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Abstract 19	

The classical example of non-additive contributions of the two parents to 20	

allopolyploids is nucleolar dominance, which entails silencing of one parental set of 21	

ribosomal RNA genes. This has been observed for many other loci. The prevailing 22	

explanation for this genome-wide expression disparity is that the two merged genomes 23	

differ in their transposable element (TE) complement and in their level of TE-mediated 24	

repression of gene expression. Alternatively, and not exclusively, gene-expression 25	

dominance may arise from mismatches between trans effectors and their targets. Here, 26	

we explore quantitative models of regulatory mismatches leading to gene expression 27	

dominance. We also suggest that, when pairs of merged genomes are similar from one 28	

allopolyploidization event to another, gene-level and genome dominance patterns 29	

should also be similar.  30	

  31	
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Gene expression dominance in allopolyploids 32	

Increasing molecular evidence points to non-additive contributions of the two 33	

parents to gene expression in allopolyploids and hybrids. The classical textbook 34	

example of ‘gene expression’ dominance is nucleolar dominance, in which one parental 35	

set of ribosomal RNA genes is silenced in an interspecific hybrid or allopolyploid. This 36	

can be recognized even at the chromosome morphological level. For instance, early 37	

work in the 1930’s documented that Crepis species have a single chromosome with a 38	

nucleolar organizing region (NOR) that forms a secondary constriction [1]. In 39	

interspecific hybrids, only the NOR derived from one species (the dominant NOR) forms 40	

the characteristic chromosomal structure. This phenomenon has been confirmed and 41	

further studied in the molecular era [2] and has also been observed in animals such as 42	

in hybrids of Xenopus [3].  43	

 44	

The favoring of expression of only one of two ancestral duplicates is not 45	

restricted to rDNA genes. For example, an analysis by Adams et al. (2003) showed that 46	

the parental subgenomes in synthetic allopolyploids involving the ancestors of the most 47	

widely cultivated cotton, Gossypium hirsutum, do not contribute equally to the 48	

transcriptome of the polyploid. Interestingly, expression patterns in synthetic polyploids 49	

can recapitulate those found in the naturally-occurring cotton [4]. This shows that 50	

evolutionarily persistent patterns of expression can appear just after polyploidization [5].  51	

 52	

More generally, in recent years it has become evident that gene-expression 53	

dominance (or genome dominance if at a genome-wide level) is a characteristic feature 54	
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of many, but not all allopolyploids (reviewed in [6,7]). The prevailing explanation for the 55	

preferential expression of homoeologs (duplicated genes) from only one of the two 56	

progenitor genomes is that the two parents differ in their number and distribution of 57	

transposable elements (TEs), with TEs in one genome being, on average, closer to 58	

genes than they are in the other co-resident genome. This difference in TE adjacency to 59	

genes is thought to lead to repression of gene expression, via localized 60	

heterochromatinization, in the genome descended from the progenitor with the greater 61	

TE load. For example, it has been shown that gene expression in A. thaliana is 62	

negatively correlated with the density of surrounding methylated TEs [8]. This suggests 63	

that host silencing of TEs decreases the expression of nearby genes, and, in the 64	

context of allopolyploids, would account for differences in homoeolog expression. In 65	

both Brassica [9] and Gossypium [10] polyploids, the density of small RNAs targeting 66	

TEs is higher in regions adjacent to the gene copy of homoeolog pairs that exhibit lower 67	

expression levels, consistent with their heterochromatizing effects and repression of 68	

expression. 69	

 70	

Although this TE-mediated explanation of gene expression dominance in 71	

allopolyploids is attractive, there are additional factors that might play a role. In 72	

particular, and as suggested below, sudden and persistent changes in transcription and 73	

associated chromatin states can result from regulatory mismatches between effectors 74	

(transcription factors -TFs- and epigenetic modifiers) and their target genes contributed 75	

by the merging genomes. This mismatch can arise from the divergence of the relevant 76	



5	
	

cis/trans regulatory players [11], whose transcriptional effects can be subsequently 77	

stabilized by epigenetic changes.  78	

 79	

Of course, not all polyploids are anticipated to behave the same. Autopolyploids, 80	

for example, are not expected to experience strong alterations in the concentrations of 81	

gene products (compared to the parental diploid) because of the proportionality 82	

between DNA content and cellular and nuclear volumes [12]. That said, these 83	

proportionalities are imperfect and there is some evidence of 84	

transcriptomic/proteomic/metabolomic alterations in autopolyploids relative to their 85	

diploid antecedents [13–15]. At the other extreme, allopolyploids between divergent 86	

species typically combine genomes with different sizes and suites of TFs and other 87	

regulatory effectors (i.e. miRNAs) that may have different physico-chemical properties 88	

