-

cution model that aims to minimize the wasting time for data stage-in and -out during

executing jobs. However, our approach has additional features, which are minimizing

the queuing time and data transferring time. So, our scheduling decisions are made

based on both computation requirements and data requirements. It provides a general

solution by considering computing time, data transferring time and wasting time for

data stage-in and -out that aims to minimize the average completion time and maxi-

mize the application performance.

2.5 A summary of the Network-aware algorithms evalua-

tion approaches

The following Table 2.2 shows the existing VM placement and migration approches

proposed by both academia and industry consider various system assumptions, problem

modeling techniques and the features of the datacenters and applications, as well as

different solution and evaluation approaches.
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Approach 
Allocation 

type 
Modelling Constrains Objectives 

Solution 
algorithms 

Platform 
evaluation 

workloads Performance evaluation 

[2] Placement 
NP-hard Integer 
Quadratic 
Programming 

CNs 
resources 
capacity. 
CNs links 
bandwidth 
capacity. 

Min of the max 
ratio of the 
demand and 
capacity across 
all network cuts. 

Greedy 
Heuristic 

NS2 simulation 
based using 
IBM ILOG 
CPLEX mixed 
integer 
Mathematical 
solver 

Gaussian distribution based 
inter-VM and VMgatway 
traffic demands. 
CNs resources capacity and 
VMs resources request. 

Worst case and average 
network cut load ratio 
based on average packet 
delivery delay 

[23] 
Placement 
and 
Migration 

NP-hard 
combinatorial 
optimisation 
problem. 
Instance of 
Quadratic 
Assignment 
Problem (QAP) 

Max 
placement of 
one VM per 
CN. 

Min the 
aggregated traffic 
rates at each 
network switch. 
Improvement 
DCs scalability 

Greedy 
Conquer 
strategy 
Min k-cut 
graph 

Trace-driven 
simulation 
using global 
with classical 
gravity model. 

Inter-VM traffic rates collected 
from production DC 

Reduce the traffic that 
collected from traces 
collection production in 
DCs by 20% 

[35] Migration 
Mathematical 
optimisation 
framework 

CNs 
resources 
capacity. 
Inter-VM 
bandwidth 
requirements. 

Min power cost. 
Min data 
transmission  

Greedy 
 

Simulation 
based on 
synthetic DC 
and load 
characteristics 

Normal distribution based on 
CNs and VMs characteristics. 
Inter-VM traffic demands. 

Reduce traffic rate.  
Min number of used CNs. 

[43] Placement Graph search  

CNs 
resources 
capacity. 
VM Anti-
colocation 

Min network 
utilisation 
Low decision 
time 

Greedy 
Recursive 
backtracking 

Simulation 
(JgraphT lib) 

Workflow structures: pipeline 
data aggregation epigenomics 

Network utilisation 

[49] Placement 

Optimisation 
framework that 
uses max-min 
fair model 

CNs 
resources 
capacity. 
Inter-VM 
bandwidth 
requirements. 

Max CN 
utilization. 
Min network 
traffic in DCs  

Two-staged  
Greedy 
Heuristic 

Simulation 
based on 
synthetic DC 
and load 
characteristics  

Normal distribution based on 
CNs and VMs characteristics. 
Inter-VM traffic demands. 

Reduce network traffic by 
82%  
average the impact of 
migration 

[50] Migration 

Mathematical 
optimisation 
multiple 
Knapsack 
problem. 

CNs 
resources 
capacity. 

Min network 
overhead caused 
by VM migration 

Greedy 
Heuristic 

Simulation 
based on 
synthetic DC 
and load 
characteristics 

Normal distribution based on 
CNs and VMs demand. 
Normal exponential, and 
uniform distributed based 
Inter-VM traffic demands. 

Reduce in DC traffic based 
on objective function 
value 

 

Table 2.2: A summary of the selected evaluation approaches
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Approach 
Allocation 

type 
Modelling Constrains Objectives 

Solution 
algorithms 

Platform evaluation workloads Performance evaluation 

[51] Placement 
NP-hard Integer 
Quadratic 
Programming 

CNs 
resources 
capacity. 
CNs links 
bandwidth 
capacity. 

Min of the max 
ratio of the 
demand and 
capacity across 
all network cuts. 

Greedy 
Heuristic 

NS2 simulation based 
using IBM ILOG CPLEX 
mixed integer 
Mathematical solver 

Gaussian 
distribution based 
inter-VM and 
VMgatway traffic 
demands. 
CNs resources 
capacity and VMs 
resources request. 

Worst case and average 
network cut load ratio based 
on average packet delivery 
delay 

[52] 
Placement 
and 
Migration 

Mathematical 
optimisation 

CNs 
resources 
capacity. 

Min 
communication 
traffic  
Min power cost 

Greedy 
Heuristic 

Simulation based on 
synthetic DC and load 
characteristics 

Workload traces 
from production 
DCs 

Reduce the overall traffic. 
Reduce the number of active 
CNs. 

[58] 
Placement 
and 
Migration 

Simple peer 
based Inter-VM 
communication 
pattern 

CNs 
resources 
capacity. 
Inter-VM 
bandwidth 
requirements. 

Min energy 
consumption. 
Network 
components. 
Average network 
utilisation.  

Greedy VMs 
based on the 
number of 
I/O traffic 
flow 

CloudSim simulation 
based on network and 
memory subsystem 
implementation  

NPB parallel 
application 
benchmark used 
as HPC application 

Uniformity of VM placement 
on CNs, 
Average utilisation of 
network links and  
Application performance 
degradation  

[61] Placement  

Proportional 
fairness  
Convex 
optimisation 

CNs 
resources 
capacity. 
Inter-VM 
bandwidth 
requirements. 

Reduce data 
transmission  
Min Energy 
consumption 

N/A 
Simulation based on 
synthetic DC and load 
characteristics 

Normal 
distribution based 
on CNs and SNs 
resource demand. 
 
Network I/O rate. 
Inter-VM traffic 
demands. 

Reduce rate of traffic volume 
based on objective function 
value  
 

[64] Placement 
Knapsack and 
stable marriage 
problem 

CNs CPU 
capacity. 
SNs capacity 

Min the total 
network cost 
across all 
application 
communication 
links  

Two-staged  
Greedy 
Heuristic 

Heterogeneous SAN. 
Synthetic workload-
based simulation 

Normal 
distribution based 
on CNs and SNs. 
Resources 
demands and 
network I/O rates. 

Use network cost function 
Placement computation time. 

 

Table 2.2: Continued 
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Approach 
Allocation 

type 
Modelling Constrains Objectives 

Solution 
algorithms 

Platform evaluation workloads Performance evaluation 

[72] 
Placement 
and 
Migration 

Analytical 
optimisation 

CNs 
resources 
capacity. 

Min response 
time between 
CNs and SNs 

Exhaustive 
search 

Fixed simulation scenario. 
Implemented in CloudSim 
2.0. 

Small scale 
and fixed 
valued 
workload 
data. 

Average jobs completion time 
reduced between 12s-100s. 

[77]  
Placement  
 

Analytical 
optimisation 

CNs 
resources 
capacity. 

Min response 
time between 
CNs and SNs 

Exhaustive 
search 

Fixed simulation scenario. 
Applied of Mobile Cloud 
computing platform. 
Implemented in CloudSim 
2.0. 

Small scale 
and fixed 
valued 
workload 
data. 

Average jobs completion 
time. 

 

 

 

Table 2.2: Continued 
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2.6 Chapter summary

This chapter reviews existing literature in the research area and identifies current trends

shaping cloud computing. It introduces the concept of cloud computing providing an

overview of the current state and the opinions of experts regarding the new paradigm.

Then, it explores the motivation and background knowledge related to the network-

aware VM placement and migration in DCs. The chapter forms a foundation upon

which the rest of the thesis investigates the chosen area. In this regard, grid computing

and telecommunications technology have already solved similar problems faced in cloud

computing and are widely considered in various studies in the development of the cloud

computing paradigm. A comprehensive comparative analysis highlighting the significant

features, benefits, and limitations of the techniques has been put forward.



3
A Framework for Virtual Machine Placement

The chapter covered previously provided an insight regarding the state of art and the

Network-aware Virtual Machines (VMs) and their schedules in the cloud environment.

There was a detailed discussion about the accomplishments of previous and current

research. The existing literature was analysed carefully and helped in identifying the

gap where further or more research is required. It was concluded that there is no pre-

vailing scheduling algorithm or schedule to co-relate large amounts of data as well as

their locations with network capabilities and computations when making the scheduling

decisions. It was found out that no present VM scheduling system takes scheduling

decisions by including the three parameters into account. In this chapter, there is a

description of NADI scheduling algorithm together with the key scheduling parameters

and a demonstration of ways to which they influence the scheduling optimization. Sec-

62
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tion 3.2 illustrates scenarios of relevant usage in a concise way. Section 3.4 describes

the set of requirements to be employed in the proposed NADI scheduling strategy. This

chapter comes to an end describing the scheduling problem which is split into various

scheduling costs which are; data transfer, network, and compute time cost. They are

derived using appropriate mathematical formulae and a brief explanation is provided in

section 3.5.
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3.1 Introduction

Cloud computing together with cloud scheduling adheres to the Service Oriented Ar-

chitecture (SOA) model [7] as shown in figure 3.1. Every component acts as a service,

has a behaviour and performs autonomously. These characteristics require a strategy

that is adaptive, descriptive and iterative to enable every service or component to be

modeled in autonomous manner. However, every component should work together ho-

mogeneously and cohesively in its entirety. Scheduling theory in cloud computing is

gaining priority every day hike in cloud popularity [112]. Scheduling refers to the map-

ping process which takes the tasks to the resources which are available depending on the

tasks requirements as well as the characteristics. It is an imperative feature in ensur-

ing effective functioning of the cloud since different task parameters require attention

to ensure suitable scheduling. The available resources need to be utilized effectively

without interfering with the facility factors of the cloud. There are three major phases

in the scheduling process. Phase one involves discovering the available resources. The

second phase is concerned with collecting information about the available resources and

selecting the best so as to match the requirements of the application (usually known as

matchmaking phase). This where this thesis revolves making the major contribution.

Phase three is concerned with executing the job which also includes cleanup and file

staging.

Figure 3.1: Service Oriented Architecture
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In this chapter, the research approaches and issues in optimizing the matchmaking

stage are described in detail. In this phase, the appropriate match between tasks and

resources is the main concern. There have been several heuristics proposed to achieve

the optimal match as argued in [113]. However, in data intensive scheduling, there is

the need to include network characteristics in the scheduling decision the as opposed

to the existing matchmaking approach which does not include network parameters. To

improve the utilization and efficiency of the cloud system, network parameters should

be embedded in the scheduling algorithm. The main aim is to reduce the time required

in computing in applications which have large-scale data. In task scheduling, there are

two goals which are: high performance computing and high throughput computing. The

former aims at reducing overall execution time for every application and it is best used

in parallel computing. The latter aims at scheduling autonomous tasks to boost the

processing capability of the system over time interval. Here a high throughput strategy

is discussed because many data intensive applications consume a lot of time data transfer

and data execution operations. Chapter 2 reviews pointed out challenges and prospects

of cloud computing as an incipient paradigm. From the information contained there in,

it is clear that to enable a proper cloud model, new approaches should be investigated so

as to address the challenges posed by the growing popular paradigm. As the cloud model

continues growing, challenges such as resource, management of very large DCs increases

which raises an emergence of newer cloud applications [34, 114–116].The cloud services

need a resource manager which is responsive and has the capability of decreasing manual

intervention in the cloud life cycle. The resource managers should have the capability of

activating strength in the target applications as well as endowing the superfluous cloud

computing visions.

This chapter will discuss the Network-aware and Data-intensive (NADI) VM Schedul-

ing strategy which takes into consideration processing power, data and network char-

acteristics while making the scheduling decisions among multiple sites to overcome the

challenges. The NADI strategy looks at the cloud as a group of active network ele-

ments [117] (the network acts as the component of cloud which provides a guaranteed
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and reliable service levels) and therefore, gives the network characteristics first prior-

ity in the scheduling decision matrix with data computations. The scheduler makes

intelligent decisions by considering the network changing states, size of data and the

processing pool cycles. There is a description of the NADI scheduling algorithm as well

as constituents of the main scheduling parameters in chapter 2 and a demonstration of

how they influence scheduling optimization. The scheduling problem is split into various

scheduling costs which are: data transfer, network, and compute time cost. They are

derived using appropriate mathematical formulae and are explained. In the following

chapter, various system aspects are demonstrated from requirement point of view and

different features of the strategy are employed in order to capture the requirements.

3.2 Usage Scenario

This part presents a classic use case scenario. This thesis studies three application cases

for the usage scenario.

1. Physical Infrastructure Providers (PIP) - Is an entity which owns the IT resources

and network and makes them available to the rest of entities on a pay per use basis.

2. Virtual Infrastructure Provider (VIP) -Is an entity which has access the physical

resources of PIP and then makes them available to the market place after they

have been abstracted, sliced and aggregated. VIP commonly acts and performs

PIP functions.

3. A broker is responsible for aggregating the service from various VIPs and maps

the requests of different cloud users to the services. The broker acts as an interface

which organizes and coordinates the interaction among other actors. To cater for

the needs of a user request, the broker consults VIPs resources and analyses the

prevailing resource pool to consider the summative satisfaction for the succumbed

request. Users submit requests for the particular composition of IT and network

resources to the VIP and use the available resources to run the applications or

computing any other job.
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3.2.1 Single-Source Data

Every VM needs particular amount or number of computing memory, disk resources and

power to operate. Additionally, every VM needs right to use particular data records

that are warehoused in a disseminated storage hubs through the cloud. The archives

consists of data and executable archives which needs to be moved to VMs prior to

starting their process. In the current VM placement approaches, the data locations

have been ignored due to the large size of files needed, the delay of data transfer is

noteworthy and increases considerably in the required time by VMs to finish up their

jobs. This is an imperative aspect when initialization takes place where there are huge

files which need to be moved to the virtual machine. The steps followed in the scenario

here are similar to the one used by Piao and Yan [82]. They have suggested a placement

algorithm which allocates VMs on CNs which has the least data transfer delay. They

have made an assumption that only a solitary VM can request the transfer of a file at

a particular time.

3.2.2 Distributed Data Storages

The approach used previously makes an assumption that a single VM can only request

transfer of a file at a time, hence it fails to address the issues of optimal rate distribution.

According to Amazon EC2 who is among the well-known computing providers compared

to the rest of resources, rates of data are not dedicated but are distributed and shared

by the VMs Amazon EC2. Here the thesis makes one of the contributions as it will be

discussed later in chapter 4.

3.2.3 Large-Scale DC Traffic

In the IT industry, cloud computing has been given much attention whereby the com-

puting infrastructures, software application services and platforms are provided at a fair

cost from high scale DCs which are accessed over the network. The cloud has a number

of benefits to the users such as scalability, reduction of application management as well

as overall management reduction and hardware costs. It also provides an opportunity to
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leverage the prevailing DC infrastructure and grabs the advantage of economies of scale

which is available to the ones who purchase huge volumes of network and hardware ca-

pacity. This scenario uses the large scale traffic and huge data volume required in order

to show how NADI provides the guarantee levels of performance and the Applications

efficiency.

3.3 Proposed NADI framework

The proposed algorithm takes into account not only computation resource require-

ments, but also data requirements (storage space, network condition, etc.) when making

scheduling decisions.

3.3.1 Main components of NADI framework

The NADI framework has the four main layers which are Delivery, Service, Virtualiza-

tion and Control and Physical Layers. This section gives a brief explanation of every

layer. IBM’s open cloud architecture [118] and NIST [22] have been considered.

3.3.1.1 Delivery layer

The Delivery layer enhances submission of requests from the user and offers to enable

space for demands from the user such as specific VMs configurations, delay, number

of needed VMs, response time, and communication protocols are properly identified.

They are then submitted by use of a suitable description language or using set business

objectives such as cost, auditing, deadline, and accounting. The NADI delivery layer is

composed of four major components as illustrated in figure 3.2 which interact between

them to recognize the functionalities. The consequent parts give the functionalities and

responsibilities of the Delivery layers components.

3.3.1.1.1 The Service console: relates to user requests as accept or update and

comes up with specifications of the workload whether complex or simple. In order to

support the workload, the description of the user requests should support:
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1. Defining application timeline for the job execution ( this parameter is helpful in

co-scheduling of the resources)

2. Resource group requests for example storage, network, and computation

3. The depiction function which is assigned to the resource and should have the

flexibility to capture future and current capabilities.

4. The narration of the relationships which exist between the resources. The topology

of the network which depicts particular virtual links and nodes, intra-communication,

and node-node should be apprehended.

5. The depiction of the tools and applications required for every component for ex-

ample programming tools and operating systems.

3.3.1.1.2 Report interface: is responsible for providing monitoring capabilities to

report (to the NADI manager) virtual resource status, jobs, and the activities. This

module ensures all the activities in the database are maintained and updated in all

component per every request regardless of whether it is multi or single. It keeps a

record of finishing times and offers time series data to NADI manager which is used in

prediction of upcoming resource status.

3.3.1.1.3 NADI manager: organizes and coordinates all the dynamic characteris-

tics of the user’s VMs. This module has privileged functionalities to enable it to perform

the service functions and resource management at this level. This efficiently decreases

the space for management hence making it correct and small. NADI manager controls

all the incoming as well as the outgoing traffic. The major or central function offered by

this module is the template-based mechanism which controls and organizes component

activities in the user request. Every user request is recognized by the template that is

used by the manager to build the components, reconfigure prevailing components and

achieve the interactions in the fundamental infrastructure together with other users

VMs. The simulated switch which connects the component created newly (whether
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storage or computing node) is added the list of switches known as v which are con-

trolled by CM. There are two basic communications which take place in NADI, namely

inter and intra user request communications.

Figure 3.2: The interaction of various components in the proposed NADI Framework

3.3.1.2 Service layer

The service layer facilitates the creation of functionalities of container based cloud ser-

vice. It performs a number of functions which are;

1. Providing the initial resources (they include network bandwidth, storage, CPU

time and memory).
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2. Interrelating with the underlying layer

3. Performing extra universal scheduling

4. Offering functionalities for analyzing job requests which are acquiesced by the

owner.

5. Arranging privileged functionalities for example job allocation and resource pro-

visioning for NADI users VMs when it is created.

6. Intermediating among all the NADI users storage and VMs in terms of usage and

subscription.

3.3.1.3 Virtualization and control layer

In the suggested NADI model, there will be the creation of an adaptive virtual inter-

face (VIF) for every node (VM). A VM is connected by a VIF to a distributed vir-

tual switch (DVS) and forms a virtual link (vLink). Combining the connected virtual

nodes and the virtual links 3.2 establishes the description of virtual network topology

(VNT).This thesis uses an adaptive vSwitch which is based on traffic shaping approach

for NADI. Every VM in a NADI users VMs is assigned to a DVS port which has a start-

ing bandwidth as per the request. It is allowed to expand the capacity according to the

unused bandwidth in the user’s properties. In this way, VMs are able to adapt dynam-

ically to different traffic conditions being controlled by DVS enhanced with the control

protocols flow for example OpenFlow. The traffic seclusion mechanism is applied to

DVS which takes control of VM activity and protects the service level agreements of ev-

ery container. A database of entries for network policies is maintained by the DVS. This

module provides the functionalities which are under the control of virtual infrastructure

provider. In the seclusion approach for NADI, every VM interrelates with the NADI

manager together with the other VMs, spoke arrangement and in the hub to finish on

work flow jobs. For a VM which experiences high traffic (for example storage VM), it

consumes all the bandwidth which is available for NADI users resources. However, other

VMs may need less bandwidth. A mutable super port which has the same capacity of
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bandwidth requested by NADI users resources is assigned when instantiating a NADI

users resources. The super port can be looked at as the accretion of immovable capacity

ports. The available bandwidth for whatever VM is calculated as follows:

ABm = BWn,m +

v∑
n=1

UBn,m (3.1)

where the ABm the available bandwidth on the CN number m, BWn,m is the required

bandwidth for VM number n and UBn,m is the total bandwidth that is used by VMs

on CN number m.

