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Abstract 

Plants have developed an internal timing mechanism, the circadian system, that serves to 

synchronise physiological and metabolic functions with daily, predictable cues such as dawn 

and dusk. This endogenous oscillator is comprised of biochemical and transcriptional rhythms 

that are entrained by environmental signals, particularly light and temperature, through the 

action of input pathways. The circadian system provides plants with an adaptive advantage, 

and techniques that allow in vivo monitoring of circadian rhythms give valuable insights into 

the components and mechanisms employed by plants to optimally respond to abiotic signals. 

This study shows that chlorophyll a fluorescence imaging can be used to describe circadian 

rhythms of PSII operating efficiency (Fq’/Fm’) in the chloroplasts of Arabidopsis thaliana. 

These circadian rhythms in Fq’/Fm’ are influenced by the well-defined rhythmic transcriptional 

feedback loops that comprise the central oscillator in the nucleus, and are maintained under 

constant blue light by the action of phototropin photoreceptors. Using chlorophyll a 

fluorescence imaging, the chloroplast-localised enzyme SAL1 was identified as impacting 

circadian oscillations both in chloroplasts and in the nucleus. SAL1 is a redox-sensitive 

component of the SAL1-PAP-XRN retrograde signalling pathway, and influences nuclear gene 

expression in response to stress by modulating the levels of its substrate, 3’-phosphoadenosine 

5’-phosphate (PAP). PAP accumulates in chloroplasts under abiotic stress and inhibits the 

activity of 5’�3’ exoribonucleases (XRNs). This study shows that genetically inducing the 

SAL1-PAP-XRN pathway in plants lacking SAL1 function induces a long circadian period in 

a blue light-dependent manner. Application of exogenous PAP or osmotic stress lengthens 

circadian period, and period lengthening correlates with increases in endogenous PAP levels. 

Furthermore, plants lacking functional XRNs exhibit a similar long circadian period phenotype. 

The SAL1-PAP-XRN pathway is therefore proposed to regulate nuclear circadian rhythms in 

response to changes in chloroplast redox poise, and serves as a possible link between molecular 

timekeeping and abiotic stress response mechanisms. 
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Chapter 1 

Circadian regulation and retrograde signalling mechanisms in 

Arabidopsis  

   

1.1. The evolution of universal cellular timekeeping mechanisms 

Since the emergence of life ~3.7 billion years ago, terrestrial organisms have lived and evolved 

under predictable, regular daily cycles created by the 24-hour rhythm of the Earth’s rotation 

(Hut and Beersma, 2011). Organisms that aligned their physiology and behaviour with these 

predictable changes were provided competitive advantages. As a result, most organisms have 

developed internal timing mechanisms that serve to synchronise their cellular chemistry with 

the daily rhythmic fluctuations of environmental cues such as light and temperature (Hut and 

Beersma, 2011). Circadian rhythms are considered to be a feature of almost all living cells 

(Edgar et al., 2012; Reddy and Rey, 2014). Cyanobacteria contain what is thought to be the 

oldest known molecular clock: a core phosphorylation oscillator that consists of a three-gene 

cluster (kaiABC) thought to have evolved approximately 1,000 Mya (Dvornyk et al., 2003; 

Edgar et al., 2012). In the alga Gonyaulax polyedra, rhythms in cell division, protein turnover 

and photosynthetic capacity are under control of the circadian system (Hastings, 2007), as are 

rhythms in luminescent glow in dinoflagellates (Hastings, 2013). Similarly, the fungus 

Neurospora crassa exhibits circadian regulation in conidiation rhythms (Sulzman et al., 1984). 

Circadian rhythms have also been described in higher organisms, including rhythms in 

locomotion and eclosion in Drosophila melanogaster (Pittendrigh, 1954; Tataroglu and Emery, 

2014), activity levels in mice (Eckel-Mahan and Sassone-Corsi, 2015), and body temperature 

and sleep-wake cycles in humans (Aschoff, 1965; Czeisler et al., 1980). While the specific 

components of molecular clocks differ among different species, these ubiquitous circadian 

systems are thought to have evolved from a common molecular origin (O’Neill et al., 2011; 
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Edgar et al., 2012). The emergence of photosynthetic bacteria lead to the accumulation of 

molecular oxygen, culminating in the Great Oxidation Event ~2.5 billion years ago (Edgar et 

al., 2012). As a result, the ability to survive cycles of oxidative stress may have been an adaptive 

advantage in newly aerobic environments (Edgar et al., 2012). Indeed, rhythmic oxidation-

reduction cycles of peroxiredoxins have been discovered in both human red blood cells 

(O’Neill and Reddy, 2011) and in a unicellular alga (O’Neill et al., 2011), and these 

peroxiredoxin proteins are conserved across Archaea, Bacteria and Eukaryota (Edgar et al., 

2012). 

This chapter will provide an overview of the characteristics of circadian rhythms in plants and 

the adaptive advantage provided by these rhythms, as well as the communication of 

environmental signals to the cellular mechanisms of the plant cell. 

 

1.2. Monitoring and characterising circadian rhythms 

Simplistically, circadian clocks can be described as biological networks that cycle 

autonomously in constant conditions (Hsu and Harmer, 2014). The networks consist of 

components that are phased to specific times of the day, with the phased components regulating 

each other through a complex network of feedback loops. Input pathways relay signals from 

the environment to the central oscillator to entrain the clock, and the clock in turn produces a 

large number of rhythmic outputs to regulate numerous pathways, including growth and 

metabolic processes (Hsu and Harmer, 2014). Circadian clocks not only allow organisms to 

synchronise their cellular processes with the rhythms of the external environment, but also 

provide a timing mechanism for the measurement of day length, allowing the organism to 

follow the change of seasons (Devlin and Kay, 2001). 
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1.2.1. Methods for monitoring circadian rhythms in plants 

The rhythmic outputs (circadian rhythms) that are generated by circadian clocks can be 

observed either at the whole-organism level (e.g. emergence of Drosophila adults from puparia 

(Pittendrigh, 1954)) or at a cellular level (e.g. expression patterns of clock-regulated genes in 

Arabidopsis thaliana (Covington et al., 2008)). The first recorded observations of daily 

rhythms in plants date back to the 4th century BC, when Androsthenes of Thasos, admiral of 

Alexander the Great, described daily movements of leaves of the tamarind tree, Tamarindus 

indicus (Bretzl, 1903; McClung, 2006). The first indication that these rhythms are endogenous 

only came centuries later, when the French astronomer de Mairan observed that daily opening 

and closing of Mimosa pudica leaves persist in constant darkness (De Mairan, 1729; McClung, 

2006). More than a century passed before these rhythms in leaf movement were described as 

truly endogenous and capable of inversion by reversing the alternation of light and dark 

(Candolle, 1832; McClung, 2006). The term ‘circadian’ was first coined in the 1950s to 

describe rhythms that are self-sustained under constant conditions (Golombek and Rosenstein, 

2010).  

Rhythms in leaf movement remain a useful reporter for measuring circadian rhythms in plants, 

and have been implemented in studying the circadian systems of a range of plant species 

including Arabidopsis thaliana (Engelmann et al., 1992; Thain et al., 2004), Brassica rapa (Xie 

et al., 2015), Phaseolus vulgaris (common bean) (Kiyosawa, 1979) and Samanea saman (Rain 

Tree) (Satter et al., 1974). Oscillations in leaf position can be mediated by specialized motor 

organs (the pulvini) through changes in cell volume, or can occur due to different growth 

velocities of the adaxial and abaxial halves of the leaf, causing the positions of young leaves 

and cotyledons to rise and fall over the course of 24 hours (Kiyosawa, 1979; Uehlein and 

Kaldenhoff, 2008; Farré, 2012). In both cases, leaf movement is associated with the circadian 

regulation of cellular water potential and rates of membrane water permeability, which may be 

facilitated by membrane aquaporins (Uehlein and Kaldenhoff, 2008; Farré, 2012). While 

circadian oscillations in hypocotyl and petiole elongation can also be utilised for monitoring 
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circadian rhythms, analysis of leaf movement is preferred due to the robustness of the assay 

and the ease of measurement (Tindall et al., 2015). Advancements in digital photography 

technology has provided low-cost digital cameras suitable for imaging, while computer-

automated image capture and automated leaf tracking systems allow monitoring of leaf 

movements in a growth chamber continuously over the course of numerous days. Leaf 

movement assays therefore provide a non-invasive, high-throughput method for measuring 

circadian rhythms in a range of plant species without the need for transgenic plants. However, 

the method cannot be used on plant species with sessile leaves, which includes all major cereal 

crops (Tindall et al., 2015). Furthermore, circadian leaf movement ceases in mature leaves in 

Arabidopsis, leaving a limited window of approximately one week for circadian analysis 

(Edwards and Millar, 2007). 

Carbon fixation has long been known as a circadian output in photosynthetic organisms, and 

plants exhibit circadian oscillations in transpiration, stomatal conductance and carbon fixation 

(Neeb, 1952; Schon, 1955; Hennessey and Field, 1991; Nassoury et al., 2001). Carbon 

assimilation has been used to reliably monitor circadian rhythms in a wide variety of plants, 

including Arabidopsis (Somers et al., 1998b), Phaseolus vulgaris L. (red kidney bean) 

(Hennessey and Field, 1991), and the Crassulacean acid metabolism (CAM) plant Kalanchoë 

fedtschenkoi (Dever et al., 2015). Carbon assimilation is measured through infra-red gas 

exchange analysis, which involves growing whole (or partial) plants in chambers with 

controlled atmospheric composition, and allows rapid analysis of photosynthetic rates at high 

resolution (Tindall et al., 2015). While gas exchange methods allow analysis of circadian 

rhythms in most plant species, the assay does not provide insight into the complex factors (from 

control of gene expression to regulation of stomatal conductance and growth) underlying the 

circadian control of carbon fixation (Tindall et al., 2015). 

More recently, imaging techniques to monitor circadian rhythms have been developed that 

utilise the light emitted by plants. It has long been known that chlorophyll has the ability not 

only to absorb light, but also to dissipate some of the energy as fluorescence (Arnold and 
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Davidson, 1954; Goltsev et al., 2003). Measuring chlorophyll a fluorescence (also called 

variable or prompt fluorescence) is an established, versatile and non-invasive technique that 

can provide insight into Photosystem II (PSII) photochemistry, linear electron flux and carbon 

assimilation in many different plant species (Goltsev et al., 2003; Baker, 2008). Peak 

fluorescence emission occurs in the red region of the light spectrum (685nm) and extends into 

the infra-red region (around 800 nm) (Krause and Weis, 1991). Upon illumination of a leaf, 

light is absorbed by the chlorophylls associated with PSII, and the excitation energy is 

harnessed by reaction centres of the photosystems to drive the primary photochemical reactions 

and initiate photosynthetic energy conversion (Butler, 1978; Barber, 2009). Transfer of 

excitation energy from PSII is achieved via the occurrence of a charge separation between the 

chlorophyll a molecule P680 in the first excited singlet state (P680*) and the intermediate 

acceptor pheophytin a (Pheo), resulting in the formation of a radical pair state P680*+Pheo*- 

(Barber, 2009). This is followed by rapid transfer of one electron from Pheo*- to plastoquinone 

QA, the primary quinone electron acceptor bound to the D2 protein of PSII, and subsequent 

transfer of the electron to the plastoquinone QB bound to the D2 protein of the reaction centre. 

The charge separation at the radical pair P680*+Pheo*- upon illumination creates a highly active 

oxidant (P680+), which receives an electron from a secondary donor – a tyrosine residue (Z) of 

the D1 protein. The oxidized tyrosine donor (Z+) in turn is reduced by an electron generated 

from the splitting of water at the oxygen evolving centre, and the electron subsequently 

transferred to QB (Barber, 2009).  Under optimal conditions in low light, more than 90% of the 

absorbed light quanta are utilized for photochemistry, but a minor fraction of the energy derived 

from the deactivation of excited pigments is lost either through emission of fluorescence from 

chlorophyll a, or through loss as heat (Butler, 1978; Baker, 2008). Photochemistry, chlorophyll 

fluorescence and heat loss are competing processes, and chlorophyll fluorescence is reduced 

(quenched) either through effective use of energy for photosynthesis (photochemical 

quenching) or through heat loss (nonphotochemical quenching). Minimum fluorescence occurs 

when all the PSII reaction centres are “open”, that is where QA in the PSII reaction centre is 

oxidised and capable of photochemical reduction (such as in a leaf kept in the dark). In contrast, 



6 
 

reaction centres are “closed” when QA is fully reduced, preventing stable charge separation of 

P680* and resulting in maximum fluorescence yield (Butler, 1978; Baker, 2008). To quantify 

the fractions of fluorescence quenching that are due to photochemical and nonphotochemical 

quenching, respectively, a light-addition technique is used (Figure 1.1; Table 1.1) (Baker, 

2008). For a leaf grown in the dark (dark-adapted), in which QA of all PSII reaction centres is 

optimally oxidised, the minimal level of fluorescence (F0) is determined by exposing the leaf 

to a weak, nonactinic modulated measuring beam (so as not to cause reduction of QA) and 

capturing the fluorescence emission using a charged coupled device (CCD) camera. The 

maximum fluorescence yield (Fm) is determined by exposing the leaf to a brief (less than 1 

second), bright, saturating light pulse of high photosynthetically active photon flux density 

(PPFD), sufficiently intense to maximally reduce QA in all PSII reaction centres. These 

parameters can be used to calculate the quantum yield (quantum efficiency) of PSII, which is 

a measure of the number of molecules that undergo photoconversion per photon absorbed. In 

the absence of photorespiration, the quantum yield of PSII photochemistry is directly related 

to the quantum yield of carbon assimilation by the leaf. The difference between Fm and F0 is 

defined as the variable fluorescence, Fv and the ratio of Fv/Fm can be used to estimate the 

maximum efficiency at which light absorbed by PSII is used for the reduction of QA (maximum 

quantum efficiency of PSII). Interestingly, Fv/Fm has been shown to decrease in plants exposed 

to abiotic and biotic stresses, which could be due to increased nonphotochemical quenching 

caused by photoinactivation or oxidative damage and loss of PSII reaction centres (Baker, 

2008). Chlorophyll a fluorescence parameters can also be determined for plants grown in 

continuous light, a routine requirement when employing an assay to measure circadian rhythms 

(Baker, 2008; Tindall et al., 2015). A leaf grown in constant actinic light has PSII reaction 

centres that are partially closed, and emits fluorescence at a level F’ (Baker, 2008). Upon 

application of a saturating pulse that maximally reduces QA, the leaf’s fluorescence emission 

will rise to the maximum fluorescence level Fm’. The fraction of fluorescence quenching that 

occurs as a result of PSII photochemistry (Fq’) can be determined by calculating the difference 

between Fm’ and F’.   
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Figure 1.1 Graphical representation of chlorophyll a fluorescence quenching parameters.  Chlorophyll a

fluorescence parameters are determined for a leaf using a light-addition technique. Parameters are obtained from a 
leaf in a dark-adapted state by exposure of the leaf to a weak measuring beam (black line) to obtain minimal 
fluorescence (with QA maximally oxidised; F0), followed by brief exposure (�1 s duration) to a saturating light pulse 
(orange line) that maximally reduces QA and provides maximal fluorescence (Fm).  A leaf under actinic light (blue 
line) produces fluorescence emission (F’), while exposure to the saturating light pulse (orange line) provides the 
maximal fluorescence parameter (Fm’) for a leaf under actinic light.  Variable fluorescence is calculated from the 
dark-adapted leaf (Fv = Fm – Fo) or from an illuminated leaf (Fv’ = Fm’ – F0’). F0’ can be obtained from a light-
adapted leaf by exposure to far-red light, which preferentially excites PSI and oxidises plastoquinone and QA

associated with PSII. Fluorescence that is quenched from Fm’ to F’ by PSII photochemistry is calculated in an 
illuminated leaf (Fq’ = Fm’ – F’). (Figure adapted from Baker, 2008). 
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Table 1.1  Chlorophyll a fluorescence parameters  

Parameter Description 

F, F’ Fluorescence emission from a dark- or light-adapted leaf, respectively. 
 

F0 Minimal fluorescence from a dark-adapted leaf. Level of fluorescence when QA is 
maximally oxidised (PSII centers “open”). 
 

Fm, Fm’ Maximal fluorescence from a dark- or light-adapted leaf, respectively. Level of 
fluorescence when QA is maximally reduced (PSII centers “closed”). 
 

Fv, Fv’ Variable fluorescence from a dark- and light-adapted leaf, respectively.  Demonstrates 
the ability of QA to be reduced. 
 

Fq’ Defined by Fm’-F’. Represents photochemical quenching of fluorescence by open 
PSII centers. 
 

Fv/Fm Maximum quantum efficiency of PSII photochemistry. Maximal efficiency at which 
light absorbed by PSII is used for reduction of QA. 

 
Fq’/Fm’ PSII operating efficiency. Estimates the efficiency with which light absorbed by PSII 

is used for reduction of QA. 

 
Fv’/Fm’ PSII maximum efficiency. Estimates the PSII operating efficiency if QA is fully 

oxidised (PSII centers “open”). 
 

Fq’/Fv’ PSII efficiency factor. Nonlinearly related to the proportion of PSII centers that are 
“open”. 
 

NPQ Nonphotochemical quenching. Estimates the nonphotochemical quenching of 
fluorescence from Fm to Fm’. 
 

Selected parameters used in chlorophyll a fluorescence studies of PSII photochemistry. (Table 
reproduced from Baker, 2008) 
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Furthermore, the ratio Fq’/Fm’ (�PSII) is theoretically proportional to the quantum yield of PSII 

photochemistry under the constant actinic light of the growth condition. PSII quantum yield of 

a leaf in actinic light is equivalent to the quantum yield of linear electron flux through the PSII 

reaction centres. As a result, Fq’/Fm’ is regarded as a measure of the PSII operating efficiency 

– the efficiency at which light absorbed by PSII is used for the reduction of QA at a specific 

PPFD. In contrast, the parameter Fv’/Fm’ estimates PSII operating efficiency if all the PSII 

centres are “open” (PSII maximum efficiency) at a specific PPFD, while the PSII efficiency 

factor (Fq’/Fv’) relates to the number of “open” PSII centres (Baker, 2008). Chlorophyll a 

fluorescence imaging has been used to monitor circadian rhythms in detached leaves of the 

crassulacean acid metabolism (CAM) plant Kalanchoë daigremontiana, with Fq’/Fm’ cycling 

with circadian rhythm under constant light conditions in these leaves (Rascher et al., 2001; 

Wyka et al., 2005). Chlorophyll a fluorescence imaging therefore has the potential to serve as 

a well-defined, non-invasive circadian imaging assay that could be expanded for use in other 

plant species. 

In addition to variable (prompt) fluorescence, PSII also emits delayed chlorophyll fluorescence, 

which is detected upon transfer of light-grown plants to darkness (Goltsev et al., 2003). 

Although prompt and delayed fluorescence signals are emitted from the same population of 

chlorophyll molecules of PSII antenna complexes, the underlying mechanisms differ and the 

signals provide information about different fundamental processes within the photosynthetic 

apparatus (Baker, 2008; Gould et al., 2009; Tindall et al., 2015). While the exact mechanism 

of delayed fluorescence (DF) is not completely understood, it is thought to occur during normal 

photosynthesis due to charge recombination between P680+ and pheophytin a upon transfer of 

an electron from Pheo- to QA, resulting in re-excitation of the P680 complex and the release of 

a photon as P680* returns to the ground state (Mimuro et al., 2007; Gould et al., 2009). Only 

~0.03% of absorbed light energy is re-emitted through DF, which emits light at 720 nm and 

occurs with a lifetime of 2-4 ns (Arnold and Davidson, 1954; Goltsev et al., 2003; Gould et al., 

2009). DF decays rapidly (within 50 seconds) upon transferral of plants to the dark, and the 



10 
 

decay kinetics of DF in the time range of several microseconds after light excitation is thought 

to occur due to charge recombination of Z+PQ-
A. While the rate of decay is not affected by the 

circadian clock, the absolute amount of DF is under circadian control (Gould et al., 2009). 

Delayed fluorescence can be measured in a growth chamber with an accurately controlled light 

source, using a low light CCD camera system with long exposure times (normally 1 minute). 

Since DF decays to near-undetectable levels within a minute, image capture must be performed 

over exactly the same period following lights-off (Gould et al., 2009; Tindall et al., 2015). 

Delayed fluorescence imaging has been employed as a circadian assay to study rhythms in a 

variety of plants, including Arabidopsis, Lactuca sativa (lettuce), Hordeum vulgare (barley), 

Zea mays (maize), Kalanchoë fedtschenko and Picea abies (Norway spruce) (Gould et al., 

2009; Gyllenstrand et al., 2014). While the exact nature of circadian control of DF is not 

understood, analysis of DF does provide an easy, high-throughput and universal method for 

monitoring circadian rhythms in a broad range of plant species without the need for transgenics 

(Tindall et al., 2015). 

Leaf movement assays, gas exchange analysis, and variable and delayed fluorescence imaging 

are useful techniques that allow analysis of circadian rhythms in most, if not all, plants, yet 

these methods are indirect assays that monitor overall circadian health (Tindall et al., 2015). 

Often, direct assays of gene expression are required to study the effect of a specific process or 

gene within the circadian system. Quantitative reverse transcription PCR (qRT-PCR) is used 

extensively in circadian studies to monitor the rhythms in transcript accumulation for specific 

genes of interest over a sampling time course (Martin-Tryon et al., 2006; Hsu et al., 2013; 

Tindall et al., 2015). In addition, micro-arrays and RNA-seq technology allow the study of 

rhythms in global mRNA abundance and splicing patterns over time (Harmer et al., 2000; 

Filichkin et al., 2010; Tindall et al., 2015). However, these molecular techniques are time 

consuming and often costly, and involve frequent sampling over numerous days with limited 

resolution (Tindall et al., 2015). Sampling is also destructive, and rhythms cannot be analysed 

in vivo. The need for a simple, non-invasive, high-throughput assay for analysing the spatial 
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and temporal expression of target genes was met through the development of imaging assays 

using transgenic luciferase reporters (Millar et al., 1992b). Firefly luciferase is a monomeric, 

~62kDa enzyme which catalyses the monooxidation of D-luciferin in the presence of ATP and 

O2 (and Mg2+) yielding the fluorescent product oxyluciferin and CO2 (Sherf and Wood, 1994; 

Smale, 2010). Plants are transformed with reporter constructs consisting of the firefly luciferase 

gene fused to the promoter region of a circadian-controlled gene of choice (Millar et al., 1992a). 

Prior to imaging, plants are dosed with D-luciferin, which can diffuse through cellular 

membranes (Sherf and Wood, 1994). Under normal conditions, O2 and ATP are present in 

excess in the plant cell, and the amount of bioluminescence observed is directly proportional 

to the amount of active luciferase protein present in the cell (Smale, 2010; Tindall et al., 2015). 

In addition, luciferase is an unstable enzyme that rapidly loses function, and the amount of 

active luciferin is directly related to the rate of luciferase expression. These properties make 

luciferase an ideal reporter for studying clock-controlled expression over time (Tindall et al., 

2015). Luciferase imaging assays can be performed in growth chambers with controlled 

lighting, using the same low light CCD camera systems used for capturing DF, with exposure 

times exceeding 10 minutes following lights-off (Millar et al., 1992a). With recent 

improvements in the sensitivity of low light camera systems, luciferase assays have been used 

to monitor circadian rhythms in individual cells of the duck-weed Lemma gibba, providing 

spatio-temporal information of gene expression at high resolution (Muranaka et al., 2013). In 

addition, split-luciferase assays have been used to study tissue-specific clock elements in 

Arabidopsis: with expression of the C-terminal half of the luciferase protein driven by a clock 

promoter and the N-terminal half of luciferase driven by a tissue-specific promoter, active 

luciferase was produced only when both constructs were expressed in the same cell (Endo et 

al., 2014). Despite the clear advantages provided by the development of high-throughput, high 

resolution luciferase assays in plants, the technique is reliant on the need to introduce transgenic 

luciferase constructs into plants, a process which is time-consuming and limits the technique 

for use only in transformable species (Tindall et al., 2015). 
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1.2.2. Characteristics of circadian rhythms 

Circadian rhythms can be represented as sinusoidal waves with a period, amplitude and phase 

(Figure 1.2), and have four defining characteristics (Pittendrigh, 1992; Dunlap, 1999; Harmer, 

2009). Firstly, circadian rhythms are endogenous and self-sustaining, continue in constant 

(“free-running”) conditions and are therefore not just passive reactions to the periodicity of the 

environment (Aschoff, 1963; Pittendrigh, 1992). Secondly, circadian rhythms cycle with a 

frequency that differs from that of a periodic environmental signal, and exhibit intrinsic periods 

of approximately (but never exactly) 24 hours (Pittendrigh, 1992; Dunlap, 1999). These 

rhythms can be reset (the time of onset of the rhythms changed) by certain environmental cues 

(Dunlap, 1999; Harmer, 2009). Lastly, circadian rhythms occur with the same period over a 

range of physiological temperatures. Temperature compensation of the clock prevents it from 

running faster under warmer temperatures, or slower under colder temperatures (Dunlap, 1999; 

Harmer, 2009).  

In circadian biology, an external “entraining” signal capable of resetting the clock is referred 

to as a Zeitgeber (“time-giver”), with the time of onset of the last Zeitgeber regarded as 

“Zeitgeber time 0 (ZT0)” (Zerr et al., 1990). Under entraining conditions (where an 

environmental input signal is present), the circadian system adjusts its free-running period (�) 

to the similar, but different period (T) of the Zeitgeber, thereby synchronising with the rhythmic 

external signal (Pittendrigh, 1992). As a result, the oscillator’s period is changed from � to � in 

the entrained steady state (Pittendrigh, 1992). The organism is entrained to a unique phase 

relative to the phase of the Zeitgeber, known as the phase of entrainment (Aschoff, 1963; 

Millar, 2003). While circadian rhythms in plants and animals are easily entrained to a 24 hour 

cycle, entrainment to a period as short as 18 hours or as long as 28-30 hours is possible 

(Bunning, 1973). In nature, an organism’s circadian clock will be reset daily by a combination 

of external cues (Millar, 2004).  
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Figure 1.2 Basic properties of circadian clock outputs under entraining and constant light conditions. (A) A 
rhythmic circadian output represented as a cosine wave with period, amplitude and phase. Activity of the biological 
process is plotted on the y-axis. The Zeitgeber time (ZT), plotted on the x-axis, is measured in hours from the last 
onset of light. White bars indicate light, black bars indicate dark, and grey bars indicate subjective darkness under 
constant light conditions. Under entraining conditions of 12h:12h light:dark cycles, the period of the rhythmic output 
corresponds to the exactly 24 hour period of the Zeitgeber. Under free--running conditions, the endogenous period 
of the oscillator (approximately, but not exactly 24 hours) becomes apparent. (B) Graphical representations of 
circadian outputs from mutants with long-period, short-period and arrhythmic circadian rhythms under free-running 
conditions, with phase shifts indicated as appropriate. White bars and grey bars indicate subjective day and 
subjective night, respectively. Tables providing examples of mutations in Arabidopsis that result in long-period, 
short-period or arrhythmic circadian period phenotypes, are shown. (Figures adapted from Nagel and Kay, 2012; 
Hsu and Harmer; 2014). 
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As a result, the circadian period of approximately 24 hours (�) is synchronised with (entrained 

to) one or several Zeitgebers in the external environment that have a period (�) of precisely 24 

hours due to the period of the earth’s rotation (Aschoff, 1963; Pittendrigh, 1992). The 

adjustment of circadian period to that of the environment is necessary even if the endogenous 

period is very close to 24 hours (Golombek and Rosenstein, 2010). Under prolonged exposure 

to free-running conditions, the endogenous period will gradually diverge from the period of the 

natural cycles until the phase differences are inadequate for survival. For example, a circadian 

system with an endogenous phase shifted by 0.1 hours compared to the natural cycles will 

result in a 1 hour advancement after 10 days in free-run and a shift from day-active to nocturnal 

after 3 months (Golombek and Rosenstein, 2010).  

Daily cycles of temperature can entrain circadian systems in some organisms, yet day-night 

changes in light serve as the strongest entraining signal (Pittendrigh, 1992). The appearance of 

light at dawn and the disappearance of light at dusk cause adjustments to the phase of the clock 

on a daily basis to keep the endogenous period synchronised with the day-night cycles of the 

environment (Devlin and Kay, 2001). However, it is important to note that circadian clocks are 

not merely hourglass timers that count down from an initial Zeitgeber at a constant rate (Millar, 

2004). The time and duration of the light signal also affects the period of the oscillator 

(Golombek and Rosenstein, 2010). Circadian clocks regulate the sensitivity of their response 

to a Zeitgeber depending on the time of day the stimulus is applied (referred to as ‘gating’) 

(Devlin, 2002). In Arabidopsis plants placed in free-run, a pulse of light given before subjective 

dawn will advance the phase of the clock, setting the clock to an ‘earlier’ time (Covington et 

al., 2001; Devlin and Kay, 2001). A similar pulse of light applied after subjective dusk will 

delay the phase of the clock (setting it to a ‘later’ time), while the same pulse applied in the 

middle of the subjective day will have no effect. The phase shift in response to a stimulus 

applied at different times across the circadian cycle can be plotted on a phase response curve 

(PRC), providing insight into the sensitivity of the specific circadian system and identifying 

the times at which the same stimulus can induce phase delays, advances or no change at all 
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(Dunlap, 1999). The PRC regions in which the largest phase shifts can occur provide windows 

for entrainment by “skeleton photoperiods” – single light pulses given at dawn and at dusk, 

with the time between the pulses delimiting the boundaries of the subjective day and subjective 

night (Golombek and Rosenstein, 2010). In general, a prolonged pulse of irradiation is required 

to reset the clock, which prevents small fluctuations in light level from causing large changes 

in phase (Devlin and Kay, 2001). When entraining an organism in a laboratory setting using 

pulses of light, the severity of the response is determined by the total amount of light, regardless 

of whether this light is given as a very bright pulse for a short period of time or as a prolonged 

(�45 min) pulse of dim light (Devlin and Kay, 2001). The intensity of the light signal also 

affects the circadian period under constant conditions (Aschoff, 1979). According to Aschoff’s 

rule, the period of circadian rhythms in plants and day-active animals kept under constant light 

conditions is inversely proportional to the environmental light intensity. Therefore, increased 

intensities of illumination cause shortened circadian period in plants, but result in lengthened 

circadian period in nocturnal animals (Aschoff, 1979). 

As mentioned, the phase of entrainment depends on the difference in period between the 

Zeitgebers (T) and the endogenous oscillator (�) (Aschoff, 1963; Millar, 2004). In natural 

conditions, plants are subjected to prolonged periods of irradiation, and the phase of 

entrainment is the net effect of phase advances in the morning and phase delays in the late 

afternoon (Devlin and Kay, 2001). The most physiologically relevant variable is the alteration 

in photoperiod (the duration of illumination in a light:dark cycles) (Millar, 2004). The circadian 

system senses changes in photoperiod, allowing the plant to regulate seasonal processes such 

as flowering or senescence (McClung, 2006). In addition, outputs of the clock can be regulated 

to occur at the correct phase of the day:night cycle (time of day) despite a change in day length 

(Edwards et al., 2010). For example, the expression of the CAB genes encoding the chlorophyll 

a/b-binding proteins in Arabidopsis exhibit robust circadian rhythms under constant light, yet 

under entraining conditions the phase of peak expression is delayed under long days and 

advanced under short days, thus always peaking in the middle of the day regardless of day 
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length (Edwards et al., 2010). Arabidopsis is a “long-day plant” which flowers under long 

photoperiods, and regarded as “dawn-dominant”: large changes in photoperiod length result in 

comparatively small changes in the phase of gene expression rhythms relative to dawn, 

indicating that the rhythms are more susceptible to the “dawn” signal and exhibit a limited 

response to the “dusk” signal. This is in contrast to the “dusk-tracking”, “short-day plant” 

Ipomoea nil (Morning Glory) which flowers under shortening day lengths and which, when 

grown under constant light, only flowers upon transfer to an interval of constant darkness 

mimicking a long night (Edwards et al., 2010).  