(i.e. affinities, concentrations, etc.). Below we argue that, in addition to the changes in 89	

cellular and nuclear volumes accompanying allopolyploidy, these different TF/effector 90	

concentrations may play an important role in the expression differences between the 91	

parental subgenomes.  92	

 93	

A simple model of gene expression dominance 94	

To get insights, let us consider more specifically how a regulatory mismatch can 95	

affect transcription from a promoter containing multiple binding sites for an activator 96	

(TF). For example, assuming that transcription is proportional to the occupancy fraction 97	

of a promoter !, then the normalized transcriptional response (TR) follows the Hill 98	

equation: 99	
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 100	

 101	

where K and s are constants [16,17]. The exponent is proportional to the number of 102	

binding sites per promoter. Here [TF] represents the free concentration of TF, but we 103	

will assume that this in excess to the promoter ‘concentration’, so that free and total 104	

concentrations are practically equivalent. K is a constant that corresponds to a 105	

concentration of TF such that ! or TR is 50% of the maximum ([TF]TR0.5). This implies 106	

that there is a dynamic range of the response around [TF]TR0.5 and that there must be a 107	

relationship between the effective concentration of a TF and its affinity for its targets to 108	

ensure a proper regulation. Thus, evolutionary divergence may have resulted in 109	

different but ‘suitable’ threshold settings in the two parents, by modifying [TF] and/or K 110	

(which may be due to changes in the TF, in the target cis regulatory sequences or most 111	

likely both). Before polyploidization, the homologous transcription factors TF1 and TF2 112	

are expressed in each parent at levels ensuring proper gene regulation. After 113	

allopolyploidization, the concentrations of TF1 and TF2 may be different from the 114	

parental values. Note that not only are concentrations different, but the promoters are in 115	

different contexts, sometimes with varying adjacencies to TEs, which might also limit TF 116	

accessibility. Moreover, TEs can also contribute TF binding sites. For instance, as many 117	

as 85% of the sequences that match the E2F consensus site in some Brassica species 118	

map to TEs. When such TEs are located close to genes they may directly participate in 119	

gene regulation, whereas those located far from genes may have an indirect TF-titrating 120	

effect [18]. 121	

 122	

f = TR =
TF[ ]s

K s + TF[ ]s
           Eq. 1
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After the genome merger, the actual TF concentration in the newly formed polyploid can 123	

be enough to activate the promoters with the smallest activation threshold (i.e., 124	

[TF]TR0.5), whereas the other ones will be either less active or even silent (Figure 1). 125	

Obviously, the promoters having the lowest activation thresholds are more likely to be 126	

active after polyploidization. These biochemical considerations apply also to epigenetic 127	

mechanisms, as similar mismatches can occur for epigenetic modifiers (activators or 128	

repressors of gene expression). One can object that this reasoning holds for a limited 129	

set of genes. However, it is worth noting that some TFs undergoing the regulatory 130	

mismatch might work as global regulators of transcription. For instance, the vertebrate 131	

TF c-Myc acts as a universal nonlinear amplifier of the expression of active genes 132	

[19,20]. Thus, homoeologs of cMyc-like factors having different affinities for their cis-133	

regulatory sequences contributed by merging genomes might account at least in part for 134	

genome-wide patterns of expression dominance.  135	

Connecting gene-expression dominance to epigenetic changes.  136	

As noted above, gene-expression dominance has been proposed to be 137	

connected to differential TE adjacency and an associated heterochromatization 138	

mediated by the small interfering RNA machinery [9]. This hypothesis is not mutually 139	

exclusive with the models presented here. A decrease in the gene activation frequency 140	

of the poorly expressed homoeolog, influenced by differential TE adjacency inherited 141	

from the diploid ancestors, may render it even more tolerant to mobilized TE insertion 142	

thus leading to a further decrease in chromatin accessibility. Box 1 outlines a 143	

conceptual model linking changes in gene expression to chromatin modifications using 144	

elementary stochastic processes acting according to binary conditions (i.e. the 145	
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homoeologs are accessible or not; the accessible homoeologs are induced or not, 146	