3.3.1.4 Physical layer

Physical layer comprises of heterogeneous IT resources which are physically intercon-

nected by the optical and electrical network in a topology which is hierarchical to en-

hance cloud service. PIP installs the Network Management Services (NMS) while the

VIP allows the access.

3.3.1.5 Physical Infrastructure Providers

This entity offers infrastructure for other entities. The huge physical resources such as

storage, servers, and networks which are accommodated in data centers are unfilled to

enable hosting of the cloud application. This is vital as it supports isolation, abstraction,

and aggregation. The datacenter which is arrayed by the PIP is ready and can span

various locations as well as administrative control.

3.3.1.6 Virtual Infrastructure Provider

Virtual infrastructure provider abstracts and isolates the PIP physical infrastructure to

sustenance the cloud computing model. It uses virtualisation the users provide virtual

infrastructure. VIP roles may be found to exist in the PIP domain whereby the ab-

straction and ownership are done by a lone entity. Amazon is an example of such actor

and it provides AWS. AWS is built from the physical infrastructure which is possessed

by Amazon.
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3.3.1.7 Broker

The broker is responsible for functions such aggregation, arbitrage and intermediation

to build an inter-cloud service and also execute the integration of services which were

existing to fulfill a request. The broker which is found in NADI is the main element

of the market place which enables the IAAS-Users, PAAS developers and providers to

build a relationship and come up with economic value. To cater for the needs of a

user request, the broker analyses and chooses the offer and then assimilates different

services, where they are necessary and then passes them to the user. Other similar roles

are in [119] and [120]. The feature which distinguishes broker in NADI is its responsi-

bility of maintenance and ensuring PAAS developers is available to the real world info

database of IAAS users request as it offers intermediation provision to the PAAS de-

veloper also. With, self-organization, real-time information exchange and service policy

creation, transaction traffic in the market place is estimated to raise the cumulative

value. It enables adaptability and integration from PAAS and VIP users as solution

developers and providers correspondingly.

3.3.1.8 Cloud User

Cloud user employs the service console or any suitable interface to initiate a request for

a user. The actors make specifications concerning the set of resources required as well

as the linked workflow needs for the user. The request made could be for example VM

images set with a particular operating system as well as specified application domain

which are installed on every VM.

3.3.2 The individual job’s perspective scheme

In the figure 3.4, the scheduler is not aware of data in a traditional execution model.

The job stands in the queue as it is only executed upon obtaining adequate resources.

With the commencement, input data are pulled through the job from a distant location

and after computing the output data are delivered to a distant location as well. The

job carries out stage-out due to data stage-in and allocation of computational resources
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into job is even done in the middle of data movement as well. Therefore, the course of

data transfer consumed computational resources fully.

Figure 3.3: no data-intensive and no CPU utilities

Figure 3.5 shows the first proposed [121] and its conventional execution model, con-

sidering both data locality and computing resources. The scheduler calculates the com-

puting time and data transmission time for all jobs and chooses the optimal computing

node. In this model, the input data is fetched from a remote location but the chosen

computing node will be that one that has the latest data transmission time, queuing

time and execution time. This model can save time by considering data locality and

network status.

Figure 3.4: data-intensive, Network awareness and CPU utilities

Figure 3.6 illustrates data staging prior to job submission through scheduler and

after the job completion scheduler stages it out. Compared to the previous one [121],

resource utilization can be enhanced more with this solution [122]. In this model,

the data will be replicated to the chosen DC which job will be executed there. The

replication stage is before the job starts execution or even queuing.

Figure 3.5: data-intensive and no CPU utilities using data Replication

Figure 3.6: data-intensive and no CPU utilities using (Overlapping)

The assumption is that a job is composed of three stages: data transferring-in, ex-
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ecution and data transferring-out, as shown in figure 3.7. In the first stage, the input

data for the job is transferred from the precedent job CNs. In the execution stage,

the job runs with the input data and produces output data for descendent jobs. In the

data transferring-out stage, the output data are transferred to the descendent job or are

submitted to the last job in the workflow. The scheduler calculates the computing time

and data transmission time for all jobs and chooses the optimal computing node. In this

model, the input data is fetched from a remote location in advance to the chosen com-

puting node, which has the latest data transmission time, queuing time and execution

time. Then, every job’s data will be staged in advance during the computation time of

other jobs (overlapping). This approach attempts to reduce job turnaround time by de-

coupling the SI and SO from the job execution and utilizes the computational resources.

Compared to the previous approach, this solution enhances resource utilization. The

execution procedure for all stages is executed as in figure 3.8.

Figure 3.7: Classification of management techniques for data intensive application
workflows

3.4 NADI Requirements

The eleven points below, summarise the major requirements for the NADI scheduler.

Then, the following sections analyse these requirements that have a direct bearing on

the performance needs of applications and these are described here as Compute-Related,

Data-Related, and Network-Related requirements.

R1 A consideration of Data Location is highly recommended when scheduling decisions

are being made. The choice of data location is determined by delay and bandwidth

of a location.



Chapter 3. A Framework for Virtual Machine Placement 76

R2 Scheduling Data Intensive Jobs should include the best replica of dataset. As a

result, data transfer time can be reduced.

R3 Assigning of jobs to resources requires to be done under the needed data set, as long

as it considers cost, effectively.

R4 If it is possible to schedule and execute Data and Jobs, they require to be transferred

to a third location.

R5 Consideration is needed to be taken before making a decision of a job or data

movement concerning computation cost, data transfer, and network.

R6 Jobs should be done within the user stated time limit by a scheduler through sup-

porting of time constrained mechanism. Actual time scheduling that is applied in

multimedia applications is not time constrained and deadline scheduling.

R7 Scheduling of all jobs should be done in a location that contain the needed dataset,

whose access is possible for all the jobs.

R8 The job may need to recover portions of the data from a remote dataset.

R9 A best network link in terms of the latest location-location calculations between

storage and computing component should be searched by scheduler.

R10 It is required for the scheduler to make sure that the requirements software is

accessible for the job implementation on CN that was selected.

R11 The scheduling system should calculate and incorporate the network measurements

before planning a job submission.

3.4.1 Analysis of the requirements

Thus, brief analysis concerning the main requirements for the NADI scheduling process

is presented. The specific requirements connected to NADI scheduling are expanded and

explained in this section. At least three main requirements areas for the Cloud Meta-

Scheduling System, which contain a direct bearing on the performance applications
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needs are identified. Additionally, they are termed as compute-related, data-related,

and network-related requirements.

3.4.1.1 Compute-Related Requirements

In considering to the specific requirements of the applications and those of the end-

users, scheduling and resource management services need, which can rapidly and opti-

mally locate high-performance computational resources is driven by compute-intensive

applications. Not only the compute connected needs for an application including load,

available computing capacity, and data location [123], but also the main factors [124]

including application time for running, the cost and availability of the resource (R5),

and application effectiveness on specific resources, should be considered by resource

management services when locating and scheduling of jobs on the resources. Also, ma-

chine failure rate (R11), the network characteristics for moving results to mass storage

(as shown in section 3.4.2) or the user quota and privileges on the projected resource

together with any firewall security policies that could prevent the implementation of

remote resources are other factors that needs to be considered. A method to range

the jobs for offering quality of service to particular jobs is needed within the limited

time as users can submit any amount of jobs freely (R5-R6). When the job load is

high, jobs should be exported to the least loaded locations by the scheduler through

self-organization (R11). As a result, jobs will be saved from starvation, to an extent

of assisting the optimization of scheduling. Knowledge of steering and moving of the

jobs to the locations that have fine resources is needed from the scheduler (R10). Not

only consideration of these requirements is needed but also dictation for the need for

applications to adequately define the needs.

3.4.1.2 Data-Related Requirements

Constraints concerning how the scheduling of computational resources is done in a

Cloud environment are placed by most applications as they contain various basic file

management and data placement needs [124]. A collection of input datasets is used
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a base by applications, where this leads to production of output datasets that require

analyzation or processing by a second application. The aim here is to visualize the data

that is produced. Bearing on some applications scheduling is identified on input and

output datasets size and the amount of the entire storage space selected for a user [125].

Consideration of the time needed to transfer the datasets when scheduling computer

resources for the particular application is encouraged if the input datasets need to be

recovered from a remote location (R8).

The scheduling performance is identified to have various methodological issues. one

of these issues is Data-aware scheduling, which involves scheduling of the tasks closer to

the data is needed. [126,127] (R3). Firstly, consideration of the amount (and speed) of

data transfer, which is needed in a task execution leads to attainment of considerable

performance advancements [128]. Secondly, as datasets may be transferred amongst

various database management systems, the contents of files can be accessed effectively.

Thirdly, the scheduler should have provision to transfer data towards the computation

location. Though, this would be achieved if there is guarantee of considerable per-

formance gains by the data transfer and placement. In this case, the high available

bandwidth in modern optical networks is enhancing its achievement (R7). Section 3.4.3

has more information. A key to the Data Intensive scheduling is data location, where

scheduling optimization is impossible if data location is unknown (R1). The scheduling

optimization can benefit from data location and probable decision to replicate the par-

ticular dataset (R2). Likewise, other significant parameters that should be combined

in the Data Intensive scheduling process include data transfer and access costs. This

process sometimes include replication, where the new dataset is used by the jobs when

scheduled at a specific location. The purpose is to advance the scheduling optimization.

Additional, a single location, if its cost is affordable, can be used to schedule all the

jobs in a job burst (R3).

Various tertiary storage systems are used to store read data by Data Intensive jobs

[129]. These tertiary systems can be accessed either within seconds or hours [130]. This

happens when data exists in unmounted tape. It might turn out to be more cost effective
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for the data intensive jobs to access and transfer data over the internet from the remote

locations compared to accessing the tertiary storage in the local environment due to

latest trends in the network performance (R5). Thus, consideration of tape access and

related latencies during data intensive jobs scheduling is needed as their size cannot be

compatible with that of the network cost as theirs can be larger.

3.4.1.3 Network-Related Requirements

A significant role in scheduling optimization is played by the fundamental network be-

tween submission and implementation locations together with the connection of the

location storing when a dataset replica for Data Intensive scheduling is being selected.

Thus, a finest network path between storage and computing elements should be con-

sidered by the scheduler (R9). Priority in replica selection that contain effective and

reliable networks is required to be given to those locations (R4). A primary element

in the Data Intensive scheduling is the network, where calculation and integration of

the network measurements whilst planning for job submission need to be done by the

scheduling system. As a result, Network Aware services and Network Aware scheduling

decisions are enhanced. Thus, there should be consideration of computation cost, data

transfer and network before any decision in job scheduling is made.

Reliable networks are simply the required factor by some applications whilst high-

speed networks for large data transfer might be needed by communication-intensive

applications. Networks conditions on the applications to be run needs to be discovered

and monitored, at least. Thus, monitoring and predicting of services for network con-

ditions, which can give the capacity to query the characteristics of networks connected

to the target computing resources to applications, resource management services, and

also users (R11).

3.4.2 Input Parameters and Objectives

The scheduling optimization connected decisions will be based on the parameters that

follow section 3.5 which gives reasons for including these parameters. The final chap-
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ter of this thesis gives the measurement and experimental process. Direct importance

for Data Intensive and Network Aware Scheduling optimization is identified in these

parameters. This section will later include their discussion.

• Bandwidths of the network links.

• Computing cycles accessible

• Computing node (Server) loads and respective job queues

• The application executables sizes

• Data file (input and output) sizes

• The data file locations

Maximization of CPU usage and throughput and minimization turnaround time,

waiting and response time are the focus of the recommended scheduling algorithm. The

measured parameters, where a significant element of the matchmaking process in the

Cloud Scheduler is used as a base for scheduling algorithm creation. The targeted

metrics within the scheduling process, where the success and optimization level of the

scheduling system requires to be measured, are as follows:

• Queue and waiting time

• Processing and execution time

• Input data transfer time

• Executable transfer time

• Results transfer time

The sum of the times will include the total time of job performance in a Cloud environ-

ment.
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3.5 Time Estimators

There are three major cost estimates which need to be calculated for the scheduling

algorithm: the network, computation and data transfer costs and scheduling optimiza-

tion will be based on these three estimates. before that, the essential variables in the

formulation are defined in this section.Then the next sections show the parameters

There is a number x of datacentres (DCs) {dc1, ...,dcx} and every DC contains of

all storages nodes SNs {s1, ...,sl} that store all Ds data subsets and computing nodes

CNs {c1, ...,cm}. Also, there is a number b of data blocks {d1, ..., db } that distributed

in several cloud SNs with logical or physical distances. Suppose there are n virtual

machines {v1, ...,vn} that need to be placed on m CNs. Every v has given k numbers

of jobs {j1, ..., jk}.

3.5.1 Data Transferring time estimation

The first most important cost aspect in data intensive is the Data Transfer Time. A

poor network status will lead to a longer data transfer time and similarly a larger data

size will take more time to transfer. So we have designed two solutions to access dataset.

3.5.1.1 Fetching remote data

It is assumed that every job needs to access remotely certain data dj that is stored on

storage nodes S. So for all such transfers, the sum of data transferred should equal to

the data required by the job, which is dj

dj =

l∑
s=1

(ds,j × as,j) (3.2)

Indicator variable as,j characterises where each job that has related data.

as,j =


1, if job j has related data on SN s

0, otherwise

(3.3)
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The equation ensures that the total data for all the jobs are bounded by the sum of

data required by each job.

k∑
j=1

dj =

k∑
j=1

l∑
s=1

(ds,j × as,j) (3.4)

The total data for every VM n that donates as Dn should satisfy the following

relationship:

Dn =

k∑
j=1

l∑
s=1

(dns,j × as,j) (3.5)

Now it is possible to calculate the data transfer time for all data required by job j

on CN m as follows:

JTj,m =
l∑

s=1

( ds,j
BWs,m

× as,j

)
(3.6)

where BWs,m donates the available bandwidth between CN m and SN s.

The total data transfer time DTT for every job is changeable based on the network

status between SN and CN, so now the total data access time DTT can be calculated

these values stored in the DTT matrix = [dttm,n] such that dttm,n denotes the the total

data access time for Vn jobs on CN m.

DTTm,n =



dtt1,1 dtt1,2 ... dtt1,n

dtt2,1 dtt2,2 ... dtt2,n

... ... ... ...

dttm,1 dttm,2 ... dttm,n
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This matrix should satisfy the following relationship:

DTTn,m =

k∑
j=1

JTn
j,m (3.7)

3.5.1.2 File Replication

There is a number of files {f1, ..., fe } that are distributed in several cloud storage

nodes {s1, ..., sl }and every file could be consist of a number of data blocks {b1, ..., bd

}, that could be stored with logical/physical distances. Each file has different size Ze

and should satisfy the following relationship:

Ze =
l∑

s=1

d∑
b=1

deb,s (3.8)

Now the replication matrix R = [ru,e] is defined where ru,e indicates whether a

replica of file e is assigned to DC u and u ∈ [1, x]

ru,e =


1, if any SN in datacentre u stores a replica of file e

0, otherwise

(3.9)

where is u ∈ [1, x]

Let nr donate the number of replicas for file e that are stored in dcx.

nre =

x∑
u=1

ru,e (3.10)
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Now every replica size and location among DCs is defined using matrix FA = [fae,u]

where fae,u indicates that the size for file e is stored in DC u and u ∈ [1, x]

FAe,u = Ze × ru,e (3.11)

Now unreplicated datacentres matrix UR = [uru,e] is defined where uru,e indicates

whether that the datacerntre u does not have a replica of file e.

uru,e =


1, if datacentre u does not have a replica of file e

0, otherwise

(3.12)

The matrix UR should satisfy with following equation.

UR = 1−R (3.13)

The replication time for any file to any DC can be calculated using the following

equation.

RTv,e =
FAe,u

BWu,v
× ure,u (3.14)

where is u, v ∈ [1, x] , u 6= v and BWu,v donates the available bandwidth between

datacentres u and v .

The second factor to be considered in file replication is storage writing time WT for

all files that need to replicated to dcu as follows:

WTu,s =

e∑
f=1

FAe,u

Ws,u
(3.15)

where Ws,u indicates writing speed rate for storage node s in dc u.
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The third factor to be considered also in file replication is the total intra data

transferring time LDT inside the chosen datacentre to replicated files for every job

between SN and CN. To calculate LDT , it is first necessary to calculate the data

transferring time for all data that is required by job j on CN m as following equation.

LJTj,m =
l∑

s=1

( ds,j
BWs,m

× xs,j

)
(3.16)

Where BWs,m donates that the available bandwidth between CN m and SN s.

Now LDT denotes the the total intra data transferring time for Vn jobs on CN m

as following relationship:

LDTn,m =

k∑
j=1

LJTn
j,m (3.17)

Finally, it is possible to calculate the total transfer time TVM for every VM which

includes the replication time for the required files, storage writing time and the total

intra data transferring time for all jobs as the following relationship:

TMV v
n,m =

( e∑
f=1

RTn
v,e

)
+ WTu,s + LDTn,m (3.18)

3.5.2 Computing time estimation

In data intensive situations jobs may be pushed to the data and in computation intensive

situations data may be pulled to the jobs. This kind of scheduling approach can lead

to performance degradation in a cloud environment and may result in large processing

queues and job execution delays due to computing node overloads.

So it is assumed that the processing time for any job j on CN m for a certain size

of input is known and calculating as the following.
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Pj,m =
nij

capacitym × corej
(3.19)

where nij is the total number of instructions that the job will need to execute on

a processor, coresj is the number of cores required by the job and capacitym is the

processing strength of individual elements.

capacitym =

np∑
i=1

capi,m (3.20)

where capi,m is the processing strength of individual elements, np processing ele-

ments (PEs) and i ∈ [1, np].

Another factor that affects jobs scheduling is queuing time witch, is the minimum

time for a job that has to wait on processor queue until it starts execution. So it should

be part of the scheduling algorithm. Now the start time stj for every job depends on the

position in the execution queue on CM m. from previous equation (3.19), the processing

time for any job on any CN can be deduced.

Pj,m = stj +
nij

capacitym × corej
(3.21)

Now the computing time CT can be calculated which considers both processing time

and queuing time on every computing node and stores these values in the computing

time matrix CT = [ctn,m] such that ctn,m denotes the total computing time for VM n

jobs on Computing node m.
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CTn,m =



ct1,1 ct1,2 ... ct1,m

ct2,1 ct2,2 ... ct2,m

... ... ... ...

ctn,1 ctn,2 ... ctn,m


This matrix should satisfy the following relationship:

CTn,m =
k∑

j=1

Pn
j,m (3.22)

3.5.2.1 Overlapping Data Transfer With Job Execution

This section will give a brief summar about the overlapping technique. Figure 3.7 illus-

trates the new scheme which has been discussed in section 3.3.3. The broker calculates

the computing time and data transmission time for all jobs and chooses the optimal

computing node. In this model, the input data is fetched from a remote location in

advance to the chosen computing node, which has the latest data transmission time,

queuing time and execution time. Then, every job’s data will be staged in advance

during the computation time of other jobs (overlapping). This approach attempts to

reduce job turnaround time by decoupling the SI and SO from the job execution and

utilizes the computational resources. Compared to the previous approach, this solution

enhances resource utilization. When the overlap technique is applied to the computing

time equation, the final form for this will be as the following.