 

1.3. Cellular timekeeping improves fitness in plants 

Although signals such as dawn and dusk or tidal movements act as rhythmic environmental 

cues, the coupling of an organism’s responses to an endogenous, autonomous timing is 

advantageous (Golombek and Rosenstein, 2010). In some instances, such as at extreme 

latitudes, environmental variables remain virtually stable, yet these cues may not always be 

reliable enough to adequately steer behaviour. An hour glass-like timer that simply responds 

to external signals is also by its very nature reactive, while an endogenous timer allows an 

organism to anticipate and predict changes and to respond optimally to future challenges. For 

example, cold or frost is likely associated with dusk, while high light or heat stress occurs 

during the day (Jones, 2009; Golombek and Rosenstein, 2010). Lastly, an endogenous clock 

allows for the overall synchronisation of the various biological components that function in a 

living organism (Golombek and Rosenstein, 2010). 

The advantages provided by a circadian system have been described in a variety of species. In 

humans, misalignment between internal circadian rhythm and the rhythms of the environment 

(such as observed in jet lag or shift work) has numerous adverse consequences, including an 

association with increased risk of cancer and metabolic or mental disease (Hastings et al., 

2003). Competition experiments performed on wild-type and mutagenized strains of 
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cyanobacteria with different clock properties showed that strains compete most effectively 

when the period of their internal biological oscillator is similar to that of the environmental 

cycle (Ouyang et al., 1998; Woelfle et al., 2004). This advantage is not simply due to an 

“intrinsic value”, as the advantage is visible only in rhythmic environments, and not under 

constant conditions (Woelfle et al., 2004). Similarly in Arabidopsis, both wild-type and long- 

and short-circadian period mutants grow faster, fix more carbon, contain more chlorophyll and 

survive better when their circadian period is matched to the period of the environment, 

compared to plants for which the circadian periods are desynchronised from the environment 

(Dodd et al., 2005). This is perhaps not surprising, as microarray analysis has indicated that 

approximately one-third of expressed genes in Arabidopsis are regulated by the circadian 

system at transcriptional level (Covington et al., 2008). In addition, over 70% of the 88 protein-

coding genes encoded by the chloroplast genome can be regulated by the circadian system 

(Noordally et al., 2013). Among the circadian-regulated genes in the Arabidopsis genome are 

genes involved in the light-harvesting reactions of photosynthesis, genes involved in carbon, 

nitrogen and sulfur pathways, as well as genes involved in developmental processes including 

cell elongation, cell wall biosynthesis, and flowering (Harmer et al., 2000). Furthermore, a 

number of genes involved in classical plant hormone pathways and abiotic stress are regulated 

by the circadian system in Arabidopsis (Covington et al., 2008). Interestingly, circadian control 

of gene expression in Arabidopsis extends beyond gene transcription to include regulation of 

translation rate (Missra et al., 2015). Prior to protein synthesis, transcripts are recruited to 

ribosomes to form polysomes, and the rate of translation of a given transcript depends on the 

transcript abundance, the proportion of transcript present in polysomes (ribosome occupancy), 

the number of ribosomes present on the transcript (ribosome loading) and the speed of 

progression along the transcript (Piques et al., 2009). While rhythms in ribosome abundance 

are not observed, global cycles of ribosome loading have been reported over the course of the 

light:dark cycle (Piques et al., 2009; Pal et al., 2013; Missra et al., 2015). Approximately one 

in seven mRNAs exhibit robust cycles of ribosome loading, and include mRNAs involved in 

ribosome biogenesis, synthesis of the inner mitochondrial membrane and the photosynthetic 
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apparatus. In addition, these cycles of ribosome loading are controlled in part by the circadian 

system, and are substantially altered upon disruption of the circadian clock (Missra et al., 2015) 

The effect of circadian regulation on the daily functioning of plants is apparent not only at the 

level of gene expression, but also at metabolic and physiological levels. Circadian regulation 

of light harvesting has been described in higher plants, as is demonstrated by circadian 

oscillations in DF (Gould et al., 2009; Dodd et al., 2014). In the legume species Pisum sativum, 

in vitro monitoring of O2 production from isolated mesophyll cells (using an oxygen-sensitive 

electrode) revealed circadian rhythms in light-induced O2 evolution (Lonergan, 1981). 

Furthermore, circadian rhythms in uncoupled, light-induced whole-electron flow have been 

observed in isolated chloroplasts from three legume species, using an in vitro H2O to methyl 

viologen assay (Lonergan, 1981). As mentioned previously, the CAM plant Kalanchoë 

daigremontiana exhibits circadian oscillations in the operating efficiency of PSII (Fq’/Fm’; 

�PSII) in isolated leaves (Wyka et al., 2005). In addition, diurnal cycles of Rubisco 

carbamylation in K. deigremontiana continue under constant light conditions, and correlate 

with diurnal changes in Rubisco activity and the rate of carbon fixation (Maxwell et al., 1999). 

Circadian gating of plant responsiveness to light and hormone signalling allows for maximal 

sensitivity to light during the day, and maximal sensitivity to the phytohormones auxin and 

gibberellin at night (Millar and Kay, 1996; Covington and Harmer, 2007; Arana et al., 2011; 

Atamian et al., 2016). In addition, the abundance of light signalling components and hormones 

are regulated both by the circadian clock and by light, and the complex integration of light and 

temperature sensing, hormone signalling, circadian regulation and circadian gating results in 

daily rhythms in growth and organ expansion (Nozue et al., 2007; Müller et al., 2014; Atamian 

et al., 2016). Since the direction and intensity of sunlight changes with predictable rhythm 

during the day, coordination between directional growth pathways and the circadian clock 

could result in optimal light capture and performance during the course of the day (Atamian et 

al., 2016). One example of such a directional growth pathway is phototropism, a process that 

integrates blue light sensing and auxin response pathways to allow alignment of photosynthetic 
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organs with the direction of light (Briggs, 2014). Heliotropism, or solar tracking, is a kind of 

phototropism observed in the Helianthus annuus (common sunflower) which coordinates light-

signalling pathways and circadian regulation to optimise plant performance in natural 

conditions (Atamian et al., 2016). Young sunflowers track the sun from east to west during the 

day, and reorient during the night to face east in anticipation of the oncoming dawn. In contrast, 

movement ceases in mature plants, with flower heads facing eastward. Solar tracking in young 

plants occurs due to differential elongation on opposite sides of stems, with growth rates on the 

east side higher during the day and very low at night, contrasting with growth rates on the west 

side that are low during the day and higher during the night. This antiphasic growth is regulated 

by differential expression of auxin-sensitive genes involved in phototropism and is under 

circadian control, continuing for several days under constant overhead lighting. Furthermore, 

the gradual cessation of westward movement toward the final stages of flower development is 

possibly due to circadian gating of plant responses to light (with plants responding more 

strongly to light activation of phototropism during the morning than at any other time of the 

day), combined with decreased elongation rates as plants reach maturity. The permanent 

eastward orientation of mature flowers promotes pollinator visits, with flowers artificially 

orientated westward experiencing approximately five-fold fewer pollinator visits. Interestingly, 

eastward-facing flower heads warm up more quickly in the morning than westward-facing 

flowers. Artificial warming of westward-facing flowers with heaters improved pollinator visits 

of these flowers (although visits were still fewer than for eastward-facing flowers), suggesting 

that upon interception of morning solar radiation, both light and heat improves attractiveness 

of flowers to pollinators (Atamian et al., 2016) 

In Arabidopsis, the circadian clock also controls the availability of carbohydrate for growth at 

night (Graf et al., 2010). During the day, sugars produced by photosynthesis can be used to 

directly fuel growth, or can be stored in the chloroplasts as starch to be used as a source of 

carbohydrate during the night (Lu et al., 2005; Graf et al., 2010). Circadian regulation of growth 

responses results in repression of growth during the day and peak shoot growth towards the 
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end of the night, allowing growth to coincide with maximum water availability (Walter et al., 

2009). By timing growth to occur towards the end of the night, carbohydrates produced during 

the day are favoured for storage, and the depletion of carbon sources before the next dawn is 

prevented. Indeed, starch degradation occurs at a linear rate during the night in Arabidopsis 

leaves, and is timed such that ~95% of the stored starch is depleted by dawn (Smith and Stitt, 

2007; Graf et al., 2010). The accurate timing of starch degradation is vital to plant growth, and 

artificial extension of the night beyond normal dawn causes a pronounced decrease in growth 

rate. In addition, growth under short-day conditions leads to increased accumulation of starch, 

and mutants that are unable to store starch or degrade it very slowly exhibit limited growth 

rates compared to wild-type plants, unless grown under very long days (Gibon et al., 2004; 

Smith and Stitt, 2007). Plants are able to very rapidly adjust the rate of starch degradation in 

response to an unexpectedly early or late onset of night (Graf et al., 2010). Plants grown under 

long-day conditions and subjected to darkness after only 8 hours of light exhibit an immediate 

and pronounced decrease in starch degradation rate. Similarly, plants grown under short day 

conditions exhibit accelerated starch degradation upon exposure to a 16-hour light period (Lu 

et al., 2005; Graf et al., 2010). While the levels of starch-degrading proteins do not cycle 

rhythmically under light:dark cycles, constant light or constant darkness, cellular levels of 

maltose (but not of starch, glucose or sucrose) cycle with strong circadian rhythms under 

constant light conditions (Lu et al., 2005). Growing plants under abnormal day lengths (such 

as 28 hours) results in depletion of starch ~24 hours after dawn and a subsequent reduction in 

growth (Graf et al., 2010). In addition, mutants with shortened circadian period exhibit 

exhausted starch supplies at the time of early dawn as anticipated by the fast-running oscillator, 

rather than at the actual dawn of the light:dark cycle. Therefore, the circadian clock plays an 

important role in timing the degradation of stored starch during the night, ensuring that 

carbohydrate availability for growth is maintained until the next anticipated dawn. (Graf et al., 

2010).  
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1.4. Circadian regulation of flowering 

The advantages obtained by synchronising internal biological processes to the rhythms of the 

environment are not limited merely to daily processes, but extend to longer term, seasonal 

processes as well (Hsu and Harmer, 2014; Millar, 2016). Many plants optimise reproductive 

success by aligning their flowering time to seasonal changes (Green et al., 2002; Song et al., 

2015). Plants that grow in lower latitudes tend to flower in response to short days, thereby 

avoiding extreme summer heat. In contrast, plants growing in more temperate climates often 

flower in response to long days, allowing these plants to flower and set seed before the onset 

of winter (Thomas and Vince-Prue, 1997; Green et al., 2002). The process through which plants 

use information on photoperiod to regulate flowering under certain day length conditions can 

be described by means of the external coincidence model (Pittendrigh and Minis, 1964; Song 

et al., 2015). The external coincidence model as originally described consists of two factors: a 

hypothetical enzyme that is present throughout the day, but is activated only in the presence of 

light, and a hypothetical substrate of which the levels oscillate throughout the day and which 

induces a photoperiodic response when processed. The photoperiodic response is triggered 

only when the peak of substrate coincides with the presence of the enzyme. Levels/expression 

patterns of the substrate are regulated by the circadian clock, and the clock is reset by changes 

in light and temperature. Since the time of resetting changes over the course of the year, slight 

phase shifts occur in the oscillations of the substrate. As a result, the phases of maximal 

substrate are different under long- and short-day conditions (Pittendrigh and Minis, 1964; Song 

et al., 2015). The external coincidence model is well demonstrated in the flowering mechanisms 

of Arabidopsis, barley, wheat and rice (Song et al., 2015). In many plant species, the timing of 

flowering depends largely on seasonal changes in the expression levels of the gene 

FLOWERING LOCUS T (FT). The FT gene product is synthesised in the leaves, where 

photoperiod is sensed, and moves to the shoot apexes to induce flowering. In the long-day plant 

Arabidopsis, FT expression is induced to high levels under long day conditions, while short-

day conditions lead to very low levels of FT expression (Kobayashi et al., 1999). The induction 
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of FT expression under long days is regulated by the transcription factor CONSTANS (CO), 

which directly activates FT expression (Samach et al., 2000; Valverde et al., 2004). The activity 

of CO protein is restricted to the afternoon of long days through coordination of circadian clock 

regulation of CO transcription and photoreceptor regulation of CO activity (Samach et al., 

2000; Suárez-López et al., 2001; Valverde et al., 2004; Song et al., 2015). Expression of CO is 

regulated by the circadian clock, with transcripts occurring from the late afternoon to night. 

Transcription of CO is repressed in the morning by CYCLING DOF FACTORs (CDFs) which 

play an important role in allowing Arabidopsis plants to differentiate between long days and 

short days, and CDF expression is accurately timed through complex circadian mechanisms 

(Imaizumi et al., 2005; Sawa et al., 2007; Song et al., 2015). Morning-phased clock components 

induce CDF expression, while afternoon-phased components repress CDF expression, thereby 

restricting CDF expression to the mornings. Furthermore, CDF protein is degraded by clock-

controlled proteins that are expressed at highest levels and activated at the end of the day in 

long days (but not in short days) (Sawa et al., 2007; Song et al., 2015). In addition to circadian 

regulation of CO expression, stabilization of CO protein is dependent on light signalling 

pathways. Red light signalling modulates degradation of CO to occur in the morning and during 

the night in both long and short days, preventing flowering under short days (Liu et al., 2008b; 

Lazaro et al., 2012; Song et al., 2015). In contrast, blue and far-red light signalling mechanisms 

cause an increase in CO protein abundance, thereby allowing CO to accumulate only in the late 

afternoon in long days (Valverde et al., 2004; Song et al., 2015). Combined, these activator, 

repressor and protein degradation mechanisms coordinate with the circadian system to ensure 

that peak CO expression coincides with light primarily in the summer (long days), when CO 

protein is stabilized and FT expression occurs (Song et al., 2015). 
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1.5. Natural variation in plant circadian rhythms 

While photoperiod is the most reliable signal indicating the time of year, the relationship 

between photoperiod and season depends on latitude (Hut and Beersma, 2011). Seasonal 

changes in the environment become more severe at latitudes closer to the poles, and the 

amplitude of environmental temperature rhythms increases with latitude. As a result, species 

that occur across a broad range of latitudes must adapt to annual changes of both temperature 

and photoperiod to optimize the timing of reproduction. In some species this has led to 

latitudinal differences in the characteristics of their circadian systems, suggesting that the 

circadian system’s ability to respond to changes in photoperiod generates selective pressure. In 

Arabidopsis, considerable natural variation is evident in the period, amplitude and phase of 

circadian rhythms among 150 natural accessions (Michael et al., 2003). A latitudinal cline is 

observed in the endogenous period of Arabidopsis, with the period length correlating strongly 

with day length at the latitude of origin such that plants at higher latitudes exhibit longer 

circadian period (Michael et al., 2003; Hut and Beersma, 2011). The longer period of 

Arabidopsis enhances its ability to track dawn, allowing improved seasonal responsiveness at 

high latitudes where sharp increases in day length occur during spring (Michael et al., 2003). 

In addition, the lengthened period at higher latitudes serves to delay flowering until later in the 

season, avoiding cold weather in late spring (which is more common at higher latitudes) and 

reduce damage by herbivores when Arabidopsis might be one of few species available during 

early spring. Optimal flowering time is vital to the success of crops in modern agriculture, and 

the circadian system has emerged as a promising target for breeding and developing crops for 

improved production in different environments (Murphy et al., 2011; Gawro�ski et al., 2014; 

Millar, 2016). In crop domestication, early flowering or reduced photoperiod sensitivity are 

often breeding targets (Zakhrabekova et al., 2012; Boden et al., 2014). While early flowering 

may limit productivity in highly fertile areas due to inefficient use of the entire growing season, 

it does allow cultivation in low-yielding, marginal environments with short seasons, which 

constitutes the majority of land used for agriculture (Zakhrabekova et al., 2012). In addition, 
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plants with reduced photoperiod sensitivity has allowed for the migration of crops to latitudes 

where daylengths might otherwise inhibit flowering (Boden et al., 2014). Variation in 

flowering time has been attributed to allelic variation in core circadian clock gene homologs, 

such as in brassica (Xie et al., 2015), wheat (Gawro�ski et al., 2014), sorghum (Murphy et al., 

2011), rice (Izawa et al., 2011) and pea (Weller et al., 2012); or due to variation in alleles of 

downstream, clock-regulated genes, such as in beet (Dally et al., 2014; Millar, 2016). In barley, 

the northward migration of cultivated barley from the Fertile Crescent to Scotland and 

Scandinavia is associated with selection of single-gene mutations in core circadian clock genes 

that alter flowering time (Jones et al., 2008; Boden et al., 2014; Millar, 2016). Wild barley is 

early flowering under long days and late flowering under short days (Turner, 2005; Faure et 

al., 2012). The long-day photoperiod response of barley is affected by Ppd-H1, a PRR gene 

homologous to the morning-phased Arabidopsis clock gene PRR7 (see Section 1.6). Mutation 

in Ppd-H1 has no effect on flowering time under short days, but results in delayed flowering 

under long days. This late-flowering phenotype (which is associated with reduced expression 

levels of the barley FT homologue, HvFT1) provides an advantage in environments with long 

growth seasons (Turner, 2005; Faure et al., 2012). In contrast, mutation in the barley EARLY 

MATURITY8 (EAM8), an orthologue of the Arabidopsis clock gene ELF3 (see Section 1.6) 

results in an early-flowering, day-neutral phenotype (Faure et al., 2012; Zakhrabekova et al., 

2012; Boden et al., 2014). The resultant rapid flowering under either short days or long days 

are advantageous for cultivation in short growth seasons, such as those in Scandinavia, and as 

a result a number of spontaneous and induced eam8 spring barley varieties are available 

commercially (Faure et al., 2012; Zakhrabekova et al., 2012; Boden et al., 2014). Interestingly, 

a recent study of circadian rhythms in cultivated tomato (Solanum lycopersicum) and its wild 

ancestor Solanum pimpinellifolium indicated that the circadian clock of tomato has slowed 

down during domestication (Müller et al., 2016). Circadian rhythms in cultivated tomato cycle 

with a period 2 hours longer, and with a phase delayed by more than 3 hours, compared to that 

of S. pimpinellifolium. In addition, cultivated tomato exhibit lower gene expression amplitudes 

than the ancestor, suggesting a weaker circadian clock in domesticated varieties. The phase 
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delay observed in domesticated species relates to a gene homolous to the Arabidopsis EID1, a 

negatively-acting component involved in the phytochrome signalling cascade. Interestingly, 

distant related green-fruited wild tomato species exhibits circadian rhythms with similar phase, 

but even shorter period compared to S. pimpinellifoliumi. Domestication of tomatoes is thought 

to have begun in Ecuador and Peru, with deceleration of the clock occurring in a stepwise 

manner. The delayed phase is apparent in the earliest domesticated Ecuadorian types, while the 

long period emerged during the later steps of domestication in Mesoamerican varieties. The 

long period and late phase became fixed only in the modern cultivars brought to Europe 

approximately 500 years ago, suggesting the selection of plants with slower circadian rhythms 

that are better adapted to the long summer days encountered as it was moved to areas further 

from the equator (Müller et al., 2016). 

 

1.6. The Arabidopsis thaliana circadian clock as a model system 

Extensive research has been done on the workings of the circadian system in Arabidopsis, with 

both genetic and biochemical studies playing important roles in revealing the architecture of 

the system (Nagel and Kay, 2012). The Arabidopsis circadian system has historically been 

described as a central oscillator consisting of core transcriptional feedback loops, which in turn 

generate rhythmic outputs via specific signalling pathways (Harmer, 2009). However, it is 

becoming increasingly apparent that the Arabidopsis clock is a complex system, consisting of 

an interconnected network of transcriptional and translational feedback loops (Millar, 2016; 

Sanchez and Kay, 2016). Some clock genes have multiple functions, acting within the central 

oscillator as well as in input and output pathways, while clock outputs can be directly regulated 

by input pathways (Nagel and Kay, 2012; Hsu and Harmer, 2014). More recently, the 

Arabidopsis circadian system is described simplistically as a four-component “repressilator” 

(or “quadripressilator”), a gene circuit consisting of a ring of inhibitors in which the expression 

of each gene inhibits the earlier-expressed gene (Figure 1.3a) (Nakamichi, 2011; Pokhilko et 
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al., 2012; Millar, 2016). More than 20 components associated with the clock have been 

identified in Arabidopsis (a simplified diagram is presented in Figure 1.3b), with different 

rhythmically-expressed clock genes acting at specific times of day to regulate the expression 

of other clock-related genes at transcriptional and post-transcriptional level (Nakamichi, 2011; 

Nagel and Kay, 2012; Hsu and Harmer, 2014; Sanchez and Kay, 2016). Constitutive 

overexpression or loss of function of these components can impact the period or rhythmicity 

of the observed circadian rhythms (Figure 1.2b and Table 1.2).  

 

1.6.1. Transcriptional loops in the Arabidopsis clock network 

The first transcriptional regulatory feedback loop involves the morning-phased components 

CIRCADIAN CLOCK ASSOCIATED1 (CCA1) and LATE ELONGATED HYPOCOTYL 

(LHY), two morning-phased transcription factors that contain a single MYB DNA-binding 

domain (Alabadí et al., 2001). CCA1 and LHY transcription begins to rise in the middle of the 

night and peaks at dawn, with cycles in protein levels well synchronised with transcript level 

rhythms (Alabadí et al., 2001). The expression of CCA1 is activated by LIGHT-REGULATED 

WD1 (LWD1), a nuclear-localised protein for which transcription peaks at dusk (Wang et al., 

2011; Wu et al., 2016). In order to act as activator of CCA1 expression, LWD1 interacts with 

TEOSINTE BRANCHED 1-CYCLOIDEA-PCF20 (TCP20) and TCP22 proteins, and the 

resulting LWD-TCP complex binds to the TCP binding site on the CCA1 promoter (Wu et al., 

2016). CCA1 and LHY proteins are expressed mainly in leaves and stems and co-localise in 

the nucleus where they can interact to form both heterodimers and CCA1 homodimers (Lu et 

al., 2009; Yakir et al., 2009). Furthermore, CCA1 and LHY have partially redundant functions, 

inhibiting the expression of the evening-phased component TIMING OF CAB 

EXPRESSION1/PSEUDO-RESPONSE REGULATOR1 (TOC1/PRR1) (Alabadí et al., 2001). 

In addition to TOC1, CCA1 and LHY also inhibit expression of a number of other evening-

phased genes (Nagel and Kay, 2012; Hsu and Harmer, 2014). - 
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Figure 1.3 Simplified representation of the circadian clock in Arabidopsis. (A) Schematic representation of the 
four component repressilator circuit (quadripressilator) consisting of a ring of suppressors, with RVE8 as an 
activator. (B) Schematic representation of the transcription/translation feedback loops of the Arabidopsis circadian 
system, with day-phased and night-phased components shown. Boxes indicate genes and ovals indicate the 
respective proteins, connected with grey dotted lines for clarity.  Genes with EEs in their promoters are marked with 
red boxes. Black arrows indicate activation or suppression as appropriate. (Figures adapted from Nagel and Kay, 
2012; Hsu and Harmer; 2014; Millar et al., 2016). 
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Table 1.2 Components of the Arabidopsis circadian system and their effect on circadian rhythms 

Gene Time of day Function 

Circadian phenotype of mutant 

Loss-of-function 
Overexpressio

n 

CCA1 Morning Transcription factor Short period (partially redundant with 
LHY) 

Arrhythmic 

LHY Morning Transcription factor Short period (partially redundant with 
CCA1) 

Arrhythmic 

PRR9 Morning Transcription factor Long period (partially redundant with 
PRR7 and PRR5) 

Short period 

PRR7 Morning Transcription factor Long period (partially redundant with 
PRR9 and PRR5) 

Long period 

GI Day Interacts with numerous 
proteins 

Short period Short period 

RVE8 Afternoon Transcription factor Long period (partially redundant with 
RVE4 and RVE6) 

Long period 

PRR5 Afternoon Transcription factor Short period (partially redundant with 
PRR9 and PRR7) 

Long period 

LWD1/2 Afternoon
/Evening 

Nuclear protein Short period (LWD1 redundant with 
LWD2) 

 

PRR3 Evening Transcription factor Short period Long period 

TOC1 Evening Transcription factor Short period Arrhythmic 

CHE Evening Transcription factor No phenotype Arrhythmic 

LUX Evening Transcription factor Arrhythmic under constant light Arrhythmic 

NOX Evening Transcription factor No phenotype/short period Long period 

ELF3 Evening Transcription regulator Arrhythmic under constant light Long period 

ELF4 Evening Transcription regulator Arrhythmic under constant light 
 

ZTL Evening F-box protein, blue light 
receptor 

Long period 
 

STIPL1 - Component of 
spliceosome 

Long period 
 

LNK2 - Nuclear protein Long period (redundant with LNK1) 
 

JMJD5 - Histone demethylase Short period Short period 

LIP1 - Small GTPase Short period 
 

TPL1 - Tup1 corepressor Long period or arrhythmic (redundant 
with other members of TPL/TPR 
family) 

Long period 

Selected components of the Arabidopsis circadian system that affect the period or rhythmicity of circadian 
rhythms upon mutation. Name of gene, the time of day of activity and function of gene product, as well as the 
effect of loss of function and constitutive overexpression on circadian rhythms are shown (Nagel and Kay, 2012; 
Hsu and Harmer, 2014). 
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These include the nuclear localised MYB-like transcription factor LUX ARRHYTHMO (LUX) 

(Hazen et al., 2005); BROTHER OF LUX ARRHYTHMO (BOA or NOX), a nuclear-localised 

GARP family transcription factor expressed in all plant tissues with particular abundance in 

flowers (Dai et al., 2011; Helfer et al., 2011); GIGANTEA (GI), a nuclear-localised protein with 

diverse functions and protein interactions (Locke et al., 2006; Song et al., 2014); EARLY 

FLOWERING 3 (ELF3) and ELF4, two unrelated novel nuclear-localised transcription 

regulators (Herrero et al., 2012) and the nuclear-localised TCP transcription factor CCA1 

HIKING EXPEDITION (CHE) (Pruneda-Paz et al., 2009). In each case, repression of 

transcription by CCA1 and LHY depends on the recruitment of DEETIOLATED1 (DET1), a 

nuclear protein component of the evolutionarily conserved COP10-DET1-DDB1 (CDD) 

protein complex involved in photomorphogenesis (Lau et al., 2011). DET1, which acts as a 

transcriptional repressor, physically interacts with CCA1 and LHY and binds to the promoter 

of CCA1/LHY target genes in a CCA1/LHY-dependent manner (Lau et al., 2011). Association 

of DET1 to target promoters occurs via the evening element (EE) motif - a nine-nucleotide 

absolutely conserved circadian clock regulatory element present in the promoters of numerous 

evening-phased clock regulated genes (Harmer et al., 2000; Lau et al., 2011). Interestingly, 

CCA1 and LHY proteins also repress their own and each other’s expression, possibly by 

forming interactions with other transcription factors (Adams et al., 2015).  

TOC1 is part of a five-member, nuclear-localised PSEUDO-RESPONSE REGULATOR 

(PRR) family which is characterised as containing two domains – the N-terminal 

pseudoreceiver (PR) domain and the DNA-binding CONSTANS (CO)-like CCT domain at the 

C-terminal (Strayer et al., 2000; Matsushika et al., 2000; Wenkel et al., 2006). The N-terminal 

PR domain allows homo- and heterodimerisation between PRR proteins as well as interactions 

with other proteins. The repressing function of TOC1 is widespread, and occurs through direct 

binding of the C-terminal CCT domain to a cis-element termed T1ME (TOC1 morning 

element), which is present in the promoters of target genes (Gendron et al., 2012). TOC1 

transcripts and protein oscillate 12 hours out of phase with both LHY and CCA1, and the 
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nuclear-localised, evening-expressed TOC1 protein represses the expression of CCA1 and LHY 

genes by direct binding of the CCR domain to the target promoters (Gendron et al., 2012; 

Pokhilko et al., 2012). In contrast, the evening-phased transcription factor CHE inhibits only 

the expression of CCA1 (Pruneda-Paz et al., 2009). TOC1 also interacts with CHE, which in 

turn binds to the CCA1 promoter, thereby establishing another molecular linkage between 

TOC1 and CCA1 regulation. Interestingly, NOX also binds to the promoter of CCA1, but acts 

as an activator of CCA1 expression (Dai et al., 2011).  

The regulatory module containing CCA1 and LHY is interlocked with two additional loops, the 

first of which involves the day-phased members of the PRR family (Farré et al., 2005; Farré 

and Liu, 2013). Members of the PRR family are expressed sequentially from morning to night, 

with transcription of PRR9 peaking just after dawn, followed by PRR7 in the morning, PRR5 

in the afternoon, and PRR3 and TOC1 (PRR1) in the evening (Matsushika et al., 2000). In 

addition to acting as transcriptional repressors of the evening-phased PRR TOC1, CCA1 and 

LHY also inhibit the expression of the day-phased PRRs PRR9, PRR7 and PRR5 (Adams et 

al., 2015; Kamioka et al., 2016). CCA1 and LHY protein levels peak a few hours before PRR9 

and PRR7 transcription peaks (Farré et al., 2005), and the proteins repress expression of the 

PRRs by binding directly to the PRR9 and PRR7 promoters. PRR7 has three CCA1 binding 

sites (CBS, a circadian clock regulatory element highly related to the EE motif), while the 

PRR9 promoter contains an EE upstream of the transcription start site (Farré et al., 2005; 

Adams et al., 2015). 

The importance of PRRs in regulating clock function is demonstrated by the circadian 

phenotype of the prr5 prr7 prr9 triple mutant, which is arrhythmic under constant conditions 

(Nakamichi et al., 2005). The functions of PRR5, PRR7 and PPR9 are partially redundant, yet 

all three proteins collectively play an important part in maintaining circadian rhythms as they 

are expressed at different times of day. PRR9, PRR7 and PRR5 actively repress expression of 

CCA1 and LHY through association with promoter their regions. Transcript abundance for each 

of the five members of the PRR family peak sequentially from shortly after dawn to 
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approximately dusk, with corresponding protein cycling with a slightly lagging phase relative 

to transcript, which allows repression of CCA1 and LHY from morning until midnight and 

limiting expression of CCA1 and LHY only in a small portion of the day (Nakamichi et al., 

2005; Fujiwara et al., 2008; Pokhilko et al., 2012). Repression of CCA1 and LHY expression 

by the three PRR proteins relies on interaction with members of the Groucho/Tip1 corepressor 

family, TOPLESS/TOPLESS-RELATED (TPL/TPR) (Wang et al., 2013). TPL/TPR proteins 

specifically interact with PRR9, PRR7 and PRR5 and bind to the promoters of CCA1 and LHY 

to repress transcription. In addition, a complex of PRR9 and TPL interacts with histone 

deacetylase 6 (HDA6), with the resulting PRR-TL-HDA complex also binding to promoters of 

CCA1 and LHY to repress transcription. The five members of the TPL/TPR family are 

functionally redundant, and mutants in which all TPL/TPR functionality is reduced mimic the 

arrhythmic phenotype of prr5 prr7 prr9 mutants (Wang et al., 2013).  

The repressive function of the PRRs extend further to include REVEILLE8/LHY and CCA1-

like 5 (RVE8/LCL5), a MYB-like transcription factor highly related to CCA1 and LHY, as 

target (Rawat et al., 2011; Hsu et al., 2013). Like CCA1 and LHY, the RVE transcription 

factors have been shown to bind to the EE motif of target promoters (Harmer et al., 2000; 

Rawat et al., 2011). Expression of the homologues RVE1, RVE2 and RVE7 are controlled by 

the circadian system, yet disrupting the function of these proteins does not impact circadian 

rhythms (Kuno, 2003; Zhang et al., 2007; Rawat et al., 2009). While RVE1, RVE2 and RVE7 

do not play a role in regulating core circadian rhythms, they do play a role in regulating 

circadian outputs such as auxin signalling and flowering (Kuno, 2003; Zhang et al., 2007; 

Rawat et al., 2009). In contrast, RVE4, RVE6 and RVE8 are central, partially redundant 

components of the circadian oscillator (Rawat et al., 2011; Hsu et al., 2013). Transcription 

levels of RVE8 peak at dawn (similar to CCA1 and LHY transcription patterns) yet unlike CCA1 

and LHY, RVE8 protein levels peak in the afternoon (Rawat et al., 2011). Like CCA1 and 

LHY, RVE8 binds specifically to the EE of target promoters, but acts as an activator of 

expression rather than a suppressor (Rawat et al., 2011; Hsu et al., 2013). RVE8 induces 



32 
 

numerous evening-phased genes, and activates expression of the evening clock components 

PRR5, TOC1, PRR3, GI, LUX and ELF4 through binding to the EE (Hsu et al., 2013). The 

expression of RVE8 is in turn suppressed directly by PRR5, as well as possibly by PRR7 and 

PRR9 (Nakamichi et al., 2010; Hsu et al., 2013). The negative feedback loop formed between 

RVE8 and the PRRs is also linked to CCA1/LHY-containing loops, as PRRs act in sequence 

to suppress expression of CCA1 and LHY (Nakamichi et al., 2010; Pokhilko et al., 2012). In 

addition, the expression of PRR9, PRR7 and PRR5 is inhibited by the both the morning-phase 

CCA1 and LHY, and by the evening-phased PRR protein TOC1 by direct binding to the 

promoters (Gendron et al., 2012; Huang et al., 2012; Adams et al., 2015; Kamioka et al., 2016). 