Figure I). The parameters of the model can also take into account the effect of relative 147	

TE adjacency, although this is not attempted here. It is worth noting that this epigenetic 148	

mechanism holds for both individual homoeologous pairs and for genome-wide biased 149	

expression of only one of the two parental genomes.  150	

 151	

More sophisticated models of gene expression dominance  152	

To further explore what may happen right after the shock [21] induced by the 153	

genome merger, we next consider more complex models taking into account the 154	

existence of DNA fostering non-functional interactions with the TFs. In the first situation, 155	

the TFs or other regulatory agents, such as chromatin remodeling factors, will continue 156	

to specifically regulate their original target genes (there is no cross-regulation after the 157	

merger). Note that this possibility is extreme and is presented as a useful ‘ground state’ 158	

assumption. The second, much more likely scenario, involves target cross-regulation in 159	

the allopolyploid, as previously suggested to explain	 the poorly appreciated 160	

phenomenon of gene expression dominance, where aggregate duplicate gene 161	

expression mimics the level of one of the two parents [22,23].  162	

 163	

More specifically, we assume that the two merging genomes have different sizes. 164	

Homoeologs targets !! and !! in each genome will be regulated by the paralogous TFs, 165	

TF1 and TF2 with different affinities (!"! regulates/interacts with !! in subgenome i with a 166	

dissociation constant Ki). Depending on the scenarios, allowing cross-regulation or not, 167	
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!"! will also bind to the promoter of !! and TF2 to the promoter of !!. For simplicity, in 168	

the following we deal with target promoters having only one binding site for the TFs.  169	

 170	

A TF can be involved in two main types of binding events: specific and functional 171	

binding to a cis-regulatory region with a transcriptional impact and nonfunctional 172	

binding, specific or not, without transcriptional impact [24]. Nonfunctional binding is a 173	

key ingredient of the model, which was not taken into account in Equation 1. In such 174	

conditions, the fractional occupancy of the promoter !, which can be used as a proxy of 175	

transcriptional activity, can be calculated using a classical approach [25,26] described in 176	

Box 1 and in the Supplementary Material. We assume for simplicity the existence of 177	

similar fractional occupancies of the promoters of the homoeologs before the merger. 178	

To achieve similar promoter occupancies, a cell with a large euchromatic genome 179	

fraction may have TFs displaying stronger affinities for functional sites to compensate 180	

for the titration exerted by non-functional binding and to ensure better discrimination 181	

between functional and non-functional binding or, alternatively, scale the concentrations 182	

of the TFs with the size of euchromatic genome or, more likely, a situation in-between. 183	

We have focused on the euchromatic region of the genome because it is the most 184	

readily available to provide accessible binding sites. However, it is possible that the 185	

heterochromatic and repeat fractions of the genome, which change from species to 186	

species in size and composition, may also bind TFs [18]. The discussion that follows is 187	

based on the genome euchromatic fractions but it is clear that for TFs interacting with 188	

both euchromatin and heterochromatin the most relevant parameter would simply be 189	

genome size (i.e., C-value). This is so because the effect of changing repeat number 190	
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and the heterochromatic compartment could potentially have more extreme 191	

consequences than changing the euchromatic space. We can speculate that this may 192	

also help explain why expression dominance patterns can vary among tissues, in which 193	

the eu-/heterochromatic compartments would also be different. 194	

 195	

Although cis variation between species is amply documented, differences in the 196	

TFs can more easily account for potential genome-wide expression pattern changes. 197	

Obviously, both cis and trans changes are supposed to explain gene-specific regulatory 198	

mismatches. Here, for simplicity, we speak of TFs as if they were monomers. However, 199	

they frequently function as dimers or higher order structures, which can also explain 200	

differences in DNA recognition [24]. This is so because the assembly of such 201	

dimers/oligomers may be characterized by different physico-chemical parameters 202	