LJTj,m = Qj,m +

l∑
s=1

( ds,j
BWs,m

× xs,j

)
− Pj−1,m (3.23)

where Qs,m donates the queuing time for job j on CN m, BWs,m donates the avail-

able bandwidth between CN m and SNs and Pj−1,m is the processing time for the

previous job j − 1 on CN m.
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3.5.3 The total Completion time estimation

In this section, it is necessary to calculate the total time needed for every VM request

which includes Data Transferring time, Computing time and files replication if it is

needed . So it depends on which algorithm will be used as in the following sections.

3.5.3.1 Fetching remote data

The Completion time TCT matrix stores the total execution time for every Vn on Cm

which includes queuing time, data access time and processing time for each job j .

TCTm,n =



tct1,1 tct1,2 ... tct1,n

tct2,1 tct2,2 ... tct2,n

... ... ... ...

tctm,1 tctm,2 ... tctm,n


This matrix should satisfy the following relationship:

TCTm,n = DTTm,n + CTj,m (3.24)

3.5.3.2 File Replication

In this algorithm, there are several of factors that has been considered. These factors

are the replication time for the required files, storage writing time and the total intra

data transferring time for all jobs .

RCTm,n =



rct1,1 rct1,2 ... rct1,n

rct2,1 rct2,2 ... rct2,n

... ... ... ...

rctm,1 rctm,2 ... rctm,n


This matrix should satisfy the following relationship:

RCTm,n = TMV v
n,m + CTj,m (3.25)
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3.5.3.3 Overlapping

RCTm,n = TMV v
n,m + LJTj,m (3.26)

3.6 Optimisation solution

Find a feasible computing node Cm that has the minimal total completion time for

all jobs j {1, ..., k} in the workflow in every matrix RCT and TCT and chooses the

optimal Computing node even if it’s needed to replicate files. Then the broker allocates

the Virtual Machine Vn on it as long as equation below is fulfilled.

Load(Vn) ≤ Cap(Cm) (3.27)

The above equation is to ensures that The Vn load on the Cm cannot exceed its

CPU, Bandwidth and Memory capacity.
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3.7 Chapter Summary

In this chapter, there has been an outline of the mathematical and theoretical expla-

nation of the scheduling algorithm in NADI as well as bulk job scheduling . It has

been showed with the aid of mathematical equations, a matrix of various scheduling

costs can substantially enhance the process of scheduling when every task is submitted

and executed after considering particular related costs. The key elements for enhancing

scheduling and execution are data transfer time, results transfer time, server load and

queue time, executable movement time and processing time. The above elements were

included in the NADI scheduling algorithm. The major costs which required to be cal-

culated were acknowledged as network, compute cost, and transfer cost and they were

expressed in terms of mathematical notations.



4
Virtual Machine Placement using Data Transfer

time

In the previous chapter, the general NADI framework for VM placement was pre-

sented, describing the components of each layer and the relationships between them as

well as the actors and functionalities. A key component of the described framework was

the allocation of VMs and their related data. The chapter also provided an overview and

analysis of NADI scheduling requirements. All major requirements were classified as

either computation-, data- or network-related requirements, so the scheduling problem

was divided into different scheduling costs, which included the network, data transfer

and computing costs; these were derived through suitable mathematical formulae and

were explained. The chapter also explained how these costs are vital when dealing with

91
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a large frequency of data-intensive jobs and when optimising scheduling decisions.

This chapter explains in detail the components related to the first revised version,

NADIv1. Amongst these components, the data location is central to the working of an

optimised cloud; hence, this location should be part of all scheduling decisions. It also

establishes that the best or most optimal network path to computing and storage nodes

should be identified and that the scheduling system should calculate and incorporate

network measurements while planning job submission. The proposed system will imple-

ment the NADIv1 scheduling algorithms and will also help us test the system through

carefully created simulations.
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4.1 Introduction

Cloud computing entails the use of computing resources (both hardware and software)

delivered to customers as a service over a network (typically the Internet). It allows

users to share large-scale equipment and resources for computation, storage, infor-

mation and knowledge for scientific research [131]. Most popular cloud applications

are data-intensive, so different types of applications exist, designed for different pur-

poses. Hadoop [132] is a platform for both storage and processing that processes a

large number of data sets on computer nodes. The Hadoop service deals with data

throughout the storing, accessing, processing, governing, securing and operating stages.

Hadoop consists of two main models: Hadoop Distributed File System (HDFS) and

Hadoop MapReduce. HDFS is the file system for stored data in distributed environ-

ment, whereas MapReduce is aprogramming model that sorts, processes and generates

data sets by using a large number of computer nodes. For instance, applications which

use the MapReduce frameworks process many petabytes in a single day [133]. Data

nodes are used to store large data sets in existing cloud environments; the two main

devices for this are probably SAN or NAS. Cloud applications process these data sets

using a large number of virtual machines (VMs).

These applications deal with many jobs which must be executed using the available

resources to achieve the best performance, the minimal total time for completion, the

shortest response time, the efficient usage of resources etc. The most important objec-

tives are to minimise the total completion time and produce the shortest response time.

These objectives are affected by factors including the load on the individual servers,

bottlenecks in communication data access and the scheduling mechanism [134]. One

of the major factors affecting completion time is access latency when transferring data

from computer nodes to data nodes. The best solution to this problem is to continue

local processing of all data to minimise access latency; however, this is not possible due

to the size of data sets. Constraints in computing node capacity also prevent VMs from

being placed in their ideal locations [134,135].
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Hadoop used a system partition in combination with data computations using many

servers in addition to dealing with the storage nodes in the cloud system. This resulted

in positive impacts on the completion process, as it sped up the completion time of the

application. While spreading data over a large number of nodes, placing an emphasis on

the importance of completion time implies that the only crucial problem to solve is the

placement of computation data in such a manner that time limitation goals are realised.

But placing a VM without also considering network status may lead to large data access

latencies, which in fact may increase the completion times [18]. For example, placing

the computation VMs and corresponding data nodes on different racks and enabling the

typical oversubscription of the aggregation layer to link to the datacentre contributes

to bottlenecked networks.

This research addresses the above issues and proposes a VM placement algorithm

called NADI which considers both the network I/O requirement between data node and

computing node to minimise the response time between them and the process utilisation

which minimises the total execution time for all jobs while making scheduling decisions

across multiple datacentres.

4.2 NADIv1 Proposed Design for VMs Placement Schedul-

ing

The algorithm proposed has take into account not only computation resource require-

ments but also data requirements (storage space, network condition etc.) when making

scheduling decisions. The overall architecture of the NADIv1 scheduler is shown in

Figure 3.2; this is the first version of the algorithm. At this stage, we only consider

local or remote access to data. Later, in chapter 5, data movement is introduced as an-

other solution to discover whether it helps improve application performance. The NADI

scheduler includes a matchmaking layer responsible for selecting the best resources for

job execution. The three main phases are as follows.
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• Phase one is that of resource discovery, which generates a list of potential resources.

• Phase two involves gathering information about those resources and choosing the

best set to match the application requirements (the so-called matchmaking phase).

This is where this thesis makes its main contribution.

• Phase three places the VM on the chosen resource and executes the VM job

execution phase, including file staging in and out and clean-up.

The general NADIv1 scheduler architecture is illustrated in Figure 3.2 in the previ-

ous chapter. It comprises a matchmaking layer accountable for choosing the appropriate

resources to execute the VMs jobs. The matchmaker is one of the most important com-

ponents in the NADIv1 scheduler. Basically, a cloud customer first specifies the needed

requirements to run the application. These requirements can relate to the VM type,

the workload pattern, the job details and the related data location. The matchmaker

parses these requirements with other information, such as information about available

resources and network status, to make the optimal decision about the appropriate CNs.

The next important task is the second component, the allocation scheduler, whose role

is to map these VMs onto the physical resources which run the applications. The third

significant component in NADIv1 is the Job Submission and Control Services (JSCS),

which submits the jobs to the chosen CNs, obtains updating reports during the job

execution and keeps these parameters within the database for the users later access, in

order to enhance the application performance. The NADI scheduler components have

been discussed in detail in chapter 3, section 3.3; however, the contributions of some

components change in their contributions to the thesis, as follows.

4.2.1 Network Management Service

Network Management Service Network Management Service (NMS) within a cloud en-

vironment is imperative in establishing the basis of performance difficulties or adjusting

the system for enhanced performance. Network performance data is therefore vital

to cloud scheduling, particularly within a data-intensive scheduling situation. Precise
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state-of-the-art network information leads the scheduler to considerable optimisation of

the process of job execution. The following parameters are related to network monitor-

ing information (NMI) [136], which were described in the previous chapter but which

are, at the same time, significant to the data-intensive scheduling algorithm decision.

• Delay: the time spent for data to go to the destination resource and back. This

is known as the round-trip time.

• Network bandwidth: the data volume likely to be sent between two locations in

distributed DCs per second.

• The route between CNs and SNs which is assumed by the data across the domains

of the network.

• Flow monitoring: the capability to trace the flows of data traffic emanating from

a particular resource. Consequences of both the traffic flow and the route taken

are jitter and delay sources within a network. For instance, flow monitoring can

assist the verification of peering. Peering requires the updating and exchange of

router data between the peered networks or ISPs, characteristically employing the

border gateway protocol (BGP) which does not just decrease delays but can also

considerably impact the transfer time of the data.

4.2.2 Data Location Service

The data-intensive scheduling stage considers big data volumes and data transmission.

To optimise the scheduling procedure wherein large data amounts are engaged, the

data location, size and other associated factors should be considered. To deal with this

matter, a Data Location Service (DLS) is formed which returns the information for a

specified logical dataset just within this phase. (In chapter 5, this is expanded it and the

replicas and replication service is considered in detail.) The DLS offers the way to locate

data within the circulated computing system. The DLS is indexed through the datasets

Logical File Name (LFN), and it directs datasets to SNs wherein they are positioned.

Every LFN is connected to a unique identifier (UID) which is exceptional across the
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whole cloud. Against every LFN, the DLS finds the UIDs which consecutively look up

UID to PFN mappings for specified UIDs. The DLS offers the name of the location

of DCs which are hosting the data as well as the physical locations in the SNs of the

constituent files or the datasets at these locations . This information is fed into the

DLS for the specific locations where the data is hosted, either through the scheduling

system following job execution or by the data transmission system following transfer.

The local manager at any DC operations might lead to adjustments to the DLS, for

example in a situation of data loss or removal. To steer jobs to the information, the

DLS is contacted to choose the locations hosting the necessary data. This transforms

into an overt necessity for the cloud scheduler to allocate jobs at any possible set of

locations.

4.2.3 Information Service

The primary stage of the scheduling procedure addresses discovery of the available

resources distributed over the DCs. To provide dynamic resources and offer user ex-

pediency, a cloud resources scheduler should be capable of discovering and choosing

the best and most accessible resources available to satisfy cloud users. This service is

addressed in the design here by an Information Service (IS), as demonstrated in figure

4.1 The subsequent stage in the scheduling procedure is to select the resources, which is

the broker’s role, given a collection of possible resources that can meet the cloud users

minimum requirements. These requirements include the VM, its jobs and the available

CN resources (RAM, CPU, disk and bandwidth) in scheduling the VM with its related

job. Generally, this scheduling occurs in two stages: information collecting, which is the

role of the IS, and choice making, which is administered by the broker in the scheduling

service .

4.2.4 Discovery Service

The Discovery Service (DS) is considered an entry point for the cloud scheduler and

thus is fundamental to cloud scheduling choices. The DS facilitates the cloud customs
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to discover the resources and services for VM scheduling and job execution. This is

the initial stage within the lifecycle of the job execution and thus is an admission

point for the cloud. A competent DS essentially raises the performance, reliability

and choice-making capability of the scheduling system, specifically if the intricacy is

extensive, as is the situation with the cloud environment. The DS permits the service

data published from any location to be retrieved from any site within the DC network.

This functionality renders it appropriate for application as a worldwide information

index for decisions on scheduling. The DS provides the network and resource data for

both static and dynamic scheduling. Once a cloud application needs to submit its jobs,

the scheduling procedure is based on some parameters. These may entail the local

DC policy, specific software and hardware needs or other considerations [137]. The DS

is applied to find cloud resources and network limitations to enable the matchmaking

procedure while the jobs need to be scheduled. Note that a push method to timetable

the jobs is pursued, and jobs are scheduled as soon they are submitted to a scheduler.

There is no specific interval or regularity with respect to the process of matchmaking

and scheduling.
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Figure 4.1: Generic VM allocation architecture with the NADI scheduler and the data

4.2.5 Workload Management System

Workload Management System (WMS) is a procedure which establishes the appropriate

distributions of the workload to offer optimal performance for cloud users applications.

It offers an organisation with the capability to micromanage or control; every work

application is run to capitalise on workload throughput and to improve application per-

formance by ensuring that no single CN is overburdened while others are underutilised.

The workload management system (WMS) consists of the following three components:

4.2.5.1 Workload manager

The workload manager (WM) is the primary component of the WMS which offers a valid

request. The WM takes the appropriate actions to satisfy this request and is responsible

for carrying out the real job management operations (job submission or removal). The

WM also fulfils user needs by managing workload accessibility to DC resources such as
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the CPU, RAM disk I/O and memory. Several workloads need additional I/O operations

and less CPU power, while others need the reverse, founded entirely on the workload

type. The WM also ensures that workloads are distributed in the right way among

available CNs.

4.2.5.2 Matchmaker

Matchmaker is one of the components which supports the WM and scheduler service.

It collects the network status information provided by the NMI, collects data related

to the application requested by the DLS and collects DC resource information from

the IS to make optimal scheduling decisions . (The optimal scheduling decisions based

on the total cost matrix have been discussed in chapter 3, section 3.5 with respect

to choosing suitable resources for the VMs job execution.) Thus, the matchmaker is

considered the most important task in the scheduling service. The NADI scheduler

uses the matchmaking engine, IS, NMI and DLS to make the best choice of site for the

execution. The data-related information, such as size and location, is provided by the

DLS. Then the NADI scheduler allocates the VMs to the chosen CNs and submits the

jobs to them.

4.2.5.3 Job submission and control services

The Job submission and control services (JSCS) is employed to submit and execute the

jobs to the chosen CN. The goal is to enable the direct interfacing of appliances to the

NADI scheduler and enable the incorporation of appliance programs. Job monitoring,

submission, control and retrieval of the completed job status are managed by JSCS.

It is important to consider the data placement activities and computational jobs in

a distributed computing system, because they have the same importance, and data-

intensive jobs need to be queued, scheduled, monitored and managed [138]. So JSCS

uses its capabilities to compute the related jobs, and it recommends the best choice for

dealing with the data placement activities during the scheduling of data-intensive jobs.
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4.2.6 Cloud Scheduler Service

The Cloud Scheduler Service (CSS) is defined as the whole management procedure

which deploys every VM and its application on cloud infrastructures. This management

includes VM creation, allocation, migration and deallocation. It comprises two key

stages:

4.2.6.1 VM provisioning

This entails the instantiation of one or more VMs which correspond to the particular

hardware features and software requirements for the applications deployed on the VMs.

The majority of cloud suppliers provide a collection of general-purpose VM classes

having resource configurations and generic software in advance. For instance, Amazon

EC2 supports 11 different types of VMs, which have different RAM, CPU and I/O disk

options depending on the cloud users demands.

4.2.6.2 VM allocation

This is the process of scheduling and mapping the VMs onto physical CNs in the cloud

environment. Presently, the majority of IaaS suppliers do not offer the providers of

applications any control over resource provisioning. VMs are mapped to physical CNs,

so the VM mapping is entirely concealed from the application providers [139]. This is

where this thesis makes its main contribution.

4.3 Algorithm

The main steps of the proposed algorithm are as follows. It first checks the CPU,

bandwidth and memory capacity for every available CN, as shown in line 3, below (and

as shown in equation 3.12 in the previous chapter) . If this condition is fulfilled with the

required VM, then as in line 5, it sends the VM jobs, related data location, chosen CN

and storages to the function named Calculates (JT ) (job data transfer) time, shown in

algorithm 4.2 and using equations 3.9 and 3.10. This function in algorithm 4.2, from
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lines 2 to 5, calculates (JT ) for all jobs on the first CN, retunes the value to algorithm

4.1 and stores it in the data transfer time (DTT ) matrix, as shown in line 7. After that,

as shown in line 8, it calculates PT , computing time, as also shown in equations 3.9 and

3.10, by sending the VM jobs and chosen CN to the function in algorithm 3. Line 3 in

this function calculates the processing time and when this job will start for every job,

and it then returns the value to algorithm 4.1. The value is stored in the (CT ) matrix,

as shown in line 12. At the end of this processing, we will have the total completion

time (TCT ) matrix, with all computing time and data access time for the first CN, as

shown in equation 3.11.

Algorithm 4.1 works in the following manner. First, it obtains information about

the available peers from the discovery service. Then it communicates with each peer

and collects the peers queue length and the total cost. (The architectural details and

all three costs are discussed in chapter 3, sections 3.2 and 3.5.) Then it determines the

CN with the minimum queue length and the total time cost. In principle, to calculate

the total time cost on any individual CN, we must generate all job completion time

matrices by computing the data transfer and computing time of all CNs with available

resources. If the number of jobs and the total time cost of the remote CN is higher

than the local cost which contains the data , then the VM is scheduled to the local CN.

Otherwise, the VM, jobs and data are moved to the remote CN, subject to a cost-time

mechanism.

Now the steps for the proposed VM scheduling are described, as shown in algorithm

below .
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Algorithm 4.1 VM Placement

Input: V VM List, D Required Data, C Computing node list S Storage node list and
J job List

Output: V List of VMs assigned to C list of computing node
1: for v i to V do
2: MinTCT ← MAX
3: AllocatedHost ← NULL
4: for c = 1 to C do
5: if Load(v) ≤ Cap(c) then
6: for j =1 to J do
7: DTT = DTT + JT (j, D, S, c)
8: CT = CT + PT (j, c)
9: end for

10: TCT = DTT + CT
11: if TCT < MinTCT then
12: AllocatedHost ← c
13: MinTCT ← TCT
14: end if
15: end if
16: end for
17: if AllocatedHost 6= NULL then
18: Allocation.add(v,AllocatedHost)
19: Updating: Cap(AllocatedHost) = Cap(AllocatedHost) - Load(v)
20: end if
21: end for
22: Return allocation

• (Input): the NADI scheduler first receives the users request details (application

jobs, related data location and required processing time) and then collects the

resource information from discovery services such as the VM request list, CN list

and SN list. This information deals with the algorithm as input parameters.

• (Output) All VMs in the VM list will be assigned to CNs and will update the CN

capacities (Ram, CPU and bandwidth).

• (Line 1): This is a loop to place VMs one by one from the VM request list.

• (Lines 2-3): These are variables which decide the optimal CN AllocatedHost which

has the minimal completion time (MinTCT).

• (Lines 4-5): This is a loop to check whether the CN has sufficient residual capacity

Cap(cn) to accommodate the requested VM capacity load(v).
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• (Lines 6-9): This is a loop to calculate both the computing and the data transfer

time for all VMs jobs one by one. The variables DTT and CT are the stored

values, as shown in equations 3.6 and in section 3.21 in chapter 3. As can be seen,

there are two functions which calculate the data transfer time and computing time

for every job, as described in the following:

� In line 7, there is a call for the function JT, which leads to algorithm 4.2 .

This algorithm checks the existence of the jobs related data in each s in the

storage list. So if it exists, it calculates the transfer time for certain data

between this storage and the chosen computing node.