The final transcriptional feedback loop further links morning- and day-phased components to 

evening-phased clock components. As previously stated, LUX is an evening-phased MYB-like 

transcription factor for which expression is activated by RVE8 and suppressed by the morning-

phased CCA1 and LHY, and by the evening-phased TOC1 (Hazen et al., 2005; Gendron et al., 

2012; Huang et al., 2012; Hsu et al., 2013). LUX interacts with EARLY FLOWERING 3 

(ELF3) and ELF4, two nuclear-localised proteins of unknown function, to form the Evening 

Complex (EC). The EC plays an important, central role in regulation of circadian rhythms, and 

loss of function of any one member of the evening complex results in plants becoming 

arrhythmic (Hazen et al., 2005; Herrero et al., 2012). The three members of the EC regulate the 

expression of a variety of clock genes by direct binding to the EE of target gene promoters 

(Harmer et al., 2000; Hazen et al., 2005; Herrero et al., 2012). LUX, ELF3 and ELF4 repress 

expression of day-phased PRR9, and LUX represses expression of itself, through direct binding 

to the EE element of the promoter regions (Helfer et al., 2011). The EC also forms a negative 

feedback loop with morning components CCA1 and LHY by promoting (through an indirect 

mechanism) CCA1 and LHY expression, while CCA1 and LHY in turn repress expression of 

LUX, ELF3 and ELF4 (Kikis et al., 2005; Herrero et al., 2012; Nagel and Kay, 2012; Adams 

et al., 2015; Kamioka et al., 2016). In addition, expression of LUX and ELF4 is also repressed 

by the evening-phased PRR TOC1 (Gendron et al., 2012; Huang et al., 2012) The LUX-
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homologue NOX, which (like LUX) promotes expression of CCA1 and forms a negative 

feedback loop with the morning component, can also interact with ELF3 and ELF4 (Dai et al., 

2011).  

 

1.6.2. Post-transcriptional regulation of circadian clock components in Arabidopsis 

In addition to the complex network of transcription feedback loops discussed above, 

posttranscriptional mechanisms (such as alternative splicing) and posttranslational regulation 

(such as protein-protein interactions) play important roles in the circadian system (Seo and 

Mas, 2014; Nolte and Staiger, 2015). Alternative splicing (AS) of precursor mRNAs produces 

different mRNA variant transcripts from pre-mRNA from the same gene (Nolte and Staiger, 

2015). These mRNA isoforms can give rise to protein variants with altered amino acid 

sequences or protein domains, which in turn could result in changes in activity, localisation, 

interaction with other proteins or posttranscriptional modifications. Alternatively, AS can 

result in the generation of mRNAs that contain premature termination codons (PTCs), which 

are targeted for degradation by nonsense-mediated decay (NMD) (Nolte and Staiger, 2015). 

Genome-wide mapping of alternative splicing in Arabidopsis using RNA sequencing revealed 

that approximately 42% of intron-containing genes in Arabidopsis are alternatively spliced 

(Filichkin et al., 2010). AS is prevalent among genes of the circadian system, with AS mRNA 

variants identified for the clock components CCA1, LHY, TOC1, PRR3, PRR5, PRR7, PRR9, 

RVE4 and RVE8 (Filichkin et al., 2010; James et al., 2012). Intron retention events have been 

reported in mRNAs of the CCA1/LHY-like subfamily of MYB transcription factors, while 

RVE2 transcripts are alternatively spliced through the inclusion of a “poison cassette exon” 

(PCE), a PTC-containing cassette which leads to degradation of the transcript by NMD 

(Filichkin and Mockler, 2012). AS has been proposed as a mechanism through which the 

Arabidopsis circadian system regulates responses to environmental signals, particularly 

temperature-associated responses (Filichkin and Mockler, 2012; James et al., 2012; Nolte and 
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Staiger, 2015). A study investigating AS of clock genes CCA1, LHY, TOC1, PRR3, PRR5, 

PRR7, PRR9, GI, ZTL and CHE at different temperatures revealed extensive alternative 

splicing: 63 temperature-related AS events were identified for the set of 10 clock genes, with 

15 AS events identified upon transfer of plants from ambient temperatures to 4 °C (James et 

al., 2012). Some of these identified AS events are shown to directly contribute to the abundance 

of transcripts by triggering NMD, and lower temperatures result in the accumulation of non-

productive LHY, PRR7 and PRR5 transcripts. AS plays a particularly important role in 

regulating the expression of LHY and CCA1 in response to changes in temperature (James et 

al., 2012). Shifting plants to low temperatures results in the accumulation of an alternative 

splice isoform of LHY in which intron 5, a long intron which occurs in the LHY gene after the 

two small exons (exons 4 and 5) that code for the Myb domain, is retained. This intron retention 

event results in the occurrence of a PTC in the LHY splice isoform, resulting in a decline in 

LHY protein levels at low temperature due to action of the NMD pathway (James et al., 2012). 

In contrast, retention of intron 4 in CCA1 (which corresponds to intron 5 in LHY), decreases at 

low temperature (Filichkin and Mockler, 2012; James et al., 2012). Interestingly, this effect of 

temperature on AS and clock gene expression is reversible and can be detected irrespective of 

the direction of temperature change, suggesting a temperature response mechanism rather than 

a mere cold stress response (James et al., 2012). The CCA1 variant transcript in which intron 4 

is retained (CCA1�) has been linked to cold acclimation of the clock, possibly through self-

regulation of CCA1 activity (Seo et al., 2012). The CCA1� transcript isoform can code for a 

variant of the CCA1 protein (CCA1�) that lacks the MYB-like DNA binding domain. It has 

been proposed that CCA1� interferes with CCA1 function by preventing formation of CCA1� 

(fully spliced) and LHY homodimers, as well as CCA�-LHY heterodimers. Low temperatures 

supress this alternative splicing of CCA1, and constitutive over-expression of CCA1� results in 

a shortening of circadian period also observed in cca1 lhy double mutants. Furthermore, 

overexpression of CCA1� leads to increased sensitivity to freezing, while CCA1� 

overexpressing lines exhibited enhanced tolerance to freezing. However, it remains to be 
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demonstrated whether the CCA1� variant of the CCA1 protein is expressed in planta (Seo et 

al., 2012).  

A few instances of proteins involved in RNA processing affecting circadian rhythms have been 

reported in Arabidopsis. PROTEIN ARGININGE METHYLTRANSFERASE 5 (PRMT5) 

encodes a type II protein arginine methyltransferase that is located in the nucleus and 

cytoplasm, and which catalyses the symmetric demethylation of arginine residues (Sanchez et 

al., 2010). Targets for this protein modification include components of the transcription 

complex and components of the spliceosome. PRMT5 is involved in the regulation of a variety 

of pre-mRNA splicing events, possibly by modulating 5’-splice-site recognition (Sanchez et 

al., 2010). The expression of PRMT5 is rhythmic and regulated by the circadian clock, and 

PRMT5 is required for intact circadian rhythms (Hong et al., 2010). Loss of function in prmt5 

mutants causes a lengthening of circadian period, possibly due to effects on the alternative 

splicing and expression of the PRR9 (Sanchez et al., 2010). Components of the spliceosome 

have also been shown to influence the circadian system. SM-like (LSM) proteins are 

components of the U6 small nuclear ribonucleoprotein (snRNP), one of five snRNPs that, along 

with several accessory factors, combine to form the large ribonucleoprotein complex of the 

spliceosome (Perez-Santángelo et al., 2014). Seven LSM proteins have been identified in 

Arabidopsis, and are targets of PRMT5 (Hong et al., 2010). Loss of the PRMT5 substrates 

LSM4 or LSM5 in the lsm4 and lsm5 mutants results in a lengthening of period (as is observed 

in prmt5 mutants), along with changes in patterns of expression and splicing of clock genes, 

including intron retention events in CCA1, PRR9 and TOC1. Interestingly, a subset of LSM 

proteins also regulate and maintain circadian rhythms in mammals, and are themselves regulate 

by the circadian system (Perez-Santángelo et al., 2014). Other splicing factors have also been 

identified as playing a role in circadian regulation. SNW/Ski-interacting protein (SKIP) is a 

splicing factor that physically interacts with the spliceosomal splicing factor Ser/Arg-rich 

protein 45 and associates with the pre-mRNA of various genes to regulate alternative splicing 

and mRNA maturation (Wang et al., 2012). SKIP is expressed globally and constitutively, and 
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regulates the alternative splicing of numerous clock genes, including PRR9 and PRR7. 

Mutation of SKIP causes lengthening in circadian period and affects light sensitivity and 

temperature compensation of the clock (Wang et al., 2012). Similarly, SPLICEOSOMAL 

TIMEKEEPER LOCUS1 (STIPL1; also known as NTR1), a putative RNA binding protein and 

homologue of the spliceosomal proteins Ntr1p (yeast) and TFP11 (human) that are involved in 

spliceosome disassembly, also affects the Arabidopsis circadian system (Jones et al., 2012; 

Dolata et al., 2015). stipl1 mutants exhibit a lengthened circadian period, likely linked to the 

accumulation of splice variants of numerous clock gene transcripts including CCA1, LHY, 

PRR9, GI and TOC1 (Jones et al., 2012). 

Regulation of protein degradation also plays an important role in the circadian system. LHY is 

rapidly degraded via the proteasome pathway, but interaction with DET1 stabilises LHY 

protein levels by preventing degradation (Song and Carré, 2005). The cytoplasmic blue light-

sensing protein ZEITLUPE (ZTL, see Section 1.7.1.1) and its homologues, FLAVIN 

BINDING KELCH REPEAT F-BOX (FKF1) and LOV KELCH PROTEIN 2 (LKP2), mediate 

the regulation of protein turnover of TOC1 and PRR5 (Más et al., 2003; Baudry et al., 2010). 

ZTL (or FKF1 and LKP2 in the absence of ZTL) binds to TOC1 and PRR5 via its Light-

Oxygen-Voltage (LOV) domain, thereby targeting the proteins for ubiquitination and 

proteasome-dependent degradation (Más et al., 2003; Kiba et al., 2007; Baudry et al., 2010). 

Interestingly, TOC1 and PRR5 are the only targets of ZTL interaction among the PRR family 

(Fujiwara et al., 2008). The ZTL-mediated degradation of protein is dark-dependent, and adds 

yet another layer to the complex mechanism through which the timing of TOC1 (and PRR5) is 

regulated (Más et al., 2003; Kiba et al., 2007). In plants grown under light:dark cycles, TOC1 

protein is rapidly degraded after midnight and levels remain low until ~2 hours before dusk 

(Más et al., 2003). During the day, blue light induces the LOV domain of ZTL, which results 

in binding of ZTL to GI being favoured (Kiba et al., 2007; Kim et al., 2007). This protein-

protein interaction between ZTL and GI protects TOC1 and PRR5 from ZTL-mediated 

degradation, and also stabilises ZTL by preventing the proteasome-dependent degradation of 
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ZTL. GI protein cycles with circadian rhythm, peaking late in the day, and is itself also 

degraded by the proteasome during the night in a dark-dependent manner (David et al., 2006). 

During the night, TOC1 interacts with PRR3, thereby preventing formation of the ZTL-TOC1 

interaction and delaying degradation of TOC1 until the middle of the night (Para et al., 2007; 

Fujiwara et al., 2008). Furthermore, TOC1 and PRR5 interact via their conserved N-termini, 

resulting in increased TOC1 protein levels (by promoting nuclear import), increased subnuclear 

localisation of TOC1, and increased phosphorylation of the TOC1 N-terminus (Wang et al., 

2010). Protein phosphorylation is yet another regulatory mechanism within this system. 

Phosphorylation of CCA1 by protein kinase Casein Kinase 2 is necessary for CCA1 to perform 

its function within the circadian oscillator, with phosphorylation allowing the formation of 

CCA1 dimers and the binding of DNA (Daniel et al., 2004). PRR7, PRR5, PRR3 and TOC1 

are all phosphorylated progressively over the circadian cycle, with maximum phosphorylation 

of PRR5 and TOC1 occurring prior to degradation (Fujiwara et al., 2008). The highly 

phosphorylated forms of PRR5 and TOC1 interact optimally with ZTL, promoting their 

degradation, while phosphorylation of TOC1 and PRR3 are necessary for the TOC1-PRR3 

interaction (Fujiwara et al., 2008). 

 

1.6.3. Cell-, tissue-, and organ-specific elements of the Arabidopsis circadian system 

Cellular- and subcellular localisation of clock elements adds yet another level of complexity to 

the regulation of the circadian system. In particular, GI has been shown to have separate 

functions depending on its location in the cell (Kim et al., 2013a). In the cytosol, GI stabilises 

ZTL by forming a ZTL-GI heterodimer in the blue light-induced protein-protein interaction 

described in Section 1.6.2 (Kiba et al., 2007; Kim et al., 2007). In the nucleus, GI regulates the 

expression of CONSTANS (CO) and Flowering Locus T (FT), which is required for accurate 

day-length measurements (Sawa et al., 2007; Sawa and Kay, 2011). Blue light-activation of the 

LOV domain of FKF1 allows the formation of a GI-FKF1 complex (Sawa et al., 2007). This 
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GI-FKF1 complex binds to the CO promoter, thereby preventing repression of CO expression 

by CYCLING DOF FACTOR 1 (CDF1) and facilitating the correct timing of CO expression 

under different day lengths. In addition, GI directly activates the expression of FT by binding 

to the FT promoter, and by interacting with three FT suppressors (Sawa and Kay, 2011). The 

subcellular distribution of GI is regulated by ZTL and ELF4 (Kim et al., 2013a, 2013b). The 

ZTL-GI interaction stabilises GI and enhances GI cytosolic localisation (Kim et al., 2013a). In 

contrast, ELF4 regulates the subnuclear distribution of GI (Kim et al., 2013b). ELF4 sequesters 

GI from the nucleoplasm to discrete nuclear bodies, thereby limiting the ability of GI to access 

chromatin, negatively regulating CO expression. The formation of these ELF4-GI nuclear 

bodies varies throughout the day, with punctate nuclear bodies mostly absent during the day 

and present by the end of the night, even under different day lengths (Kim et al., 2013b). 

In contrast to the mammalian circadian system, where the central clock in the brain’s 

suprachiasmatic nucleus is tightly coupled to other clocks in peripheral tissues, intercellular 

coupling of circadian clock processes in plants has long been described as weak or absent 

(Wenden et al., 2012; Endo et al., 2014). Rhythmic outputs, such as rhythms in free cytosolic 

calcium in tobacco or the rhythmic expression of circadian-regulated genes in Arabidopsis, 

lose amplitude (dampen) after prolonged time (~5 days) under free-running, constant light 

conditions (Sai and Johnson, 1999; Hall et al., 2002; Wenden et al., 2012). It is generally 

assumed that all plant cells contain essentially identical and cell-autonomous clocks, and 

coupling of multiple oscillators would require intercellular communication pathways (Bohn et 

al., 2001; James et al., 2008). Chlorophyll a fluorescence analysis of individual Kalanchoë 

daigremontiana leaves illustrates the concept of the circadian clock as an assembly of 

individual, weakly-coupled oscillators that operate independently in space and time (Rascher 

et al., 2001). Patches of tissue behave as individual oscillators and are weakly coupled, with 

increasing desynchronization resulting in dampening of overall observable Fq’/Fm’ rhythms of 

the leaf in extended free-run (Rascher et al., 2001). The Arabidopsis circadian system is 

heterogeneous in clock gene expression among different cells, and intercellular coupling is 
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insufficient to prevent this cellular heterogeneity from resulting in desynchronization of 

circadian rhythms among cells. Desynchronised leaves can be rapidly resynchronised through 

application of entraining light:dark cycles, indicating that these cellular clocks are coupled far 

more strongly to external light:dark cycles than to each other (Wenden et al., 2012). Indeed, 

whole plans can be desynchronised by applying light-dark treatments to different locations of 

the same plant (Fukuda et al., 2007). The heterogeneity of rhythms in K. daigremontiana leaves 

does not correlate with tissue type, but is rather due to the dynamics of metabolite pools 

involved in CAM photosynthesis (Rascher et al., 2001). When monitoring rhythms in 

Arabidopsis through whole-plant assays, the dampening of rhythms has been attributed to 

spontaneous desynchronization among different cell types, with properties of the circadian 

clock differing among different plant tissue types (Thain et al., 2002; Wenden et al., 2012). 

Circadian rhythms in vascular tissues play an important role in regulating flowering, and 

activation of FT expression in leaf vascular tissue (phloem) induces flowering (Corbesier et al., 

2007; Endo et al., 2014). Furthermore, GI acts mainly in vascular tissue, directly activating FT, 

and PRR3 expression is restricted to the vascular tissue where it binds to and stabilises TOC1, 

with TOC1 itself being more abundant in the vasculature of leaves (Para et al., 2007; Sawa and 

Kay, 2011). A combination of high-resolution tissue isolation techniques and split-luciferase 

imaging has revealed two distinct clocks with distinct global phases - one in the vasculature 

and one in the mesophyll (Endo et al., 2014). The two tissue clocks are coupled and regulate 

each other asymmetrically, with the vasculature exhibiting dominant regulation over the 

mesophyll clock. Mesophyll-enriched genes tend to be expressed in the morning, while 

vascular-rich genes tend to be expressed in the evening (Endo et al., 2014). 

 

1.7. Communicating environmental signals to plant cells 

Living cells sense signals from their environment, which can elicit direct responses or act to 

entrain circadian systems (Pittendrigh, 1992; Christie et al., 2015; de Souza et al., 2017). While 
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daily temperature cycles are an effective entraining signal for many circadian systems, 

particularly in poikilotherms, light is the most universal and important Zeitgeber in nature 

(Pittendrigh, 1992; Millar, 2016). In addition to serving as an entraining signal, light is a 

ubiquitous source of energy and acts as a stimulus that directs development, morphogenesis 

and physiology in plants (Christie et al., 2015). The intercellular coupling of circadian rhythms 

does not occur in isolation, and effective coordination of responses to environmental inputs 

such as light is achieved through tightly regulated inter- and intracellular communication 

networks (Chan et al., 2016b; de Souza et al., 2017; Millar, 2016). These communication 

networks often rely on interorganellar interactions that are controlled by anterograde (nucleus-

to-organelle) and retrograde (organelle-to-nucleus) signalling, although interorganellar 

communication can occur without nuclear mediation (de Souza et al., 2017). Chloroplasts and 

mitochondria serve as the metabolic hubs of plant cells, with chloroplasts playing particularly 

varied roles by serving as the site of photosynthesis, synthesis of fatty acids, production of 

fatty-acid derivatives such as amino acids and starches, and as the site of hormone metabolism. 

In addition, chloroplasts act as sensors that sense environmental signals and perceive stress. As 

a result, chloroplasts (and mitochondria) produce retrograde signals to coordinate adaptive 

responses that require nuclear encoding (de Souza et al., 2017). This section will focus on the 

sensing of light signals from the environment, circadian regulation of light sensing and light-

driven responses, and the communication of signals from chloroplasts via retrograde signalling 

in plant cells. 

 

1.7.1. Sensing light from the environment 

1.7.1.1. Light inputs through photoreceptor pathways 

Plants sense and utilise light through the action of specialised photoreceptors (Christie et al., 

2015; Galvão and Fankhauser, 2015). Photoreceptors are light-responsive proteins that 

typically contain a prosthetic cofactor or chromophore which allows the photoreceptor to 
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perceive and respond to changes in the intensity, quality, direction and duration of light 

(Rockwell et al., 2006; Chen and Chory, 2011). Five different photoreceptor systems have been 

identified in plants, each sensitive to specific wavelengths of light (Christie et al., 2015): 

cryptochromes (crys) (Chaves et al., 2011), phototropins (phots) (Christie, 2007) and members 

of the Zeitlupe (ZTL) family (Suetsugu and Wada, 2013) that respond to blue light (Christie et 

al., 2015), UV Resistance locus 8 (UVR8) that monitors ultraviolet B wavelengths (Jenkins, 

2014), and phytochromes (phys) that respond to red and far-red light (Rockwell et al., 2006; 

Chen and Chory, 2011). 

Cryptocromes. Cryptochromes are UV-A/blue photoreceptors that act as major regulators of 

growth and development and entrain the circadian clock (Liu et al., 2011b; Christie et al., 

2015). Arabidopsis contains three cryptochromes (cry1-cry3) that have partially overlapping 

functions (Christie et al., 2015). Cry1 and cry2 are localised predominantly in the nucleus, and 

regulate seedling de-etiolation under blue light and photoperiodic flowering, respectively (Liu 

et al., 2011b; Christie et al., 2015). Cry3 is a cry-DASH protein that localises in mitochondria 

and chloroplasts and functions in DNA repair, repairing UV-induced damage in single-stranded 

DNA and in loop structures of double-stranded DNA (Kleine et al., 2003; Pokorny et al., 2008; 

Liu et al., 2011b). Cryptochromes are evolutionarily related to DNA photolyases and bind two 

chromophores: a two-electron carrier flavin adenine dinucleotide (FAD) non-covalently bound 

and functioning as the primary light sensor, and a pterin derivative 5,10-

methenyltetrahydrofolate (MTHF) which harvests and transfers additional light energy to the 

FAD from the near UV region (Ahmad and Cashmore, 1993; Hoang et al., 2008; Christie et 

al., 2015). Cry1 and cry2 each consists of a N-terminus photolyase homology region (PHR) 

which binds FAD and mediates photosensing, and a cryptochrome C-terminus (CCT) domain, 

which is important in cryptochrome signalling and is absent in cry3 (Yang et al., 2000; Hoang 

et al., 2008; Yu et al., 2009). The exact mechanism of photoexcitation of cryptochromes is still 

debated (Liu et al., 2011b; Galvão and Fankhauser, 2015). In darkness, cryptochromes exist in 

a dark (ground) state, with the PHR and CCT domains in closed (inactive) conformation and 
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FAD in the oxidised state (Banerjee et al., 2007; Bouly et al., 2007; Liu et al., 2011b). 

According to the photoreduction cycle model, upon illumination with blue light FAD is reduce 

to semireduced FADH* and may be further reduced to FADH2. The photoreduction of oxidized 

FAD to semireduced FADH* triggers a conformational change in the CCT domain to produce 

an open (active) conformation, resulting in subsequent signal transduction, and the reduced 

flavin is re-oxidised to complete the photocycle (Banerjee et al., 2007; Bouly et al., 2007; Liu 

et al., 2011b). An alternative model describes a circular electron shuttle whereby 

photoexcitation results in transfer of electrons from FAD*- to bound ATP, facilitating 

phosphotransfer from ATP to the CCE domain and triggering the conformational changes 

necessary for signal transduction (Liu et al., 2010, 2011b). Phosphorylation of the CCT domain 

correlates with photoactivation and biological activity of cryptochromes, and both cry1 and 

cry2 are rapidly phosphorylated in etiolated seedlings upon exposure to blue light (Shalitin et 

al., 2002, 2003; Christie et al., 2015). The blue light-induced phosphorylation of cry2 also 

induces ubiquitination and subsequent degradation, demonstrating the functioning of cry2 in 

light-limiting conditions (Tan et al., 2013; Christie et al., 2015). 

The regulation of plant development by cryptochromes largely involves mediating changes in 

gene expression in the nucleus, and two mechanisms of transcriptional control have been 

described for cryptochrome signalling (Liu et al., 2011b; Christie et al., 2015). The first 

involves indirect regulation of gene expression through post-transcriptional mechanisms 

involving the CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1)/SUPPRESSOR OF 

PHYA 1 (SPA) complex (Lian et al., 2011; Liu et al., 2011a; Zuo et al., 2011). The COP1-

SPA1 complex acts as a substrate receptor for the CUL4-DDB1 E3 ubiquitin ligase complex, 

which is responsible for the degradation of proteins involved in photomorphogenic 

development (Liu et al., 2011b; Lau and Deng, 2012; Christie et al., 2015). Upon activation by 

blue light, cry1 and cry2 bind to SPA1 and suppress the action of the COP1-SPA1 complex. 

Specifically, interaction between COP1-SPA1 and cry1 prevents the COP1-mediated 

degradation of the basic leucine zipper (bZIP) transcription factors LONG HYPOCOTYL 5 
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(HY5) and HY5 HOMOLOGUE (HYH), and of the basic helix-loop-helix transcription factor 

LONG HYPOCOTYL IN FAR RED 1 (HFR1), all of which regulate the transcription of genes 

required for the de-etiolation response (Osterlund et al., 2000; Duek et al., 2004; Yang et al., 

2005; Lee et al., 2007; Liu et al., 2011b). Similarly, cry2 interaction with the COP1-SPA1 

complex prevents degradation of CO, allowing the accumulation of CO under blue light and 

initiation of flowering in long days (Liu et al., 2008b, 2011b). The second mechanism of 

cryptochrome signalling involves direct regulation of transcription by means of a blue light-

dependent interaction between cry2 and the CRYPTOCHROME-INTERACTING BASIC-

HELIX-LOOP-HELIX (CIB) transcription factors (Liu et al., 2008a, 2013). CIB transcription 

factors positively regulate flowering in a cry2-dependent manner, possibly through 

heterodimerisation and subsequent binding to the promoter region of FT (Liu et al., 2008a, 

2013). While the exact mechanism of the cry2-CIB pathway is not well understood, it has been 

suggested that interaction with cry2 prevents ubiquitination and degradation of CIB proteins 

under blue light (Liu et al., 2011b).  

Phototropins. Phototropins are blue-light-activated serine/threonine kinases that mediate a 

range of photoresponses, such as phototropism and stomatal movement, to optimise 

photosynthetic efficiency and promote growth (Christie et al., 1999; Takemiya, 2005; Christie 

et al., 2015). Higher plants, like Arabidopsis, contain two phototropins (phot1 and phot) that 

perform a range of overlapping and distinct functions (Takemiya, 2005; Liscum et al., 2014). 

phot1 and phot2 act redundantly to regulate hypocotyl and root phototropism under moderate 

light conditions, as well as stomatal opening, chloroplast movement, and leaf positioning and 

flattening (Kagawa et al., 2001; Kinoshita et al., 2001; Sakai et al., 2001; Sakamoto and Briggs, 

2002; Inoue et al., 2008b; Liscum et al., 2014). Phot1 regulates hypocotyl phototropism over a 

range of light intensities, particularly under low intensity light, while phot2 regulates this 

response predominantly under higher fluence rates (Sakai et al., 2001). Similarly, phot1 and 

phot2 act redundantly to stimulate chloroplast positioning along cellular edges under low light 

conditions, while phot2 alone facilitates chloroplast and nuclear avoidance movements under 
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high light intensities (Kagawa et al., 2001; Sakai et al., 2001; Higa et al., 2014). Phot1 also 

regulates the rapid inhibition of hypocotyl elongation in etiolated seedlings in response to light, 

promotes mRNA destabilisation in etiolated seedlings under high light intensities, and 

regulates suppression of lateral root growth via an auxin-related pathway (Folta et al., 2003; 

Folta and Kaufman, 2003; Moni et al., 2015). Phot1 and phot2 are localised predominantly to 

the intracellular side of the plasma membrane in dark-grown seedlings, and can also localise to 

the outer membrane of chloroplasts (Sakamoto and Briggs, 2002; Kong et al., 2006, 2013). 

Upon long-term (>12h) exposure to blue light, phototropins autophosphorylate and are re-

localised to intracellular locations, with a fraction of phot1 targeted to the cytosol while phot2 

is re-localised to the Golgi apparatus (Sakamoto and Briggs, 2002; Kong et al., 2006; Inoue et 

al., 2008a; Kaiserli et al., 2009). While the relocalisation of phototropins under blue light is 

dependent upon some of the same autophosphorylation mechanisms that are required for 

phototropin function, it remains to be determined how this intracellular movement is involved 

in phototropin signalling (Liscum et al., 2014; Liscum, 2016). 

Phototropins consist of an N-terminal photosensory region containing two repeated Light-

Oxygen-Voltage domains, LOV1 and LOV2, and a C-terminal protein kinase domain (PKD) 

responsible for signal output (Tokutomi et al., 2008; Suetsugu and Wada, 2013; Liscum et al., 

2014). LOV1 functions primarily to facilitate dimerisation of the phototropins, and has also 

been shown to affect the photoreactivity of the LOV2 domain (Salomon et al., 2004; Matsuoka 

and Tokutomi, 2005; Jones and Christie, 2008; Nakasako et al., 2008). In contrast, the LOV2 

domain functions as the main regulator of the C-terminal PKD kinase activity through a novel 

blue light-induced derepression mechanism (Christie et al., 2002; Jones et al., 2007; Jones and 

Christie, 2008; Tokutomi et al., 2008; Liscum et al., 2014). In the dark (inactive state), each 

LOV domain binds oxidised flavin mononucleotide (FMN) noncovalently, which serves as a 

chromophore and strongly absorbs blue light (Christie et al., 1999, 2015). In this inactive state, 

the LOV2 domain is folded in such a way as to cause steric inhibition of the PKD kinase activity 

(Harper et al., 2003, 2004; Jones and Christie, 2008; Tokutomi et al., 2008). Upon irradiation 



45 
 

with blue light, a covalent bond is rapidly formed between FMN and a nearby conserved 

cysteine residue (Salomon et al., 2000; Liscum, 2016). The resulting FMN-cysteinyl adduct 

produces a spectral species that no longer absorbs blue light, and which represents the active 

signalling state that leads to photoreceptor activation. This photochemical reaction is rapidly 

and fully reversible in darkness, while thermal decay of the covalent adduct back to the dark 

state can occur over a longer time scale (Circolone et al., 2012; Christie et al., 2012b, 2015). 

The LOV2 domain contains a conserved glutamine residue which hydrogen-bonds to the FMN 

chromophore in darkness and which, upon blue light-induced formation of the FMN-cysteinyl 

adduct, undergoes a side chain rotation that temporarily alters the hydrogen bonding with FMN 

(Crosson and Moffat, 2001; Christie et al., 2015). The side chain rotation leads to structural 

changes in the phot protein that in turn result in the unfolding of a surface �-helix (J�) present 

in a linker domain region between LOV2 and the PKD (Harper et al., 2003, 2004; Jones et al., 

2007; Jones and Christie, 2008; Liscum et al., 2014). This unfolding of J� causes the N-terminus 

to move and alleviate the steric repression of the PKD, promoting ATP binding and initiating 

receptor autophosphorylation (Pfeifer et al., 2010; Inoue et al., 2011; Liscum et al., 2014). 

Autophosphorylation of the phot occurs at multiple (>20) serine residues and is essential to 

phototropin function, with phosphorylated phot generally regarded as the activated version of 

the photoreceptor (Inoue et al., 2008a; Sullivan et al., 2008; Inoue et al., 2011; Liscum et al., 

2014; Christie et al., 2015). 