(specific assemble/disassembly rates in the parental species), and because they 203	

recognize bi-/multi-partite DNA binding sites with varying spacing and orientations, often 204	

different from the individual TF's motifs [27]. 205	

 206	

To begin our theoretical exploration, we will consider two limiting conditions: (A) 207	

when the concentrations of the two paralogous TFs are the same and the dissociation 208	

constants (!) regarding functional sites relative to non functional binding are inversely 209	

proportional to the euchromatic fraction of the genome and conversely, (B) when the 210	

dissociation constants are identical (!! = !! = !) and the TF concentrations are 211	

proportional to euchromatic genome size. Both cases are limiting situations and in 212	

reality both TF affinities and concentrations might be scaled with the size of the 213	
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euchromatic genome fraction.	As well, and not exclusively, the two homoeologs may 214	

differ in terms of promoter accessibility due to chromatin-level features. That is, even 215	

with the same affinities, one homoeolog may be less transcribed than the other due to, 216	

say, nearby heterochromatinization. 217	

 218	

Figure 2A shows the occupancy probability of the promoters of the 219	

homoeologous targets G1 and G2 in the allopolyploid as a function of the ratio of the 220	

sizes of the euchromatic fraction of the merging genomes when the concentration is the 221	

same for the two TFs (case A), but when affinity is stronger in the subgenome 222	

containing a higher euchromatic fraction. In the absence of cross-regulation, we 223	

observe that an increase in the ratio of non-functional sites (which is basically the ratio 224	

of euchromatic genome sizes), NS2/NS1, leads to a predominant expression of the 225	

genes from the genome containing a larger euchromatic fraction and hence to 226	

expression dominance. The gene from the subgenome with a larger euchromatic 227	

fraction also dominates when there is full cross-regulation. Note that this follows from 228	

the assumption that a cell whose genome has a large euchromatic fraction would have 229	

TFs with higher affinities. Regarding the exaggerated span of the NS2/NS1 ratios in 230	

Figure 2, it is clear that most often the progenitor diploids of allopolyploids have 231	

relatively small differences in genome sizes (e.g. 1.1-2, as in Brassica or 232	

Tragopogon/goatsbeard and Gossypium/cotton). However, given the prevalence of high 233	

infrageneric variation in genome sizes among diploids (e.g., 13-fold in Vicia) and in 234	

allopolyploids (http://data.kew.org/cvalues/), we anticipate that examples of greater 235	

differences in progenitor diploid genome sizes will be documented. 236	
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 237	

In Figure 2A, we considered only the case of a promoter occupancy of 50% in 238	

the parental genomes (! = 0.5). We next tested the effect of parental promoter 239	

occupancy level on our findings. Figure 2B shows the occupancy probability in the 240	

allopolyploid as a function of the promoter occupancy in the parental genomes (still 241	

assuming that ! = !! = !!), when one of the genomes has a euchromatic fraction 5 242	

times larger than the other (i.e., NS2 = 5 x NS1). The response of the promoters right 243	

after the merger is non-linear with respect to parental !, both in the absence or in the 244	

presence of cross-regulation. Indeed, there is a value of parental promoter occupancy 245	

for which the difference between the occupancy levels of the promoters from the two 246	

subgenomes reaches a maximum. In Figure 2B, this happens somewhere between 0.4 247	

and 0.8 and can be explained by the fact that this interval represents the dynamic range 248	

of the promoters, so that small differences in TF concentrations/affinities are amplified 249	

and lead to high differences in occupancy. 250	

 251	

Thus far, we have observed that for equal TF concentrations in the two parental 252	

cells, gene expression dominance could emerge from a co-adaptation between the 253	

dissociation constants and euchromatic genome size. Next, we consider the case (B), 254	

where we do not assume identical concentrations of the TFs in the original genomes 255	

but, instead, identical values of the dissociation constants !! = !! = !. In contrast to 256	

the previous case, the target promoters would be occupied to similar extents in the 257	

polyploid and there would be no dominance.  258	

 259	
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The driving factor of gene dominance in scenario A is the difference in the 260	

affinities of the two TFs. To further explore this effect, we have also studied an 261	

intermediate situation in which !! = !!!, so that 0 ≤ ! ≤ !!
!!