Algorithm 4.2 Calculates Data Access Time

Input: j, D , S and c
Output: Calculates data transfer time for j
1: for s = 1 to S do
2: for d = 1 to D do
3: if s stores d then
4: JT = d / BW (s, c)
5: end if
6: end for
7: end for

� Similarly, line 8 is called a CT function, as shown in algorithm 4.3, and it

calculates the computing time for the sent job . It is important to know, for

every computing node, the processing information such as the start time for

the job, the processor strength and how much time the execution will take.

Algorithm 4.3 Calculates Computing Time

Input: j, c
Output: calculates processing time and waiting time
1: PT = st(j) + ni(j)

cap(c)×core(j)
2: return PT

• (Line 10): Now the completion time for all VM job can be calculated, which is

the sum of the computing and data transfer time, as shown in equation 3.23.

Repeating lines 68 computes the data transfer and computing time for all jobs

and stores the total time in the completion time matrix (TCT) for the chosen CN.
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• (Lines 11 -16): By completing these lines, the TCT matrix stores all values for

all CNs. Then there is a search for the CN with the optimal value in the TCT

matrix; when found, the chosen CN will be the host for the VM.

• (Lines 17-19): Now the scheduler ensures that the value of the chosen CN is not

empty; otherwise the VM will be allocated to it .

• (Line 20): This line is reached when all VMs in the VM list have been allocated

successfully .

4.4 Simulation results

In this section, the investigation aimed at evaluating the proposed adaptive cloud place-

ment algorithm are presented. CloudSim [69] discrete-event cloud simulation was used

to model the cloud environment. The proposed NADI algorithm will be compared with

Piao’s algorithm [82] and CloudSim’s default algorithm [37]. Piao’s algorithm only con-

siders the data location and chooses the best CN to minimise the data transfer time,

while CloudSim’s algorithm chooses the first CN with CPU and RAM availability . The

system will collect all needed parameters and apply them using all compared algorithms

equally. Next, both the simulation set-up and the workloads used for the evaluation are

described.

4.4.1 Simulation Set-Up

The simulated model comprises one cloud datacentre containing 10 CNs. Each CN

has two quad-core processors and 16 GB of RAM. The CN hosts the user application

instances and the mechanism. The datacentre has one broker, which receives users’

requests and places the VMs on the appropriate CNs based on the allocation algorithm

used. There will be 25 VMs, requiring one core and 2 GB of RAM. A total of 25 files are

distributed over the SNs in the datacentres, of 0.1- 3.0 GB sizes (generated randomly).

Every VM has certain numbers of jobs, for example 10 jobs, gradually increasing to 50,

..., 250 jobs. Every job needs to access certain data (e.g. file1) stored on an SN (chosen
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randomly). Table 4.1 shows all parameters used.

Parameters Values

Number of CNs 10
Number of VMs 25
Number of jobs 50 - 250
Number of files 1
File Size / job [100 - 3000] MB

Table 4.1: Scenario one Parameters

4.4.2 Simulation Evaluation

After the broker receives all VM requests needing allocation, its first calculates the

total job completion time on each computing node, including the data (file) access time

between sites that store the files and each server (file size/available bandwidth), the

waiting time for each job before it processes and the processing time. Then, taking all

these times into account, it chooses the CN with the shortest total time and allocates a

VM to it. Then it updates the datacentre information (e.g. availability on the servers).

In this simulation, a one-source data retrieval technique is use. Looking first at

Figure 4.2.a , the data transfer time for Piao’s algorithm produces better results than

the approach, because this algorithm only considers the data transfer time to minimise

the total completion time and improve the application performance. Meanwhile, the

CloudSim algorithm produces the worst results, due to its ignoring of the network state

between the nodes.

Similarly, in Figure 4.2.b, Piaos algorithm has better results than CloudSim in total

computing time, even though it does not consider CPU loads and less queuing. The

CloudSim allocation policy aims to allocate many VMs on one CN to minimise energy

consumption and maximise the CNs utilities, which puts a high load onto the CNs

resources (CPU, memory, bandwidth and disk). This leads to an increase in the CPU

load, resulting in increased total execution time, whereas the most important factor

in application performance is minimising the total completion time, as we did. The

NADIv1 algorithm shows the optimal results in computing time, because completion

time is one of the considerations in its allocation policy.
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Figure 4.2: Completion time for all jobs

The above test demonstrates that the proposed allocation mechanism is useful in

improving the completion time of tasks. Since the NADI algorithm tries to schedule

independent tasks to optimise minimum completion time, it produces better estimates

for task execution. Consequently, it results in a better completion time rate than either

the Piao or CloudSim algorithms.

Clearly, the proposed algorithm has the shortest job completion time in every round,

with increased job numbers, as shown in Figure 4.2.c. In fact, the decline of the average

task completion time is caused by the optimised location of the hosted VMs, com-

pared with the other two VM allocation policies. The results prove that the proposed

network-aware VM allocation policy can lead to improved task completion time. Due

to differences in network status and different data distributions, the improvement varies

from 200 s to 32 s, as shown in Figure 4.2.c.
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Figure 4.3: Resource usage for 10 CNs and 10 VMs

Figure 4.3 shows the usage rate for bandwidth, CPU, RAM and CNs, utilising graphs

for 10 CNs and 10 VMs. First, the bandwidth usage in the Piao approach is less than

NADI’s, as the Piao algorithm only focuses on this one parameter to enhance application

performance. However, the NADI algorithm considers the available bandwidth and CPU

usage to achieve the best results for the application jobs, and this algorithm has the

advantage in CPU usage, as shown in Figures 4.3.a and 4.3.b.

The CloudSim approach produces the worst results in both CPU and bandwidth,

because of the high load on every CN, which results from the total number of VMs on

each CN. Secondly, RAM usage is high in the CloudSim algorithm, because half of the

CNs are in sleep mode, whereas the NADI algorithm and the Piao algorithm reciprocate

the leverage consecutively, depending on the workload , as shown in Figure 4.3.c.

Figure 4.3.d demonstrates the number of CNs utilised by the scheduler to place the

VMs. Here the new proposed algorithm places the VM on the CN with the minimal

completion time, while Piao’s algorithm only considers network bandwidth. The number
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of CNs used by the proposed algorithm is maximised, when compared to the CloudSim

algorithm, to achieve high performance. Although the number of CNs used by CloudSim

is smaller than for NADI, the latter proposed algorithm is comparatively stable, as

shown in Figure 4.3. The resource utilisation rate of the new algorithm appreciably

outperforms that of the other algorithms.

Figure 4.4 shows that the new placement algorithm minimises resource usage, thus

enhancing application performance compared to the Piao and CloudSim placement algo-

rithms. The results also demonstrate that the CloudSim algorithm uses fewer CNs than

does the NADI approach or the Piao algorithm. CloudSim reduces energy consumption,

whereas in this thesis, the algorithm does not consider this factor, only focusing on how

to improve the application performance.

Figure 4.4: Comparison of the overall resource utilisation rates

In this second scenario, the total number of VMs remains at 25 , but the number of

files requested by each VM is increased to 3, as in Table 4.2 below. Other parameters

remain the same as in the first scenario, above. One of the advantages of the NADI

algorithm is that it can consider more than one file, stored in different SNs. From Figure

4.5.c , it is clear that the technique used here significantly decreased the queue time of

the jobs. This was because only those CNs were selected for VMs and job placement

which had fewest jobs in the queue and which were most likely to quickly execute the

jobs once they were scheduled on those CNs. The graph in Figure 4.5.c is based on the
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average completion times for a varying number of jobs, as mentioned in the previous

scenario.

Parameters Values

Number of CNs 10
Number of VMs 25
Number of jobs 50 -250
Number of files 1
File size / job [100 - 3000] MB

Table 4.2: Scenario Two Parameters

An increase in network cost can also affect the overall performance of the distributed

system, especially in terms of transfer and communication time; therefore, it is an

important consideration for any scheduling decision. A lower bandwidth also results in

higher network costs. Figure 4.5.a demonstrates that in the new algorithm, through

an increase in network bandwidth capacity, the data transfer time decreases (compared

with the approaches of the other algorithms), and hence, results in a better completion

time. The NADI algorithm produces better results in data transfer time than do the

other two algorithms, because it considers the distributed files over the SNs; the Piao

algorithm only considers the bandwidth between CN and SN. The main difference is

the total number of files considered, where Piao only considers one file, which leads to

degradation of the overall performance.
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Figure 4.5: Completion time for all jobs

The execution time is normally longer than the processor time for the process, be-

cause the CPU is doing other things besides just running the process, including running

other user jobs and operating system processes or waiting for disk or network I/O.

Nor does execution time include queue time. When the number of jobs increases, it

is evident from Figure 4.5.b that the average time to execute a job is also increased.

More competing jobs clearly result in more time required for a specific job to complete.

Figure 4.5.b shows that the new algorithm scheduling approach improves the execution

times of jobs.

Figure 4.6 demonstrates the resource usage for 10 CNs and 25 VMs. In Figure 4.6.a,

bandwidth eventually deteriorates in Piao’s approach, due to the cost of file transfer

time between the application and the SNs . The NADI algorithm produces better

results, because the scheduler considers the total file transfer time for each CN. Again,

the CPU usage in Figure 4.6.b shows that the new algorithm retains the advantage over

the other two approaches, due to its consideration of how busy the CPU is.

The RAM usage graph in Figure 4.6.c shows that the CloudSim algorithm uses con-
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siderable RAM in five CNs, whereas the other CNs are in sleep mode. This will exhaust

the RAM and consequently will significantly affect the overall application performance

of these CNs. At this stage, the NADI algorithm surpasses Piao’s algorithm, because it

checks the significance of the CPU load, which correlates with minimised RAM usage,

as shown in Figure 4.6.c.

Figure 4.6: Comparison of the overall resource utilisation rate

Figure 4.6.d demonstrates the number of CNs utilised by the scheduler to place

the VMs. Here the proposed algorithm places the VM on the CN with the minimal

completion time, whereas the Piao algorithm only considers network bandwidth, and

the CloudSim algorithm tries to maximise the CNs utilities. The proposed algorithm

produces the optimal values and appreciably outperforms the other algorithms with

respect to the resource utilisation rates.

Figure 4.7 shows that the new placement algorithm minimises resource usage, thus

enhancing the application performance, compared to the Piao and CloudSim placement

algorithms. The results also demonstrate that CloudSim uses fewer CNs than either
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the NADI approach or that of the Piao algorithm; this reduces energy consumption.

However, in this thesis, the new algorithm does not consider energy consumption; this

chapter only focuses on how to improve the application performance.

Figure 4.7: Comparison of the overall resource utilisation rates

In the following figures, some of the parameters have been changed, as shown in Table

4.3 as has been discussed in the third scenario, section 3.2.3. In this third scenario, large-

scale evaluation to make it more complicated is used. The main aim of this scenario

to simulate the network traffic in the real DCs. Thus, the total number of VMs was

increased , and each VM requested a number of files. There were three DCs, and every

DC involved 350 CNs. The simulation ran for 10 minutes, and in every minute, there

were requests for VM placement. These VMs were gradually increased each minute,

from 150 to 1500. Each VM requested 35 files, spread over the distributed SNs. The

jobs also increased gradually from 500 to 5000 in each round. The same comparison

points were also used: Piao’s algorithm [82] and CloudSim’s default algorithm [37].

Parameters Values

Number of DCs 3
Number of Users 500-5000
Number of CNs 1000
Number of jobs 50 - 250
Number of files 3- 5
File size / job [1 - 30] GB

Table 4.3: Scenario Three Parameters
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The sub-figures in Figure 4.8 show the data transfer, computing and total comple-

tion times . Both the data transfer and computing times follow similar trends, primarily

because NADI preferentially selected those CNs for job execution which could quickly

execute the jobs (i.e. those that had short local queues with low latency). The trends

in Figures 4.8.a and 4.8.b show that data transfer time is almost proportional to com-

putation time, because if a job is running and taking more time on the processor, the

waiting time for the new job will also increase. Thus, the related data for that job will

arrive late, which increases the total completion time.

Also, whenever the burden on CNs is high, the CN resources (CPU and bandwidth)

will be affected. As mentioned earlier, an increased network cost can also affect the

overall performance of the distributed system, especially in terms of transfer and com-

munication time, and a lower bandwidth also results in higher network cost. Therefore,

network cost, as always, is an important consideration for any scheduling decisions. Fig-

ure 4.8.b demonstrates that whenever network capacity increases, it leads to reduced

transfer times and, hence, better job execution times. Increasing the number of jobs

in the queue can also influence the overall job completion times (i.e. the scheduling,

queuing, execution and data transfer times). It can be ascertained from the graphs that

as the number of jobs increases, NADI has a more profound impact on the scheduling

optimisation and execution of the jobs. Since most of these jobs need to communicate

data from remote locations, it is assumed that execution and transfer times will fur-

ther decrease when thousands of jobs take actual input data from optimal locations, as

demonstrated in Figure 4.8.
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Figure 4.8: Completion time for all jobs

Only one job is executed on a CPU at a time, and jobs cannot run in parallel on

that CPU, since a non-pre-emptive scheduling model is followed. When the number of

jobs increases, it is evident from Figure 4.8.b that the average time to execute a job also

increases. More competing jobs clearly result in more time required for a specific job to

complete. The data transfer delay can be significant and can substantially increase the

time required by the VM to complete the job execution.

Figure 4.8.c clearly shows that the NADI scheduling approach has improved the

completion time of the jobs, an improvement ranging between 40% and 65%. This

completion time will increase dramatically whenever the DC load, data size and number

of jobs increases. NADI improves the execution times of jobs, since it selects only those

CNs for job execution which have the required data, have less of a load and have fewer

jobs in the queue. All of this contributes to fulfilling the execution optimisation, as

demonstrated in equation 3.23 in chapter 3, section 3.5.3. Otherwise, CNs which have

a higher number of jobs already running or CNs which are heavily loaded can worsen



Chapter 4. Virtual Machine Placement using Data Transfer time 116

execution times.

Figure 4.9: Comparison of the overall resource utilisation rate

The number of CNs allocated in the new algorithm are be compared with those of

the other algorithms [37, 82], comparing bandwidth, CPU and total resource usages.

Figure 4.9.a shows that the bandwidth usage for the NADI algorithm is better than

that of the others, because it considers the available bandwidth in each link in the DCs

network and chooses the optimal one. Piao’s algorithm considers the best link between

the CN and SN which stores the first file. It may be observed that the usage percentage

gets better continuously whenever the workloads and VM requests increase.

Figure 4.9.b illustrates CPU usage. The CloudSim algorithm is the worst of the

widely available resources in this respect. However, the resource availability can be

significantly increased if the VM placement is decided wisely. Figure 4.9.c shows that

considering the availability options for the bandwidth and CPU enhances RAM usage

from 10% to 25%, thus resulting in the application’s improved performance. NADI can

decrease CN usage and minimise the total execution time, as shown in Figures 4.8 and

4.9, meaning that the overall application performance is enhanced.
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Figure 4.10: Number of VMs Allocated on CNs

Figure 4.10.a shows that the execution time for jobs can be reduced to as much

as 47% of the total completion time if the NADI algorithm is used. Since these VMs

are hosting data-intensive applications, data will be transferred between VMs while

execution is in progress. Data transfer between VMs takes time, depending on the

distance between these VMs and the amount of data transferred. The number of CNs

allocated in the new algorithm with those of previous approaches has been compared.

Figure 4.10.b compares the number of CNs selected between these algorithms; NADI

decreases CN usage and minimise the total execution time, as shown in Figures 4.8, 4.9

and 4.10.a. Thus, the overall application performance is enhanced.

4.5 Chapter summary

While the data-intensive applications interact with distributed data in a cloud com-

puting environment, the network status between the application and the data could

significantly influence the performance of the application. This chapter proposed the

first version of a network-aware VM placement algorithm for data-intensive applications

in a cloud environment (NADI). Then it showed the relationships between NADI design

components, including the broker, data location service, network monitoring service, in-

formation service and discovery service. The algorithms used in this contribution were

also presented and explored in greater detail, and simulation tests were performed to

examine the NADI algorithm. Through these tests, it was demonstrated that data lo-

cation, network latency and computational resources can significantly affect application
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performance. Thus, the VM allocation scheduler should be capable of optimising the

data-intensive scheduling process. It is necessary to control the location of VMs, so the

applications hosted by a VM can obtain a shorter data access time. It was also demon-

strated that the keys to cloud optimisation include network-managed services and a

suitable selection of the network links between DC locations before making schedul-

ing decisions. Also, overall queue and execution times can be significantly reduced if

job data requirements and completion times are taken into account. It was also con-

cluded from the simulation results on CloudSim 3.0 that NADI is better in scalability

and consistency when compared to other contemporary scheduling approaches. In the

next chapter, the possibility of enabling the replication service to improve application

performance will be discussed. This service allows one to choose one of the best repli-

cas distributed over the DCs in order to enhance application efficiency, maximise the

availability of the bandwidth and optimise data-intensive scheduling.



5
Virtual Machine Placement using Data

Replication

The first version of NADI (NADIv1), was introduced in Chapter 4 . Some NADI

components are changeable depending on the version of the approach, therefore, they

were presented in detail. NADI’s main objective is to choose the optimal locations for

the VMs , which can minimise the computing and response times between the storage

and computing nodes, thus enhancing the application performance and minimising the

total job completion time. Therefore, data are accessed by fetching their either remotely

or locally, depending on the locations of the VMs and the data. The summary of relevant

works, as well as the current design and algorithms were explained in detail. Moreover,

the results obtained in the simulation experiment indicated considerable improvement

119
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of the application performance and minimisation of total job completion time.

This chapter presents the second version of the NADI approach, NADIv2, which

enables the replication service. In this version, the Data Management Service (DMS) is

the only component that has been changed from the previous version. The DMS consists

of three major components: the Replica Location Service (RLS), the Replicator and the

Replica Catalogue. The RLS is launched to obtain the most effective physical replica

of the dataset and provide access to information. The Replicator is used to replicate

the required data to the chosen location. The Replica Catalogue stores information in

a database that maps between the different file names and their replicas . Generally,

NADI chooses the best replica among those available or replicates the required data to a

destination that does not have any in order to minimise the total completion time. The

ideal situation, on one hand, is to access the data locally, however, this is not always

possible due to the sizes of data sets and CN capacity constraints, which might prevent

VMs from being allocated to them. On the other hand, in cases where the very spot of

execution of a job obtains no data replication, then data are transferred from a distant

or remote site, which deteriorates the overall execution of the job. The decisive factors in

the performance of these applications are workload and workload types, network status

between SNs and CNs, data location and CN CPU attributes. Thus, the completion

time differs according to the application jobs in the workload based on the retrieval

of vast amounts of data and VM placement decisions. NADI optimises the available

computing resources and replica locations and chooses to replicate the data in order

to allocate the VMs that improve application performance. When compared to the

NADIv1 proposal for VM placement, the NADIv2 results reinforce the algorithms with

the ability to significantly maximise the throughput of cloud links, increase performance

and minimise the completion time of average jobs.
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5.1 Introduction

Cloud computing can be defined as the implementation of computing resources (such

as software and hardware) which the customer receives in the form of a service via a

network (commonly the internet). It aims to disseminate large-scale components and

resources that are required for storage, knowledge , computation and information in sci-

entific research [131]. Over time, cloud applications have come to depend on networks in

the areas of interactivity or data access and their requirement demands are continually

increasing. Computation is requested by particular tasks cited as jobs and determined

by computation, network capacity and storage. Cloud applications use multiple VMs in

the processing of large volumes of data . Therefore, such applications manage a number

of jobs that are carried out by available resources so that the best outcomes, briefest

response times, shortest completion periods and the most effective application of re-

sources can be obtained [133]. Compressing the time frame for response and completion

is the key objective in this study. A number of factors, such as communication data

access bottlenecks, the scheduling mechanism and load on a sole server, can influence

this objective and others [134]. Access latency in data transfer between data nodes and

computer nodes is an important factor impacting completion times. Continuous pro-

cessing of all data locally is the most effective way to diminish access latency; however,

data set sizes and computing node capacity barriers that restrict the proper placement

of VMs sometimes prevent local data processing [134,135]. The cloud broker is respon-

sible for selecting an accurate resource followed by its management and job execution.