A variety of downstream, phot-interacting proteins have been described, and the discovery of 

phototropin substrate targets is ongoing (Liscum et al., 2014; Christie et al., 2015). Targets 

include proteins involved in phototropic responses, and proteins involved in auxin or ion 

transport. Among the proteins involved in phototropism is NONPHOTOTROPIC 

HYPOCOTYL3 (NPH3), the gene locus of which was first identified among four loci that 

result in impaired phototropic responses in etiolated Arabidopsis seedlings with loss-of-

function mutations (Liscum and Briggs, 1995; Liscum et al., 2014). NPH3 is necessary for 

phot1-dependent phototropism under low blue light, as well for phot1/phot2-mediated 
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phototropic signalling under high intensity blue light (Motchoulski and Liscum, 1999; Roberts 

et al., 2011). The phototropic signalling capacity of NPH3 is regulated by phosphorylation state 

(Pedmale and Liscum, 2007; Liscum et al., 2014). In the dark, NPH3 is present mostly in a 

phosphorylated state, while illumination with blue light results in accumulation of 

dephosphorylated NPH3. The conversion of phosphorylated to dephosphorylated NPH3 is 

dependent on the presence of phot1, and prevention of this conversion disrupts phototropic 

responses (Pedmale and Liscum, 2007; Liscum et al., 2014). Like phot1, NPH3 associates with 

the plasma membrane, yet NPH3 does not relocalise under exposure to light (Motchoulski and 

Liscum, 1999). NPH3 interacts directly with phot1, with the C-terminal region of NPH3 

binding to the LOV domain-containing N-terminal of phot1 (Motchoulski and Liscum, 1999; 

Inada et al., 2004). The regulation of phot1-mediated phototropic signalling by NPH3 likely 

occurs via the action of CRL3NPH3, a complex formed upon the interaction between NPH3 and 

CULLIN3-based E3 ubiquitin ligase (CUL3) (Roberts et al., 2011). Indeed, normal 

phototropism in hypocotyls requires the presence of functional NPH3 and CUL3. CUL-based 

E3 complexes (also referred to as CULLIN-RING-ligases, CRLs) catalyse the final step in a 

three-enzyme process that results in the ubiquitination of a target protein (Komander, 2009; 

Roberts et al., 2011). Ubiquitination of a target protein can involve ligation of a single ubiquitin 

moiety to a single lysine residue (monoubiquitination), ligation of single ubiquitin moieties to 

multiple lysine residues (multiubiquitination), or the addition of poly-ubiquitin chains to one 

or more lysine residues (polyubiquitination) (Motchoulski and Liscum, 1999; Sakai et al., 

2000; Pedmale and Liscum, 2007). While ubiquitination of proteins is most commonly 

associated with subsequent protein degradation, mono- and multiubiquitination is typically 

linked to proteasome-independent processes such as DNA repair, transcription, membrane 

protein endocytosis and subcellular protein trafficking (Komander, 2009; Roberts et al., 2011). 

Upon illumination with high-intensity light, CRL3NPH3 facilitates the mono-, multi- and 

polyubiquitination of phot1 (Roberts et al., 2011). The polyubiquitination of phot1 leads to 26S 

proteasome-dependent degradation of phot1, a process which is also dependent on the activity 

of CRL3NPH3 and which possibly serves to desensitize phototropic signalling. In contrast, 
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illumination with low-intensity blue light results in CRL3NPH3-dependent mono- and 

multiubiquitination of phot1, thereby likely targeting phot1 for internalisation by an 

autophosphorylation-dependent, clathrin-associated endocytic mechanism (Roberts et al., 

2011). Another protein suggested to play a role in the ubiquitination-dependent regulation of 

phototropism is ROOT PHOTOTROPISM2 (RPT2), a protein in the same family as NPH3 

(Motchoulski and Liscum, 1999; Sakai et al., 2000; Pedmale and Liscum, 2007; Liscum et al., 

2014). Loss of function in RPT2 results in defective root phototropism, as well as defective 

hypocotyl phototropism under high-intensity blue light conditions where both phot1 and phot2 

are active (Sakai et al., 2000). Like NPH3 and phots, RPT2 associates with the plasma 

membrane, and RPT2 interacts physically with both NPH3 and phot in planta (Inada et al., 

2004). While the exact mechanism of RPT2 activity is not known, it has been proposed that 

RPT2 also interacts with CUL3 and that a separate CRL3NPH3/RPT2 complex might mediate the 

polyubiquitination of phot1 under high blue light (Liscum et al., 2014). 

Zeitlupe family. ZEITLUPE (ZTL), FLAVIN BINDING KELCH REPEAT F-BOX (FKF1) 

and LOV KELCH PROTEIN 2 (LKP2) comprise a family of LOV UV-A/blue light 

photoreceptors that play direct roles in post-transcriptional regulation of circadian and 

flowering components (described in Section 1.6.2) (Más et al., 2003; Baudry et al., 2010; 

Christie et al., 2015; Galvão and Fankhauser, 2015). The three ZTL members localise either in 

the cytosol or the nucleus, and overlap partially in function (Fornara et al., 2009; Baudry et al., 

2010; Takase et al., 2011). Arabidopsis ztl mutants exhibit lengthened circadian rhythms 

(which are more severe in ZTL family double or triple mutants), while fkf1 single mutants 

mostly show alterations in flowering time, and lkp2 single mutants show minimal alterations 

in circadian and flowering regulation (Imaizumi et al., 2003; Baudry et al., 2010). While the 

protein structure of ZTL members is similar to that of cryptochromes and phototropins (with a 

N-terminal photosensory module located upstream from a C-terminal effector region), unlike 

phototropins, ZTL members contain only one LOV domain (Ito et al., 2012). Following the N-

terminal LOV domain is an F-box (which associates with Skp Cullin F-box (SCF)-type E3 
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ubiquitin ligases involved in protein degradation) and six kelch repeats (which mediate 

heterodimerization between LKP2 and the other two ZTL family members) at the C-terminus 

(Takase et al., 2011; Ito et al., 2012). Similar to phototropins, ZTL members bind oxidised 

FMN as a chromophore at the LOV domain which, upon blue light illumination, forms a FMN-

cysteinyl adduct within the protein (Imaizumi et al., 2003; Ito et al., 2012). Unlike phototropins, 

which undergo rapid reversion in the dark, FKF1 remains stable in the light-activated signalling 

state for days, while the adduct decay of activated ZTL occurs over hours (Zikihara et al., 2006; 

Pudasaini and Zoltowski, 2013). ZTL family members undergo light-mediated interactions 

with circadian and flowering components via protein-protein interactions that are facilitated by 

the LOV domain (Sawa et al., 2007; Fornara et al., 2009; Kim et al., 2013a; Christie et al., 

2015). Degradation of TOC1 is mediated by ZTL and inhibited by blue light (Más et al., 2003; 

Kiba et al., 2007; Fujiwara et al., 2008). Interaction between ZTL and GI results in reciprocal 

stabilization of both proteins, and limits the action of the SCF-ZTL complex on its substrates 

targeted for degradation (Kim et al., 2007, 2013a). Similarly, FKF1 interacts with GI, yet this 

interaction promotes SCF-FKF1 activity (Sawa et al., 2007; Fornara et al., 2009) Furthermore, 

Cycling DOF factors (CDFs, that repress CO expression by direct binding to the promoter) 

interact with the kelch repeats of FKF1, further regulating flowering (Sawa et al., 2007; Fornara 

et al., 2009). 

UVR8. UVR8 is a photoreceptor that occurs in the cytosol and nucleus, and which mediates 

photomorphogenic responses under low fluence rates of UV-B light (Jenkins, 2009; Rizzini et 

al., 2011). UV-B radiation (280 to 315 nm) does not drive photosynthesis, but has the potential 

to damage molecules, such as DNA, due to its relatively high energy (Jenkins, 2014; Galvão 

and Fankhauser, 2015). Plants employ a variety of protective mechanisms to shield against 

UV-B damage, including the production of reflective surface waxes and hairs and the synthesis 

of phenolic compounds that accumulate in the epidermal layer and absorb UV-B light, reducing 

transmittance to cells. Exposure to UV-B also initiates protective responses, including 

antioxidant- and DNA repair systems. In addition, low doses of UV-B light initiate a variety of 



49 
 

photomorphogenic responses (Jenkins, 2014). Among these, UVR8 mediates flavonoid 

biosynthesis, DNA repair, amelioration of oxidative damage, stomatal movement and 

phototropic bending (Brown et al., 2005; Favory et al., 2009; Fehér et al., 2011; Jenkins, 2014; 

Vandenbussche et al., 2014; Tossi et al., 2014). In addition, UVR8 mediates entrainment of the 

circadian clock by low-fluence-rate UV-B light (Jenkins, 2014). While the exact mechanism 

of UVR8 photoreception is not clear, insight has been gained into structural features important 

in UVR8 signalling (Jenkins, 2014; Galvão and Fankhauser, 2015). Instead of a cofactor 

chromophore, UVR8 senses light via a triad of closely packed tryptophan residues (Rizzini et 

al., 2011; Christie et al., 2012a; Wu et al., 2012). UVR8 exists as a homodimer in its ground 

state, maintained by salt-bridge interactions between charged amino acids (particularly 

arginines) at the dimer interface surface (Christie et al., 2012a; Wu et al., 2012). Upon 

illumination with UV-B light, the tryptophan pyramid at the dimer interface mediates 

disruption of the salt bridges, and the homodimer immediately dissociates into active 

monomers that initiate signalling (Rizzini et al., 2011; Christie et al., 2012a; Wu et al., 2012). 

This UV-B-induced monomerization is reversible, with UVR8 homodimers reforming and 

allowing continuous sensitivity to UV-B light (Christie et al., 2012a; Heijde and Ulm, 2013; 

Heijde et al., 2013). UVR8 mediates UV-B-induced responses mostly through gene expression, 

regulating the transcription of several hundred target genes in Arabidopsis seedlings. UVR8 

signalling intersects with both cryptochrome and phytochrome signalling pathways (Cloix et 

al., 2012; Binkert et al., 2014; Jenkins, 2014; Galvão and Fankhauser, 2015; Hayes et al., 2017). 

Following UV-B-induced monomerization, the active UVR8 monomer accumulates in the 

nucleus and interacts with COP1, leading to the expression and stabilisation of the bZIP 

transcription factors HY5 and HYH (Cloix et al., 2012; Jenkins, 2014). HY5 and HYH in turn 

bind directly to the promoters of UV-B-responsive genes and to the promoter region of HY5, 

promoting transcriptional activation (Binkert et al., 2014; Galvão and Fankhauser, 2015). In 

addition, UVR8 has recently been shown to inhibit thermomorphogenesis, inhibiting auxin 

signalling and stem elongation at higher temperatures (Hayes et al., 2017). At higher 

temperatures, the UV-B-induced UVR8-COP1 interaction supresses transcript abundance of 
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the bHLH factor PIF4 (see section on phytochromes below), while in turn stabilising the bHLH 

factor HFR1 – an inhibiter of PIF4 function (Hayes et al., 2017). 

Phytochromes. Phytochromes are homodimeric or heterodimeric proteins capable of sensing 

red (R) and far-red (FR) light. (Burgie and Vierstra, 2014; Galvão and Fankhauser, 2015). In 

plants, each subunit of phytochromes consists of an N-terminal photosensing module (PSM) 

that covalently binds to a phytochromobilin tetrapyrrole chromophore (P�B), and a C-terminal 

output module (OPM) that is involved in dimerization and possibly in relaying light signals to 

downstream signalling events (Rockwell et al., 2006; Burgie and Vierstra, 2014). 

Phytochromes are synthesised in the cytoplasm as a biologically inactive, red-absorbing (Pr) 

form that converts to an active, far-red-absorbing (Pfr) form upon absorption of red light 

(Rockwell et al., 2006; Bae and Choi, 2008). The active Pfr form is converted back to the 

inactive Pr ground state rapidly upon irradiation with far-red light, or slowly through a thermal 

inversion process in the absence of light (dark reversion). While Pr and Pfr have absorption 

peaks at 667nm (red) and 730 nm (far-red), respectively, both forms absorb in far-red and red 

spectra as well (Casal et al., 2003). The structural aspects of phytochrome photoconversion 

have not yet been resolved, but it has been proposed that absorption of red light might cause 

photoisomerisation of the bilin, resulting in cleavage of the hydrogen bond between the bilin 

D-ring and a conserved histidine residue, and subsequent conformational changes (Burgie and 

Vierstra, 2014). 

Plants are exposed to varying ratios of red and far-red light depending on factors such as canopy 

cover and soil depth (Legris et al., 2017). Green leaves reflect and transmit far-red light more 

efficiently than red light, while red light is absorbed by photosynthetic pigments. Therefore, 

plants growing in the shade of canopy cover are exposed to a low red/far red ratio than in open-

field conditions, while the poor penetration of light through soil means buried seeds are 

exposed to very low levels of light (Legris et al., 2017). As a result, the ratio of red/far red light 

(and therefore the ratio of Pr/Pfr) impacts the level of light responsiveness and shade avoidance 

in plants (Rockwell et al., 2006; Casal, 2013; Legris et al., 2017). Pr/Pfr ratio is determined by 
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the light environment, the forward and reverse rates of photoconversion, and the rates of 

thermal interconversion between the two forms. Arabidopsis contains five different 

phytochromes (phyA-E) which are obligate dimers (Rockwell et al., 2006; Galvão and 

Fankhauser, 2015). These five phytochromes have both distinct and overlapping functions 

throughout the lifecycle, including mediation of germination, de-etiolation, stomata 

development, flowering transition, circadian regulation, senescence and shade avoidance. 

PhyA is the most unique of the plant phytochromes, as it is light-labile (stable in the Pr form) 

and acts in a specialised role as a far-red light sensor (Casal et al., 2014). In addition, PhyA has 

been shown to regulate chloroplast gene transcription in response to blue light or UV-A 

radiation in mature green leaves (Chun, 2001). PhyA is essential for de-etiolation in far-red-

rich environments (such as in canopy shade) and it may have provided an adaptive advantage 

to early angiosperms during colonization of habitats that were dominated by gymnosperms and 

ferns (Mathews, 2005). Upon irradiation with red or far-red light, phyA rapidly localizes in the 

nucleus (Toledo-Ortiz et al., 2010). The translocation of phyA into the nucleus is vital to its 

function as FR sensor and, since phyA does not contain a nuclear localization signal, is 

depended on the physical interaction with the two functional homologs FAR-RED 

ELONGATED HYPOCOTYL1 (FHY1) and FHY1-LIKE (FHL) (Hiltbrunner et al., 2006). 

PHYA promoter activity is regulated by the circadian clock and peaks during the day, yet PhyA 

is rapidly degraded during the light period in day/night cycles (Sharrock and Clack, 2002; Casal 

et al., 2014). In addition, light down-regulates the abundance of phyA at transcriptional level 

(Jang et al., 2011; Sharrock and Clack, 2002; Casal et al., 2014). In contrast, phyB-E are light 

stable; and phyB is the predominant red light sensor in plants, with phyC, phyD and phyE in 

many cases functionally redundant to phyB (Rockwell et al., 2006). PhyB Pfr undergoes 

spontaneous thermal reversion, while dark-reversion of phyA is observed only in some 

Arabidopsis accessions (Casal et al., 2014; Legris et al., 2016). As observed in phyA, phyB 

converts to Pfr upon absorption of red light, and the Pfr form migrates to the nucleus and 

localises in nuclear bodies (photobodies) (Legris et al., 2017). This nuclear localisation is 

necessary to the function of phyB, and phyB activity (during de-etiolation) correlates with the 
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formation of large nuclear bodies. The spontaneous reversion of phyB Pfr to Pr means that 

maintaining a level of active Pfr is irradiance-dependent and, as phyB Pfr will gradually 

decrease in the dark, phyB provides a mechanism for sensing changes in irradiance and night 

length (Legris et al., 2017). PhyB has also been proposed as a point of entry for temperature 

signalling, as phyB thermal reversion rate increases with temperature (from 4-30 °C) (Legris 

et al., 2016, 2017). 

Signalling downstream of phytochromes for regulation of growth occurs mainly through two 

interconnected branches: one branch involves the PHYTOCHROME INTERACTING 

FACTOR (PIF) transcription factors, while the other involves the transcription factor 

ELONGATED HYPOCOTYL 5 (HY5) and CONSTITUTIVE PHOTOPORPHOGENIC 1 

(COP1) (Casal et al., 2014; Legris et al., 2017). PIFs are a fifteen-member family of nuclear-

localised basic helix-loop-helix transcriptional regulators, of which seven (PIF1, PIF3, PIF4, 

PIF5, PIF6, PIF7 and PIF8) bind directly to the Pfr form of phyB in a red/far-red 

photoreversible fashion (Leivar and Monte, 2014). PIF1 and PIF3 also interact similarly with 

phyA Pfr (Casal et al., 2014). The direct physical binding of PIFs with phy Pfr results in rapid 

phosphorylation, ubiquitination and degradation of PIFs via the ubiquitin-proteasome system, 

and inhibits their binding to target gene promoters (Leivar and Quail, 2011; Legris et al., 2017). 

In the dark, such as in seedlings germinated in soil, phytochromes reside in the cytosol in the 

inactive Pr form, allowing accumulation of PIFs in the nucleus (Leivar and Quail, 2011; Leivar 

and Monte, 2014). The accumulated PIFs (particularly PIF1, PIF3, PIF4 and PIF5) promote 

skotomorphogenesis, facilitating growth to seek for light. Upon light exposure, the active Pfr 

form of phytochromes translocates to the nucleus and physically interacts with PIFs, resulting 

in a decrease in PIF levels and initiation of deetiolation (Leivar and Quail, 2011; Leivar and 

Monte, 2014). PIFs serve to integrate environmental and internal signals, including sugar-

derived signalling, hormone signalling, light and temperature signalling, and retrograde 

signalling (Leivar and Monte, 2014; Legris et al., 2017; Martín et al., 2016; Soy et al., 2016; 

Zhu et al., 2016).. It has been suggested that the nuclear-localised photoreceptor system 
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regulates photomorphogenic development under moderate light, but that excessive light levels 

result in the induction of retrograde signalling mechanisms that serve to suppress such 

development, thereby providing protection against photo-oxidative damage (Martín et al., 

2016). Indeed, PIF and ROS signalling pathways integrate antagonistically to regulate light-

induced responses (Chen et al., 2013a; Martín et al., 2016).  

The COP1-HY5 branch integrates phytochrome and cryptochrome signalling (Casal et al., 

2014; Legris et al., 2017). During deetiolation, light-activated cryptochromes and 

phytochromes interact directly with COP1, interfering with the COP1-SPA1 interaction in the 

nucleus. This reduces COP1 activity and enhances stability of the transcription factor HY5, 

thereby promoting photosynthetic pigment accumulation and enhancing photomorphogenesis 

(Casal et al., 2014; Legris et al., 2017). HY5 is also seen as another entry point for temperature 

signalling, as HY5 stability is enhanced in the light, and by cold temperatures in dark-grown 

seedlings (Catalá et al., 2011). The COP1-HY5 and PIF branches of phytochrome signalling 

are also interconnected (Legris et al., 2017). In the dark or shade, COP1 activity promotes the 

degradation of LONG HYPOCOTYL IN FAR-RED (HFR1), an atypical bHLH protein that 

forms heterodimers with PIFs (especially PIF4) and prevents PIFs from activating 

transcription. In addition, HY5 is a strong antagonist of PIFs, and competition between PIF and 

HY5 for occupancy of common G-box elements forms a dynamic activation-suppression 

transcriptional module that is responsive to changes in both light and temperature (Toledo-

Ortiz et al., 2014). 

 

1.7.1.2. Circadian regulation of light harvesting and light responses 

Light is one of the main external timing cues that entrains the clock, and it is therefore not 

surprising that the circadian system and light signalling networks are closely interlinked 

(Rugnone et al., 2013). Indeed, various clock input, output and core pathways intersect and 

interact (Hsu and Harmer, 2014). For example, while photoreceptors function to entrain the 
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clock, the expression of these photoreceptors is itself regulated by the circadian system (Harmer 

et al., 2000; Hsu and Harmer, 2014). Transcript abundance of cryptochromes, phototropins, 

UVR8 and phytochromes (phyA, phyB, phyC and phyE) cycles with circadian rhythm under 

constant light conditions (Harmer et al., 2000; Covington et al., 2008), while these 

photoreceptors in turn mediate light effects on the pace of the clock (Fankhauser and Staiger, 

2002). Photoreceptors act redundantly to sustain circadian rhythms (Fankhauser and Staiger, 

2002). The single mutants ztl, cry1, cry2, phyA or phyB, the double mutants cry1 cry2, phyA 

phyB and cry1 phyA, and the phyA phyB phyC phyD phyE quintuple mutant have extended 

circadian periods but are not arrhythmic (Somers et al., 1998a; Fankhauser and Staiger, 2002; 

Somers et al., 2000). Similarly, the phyA phyB cry1 cry2 quadruple mutant is severely impaired 

for de-etiolation, but retains leaf movement rhythms that can entrain to different photoperiods. 

Extended darkness lengthens the period of nuclear circadian rhythms (up to 30-36 hour period) 

(Millar et al., 1995), while both blue light and red light contribute to the period shortening 

observed under higher fluence rates of light (Millar et al., 1995; Fankhauser and Staiger, 2002). 

Phytochromes contribute to the fluence rate-dependent shortening of circadian period in a 

redundant fashion (Hu et al., 2013; Hsu and Harmer, 2014), and the shortening of circadian 

period in response to increasing fluence rates occurs even in a phyB mutant (Jones et al., 2015). 

Interestingly, expression of a constitutively active version of phyB sustains robust circadian 

rhythms with ~24 hour period even in plants grown without light, yet results in a clock that is 

insensitive to light intensity (Jones et al., 2015). It has been suggested that far-red light 

absorbing phytochromes accelerate the pace of the clock, while the red-light absorbing form 

decreases the pace of the clock (Hsu and Harmer, 2014). Entrainment with far-red light 

(whereby phyA is expected to be the only active photoreceptor) results in elevated expression 

of evening-phased genes and decreased expression of morning genes, with ELF4 proposed as 

a target and mediator in these far-red light effects (Wenden et al., 2011). In addition, three 

positive regulators of phytochrome A signalling pathways, Far-red Elongated Hypocotyl 3 

(FHY3), Far-red Impaired Response 1 (FAR1) and HY5, directly bind to the ELF4 promoter, 

activating expression of ELF4 during the day (Li et al., 2011).  
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Adding to the complexity of the system is the circadian gating of light inputs that entrain the 

oscillator (Millar, 2004; Greenham and McClung, 2015). In particular, the evening-phased 

clock components ELF3 and ELF4 function in the phytochrome-mediated light input pathway 

to the circadian clock (McWatters et al., 2000; Covington et al., 2001; Kikis et al., 2005; 

McWatters et al., 2007). ELF3 and ELF4 play pivotal roles in circadian gating by acting as 

negative regulators that repress the phytochrome-mediated light inputs to the central oscillator, 

with ELF3 directly interacting with phyB, and ELF4 acting downstream of ELF3 (McWatters 

et al., 2000; Covington et al., 2001; McWatters et al., 2007; Liu et al., 2001). elf3 and elf4 loss-

of-function single mutants are arrhythmic in constant light, but maintain circadian rhythms in 

constant darkness (Covington et al., 2001; McWatters et al., 2007). In wild-type plants grown 

under constant light conditions, applications of red light or blue light pulses results in small 

phase advances and little resetting of the core clock when applied in the subjective morning, 

while light stimuli applied later in the subjective day elicits delays that continue to increase in 

magnitude, until the greatest phase shift occurs upon application of light stimuli during the 

subjective night, when ELF3 expression is at its highest (Covington et al., 2001). In the elf3 

mutant, application of red light pulses in the subjective night (when ELF3 expression in wild-

type is maximal) causes even larger phase shifts or arrhythmia. ELF3 and ELF4 also feed back 

to antagonize light-mediated acute induction of circadian outputs such as expression of the 

nuclear gene LIGHT-HARVESTING CHLOROPHYLL A/B (Lhcb) Lhcb1*1 (CAB2): the elf3 

null mutant is hypersensitive to the phytochrome-mediated acute induction of CAB2 expression 

and blunts circadian gating of CAB2 gene expression (McWatters et al., 2000; Covington et al., 

2001). By timing levels of ELF3 and ELF4 for greatest expression at night, the sensitivity of 

the clock to light signals during the night is restricted, and allows for an efficient clock that is 

resistant to transitory fluctuations in light levels at night (such as change in cloud cover or 

stellar/lunar illumination) (Covington et al., 2001). While most light-induced genes in plants 

respond more strongly to light during the subjective day, a small number of these genes that 

are more strongly induced by light in the middle of the night (Rugnone et al., 2013). Among 

these are the clock genes CCA1, PRR7 and GI, as well as four genes that belong to the small 
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family of NIGHT LIGHT-INDUCIBLE AND CLOCK-REGULATED (LNK) genes. LNK1 and 

LNK2 are circadian-regulated transcription factors that regulate light signalling and biological 

timing by activating transcription of numerous afternoon- and evening-phased clock-controlled 

genes (in particular ELF4 and PRR5). LNK1 and LNK2 are morning-phased and are directly 

repressed by members of the PRR family (Rugnone et al., 2013). Indeed, adding to their role 

of regulating rhythms of the central oscillator, PRR9 and PRR7 have been reported as being 

instrumental in relaying light signals to the circadian clock (Farré et al., 2005). While prr9 and 

prr7 mutants exhibit long period circadian rhythms under constant light, no effect on circadian 

rhythms is observed in these mutants under constant darkness. In contrast, the prr7 prr9 double 

mutant exhibits a more severe period lengthening under constant blue light than under constant 

red, as well as arrhythmia in constant darkness (Farré et al., 2005). The E3 ubiquitin-ligase 

COP1 (the negative regulator of photomorphogenesis) also regulates light signalling to the 

central oscillator, with ELF3 and COP1 interacting to mediate day length signalling from cry2 

to GI (Yu et al., 2008). COP1 mediates ubiquitination and degradation of ELF3, and, upon 

interaction with ELF3, results in destabilisation of GI (Yu et al., 2008). 

In addition to gating light inputs, the circadian clock gates light signalling to output pathways 

such as hypocotyl growth (Nusinow et al., 2011; Hsu and Harmer, 2014; Zhu et al., 2016). The 

ELF3-ELF4-LUX evening complex is required for the proper rhythmic expression of growth-

promoting PIF4 and PIF5 under diurnal conditions, with LUX targeting the complex to the 

promoters of PIF4 and PIF5 to suppress transcription in the early evening (Nusinow et al., 

2011). Combined with the degradation of PIFs in the light, this interaction allows for maximal 

growth before dawn under diurnal conditions (Nusinow et al., 2011; Legris et al., 2017). 

Interestingly, the evening-phased components PRR5 and TOC1 mediate circadian gating of 

thermoresponsive growth (Zhu et al., 2016). Thermogenesis is mainly regulated by PIF4, and 

PRR5 and TOC1 bind to the PIF4 promoter to prevent transcription of PIF4. In addition, TOC1 

interacts directly with PIF4, thereby inactivating PIF4 and suppressing warm temperature-

induced growth in the evening when TOC1 levels are high (Zhu et al., 2016). 
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The circadian system also regulates photosynthesis and carbohydrate metabolism, with many 

transcripts involved in photosynthesis (encoded from both the nuclear and chloroplast 

genomes) reported to be under circadian control (Covington et al., 2008; Dodd et al., 2015). 

One of the main mechanisms whereby the circadian clock regulates these two genomes is 

through SIGMA FACTOR 5 (SIG5) (Noordally et al., 2013). Arabidopsis encodes six sigma 

factors, all of which are circadian regulated. Some sigma factors (such as SIG2 and SIG6) are 

required for gene expression during chloroplast biogenesis, while others (such as SIG1 and 

SIG5) adjust the photosynthetic apparatus during steady-state photosynthesis. SIG5 is 

expressed in the nucleus, but upon import into the chloroplast acts as a subunit of the plastid 

RNA polymerase, generating circadian expression of several chloroplast genes involved in 

photosynthesis (Noordally et al., 2013). Expression of the two circadian regulated nuclear 

genes, CAB2 and CAB3, are regulated by HY5 and CCA1 (Andronis et al., 2008). HY5 binds 

specifically to the G-box element of the CAB3, and absence of HY5 leads to shorter period in 

CAB1 circadian expression. CCA1 binds to the promoters of both Lhcb genes via a designated 

CCA1-binding site, and also physically interact with HY5 and alters the binding activity of 

HY5 to the Lchb promoters (Andronis et al., 2008). Post-translational modification of reaction 

centre proteins are also reported to be under circadian control, particularly through the activity 

of STATE TRANSITIONS8 (STN8) and STT7 HOMOLOG (STN7), which mediate the light-

dependent reversible phosphorylation of the D1 protein of PSII (Dodd et al., 2014). D1 

undergoes phosphorylation, which is thought to optimize the PSII repair cycle, and changes in 

the phosphorylation state of D1 cycles with circadian rhythm. This suggest circadian control 

of the PSII repair cycle, possibly arising from the cycles observed for STN7 transcription (Dodd 

et al., 2014). Clock-controlled output pathways can also act as clock input pathways (Hsu and 

Harmer, 2014; Dodd et al., 2015). Sucrose is known to affect the amplitude of clock gene 

expression, and can serve as a modulator of period length and an entrainment signal, resetting 

the clock in constant darkness (Knight et al., 2008; Dalchau et al., 2011; Hsu and Harmer, 

2014). Furthermore, the rhythmic oscillations of endogenous sugars produced through 

photosynthesis can entrain the circadian system in Arabidopsis by regulating the gene 
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expression of circadian clock components early in the photoperiod (Haydon et al., 2013). In 

particular, photosynthetically derived sugars repress PRR7 late in the photoperiod, leading to 

de-repression of CCA1 (Haydon et al., 2013). Similarly, while iron homeostasis is under 

circadian control, iron in turn affects the pace of circadian oscillations: circadian period 

lengthens when iron becomes limiting, and gradually shortens upon increased application of 

external iron (Salomé et al., 2013; Chen et al., 2013b; Hong et al., 2013). 

 

1.7.2.  Chloroplast-to-nucleus retrograde signalling 

1.7.2.1. Ca2+ and reactive oxygen species (ROS) as initiators of interorganellar 

communication 

ROS and Ca2+ are well-known, evolutionarily conserved triggers of a wide range of molecular 

and biochemical responses in living organisms (de Souza et al., 2017). Changes in 

environmental conditions can result in the accumulation of ROS or in rapid spatial and temporal 

modulations of Ca2+ concentrations (known as Ca2+ signatures), and these molecules are often 

regarded as master switches that initiate processes involved in inter- and intracellular 

communication (de Souza et al., 2017). Cells have evolved mechanisms to differentially 

accumulate Ca2+ in distinct cellular compartments, and distinct Ca2+ signature profiles are 

produced in response to various stimuli (Tuteja and Mahajan, 2007; de Souza et al., 2017). 

Cytosolic Ca2+ in plant cells increases in response to various environmental signals (including 

abiotic and biotic stresses) and in response to developmental cues (Tuteja and Mahajan, 2007). 

Indeed, levels of cytosolic Ca2+ oscillate with diurnal and circadian rhythm in plants (Love et 

al., 2004). These oscillations are modulated by photoperiod and light intensity, and are 

proposed to act as second messengers conveying information about day length and light 

intensity to and from the clock (Love, 2004). The unique transient elevation of cytosolic Ca2+ 

in response to specific environmental or developmental cues results from the sub-cellular 

localisation and/or the phase, duration or magnitude of the changes in cytosolic Ca2+ (Tuteja 
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and Mahajan, 2007). Ca2+ signatures are well-known triggers of cellular signalling cascades, 

and the stimulus-specific changes in Ca2+ levels are sensed by several Ca2+-binding proteins 

(such as calmodulin, calmodulin-like proteins, calcium-dependent protein kinases and calcium- 

and calmodulin-dependent protein kinases) that in turn transmit the signals to various 

downstream processes (Tuteja and Mahajan, 2007; Batisti� and Kudla, 2012). Ca2+ also plays 

a role in rapid, long-distance signalling: upon exposure of Arabidopsis roots to salt stress, Ca2+ 

waves propagate from roots to shoots at rates of up to ~400 µm.s-1 to elicit systemic molecular 

responses in target organs (Choi et al., 2014). It has been proposed that there is reciprocal 

interplay between Ca2+ and ROS, as ROS activates plastid calcium transporters, while Ca2+ 

signatures can induce ROS production (Pei et al., 2000; Takeda et al., 2008; Kimura et al., 

2012). It has also been suggested that ROS and Ca2+ cooperate to relay rapid, long-distance 

signalling through the action of self-amplifying, cell-to-cell propagating ROS- Ca2+ waves 

(Choi et al., 2017; de Souza et al., 2017). 

 

1.7.2.2. Reactive oxygen species (ROS) 

Like other aerobic organisms, plants continuously generate ROS as byproducts of normal 

oxygen metabolism (Apel and Hirt, 2004; Das et al., 2015). The different ROS species, which 

include superoxide, singlet oxygen (1O2), the hydroxyl radical and hydrogen peroxide (H2O2, 

the most common and most stable ROS), differ in stability and cytotoxicity, and are generated 

in distinct compartments. In plants, ROS are produced mainly in the chloroplasts (as a result 

of light harvesting, photosynthetic electron transport and photochemistry), mitochondria (via 

respiratory electron transport), and peroxisomes (as byproducts of photorespiration), as well as 

in the cytoplasm and plasma membranes through the action of peroxidases (Das et al., 2015). 