  (i.e., the inverse 262	

proportionality between Ks and euchromatic genome fraction is less strict). In the 263	

Supplementary Material, we show that the expression of the gene from the genome with 264	

the largest euchromatic fraction dominates as long as ! < 1, thus, confirming under less 265	

extreme conditions that the adaptation in binding affinities of the TFs may explain at 266	

least in part the cases where gene expression in the larger euchromatic genome is 267	

dominant. 268	

  269	

It is important to keep in mind that these models apply only to what happens right 270	

after genome merger. After that, genes encoding the TFs mentioned above may 271	

themselves undergo the gene-dominance effect, because they too are the targets of 272	

TFs. This cascading or snowballing effect will foster a positive feedback that will 273	

translate into a reinforcement of the initial situation, that is, the dominant homoeolog 274	

would dominate even more. This suggests that situations less extreme than those 275	

depicted above can in principle lead to expression dominance.  276	

 277	

Gene dominance, genome dominance and replaying the tape of evolution.   278	

A genome-wide extension of the gene dominance models outlined above is 279	

genome dominance, that is, when one subgenome dominates over the other in terms of 280	

gene expression. Genome dominance is frequently observed in allopolyploids [6], and 281	

this observation is conceptually connected to the longer-term process of biased 282	
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homoeolog deletion and the phenomenon of biased fractionation of two progenitor 283	

genomes. Indeed, evolutionary analyses show that in (paleo)polyploid plants the 284	

parental subgenome whose genes have higher expression levels, compared to the 285	

other parental subgenome, lose a lower fraction of homoeologs [6,9,28–30].  286	

 287	

In closing it is interesting to mention the thought experiment of ‘replaying life’s 288	

tape’ popularized by Gould [31]. That is, one presses the rewind button and runs the 289	

tape again, to see if the repetition reiterates the original or if “any replay of the tape 290	

would lead evolution down a pathway radically different from the road actually taken”. In 291	

our opinion, gene dominance is a candidate example of a phenomenon that leads to a 292	

replaying of the evolutionary tape. Whenever the two merged genomes in an 293	

allopolyploid are similar, from one polyploidization event to another, patterns of non-294	

additivity and the degree of genome dominance are likewise expected to be similar. 295	

Thus, evolutionarily persistent, non-additive gene expression patterns in allopolyploids 296	

and their presence in synthetic polyploids provide examples of a deterministic tendency 297	

for repeatability in the playing the tape of evolution, across multiple polyploidy events. In 298	

this sense, the models presented here may contribute to our understanding of why such 299	

events are predictable based on a detailed understanding of genome history and 300	

architecture and of the physiochemical properties of the key players involved in 301	

transcriptional regulation. In this context, it would be interesting to assess the extent to 302	

which affinities and abundances of TFs or epigenetic regulators correlate with the 303	

amount of accessible chromatin or even with genome size and how this translates into 304	

better discrimination of signal (i.e. a true binding site) from noise (non-functional 305	
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binding) [32]. It will also be interesting to assess the extent of the contribution of TE 306	

adjacency to gene/genome dominance and the contribution of primary regulatory 307	

mismatches leading to decreased expression of homoeologs, a phenomenon which is 308	

subsequently consolidated by epigenetics and TE insertions around such homoeologs. 309	

Thus, a challenge for the future is to better connect biased homeolog expression and 310	

subgenome dominance to their corresponding genomic contexts and to the relevant 311	

parameters of models similar to those presented here. Finally, we have considered here 312	

what happens immediately following merger of two genomes; in this respect it will be of 313	

interest to compare synthetic versus natural allopolyploids, to understand more 314	

precisely how evolution shapes gene expression following allopolyploidy. It has been 315	

argued that all models are wrong [33]. The ones presented above will not be an 316	

exception but we hope they will be useful. 317	

 318	
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Figure Legends 410	

Figure 1. A) Effect of an allopolyploidization event involving the parental cells 1 and 2 411	

on transcription from the homoeologous promoters of genes G1 and G2, responding to 412	

the transactivators TF1 (or TF2, the homoeolog). The green circles represent TF1 (or 413	

TF2), which have different affinities for their cognate cis-regulatory sequences. B) We 414	

assume that the merging cells have the same volume (that K1 = 1nM, K2 = 2 nM and 415	

that parental TR=0.5). Right after the merger, let us suppose that cell volume doubles. 416	

In this case, a genome merger will lead to a TR in which the alleles of Parent 1 will be 417	

expressed at more than 80% of saturation, whereas those from parent B will be working 418	

at less than 25% (i.e., parent 1 would be dominant).  419	

 420	

Figure 2. Promoter occupancy probability in the allopolyploid as a function of the ratio 421	

of the euchromatic genome sizes. A) Promoters 1 and 2 refer to the promoters of genes 422	

G1 and G2 in the allopolyploid according to their parental origin. ! represents the 423	

homoeologous promoter occupancy probability in the parents (identical for simplicity). 424	

Note that for genes (red curves) in genomes with very different euchromatic fractions 425	