The available resources and submission requests are matched with each other through

a process that finally determines the resource to be used. This matchmaking process

requires certain compatible scheduling mechanisms having the right heuristics and the

ability to consider the features of the network to activate effective scheduling of data

intensive jobs in practical computing resources.

Different quantities of data are produced by each data intensive application. The

data (both input and output) and the computation should be first aligned and co-
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scheduled to diminish the overall cost of data transfer and computation, further con-

tributing to an improved overall job completion time and elevated cloud throughput.

In fact, the decision to send both data and the VM to a third location can be made

based on the features and capabilities of storage resources, the network and comput-

ing requirements . Perceived from the point of local resource management, this might

appear to be a minor issue, however, global distributed scheduling should be managed

seriously in case the overall cloud throughput requires optimisation at any particular

time.

In this chapter, the second version of the NADI approach for VM scheduling is

presented, which considers data and computation as well as network features during the

allocation of VMs and scheduling of single or multiple jobs. Thus, this study focuses

on the issue mentioned above by offering a VM placement algorithm that accounts for

the network’s I/O requirement and process utilization for diminishing the response time

between the computing node and the data node and for reducing the total completion

time for each job, while taking scheduling decisions over several data centres.

5.2 NADIv2 Design for VMs Placement Scheduling

Basically, the proposed algorithm in NADIv2 takes into account not only computation

resource requirements but also data requirements (storage space, network conditions,

etc.) when making scheduling decisions. The general NADI scheduler architecture is

illustrated in Figure 3.2 in Chapter 3. It comprises a matchmaking layer that is account-

able for choosing the appropriate resources to execute the VM’s jobs. The matchmaker

is an important component in the NADI scheduler. First, a cloud customer specifies

the requirements necessary to run his application. These requirements can be related to

VM type, workload pattern, task details or the related data location. Then the match-

maker parses these requirements with other information, such as available resources and

network status, to make the optimal decision about the appropriate CNs. The second

important task is performed by the allocation scheduler, whose role is to map these

VMs on a physical resource that runs the applications. The third significant component
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in NADI is the JSCS, which submits the jobs to the chosen CNs, obtains the updat-

ing reports during job execution and maintains these parameters within the database

so that users can later access them in order to enhance the application performance.

These components were discussed in detail in Section 3.3, however, here, a slight mod-

ification to the DLS component makes it a comprehensive Data Management Service.

This component is considered the main contribution of the current chapter.

Figure 5.1: Interaction of the NADI Scheduler with the DMS

5.2.1 Data Management Service

As shown below , intensive data scheduling accounts for an enormous amount of data, as

well as data replication and data transfer. To optimise the scheduling processes where

there is involvement of huge amounts of data, it is necessary to take into account size,

data location and other related aspects . The DMS is created to solve this issue as it

returns the optimal replication of a specified logical dataset, making use of the Data

Management Interface. A DMS offers a means of locating data replicas in a distributed

computing system. Indexing of DMS is done by logical filename (LFN) and it atlases

the dataset to an SN in their locations. Every LFN is connected to a Unique Identifier

(UID), which is exclusive in the entire cloud . The DMS positions the UID against
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every LFN, which in response, looks up the UID for mapping the Physical File Name

(PFN) for a certain UID. Figure 5.1 illustrates DMS architecture; it shows three sub-

DMS service instances that are distributed over DCs in the cloud. When the DS queries

about the location of a certain replica, the sub-DMS that stores the replica will return

the information about its physical location. If the NADI scheduler, which is now the

client, requires some information concerning the dataset which is housed in the Storage

Nodes (SNs) as well as registered in the Replica Catalogue, the scheduler will have to

inform the DS, which offers a list of every location in which the DMS is operating. The

client can now query the DMS by fleeting a rational dataset name whose location is of

interest. The outcome of this query is that all the physical replicas will be returned to

the scheduler . In the end, it has a reference number of the CN where the task will be

executed.

If the NADI scheduler, which is now the client, requires some information concerning

the dataset which is housed in the Storage Nodes (SNs) as well as registered in the

Replica Catalogue, the scheduler will have to inform the DS , which offers a list of every

location in which the DMS is operating. The client can now query the DMS by fleeting

a rational dataset name whose location is of interest. The outcome of this query is that

all the physical replicas will be returned to the scheduler . In the end, it has a reference

number of the CN where the task will be executed.

5.2.1.1 Data Location Interface (DLI)

The Data Location Interface (DLI) is used by the DMS to access replicas of datasets from

different catalogues. The DLI does not have direct interaction with the DS. Instead,

the DMS operates between the DS and the DLI. Example of this is the content and

location of DLI are not distributed to the Discovery Service. Rather, the DMS queries

the catalogues via the DLI and then prints the information in the dataset to the DS. In

Figure 5.2 the DLI is called the Logical Dataset (LDS) and processes it as an input which

later returns the physical locations of datasets. The LDS refers to a data entity or a file

collection. To simplify, we assume that every physical file that belongs to the dataset
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Figure 5.2: Data Location Interface

is housed in the same storage element and can always be accessed through the same

protocol. If the NADI scheduler requires every physical location for a certain LDS, the

DMS sends a query in order to fetch all potential physical locations where the dataset

can be accessed. The outcome of this process is hence mapped by the service internally

to obtain the corresponding hostnames of the SN. Abstractly, the NADI scheduler can

treat the LDS and logical file names in the same way. It is imperative to know the

locations of data type LDS and LFN replicas. The DMS returns replica locations of

LFNs. LDSs require such a service to initialise the query; this is achieved by the DLI,

which functions as the major interface between the catalogue for a particular data type

and the NADI scheduler, thus allowing the scheduler to interact with any catalogue

(which provides data locations) that leaks into the web service interface.

The DMS carries all the replica information in the network performance character-

istics and investigates attempts to create another replica using the replication service

in the DLI where the DC does not carry any replicas for the purposed data, as demon-

strated in Figure 2 . This is aided by key factors such as SN space availability, replica

size, bandwidth between SNs and CNs and lower average response time, thereby en-
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hancing the application performance. The data location process permits applications to

select a replica from different Replica Catalogues on the basis of data access character-

istics and performance. A framework is provided by the RLS, which tracks the physical

locations of the replicated data. When the scheduler calls for the LDS, the DMS makes

use of the Replica Catalogue to recognise every replica location that contains instances

of the physical dataset of the LDS, and it has to select the best instance for retrieval.

The Replica Catalogue, on the other hand, builds and stores database mappings of site

filenames and logical filenames for replicas.

The logical filename (LFN) refers to a name which describes the full set of file

replicas. It is more efficient to look up all replicas in a Replica Catalogue using the

LFN . The site filename (SFN) describes a file that is used by the storage management

system. It can be a physical filename of a record which is stored in a disk or an LFN

that is significant in a mass storage system.

5.2.1.2 Replica Manager

The Replica Manager consists of two sub-components: the Replicator and the Selector.

The Replicator replicates or stores the chosen replica at the optimal location, which

will be identified by the NADI algorithm. The Selector is responsible for choosing the

replica that has the least access time cost. After the broker has received the FLNs and

LFNs for the required replicas, they are sent to the Selector along with network status

information in order to find the optimal replica . The chosen replica will be presented

to the broker.

5.2.2 Algorithm

Basically, the algorithms detailed below perform the same as the previous algorithms in

Chapter 4, Section 4.3, but they enable the replication service to enhance the applica-

tion’s performance . Therefore, these algorithms increase the chances of improving the

efficiency of the application. In this section, the functionality of these algorithms will

be explained. First, the broker receives all required resources from the users, including
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VM numbers, application details and data location. Then, the broker communicates

with the DS to gather all needed information such as network status, available resources

and numbers of replicas. Subsequently, the broker calculates the completion time cost

as mentioned in Chapter 3, Sections 3.5.1 to 3.5.3; it could use the replication service

if necessary. The calculation of completion time is divided into three types of jobs:

processing time, wait time in the CPU queues and data transfer time, as explained in

detail in Chapter 3, Section 3.5. The main difference from the previous NADIv1 al-

gorithm in Chapter 4 is in the processes for reading and writing files, which could be

either remotely or locally, particularly if there are replicas or the replication services

are being used. As one of the available options, the broker studies the possibility of file

replication to DCs that do not have any replication. The replication service is typically

used when there are heavy workloads; these files are used periodically. This helps to

improve scheduling and optimise execution by reducing the frequency of remote data

access.

In principle, to calculate the total time cost on any individual CN, a completion time

matrix must be generated by computing the data transfer time and the time among all

available CNs in each DC. This matrix consists of all three options mentioned above

(local, remote or replication). If the total cost time of the remote CN is higher than

the local cost for the remote data or the replica, the VM is scheduled to the local DC .

Otherwise, the VM, jobs and data are moved (replicated) to the third location to obtain

execution efficiency. Finally, the broker chooses the optimal solution from the various

options. The steps for the proposed VM scheduling, as shown in Algorithm 5.1 below,

will now be described .
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Algorithm 5.1 VM placement algorithm

Input: V VM List, D Required Data, C Computing node list S Storage node list and
J job List

Output: V List of VMs assigned to C list of computing node
1: for v = 1 TO V do
2: N = 0 ; uN = 0
3: for dc = 1 to Dc do
4: for s = 1 to S do
5: Check DC has a replica R
6: if R 6= 0 then
7: N = N + 1
8: else
9: uN = uN + 1

10: end if
11: end for
12: end for
13: Chosen c ← NULL
14: TCT (J , D, S, R)
15: RTC (J , D,S, uR)
16: if Chosen c 6= NULL then
17: if CTimeDDT < CTimeReplication then
18: Allocation.add(v,Chosen c)
19: else
20: Allocation.add(v,Chosen c)
21: replication.add(D, dc(Chosen dc,Chosen s))
22: end if
23: Updating: Cap(Chosen c) = Cap(Chosen c) - Load(v)
24: end if
25: end for

• (Input): The NADI scheduler first receives the user’s request details (number of

VMs, application jobs, related data location and required processing time), then

collects the resource information from the DSs such as CN availability (RAM, CPU

and bandwidth), SN availability and data location information. This information

comprises input parameters for the algorithm so that it matches all VM requests

for optimal CNs .

• (Output): All VMs in the VM list are assigned to CNs that are listed in the

CN list, thus, the CNs’ capacities (RAM, CPU and bandwidth) are updated.

• (Line 1): This is a loop that aims to place VMs from the VM request list one by

one.
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• (Line 14) calls for the first function that calculates the completion time for all

application jobs, including data transfer time, among all available replicas. It

chooses the best replica for enhancing the application performance and minimis-

ing the overall completion time. This is accomplished by retrieving the data re-

motely or locally depending on the chosen CN and the location of the best replica.

Algorithm 5.2 provides full details about this option.

• (Line 14) calls for the first function that calculates the completion time for all

application jobs, including data transfer time, among all available replicas. It

chooses the best replica for enhancing the application performance and minimis-

ing the overall completion time. This is accomplished by retrieving the data re-

motely or locally depending on the chosen CN and the location of the best replica.

Algorithm 5.3 provides full details about this option.

• (Line 15): Similarly, this line calls for the second function, which is responsible

for the replication service. This function investigates how costly it is to replicate

a new place in the DCs that do not have any replicas for the selected data. It

calculates the time for copying the data to the new location plus all job completion

times. In this case, local data transfer minimises the overall completion time or

perhaps the remote site is better than the local site. Algorithm 5.3 explains this

option in detail.

• (Line 16) ensures that the functions above find an optimal CN on which to allocate

the VM.

• (Lines 17-24) attempt to choose the optimal CN for minimizing the total comple-

tion time between the returning values from the above functions. Once it finds the

optimal CN, it places the first VM on it and updates the available CN resources

after the placement. At this stage, data can be accessed either remotely or locally.

In the case of replication, data, jobs and the VM will be sent to the new location.

• (Line 25): Reaching this line means that all VMs in the VM list have been suc-

cessfully allocated.
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Algorithm 5.2 is responsible for choosing the optimal CN by calculating the job

completion times, which include the computing and data transfer times. It will choose

the best replica among all those that are distributed across all DCs. Then it will send

this information to algorithm 5.1, as mentioned in the description above.

Algorithm 5.2 Calculates Completion Time using data transferring time

Input: S Storage node list and J job List , R data replicas
Output: Calculates Completion time for all jobs using all existing replicas among all

CNs in each DCs
1: MinTCT ← MIN ; Chosen r ← MIN ; Best r ← MIN
2: Chosen dc ← NULL ; Chosen c ← NULL
3: for dc = 1 to Dc do
4: if N 6= 0 then
5: for c = 1 to C do
6: if Load(v) ≤ Cap(c) then
7: for r = 1 to R do
8: for s = 1 to S do
9: for j =1 to J do

10: if s stores r then
11: JT = JT + (r / BW (s, c))
12: end if
13: end for
14: if DTT < JT then
15: DTT ← JT ; Best r ← r
16: end if
17: end for
18: end for
19: for j =1 to J do
20: PT = PT + (st(j) + ni(j)

cap(c)×core(j))
21: end for
22: CT = PT
23: TCT = DTT + CT
24: if TCT < MinTCT then
25: MinTCT ← TCT ; Chosen c =c ; Chosen dc =dc ; Chosen r =r
26: end if
27: end if
28: end for
29: end if
30: end for
31: return MinTCT ,Chosen dc, Chosen c ,Chosen r

• (Input): consists of received application job requirements, all data replicas and

the storage lists that are hosting all replicas.
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• (Output): consists of sending the chosen DC, CN, best replica and the total

completion time for all jobs.

• (Lines 1-2) are variables that are decided initially, and the optimal replica is stored

in the SN. These lines also choose the optimal CN, Chosen c, that has the minimal

completion time, MinTCT, and excites in a certain DC, Chosen dc.

• (Lines 3-4) check and calculate the completion time in each DC that has a copy

of the data. If there are no replicas on the selected DC, the codes will not be

executed.

• (Lines 5-6) provide a condition to ensure that the selected CN has the minimum

capacities to place the chosen VM.

• (Lines 7-18): These lines first specify the replica location in the SN, then calculate

the job access time for every available replica and choose the best one. In the end,

the data access time will be calculated on the selected CN with the optimal replica

selection, as shown in equation 3.15.

• (Lines 19-21) only calculate the computing time for all jobs on the chosen CN, as

described in equations 3.20 and 3.21.

• (Lines 22-30) calculate the completion time for selected VM jobs, which is the

sum of the computing and data transfer times with the optimal replica, as shown

in equation 3.23. Then all variables that are mentioned in lines 1-2 are assigned

to the best values and sent back to the main algorithm 5.1.

Correspondingly, algorithm 5.3 checks the possibility of replicating data to DCs that

do not store any replicas. Then it calculates the replication service cost, which includes

storage writing time and job completion times. It subsequently chooses the best CN

for minimising the completion time. Finally, it will send the best information about

the resources, including the CN, SN, DC and completion time, to algorithm 5.1, which

responds by deciding to use replication or remote or local data transfer based on the

optimisation decision, as previously discussed.
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Algorithm 5.3 Calculates Completion Time using data Replication

Input: S Storage node list and J job List, un-replicas DCs uR, D Required Data, R
data replicas

Output: Calculates Completion time for all jobs using by considering replication
among all CNs in each DCs

1: MinComTime ← MIN , MinST ← MIN,
2: Chosen dc ← NULL Chosen c ← NULL
3: for dc = 1 to Dc do
4: for r = 1 to R do
5: if dc doesn’t store r then
6: for c = 1 to C do
7: if Load(v) ≤ Cap(c) then
8: for j =1 to J do
9: for s = 1 to S do

10: RT = d/ WD(s, dc)
11: if ST < MinST then
12: MinST ← RT
13: Chosen s = s
14: end if
15: end for
16: for j =1 to J do
17: CT = CT + (st(j) + ni(j)

cap(c)×core(j))

18: LDT = d / BW (Chosen s, c)
19: end for
20: end for
21: TMV = RT + CT + LDT
22: if TMV < MinComTime then
23: MinComTime ← TMV
24: Chosen c = c
25: Chosen dc = dc
26: end if
27: end if
28: end for
29: end if
30: end for
31: end for
32: return MinComTime,Chosen dc,Chosen c,Chosen s, MinST

• (Input): consists of received application job requirements, all data replicas and

the storage lists that doesn’t host any replicas.

• (Output): sends the chosen DC, CN and SN, which are considered optimal, and

the total completion time for all jobs.

• (Lines 1-2) are some variables that are decided. First, there is the optimal storage
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chosen s , which will store the new data replica, and the replica time will be MinST.

Second, it chooses the optimal CN chosen c that has the minimal completion time

MinComTime and excites in a certain DC chosen dc.

• (Lines 3-15), first, check all DCs (which do not have any copy of data how ) for

the cost of replication w, including the available bandwidth between the SN and

CN and the data writing time in every SN (as mentioned in equations 3.13 and

3.14). Then, it returns the best SN and the optimal time for replication.

• (Lines 16-20) are a set of calculations that compute the queuing, processing and

• (Lines 21-31) are the time required to calculate the completion time for all jobs

on all CNs (as discussed in equation 3.24). The completion time consists of the

sum of computing, the data transferring time and the replication cost. Then, it

will compare these times to select the best DCs’ resources, which include CN and

SN.

• (Line 32) assigns all the variables that are mentioned in lines 1 - 2 to the best

values and sends them back to the algorithm 5.1. These variables are the optimal

CN, the minimum time for replication and communication , and the best SN that

will store the certain data for replication.

5.3 Simulation results

In this section, the simulation tests are presented aimed at evaluating the proposed

adaptive Cloud Placement algorithm using the CloudSim simulator [37], which is used

to model the Cloud environment. From the following experimental results, the aim is

to enhance application performance and minimise the completion time by considering

the network status between DCs’ resources. This chapter uses a replication service only

if it maximises application efficiency. However, Hussein’s approach [96] has another

perspective, which tries to generate a replica for all files in DCs in order to improve

the overall data reliability in DCs and avoid failure in SNs. This replica could enhance
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application performance, but it would be a burden to the network because it would

overload the network. It would cause network bottlenecks. In addition, the replication

service should be used wisely to avoid wasted overload storage capacities. The previ-

ous NADI approach [121] considered the available bandwidth in each link in the DCs’

network and chose the optimal one as discussed in the previous chapter, whereas Piao’s

algorithm [82] considered the best link between the CN and SN, which stores the first

file . Then, the system will collect all needed parameters and apply them equally on all

the compared algorithms. Next, the simulation set up is described and the results are

discussed .

5.3.1 Simulation Set-Up

The simulated model was composed of one Cloud DC that contained 10 CNs. Each

CN had two quad-core processors and 16 GB of RAM. The CN hosted user application

instances and the mechanism . The DC had one broker that received users’ requests

and placed the VMs on the appropriate CNs based on the allocation algorithm that it

was used. There were 25 VMs that required one core and 2 GB of RAM . The total

number of files was 25, which were distributed over the SNs in the DCs; the size for

each file was between 0.1 and 3.0 GB (generated randomly). Every VM had a number

of jobs (e.g., 50 jobs, gradually increasing to 100 ,..., 250 jobs). Every job needed to

access between 1 3 files, which were stored on an SN (chosen randomly). Table 5.1

shows all the parameters that were used. This investigation used the second scenario,

which was discussed in section 3.2 of chapter 3.