Accumulation of ROS can cause oxidative damage to cellular components which, if not 

controlled, can result in further ROS production, cellular damage and cell death (Apel and Hirt, 

2004; Das et al., 2015; de Souza et al., 2017).  Plants therefore employ a variety of ROS-
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scavenging antioxidant pathways, which can involve enzymatic (peroxidases, catalase and 

superoxide dismutase) and non-enzymatic (glutathione, ascorbate, flavonoids, alkaloids and 

carotenoids) mechanisms that are often confined to specific cellular compartments (Apel and 

Hirt, 2004; de Souza et al., 2017). Environmental stresses can disrupt the equilibrium between 

ROS production and scavenging. The “oxidative burst” observed in response to abiotic stress 

occurs mainly due to the action of NAPH-dependent oxidases, while ROS accumulation in 

response to abiotic stresses results mainly from the action of photodynamically-active 

molecules (such as chlorophyll precursors) and overreduction of electron transport chains 

(Apel and Hirt, 2004; Chi et al., 2015; de Souza et al., 2017). Despite the negative consequences 

of ROS reactivity, the instability of ROS, combined with the high rate of ROS production and 

scavenging, make ROS ideal candidates for signalling molecules (Apel and Hirt, 2004; de 

Souza et al., 2017). It has been proposed that the specific activity of ROS (or of ROS-oxidised 

components) in different cellular compartments could provide cells with the ability to interpret 

complex environmental signals  (de Souza et al., 2017). Specifically, the interaction of different 

ROS species with proteins might result in protein modifications which in turn determine the 

specificity of a response (León, 2013). ROS also play a role in the synthesis of metabolites that 

themselves act as signals (discussed below) (Ramel et al., 2012). Production of the precursor 

to the signal molecule 3’-phosphoadenosine 5’-phosphate (PAP; see Section 1.7.2.7) relies on 

the availability of ATP, which itself is determined by the cell’s redox potential and levels of 

ROS (Estavillo et al., 2011). In addition, the activity of SAL1, the enzyme involved in 

regulating PAP accumulation, is influenced by the redox state of plastids (Chan et al., 2016a). 

Similarly, the enzyme responsible for the reduction of the signal molecule MEcPP contains an 

iron-sulfur cluster in the catalytic site, rendering the enzyme highly sensitive to oxidative state 

and thereby providing an avenue by which levels of the molecular signal is influenced by ROS 

(Seemann et al., 2005; de Souza et al., 2017). ROS (specifically 1O2) are also known to cause 

lipid peroxidation, which results in the production of free fatty acids and derivatives that act as 

signals in response to abiotic and biotic stress (Cecchini et al., 2015). ROS signalling pathways 

also intersect with photoreceptor signalling pathways (Chen et al., 2013a). Phytochromes, 
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cryptochromes and COP1 act upstream to regulate ROS signalling, with PIFs inhibiting ROS 

production and ROS-responsive gene expression in the light, while HY5 and HYH bind to and 

promote expression of ROS-responsive genes (Chen et al., 2013a). 

In Arabidopsis, the production and scavenging of ROS have been shown to oscillate with a 

diurnal rhythm (Lai et al., 2012). In plants grown under 12-hour light:12-hour dark cycles, 

H2O2 and catalase levels peak at noon and reach the lowest levels at midnight, while 140 of 

167 genes known to be involved in ROS production and scavenging exhibit similar daily 

rhythms. Interestingly, these oscillations of H2O2 and ROS-related gene transcript levels persist 

even in constant light, suggesting the ROS network is under circadian control. Plants with 

mutations in core circadian genes including CCA1, LHY, ELF3, ELF4, PRR5 and LUX exhibit 

hypersensitivity to methyl viologen (MV) treatment, while the overexpression of CCA1 has 

been linked to hyposensitivity to MV treatment in both light:dark cycles and constant light 

(Bowler et al., 1992; Lai et al., 2012). Furthermore, expression of the three catalases, CAT1, 

CAT2 and CAT3, in response to oxidative stress is altered upon overexpression of CCA1 or 

mutations in CCA1 or LHY, and becomes arrhythmic in an elf3 mutant (Lai et al., 2012). 

Evidence suggests that CCA1 regulates the transcription of ROS genes even in the absence of 

oxidative stress, with 34% of genes grouped under numerous ROS GO categories known to be 

regulated by the circadian clock (Covington et al., 2008). Noteworthy changes in the time of 

day expression of the ROS-related genes APX4, HSP182, PAL1, HSFA4A, MYB9 and the 

peroxidase AT2G22420 are apparent in a CCA1 over-expressing line and in cca1-1/lhy-11 and 

elf3-1 mutants (Lai et al., 2012). A set of 28 genes involved in ROS signalling have been shown 

to contain a putative EE and/or CCA-1 binding site in their upstream promoters, and chromatin 

immunoprecipitation-qPCR assays have been used to confirm that CCA1 directly regulates the 

expression of ROS genes WRKY11, MYB59 and ZAT12 in vivo. There is thus a strong indication 

that regulation of ROS levels is coupled to the circadian clock with CCA1 playing a pivotal 

role, yet the exact mechanisms of these important ROS-related signalling pathways remain 

unknown (Lai et al., 2012). Linking ROS homeostasis to the circadian clock is almost intuitive. 



62 
 

By allowing the circadian control of ROS-scavenging mechanisms it is ensured that these 

energy-demanding pathways are activated only when needed, providing plants with the ability 

to anticipate oxidative stress according to daily rhythms (Lai et al., 2012). Furthermore, it may 

be advantageous to couple the production and scavenging of such an important signal molecule 

to the circadian clock (Lai et al., 2012). 

 

1.7.2.3. gun mutants 

Chloroplasts contain approximately 3,000 proteins, of which more than 95% are encoded in 

the nucleus (Koussevitzky et al., 2007). Chloroplast biogenesis therefore requires coordination 

of nuclear and chloroplast gene expression, with retrograde signals coupling chloroplast 

function with the transcription of certain nuclear-encoded proteins (Susek et al., 1993; de Souza 

et al., 2017). The first evidence of such a plastid-nucleus retrograde signalling pathway was 

discovered in barley mutants with undifferentiated chloroplasts lacking ribosomes and with 

high sensitivity to photo-damage, and in which expression of nuclear-encoded, plastid-

localised proteins was reduced (Bradbeer et al., 1979). Further study of the phenomenon led to 

the identification of the genomes uncoupled (gun) mutants in Arabidopsis, which are 

characterised by sustained expression of photosynthesis-related Lhcb and RIBULOSE-1,5-

BISPHOSPHATE CARBOXYLASE/OXYGENASE SMALL SUBUNIT (RBCS) genes, even 

when chloroplast development is blocked by the application of norflurazon, an inhibitor of 

carotenoid biosynthesis (Susek et al., 1993). The GUN1 gene encodes a plastid-localised 

protein that is a member of the P subfamily of pentatricopeptide repeat (PPR)-containing 

proteins. Unlike other PPR proteins, GUN1 also contains a DNA-binding SMR domain, and 

associates with sites of active plastid DNA transcription where it is thought to function in DNA 

repair and recombination (Koussevitzky et al., 2007). Promoters of genes with misregulated 

expression in gun1 mutants are enriched for abscisic acid (ABA) response elements, and GUN1 

acts upstream of, and is required for the expression of the nuclear-localised ABA-regulated 
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transcription factor ABSCISIC ACID INSENSITIVE 4 (ABI4). ABI4 can bind to the promoter 

of Lhcb to repress expression, and constitutive overexpression of ABI4 rescues the gun1 mutant 

phenotype (Koussevitzky et al., 2007). In addition, retrograde signalling and phytochrome 

signalling pathways converge antagonistically via a GUN1-mediated signalling mechanism, 

with signals from the chloroplast repressing the light-induced expression of PIF-mediated 

genes involved in photomorphogenesis (Martín et al., 2016). 

The remaining five GUN genes encode proteins that participate in tetrapyrrole biosynthetic 

pathways (de Souza et al., 2017). Intermediates of tetrapyrrole biosynthesis have been 

implicated in chloroplast-nucleus signalling, and the application of inhibitors of tetrapyrrole 

biosynthesis can lead to the repression of nuclear encoded genes, while inhibiting the synthesis 

of tetrapyrrole biosynthesis intermediates can lead to activation of nuclear-encoded genes 

(Oelmüller et al., 1986; Kobayashi et al., 2011). GUN2 (HY1) and GUN3 (HY2) code for a 

plastid heme oxygenase and a plastid-localised phytochromobilin synthase, respectively, both 

of which are involved in the heme branch of the tetrapyrrole metabolism pathway (Muramoto 

et al., 1999; Kohchi et al., 2001). Heme (Fe-protoporphyrin IX) has been proposed as a 

retrograde signal in algae (von Gromoff et al., 2008), and bilin metabolites are thought to 

function as signals in light-dependent chlorophyll accumulation responses in Chlamydomonas 

reinhardi (Duanmu et al., 2013). In Arabidopsis, upregulation of photosynthetic gene 

expression is observed in gun6 mutants – a gain-of-function mutation in plastidial 

ferrochelatase I which causes increased heme synthesis (Woodson et al., 2011). GUN4 and 

GUN5 act at the chloroplast membranes to promote chlorophyll biosynthesis by promoting the 

synthesis of the chlorophyll precursor, Mg-protoporphyrin IX (Mg-protoIX) (Mochizuki et al., 

2001; Larkin et al., 2003; Adhikari et al., 2011). GUN5 encodes the large subunit of Mg-

chelatase, the enzyme which commits porphyrins to chlorophyll biosynthesis by catalysing the 

insertion of Mg2+ into protoporphyrin to yield Mg-protoIX, and GUN4 encodes a novel protein 

that activates Mg-chelatase, the enzyme that commits Mg-protoIX to chlorophyll biosynthesis 

(Mochizuki et al., 2001; Larkin et al., 2003). One of the most common porphyrins in nature, 
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Mg-protoIX has been shown to repress the expression of a number of nuclear-encode genes in 

Chlamydomonas reinhardi, and can mimic the light stimulus for nuclear gene expression when 

applied exogenously to cells in the dark (Johanningmeier and Howell, 1984; Kropat et al., 

1997). Similarly in Arabidopsis, application of exogenous Mg-protoIX results in suppression 

of photosynthesis-associated nuclear genes (PhANGs, including Lhcb), and Mg-protoIX 

accumulates in vivo in response to norflurazon treatment (Strand et al., 2003; Kindgren et al., 

2012). While the rapid rates of Mg-protoIX production and degradation would allow the 

metabolite to function as a signal, either directly or indirectly, the mechanism through which 

Mg-protoIX acts as a signal is not yet understood (Mochizuki et al., 2008). It has been proposed 

that Mg-ProtoIX binds Heat Shock 90 (HSP90)–type proteins and subsequently interacts with 

the transcription factor HY5, which in turn regulates expression of PhANGs (Lee et al., 2007; 

Kindgren et al., 2011). Mg-ProtoIX has also been shown to interact with Protein Phosphatase 

5 (PAPP5), a type 5 serine/threonine protein phosphase that dephosphorylates biologically 

active Pfr phytochromes and enhances phytochrome-mediated responses (Barajas-López et al., 

2013). In addition, it has been suggested that Mg-ProtoIX controls the expression of sigma 

factors SIG1-6 (Ankele et al., 2007). However, the mechanism of Mg-protoIX export from 

plastids remains unsolved, and there is no correlation between the expression of Mg-protoIX-

sensitive nuclear genes and the in vivo steady state levels of Mg-protoIX, (or indeed for any 

other tetrapyrrole intermediates of chlorophyll biosynthesis) (Mochizuki et al., 2008; Moulin 

et al., 2008; Schlicke et al., 2014). Mg-protoIX is therefore thought to affect gene expression 

indirectly through alteration of the redox status of chloroplasts, or through directing 

tetrapyrrole flux towards the production of heme (Woodson et al., 2011; Schlicke et al., 2014). 

Alternatively, Mg-protoIX could act as a retrograde signal by controlling DNA replication. In 

primitive red algae, Mg-protoIX enables maintenance of plastids, as it is required for 

coordinating plastidial DNA replication events with nuclear DNA replication (Kobayashi et 

al., 2011). Plastid-derived Mg-protoIX activates DNA replication by preventing the 

ubiquitination of a G1 cyclin, a protein responsible for cell cycle progression (Tanaka and 

Hanaoka, 2013). 
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1.7.2.4. �-Cyclocitral 

Carotenoids are the main quenchers of 1O2 in chloroplast, and light stress induces the oxidation 

of the carotenoid �-carotene, leading to the production of various volatile �-carotene 

derivatives in chloroplasts (Ramel et al., 2012). One of these derivatives, �-cyclocitral, 

accumulates in Arabidopsis leaves in response to high light stress, and has been proposed as 

an intermediate in the 1O2 signalling pathway that links the cytoplasm and nucleus during 

acclimation responses (Ramel et al., 2013; Lv et al., 2015). Treatment with exogenous �-

cyclocitral is associated with increased tolerance to photooxidative stress and induces 

expression of a large set of nuclear-encoded 1O2-responsive- and high light-responsive genes, 

including genes involved in detoxification mechanisms, hormone synthesis and signalling and 

plant defence (Ramel et al., 2012, 2013). In addition, application of exogenous �-cyclocitral 

impedes ROS production in chloroplasts and enhances the synthesis of salicylic acid (SA) via 

the ISOCHORISMATE SYNTHASE 1 (ICS1)-mediated isochorismate pathway (Lv et al., 

2015). SA accumulation increases the nuclear localisation of SA signalling cofactor 

NONEXPRESSOR OF PATHOGENESIS-RELATED GENES 1 (NPR1), which in turn 

results in upregulation of 1O2-responsive nuclear genes involved in detoxification, including 

GLUTHATHIONE-S-TRANSFERASEs (GSTs) (Lv et al., 2015). 

 

1.7.2.5. 2-C-Methyl-D-erythritol 2,4-cyclodiphosphate (MEcPP) 

MEcPP is a small metabolite that acts as a precursor of isoprenoids in the plastidial 

methylerythritol phosphate (MEP) pathway (Xiao et al., 2012). In Arabidopsis, MEcPP 

accumulates in response to a range of stresses, including high light stress, oxidative stress and 

wounding (to a lesser degree), and an increase in in vitro MEcPP correlates with the 

upregulation of specific nuclear stress-responsive genes. Among these upregulated genes are 

HYDROPEROXIDE LYASE (HPL) and ICS1, which results in increased SA levels. Increased 

SA levels can in turn enhance resistance to infection by the pathogen Pseudomonas syringae 
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(Xiao et al., 2012). It has been suggested that the MEcPP-signalling mechanism is 

evolutionarily conserved among species (de Souza et al., 2017). Genes involved in the plant 

MEP pathway are among a group of genes inherited from endosymbiotic ancestors and 

subsequently relocated to the nuclear genome (Bouvier et al., 2005), while oxidative stress-

mediated induction of MEcPP levels has been reported in several bacterial strains (Ostrovsky 

et al., 1992, 1998). However, the exact mechanism of MEcPP signalling remains elusive. It has 

been suggested that MEcPP changes expression of stress-responsive genes by altering the 

functional organisation of chromatin structure, as MEcPP can directly disrupt interactions 

between histone H1-like (Hc1) protein and DNA in Chlamydia trachomatis (Grieshaber et al., 

2004). MEcPP is also involved in the unfolded protein response (UPR), a cellular stress 

response related to the endoplasmic reticulum (ER) (de Souza et al., 2017). Almost a third of a 

cell’s proteins are synthesized, folded, and secreted and redistributed in and from the ER (Hetz 

et al., 2015). Under stress conditions, due to the limited protein-folding capacity of the ER, the 

UPR serves as a regulatory process by which the load of proteins to the ER is decreased, while 

the capacity for folding and degradation of unfolded proteins is increased (Hetz et al., 2015). 

Accumulation of MEcPP induces the expression of a subset of genes involved in UPR, while 

application of exogenous MEcPP also increases transcript levels of these UPR genes within 

15-30 minutes (Walley et al., 2015). A direct function of MEcPP in inducing UPR in the ER 

would rely on the import of MEcPP from plastids to the ER, which is suggested to occur 

through membrane contact sites that occur between the ER and chloroplasts (Prinz, 2014). 

Interestingly, application of exogenous SA has also been shown to active UPR (Nagashima et 

al., 2014). 

MEcPP has been linked to the circadian regulation of growth and development in Arabidopsis 

(de Souza et al., 2017). In the mutant constitutively expressing HPL (ceh1), elevated levels of 

endogenous MEcPP accumulate, and the plants exhibit a dwarf phenotype and flower early 

(Wang and Dehesh, 2015). The elevated levels of MEcPP repress expression of B-BOX 

DOMAIN PROTEIN 19 (BBX19), a positive regulator of growth and a negative regulator of 
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flowering time (Wang et al., 2014; Wang and Dehesh, 2015). Indeed, constitutive 

overexpression of BBX19 restores growth and flowering time in the ceh1 mutant (Zhang et al., 

2015) The BBX family of proteins are zinc-finger transcription factors that are comprised of 

one or two B-box motifs at the N-terminal that often occur in combination with a C-terminal 

CCT (CONSTANS, CONSTANS-like, and TOC) domain (Wang et al., 2014). BBX19 is 

localised in the vasculature, and circadian-controlled expression of BBX19 is antiphasic to the 

rhythmic expression of FT and CO. BBX19 and CO colocalise and interact in the nucleus, 

resulting in depletion of the active CO pool required for the transcription of FT and downstream 

flowering-promoting genes (Wang et al., 2014). In addition, BBX19 promotes hypocotyl 

growth through interaction with COP1 and ELF3 (Wang et al., 2015). BBX19 binds to and 

recruits ELF3 for degradation by COP1, which in turn prevents repression of PIF4 and PIF5 

expression by ELF3. As such, MEcPP could play a role in the dynamic gating of the formation 

of the circadian evening complex, and the subsequent regulation of growth through the action 

of PIF4/5 (Wang et al., 2015). 

 

1.7.2.6. Fatty acids 

Fatty acids (FAs) are functionally and structurally cross-kingdom conserved macromolecules 

that act as constituents of cellular structures and, as well as in a variety of essential metabolic 

functions (Upchurch, 2008; Walley et al., 2013; de Souza et al., 2017). FAs have distinct 

characteristics, and the profile and concentration can change rapidly and transiently in response 

to stimuli. These changes can in turn affect membrane permeability, and alter biochemical 

events through modifying membrane composition and the activities of a variety of enzymes 

and signalling proteins. These characteristics allow FAs to act as signalling molecules in 

response to stimuli. In particular, the signalling action of free FAs released by certain lipases 

in response to stress and development stimuli is a well-established function (Upchurch, 2008; 

Walley et al., 2013; de Souza et al., 2017). Linolenic or linoleic acid accumulate rapidly in 
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response to pathogen attack, and the exogenous application of free linolenic or linoleic acid 

results in the rapid activation of Rapid Stress Response Element (RSRE), a stress-specific 

functional cis-element (Walley et al., 2013). Activation of RSRE also occurs upon treatment 

with arachidonic acid (a FA present in plant pathogens, but absent in the membrane lipids of 

higher plant cells), suggesting a function for FAs as interorganismal signalling molecules 

(Savchenko et al., 2010). Oleic acid has been shown to act as a retrograde signal to induce 

expression of nuclear-encoded resistance genes, and mutants deficient in the plastidial stearoyl-

acyl carrier protein desaturase SS12 exhibit impaired oleic acid accumulation and impaired R 

(Resistance) gene expression patterns, which are restored upon restoration of endogenous oleic 

acid levels (Kachroo et al., 2004). Interestingly, oleic acid is also proposed to influence R genes 

through regulation of the synthesis of nitric oxide (NO) – a conserved cellular metabolite that 

occurs in a variety of organisms and is known to modify FAs and regulate disease physiology 

(Mandal et al., 2012). 

Oxylipins are a class of modified FAs that result mainly from the oxidation of linoleic acid and 

linolenic acid (and arachidonic acid in animals), and that act as evolutionarily conserved 

signalling molecules in response to biotic and abiotic stress (de Souza et al., 2017). The most 

studied oxylipins are jasmonate and volatile C6-aldehydes, which are produced by the two main 

competing branches of the oxylipin pathway, the allene oxide synthase (AOS) and 

hydroperoxide lyase (HPL) branches, respectively (Chehab et al., 2008). Volatile C6-aldehydes 

act as inter- and intra-plant stress signals in defence against biotic stress (Chehab et al., 2008). 

Jasmonates (which include biologically active derivatives of jasmonic acid and biologically 

active intermediates in the pathway for jasmonic acid biosynthesis) are signalling molecules 

that regulate a diverse range of processes, including biotic and abiotic stress responses, wound 

responses and pollen maturation (Turner et al., 2002). Jasmonic acid (JA) synthesis requires 

the production and translocation of various lipid intermediates from the chloroplasts to the 

cytoplast, and later into peroxisomes (León, 2013). The AOS pathway produces 12-

oxophytodienoic acid (12-OPDA) in the chloroplasts in repsonse to stress, as well as precursors 
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needed for the formation of jasmonates (jasmonic acid and methyl jasmonate) in the 

peroxisomes (Schaller and Stintzi, 2009). The JA-isoleucine conjugate, jasmonoyl-L-

isoleucine (JA-Ile) is the active form of the hormone and faciliates the degradation of 

JASMONATE ZIM-DOMAIN (JAZ) transcriptional repressors (Sheard et al., 2010). The 

removal of these JAZ proteins releaves the suppression of gene transcriptioin of various 

defense-related genes. In tomato, this mechanism results in the JA-induced upregulation of 

proteinase inhibitors which are rapidly produced in response to tissue damage from herbivorous 

acitvity and act to disrupt the digestive processes in insect gut (Chen et al., 2005). 12-OPDA 

also act as a signalling molecule in a JA-independent manner, interacting with TGACG motif-

binidng factors to alter gene expression and thereby affecting processes including stomatal 

closure in repsonse to drought, amino acid biosynthesis, and cellular redox homeostasis in 

stress responses (Park et al., 2013; Savchenko et al., 2014). Finally, the production of ROS in 

reponse to biotic and abiotic stress can result in lipid peroxidation and the subsequent 

generation of fragmented FAs and products such as azeleic acid (AZA) (Cecchini et al., 2015; 

de Souza et al., 2017). AZA is a metabolite essential for systemic acquired resistance and 

induced systemic resistance, and which acts through a mechanism involving lipid transfer 

protein homolgues that are localized at the ER or plasmodesmata, the chloroplast outer 

envelopes and the membrane contacts between these organelles (Cecchini et al., 2015; de Souza 

et al., 2017). 

1.7.2.7. The SAL1-PAP-XRN pathway 

In an attempt to understand the steps between the initiation of a signal by an environmental 

trigger and the perceived changes in gene expression in the nucleus, numerous screens have 

been performed to identify mutants that exhibit altered nuclear gene expression under oxidative 

stress (Xiong et al., 2001; Rossel et al., 2006; Estavillo et al., 2011). Of particular interest are 

mutants with lesions in the SAL1 gene, also identified from parallel screens as 

FIERY1/ALTERED EXPRESSION OF APX2. The Arabidopsis SAL1 gene (At5g63980) was 

first identified in a cDNA library constructed from roots of Arabidopsis exposed to NaCl, and 
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which was subsequently used to complement Na+ and Li+ sensitivities in yeast strains defective 

in Na+ and Li+ efflux mechanisms (Quintero et al., 1996). The first of the Arabidopsis sal1 

mutants, fry1, was identified in a genetic screen based on altered gene expression responses to 

ABA signalling (Xiong et al., 2001). Arabidopsis SAL1 is homologous to the yeast HAL2 gene, 

which encodes a salt-sensitive 3’,5’-bisphosphate nucleotidase involved in conferring salt 

tolerance in yeast (Gil-Mascarell et al., 1999; Quintero et al., 1996). In subsequent studies, sal1 

mutants were shown to exhibit a variety of phenotypes, including slowed growth and altered 

leaf and root morphology (Gy et al., 2007; Hirsch et al., 2011), hypersensitivity to light or ABA 

(Xiong et al., 2001; Kim and von Arnim, 2009), altered sulfate- and fatty acid-metabolism 

(Rodriguez et al., 2010; Lee et al., 2012), increased RNA silencing triggers (Gy et al., 2007), 

and increased APX2 expression and drought tolerance (Rossel et al., 2006; Wilson et al., 2009).  

The SAL1 enzyme is expressed ubiquitously throughout plant tissues (Xiong et al., 2001; 

Estavillo et al., 2011). In Arabidopsis seedlings, SAL1 expression is particularly pronounced in 

cotyledons and leaves, and to a lesser extent in primary roots, root hairs and lateral root caps, 

stems, and floral organs (Xiong et al., 2001; Zhang et al., 2011). In flowers, SAL1 transcripts 

accumulate to highest level 4 days after flowering, followed by a subsequent decrease to lowest 

levels twelve days after flowering (Sato et al., 2011). SAL1 expression is stronger in stamens 

and in seed coats (Zhang et al., 2011). There is also a tissue-specific element to the patterns of 

SAL1 expression. In roots, SAL1 is expressed in all root tissues, with highest levels in the 

pericycle and stele regions of mature primary roots (Hirsch et al., 2011). In leaves, SAL1 

expression is highest in the vascular tissue, with lower levels of expression in the mesophyll 

tissue (Estavillo et al., 2011).  

SAL1 is encoded in the nucleus, but is localised in chloroplasts and mitochondria where it acts 

as a phosphatase to hydrolyse the phosphate group from both phosphonucleotides and inositol 

polyphosphates in vitro (Quintero et al., 1996; Xiong et al., 2001). While SAL1 exhibits 

phosphatase activity to both inositol 1,4,5-triphosphate (IP3) and 3’-phosphoadenosine 5’-

phosphate (PAP), PAP is regarded as the enzyme’s in vivo substrate (Estavillo et al., 2011). 
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PAP is produced from 3’-phosphoadenosine 5’-phosphosulfate (PAPS), with PAPS acting as 

a sulfate donor for the synthesis of sulfated secondary metabolites such as glucosinolates, 

phytosulfokines, and certain hormones and flavonoids (Klein and Papenbrock, 2004; Mugford 

et al., 2009). PAPS is produced in plastids, but conversion to PAP occurs in the cytosol through 

the action of cytosol-localized sulfotransferases (SOTs) (Klein and Papenbrock, 2004; 

Mugford et al., 2009; Estavillo et al., 2011). These SOTs catalyse the transfer of a sulfonate 

group from PAPS to the appropriate hydroxyl group of numerous substrates to produce sulfate 

esters and sulfate conjugates, as well as PAP as by-product (Klein and Papenbrock, 2004). PAP 

in turn inhibits the activity of SOTs, thereby influencing sulfur flux through a negative 

feedback mechanism (Lee et al., 2012; Chan et al., 2013). Despite the formation of PAP 

through SOT activity in the cytosol, PAP has been shown to accumulate in chloroplasts and 

not in the cytosol (Estavillo et al., 2011). It has been proposed that the movement of both PAPS 

and PAP between the plastids and cytosol is facilitated by PAPS transporter 1 (PAPST1), an 

ADP/ATP carrier that localises to both the thylakoid and plastid envelope (Gigolashvili et al., 

2012). In Saccharomyces cerevisiae, PAP has been shown to inhibit the activity of 5’	3’ 

exoribonucleases (XRNs), with PAP concentration of 0.1 mM inhibiting the activity of the two 

yeast XRNs by 40%-65% (Dichtl et al., 1997). The inhibition of XRN activity by PAP in vivo 

has been proposed in Arabidopsis (Gy et al., 2007; Chen and Xiong, 2010; Hirsch et al., 2011; 

Estavillo et al., 2011). The XRN family of Arabidopsis consists of three members: XRN2 and 

XRN3 are localised in the nucleus and are homologues of Xm2p/Rat1p, while XRN4 is 

localised in the cytosol and is a functional homolog of S. cerevisiae Xm1p (Kastenmayer and 

Green, 2000; Gy et al., 2007). XRN2 is required in the primary cleavage of pre-ribosomal 

RNAs and, along with XRN3, displays activity towards excised hairpin loops that form part of 

miRNA transcripts (Gy et al., 2007; Kurihara et al., 2012). XRN4 is involved in mRNA decay 

by catalysing the degradation of the 3’ cleavage products that result from the microRNA 

(miRNA)-mediated cleavage of mRNA targets (Souret et al., 2004; Gy et al., 2007). XRN4 is 

also necessary for ethylene signalling and functions by promoting the degradation of mRNAs 

of two proteins involved in the degradation of ETHYLENE INSENSITIVE 3, a transcription 
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factor involved in ethylene response (Potuschak et al., 2006). In addition, all three 

exoribonucleases act as RNA silencing suppressors, possibly through elimination of the free 5‘ 

ends of single-stranded RNA templates that are targets for RNA-dependent RNA polymerases 

(Gy et al., 2007; Kurihara et al., 2012). 

Recently, analysis of the molecular structure of SAL1 through X-ray crystallography provided 

insight into the enzyme’s structural and functional characteristics (Figure 1.4a; Chan et al., 

2016). SAL1 is a 37.5 kDa �/� protein that belongs to the carbohydrate phosphatase fold 

superfamily (Quintero et al., 1996; Chan et al., 2016a). SAL1 crystallizes as a dimer but occurs 

in a monomer-dimer equilibrium in solution, with dimerization affecting the catalytic activity 

of the enzyme (Chan et al., 2016a). Under reducing conditions (such as in the presence of DTT) 

SAL1 occurs as catalytically active monomers. In the presence of oxidisers such as DTTox or 

oxidised glutathione (glutathione disulfide, GSSG) SAL1 occurs in solution as a dimer, which 

dissociates with the addition of DTT. Dimerisation of SAL1 under oxidising conditions is 

facilitated by the formation of an intermolecular disulfide bond between a symmetrical pair of 

Cys119 side chains present on each monomer. Each SAL1 monomer contains a pair of cysteine 

residues (Cys169 and Cys190) also capable of forming an intramolecular disulfide bond 

(Figure 1.4a). The SAL1 monomer exhibits high catalytic activity towards PAP.   



73 
 

 

  

Figure 1.4 Arabidopsis SAL1 and the SAL1/PAP/XRN retrograde signalling pathway. (A) Cartoon of the 
molecular structure of a SAL1 monomer in a reducing environment. Cysteine residues C167 and C190, as well as 
C119 capable of forming intra- and intermolecular disulfide bonds, respectively, under oxidising conditions are 
indicated. �-helices shown in orange, �-sheets shown in green and loops shown in black. Cysteine residues shown 
as ball-and-stick diagrams. Diagram prepared from Protein Data Bank file PDB ID 5ESY (Chan et al., 2016a) using 
RasMol (Sayle, 1995). (B) The SAL/PAP/XRN retrograde signalling pathway (Estavillo et al., 2011; Chan et al., 
2016a). SAL1 is encoded in the nucleus and localised in the chloroplasts due to the presence of a N-terminal 
chloroplastic transit peptide. In the cytosol, 3’-phosphoadenosine 5’-phosphate (PAP) is formed from the precursor 
3’-phosphoadenosine 5’-phosphosulfate (PAPS) through the activity of cytosolic sulfotransferases (SOTs). PAP is 
formed in the cytosol, but accumulates in the chloroplasts where SAL1 catalyses the hydrolysis of PAP to AMP + 
Pi through its phosphatase activity. Under stress conditions such as high light or drought stress, the accumulation 
of ROS and other oxidising agents cause a shift in plastid redox poise. In this oxidising environment, SAL1 
dimerises and is inactivated by the formation of inter- and intramolecular disulfide bonds between side chains of 
cysteine residues. Inactivation of SAL1 causes PAP to accumulate and act as a molecular signal from the 
chloroplasts to the nucleus. In the nucleus, PAP influences the expression of plastid redox associated nuclear genes 
(PRANGs) by inhibiting the activity of 5’	3’exoribonucleases. 
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In contrast, the SAL1 dimer has lower catalytic activity than the monomer, and increasing 

oxidation (increase in redox potential of the solution) correlates with a rapid loss of catalytic 

activity in the SAL1 dimer (Chan et al., 2016a).  