NS2 > NS1 the occupancy levels can be very different, leading to gene expression 426	

dominance. B) The graph displays the promoter occupancy probability in the 427	

allopolyploid as a function of occupancy in the parental genomes (assumed to be 428	

identical in both parents). Upper panel: no cross-regulation; Lower panel:  full cross-429	

regulation, for NS2=5 x NS1 (see supplementary figure for NS2=2 x NS1). The difference 430	

between the homoeologous promoter occupancies in the allopolyploid reaches a 431	

maximum for a particular value of !.	 C)	Effect of allopolyploidization on transcription 432	
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from the homoeologous sub-genomes. Right after the merger there is an epi/genomic 433	

shock [21] whose effects can be further strengthened by cascading effects, as 434	

described in the main text, leading to gene expression dominance. 	435	

 436	

Box 1.  437	

Epigenetic ‘use it or lose it’ model. 438	

The process of epigenetic gene inactivation can be summarized in a two-step model 439	

(Figure I). Accordingly, both homoeolog genes may be initially accessible (Ga) to the 440	

transcription machinery. They may stochastically shift towards either an epigenetically 441	

inaccessible (G) state or to an ‘induced’ state (GI), allowing transcription. The constants 442	

ka, γa represent gain and loss of chromatin accessibility. A similar reasoning applies to 443	

transcription induction and arrest in the context of open chromatin. Translation and 444	

protein degradation are also represented. Under irreversible conditions (ka=0, rather 445	

extreme situation), there will be an exponential decay of the expression of the 446	

homoeologs considered over the entire population. Just after genome merger both sets 447	

of homoeologs (from each subgenome) would be accessible. Importantly, accessibility 448	

for the more weakly expressed homoeolog subsequently decreases because of the 449	

reduced level of induction/activation. Played out over a long time frame (within an 450	

individual or within a population), depending on the parameters, there may be extinction 451	

of the expression of such ‘recessive’ homoeologs in the majority of cells/individuals, as 452	

shown in Figure IB. Some degree of expression of the ‘recessive’ homoeologs can 453	

remain in reversible conditions (for !! > 0), Figure IC. Recent work in mammalian 454	
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systems has shown that the presence of Pol II at active genes keeps the local 455	

chromatin accessible and further permits TF binding at the promoter regions [34].  456	

 457	

Figure I. A) Model of gene expression with a first order chromatin accessibility kinetics. 458	

G denotes the alleles of the gene of interest in an inaccessible state due to, for 459	

instance, the presence of repressive chromatin marks; Ga represents the alleles of the 460	

gene in an accessible state and GI is the accessible allele ‘induced’ for transcription 461	

(according to a set of parameters described in the Box). The repressive effects of TE 462	

adjacency can be taken into account in γa. (B and C) The graphics represent typical 463	

time-courses of the percentage of highly or poorly expressed homoeologs in the cell 464	

population but the idea could be extrapolated to a population of individuals over longer 465	

periods of time. We assumed that the proportions do not change as they proliferate. (B) 466	

when there cannot be recovery of chromatin accessibility ka = 0, the proportion of 467	

recessive alleles in Ga state is higher and their shift to state G favored. The decay of 468	

accessibility is faster for the poorly expressed homoeologs. C) when ka is proportional to 469	

allele expression rate, at later time-points, there is a stable fraction of poorly expressed 470	

homoeologs that remains active. 471	

 472	

Box 2 473	

The fractional occupancy of the promoter (which can be considered as a proxy of 474	

transcriptional activity) in the parental species can be calculated using a classical 475	

approach described in more detail in the Supplementary Material. In short,  476	

!! = !!!
!!! ! !!! !!

           Eq.2 477	
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where !"!  are the concentrations of ‘non-functional’ binding sites in the merging 478	

genomes (i = 1 or 2). We can obtain an expression for the TF concentrations from Eq. 2. 479	

This model can be generalized by assuming cross-regulation, where TF1 can bind to 480	

promoter G2 with a dissociation constant K12 and TF2 can bind to promoter G1 with a 481	

dissociation constant K21.  482	

 483	

We consider different nuclear volumes for the merging organisms (correlating 484	

with their genome sizes [12]): !! and !! for the original organisms and !! = !! + !!, for 485	

the allopolyploid. This simplifying assumption can be relaxed to ‘V3 is proportional to 486	

V1+V2‘ without changing the conclusions drawn from our models. 487	

 488	

Fractional occupancies of the promoters in the allopolyploid (!′!) can then be 489	

calculated after the introduction of cross-regulation coefficients (!! and !!), which 490	

depend on the cross-regulation binding constants K12 and K21. This coefficient is such 491	

that C1=1 for full cross-regulation, and C1=0 in the unrealistic limit of no cross-regulation 492	

(see Supplementary Material). Thus,  493	

!′! =
!"! ʹ+ !"! ʹ!!