Parameters Values

Number of CNs 10
Number of VMs 25
Number of jobs 50 -250
Number of files 1-3
File size / job [100-3000]MB

Table 5.1: Parameter Settings for the First Test in the NADIv2 Scheduler (2nd
Scenario)
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5.3.2 Simulation Evaluation

Figure 5.3 shows the computing time for all jobs that are discussed in the table above.

Both the previous approach and the NADI approach got better results than others

because we considered the CPU usages during the scheduling. Upon close examination,

the NADI shows the best results due to its possibility of providing more than one

replica. Hussein’s [96] and Piao’s [82] approaches did not consider the CPU load, which

is one of the advantages of the NADI approach. Their results are worse whenever the

number of jobs and workload are increased (as shown in Figure 5.3). The computing

times included the time required to schedule one of the best CNs and execute the job

plus the time required to send the data and job back (which was made by a NADI

scheduling decision). In this test, NADI was able to select and employ the resources

that were least loaded, had smaller queues and could run the jobs more efficiently than

other approaches. It may be seen that each algorithm has a lot of variation; however,

in all cases, the NADI algorithm shows the best performance. It is scalable for a large

number of nodes, and it has the shortest execution times compared to other algorithms

(as shown in Figure 5.3).

Figure 5.3: The computing time for all jobs

Now the simulation results to test the network efficiency of the NADI algorithm are

presented. In a cloud environment, nodes are connected via variable network links; an
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algorithm that does not use the network as a resource in the scheduling decisions will

be inefficient and will waste resourcesas well as complete tasks in an untimely manner.

The network is an especially critical resource for data intensive scheduling. As has been

established in earlier chapters and through practical results, ignoring the network can

lead to suboptimal scheduling decisions. The response of each algorithm is shown in

Figure 5.4 where NADI clearly has a stable and consistent performance, whereas Piao’s

algorithm [82] only considers a certain file . Hussein’s [96] and NADI’s approaches are

exchanged for the optimal results reciprocally based on the availability of a replica’s

numbers. This suggests that NADI is suitable for data-intensive jobs; its consistent

performance further verifies the suitability of this approach.

Figure 5.4: The data transfer time for all jobs

The completion time includes the time required for queuing, processing and accessing

certain data for a job. The queue time is almost proportional to the execution time

because, if the job is running and taking a lot of time, the waiting time of the next job

will also increase since it will spend more time in the queue. Although the execution

time does not include queue times, a larger number of jobs running in any CN can

influence the queue time. Furthermore, increasing the number of jobs in the queue

can influence the overall completion times (such as the scheduling time, queuing time

and execution time) of the new jobs since they will be competing for the resources

to get an execution slot, especially if the jobs are composed of sub-jobs. In addition,
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the completion time includes the time required to access the data remotely or locally

for every single job. This is primarily due to the fact that NADI preferentially selected

those CNs for job execution, which could quickly execute jobs (i.e., those that have short

local queues with low latency). Figure 5.5 shows the execution optimization achieved by

employing the NADI algorithm. It can be seen that, with an increasing number of jobs,

the completion performance increases; this indicates the effect of the NADI scheduling

approach for the job scheduling. By comparing the approach with Hussein’s [96] and

Piao’s [82] approaches, the NADI approach here shows the best performance, being

a result of considering the data transferring and computing times . In the proposed

approach, the network and CPU parameters are considered to select the best CN before

making any VMs’ scheduling decisions for data-intensive jobs.

Figure 5.5: The completion time for all jobs

Figures 5.6 illustrates the 10 CNs resources’ usage (CPU, bandwidth and RAM)

that host the 25 VMs. Figure 5.6.a illustrates the CPU usage, and it may be seen that

both NADI approaches still have the advantage over Hussein’s and Paio’s algorithms.

This is because the approaches choose the CNs wisely and based on how busy the CPU

is. Figure 5.6.b describes the bandwidth usage, which, in Paio’s approach, eventually

deteriorates due to the requirement of file transfer times between the application and

the SNs. Both NADI algorithms and Hussein’s algorithm get better results because they

consider the files’ total transfer time on each CN. Figure 5.6.c shows the RAM usage
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Figure 5.6: Comparison of the CNs overall resource usage

rate among different proposed algorithms that have been mentioned in section 5.4. It

was observed that the NADI solution can minimise the RAM usage and will increase the

application efficiency. It checks the signification of the CPU load because they have a

correlation that is shown by statistics that have been gathered from between RAM and

CPU for the whole results. Thus, the RAM usage is minimised. During the run time, if

the performance of an application is affected significantly, it is often because of factors

such as high CPU usage and high memory usage of the CN where it is hosted. So, CPU

usage and RAM usage can often correlate, but this cannot be generalised [140–142].

When the algorithms are compared, it is observed that the NADI algorithms generally

have the best values. In contrast, the main disadvantage of Hussein’s algorithm is in

increasing the bandwidth usage because it replicates the majority of files in order to

increase the reliability. This could affect the communication between an application

and its files during the replication service. If we looking closely the NADI approaches,

is is seen that the previous approach of NADIv1 is slightly better than NADIv2 in

the short term, but it will improve whenever the workloads, number of jobs and data
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size increase. This will be shown in the next investigation, which will be discussed in

the following section. Figure 5.6.d demonstrates the number of CNs utilised by the

scheduler to place the VMs. Here, all the proposed algorithms distributed the VMs on

CNs evenly because every approach has its own way of optimising these VMs (depending

on the optimization objectives). The only objective of Piao’s algorithm is to place the

VMs on the CN that has the least network bandwidth between SN and CN, whereas

Hussein’s approach only aims to create many replicas to improve system reliability. The

NADI approach is a mixture of this objective and using replication in order to see if

the application performance will be enhanced. It is important to decrease the usage

of resources and increase the application performance at the same time. As shown in

Figures 5.7 and 5.6, the NADI solutions minimise the total usage of resources, and the

overall completion time is shown in Figure 5.5, thus improving the performance for the

applications.

Figure 5.7: The overall resource utilization rate

In the following figures, some of the parameters have been changed (as shown in

Table5.2). In this test, a large-scale evaluation was used to make it more complicated

by increasing the total number of VMs per each user; every VM has a requested number

of files . This test used the second scenario, which was discussed in Section 3.2 of chapter

3. As a result, there were three DCs, and every DC had 350 CNs. The simulation ran for

10 minutes, and each minute there were some requests for VMs that needed to be placed
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. These VMs increased gradually every minute (from 150 to 1500 in total). Each VM

requested 3 to 5 files that were spread over the distributed SNs. The jobs also increased

gradually in each round from 50 to 1500 . In addition, the same comparison as Hussein’s

approach [96], Piao’s algorithm [82] and the previous NADIv1 approach [121] are used.

Parameters Values

Number of DCs 3
Number of Users 50-1500
Number of jobs 50 - 250
Number of files 3- 5
File size / job [1, 30] GB

Table 5.2: Parameter Settings for the Second Test in the NADIv2 Scheduler (3rd
Scenario)

As can be seen from Figure 5.8, the number of VMs and their jobs gradually in-

creased; thus, the workloads in the DCs increased significantly. So with these incre-

ments, the application performance could be degraded if the placement of applications

is not used wisely. In Figures 5.8.a and 5.8.b, in addition to the overall completion

time, we compared the individual components of the schedule (namely the data transfer

time and computing time of the scheduling approaches). From Figure 5.8.a, it can be

observed that both NADI solutions are the best results among others for data trans-

ferring time. Hussein’s algorithm is considered to be the worst one in most rounds,

although his solution was created to provide high availability and improve performance.

One of drawbacks to this approach is replicating the frequently used files more than

once in order to improve the overall reliability of the system. Despite the benefits of

the replication service, it minimises throughput and maximises the delay in the DCs’

network linksif it is used frequently without planning or awareness . So, it could affect

the communication between the CNs and SNs if the communication is done remotely;

thus, application performance will be degraded. Piao’s solution is the best only when

the VM requests a single file that is not possible to be achieved; this is because, in the

cloud environment, the data is distributed over many SNs. The scheduler should con-

sider all the files and choose the optimal CN that minimises the data transferring time.

Also, it should be observed that Hussein’s algorithm is better than Piao’s algorithm
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because there are many replicas over the DCs and because his algorithm determines the

best replica location to meet the specified QoS. Figure 5.8.b illustrates the computing

time, including the processing and waiting time. Hussein’s and Piao’s algorithms are

not considered to be compute-intensive aware, so their solutions give the worst results.

The differences are due to placing the VMs on the unsatisfied CNs. It was observed

that Hussein’s algorithm is better than Piao’s algorithm because, after choosing the best

replica, the communication with the data will be carried out locally. This will accelerate

the computing of jobs during the stage data in and out and waiting in the processor’s

queue. Thus, the job will be finished early. The new approach NADIv2 shows better

values than the previous algorithm NADIv1 because there is the possibility of replicat-

ing files if the replication service enhances the application performance and minimises

the total completion time; the previous solution, in contrast, lacked a variety of options.

Since both the data transfer and computing times for Hussein and Piao’s algorithms

are considered to be the worst results, the total completion time will also be unsatisfac-

tory . In Figure 5.8.c comparison graph, it is clear that the performance (or completion)

time of jobs obtained using NADIv2 was better than the other schedulers. The reason

for this was that the new approach NADIv2 works on selecting the stable connecting

links; this optimises the data-intensive scheduling process and chooses the optimal CN

(which has fewer job queues and processing delays) in order to reduce the completion

time. These two considerations not only improved the completion and processing times

of the jobs but also reduced the queue times of the jobs. Generally, NADI has improved

the completion time for all jobs since it selected CNs with the required data for the

job execution, had fewer loads and had fewer jobs in the queue; all this contributed to

the optimization of execution. CNs with a higher number of jobs already in progress or

heavily loaded CNs can lengthen execution times.
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Figure 5.8: The completion time for all Jobs

The usage of bandwidth, CPU, RAM and the total usage of resources (as shown in

Figure 5.9) have been evaluated. As can be seen in Figure 5.9.a, the NADI algorithm

generally has the best result compared to the other algorithms. The optimal solution is

due to the consideration of the CPU load. Hussein’s and Piao’s algorithms give the worst

results compared to these approaches; this is because their solutions did not consider

the CPU queues and loads. Figure 5.9.b shows that the bandwidth usage for the NADI

algorithm is better than the others because the available bandwidth in each link in the

DC’s network was considered and the optimal one. Piao’s algorithm considers the best

link between the CN and SN that stored the first file . Hussein’s approach is considered

to be the worst solution because it creates a number of replicas for a certain file ; as a

result, the available bandwidth is degraded, and the application performance is affected.

It can be observed that the percentage of usage is improved continuously whenever the

workloads and VMs’ requests are increased. The increase in network cost can also

affect the overall performance of the distributed systemespecially in terms of transfer

and communication time. Therefore, it is an important consideration for all scheduling

decisions. A lower bandwidth results in high network costs; the increase in network
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costs affects the overall performance of the distributed system. Figure 5.9.c shows that

the consideration of availability options (such as bandwidth and CPU) enhances the

RAM usage from 10% to 25%, reflecting positively on the application’s performance.

The new algorithm can decrease the usage of CNs and minimise the total execution time

(as shown in Figures 5.8.b and 5.9.c). The overall performance of the application will be

sequentially enhanced. By increasing the number of jobs, it is evident from Figure 5.9

that the average time needed to execute a job increases. More jobs competing requires

more time for a specific job to be completed. From Figures 5.8.c and 5.9.d, it is clear

that the NADI algorithm’s scheduling approach has improved the execution times of

the jobs. This time is calculated by dividing the available CNs by the number of jobs,

and it is indicative of the aggregated execution times.

Figure 5.9: Comparison of the CNs overall resource usage

The number of CNs allocated in the NADIv2 algorithm with previous approache

NADIv1, which were discussed in the previous section has been compared. Figure5.10.a

compares the total execution time for all VMs in each round, whereas Figure 5.10.b

compares the number of CNs selected between these algorithms. It can be observed

that the NADI algorithms minimise the total execution time while the total number of



Chapter 5. Virtual Machine Placement using Data Replication 144

used CNs increased. The execution time for these algorithms shows that the execution

time for the jobs can be reduced up to 47% if these algorithm’s are used. Since these

VMs are hosting data-intensive applications, data will be transferred between VMs while

the execution is in progress. Data transfer between VMs takes time depending on the

distance between these VMs and the amount of data being transferred. The overall

performance of the application will be sequentially enhanced. The new algorithm can

decrease the usage of CNs and minimise the total execution time (as shown in Figure

5.10). The overall performance of the application will be sequentially enhanced.

Figure 5.10: Number of VMs Allocated on CNs

Figure 5.11 shows the total number of replicated files that were used in each round.

The NADIv2 was compared with Hussein’s approach only because these two approaches

are used in replication services. Hussein’s algorithm is based on replicating all files that

are used frequently in order to increase the system’s reliability and availability . The

number of replicas for every file will increase dramatically in each node if there is a

better achievement for the new replication factor. The replication factor is defined as

the average rate of the popularity degree and the average availability of replicas on the

different SNs of a file. Whereas the popularity degree is defined as the future access

frequency for a certain file. In contrast, NADI usually does not use the replication service

unless it helps to increase the application efficiency and minimise the completion time.

The reason behind this is that the replicated files could increase the rate of network

latency, which affects any communication between the application and its related data

especially if the communication is done remotely. Thus, the application performance
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will be affected. In general, it is not possible to keep the VM access to its related data

local; due to the data volume capacity, CNs use constraints that restrict VMs from being

placed in the ideal CN [135]. As can be seen in Figure 5.11, the replication services

between these approaches are very different due to the research ’s main objective. The

number of replicated files in the NADI solution is lower in order to keep the application

performance high. However, Hussein’s algorithm increases the replication to maximise

the system’s reliability and availability as well as to deal with the data locally. Therefore,

it negatively affects the applications’ performanceas was discussed in the section on the

experiments . The NADIv2 was used for the replication service in order to maintain

application performance efficiency and minimise the throughput latency.

Figure 5.11: Number of Replication Service

5.4 Chapter summary

Sharing a vast quantity of storage resources, knowledge, information and computing

resources is greatly benefitted by cloud computing. The applications require data re-

trieval out of distributed storages; in the meantime , application performance could be

influenced by the available bandwidth between SNs and CNs with an unstable network

status. A network-aware, VMs-placement algorithm for a data-intensive approach has

been described in this chapter while considering computation power and its load, less

network traffic, and the locations of replicas. This approach is offered in order to obtain
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an optimised completion time for jobs in each VM. The NADI scheduling optimization

approach has been developed to generate the time-cost matrix for the overall completion

time of jobs and the optimisation of these values. It chooses the optimal site to allocate

the VMs, which requires the least amount of time . This approach has a Data Manage-

ment Service that deals with the data and their replicas’ information. The DMS has

been introduced; it consists of three major components, which are the Replica Location

Service (RLS), Replicator and Replica Catalogue. The RLS was launched to acquire the

most effective physical replica of the dataset, and it provides access to this information.

In contrast, the Replicator is used to replicate the required replica into the chosen loca-

tion. Every file has some copies of replicas that are distributed throughout the storages

in cloud DCs. So, this file and his replicas only have a Unique Identifier name UID .

These names will be stored in a database that maps between a Logical Filename (LFN)

and Site Filename (SFN) and is called the Replica Catalogue. However, each replica has

a LFN and a SFN. The LFN identified each replica, which can be looked up in a replica

catalogue. The SFN is used by the storage management system to allocate the replica’s

place. The algorithms that are used in this chapter have been explained in depth. The

results show a significant improvement on the average completion time by adopting the

NADI scheduling approach. The next chapter will discuss using the overlap technique

to reduce the computing time. This technique allows the transfer of data about jobs in

advance while it is queuing, waiting to be processed and other jobs are being executed.



6
Overlapping Data Transfer With Job Execution

In the previous chapter, the NADIv2 design was introduced and the update in the

DMS shown . The DMS consists of three major components, which are the RLS, Replica

Catalogue and Replicator; they have been discussed in detail. To summarise the roles

of these components, the RLS provides access to the chosen replica, and the Replica

Catalogue stores all the information between the replicas’ names and physical location.

The Replicator replicates the data in a chosen physical locationif it is commanded by

NADI. Through simulation results as well as graphical and analytical details , it was

demonstrated that this method significantly optimises the completion times of jobs and

improves the performance of NADIv2 especially when compared with the previous ver-

sion. Data-intensive applications require communication between CNs and SN, and the

placement of VMs and location of the data affect the overall computation time. For effi-

147
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cient computation, data-intensive applications require a larger volume of data, which is

higher than ever . Approaches that are aimed at intensive computation, such as conven-

tional scheduling approaches, do not consider the data requirement of the application,

which leads to poor performance. In the cloud environment, the scheduling of data-

intensive applications in an efficient manner is very challenging. Additionally, average

turnaround time and process utilization should be considered in such environments.

In this chapter, a NADIv3 scheduler approach will be introduced. It considers not

only the data’s location but also the computational power of CNs and its loads when

it makes the VM allocation decision. It also uses the overlap technique that allows a

job to pre-fetch the required data in advance while it is waiting in the CPU’s queue

and other jobs are being executed. This technique reduces the execution turnaround

time of jobs. Thus, it minimises the total completion time of jobs and enhances the

performance. Then, this chapter shows the new design of the NADI components and

how the overlap technique works. The main three components are the Data movement

Manager (DMM), Data Scheduler (DSC) and Local Disk Manager (LDM). The DMM

is responsible for executable transfer and anticipated data movement. To accomplish

this, a data movement specification file was created; then, it was delivered to the DS,

which traces all data transfer tracking . The LDS is responsible for allocating and

removing the required data on the CNs disk (Execution Site).

The DMM is responsible for executable transfer and anticipated data movement. To

accomplish this, a data movement specification file was created; it was then delivered

to the DS, which traces all the data transfer tracking . The LDM is responsible for

allocating and removing the required data on the CNs disk (Execution Site). More-

over, the results obtained from the simulation indicate considerable improvement of the

performance of jobs and shortening of the total completion time.
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6.1 Introduction

Cloud computing provides highly scalable, elastic services on demand on a pay-per-use

basis. Nowadays, the acceptability of cloud computing is very high, and it is increasing

day by day. The impact of cloud computing on our daily lives is significant, varying from

social networking to sensor networks. In modern scientific research communities, it is

increasingly common for many experiments to produce and process sets of data in terms

of terabytes or petabytes. For instance, every year, four high-energy physics experiments

conducted at Amazon EC2 generate and process many petabytes. More data is expected

to be produced and processed at Amazon EC2 as these experiments are expected to end

in 14 to 20 years [143]. Consequently, these applications also require large storage units

and resources for computation, which are normally distributed geographically. For the

data to be processed, the applications move the data to the computation sites. This data

transfer can take several hours or even days [144]. To solve complex problems, cloud

computing [145] enables users to tap into the capabilities of the various distributed and

heterogeneous resources.

Schedulers [107,146] are used to facilitate cloud computing. Jobs that are submitted

to the cloud are dispatched by schedulers to various sites where they are executed and

monitored. In conventional scheduling approaches, only the computational requirements

are considered while the data requirements are disregarded. As such, the movement

of data is coupled together with the computations, which necessitates computational

resources to be allocated while the data are being transferred. This approach has some

disadvantages. In most cases, there are dedicated nodes on the cloud (that are tasked

with the transfer of the data) as well as a shared file system for computational nodes

and the data servers. For this reason, no resources on the computational nodes are

required for the data transfer. This results in wasted computational resources during

the data transfer if the scheduler is unaware of data and when the movement of data is

carried out as part of the computation.