Under abiotic and oxidative stress, the abundance of SAL1 protein in plant tissues does not 

change, but the catalytic activity of SAL1 towards PAP is downregulated through allosteric 

regulation (Chan et al., 2016a). In addition, PAP has been shown to accumulate significantly 

in wild-type plants within 1 hour of high light stress, and a 30-fold increase in PAP levels has 

been reported in Col-0 plants subjected 7 days of drought stress (Estavillo et al., 2011). SAL1 

has therefore been proposed as a ROS- and redox-sensitive switch located in the chloroplasts, 

that regulates nuclear gene expression in response to environmental signals through the 

SAL1/PAP/XRN retrograde signalling pathway (Figure 1.4b) (Estavillo et al., 2011; Chan et 

al., 2016). Stress conditions such as high light stress or drought stress result in the rapid 

increased production of singlet oxygen (1O2) from Photosystem II (PSII) and superoxide (O2
-) 

from Photosystem I (PSI) (Apel and Hirt, 2004). Superoxide radicals generated from PSI are 

rapidly converted within the chloroplast to H2O2 by superoxide dismutase (SOD), and H2O2 is 

in turn detoxified by thylakoidal and stromal ascorbate peroxidases (tAPX and sAPX), a 

reaction which results in the conversion of ascorbate to monodehydroascorbate (Asada, 1999; 

Apel and Hirt, 2004). Additional ROS scavenging reactions result in the production of NADP+ 

and GSSG from the oxidation of NADPH and glutathione (GSH), respectively (Apel and Hirt, 

2004). The accumulation of 1O2, O2
-, monodehydroascorbate, GSSG and NADP+ changes the 

redox poise of the plastid, and in this oxidising environment the dimer-monomer equilibrium 

of SAL1 shifts towards dimerization (Apel and Hirt, 2004; Chan et al., 2016a). The 

dimerization of SAL1 occurs through formation of a Cys119-Cys119 intermolecular disulfide 

bond (Chan et al., 2016). The resulting conformational changes allow a second, intramolecular 

Cys167-Cys190 disulfide interaction to occur across two adjacent antiparallel � sheets in each 

monomer. The dimerisation and disulfide bond formation results in reduced mobility of key 

surface loops, including an active site loop, preventing the enzyme from adopting 
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conformational changes essential for activity and substrate binding. The inhibition of SAL1 

results in the accumulation of PAP in chloroplasts, and PAP acts as a mobile signal influencing 

nuclear gene expression through the inhibition of XRNs (Estavillo et al., 2011; Chan et al., 

2016a). Genes with altered expression as a result of PAP signalling are referred to as plastid 

redox associated nuclear genes (PRANGs), which include known stress marker genes such as 

APX2 and ZAT10 that are upregulated in response to abiotic stress or PAP accumulation (Rossel 

et al., 2006; Estavillo et al., 2011; Chan et al., 2016a). Through sufficient activation of ROS 

scavenging mechanisms, such as those involving APX2, glutathione peroxidase and 

dehydroascorbate reductase, the plastid redox state is restored and SAL1 dimers dissociated 

into catalytically active monomers capable of PAP hydrolysis (Estavillo et al., 2011; Chan et 

al., 2016a). 

 

1.8. Conclusions and introduction to the study 

Plants have evolved an abundance of adaptive strategies and mechanisms to cope with the 

inevitable changes and challenges of their environment. Among these is the evolution of an 

endogenous timing mechanism that emerged due to the predictable, rhythmic environmental 

changes that result from the 24-hour rhythms of the Earth’s rotation. These circadian rhythms 

allow synchronisation of the cell’s vast array of biological processes, and align the cell’s 

biology with the rhythms of the environment, providing plants with an adaptive advantage. 

While the circadian system controls numerous processes, both daily and seasonal, the circadian 

clock does not function in isolation. Plants perceive a variety of environmental inputs, 

particularly in chloroplasts, and effective coordination of responses to these stimuli rely on 

interorganellar signalling systems such as chloroplast-to-nucleus retrograde signalling. While 

widespread attempts to identify the nature and mechanism of these signals have led to exciting 

discoveries of roles for various signal molecules, a broader understanding of how plants 

incorporate environmental signals, interorganellar signals and circadian regulation will provide 
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insight into how plants adapt and thrive in challenging environments. This study will focus on 

the role of chloroplast-to-nucleus retrograde signalling in circadian regulation in Arabidopsis 

thaliana.  
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Chapter 2 

Material and Methods 

 

2.1. Media and reagents prepared for use in this study 

2.1.1. Murashige and Skoog media for Arabidopsis thaliana growth 

Arabidopsis thaliana seedlings were grown on half-strength Murashige and Skoog basal 

mineral salts (0.5x MS) agar plates. 2.15 g/L Murashige and Skoog Basal Salt Mixture (Sigma-

Aldrich, cat #M5519) was dissolved in dH2O and pH adjusted to pH 5.7 using 1 M KOH 

solution (prepared in dH2O). 0.8% (w/v) agar was added before sterilisation. In some cases, 

0.5x MS media was supplemented with 3% (w/v) sucrose and 100 µg/mL Carbenicillin (Fisher 

Bioreagents, cat# BP2648-1). Media was sterilised by autoclaving at 121°C for 15 minutes. 

For sulfate deficiency experiments, Arabidopsis seedlings were grown on sulfate-deficient 

media prepared according to the media formulation stipulated for Murashige and Skoog Basal 

Medium (Sigma-Aldrich, cat #M5519), but with all sulfates replaced by chlorides to consist of 

10.31 mM NH4NO3, 0.05 mM H3BO3, 1.50 mM CaCl2, 0.05 �M CoCl2, 0.05 �M CuCl2, 0.05 

mM C10H14N2Na2O8, 0.05 mM FeCl3, 0.75 mM MgCl2, 0.05 mM MnCl2, 0.52 �M Na2MoO4, 

2.50 �M KI, 9.40 mM KNO3, 0.63 mM KH2PO4, 15 �M ZnCl2 and 0.8% agar. As a control, 

seedlings were grown on comparable media, but with CuCl2, FeCl3, MgCl2, MnCl2 and ZnCl2 

substituted with equimolar concentrations of CuSO4, FeSO4, MgSO4, MnSO4 and ZnSO4, 

respectively. Media was prepared in ultrapure MilliQ H2O, and pH adjusted to pH 5.7 using 1 

M KOH solution prepared in ultrapure MilliQ H2O. 
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2.1.2. Luria-Bertani (LB) media for Escherischia coli and Agrobcterium tumefaciens 

growth 

E. coli and Agrobacterium tumefaciens strain GV3101 were cultured in Luria-Bertani media 

(10 g/L Casein Digest Peptone, 5 g/L Yeast Extract, 10 g/L NaCl). 25 g/L LB Broth High Salt 

Powder (Melford Laboratories Ltd., Ipswich, UK, cat# L1704) was dissolved in dH2O and pH 

adjusted to pH 7.2 using 1 M NaOH solution (prepared in dH2O). For LB agar, 0.8% (w/v) agar 

was added to LB broth before sterilisation. Media was sterilised by autoclaving at 121°C for 

15 minutes. 

 

2.1.3. Preparation of DEPC-treated water 

Water used in RNA and first-strand cDNA preparations (Section 2.3) was treated with 0.1% 

diethylpyrocarbonate (DEPC, Sigma-Aldrich, cat# D5758) to inactive RNase enzyme activity 

prior to use. 100 µL DEPC was added to 100 mL Ultrapure MilliQ H2O, properly mixed, 

aliquoted into working volumes and incubated overnight in the dark at room temperature. 

Following incubation, DEPC was inactivated by autoclaving at 121°C for 15 minutes. 

 

2.1.4. Preparation of qPCR Reaction Mixture for qRT-PCR 

qPCR Reaction Mixtures used for qRT-PCR were used as previously described (Martin-Tryon 

et al., 2006). 1 mL 2x qPCR Reaction Mixture stocks were prepared in ultrapure Milli-Q H2O 

and contained 40 mM Tris-HCl pH 8.4 (prepared in ultrapure Milli-Q H2O), 100 mM KCl 

(prepared in ultrapure Milli-Q H2O), 6 mM MgCl2 (prepared in ultrapure Milli-Q H2O), 8% 

glycerol (99+%, Fisher Chemical, cat# G/0650/17), 20 nM Fluorescein (diluted with 1 M Tris-

HCl pH p08.8 from a 1 mg/mL Fluorescein solution prepared in acetone; ACROS Organics™, 

cat# 119240250), 0.4x SYBR™ Green I Nucleic Acid Gel Stain (diluted in DMSO from a 

10,000x solution, Invitrogen, UK), 0.1 mg/mL Bovine Serum Albumin (BSA, prepared in 

ultrapure Milli-Q H2O; >98%, Sigma-Aldrich, cat# 05470) and 1.6 mM dNTP mix (10 mM of 
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each dNTP, prepared in DEPC-treated water; Thermo Scientific, cat# R0182). Solutions 

containing ultrapure Milli-Q H2O, Tris-HCL pH 8.4, KCl, MgCl2, Glycerol and BSA were 

treated with 365 nm UV light for two hours using a MINERALIGHT® Multiband UV lamp 

(UVP, Upland, USA, cat# UVGL-85) before addition of dNTP mix, SYBR Green I and 

Fluorescein (on ice). 1 mL 2x qPCR Reaction Mixture aliquots were stored at -20°C, with 750 

µL dH2O, 5 µL 100 mM both forward and reverse primer (prepared in DEPC-treated water, 

and 40 µL Taq polymerase added prior to use (Section 2.3.4). 

 

2.1.5. Purification of Taq DNA Polymerase I 

Thermus aquaticus DNA Polymerase I (Taq) was purified according to a previously described 

method (Pluthero, 1993) and used in PCR and qRT-PCR analysis as reported previously 

(Martin-Tryon et al., 2006; Chen et al., 2015). The Escherichia coli (E. coli) Rosetta™ II strain 

was used as a host for the recombinant plasmid pTaq (Engelke et al., 1990) to overproduce the 

Taq DNA polymerase. Glycerol stocks of E. coli Rosetta™ II cells previously transformed with 

the pTaq plasmid were a gift from Dr M. A. Jones (University of Essex, UK). Glycerol stock 

was recovered by streaking out cells on a LB agar plate (see Section 2.1.2) containing 100 

µg/mL Ampicillin (Melford Laboratories Ltd, Ipswich, UK, cat# A0104) and incubated 

overnight at 37°C, and a single colony used to inoculate 10 mL LB broth (see Section 2.1.2) 

containing 100 µg/mL Ampicillin. Following incubation overnight at 37°C with shaking at 180 

rpm, 100 µL of the overnight culture was used to inoculate 1 L LB broth containing 100 µg/mL 

Ampicillin. This 1 L culture was incubated at 37°C with shaking until an OD600nm of 0.8 was 

reached (approximately 11 hours), at which point IPTG (Sigma-Aldrich, UK, cat# I6758) was 

added to a final concentration of 124 mg/L to induce protein expression. After incubation at 

37°C with shaking for 12 hours, cells were collected by centrifugation at 3,000 rpm for 30 

minutes at 4°C and gently resuspended in 100 mL Buffer A (50 mM Tris-HCl pH 7.9, 50 mM 

Dextrose, 1 mM ethylene diaminetetra-acetic acid (EDTA)). Cells were pelleted by 

centrifugation at 3,000 rpm for 15 minutes and gently resuspended in 50 mL Buffer A 
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containing 4 mg/mL Lysozyme (Sigma-Aldrich, UK, cat# L6876). Mixtures were incubated at 

room temperature for 15 minutes, after which 50 mL Lysis Buffer (10 mM Tris-HCl pH 7.9, 

50 mM KCl, 1 mM EDTA, 1 mM PMSF, 0.5% Tween-20, 0.5% Nonidet P40) was added and 

incubated at 75°C for 1 hour. Lysate was cleared by centrifugation at 10,000 rpm for 15 minutes 

at 4°C and transferred to a glass beaker. Protein was precipitated by adding 30 g ammonium 

sulfate ((NH4)2SO4) to the cleared lysate slowly (over the course of 30 minutes) with gentle 

stirring at room temperature. Solution was incubated with stirring for a further 30 minutes at 

room temperature, and precipitated protein collected by centrifugation at 10,000 rpm for 15 

minutes at 4°C. Protein was resuspended in 20 mL Buffer A and dialyzed against Storage 

Buffer (50 mM Tris-HCl pH 7.9, 50 mM KCl, 0.1 mM EDTA, 1 mM DTT, 50% glycerol, 0.5 

mM phenylmethylsulfonyl fluoride (PMSF, Thermo Fisher Scientific, cat# 36978 PMSF)) 

using Slide-A-Lyzer™ 20K MWCO 30 mL Dialysis Cassettes (Thermo Fisher Scientific, UK, 

cat# 66003) as per manufacturer’s instructions. Dialysis was performed at 4°C for 2 hours, after 

which Storage Buffer was replaced with fresh Storage Buffer. Dialysis was continued for 

another 2 hours at 4°C, with buffer again replaced with fresh Storage Buffer before dialysis 

was continued overnight at 4°C. Following dialysis, protein was diluted 1:1 with Storage 

Buffer. 

To determine the optimal dilution of Taq to use, a sample of the protein extract was used to 

prepare a dilution series (1:0, 1:1, 1:3, 1:5, 1:7, 1:15, 1:31) using Storage Buffer. Activity of 

the Taq dilution series was tested using PCR (Section 2.3.3), and optimum Taq dilutions were 

tested with qRT-PCR as described in Section 2.3.4. The remaining purified Taq was diluted to 

the optimum dilution for both PCR and qRT-PCR use with Storage Buffer, aliquoted and stored 

at -20°C.  
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2.2. DNA preparation, cloning and manipulation 

2.2.1. Agarose gel electrophoresis 

DNA was analysed by horizontal agarose gel electrophoresis. Samples were combined with 1x 

DNA Loading Buffer (6% (v/v) glycerol, 0.2% (w/v) Ponceau S) and resolved on a 1% (w/v) 

agarose gel containing 1:10,000 dilution SafeView Nucleic Acid Stain (NBS Biologicals, 

Cambridgeshire, UK, cat# NBS-SV1) in TAE buffer (40 mM Tris pH 7.6, 1 mM EDTA, 20 

mM acetic acid) at 100V. 5 µL GeneRuler 1kb DNA Ladder (Thermo Fisher Scientific, 

SM0313) or MassRuler DNA Ladder Mix (Thermo FisherScientific, SM0403) was analysed 

alongside 12 uL of sample. Gels were visualised under blue light using the GeneGenius 

Bioimaging system (Syngene, Synoptics Ltd., Cambridge, UK) per the manufacturer’s 

instructions. 

 

2.2.2. Quantification of nucleic acids 

Purity and concentration of extracted total RNA, plasmids and genomic DNA were examined 

using the NanoDrop™ ND-1000 Spectrophotometer (Thermo Fisher Scientific, UK) with 

NanoDrop™ 1000 Operation Software as per the manufacturer’s instructions. Absorbance of 

2 µL sample at 230 nm, 260 nm and 280 nm was determined spectrophotometrically, with 

sample concentration in ng/µL based on absorbance at 260 nm using Beer’s Law. The ratio of 

sample absorbance at 260 nm and 280 nm (260/280), as well as the ratio of absorbance at 260 

nm and 230 nm (260/30) were used as indicators of nucleic acid purity. A 260/280 ratio of ~2 

and a 260/280 ratio of 1.8-2.2 were regarded as indicating ‘pure’ RNA, with RNA re-

precipitated before use if either 260/280 or 260/230 ratio was below 1.7. Similarly, a 260/280 

ratio of ~1.8 and a 260/230 ratio of 1.8-2.2 was regarded as indicated ‘pure’ plasmid or genomic 

DNA. 

 



82 
 

2.2.3. Polymerase chain reaction (PCR) 

Polymerase chain reaction (PCR) was routinely used to analyse plasmids in this study, as well 

to verify genotypes of Arabidopsis T-DNA insertion lines. PCR reactions were performed 

using an Applied Biosystems 2720 Thermal Cycler (Thermo Fisher Scientific, UK). Primers 

were designed using Primer3Plus (Untergasser et al., 2007). For genotyping of Arabidopsis T-

DNA insertion lines, the SALK T-DNA verification primer design online tool was used 

(http://signal.salk.edu/tdnaprimers.2.html). Specificity of designed primer sets was confirmed 

using Primer Blast (Ye et al., 2012). Primers used in this study are listed in Appendix I.  

Routine PCR reactions were set up (on ice) in thin-walled 200 µL PCR tubes in 20 µL volumes 

consisting of 2 µL 10x PCR buffer (500 mM KCl, 100 mM Tris-HCl pH 9.0, 15 mM MgCl2, 

1% Triton X-100), 2 µL dNTP mix (2.5 mM each, prepared in dH2O, Thermo Scientific, cat# 

R0182), 2 µL 20 mM MgCl2, 1 µL 10 µM forward primer, 1 µL 10 µM reverse primer, 1 µL 

Taq polymerase, 0.1 µg template DNA, dH2O up to 20 µL final volume. PCR conditions for 

amplification with Taq polymerase were as follows: initial DNA denaturation at 94°C for 2 

minutes; 40 cycles of DNA denaturation at 94°C for 30 seconds, primer annealing at Ta for 30 

second, extension at 72°C for 30 seconds per 1 Kb template; final extension at 72°C for 7 

minutes. Annealing time (Ta) depended on melting temperatures (Tm) of primers used, usually 

defined as Ta = lowest Tm – 5°C.  

Amplification of gDNA (see Section 2.2.8) or cDNA (see Section 2.3.3) for transformation of 

Arabidopsis thaliana was performed using Phusion High-Fidelity DNA Polymerase (Thermo 

Fisher Scientific, UK, cat# F530S) as per manufacturer’s instructions. 20 µL reactions were set 

up (on ice) in thin-walled 200 µL PCR tubes and consisted of 4 µL 5x Phusion HF Buffer, 0.4 

µL dNTP mix (10 mM each, prepared in dH2O), 1 µL 10 µM forward primer, 1 µL 10 µM 

reverse primer, 100 ng template DNA, 0.2 µL Phusion High-Fidelity DNA Polymerase 

(2U/µL).  
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The 3-step protocol for amplification with Phusion High-Fidelity DNA Polymerase was as 

follows: initial denaturation at 98°C for 30 seconds; 35 cycles of denaturation at 98°C for 10 

seconds, primer annealing at Ta for 30 seconds, extension at 72°C for 30 seconds per 1 Kb 

template; final extension at 72°C for 10 minutes. Annealing time (Ta) depended on melting 

temperatures (Tm) of primers used, usually defined as Ta = lowest Tm – 5°C  

 

2.2.4. Colony PCR 

Positive transformants from cloning reactions (see Section 2.2.5) were identified using colony 

PCR. Following overnight incubation of transformed E. coli overnight at 37°C on selective 

LB-agar plates, single colonies were transferred to individual thin-walled 200 µL PCR tubes 

containing 5 µL dH2O. A portion of each selected colony was re-streaked onto a selective LB-

agar plate containing the appropriate antibiotic. PCR was performed using Taq polymerase in 

20 µL reaction volumes consisting of 2 µL 10x PCR buffer, 2 µL dNTP mix, 2 µL 20 mM 

MgCl2, 1 µL 10 µM forward primer, 1 µL 10 µM reverse primer, 1 µL Taq polymerase and 

dH2O up to 20 µL final volume. PCR products were visualised using agarose gel 

electrophoresis as described in Section 2.2.1 to identify colonies containing the desired 

plasmid. Plasmids were isolated from overnight cultures of the positive colonies as described 

in Section 2.2.6. 

 

2.2.5. Construction of plasmids for transformation of Arabidopsis thaliana 

PCR products amplified with Phusion High-Fidelity DNA polymerase (see Section 2.2.3) were 

cloned into the pCR™8/GW/TOPO® entry vector using the pCR™8/GW/TOPO® TA® 

Cloning kit (Invitrogen, UK, cat# K2020-20) as per manufacturer’s instructions. Following 

amplification with proofreading polymerase, 3’ A-overhangs were added to PCR products as 

follows: to 20 µL PCR reaction, 1 µL Taq polymerase was added, reaction mixed well and 

incubated at 72°C for 10 minutes using an Applied Biosystems 2720 Thermal Cycler (Thermo 



84 
 

Fisher Scientific, UK). Reaction was placed on ice and immediately used in the TOPO® 

Cloning reaction consisting of 4 µL PCR product, 1 µL Salt Solution and 1 µL 

pCR™8/GW/TOPO® entry vector. After gentle mixing, reaction was incubated for 30 minutes 

at room temperature, placed on ice and used to transform One Shot® Top10 Chemically 

Competent E. coli (Invitrogen, UK, cat# C4040).  

Transformation of E. coli was performed as follows: one vial of One Shot® Top10 E. coli cells 

was thawed on ice for 30 minutes. All 6 µL of the TOPO® Cloning reaction was added to the 

thawed cells, mixed gently and cells incubated on ice for 30 minutes. Cells were heat-shocked 

at 42°C for 30 seconds and cooled on ice for 2 minutes. 1 mL LB media was added and cells 

recovered by incubation at 37°C with shaking at 200 rpm for 1 hour. Cells were collected by 

centrifugation at 6,000 rpm for 5 minutes at room temperature and supernatant removed so that 

only approximately 50 µL remain. After resuspension in the remaining supernatant, 

transformed E. coli cells were plated on selective LB agar plates containing 100 µg/mL 

Spectinomycin (Melford Laboratories Ltd, Ipswich, UK, S0188). Cells were incubated 

overnight at 37°C, following which single colonies were selected, screened using colony PCR 

(see Section 2.2.4) using the primers GW1 and GW2 and each incubated in 10 mL selective 

LB media containing 100 µg/mL Spectinomycin. Cultures were incubated overnight at 37°C 

and plasmids isolated as described in Section 2.2.6. Quality and concentration of plasmid 

preparations were analysed spectrophotometrically as described in Section 2.2.2. 

To generate an expression clone, Entry clone constructs isolated from successful transformants 

were used to transfer the gene of interest into Gateway® destination vectors using the 

Gateway® LR Clonase® II kit (Invitrogen, UK, cat# 11791) as per manufacturer’s instructions. 

An Applied Biosystems 2720 Thermal Cycler (Thermo Fisher Scientific, UK) was used for 

incubation steps. LR reactions consisted of 125 ng Entry clone, 75 ng Destination vector and 

TE buffer (10 mM Tris-HCl pH 8.0, 1 mM EDTA pH 8.0) up to 4 µL total volume. 1 µL LR 

Clonase® was thawed on ice and added. Reactions were mixed well, briefly centrifuged and 

incubated at 25°C for one hour. LR reaction was terminated by adding 1 µL Proteinase K, 
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mixing and incubating at 37°C for 10 minutes. The complete LR clonase reaction was used to 

transform One Shot® Top10 Chemically Competent E. coli as described above. Expression 

clones were isolated from overnight E. coli cultures and screened using colony PCR as 

described. Sequence and direction of gene of interest in expression clones were verified by 

sequencing (see Section 2.2.7).  Maps for all vectors and plasmids use in this study are given 

in Appendix II. 

 

2.2.6. Isolation of plasmid DNA from Escherischia coli 

Plasmid DNA was isolated from overnight E. coli cultures prepared in Section 2.2.5 according 

to the QIAprep Spin Miniprep Kit protocol (Qiagen, UK), with modifications. Cells were 

harvested from 5 mL cultures by centrifugation at 3,000 rpm for 15 minutes at 4°C. Supernatant 

was discarded and cells resuspended in 250 µL Resuspension Buffer P1 (50 mM Tris-HCl pH 

8, 10 mM EDTA pH 8, 100 µg/mL RNase A). 250 µL Lysis Buffer P2 (0.2 M NaOH, 1% (w/v) 

SDS) was added, samples mixed gently by inverting 4-6 times and incubated at room 

temperature for 3-5 minutes (not more than 5 minutes) until suspension turned transparent and 

viscous. 350 µL Neutralisation Buffer N3 (4 M guanidine hydrochloride, 0.5 M sodium acetate) 

was added, reactions mixed gently by inverting 4-6 times and centrifuged at 13,000 rpm for 15 

minutes at room temperature. Supernatant was transferred onto an EZ-10 DNA Mini Spin 

Column (NBS Biologicals, UK, cat# SD5005) and centrifuged at 13,000 rpm for 1 minute at 

room temperature. Flow-through was discarded. 750 µL Wash Buffer PE (10 mM Tris-HCl pH 

7.5, 80% ethanol) was added to column and incubated at room temperature for 1-2 minutes 

before centrifugation at 13,000 rpm for 1 minute at room temperature. Flow-through was 

discarded and wash step with Buffer PE repeated. Flow-through was discarded and column 

centrifuged again at 13,000 rpm for 1 minute at room temperature to dry column. The blue 

column was transferred to a clean 1.5 mL microcentrifuge tube, after which 50 µL ultrapure 

MilliQ H2O (heated to 55°C) was added to the column and incubated at room temperature for 

5-10 minutes. Columns were centrifuged at 13,000 rpm for 1 minute at room temperature and 
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flow-through containing plasmid collected. Quality and concentration of plasmid preparations 

were analysed spectrophotometrically as described in Section 2.2.2.  

 

2.2.7. Sanger sequencing of prepared plasmids and PCR products 

DNA sequencing of PCR products and inserts in expression clones was completed through the 

Sanger Sequencing Service from Source Bioscience (Nottingham, UK) as per sample 

requirements. For sequencing of PCR product, the procedure was as follows: following PCR 

reaction (see Section 2.2.3), nucleotides were precipitated by adding 2 µL 3 M sodium acetate 

(C2H3NaO2, prepared in dH2O) and 40 µL 100% ethanol to the 20 µL PCR reaction. Reaction 

was thoroughly mixed and incubated at -80°C for 30 minutes. Precipitate was collected by 

centrifugation at 13,000 rpm for 30 minutes at 4°C, supernatant removed completely using 

pipettes, and pellets washed by adding 100 µL 70% ethanol (prepared in dH2O). Following 

centrifugation at 13,000 rpm for 5 minutes at 4°C, supernatant was removed and wash step 

repeated using 100% ethanol. After final centrifugation at 13,000 rpm for 5 minutes at 4°C, 

supernatant was removed completely using pipettes and pellets dried by incubating open tubes 

on the bench at room temperature. Pellets were resuspended in 20 µL dH2O by heating at 55°C 

for ten minutes, after which purity and concentration of sample were determined 

spectrophotometrically (see Section 2.2.2). 5 µL PCR product at >1 ng/µL per 100 bp product 

length was sent for sequencing. For sequencing of expression clones, 5 µL 100 ng/µL clean 

plasmid preparation (as determined spectrophotometrically) was provided. Where necessary, 5 

µL each of 3.2 µM forward and/or reverse primer was also provided. Sequences were analysed 

using the software BioEdit (http://www.mbio.ncsu.edu/bioedit/bioedit.html).  

2.2.8. Extraction of genomic DNA from Arabidopsis thaliana tissue 

Genomic DNA was extracted from Arabidopsis thaliana tissue using cetyltrimethyl 

ammonium bromide (CTAB) with modifications to a previously described protocol (Clarke, 

2009). 10-20 Arabidopsis seedlings were harvested, placed in a 1.5 mL microcentrifuge tube 
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containing two 2.0 mm diameter AISI 304 stainless steel balls (Dejay Distribution Ltd, 

Cornwall, UK) and snap-frozen in liquid nitrogen. Tissue was ground using a Qiagen Retsch 

MM300 Tissuelyser (Qiagen, UK) tissue disrupter, with metal plates chilled on ice prior to use, 

for 2 minutes at 30 rpm. Ground tissue was collected in bottom of the tube by brief 

centrifugation, resuspended in 300 µL CTAB buffer (2% CTAB, 1.4 M NaCl, 100 mM Tris-

HCl pH 8, 20 mM EDTA), and heated at 65°C for 30 minutes. After cooling to room 

temperature, 300 µL chloroform was added, sample vortexed vigorously for 20 seconds and 

centrifuged at 13,000 rpm for 15 minutes at 4°C. To precipitate nucleic acids, aqueous phase 

was transferred to a clean 1.5 mL microcentrifuge tube containing 500 µL isopropanol, mixed 

by brief vortexing and precipitate pelleted by centrifuged at 13,000 rpm for 15 minutes at 4°C. 

Pellet was washed by adding 500 µL 10% ethanol (prepared in dH2O) with repeated pipette 

aspirations until pellet is free-floating, centrifuged at 13,000 rpm for 10 minutes at 4°C, and 

supernatant removed using pipettes. Pellets were dried by incubating open microcentrifuge 

tubes at room temperature on the bench for 30 minutes. Pellets were resuspended in 30 µL 

dH2O by heating at 55°C for ten minutes. Genomic DNA preparations were analysed 

spectrophotometrically as described in Section 2.2.2 and stored at -20°C.   

 

2.3. RNA preparation and manipulation  

2.3.1. Sampling and extraction of total RNA from Arabidopsis thaliana tissue 

Total RNA was extracted from Arabidopsis tissue using TRI Reagent® (Sigma-Aldrich, UK, 

cat# T9424) with modifications to manufacturer’s instructions. For each data point, at the 

indicated sampling time, 10-15 seedlings were collected in a 1.5 mL microcentrifuge tube 

containing two 2.0 mm diameter AISI 304 stainless steel balls (Dejay Distribution Ltd, 

Cornwall, UK) and snap-frozen in liquid nitrogen immediately upon sampling. Tissue was 

ground using a Qiagen Retsch MM300 Tissuelyser (Qiagen, UK) tissue disrupter, with metal 

plates chilled on dry ice prior to use, for 1 minute at 30 rpm, repeating if necessary until tissue 
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was properly ground. Following quick centrifugation at 13,000 rpm for 10 seconds at 4°C to 

collect ground tissue at the bottom of the tube, tissue was resuspended in 400 µL TRI Reagent® 

by brief vortexing, and incubated on ice for 2 minutes. 200 µL chloroform was added to each 

tube and samples were mixed gently by inversion for 20 seconds, followed by incubation at 

room temperature for 2 minutes and subsequent centrifugation at 13,000 rpm for 15 minutes at 

4°C. Chloroform extraction was repeated by collecting aqueous phase and transferring to a new 

1.5 mL microcentrifuge tube containing 200 µL chloroform, mixing gently by inversion for 20 

seconds and incubating at room temperature for 2 minutes. Following centrifugation at 13,000 

rpm for 15 minutes at 4°C, total RNA was precipitated by transferring aqueous phase to a new 

1.5 mL microcentrifuge tube containing 500 µL isopropanol, mixed by inversion for 20 

seconds, and incubated on ice for 20 minutes. Precipitate was collected by centrifugation at 

13,000 rpm for 20 minutes at 4°C, and care taken to remove all supernatant using pipettes. 

Precipitate was washed by adding 500 µL 70% ethanol (prepared using DEPC-treated water) 

with repeated pipette aspirations until pellet was free-floating, followed by centrifugation at 

13,000 rpm for 3 minutes at 4°C and removal of all supernatant using pipettes. The wash step 

was repeated using 500 µL 100% ethanol and samples centrifuged again at 13,000 rpm for 3 

minutes at 4°C. Following total removal of supernatant using pipettes, pellets were dried by 

incubating open microcentrifuge tubes (covered with Hospitex soft medical tissue, Aero 

Healthcare, UK, cat# AN1035) on the bench at room temperature for 30 minutes. Once dry, 

pellets were resuspended in 30 µL DEPC-treated water through incubation at 55°C for ten 

minutes. Purity and concentration of extracted total RNA was determined 

spectrophotometrically (Section 2.2.2), and RNA re-precipitated using ethanol if not pure.  

For re-precipitation of total RNA, 3 µL 3 M sodium acetate (C2H3NaO2, prepared with DEPC-

treated water) and 60 µL 100% ethanol were added to the RNA preparation, reactions mixed 

and briefly centrifuged, and incubated at -80°C for 30 minutes. Precipitates were pelleted by 

centrifugation at 13,000 rpm for 30 minutes at 4°C and al supernatant removed using pipettes. 

Precipitates were washed with 500 µL 70% ethanol (prepared in DEPC-treated water) with 



89 
 

repeated pipette aspirations until pellet was free-floating, followed by centrifugation at 13,000 

rpm for 3 minutes at 4°C and removal of all supernatant using pipettes. Wash step was repeated 

using 100% ethanol. Following total removal of supernatant using pipettes, pellets were dried 

at room temperature for 30 minutes and resuspended in 30 µL DEPC-treated as described 

above. Purity and concentration of extracted total RNA was determined 

spectrophotometrically, and pure complete RNA preparations were stored at -80°C.  