!"! ʹ+ !"! ʹ!! + !" !!
      Eq. 3 

!′! =
!"! ʹ+ !"! ʹ!!

!"! ʹ+ !"! ʹ!! + !" !!
     Eq. 3′ 

 494	

where the total !" = !"! + !"! !!. 495	

 496	



23	
	

We assume for mathematical simplicity the existence of similar fractional 497	

occupancies of the promoters of the homoeologs before the merger (i.e., ! = !! = !!). 498	

As outlined in the main text, to achieve the same promoter occupancy, a cell with a 499	

large euchromatic genome fraction may scale (i) the affinities of TFs for functional sites 500	

and/or (ii) the concentrations of the former with the size of euchromatic genome (or 501	

even with genome size, depending on the TFs). Here, we consider two limiting 502	

conditions: (A) when !"! = !"!  and the dissociation constants are inversely 503	

proportional to the euchromatic fraction of the genome and conversely, (B) when the 504	

dissociation constants are identical (!! = !! = !) and the TF concentrations are 505	

proportional to euchromatic genome size. In the first case (A), the cell would not pay an 506	

extra cost of TF production, and is mathematically captured by the relationship 507	

!! = !!
!!

 !! [25,26,35]. As already noted, reality is expected to be somewhere in-508	

between these two extreme situations.  509	

 510	









Appendix 

 

A model of genome dominance in allopolyploids. 

 

The Model 

We assume that the two merging genomes have different sizes (and thus 
different euchromatic compartments). Homoeologous target genes !! and !! in 
each genome will be regulated by the paralogous TFs 1 and 2. !"! regulates !! 
in (sub)genome 1 with binding energy !!; !"! regulates !!  in (sub)genome 2 
with binding energy !!. According to the cases considered below, !"! can also 
bind to the promoter of !! and !"! to the promoter of !!. We also consider 
different nuclear volumes for both parental organisms, respectively !! and !! and 
!! for the allopolyploid. For simplicity, we consider !! = !! + !!. In the following, 
we deal with target promoters with only one TF binding site.  

The fractional promoter occupancy or binding is calculated as follows: 

!! =
!!! !!!! !!!

!!! !!!! !!! + !!! !!!!" !!! =
!!!

!!! + !"! !!
,   !". 1 

Where !"!  is the concentration of non-functional binding sites in genomes i (i=1 
or 2). This corresponds to the euchromatic genome fraction. Note that the 
dissociation constants !! and !! can be different for the two paralogous factors 
TF1 and TF2. 

As the target genes in the merging genomes are homoeologs, we assume for 
simplicity the existence of similar fractional occupancies of the homoeologous 
promoters before the merger, !! = !! = !. The corresponding TF concentrations 
for this specific occupancy fraction can be derived from the above equation, 
which can also be expressed in terms of numbers of TFi  molecules as follows: 

!"! = !!
!"! !!!
1− ! = !"!×!!!

1− ! ,   !". 2 

In the allopolyploid, we must consider a larger volume and TF cross-regulation. 
Factor TF1 binds with energy !!" on the paralogous target on the second 
genome (and similarly for TF2, whose cross-regulation binding energy will be 
!!"). 
Fractional promoter occupancies of the promoters in the allopolyploid !!ʹ and !!ʹ 
(of targets from subgenomes 1 and 2) are then given by: 

!!ʹ =
!"! ʹ!!!! !!! + !"! ʹ!!!!" !!!

!"! ʹ!!!! !!! + !"! ʹ!!!!" !!! + !" !!!!" !!! ,     !". 3 



To describe cross-regulation we introduce a coefficient !!, so that !!!!" !!! =
!!!!!! !!!. This coefficient is such that C1=1 for full cross-regulation, and C1=0 in 
the limit of no cross-regulation. For instance, when the TF2 binds its target in 
genome 1 with 90% of its affinity for its cognate target on genome 2 (!!" − !! =
0.1!!), the cross-regulation coefficient is of the order ! ∼ 0.8. Thus,  

!!ʹ =
!"! ʹ+ !"! ʹ!!