Additionally, cloud environments are normally characterised by different conditions
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of the network depending on the site. However, the lack of knowledge about the data

requirements makes it impossible for the scheduler to optimally select the computational

resource for the job, which results in poor performance (such as increased job turnaround

time and minimal utilization of the resources). For schedulers such as DAGMan [97]

and others that are data aware, data are first transmitted to a computational site by

a scheduler before being passed to the local scheduler. Though the use of resources

is improved by this approach, there are still limitations. This approach only picks a

computation site based on the computational aspects alone and does not consider the

data aspects. As such, the approach might pick a site that takes longer to transfer the

data compared to others. Also, the queueing of the jobs is only done after the data has

been transferred.

In this chapter, the third version of the NADI approach for VMs’ scheduling is

presented, which considers data and computation as well as the network features during

the allocation of VMs and the scheduling of multiple or single jobs. This chapter also

aims to improve the data-intensive turnaround time by overlapping the data transfer

time with the queuing time of the job and/or the computation time of other jobs.

6.2 NADIv3 design for VMs Placement Scheduling

The proposed NADIv3 takes into account not only computation resource requirements,

but also data requirements (storage space, network condition, etc.) when making

scheduling decisions. The assumption is that a job is composed of three stages: data

transferring-in, execution and data transferring-out. In the first stage, the input data

for the job is transferred from the precedent job CNs. In the execution stage, the job

runs with the input data and produces output data for the descendent jobs. In the

data transferring-out stage, the output data is transferred to the descendent job or is

submitted to the last job in the workflow. The execution procedure for all stages is

executed in a pipeline. The figure 6.1 illustrates the new scheme. The broker calculates

the computing time and the data transmission time for all jobs and chooses the optimal

computing node. In this model, the input data is fetched from a remote location in
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advance of choosing the computing node, which has the latest data transmission time,

queuing time and execution time. Then, every job’s data will be staged in advance

during the computation time of other jobs (overlapping). This approach attempts to

reduce job turnaround times by decoupling the SI and SO from the job execution and

utilising the computational resources. Compared to the previous approach, this solution

enhances resource utilization. The architecture of NADIv3 is constituted of two compo-

nents, which are NMS, DS, IS, DLS and WMS. The functionalities, actors and roles of

these components were discussed in chapter 4, section 3.3.2. The DLS component has

been slightly changed to DMS, which is more comprehensive (as shown in section 5.2.1

of chapter 5). In this chapter, the DMS has been developed to send data in advance

(overlap). This component is considered the main contribution , and it will be described

in the following sections.

6.2.1 Data Management Service

The main role of the DMS is to manage data requests, allocate data locations, transfer

and track data from SNs in advance to the CN-side, and clean up the disk. The DMS

contains a single component, which is the DMM.

6.2.1.1 Data Movement Manager

DS has the role of finding a suitable resource for VM’s jobs and its related data. JSCS

(discussed in detail in 4.2.5.3 of chapter 4) collects information that is useful in his

matching process. The moment a resource is selected, extra information is written in the

task specification file of the job. This information plays a vital role in guiding the JSCS

as the submission process continues as well as in guiding the DMM during the transfer

of data in the advanced processes . This means that the job will have no alterations

in the specification file. Thus, the DMM moves the expected data and completes the

executable transfer of the data. To achieve this, a data movement specification file was

created; it is submitted to the DSC and, consequently, the data transfer is tracked. The

DSC deals with the storage of data in heterogeneous surroundings and in the process of
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transferring data. It performs the following operations: preparation of data, verification

of control access and transmission of data. Additionally, it schedules the management

of the transfer of data, queues and monitors, and it ensures that they will be finalised.

The LDM found in the CN-side has the functionality of placing the data in a prior

arranged area inside the CN. The activities done by the LMD are the allocation of free

disk space and the creation/removal of the transitory area. If the application requests

more data, it usually contacts LDS, which requests the data from the DMM. Then,

the DMM offers the requested data by enquiring about its location from the Replica

Location Service.

Figure 6.1: NADIv3 Scheduler architecture

6.2.2 Algorithm

The algorithms below perform similarly to the previous algorithms (5.1 - 5.3), which

have been discussed in chapter 5 in section 5.2.2. Algorithms 5.1 - 5.3 try to minimise the

completion time and enhance the application’s efficiency. Thus, they decrease the data
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transfer time (whether the communication is local or remote) by creating a new replica

if the application performance requires that. They also try to reduce the computing

time by considering the queuing, waiting and execution times. In algorithms 6.1 - 6.3,

they try to minimise the execution time by staging in the requested data in advance of

the next jobs, while the current job is executed normally. This mechanism improves the

applications performance and minimises the overall computing time. In addition, the

functionalities of algorithms 5.1 - 5.3 are aimed at reducing the data transfer time. In

this section, these algorithms’ functionality is explained.

First, the broker receives all required resources from the users; the resources include

VM numbers, application details and data locations. Then, it communicates with the

discovery service to gather all the necessary information, such as the network status,

available resources and numbers of replicas. After that, it calculates the completion

time cost as was mentioned in chapter 3 (sections 3.5.1 to 3.5.3) and uses the replication

service if required or fetches the data remotely . The calculation of completion time

is divided into three types: jobs’ processing time, the time required for waiting in the

CPU queues and data transfer time (as was mentioned in section 3.5). Then, the broker

studies the possibility of files’ replication if the to DC has no have any replicas of the

required file as one of the NADI algorithm option. The replication service is usually used

when there are heavy workloads, and these files are used periodically. So, it helps to

improve the scheduling and execution optimization by reducing the frequency of remote

data access. In principle, to calculate the total time cost on any individual CN, the

completion time matrix must be generated by computing the data transfer time and

computing time among all available CNs in each of the DCs. This matrix consists of

all three options mentioned above (locally, remotely or using replication). If the total

cost of time for the remote CN is higher than the local cost (which contains the data or

the replica), then the VM is scheduled to the local DC. Otherwise, the VM, jobs and

data are moved (replicated) to the third location for efficient execution. At the end ,

the broker chooses the optimal solution from the various optionswhether the access to

data is local, remote or uses the replication service.
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In the following algorithms, a new mechanism was added that minimises the comput-

ing time by sending the requested data in advance to reduce the stage-in and stage-out.

This mechanism works due to the DMS which has two ways of dealing with the required

data (or replicas): locally or remotely. In the case of remotely accessed data, the data

movement manager will contact the data location service to allocate the replica’s loca-

tion. Then, the DMM will send the required data to the data scheduler, which will send

the data to the local disk for the chosen CN. If there are updates to other data, the

local disk manager will contact the DMM to provide the requested data. In the case

of locally accessed data, the local manager will provide the requested data for the local

SN to the local CN disk in advance in order to minimise the computation time. The

steps for the proposed VMs’ scheduling will be described (as shown in Algorithm 6.1).

Algorithm 6.1 VMs Placement using Overlap

Input: V VM List, D Required Data, C Computing node list S Storage node list and
J job List

Output: V List of VMs assigned to C list of computing node
1: for v = 1 TO V do
2: N = 0 ; uN = 0
3: for dc = 1 to Dc do
4: for s = 1 to S do
5: Check Datacentre has a replica R
6: if R 6= 0 then
7: N = N + 1
8: else
9: uN = uN + 1

10: end if
11: end for
12: end for
13: Chosen c ← NULL
14: TCT (J , D, S, R)
15: RTC (J , D,S, uR)
16: if Chosen c 6= NULL then
17: if CTimeDDT < CTimeReplication then
18: Allocation.add(v,Chosen c)
19: else
20: Allocation.add(v,Chosen c)
21: replication.add(D, dc(Chosen dc,Chosen s))
22: end if
23: Updating: Cap(Chosen c) = Cap(Chosen c) - Load(v)
24: end if
25: end for
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• (Input): The NADI scheduler first receives the user’s request details (number of

VMs, application jobs, related data location and required processing time), then

collects the resource information from the DSs such as CN availability (RAM, CPU

and bandwidth), SN availability and data location information. This information

comprises input parameters for the algorithm so that it matches all VM requests

for optimal CNs .

• (Output): All VMs in the VM list are assigned to CNs that are listed in the

CN list, thus, the CNs’ capacities (RAM, CPU and bandwidth) are updated.

• (Line 1): This is a loop that aims to place VMs from the VM request list one by

one.

• (Line 14) calls for the first function that calculates the completion time for all

application jobs, including data transfer time, among all available replicas. It

chooses the best replica for enhancing the application performance and minimis-

ing the overall completion time. This is accomplished by retrieving the data re-

motely or locally depending on the chosen CN and the location of the best replica.

Algorithm 5 provides full details about this option.

• (Line 14) calls for the first function that calculates the completion time for all

application jobs, including data transfer time, among all available replicas. It

chooses the best replica for enhancing the application performance and minimis-

ing the overall completion time. This is accomplished by retrieving the data re-

motely or locally depending on the chosen CN and the location of the best replica.

Algorithm 5.2 provides full details about this option.

• (Line 15): Similarly, this line calls for the second function, which is responsible

for the replication service. This function investigates how costly it is to replicate

a new place in the DCs that do not have any replicas for the selected data. It

calculates the time for copying the data to the new location plus all job completion

times. In this case, local data transfer minimises the overall completion time or
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perhaps the remote site is better than the local site. Algorithm 5.3 explains this

option in detail.

• (Line 16) ensures that the functions above find an optimal CN on which to allocate

the VM.

• (Lines 17-24) attempt to choose the optimal CN for minimizing the total comple-

tion time between the returning values from the above functions. Once it finds the

optimal CN, it places the first VM on it and updates the available CN resources

after the placement. At this stage, data can be accessed either remotely or locally.

In the case of replication, data, jobs and the VM will be sent to the new location.

• (Line 25): Reaching this line means that all VMs in the VM list have been suc-

cessfully allocated.

Algorithm 6.2 is responsible for choosing the optimal CN by calculating the jobs’

completion times, which include computing and data transferring times. It also esti-

mates the saving time using the overlap technique. During that , it will choose the best

replica among all replicas that are distributed over all DCs. Then, it will send all this

information to algorithm 5.1 (as was mentioned in previous chapter).

• (Input): will receive the application jobs’ requirements, all data replicas and

the list of storage locations that are hosting all replicas.

• (Output): will send the chosen DC, CN, best replica and the optimal overall

completion time for all jobs.

• (Line 1) includes variables that decide, first, the optimal replica, which is stored

in the SN. Second, they choose the optimal CN chosen c that has the minimal

completion time MinTCT and is executed in the certain datacentre chosen dc.

• (Lines 2-3) check and calculate the completion time in each of the DCs that have

a replica of the data. Otherwise, it will not execute the following codes if there

are no replicas in the selected DC.
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• (Lines 4-5) make sure that the selected CN has at least the minimum capacities

needed to place the chosen VM.

• (Lines 6-18), first, specify the replica’s location in the SN; then, they calculate

the job’s access time for every available replica and choose the best one. At the

end, the data access time will be calculated on the selected CN with the optimal

replica selection (as shown in equation 3.15).

• (Lines 19-20) only calculate the computing time for all jobs on the chosen CN as

described in equations 3.20 and 3.21.

• (Lines 21-26) calculate the saving time when using the overlap technique.

• (Lines 27-35) calculate the completion time by using the overlap technique for

the selected VMs’ jobs, which is the sum of the computing and data transferring

time with the optimal replica (as shown in equation 3.23). Then it assigns all

variables that are mentioned in lines 1 2 to the best values and sends them back

to algorithm 6.1.
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Algorithm 6.2 Calculates Completion Time using data transferring time

Input: vm(jobs), vm(Data),StorageList, R
Output: calculates processing time and waiting time CT
1: MinTCT ← MIN ; DTT ← MIN ; Best r ← MIN
2: Chosen dc ← NULL ; Chosen c ← NULL
3: for dc = 1 to Dc do
4: if N 6= 0 then
5: for r = 1 to R do
6: for s = 1 to S do
7: for c = 1 to C do
8: if Load(v) ≤ Cap(c) then
9: for j =1 to J do

10: JT = r / BW (s, c)
11: PT = Inst(j)/(cap(c)× core(j))
12: CT = St(j) + PT
13: if j > 1 then
14: DTT = JT - PT(j-1)
15: else
16: DTT = JT
17: end if
18: end for
19: if Olap < DTT then
20: Olap ← DTT ; Best r ← r
21: end if
22: TCT = Olap + CT
23: if TCT < MinTCT then
24: MinTCT ← TCT ; Chosen c =c ; Chosen dc =dc
25: end if
26: end if
27: end for
28: end for
29: end for
30: end if
31: end for
32: return MinTCT ,Chosen dc, Chosen c , Best r

Correspondingly, algorithm 6.3 checks the possibility of data replicated to DCs that

do not store any replicas. Then, it calculates the replication service cost, which includes

storage writing time, saving time using the overlap technique and the total completion

time of the job. Subsequently, it chooses the best CN, which minimises the completion

time. At the end , it will send the best information concerning the resources, including

the CN, SN, DC and completion time, to algorithm 6.1, which decides to use replication

or data transfer (remotely or locally) based on the optimisation decision (as mentioned
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previously).

Algorithm 6.3 Calculates Completion Time using data Replication

Input: vm(jobs), vm(Data),StorageList, uR
Output: calculates processing time and waiting time CT
1: MinComTime ← MIN
2: MinST ← MIN
3: ChosenDc ← NULL
4: ChosenCn ← NULL
5: for DC in DcList do
6: if R 6= True then
7: for Cn in CnList do
8: if Load(vm) ≤ Cap(Cn) then
9: for job in JobList do

10: for S in StorageList do
11: ST = data(job)/ WD(S,DC)
12: if ST < MinST then
13: MinST ← ST
14: ChosenS = S
15: end if
16: end for
17: PCap = Inst(job)/(cap(Cn)× core(job))
18: ComputingT ime = St(job) + PCap
19: RT = data(job) / BW (ChosenS,Cn)
20: if job > 1 then
21: StartOvelap = starttime(job -1) + RS
22: end if
23: JobsComT = StartOvelap + ComputingTime
24: end for
25: if JobsComT < MinComTime then
26: MinComTime ← JobsComT
27: ChosenCn =Cn
28: ChosenDc =Dc
29: end if
30: end if
31: end for
32: end if
33: end for
34: return MinComTime,ChosenDc,ChosenCn,ChosenS

• (Input): will receive (as in algorithm 6.2) the application jobs’ requirements ,

the storages list and DCs that do not store any replica for the required data and

the replica source.

• (Output): will send the chosen DC, CN and SN, which are considered to be the
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optimal and the total completion times for all jobs.

• (Line 1) has some variables that are decided; the optimal storage chosen s will store

the new data replica and the cost of replica time MinTVM . Second, it chooses

the optimal CN chosen c that has the minimal completion time MinComTime and

is executed in the certain datacentre chosen dc.

• (Lines 2-3) only check each DC that does not have a replica of the data. Otherwise,

it will not execute the following codes, if there is at least one replica in the selected

DC.

• (Lines 4-5) make sure that the selected CN has at least the minimum capacities

to place the chosen VM.

• (Lines 5-14), first, check that each DC that does not have any copy of data how

, the costly of replication, including the available bandwidth between the data

source and the new SN chosen s and data writing time in every SN as mentioned

in equations 3.13 and 3.14. Then, it returns the best SN chosen s and the optimal

time for replication MinTVM.

• (Lines 15-17) calculate the intra-data transfers between the new SN that has the

new replica and the chosen CN.

• (Lines 18-19) are a set of calculations that compute the queuing, processing and

data access times for every job on the chosen CN (as described in equations 3.15

and 3.20).

• (Lines 20-24) are calculating the saving time when using the overlap technique.

• (Lines 25-33): Now, it is time to calculate the completion time for all jobs on

each of the CNs as discussed in equation 3.24. The completion time consists of

the sum of computing and data transferring time using the prefetching technique

and replication cost. Then, it will compare these times to select the best DCs’

resources, including CN and SN.
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• (Line 34) assigns all variables that are mentioned in lines 1 2 to the best values

and sends them back to algorithm 6.1. These variables are the optimal CN, the

minimum time for replication and communication, and the best SN that will store

the data for replication.

6.3 Simulation results

In this section, the simulation aimed at evaluating the proposed adaptive Cloud Place-

ment algorithm are presented. CloudSim’s [37] discrete-event cloud simulation was used

to model the cloud environment. Later in the section, both the simulation set up and

the workloads used for the evaluation are described.

6.3.1 Simulation Set Up

The simulated model was composed of one cloud DC that contained 10 CNs. Each

CN had two quad-core processors and 16 GB of RAM. The CN hosted user application

instances and the mechanism . The DC had one broker that received users’ requests

and placed the VMs on the appropriate CNs based on the allocation algorithm that was

used. There were 25 VMs that required one core and 2 GB of RAM. The total number

of files was 25, which were distributed over the SNs in the DCs, and the size of each

file was between 0.1 MB and 3.0 GB (generated randomly). Every VM had a different

number of jobs (e.g., 50 jobs gradually increasing to 100 ,..., 250 jobs). Every job needed

to access certain data 1 3 files, which were stored on an SN (chosen randomly). Table

6.1 shows all the parameters that were used. This test used the second scenario, which

was discussed in section 3.2 of chapter 3.

Parameters Values

Number of CNs 10
Number of VMs 25
Number of jobs 50 -250
Number of files 1-3
File size / job [100 - 3000]MB

Table 6.1: Parameter Settings for the First Test in the NADIv3 Scheduler (2nd
Scenario)
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6.3.2 Simulation Evaluation

As shown in Table 6.1, the second scenario used the same parameters as scenarios

described in the previous two chapters. The overlap technique (i.e., prefetching data

while jobs queue) is also used in the SPE algorithm, although it neglects CPU load and

wait times. Additionally, these factors are not taken into account during VM allocation,

which could increase computing time. Figure 6.2 shows the total computing time for

the jobs, which increase in number from 50 to 250. SPE [111], NADIv2 were also

discussed [122], and NADIv3 was the algorithm used for the comparison [147] because

it minimises computing time in the majority of cases by prefetching data during job

queuing and considering CPU loading times. Improvement was observed in computing

time when comparing NADIv3 to NADIv2.

Figure 6.2: The computing time for all jobs

Figure 6.3 illustrates data transfer time for all jobs. NADIv3 does not enhance

this time significantly because it is the final version of NADIv2, which considers data

transfer time as discussed in Chapter 5. NADIv3 is differentiated from NADIv2 by its

use of the overlap technique, among other factors . The SPE approach provides the

slowest data transfer time, although it prefetches data to enhance application perfor-

mance. Poor placement decisions can lead to VMs being allocated in instances of high
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network latency or heavy CPU loads, which affects overall application performance.

The amount of VMs placed on CNs is a poor allocation policy . Figure 6.4 shows the

total completion times for the three compared approaches. The new technique reduced

overall completion time and enhanced application performance. The overlap technique

alone cannot guarantee the enhancement of the application performance because other

factors degrade performance, such as CPU load, available bandwidth, the number of

waiting jobs in CPU queues and data location.

Figure 6.3: The Data transferring time for all Jobs
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Figure 6.4: The completion time for all Jobs

Figure 6.5 illustrates the resources used during the investigation, including the CPU

usage, bandwidth and memory and VM allocation statistics for the CNs. Figure 6.5.a

shows that CPU usage for the SPE approach was higher for the first five CNs because

the allocation policy placed more than one VM on one CN, which increased CPU usage

. Both NADIv2 and NADIv3 allocated VMs on optimal CNs with smaller CPU loads.