 

2.3.2. DNase treatment of extracted total RNA 

Genomic DNA was removed from pure total RNA preparations by DNase treatment using 

Recombinant DNase I, RNase-free (DNase I, Thermo Fisher Scientific, UK, cat# EN0525) as 

per manufacturer’s instructions. Reactions were set up in PCR tubes kept on Eppendorf® PCR 

Cooler iceless cold PCR tube racks (Sigma-Aldrich, UK, cat# Z606634) as follows: <1 µg total 

RNA, 1 µL 10x Reaction Buffer with MgCl2, 1 µL DNase I (1U/µL), DEPC-treated water up 

to 10 µL total volume. Reactions were gently mixed, briefly centrifuged, and incubated at 37°C 

for 30 minutes. Following incubation, 1 µL 50 mM EDTA solution was added to each reaction, 

mixed, briefly centrifuged and DNase I inactivated by incubation at 65°C for 10 minutes. All 

incubation steps were performed using an Applied Biosystems 2720 Thermal Cycler (Thermo 

Fisher Scientific, UK). 

 

2.3.3. First-strand cDNA synthesis 

cDNA was synthesised from total mRNA by a two-step reaction using Oligo(dT)18 primer 

(Sigma Aldrich, UK) and RevertAid Reverse Transcriptase (RT, Thermo Fisher Scientific, cat# 

EP0442) with modifications to manufacturer’s instructions. Following DNase-treatment of 

total RNA preparations (see Section 2.3.2), 1.25 µL DEPC-treated water and 1 µL 0.5 µg/µL 

Oligo(dT)18 (prepared in DEPC-treated water) were added to each 11 µL reaction from Section 

2.3.2. Reactions were gently mixed, briefly centrifuged and incubated for 5 minutes at 65°C 



90 
 

followed by 1 minute at 4°C. 4 µL 5x Reaction Buffer, 2 µL dNTP mix (10 mM each prepared 

in DEPC-treated water, Thermo Scientific, cat# R0182) and 0.25 µL RT were added to each 

reaction, reactions gently mixed, briefly centrifuged and incubated for 60 minutes at 42°C, 

followed by termination of the reaction by heating at 70°C for 10 minutes. All reactions were 

kept cold during preparation on Eppendorf® PCR Cooler iceless cold PCR tube racks (Sigma-

Aldrich, UK, cat# Z606634), and incubation steps performed using an Applied Biosystems 

2720 Thermal Cycler (Thermo Fisher Scientific, UK). 

 

2.3.4. Real-time quantitative RT-PCR (qRT-PCR) 

qRT-PCR was performed using a CFX96 Touch Real-Time PCR Detection System (Biorad, 

UK) or a CFX Connect™ Real-Time PCR Detection System (Biorad,UK) with reaction setup 

as previously described (Martin-Tryon et al., 2006). Final reaction concentrations were as 

follows: 20 mM Tris-HCL pH 8.4, 50 mM KCl, 3 mM MgCl2, 4% glycerol, 10 nM Fluorescein, 

0.2x SYBR Green I, 0.05 mg/mL Bovine Serum Albumin, 0.8 µM dNTPs, 1.25 µM forward 

primer, 1.25 µM reverse primer, 0.2 uL Taq polymerase and 10% diluted cDNA. Reactions 

were set up in clear 96-well PCR microplates (Alpha Laboratories, UK, LW2216) kept cold on 

Eppendorf® PCR Cooler iceless cold PCR tube racks (Sigma-Aldrich, UK, cat# Z606634) by 

adding 17.5 µL 1x qPCR Reaction Mixture (see Section 2.1.4) and 2 µL diluted cDNA prepared 

in Section 2.3.3. PCR Microplates were sealed with clear adhesive PCR plate seals (Thermo 

Fisher Scientific, cat# AB-0558). 

PCR conditions were as follows: Initial denaturation and DNA polymerase activation at 95°C 

for 2 minutes, 50 cycles consisting of denaturation at 95°C for 5 seconds, annealing at 60°C 

for 10 seconds and extension at 72°C for 5 seconds. Melt curve analysis from 65°C to 90 °C in 

0.5 °C increments for 5 seconds was performed to verify the specificity of the amplification 

products. Primers were designed using Primer3Plus (Untergasser et al., 2007) and targeted to 

amplify products between 85-100 bp in length. Where possible, primer sets contained one 
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primer bridging an intron to prevent amplification of any contaminating genomic DNA 

remaining after DNase treatment of total RNA. Primer sets used in this study are given in 

Appendix I. 

Samples were run in triplicate and a non-template control was included. Starting quantities 

were estimated from critical thresholds compared to the standard curve of amplification for 

each primer set. cDNA from samples were diluted 10x in dH2O, with combined cDNA for 

standards diluted 2x with dH2O. All qRT-PCR data presented were normalized to PP2a 

expression level 

 

2.4. Protein gel electrophoresis 

2.4.1. Protein extraction from Arabidopsis thaliana tissue 

Protein was extracted from transgenic Arabidopsis thaliana transformed with Agrobacterium 

to analyse level of protein expression. 10-15 14-day old Arabidopsis seedlings were harvested, 

collected in a 1.5 mL microcentrifuge tube containing two 2.0 mm diameter AISI 304 stainless 

steel balls (Dejay Distribution Ltd, Cornwall, UK) and snap-frozen in liquid nitrogen 

immediately upon sampling. Tissue was ground using a Qiagen Retsch MM300 Tissuelyser 

(Qiagen, UK) tissue disrupter, with metal plates chilled on ice prior to use, for 45 seconds at 

30 rpm. Tubes were briefly centrifuged at 13,000 rpm for 10 seconds at 4°C, and ground tissue 

resuspended in 200 µL cold Homogenisation buffer (25 mM MOPS, 0.25 M sucrose, 0.1 mM 

MgCl, 8 mM L-Cystine, 0.5 mM PMSF, 1 Complete Mini Protease Inhibitor Cocktail tablet 

(Roche) per 10 mL buffer) by vortexing for 45 seconds. Samples were centrifuged at 13,000 

rpm for 20 minutes at 4°C, supernatant transferred to clean 1.5 mL microcentrifuge tube, and 

centrifugation step repeated. 

Concentration of protein was determined using the Pierce™ Coomassie Plus™ (Bradford) 

Protein Assay (Thermo Fisher Scientific, UK, cat# 23238) as per manufacturer’s instructions. 

Bradford assays were prepared at room temperature in Greiner 96-well clear multiwell plates 
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(Sigma-Aldrich, UK, cat# M2936). Reactions consisted of 245 µL Bradford reagent and 5 µL 

protein extract and were properly mixed by repeated pipette aspirations before analysis. 

Absorbance of samples at 595 nm was determined at room temperature using a SPECTROstar 

Omega Ultra-fast UV/Vis spectrum absorbance spectrometer microtitre plate reader (BMG 

LABTECH, Offenburg, Germany) and protein concentrations calculated using a standard curve 

prepared with Bovine Serum Albumin. 

 

2.4.2. SDS-polyacrylamide gel electrophoresis (SDS-PAGE) 

Protein extractions were analysed by SDS-PAGE with modifications to the original described 

protocol (Laemmli, 1970), using the Mini-PROTEAN® Electrophoresis System (Biorad, UK). 

Approximately 15 µg total protein was analysed for each sample, alongside either Precision 

Plus Protein™ Dual Colour standard (250 kDa-10 kDa; BioRad, UK, cat# 161-0374) or 

PageRuler™ Plus Prestained 10-250 kDa Protein Ladder (Thermo Fisher Scientific, UK, cat# 

26619). Protein samples were denatured in 1x SDS Loading Buffer (50 mM Tris-HCl pH 6.8, 

100 mM DTT, 2% (w/v) SDS, 0.1% (w/v) Bromophenol Blue, 10% (v/v) glycerol) by boiling 

for 10 minutes at 100°C. Denatured proteins were resolved on a 15% polyacrylamide 

separating gel (4.5 mL 30% (29:1) acrylamide:bis-acrylamide, 4.5 mL 1 M Tris-HCl pH 6.8, 

2.8 mL dH2O, 120 µL 10% (w/v) SDS, 60 µL 10% (w/v) ammonium persulfate, 8 µL TEMED) 

with 5% polyacrylamide stacking gel (1 mL 30% (29:1) acrylamide:bis-acrylamide, 1.32 mL 

1 M Tris-HCl pH 6.8, 7.72 mL dH2O, 120 µL 10% (w/v) SDS, 50 µL 10% (w/v) ammonium 

persulfate, 8 µL TEMED). Electrophoresis was performed at 200 V for 1 hour at room 

temperature in 1x Running Buffer (25 mM Tris, 250 mM glycine, 0.1% (w/v) SDS). Following 

electrophoresis, SDS-PAGE gels were either used for Immunoblot analysis (see Section 2.4.3) 

or stained for 2 hours at room temperature using InstantBlue Protein Stain (Expedeon, UK, 

cat# ISTB). 

 



93 
 

2.4.3. Immunoblot analysis of proteins 

HyPer and SAL1-GFP were immunodetected by anti-GFP antibody (Abcam, UK, cat# ab290) 

at a 1:10,000 dilution, with anti-GFP primary antibody detected using the Anti-Rabbit IgG 

(H+L) HRP conjugate (Promega, UK, cat# W4011) at 1:4,000 dilution. As loading control, 

actin was immunodetected by anti-Actin primary antibody (Sigma-Aldrich, UK, cat# 

mAB1501) at a 1:2,000 dilution. Anti-actin primary antibody was detected using the Anti-

Mouse IgG (H+L) HRP conjugate (Promega, UK, cat# W4021) at 1:4,000 dilution. 

Following SDS-PAGE, protein was semi-dry transferred onto an Amersham Protran 0.45 µM 

nitrocellulose membrane (GE Healthcare Life Sciences UK, cat# 10600002) at 100 V for 1.5 

hours at room temperature using cooled Transfer Buffer (25 mM Tris, 190 mM glycine. 20% 

(v/v) methanol). Membrane was stained using Ponceau Solution (0.2% (w/v) Ponceau S, 1% 

(v/v) acetic acid) to confirm successful transfer of proteins to membrane. Stain was removed, 

membranes rinsed with dH2O and blocked for 1 hour at room temperature using 8% (w/v) skim 

milk powder dissolved in dH2O. After blocking, primary antibody diluted in 8% milk power 

solution prepared in 1x PBST buffer (137 mM NaCl, 2.7 mM KCl, 0.88 mM KH2PO4, 2.15 

mM Na2HPO4, 0.1% (v/v) Triton X-100, pH adjusted to pH 7.4 with HCl) was incubated with 

the membrane at the appropriate dilution overnight at 4°C. Membrane was washed in 1x 

PBSTT buffer (137 mM NaCl, 2.7 mM KCl, 0.88 mM KH2PO4, 2.15 mM Na2HPO4, 0.1% 

Triton X-100, 0.1% Tween-20, pH 7.4) for 5 minutes with shaking, and wash step repeated two 

more times. Secondary antibody prepared in 8% milk powder PBST solution at the appropriate 

dilution was incubated for 1 hour at room temperature, and membranes washed 5 times with 

1x PBSTT as described above, and a final wash step with 1x PBS buffer (137 mM NaCl, 2.7 

mM KCl, 0.88 mM KH2PO4, 2.15 mM Na2HPO4, pH 7.4). Horseradish peroxidase (HRP)-

conjugated antibodies were visualised using the Pierce™ ECL Western Blotting Substrate as 

per manufacturer’s instructions. Each membrane was incubated with 2 mL substrate for 5 

minutes, and excess substrate removed before analysis. Chemiluminescence from membrane 
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was imaged by scanning with a Fusion FX imaging system (Vilber Lourmat, France), and 

images analysed using ImageJ. 

 

2.5. Metabolite analysis 

2.5.1. Extraction of PAP from Arabidopsis thaliana tissue 

3’-phosphoadenosine 5’-phosphate (PAP) was extracted from whole seedlings based on a 

method previously described (Bürstenbinder et al., 2007). 150-300 mg tissue was collected in 

2 mL Eppendorf® Safe-Lock microcentrifuge tubes (Sigma-Aldrich, UK, T2795), snap frozen 

in liquid nitrogen and weighed. Two 2.0 mm diameter AISI 304 stainless steel balls (Dejay 

Distribution Ltd, Cornwall, UK) were added to each tube and tissue ground using a Qiagen 

Retsch MM300 Tissuelyser (Qiagen, UK) tissue disrupter, with metal plates chilled on dry ice 

prior to use, for 1 minute at 30 rpm, repeating if necessary until all tissue was ground. After 

quick centrifugation at 13,000 rpm for 10 seconds at 4°C, tissue was resuspended in 0.1 M HCl 

(prepared in ultrapure MilliQ H2O) with vortexing, and tubes incubated on ice for 15 minutes. 

Tubes were centrifuged at 13,000 rpm at 4°C for 5 min, supernatant collected in clean 2 mL 

Eppendorf® Safe-Lock microcentrifuge tubes, and centrifuged again. 150 µL of the 

supernatant was added to 770 �L cold CP buffer (620 mM citric acid and 760 mM Na2HPO4, 

pH 4, prepared in ultrapure MilliQ H2O). Metabolites were derivitised using 80 µL ~50% (w/v) 

chloroacetaldehyde solution (Sigma-Aldrich, UK, cat# 317276) with incubation at 80°C for 10 

min, and centrifuged for 45 minutes at 13,000 rpm at 4°C before HPLC analysis. 

For standards, commercial standard for PAP (Santa Cruz Biotechnology, UK, cat# sc-210760) 

was used to prepare a dilution series in ultrapure MilliQ H2O. For each dilution, 100 µL PAP 

solution was prepared in 1.5 mL microcentrifuge tubes (on ice) and 150 µL of each solution 

transferred to a tube containing cold CP buffer. PAP was derivitised using chloroacetaldehyde 

solution as described above and centrifuged for 45 min at 13,000 rpm at 4°C before HPLC 

analysis. 
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2.5.2. High Performance Liquid Chromatography (HPLC) analysis of PAP 

Reverse-phase HPLC analysis of derivitised PAP extracts was performed based on a method 

described previously (Bürstenbinder et al., 2007; Estavillo et al., 2011). All buffers used were 

prepared using ultrapure MilliQ H2O and filtered using Minisart® 0.2 µM syringe filters 

(Sartorius Stedim Biotech, cat# 10076891). Samples and standards were analysed in a 

randomised order. 

 20 µL of each derivitised PAP extract and 1 µL of each standard prepared in Section 2.5.1 was 

injected into an Agilent 1100 HPLC system connected to a FLD G1321A (Agilent) fluorescent 

detector. PAP was analysed by reverse-phase HPLC using a Luna 5 µm C18(2) 100 Å column 

(Phenomenex). Column was equilibrated for 0.2 minutes with 95% (v/v) of Buffer A (5.7 mM 

[CH3(CH2)3]4NHSO4 and 30.5 mM KH2PO4, pH 5.8) and 5%(v/v) Buffer B (67% [v/v] 

acetonitrile and 33% [v/v] Buffer A), followed by a linear gradient for 53 minutes up to 50% 

(v/v) of Buffer B. Column was re-equilibrated for 7 minutes with 5% (v/v) buffer B before 

injection of the next sample. PAP concentration was calculated relative to a standard curve 

prepared from commercially available standard (Santa Cruz Biotechnology, cat# sc-210760), 

with 1 µL derivitised standard injected. 

 

2.6. Plant material and growth conditions 

2.6.1. Arabidopsis thaliana plant material 

All wild type and transgenic lines used in this study were in the Arabidopsis thaliana 

Columbia-0 (Col-0) ecotype background. Single mutants phot1-5 (nph1-5) and phot2-1 (npl-

1), deficient in PHOTOTROPIN 1 (NPH1/PHOT1) or PHOTOTROPIN 2 (NPL1/PHOT2) 

respectively, as well as the nph3-1 and nph3-102 single mutants deficient in 

NONPHOTOTROPIC HYPOCOTYL, and the phot1-5 phot2-1 double mutant have been 

previously described (Liscum and Briggs, 1995; Huala et al., 1997; Sakai et al., 2001) and were 

gifts from Prof John M. Christie (University of Glasgow, UK). alx8-1 (N66977) and fry1-6 
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(SALK_020882), both loss-of-function mutant alleles of SAL1, have been previously described 

(Rossel et al., 2006; Gy et al., 2007) and were re-isolated from seed provided by NASC (Scholl 

et al., 2000). The loss-of-function SAL1 mutant allele fou8, the double mutant apk1-1 apk2-1 

deficient in both ADENOSINE-5'-PHOSPHOSULFATE KINASE 1 (APK1) and 

ADENOSINE-5'-PHOSPHOSULFATE KINASE 2 (APK2), as well as the triple mutant apk1 

apk2 fou8 have been previously reported (Mugford et al., 2009; Rodriguez et al., 2010) and 

were a kind gift from Prof. Edward E. Farmer (Université de Lausanne, Switzerland). Loss-of-

function in EXORIBONUCLEASE 2 (XRN2) mutant allele xrn2-1 (SALK_041148) and 

XRN3 mutant allele xrn3-3 (SAIL_ 1172C07), as well as the double mutant xrn2-1 xrn3-3 and 

the triple mutant xrn2-1 xrn3-3 xrn4-6 have been reported previously (Gy et al., 2007; Hirsch 

et al., 2011) and were re-isolated from seed obtained from Prof. Philip M. Mullineaux 

(University of Essex, UK). XRN4 mutant alleles xrn4-3 (SALK_014209) and ein5-1 have been 

previously described (Roman et al., 1995; Gazzani et al., 2004) and were received from Dr 

Pascal Genschik and Dr Thomas Potuschak (CNRS, France). Loss-of-function in 

NUCLEOSIDE DIPHOSPHATE KINASE 3 (NDPK3) mutant allele ndpk3-1 

(SALK_138260C) were re-isolated from seed provided by NASC (Scholl et al., 2000). fry1-6 

transformed to express nuclear-localised SAL1 (�N-SAL1) has been previously reported (Kim 

and von Arnim, 2009) and was a gift from the Pogson laboratory (Australian National 

University, Australia). alx8-1 transformed to express 35S::AHL:GFP were received from Dr 

M. A. Jones (University of Essex, UK). toc1-4, a null toc1 allele for the core clock components 

TOC1 has been previously described (Hazen et al., 2005a; Jones and Harmer, 2011) and was 

received from the Harmer laboratory (University of California, Davis, USA). 

Col-0 lines transformed for the expression of the biosensors HyPer1 (Belousov et al., 2006) 

and roGFP2 (Schwarzländer et al., 2008; Marty et al., 2009) were gifts from Dr M. A. Jones 

(University of Essex) and Dr. Markus Schwarzländer (Universität Bonn, Germany), 

respectively. Col-0 luciferase reporter lines CCR2::LUC (Martin-Tryon et al., 2006) and 

CCA1::LUC2 (Jones et al., 2015) have been previously reported and were gifts from the 
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Harmer laboratory (University of California, Davis, USA) and Dr M. A. Jones (University of 

Essex, UK), respectively. fry1-6 CCA1::LUC2 lines were generated by crossing fry1-6 to the 

CCA1::LUC2 line (Jones et al., 2015). Col-0 luciferase reported lines CAB2::LUC+, 

CCA1::LUC+, GI::LUC+, LHY::LUC+ and TOC1::LUC+ (Tindall et al., 2015) were a kind 

gift from Prof Anthony Hall (University of Liverpool, UK).  

 

2.6.2. Surface sterilisation of Arabidopsis thaliana seeds 

For growth on 0.5x MS plates, Arabidopsis seeds were surface sterilised using chlorine gas. In 

a glass dessicator jar, seeds were incubated for 3 hours in open 1.5 mL microcentrifuge tubes 

along with an open glass beaker containing 50 mL commercial 5% chlorine household bleach 

solution and 3 mL 37% HCl. After sterilisation, open tubes were placed in a sterile laminar 

flow hood for 5-10 minutes to remove remaining chlorine gas. 400 µL sterile dH2O was added 

to each tube and seeds stored in the dark at 4°C for 2-3 days before sowing. 

For larger volumes of Arabidopsis seeds, seeds were surface sterilised using ethanol. Working 

in a sterile laminar flow hood, seeds in sterile 15 mL tubes were washed with 5 mL 70% ethanol 

(prepared in sterile dH2O) for 10 minutes, ethanol decanted, and wash step repeated with 5 mL 

100% ethanol. Following sterilization, seeds were washed 4-5 times in 10 mL sterile dH2O. 

Seeds were stored in 5 mL sterile dH2O for 2-3 days at 4°C before use.  

2.6.3. Entraining and free-run growth conditions of Arabidopsis thaliana 

Surface-sterilised seed from Arabidopsis were sown on 0.5x MS plates and germinated under 

60 µmol.m-2.s-1 cool white fluorescent light (fluorescence spectrum peaks 434 nm, 544 nm and 

610 nm) at 22°C in A1000 Adaptis chambers (Conviron Europe Ltd, Isleham, UK). Seedlings 

were entrained for 6, 10 or 12 days in 12 hours white light: 12 hours dark cycles (12h:12h) 

before being imaged or moved to constant light conditions. For entrainment under 16 hours 

white light: 8 hours dark cycles (16h:8h, long day conditions) or 8 hours white light: 16 hours 

dark cycles (8h:16h, short day conditions). Seedlings were grown at 22°C under cool white 
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phosphor-based LED light (blue luminescence emission peak at 442 nm, phosphorescence 

emission peak at 572 nm) in LMS Series 1A Cooled Incubators (LMS, UK) 

For growth under free-run conditions, seedlings were moved to constant light conditions at 

subjective dawn following 10 or 12 days of entrainment in light:dark cycles. Free-run 

conditions were at 22°C under constant white light (cool white phosphor-based LED light; blue 

luminescence emission peak at 442 nm, phosphorescence emission peak at 572 nm), constant 

red light (monochromatic red LED light, 660 nm emission peak) or constant blue light 

(monochromatic blue LED light, 450 nm emission peak). 

 

2.6.4. Transformation of Arabidopsis thaliana using Agrobacterium tumefaciens 

For transformation with Agrobacterium tumefaciens (strain GV3101), Arabidopsis thaliana 

seeds were sown on wet soil, vernalized in the dark at 4°C for 3 days and germinated at 22°C 

in long day conditions under cool white fluorescent lighting (see Section 2.6.3) in Sanyo 

Fitotron plant growth cabinets (Sanyo Gallenkamp PLC, UK). 

Agrobacterium were transformed with prepared expression clones (see Section 2.2.5) using a 

freeze/thaw method. 250 µL competent Agrobacterium cells (stored at -80°C) were thawed on 

ice, 20 µL plasmid preparation (See Section 2.2.6) added, and cells very briefly and gently 

mixed. Cells were incubated on ice for 30 minutes, transferred to liquid nitrogen for 5 minutes, 

and then incubated at 37°C for 5 minutes. 1 mL LB media was added, tubes sealed well and 

incubated at room temperature for 2-4 hours with gentle mixing. Cells were collected by 

centrifugation at 3,000 rpm for 5 minutes, resuspended in 50 µL supernatant and transferred to 

two LB agar plates containing 150 µg/mL rifampicin (prepared in methanol, Melford 

Laboratories Ltd; cat# R0146) and 15 µL/mL. Gentamycin (prepared in dH2O, Melford 

Laboratories Ltd., Sigma-Aldrich, cat# G1914), as well as the appropriate antibiotic for the 

expression clone. Cells were incubated at 28°C for 2 days and overnight cultures prepared in 

LB broth containing the appropriate antibiotics.  
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At the first sign of bolting, Arabidopsis plants were transformed with overnight cultures 

Agrobacterium using a simplified floral dip method as previously described (Narusaka et al., 

2010). Transformations were performed late afternoon. For every three plants to transform, 2 

mL overnight transformed Agrobacterium culture was centrifuged at 3,000 rpm for 5 minutes 

at room temperature and cells resuspended in 300 µL inoculation solution (5% (w/v) sucrose, 

0.02% (v/v) Silwet L-77). Using a pipette, flower buds were washed 5-6 times with inoculation 

solution containing cells. Plants were placed back in growth cabinets under long-day 

conditions, shaded from light until the next morning. Protocol was repeat every 3-4 days to 

treat new emerging buds. Seed from transformed Arabidopsis plants were collected, surface 

sterilised using ethanol (see Section 2.6.2) and positive transformants selected by sowing seed 

on 0.5x MS agar plates containing the appropriate herbicide.  

 

2.7. Live imaging of Arabidopsis thaliana seedlings 

2.7.1. Luciferase and delayed fluorescence imaging 

Luciferase imaging was performed on 6- or 12-day old individual or grouped Arabidopsis 

seedlings grown on agar plates and entrained as described in Section 2.6.3. The day before 

imaging, plants were sprayed with 3 mM D-luciferin (prepared in filter sterilized 0.01% Triton 

X-100). Delayed fluorescence imaging was performed on 12-day old Arabidopsis seedlings 

grown on agar plates in groups of 10-15 seedlings. 

Imaging was completed under free-run conditions for 5 days under the indicated fluence rates 

using either a Photek HRPCS5 system under monochromatic blue LED light (peak emission at 

470nm) at the indicated fluence rate, or an Andor iKon-M CCD camera under monochromatic 

blue LED light (peak emission at 450nm) or monochromatic red LED light (peak emission at 

660 nm). The Andor iKon-M CCD camera was controlled using µManager (Edelstein et al., 

2010) before data was processed using ImageJ (Schneider et al., 2012). For luciferase and 

delayed fluorescence imaging, patterns of bioluminescence were fitted to cosine waves using 
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Fourier Fast Transform Non-Linear Least Squares analysis (FFT-NLLS, Plautz et al., 1997) to 

estimate circadian period length. Prior to FFT-NLLS analysis, baselines of data were detrended 

(luciferase imaging and delayed fluorescence data) and normalised (delayed fluorescence data). 

RAE is a measure of rhythmic robustness, with a value of 0 indicating an exact fit to a cosine 

wave (Plautz et al., 1997). Detrending, normalisation and FFT-NLLS analysis of data were 

performed using the Biological Rhythms Analysis Software System version 3 (BRASS; 

available from http:// www.amillar.org; Millar et al., 2010). 

  

2.7.2. Chlorophyll fluorescence imaging 

Chlorophyll fluorescence parameters were analysed in free-run conditions using a Fluorimager 

imaging system with automated camera control and image processing scripts provided by the 

manufacturer (Technologica Ltd, Colchester, UK, http://www.technologica.co.uk) as 

described previously (Litthauer et al., 2015). Individually spaced Arabidopsis seedlings were 

entrained for 12 days in 12h:12h light:dark cycles on agar plates (see Section 2.6.3) before 

transfer to imaging chamber. After transfer, plants were illuminated with 20 µmol.m-2.s-1 blue 

light using blue LEDs and measuring pulses of 5713 µmol.m-2.s-1 blue light applied for 800 

milliseconds once per hour. Chlorophyll fluorescence was imaged using a Dolphin camera 

(Allied Vision Technologies, UK, http://www.alliedvision.com) through a long pass filter to 

exclude the blue light from the LEDs. Chlorophyll fluorescence parameter (Fm’-F’)/Fm’ (also 

known as �PSII or Fq’/Fm’) was determined as previously described (Baker, 2008) and patterns 

of Fq’/Fm’ were fitted to cosine waves using FFT-NLLS analysis (Plautz et al., 1997) to 

estimate circadian parameters. Baselines of data were detrended prior to FFT-NLLS analysis. 

Detrending and FFT-NLLS analysis of data were performed using the Biological Rhythms 

Analysis Software System version 3 (BRASS; available from http:// www.amillar.org; Millar 

et al., 2010). 
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2.7.3.  Confocal laser scanning microscopy  

6-7 day old or 12-14 day old live Arabidopsis seedlings were imaged on microscope slides 

using a Nikon A1si confocal microscope with a CFI 10x Plan Fluor objective with numerical 

aperture (NA) 0.3 as described previously (Exposito-Rodriguez et al., 2013). Images were 

acquired using one-way sequential line scans of two excitation lines. Laser power was at 405 

nm between 15 and 33, and at 488 nm between 7 and 17. Emission was collected with one 

detector at 540/30 nm, with a photomultiplier tube gain of 90-180. No offset was used, and 

pinhole size was set at 1.2 times the Airy disk size of the used objective. Image acquisition for 

roGFP2 plants were as described for HyPer1 plants, but with additional use of a Nikon LWD 

condenser lens with NA 0.52 in combination with the CFI 10x Plan Fluor and CFI 4x Plan Apo 

objectives with NA 0.3 and 0.2 respectively. Images were processed using ImageJ. 

 

2.7.4. Application of exogenous PAP to Arabidopsis thaliana seedlings 

12-day old seedlings were prepared for luciferase imaging (see Section 2.7.1) and imaged for 

one day before 1 mM PAP (prepared in 0.01% Triton X-100) was applied to seedlings at 

Zeitgeber (ZT) 29. Luciferase imaging was performed under constant blue light and circadian 

analysis completed as described in Section 2.7.1. 
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Chapter 3 

Chlorophyll a fluorescence imaging as a tool to monitor circadian 

rhythms 

 

3.1. Introduction 

Light energy absorbed by the chlorophylls associated with Photosystem II (PSII) can be 

harnessed to drive photochemistry (photochemical quenching), or can be lost as heat 

(nonphotochemical quenching) or irradiated at a longer wavelength as chlorophyll fluorescence 

(Butler, 1978). Measuring chlorophyll a fluorescence is a well-established and non-invasive 

method used to monitor the photochemical and nonphotochemical processes in plants and algae 

(Baker, 2008). Under non-photorespiratory conditions, the parameters derived from modulated 

chlorophyll fluorescence yields allow the analysis of photosynthetic performance in leaves in 

vivo. In particular, the chlorophyll fluorescence parameter Fq’/Fm’ (�F/Fm’; �PSII) provides an 

estimate of PSII operating efficiency, or the efficiency with which actinic light absorbed by 

PSII is used for the reduction of plastoquinone QA (Baker, 2008). 

In the Crassulacean acid metabolism (CAM) plant Kalanchoë daigremontiana Fq’/Fm’ 

oscillates with circadian rhythm in individual leaves under constant light conditions (Wyka et 

al., 2005). This chapter examines fluctuations in Fq’/Fm’ as a possible measure of circadian 

rhythms in whole Arabidopsis thaliana seedlings. In addition, the role of phototropins in 

maintaining oscillations in PSII operating efficiency is examined. 
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3.2. Results 

3.2.1. Changes in PSII operating efficiency cycle with circadian rhythm in Arabidopsis 

thaliana Col-0 under constant dim blue light 

Luciferase imaging is a non-invasive technique used for monitoring the spatial and temporal 

expression of genes in vivo (Millar et al., 1992b). In Arabidopsis, fusion of the luciferase 

reporter gene to the promoter region of a clock-regulated gene of interest allows real-time 

analysis of circadian rhythms in planta (Millar et al., 1992a). For example, rhythms in 

expression of the morning-phased core clock gene CCA1 can be monitored by imaging 6-day 

old Col-0 luciferase reporter line CCA1::LUC2 seedlings (Jones et al., 2015) under 20 µmol.m-

2.s-1 constant blue light for ~5 days (Figure 3.1a and d). Plotting averages of time series data 

(waveforms) for 10 individually imaged seedlings, bioluminescence from CCA1:LUC2 activity 

was shown to peak 2 hours after dawn (Figure 3.1a) as previously described (Jones et al., 2015). 