!"! ʹ+ !"! ʹ!! + !" !!
,    !". 4 

where the concentrations are calculated in the volume !!: !"! ′ = !"!
!!

   and the 
number of molecules TFi are the same as in the respective original genome (Eq. 
2), and !" = !"! + !"! !!. 
Symmetrically we get : 

!!ʹ =
!"! ʹ+ !"! ʹ!!

!"! ʹ+ !"! ʹ!! + !" !!
,    !". 5 

We can now used Eq. 2 to express f1’ and f2’ as a function of parental promoter 
occupancy probability f in the original genomes this leads after simplifications to: 

!!ʹ =
1+ !!!"!!"!

!!
!!

1+ !!!"!!"!
!!
!! + 1+ !!!"!!"!

1− !
!

 

and symmetrically for f2'.  

We now consider three cases: (A) in the original genomes both the occupancy 
probability of the homoeologous promoters and the TF concentrations are 
identical (! = !! = !! and !!! = !!! ). This situation may result from the co-
adaption between the dissociation constants and euchromatic genome fraction 
as discussed in the main text, (B) the dissociation constants are identical and the 
TF concentrations are scaled with euchromatic genome size and (C) a mixture of 
the previous cases. 

Case A: when !"! = !"!  

This implies the following relationships between the dissociation constants and 
the genome sizes !"!×!! = !"!×!! leading to: 

!!ʹ = !!!!
!!!!! !!!!!!

!!!
!

  and symmetrically for f2' 

In this case there may be cross-regulation or not (i.e. C1,2=1 or C1,2=0, 
respectively). 

Case B: when !! = !! 



Here, we assume a co-evolution of the TF concentrations (i.e., proportional to 
euchromatic genome size). This could well be the case of highly conserved TFs 
binding to very similar promoter sequences. This implies of course full cross-
regulation after the merger. 

For simplicity, we also assume identical promoter occupancy in the original 
genomes !! = !! = !, which together with !! = !! = ! leads to: 

!!! = !!! .!. !
1− ! , 

and 

!"!
!"!

= !"!
!"!

= !. !
1− ! 

This amounts to say that ratio of TF abundances is the same as the ratio of the 
euchromatic genome sizes. 

Regarding the abundances of the paralogous TFs in the allopolyploid, we 
consider a situation involving identical numbers of protein molecules in a higher 
volume. Accordingly, since we have full crosstalk, both promoters will be 
identically occupied implying the absence of dominance. 

Case (C). Finally we consider an intermediate case where !! = !!!, that is the  
dissociation constants in the original organisms have an arbitrary ratio 
(1<β<NS1/NS2). The identical original promoters occupancy f and the respective 
TF abundances are constrained. 

!"! =
!"!×!!!
1− !  

!"! =
!"!×!!!
1− ! = !"#!×!!!

1− ! = !"#!
!"!

!"! 

In the allopolyploid, this gives 

!!ʹ =
!!! ʹ+ !!! ʹ!!

!!! ʹ+ !!! ʹ!! + !" !!
 

!!ʹ =
1+ !"#!!"! !!

1+ !"#!!"! !! +
!"
!"!

1− !
!

 

and 



!ʹ! =
!"#!
!"! + !!

!"#!
!"! + !! + ! !"!"!

1− !
!

 

In such conditions, in absence of cross-regulation !! = !! = ! 

!!ʹ = !
!!!"

!"!
!!!
!

         

f’1 and f’2 are independent of !. Thus, !ʹ! > !ʹ! when !! > !! (i.e., the genome 
with the largest euchromatic fraction dominates).   

When there is full cross-regulation !! = !! = 1 

!!ʹ =
1+ !"#!!"!

1+ !"#!!"! + !"
!"!

1− !
!

 

and symmetrically for f2’. 

As we can safely assume ! < 1, this leads again to dominance of the genome 
with the largest euchromatic fraction (!ʹ! > !ʹ!). 
 

Supplementary figure  

 

The graph displays the promoter occupancy probability in the allopolyploid as a 
function of occupancy in the parental genomes (assumed to be identical in both 
parents). Upper panel: no cross-regulation; Lower panel:  full cross-regulation, for 
NS2=2 x NS1  