Figure 6.5.b shows the bandwidth usage for all three approaches; NADIv2 and NADIv3

exhibited the best results, although there was some fluctuation in the rise and decline

values due to data fetching for both current and queued jobs. The SPE algorithm had

the highest bandwidth usage because available bandwidth was shared among the VMs.

Figure 6.5.c shows memory usage, revealing that the SPE approach used the most

memory, which can degrade application performance. In some cases, slight increases

and decreases in the memory usage of NADIv3 and NADIv2 resulted from the overlap

technique, which also fetched data for current and queued jobs. This increased RAM

usage during job execution and decreased RAM usage when job processing was complete.

There was a correlation between CPU and bandwidth usage increases and decreases

and memory usage. Figure 6.6.d shows the number of used CNs allocated to VMs: the

SPE algorithm used five CNs and left the remaining five CNs in an ideal mode. This
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technique minimised energy consumption while increasing the rate of VM allocation

on one CN. As usage increased, application performance began to degrade. Figure

6.6 shows the total resources used, and Figure 6.4 illustrates total completion time.

Thus, NADIv3 minimises overall completion time and resource usage and enhances

applications performance.

Figure 6.5: Comparison of the CNs overall resource usage

Figure 6.6: The overall resource utilization rate
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In the following graphs, the scenario discussed in Chapter 3, Section 3.2 is depicted.

This scenario used a large-scale and complex evaluation that increased the total number

of VMs per user, with each VM requesting a number of files. There were three DCs,

with each DC having 350 CNs. The simulation ran for 10 minutes, during which time

requests for VM allocation were continuous, and VMs increased from 150 to 1500. Each

VM requested 35 files spread over the distributed SNs. The jobs also increased gradually,

from 50 to 1500 in each round, as shown in Table 6.2. Again, the SPE, NADIv2 and

NADIv3 algorithms were compared.

Parameters Values

Number of DCs 3
Number of Users 50-1500
Number of Jobs 50 - 250
Number of files 3- 5
File Size / Job [1, 30] GB

Table 6.2: Parameter settings for the second test in NADIv2 Scheduler (3rd scenario)

Figure 6.7 compares job lifecycle times from the execution stage to completion in

scenario two. Figure 6.7.a shows that NADIv2 and NADIv3 have the same results for

data transfer time because the algorithm is the same; however, NADIv3 outperforms

NADIv2 because it uses the overlap technique to prefetch data and minimise execution

and waiting times for jobs. The SPE algorithm increased the burden of the network

by increasing the maximum data rate and reducing available bandwidth, leading to a

network bottleneck.
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Figure 6.7: The completion time for all jobs

Figure 6.7.b shows that prefetching data enhances computing and job completion

times, when using NADIv3. The SPE algorithm also used the overlap technique; how-

ever, slight increases in simulation result times revealed that insufficient bandwidth for

data transmission of links created heavy data transmission between the application and

the SNs. Thus, the required data arrived late, delaying job execution. Minimising both

data transfer and computing times reduces job completion time to increase application

performance (6.7.c). Whenever jobs increase, so does data size, the number of required

files and the workload, and in this case, NADIv3 provides better results and enhances

application performance.
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Figure 6.8: Comparison of the CNs overall resource usage

The same test was used to evaluate resource usage (Figure 6.8). Figure 6.8.a shows

a slight decrease in CPU usage for NADIv3 compared to NADIv2 because of the overlap

method that stages I/O data before job processing, minimising wasted time for queued

jobs. A significant negative difference was found between NADIv2 and NADIv3 and

SPE, despite the fact that the SPE algorithm uses the same technique. This difference is

due to poor bandwidth conditions that cause huge amounts of data to transfer between

CNs and SNs, which increases wait times for jobs. The scheduler should take the network

state into account because network status is changeable and can affect the job execution

cycle dramatically. Figure (6.8.b) shows that ignoring network conditions leads to long

data transfer times and creates network bottleneck. NADIv3 created slight fluctuations

in values compared to the other algorithms because the overlap technique fetched data

for both current and queued jobs.

Figure 6.8.c shows memory usage, and SPE required the most memory, which de-

graded application performance because of the number of VMs allocated on one CN.

These VMs shared the same CN resources (i.e., CPU, RAM, bandwidth and local disks;

Figure 6.9), and the VM allocation algorithm did not take into account available band-
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width and data location for CPU loads and speed. In contrast, the NADI algorithms

minimised memory usage in addition to CPU and bandwidth usage because the VM

allocation algorithm considered these factors. Memory usage was reduced by correlating

CPU and bandwidth usage to memory usage. Memory usage for NADIv3 was affected

instantly due to the overlap technique, which is similar to the results obtained for

bandwidth usage (Figure 6.8.b). Such fluctuations show that the NADI algorithms are

optimal but depend on the period of time . Thus, resources usage improves sequentially

because of enhanced CPU, bandwidth and memory usage (Figure 6.8.d), and NADIv3

enhances application performance and minimise completion time by load balancing DCs

and maximising workload throughput (Figures 6.7 - 6.8).

Figure 6.9: Number of VMs Allocated on CNs

The previous test monitored both the number of allocated VMs on the CNs and

the total execution time for all VMs in each round (Figure 6.9). Figure 6.9.b shows a

comparison of the execution times of these algorithms and shows that NADIv3 minimises

total execution time and provides optimal results. Because VMs host data-intensive

applications, data transferred between VMs during execution takes time depending on

the distance between the VMs and size of the data that is transferred. Figure 6.9.a

shows no difference between NADIv3 and NADIv2 VM allocation because the same

placement algorithm is used to minimise completion times and enhance application

performance. The primary difference is the computing time, which is improved when

data are fetched before jobs are processed. Available bandwidth and data location for



Chapter 6. Overlapping Data Transfer With Job Execution 170

the CPU loads are not accounted for when using the SPE approach, which degrades

application performance because unequal amounts of VMs are allocated on one CN

and share the same resources. NADIv3 improves application performance by reducing

execution time by 27%, by decreasing CN usage and by minimising total execution time

(Figure 6.9). However, it increases the total number of CNs allocated to VMs, which

increases power consumption in DCs.

Figure 6.10: Queuing time versus Number of jobs

Execution time is usually longer than processing time because the CPU may be

handling other tasks apart from running a process, such as user and operating system

tasks or network and disk input or output. Execution time does not include queuing

time. Figures 6.10 and 6.11 show queuing and execution times for workload manage-

ment using NADIv2 and NADIv3, which are compared using an overlapping algorithm

scheduler. In this simulation, the same number of jobs (50) was submitted to both

algorithms, and the queuing and execution times were calculated; then, job number was

increased to 1000 to monitor how queue size increases over time and in what proportion

the scheduler submits jobs to determine whether jobs are submitted to a specific site or

to a number of CPUs at different locations, depending on the queue size and the com-

puting capability. The queue times were plotted to investigate how this time increased

and decreased with the number of jobs. The results of this test are presented in Figures

6.10 and 6.11, which show that both queue and execution times follow similar trends.

The overlapping algorithm improves job execution time because it selects only those

CNs for job execution that contain the required data and have smaller loads and fewer
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queued jobs.

Figure 6.11: Execution time versus Number of jobs

6.4 Chapter Summary

Data-intensive applications are becoming more common but require larger volumes of

data to run efficiently. Intensive computation approaches, such as conventional meta-

scheduling, do not consider application data requirements, which leads to poor perfor-

mance. A major challenge in cloud environments is scheduling application data in an

efficient manner, and the average turnaround time and processing of jobs should be con-

sidered in such environments. In this chapter, a NADI was proposed, with a final version

that considers both computational and data requirements for VM allocation decisions.

Additionally, NADIv3 overlaps data staging and job execution and transfers data during

job queuing as other jobs are being executed. This technique improves the average job

turnaround time significantly. This version is final because it considers data location,

computation power and load, replication service, available bandwidth and prefetched

data. This approach was designed using data management service components that

manage, track and transfer data between source and execution nodes. The algorithms

were explained in depth, alongside the results from the simulation test, which revealed

considerably improved job performance and minimised job completion times. In the

next chapter, the contributions of this thesis are summarised, the accomplishments of

the thesis are presented, and research issues for future investigations are highlighted.



7
Conclusion

This chapter is divided into two sections. Section 7.1 summarizes the whole thesis

and presents a brief review of the issues and approaches taken throughout the text.

Section 7.2 discusses the future direction of the work that emerged during this research

or that is related to issues that were relevant but outside the scope of this research.
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7.1 Summary of the thesis

Cloud computing offers the opportunity to share knowledge, information and DC re-

sources among Cloud users. In cloud environments, the use of data-intensive appli-

cations is becoming more common. The applications require data retrieval from dis-

tributed storages, and in the meantime, application performance entirely could be in-

fluenced by many factors such as the locality of data, CPUs’ attributes and loads and

the available bandwidth between SNs and CNs with an unstable network status. Data

intensive scheduling can be significantly improved by taking into consideration a com-

bination of network, data and compute costs. This thesis takes into account these

considerations during VMs allocation to enhance data-intensive applications’ and job

performance and to minimize total completion time.

Chapter 1 presented the motivation and objectives of the research. It described the

organization of the remaining chapters and highlighted the methodology adopted for

the research.

Chapter 2 introduced cloud computing and various enabling technologies, including

networks and virtualisation. Current trends in the design of cloud DCs architecture

were explored in more detail. Additionally, Chapter 2 presented the facilities to develop

cloud service by using modelling and simulation. It also identified research efforts in

VMs placement and migration in cloud management. The chapter concluded with a

summary of research efforts in the area of cloud computing and identified the specific

areas that the research focused on.

Chapter 3 outlined the mathematical and theoretical explanation of the NADI

scheduling framework and described the various components, actors, and roles in the

framework. It has been demonstrated that with aid of mathematical equations, a ma-

trix of various scheduling costs can substantially enhance the process of scheduling when

every task is submitted and executed after considering particular related costs. In ad-

dition, this chapter offered a general overview of requirements of NADI scheduling and

named the salient characteristics of such a system. Of those characteristics, it was noted
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that location of the data is the most important consideration to the working of opti-

mum cloud. Therefore, it should to be one consideration affecting scheduling decisions.

It was also concluded that the best network path to storage and computing should be

acknowledged. Then the scheduler should incorporate and calculate measurements of

the network when planning to submit jobs.

Chapter 4 proposed the first version of a network-aware VM placement algorithm

for data-intensive applications in a cloud environment (NADI). Then it showed the

relationships between NADI design components, including the broker, data location

service, network monitoring service, information service and discovery service. The

algorithms used in this section were also explored in greater detail, and simulation

tests were performed to examine the NADI algorithm. Through these tests, it was

demonstrated that data location, network latency and computational resources can

significantly affect application performance. Thus, the VM allocation scheduler should

be capable of optimising the data-intensive scheduling process. It is necessary to control

the location of VMs so the applications hosted by a VM can obtain a shorter data

access time. It was also demonstrated that the keys to cloud optimisation include

network-managed services and a suitable selection of the network links between DC

locations before making scheduling decisions. Also, overall queue and execution times

can be significantly reduced if job data requirements and completion times are taken into

account. It was also concluded from the simulation results on CloudSim 3.0 that NADI

is better in scalability and consistency compared to other contemporary scheduling

approaches.

Chapter 5 described the second version of NADI with consideration of computation

power and its load, less network traffic and replica locations. This approach obtains

an optimized completion time of jobs in each VM. The NADI scheduling optimization

approach has been developed to generate the time cost matrix for an overall job com-

pletion time and optimized among these values. Then, it chooses the optimal site to

allocate the VMs on that costs least in time . If there are any enhancements for job per-

formance by using replication service, NADI makes the decision to replicate the required
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replica to the chosen location. Otherwise, it will optimise the best one. Additionally,

the changeable component in NADI was in the data management service (DMS) that

deals with the data and the replicas information. The main role of DMS is to man-

age replicas, generate new replicas if needed and give the access and location for these

replicas. The algorithms used in this chapter have been explained in depth. The results

show a significant improvement on the average completion time by adopting the NADI

scheduling approach.

Chapter 6 proposed the final version of NADI scheduling that takes into consider-

ation both the computation requirements and the data requirements to make the VM

allocation decisions. Additionally, NADIv3 overlaps between staging the data and exe-

cution for the jobs. Consequently, it transfers the data in advance for a job with its own

queuing time and at the same time on other jobs are executing. This technique improves

the average job turnaround time significantly. This version is considered the final that

considers the data location, computation power and load, replication service, available

bandwidth and pre-fetching data advanced. This design has been changed slightly in

term of the data management service components. These components manage, track

and transfer data between the source and execution node. The algorithms used in this

chapter have been explained in depth. Results obtained from the simulation experiment

indicate considerable improvement of jobs performance. Compared with the previous

approach, jobs execution has been enhanced. Sequentially, the overall completion time

is improved significantly.

7.2 Future Directions

Cloud computing presents many challenges to system administrators, application devel-

opers, service providers and engineers [148–150]. In the following section, the challenges

related to scheduling and management of workflows on clouds of data intensive appli-

cations are discussed.
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7.2.1 Scheduling based on energy efficiency

DCs consume a lot of power, so they are very expensive to operate [151]. For example,

the combined energy of worldwide DCs is equal to that of the Czech Republic [152].

The outcome is an increase in carbon footprints in their surroundings. To address this

issue, there is a need to come up with an efficient allocation of energy resources and

develop an effective algorithm. The challenges faced are :

• ways of balancing the performance and energy consumption of the DCs while

making scheduling decisions; and

• ways of selecting DC locality to ensure that energy consumption, operation cost,

and data security adhere to the terms in SLA as signed by the users.

DCs performance is based on the usage and provision of the hardware devices pro-

vided by the VM management software per the user’s requirements. When the number

of CPUs increases, it raises the hardware temperature, which calls for DC cooling.

Therefore, the DC performance and energy consumption are directly interconnected.

When the DC network equipment and commodity hardware prices get cheaper, the

important overall operational cost of cloud services is based on the amount of energy

that the DC has consumed. Adapting efficient energy scheduling policies can help the

DC conserve energy and also save on cooling costs. Application schedulers can use the

statistical information acquired by the sensors while submitting data and jobs to be

computed across VMs.

As can be seen in Figures 4.10, 5.10 and 6.9, the number of CNs used in the NADI

algorithm is the greatest amongst the compared algorithms. The main reason for this is

to decrease CN’ usage and to minimise the total execution time. Consequently, the jobs

performance is enhanced. However, this also increases the total number of CNs hosting

VMs, which increases the DC’s energy consumption. Therefore, energy consumption will

be implemented in the NADI algorithm as a future research direction. The next version

of NADI will try to maintain a balance between energy consumption and enhancement
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of the jobs performance. As it is known that these two objectives may conflict, only one

of the optimisation algorithms will be used.

7.2.2 Management of VM images and data as workflows

Virtualization enhances servers’ consolidation to host the services in a multi-tenancy

way on autonomous virtual machines. When the number of VMs created is huge, they

need to be managed to ensure that users receive high-quality services. To ensure the

expected QoS is delivered, VMs are migrated to appropriate servers, and later a dynamic

consolidation is done to the physical servers. Migration is concerned with moving huge

data across the servers, which can overload the system, especially when migration is

forced or occurs regularly in a huge DC. Migration of the jobs can be illustrated as a

workflow to maintain the QoS of the user and to prioritize and maintain VMs transition

without interfering with the service. These capabilities raise a challenging question.

• How do the service providers handle a huge amount of data and VMs migration?

It is common practice for the manager not to reveal the storage or computing re-

sources contained in the service provider to the clients. A client, therefore, may select a

certain provider based on advertisements and reputation. If the service receives a huge

number of requests, it is forced to overload the system to meet them. Managing the load

in infrastructure and a large number of requests becomes the main challenge [153]. To

address this scenario, service providers migrate, scale out and replicate the VMs [154]

to underutilized resources. Scheduling and representing this complicated process as a

workflow become challenging since instantiation of huge VM numbers in DC introduces

hardware and software barriers [155].

Basically, NADI has focussed on VM placement to improve applications and CN

resources such as memory, CPU and bandwidth. As network status is changeable,

which may significantly influence the jobs’ performance, NADI only focusses on the

initial placement of VMs, which does not consider how to manage a DC’s network

state. When the link between an application and its rerated data has been degraded,
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NADI should consider migrating the affected VMs to a suitable CN that is guaranteed

to enhance the jobs’ performance.

7.2.3 Job monitoring and migration

The dynamic environment of the cloud system is prone to predictable changes such

as performance degradation, network failure and changes in resource costs. In such a

scenario, migrating the task remains the only effective way to ensure that the submitted

tasks are accomplished and the constraints of the user are met. The major jobs that

are migrated include check-pointing, task monitoring and rescheduling. According to

Allen et al. [156] and Huendo et al. [157], systems that deal with task migration solve

migration issues from the performance view. The major migration policies considered in

these systems are the detection of best, resource, performance slow down, cancellation

of jobs and system failures. However, Chauhan and Babar [158] present a system that

can manage the migration of jobs under certain economic conditions. In this scenario,

there should be consideration of new job migration policies such as discovering cheaper

resources and price changes of when the job is being executed. Many different reasons

can lead to resources modifying their prices dynamically; for example, a change of prices

can occur as a result of demand. Additionally, price fluctuation can occur depending

on the day or time. For example, prices can be relatively cheaper during weekends or

nights. A task monitoring and submission web service does not offer network- aware

scheduling , and it solely depends on other scheduling tools to come up with a scheduling

decision. Additionally, it does not provide a policy based scheduling or data intensive

scheduling algorithm [159].

The network condition is changeable, which may significantly influence jobs’ per-

formance. Thus, NADI should consider the jobs’ migration first instead of migrating

the VMs due to the small size of a job and the related data location. NADI’s objec-

tive is to enhance the applications performance and to maximise the links throughput.

The VMs’ migration may place a larger burden on the network status and degrade the

performance of the application.
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7.2.4 Distributed parallel processing

The application allows several machines run actions simultaneously to minimize the

running time by allocating a bunch of activities to each virtual machine. Cloud com-

puting makes it simple to represent and release an expansive number of virtual machines

over time due to the availability of virtual machines and a flexible model. The situa-

tion is propelled by the International Telecommunication Union use case in which the

traditional client data request and evaluation frameworks require all information to be

handled inside a common server. Thus, hardware size becomes the hindrance to efficient

productivity, and the existing system takes a lot of time for some applications. In light

of the constraints of the system, allowing data inquiry and data extraction tools simul-

taneously on the distributed processing framework is the best solution and accomplishes

huge adaptability by utilizing a well-distributed record framework and fast handling in

view concurrent loading, extraction, transformation and computing. The parallel pro-

cessing system may require association among the different components since they must

work concurrently [19].

In this thesis, NADI only used centralised processing for job execution. However,

in a cloud computing framework, there are many sorts of applications, including web

and distributed applications [10]. The web application is partitioned into web, infor-

mation and application layers. Distributed applications involving online business or

logical calculation are generally separated to different subtasks, and there are calcu-

lation practices and data transmission between one particular subtask and another.

Correspondence ability and execution time of subtasks or application is influenced by

communication rate, which is the main obstacle to multiple task execution in a cloud

framework. There is the requirement to claim physical resources, primarily CPU and

memory resources, so an application is typically partitioned into several subtasks that

are transmitted to the computation hub on a substantial scale. Hence, communication

rate among physical devices influences the time an application ends [10]. Therefore, it

might be useful if NADI used distributed parallel processing to be compatible with the

current cloud framework used in the next version.
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