Circadian period length was estimated by fitting waveforms to cosine waves using Fast Fourier 

Transform Non-Linear Least Squares (FFT-NLLS; Plautz et al., 1997). For each individual 

seedling, drift in the baseline of time series data was detrended and detrended data subjected 

to FFT-NLLS analysis using the Biological Rhythms Analysis Software System version 3 

(BRASS; Millar et al., 2010). Baseline detrending is achieved by fitting a regression line 

through the time series data and subtracting the regression line from the curve, followed by 

addition of the mean of the regression line to the new curve (Millar et al., 2010). The curve-

fitting FFT-NLLS algorithm is used to determine the rhythmic strength of time series data and 

to assign period, amplitude and phase to these rhythms in an automated manner (Millar et al., 

2010). Through non-linear least-squares minimization, FFT-NLLS analysis determines the 

best-fit parameter values (period, amplitude phase and constant offset) for all statistically 

significant rhythmic components identified in a time series within a 95% confidence limit.  
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Figure 3.1 Monitoring circadian rhythms in whole Arabidopsis thaliana Col-0 seedlings through different live 

imaging techniques. (A) Waveforms of luciferase activity monitored in 6-day old Col-0 CCA1::LUC2 seedlings 
in constant blue light. (B) Normalised and detrended delayed fluorescence waveforms in 12-day old Col-0 seedlings 
in constant blue light. (C) Waveforms of PSII operating efficiency (Fq’/Fm’) oscillations monitored in 12-day old 
Col-0 seedlings under constant blue light. (D) Circadian period estimates of Col-0 seedlings plotted against Relative 
Amplitude Error (RAE) determined for luciferase imaging (CCA1::LUC2), delayed fluorescence or Fq’/Fm’

rhythms. Seedlings were grown on 0.5x MS agar plates and entrained in 12h:12h light:dark cycles under 60 µmol.m-

2.s-1 white light for 6 days (luciferase imaging) or twelve days (delayed fluorescence and chlorophyll a fluorescence 
imaging) before imaging under 20 µmol.m-2.s-1 constant blue light. White bars and grey bars indicate subjective day 
and subjective night, respectively. Period estimates and RAE were determined by fitting waveforms to cosine waves 
using Fourier Fast Transform Non-Linear Least Squares (FFT-NLLS; Plautz et al., 1997). RAE is a measure of 
rhythmic robustness, with a value of 0 indicating an exact fit to a cosine wave (Plautz et al., 1997). Data were 
detrended (luciferase and Fq’/Fm’) or normalised and detrended (delayed fluorescence) prior to FFT-NLLS analysis 
(see Section 3.2.1). Error bars indicate standard error of the mean, with n=8-10. Waveforms are averages of time 
series data for seedlings used in analysis, with error bars shown every 10 hours for clarity. Data from one of three 
independent experiments are shown. Asterisk indicates statistically significant difference in RAE compared with 
luciferase imaging (p<0.01; Student’s T-test).  
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Statistical significance is assessed by means of the Relative Amplitude Error (RAE), a ratio of 

the amplitude error to the most probable amplitude magnitude. RAE provides a measure of the 

robustness of the identified rhythms (how well time series data fit to a cosine function), and 

ranges from 0.0 to 1.0. A rhythmic component with RAE of 0.0 has infinite precision (perfect 

fit to a cosine wave), while RAE of 1.0 indicates that the error is equal to the most probable 

amplitude magnitude and that the rhythmic component is therefore not significant (Millar et 

al., 2010). Data for individual waveforms with RAE>0.6 were discarded and RAE-weighted 

means of period length and standard error were calculated and presented for each experiment. 

Bioluminescence from CCA1:LUC2 activity was shown to cycle with ~24 hour period (23.97 

± 0.24 h; Figure 3.1d), as previously reported (Jones et al., 2015). 

Delayed fluorescence imaging is another established technique used to monitor circadian 

rhythms in Arabidopsis (Gould et al., 2009). Delayed fluorescence, which is caused as a result 

of charge recombination in PSII post-illumination and is under control of the nuclear clock, 

was monitored in 12-day old Col-0 seedlings (clustered into groups of 10-15 seedlings) under 

20 µmol.m-2.s-1 constant blue light for ~5 days. Using BRASS, time series data were normalised 

and baseline detrended before FFT-NLLS analysis was performed (Millar et al., 2010). Time 

series data for each individual cluster was normalised by calculating the average value for all 

points in the time series and dividing the value at each point by the average value for the series. 

Average of the normalised and detrended waveforms plotted peaked 2 hours after dusk (Figure 

3.1b), with a RAE-weighted mean period of ~24 hours (24.37 ± 0.14 h) under constant blue 

light (Figure 3.1d)  

Since the operating efficiency of PSII (Fq’/Fm’) has been shown to cycle with circadian rhythm 

in detached Kalanchoë daigrmontiana leaves under constant light (Wyka et al., 2005), 

chlorophyll a fluorescence imaging was examined as an alternative method to measure 

circadian rhythms in whole Arabidopsis seedlings. Col-0 seedlings were grown on 0.5x MS 

agar plates for 12 days in 12h:12h light:dark cycles under 60 µmol.m-2.s-1 white light. 

Following entrainment, individual seedlings were imaged under 20 µmol.m-2.s-1 constant blue 
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light for ~5 days. Average Fq’/Fm’ oscillated with circadian rhythm, with peak PSII operating 

efficiency reached approximately 4 hours before dawn (Figure 3.1c). FFT-NLLS analyses on 

baseline-detrended time series data revealed a RAE-weighted mean period of 24.27 ± 0.12 h 

(Figure 3.1d). Furthermore, rhythms in Fq’/Fm’ were robust (RAE 0.12 ± 0.02) for the entire 

free-run period, with RAE significantly lower than for delayed fluorescence rhythms (RAE 

0.27 ± 0.02; p<0.01, Student’s T-test). 

 

3.2.2. Fq’/Fm’ rhythms are influenced by nuclear rhythms in a short-period circadian 

mutant 

Since delayed fluorescence is under control of the nuclear circadian oscillator, DF provides a 

simple, high throughput assay that can characterise novel Arabidopsis circadian clock mutants 

(Gould et al., 2009). In order to determine if rhythms in Fq’/Fm’ were under control of the 

nuclear circadian clock, and whether chlorophyll a fluorescence can therefore be used to 

identify Arabidopsis clock mutants, Fq’/Fm’ rhythms in the circadian mutant toc1-4 (Hazen et 

al., 2005a; Jones and Harmer, 2011) were analysed. TIMING OF CAB EXPRESSION 1 

(TOC1) is a DNA-binding transcription factor and evening-phased core nuclear clock 

component (Alabadí et al., 2001; Gendron et al., 2012), and loss-of-function toc1 mutants have 

been shown to exhibit short period in delayed fluorescence and nuclear clock rhythms (Somers 

et al., 1998; Gould et al., 2009). Seedlings were grown on 0.5x MS agar plates and entrained 

for 12 days in 12h:12h light:dark cycles under 60 µmol.m-2.s-1 white light. Individual entrained 

seedlings were imaged under 20 µmol.m-2.s-1 constant blue light for ~5 days. Fq’/Fm’ oscillated 

in toc1-4 mutants with robust circadian rhythm (RAE 0.24 ± 0.01) comparable to Col-0 (Figure 

3.2a and b), while period length was significantly shorter in toc1-4 (20.64 ± 0.08 h) compared 

to Col-0 (p<0.001, Student’s T-test). 
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Figure 3.2 Fq’/Fm’ rhythms in the short-period circadian mutant toc1-4 under constant blue light. (A) 

Waveforms of Fq’/Fm’ oscillations in Col-0 and toc1-4 seedlings. (B) Circadian period estimates of Col-0 and toc1-

4 seedlings plotted against Relative Amplitude Error (RAE) for Fq’/Fm’ rhythms. Seedlings were grown on 0.5x MS 
agar plates and entrained in 12h:12h light:dark cycles under 60 µmol.m-2.s-1 white light for 12 days before imaging 
under 20 µmol.m-2.s-1 constant blue light. White bars and grey bars indicate subjective day and subjective night, 
respectively. Error bars indicate standard error of the mean, with n=8. For waveforms, error bars are shown every 
10 hours for clarity. Data from one of two independent experiments are shown. Asterisk indicates statistically 
significant difference in period compared to Col-0 control (p<0.001; Student’s T-test).  
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3.2.3. Loss of phototropin function affects amplitude, but not period, of Fq’/Fm’ rhythms 

under constant blue light 

Circadian clocks are entrained by environmental signals such as light and temperature, and 

numerous input pathways relay these signals to the central oscillator to keep the plant’s 

endogenous rhythms synchronised with the exogenous rhythms of the environment (Hsu and 

Harmer, 2014). While phytochromes, cryptochromes and the ZEITLUPE family of proteins 

serve to input light signals to the circadian system, a role for phototropins has not yet been 

determined (Fankhauser and Staiger, 2002; Hsu and Harmer, 2014; Christie et al., 2015). 

Phototropins localise on the outer chloroplast membrane under blue light, and loss of 

phototropin function has been shown to affect hypocotyl phototropism (Liscum and Briggs, 

1995; Sakai et al., 2001), leaf movement (Inoue et al., 2008), stomatal opening (Kinoshita et 

al., 2001; Doi et al., 2004) and chloroplast movement (Kagawa et al., 2001; Sakai et al., 2001). 

To determine whether phototropin activity affects the circadian oscillations of PSII operating 

efficiency, rhythms in Fq’/Fm’ were analysed in phototropin mutants under constant blue light 

(Figure 3.3). Seedlings of Col-0, the phototropin single mutants phot1-5 (Huala et al., 1997) 

and phot2-1 (Sakai et al., 2001), and the phototropin double mutant phot1-5 phot2-1 (p1p2; 

Sakai et al., 2001) were grown on 0.5x MS agar plates and entrained for 12 days in 12h:12h 

light:dark cycles under 60 µmol.m-2.s-1 white light. Individual seedlings were imaged under 20 

µmol.m-2.s-1 constant blue light for ~5 days. No effect on period was observed in phototropin 

(phot) mutants, with Fq’/Fm’ rhythms cycling with circadian period in Col-0 (23.30 ± 0.39 h), 

phot1-5 (24.21 ± 0.29 h), phot2-1 (23.74 ± 0.13 h) or p1p2 (24.10 ± 0.38 h) seedlings (Figure 

3.3a). Robust rhythms were maintained in Col-0 and in both phot1-5 and phot2-1 (Figure 3.3b). 

In comparison, Fq’/Fm’ oscillations in p1p2 dampened after 3 days of free-run, with reduced 

amplitude and significantly higher RAE compared to Col-0 (p<0.01, Student’s T-test). 
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Figure 3.3 Fq’/Fm’ rhythms in phototropin mutants under constant blue light. (A) Waveforms and (B) circadian 
period estimates and Relative Amplitude Error (RAE) of Fq’/Fm’ rhythms Col-0 and phot1-5, phot2-1 and p1p1

phototropin mutant seedlings. Seedlings were grown on 0.5x MS agar plates and entrained in 12h:12h light:dark 
cycles under 60 µmol.m-2.s-1 white light for 12 days before imaging under 20 µmol.m-2.s-1 constant blue light. White 
bars and grey bars indicate subjective day and subjective night, respectively. Error bars indicate standard error of 
the mean, with n=10. For waveforms, error bars are shown every 10 hours for clarity. Data from one of two
independent experiments are shown. Asterisk indicates statistically significant difference in RAE compared to Col-
0 control (p<0.01; Student’s T-test).  
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3.2.4. Delayed fluorescence rhythms remain intact in phot mutants under constant blue 

light 

Since loss of phototropin function affected the robustness of Fq’/Fm’ circadian oscillations, the 

effect of phototropins on delayed fluorescence rhythms was examined. Seedlings were grown 

on 0.5x MS agar plates in clusters of 10-15 and entrained for 12 days in 12h:12h light:dark 

cycles under 60 µmol.m-2.s-1 white light before imaging under 20 µmol.m-2.s-1 constant blue 

light (Figure 3.4). To determine whether loss of phototropin function affected amplitude of 

delayed fluorescence rhythms, baseline detrended time series data were analysed at first 

without normalisation to prevent possible masking of any loss in amplitude (Figure 3.4a and 

b). As observed for Fq’/Fm’ oscillations, rhythms in delayed fluorescence cycled with an ~24 h 

period in Col-0 and phot mutants (Figure 3.4a and b). However, while a trend for higher RAE 

was observed in the p1p2 mutant, no significant difference in RAE between Col-0 and p1p2 

was observed (Figure 3.4b). Since normalisation of delayed fluorescence data is recommended 

for greater accuracy in circadian parameter estimates (Gould et al., 2009; Millar et al., 2010), 

FFT-NLLS analysis was performed on normalised baseline detrended time series data as well 

(Figure 3.4c and d). Analysis of normalised data confirmed the ~24 h period of delayed 

fluorescence rhythms in phot mutants, and confirmed that these rhythms were maintained in 

p1p2 across 5 days of free-run. 

 

3.2.5. Core clock transcript accumulation is unaltered in phot mutants under constant blue 

light 

As rhythms in Fq’/Fm’ and DF are maintained by the nuclear circadian oscillator, qRT-PCR 

analysis of core clock transcripts was done to determine if nuclear rhythms are affected in phot 

mutants. Seedlings were grown on 0.5x MS agar plates and entrained for 10 days in 12h:12h 

light:dark cycles under 60 µmol.m-2.s-1 white light before being transferred to 20 µmol.m-2.s-1 

constant blue light at subjective dawn (ZT0).  
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Figure 3.4 Delayed fluorescence rhythms in phototropin mutants under constant blue light. (A,C) Waveforms 
and (C,D) circadian period estimates plotted against Relative Amplitude Error (RAE) for (A-B) delayed 
fluorescence and (C-D) normalised delayed fluorescence in Col-0, phot1-5, phot2-1 and p1p2 under constant blue 
light. Seedlings were grown on 0.5x MS agar plates and entrained in 12h:12h light:dark cycles under 60 µmol.m-

2.s-1 white light for 12 days before imaging under 20 µmol.m-2.s-1 constant blue light. White bars and grey bars 
indicate subjective day and subjective night, respectively. Error bars indicate standard error of the mean, with n=10. 
For waveforms, error bars are shown every 10 hours for clarity. Data from one of two independent experiments are 
shown.  
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After 48 hours in free-run conditions, 10-12 seedlings per genotype were harvested every three 

hours from subjective dawn (ZT48). cDNA was synthesised from extracted total mRNA and 

levels of transcripts for clock-controlled components analysed using qRT-PCR. 

Accumulation of transcripts for morning-phased components remained unchanged in phot 

mutants (Figure 3.5). CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) and LATE LONGATED 

HYPOCOTYL (LHY) are two MYB-like transcription factors that from part of the core nuclear 

circadian oscillator, with transcript and protein levels highest in the morning (Alabadí et al., 

2001; Harmer, 2009). In Col-0, phot1-5, phot2-1 and p1p2 transcripts of CCA1 and LHY were 

phased to the morning, peaking at ZT51 (Figure 3.5a and b). Similarly, no phase shift was 

observed in phot1-5, phot2-1 or p1p2 for peak transcript levels of the transcription factor 

PSEUDO-RESPONSE REGULATOR (PRR9), a morning-phased core clock gene peaking 

shortly after dawn (ZT54; Figure 3.5c). Amplitude of CCA1, LHY and PRR9 transcript levels 

remained unchanged in phot1-5, phot2-1 and p1p2. 

Similarly, no difference in phase or amplitude was observed for evening-phased clock 

transcripts in phot1-5, phot2-1 or p1p2 (Figure 3.6). GIGANTEA (GI), a clock component 

involved in post-transcriptional regulation within the circadian system (Kim et al., 2013), has 

transcripts phased to the evening (peaking at ZT60; Figure 3.6a). Transcripts for COLD-

CIRCADIAN RHYTHM- RNA BINDING 2 (CCR2), a glycine-rich RNA-binding protein often 

used for monitoring circadian rhythms through luciferase imaging (Kreps and Simon, 1997; 

Martin-Tryon et al., 2006), peak during the evening (ZT63; Figure 3.6b). Similarly, the 

transcription factor TIMING OF CAB1 EXPRESSION (TOC1) and the MYB-like transcription 

factor LUX which form part of the central oscillator (Helfer et al., 2011; Gendron et al., 2012), 

have transcripts peaking in the evening (ZT63; Figure 3.6c and d). 

  



113 
 

  

Figure 3.5 Expression of morning-phased circadian clock genes in phototropin mutants under constant blue 

light. qRT-PCR analysis of transcript accumulation for morning-phased core clock genes (A) CCA1 (B) LHY and 
(C) PRR9 in Col-0 and phototropin mutants phot1-5, phot2-1 and p1p2 under constant blue light. Seedlings were 
grown on 0.5x MS agar plates and entrained in 12h:12h light:dark cycles under 60 µmol.m-2.s-1 white light for 10 
days before being transferred to 20 µmol.m-2.s-1 constant blue light at subjective dawn. After 48 hours in free-run, 
10-12 seedlings were sampled and pooled, with sampling repeated every three hours for two days. Data for each 
gene were normalised to an internal control (PP2a) before being normalised to the peak of wild type expression. 
White bars and grey bars indicate subjective day and subjective night, respectively. Data are the average of three 
biological replicates. Error bars indicate standard error of the mean.  
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Figure 3.6 Expression of evening-phased circadian clock-regulated genes in phototropin mutants under 

constant blue light. qRT-PCR analysis of transcript accumulation for evening-phased clock-regulated genes (A) 

GI (B) CCR2 (C) TOC1 and (D) LUX2 in Col-0 and phototropin mutants phot1-5, phot2-1 and p1p2 under constant 
blue light. Seedlings were grown on 0.5x MS agar plates and entrained in 12h:12h light:dark cycles under 60 
µmol.m-2.s-1 white light for 10 days before being transferred to 20 µmol.m-2.s-1 constant blue light at subjective 
dawn. After 48 hours in free-run, 10-12 seedlings were sampled and pooled, with sampling repeated every three 
hours for two days. Data for each gene were normalised to an internal control (PP2a) before being normalised to 
the peak of wild type expression. White bars and grey bars indicate subjective day and subjective night, respectively.
Data are the average of three biological replicates. Error bars indicate standard error of the mean.  
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3.2.6. NPH3 activity is not required to maintain chlorophyll a fluorescence rhythms under 

constant blue light 

Phototropic growth responses mediated by phototropin signalling cascades are dependent on 

the activity of NONPHOTOTROPIC HYPOCOTYL 3 (NPH3), a plasma membrane-localised 

protein that functions as part of a Cullin 3-based E3 ubiquitin ligase complex and targets phot1 

for ubiquitination following illumination with blue light (Folta and Spalding, 2001; Liscum et 

al., 2014). To determine whether NPH3 activity is involved in maintaining rhythms in 

chlorophyll fluorescence, Fq’/Fm’ rhythms in p1p2 and in the nph3-1 (Liscum and Briggs, 

1995) and nph3-102 (Tsuchida-Mayama et al., 2008) mutant alleles were compared under 

constant blue light. Seedlings were entrained in 12h:12h light:dark cycles under 60 µmol.m-2.s-

1 white light for 12 days before imaging under 20 µmol.m-2.s-1 constant blue light, as described 

previously. While Fq’/Fm’ oscillations dampened in p1p2 after 3 days of free-run, these rhythms 

were maintained in Col-0, and in both nph3-1 and nph3-102 (Figure 3.7a) Period lengths were 

also indistinguishable between Col-0 (24.17 ± 0.08 h), nph3-1 (24.53 ± 0.23 h), nph3-102 

(24.13 ± 0.05 h) and p1p2 (24.27 ± 0.11 h) (Figure 3.7b). Furthermore, oscillations in PSII 

efficiency factor (Fq’/Fv’) in the p1p2 mutant showed a similar loss in amplitude by day 4 of 

free-run, while these rhythms in nph3-1 and nph3-102 were indistinguishable from rhythms in 

Col-0, both with respect to period length and robustness (Figures 3.7c and d). 

 

3.2.7. Fq’/Fm’ rhythms in plants entrained under long or short photoperiods 

In addition to synchronising metabolic and physiological responses to the daily rhythms of the 

environment, circadian rhythms also control longer-term, seasonal processes (Harmer, 2009; 

Hsu and Harmer, 2014; Flis et al., 2016). Interactions between circadian regulated components 

and light signalling pathways serve to sense day length (photoperiod) and regulate day length-

specific responses, such as accelerated hypocotyl elongation under short-day conditions or 

induction of flowering under long-day conditions (Niwa et al., 2009; Song et al., 2015).  
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Figure 3.7 Rhythms in photosynthetic operating parameters in nph3 mutants under constant blue light. (A,C) 

Waveforms and (B,D) circadian period estimates plotted against Relative Amplitude Error (RAE) of (A-B)

Fq’/Fm’and (C-D) Fq’/Fv’ rhythms in Col-0, phototropin mutant p1p2 and nph3 mutants nph3-1 and nph3-102. 
Seedlings were grown on 0.5x MS agar plates and entrained in 12h:12h light:dark cycles under 60 µmol.m-2.s-1

white light for 12 days before imaging under 20 µmol.m-2.s-1 constant blue light. White bars and grey bars indicate 
subjective day and subjective night, respectively. Error bars indicate standard error of the mean, with n=10. For 
waveforms, error bars are shown every 10 hours for clarity. Data from one of two independent experiments are 
shown. Asterisks indicates statistically significant difference in RAE compared to Col-0 control (p<0.01; Student’s 
T-test).  
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Since phototropins maintain amplitude of Fq’/Fm’ rhythms under free-run in plants entrained 

under 12h:12h light:dark cycles (Figure 3.3), the effect of entrainment to different photoperiods 

was examined in Col-0, p1p2 and nph3-1. Seedlings were entrained in either 8h:16h light:dark 

cycles (short days) or 16h:8h light:dark cycles (long days) under 60 µmol.m-2.s-1 white light 

for 12 days before imaging under 60 µmol.m-2.s-1 constant blue light. In Col-0, rhythms in 

Fq’/Fm’ remained robust and continued to peak approximately two hours before subjective 

dawn, whether plants were entrained to short days (Figure 3.8a and b) or long days (Figure 3.8c 

and d). A phase shift in Fq’/Fm’ rhythms was observed in p1p2 after ~2 days of free run (Figure 

3.8a and c), implying a longer period in these rhythms compared to Col-0. FFT-NLLS analysis 

was therefore performed to provide an indication of period length, even though plants were not 

entrained to symmetrical (12h:12h) light:dark cycles. Circadian period estimates for seedlings 

entrained under short days (Figure 3.8b) revealed a statistically significant longer period in 

p1p2 mutants (24.53 ± 0.24 h) compared to Col-0 (23.10 ± 0.15 h; p<0.01, Student’s T-test). 

Similarly, p1p2 seedlings entrained under long days (Figure 3.8d) exhibited a statistically 

significant long period (25.29 ±0.19 h) compared to Col-0 (24.58 ± 0.23 h; p<0.01, Student’s 

T-test). The loss of amplitude in Fq’/Fm’ rhythms observed in p1p2 mutants entrained under 

12h:12h light:dark cycles (Figure 3.3) appeared absent in p1p2 seedlings entrained under either 

short days (Figure 3.8a) or long days (Figure 3.8c). Even so, a significantly higher RAE was 

observed in p1p2 compared to Col-0 in plants entrained under long days (Figure 3.3d; p<0.001, 

Student’s T-test). However, no significant difference in RAE was observed for p1p2 seedlings 

entrained under short days compared to Col--0 (Figure 3.8b). As was observed in plants 

entrained under 12h:12h light:dark cycles (Figure 3.7a and b), no significant difference in 

period length or RAE was observed in nph3-1 mutants compared to Col-0 in seedlings 

entrained under either photoperiod (Figure 3.8b and d). 
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Figure 3.8 Fq’/Fm’ rhythms in phototropin and nph3 mutants entrained in long and short days. (A,C) 

Waveforms and (B,D) circadian period estimates plotted against Relative Amplitude Error (RAE) of Fq’/Fm’ in Col-
0, phototropin mutant p1p2 and nph3 mutant nph3-1 seedlings entrained under (A-B) 8h:16h light:dark cycles or 
(C-D) 16h:8h light:dark cycles. Seedlings were grown on 0.5x MS agar plates and entrained in short or long 
photoperiods under 60 µmol.m-2.s-1 white light for 12 days before imaging under 20 µmol.m-2.s-1 constant blue light. 
White bars and grey bars indicate subjective day and subjective night, respectively. Error bars indicate standard 
error of the mean, with n=10. For waveforms, error bars are shown every 10 hours for clarity. Data from one of two
independent experiments are shown. Asterisks indicates statistically significant difference in period compared to 
Col-0 control (p<0.01; Student’s T-test). 
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3.3. Discussion 

3.3.1. Fluctuations in PSII operating efficiency provides a measure of circadian rhythms 

in Arabidopsis 

In Arabidopsis, the clock has been shown to regulate between 30% and 40% of genes expressed 

in seedlings, which include genes involved in photosynthesis (Covington et al., 2008). 

Furthermore, the transcription of numerous chloroplast genes is under control of the nuclear 

oscillator through the nuclear-encoded (and circadian regulated) sigma factors (Noordally et 

al., 2013). Circadian regulation of PSII repair has also been suggested, particularly with respect 

to the transcription of the D2 protein (regulated by SIG5) and phosphorylation of the D1 protein 

by STN7 (Noordally et al., 2013; Bonardi et al., 2005). The circadian system has also been 

shown to regulate CO2 assimilation (Dodd et al., 2004) and starch degradation during the night 

(Graf et al., 2010). It is therefore not surprising that circadian regulation improves plant 

productivity, survival and even seed viability (Green et al., 2002; Dodd et al., 2005). 

Delayed fluorescence and chlorophyll a fluorescence are two well-established techniques that 

can be used to analyse light emitted from PSII in vivo (Gould et al., 2009; Dodd et al., 2014; 

Baker, 2008). Although both delayed fluorescence and chlorophyll a fluorescence involve light 

emitted from PSII apparatus following illumination, the processes underlying these two 

phenomena are not the same. Following illumination, charge recombination between excited 

plastoquinone (QA) and P680 leads to the emission of a photon from the chlorophyll a 

associated with PSII (Gould et al., 2009). The resulting delayed fluorescence provides a high-

throughput method to measure circadian rhythms in numerous higher plants, including 

Arabidopsis, barley, lettuce, maize and Kalanchoë, without the need for transgenics (Gould et 

al., 2009; Dodd et al., 2014). This chapter investigated whether the chlorophyll a fluorescence 

parameter Fq’/Fm’ can be used as an alternative measure to monitor circadian rhythms in plants 

under constant light conditions. In addition to providing an additional non-invasive circadian 

assay, the chemistry underlying chlorophyll a fluorescence is much better understood than for 

delayed fluorescence (Baker, 2008; Gould et al., 2009) and might provide further insight into 
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the regulation of photosynthesis by the circadian clock. When plants are grown in constant light 

conditions, the difference between the fluorescence emission (F’) and the maximal 

fluorescence (Fm’; the level of fluorescence when QA is maximally reduced) provides a measure 

for the photochemical quenching of fluorescence by PSII (Fq’) (Baker, 2008). The ratiometric 

parameter Fq’/Fm’ provides an estimate of the efficiency at which light absorbed by PSII is used 

for QA reduction (Baker, 2008). In this chapter, Fq’/Fm’ was shown to cycle with circadian 

rhythm in whole Arabidopsis seedlings under constant dim blue light (Figure 3.1c and d). These 

rhythms in Fq’/Fm’ can be more robust than DF rhythms (Figure 3.1d), and peak shortly before 

subjective dawn (Figure 3.1c). The phase of Fq’/Fm’ rhythms in Arabidopsis occurs before 

stomatal opening, with stomatal opening peaking during the subjective morning (Litthauer et 

al., 2015). This suggests that Fq’/Fm’ rhythms are not a direct consequence of stomatal opening. 

This is in contrast to Fq’/Fm’ rhythms in detached Kalanchoë daigremontiana leaves, where 

circadian rhythms in Fq’/Fm’ peak at subjective dusk and correlate with inverse rhythms in gas 

exchange (Wyka et al., 2005). The difference in phase could be due to the fact that Kalanchoë 

daigremontiana undergoes crassulacean acid metabolism (CAM), separating CO2 absorption 

from incorporation in the Calvin cycle. Rhythms in Fq’/Fm’ in Arabidopsis are also not due to 

leaf movement or shading artefacts. Firstly, the ratiometric nature of the Fq’/Fm’ parameter 

should compensate for leaf and chloroplast movement (Brugnoli and Björkman, 1992). 

Secondly, rhythms in Fq’/Fm’ continue in seedlings where leaf movement is restrained with 

wire mesh (Litthauer et al., 2015).  

As has been reported for delayed fluorescence (Gould et al., 2009), rhythms in Fq’/Fm’ are 

coupled to transcriptional rhythms in the nuclear oscillator, with intact nuclear rhythms 

necessary for circadian oscillations in Fq’/Fm’. In the short period mutant toc1-4, rhythms in 

Fq’/Fm’ are robust, but with significantly shorter period than in Col-0 (Figure 3.2a and b). 

Similarly, long period rhythms in Fq’/Fm’ have been reported in the long-period mutant prr7-

3, while no Fq’/Fm’ rhythms are observed in the arrhythmic mutant lux-2 (Litthauer et al., 2015).  
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3.3.2. Phototropins maintain circadian oscillations in PSII operating efficiency under 

constant blue light 

Since phototropins are known to localise on the outer membrane of chloroplasts upon 

illumination and play a role in actin-based chloroplast photorelocation (Kong et al., 2013), the 

effect of phototropin activity on Fq’/Fm’ rhythms in 20 µmol.m-2.s-1 constant blue light was 

examined. Loss of phototropin function had no effect on the period of Fq’/Fm’ rhythms (Figure 

3.3) or on the phase of transcript accumulation for morning- or evening-phased circadian genes 

(Figure 3.4 and Figure 3.5). These data confirmed previous reports that phototropins do not 

affect the nuclear circadian clock (Devlin and Kay, 2001; Kong et al., 2013). However, a loss 

of amplitude in Fq’/Fm’ rhythms was observed in the p1p2 mutant under after ~3 days of free-

run under 20 µmol.m-2.s-1, with rhythms dampening to near arrhythmia towards the end of the 

5-day free-run period (Figure 3.3). Interestingly, Fq’/Fm’ rhythms are maintained in p1p2 

mutants imaged under 50 µmol.m-2.s-1 (Litthauer et al., 2015), and no loss of amplitude in 

Fq’/Fm’ rhythms was observed in the phot1-5 or phot2-1 single mutants under either 20 µmol.m-

2.s-1 or 50 µmol.m-2.s-1 constant blue light (Figure 3.3; Litthauer et al., 2015). These data 

correspond with previous reports that the two phototropins redundantly mediate numerous 

responses and have different light sensitivities, including in regulation of chloroplast 

accumulation (Kong and Wada, 2011). The decrease of amplitude in Fq’/Fm’ rhythms in p1p2 

under free run in the absence of any changes in clock gene transcription implies that the lost 

rhythmicity is due to processes within the chloroplast, and not due to changes in nuclear gene 

expression. Interestingly, phototropin function had no significant effect on delayed 

fluorescence rhythms in phot single mutants or the p1p2 double mutant (Figure 3.4). These 

data, along with the observation that delayed fluorescence and Fq’/Fm’ rhythms peak at different 

times of the day respectively (Figure 3.1), support the idea that different biological processes 

underlie these rhythms and that phototropin function affects only a subset of the circadian-

regulated chloroplast responses. DF rhythms in the leaves of various Kalanchoë species cycle 
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with a circadian period that is shorter than that observed for Fq’/Fm’, further suggesting that 

Fq’/Fm’ and DF report distinct outputs from the circadian system (Malpas and Jones, 2016). 

The loss of amplitude in Fq’/Fm’ rhythms in the p1p2 mutant under dim blue light needs further 

investigation. At the whole plant level, loss of amplitude in circadian rhythms under constant 

conditions can be attributed either to decreased amplitude of oscillations in individual cells, or 

due to a desynchronization of rhythms across different individual cells over time (Yakir et al., 

2011). In K. daigremontiana leaves, the dampening of circadian oscillations in Fq’/Fm’ has 

been attributed to desynchronization of individual, weakly-coupled oscillators that operate 

independently in space and time (Rascher et al., 2001; Wyka et al., 2005). Chlorophyll a 

fluorescence analysis of individual Kalanchoë daigremontiana leaves illustrates the concept of 

the circadian clock as an assembly of individual, weakly-coupled oscillators that operate 

independently in space and time (Rascher et al., 2001). In leaves grown under light:dark cycles, 

Fq’/Fm’ averaged over the entire leaf surface shows small variations during the day. However, 

mapping the spatiotemporal distribution of Fq’/Fm’ during this light stage of CAM 

photosynthesis shows strongly heterogeneous, isolated patches of Fq’/Fm’ during the transition 

phase (Phase II of CAM) in the early light period. Heterogeneity is greatest when the rate of 

net carbon fixation is high (at low internal CO2 concentration) and when the competing 

carboxylases, RUBISCO and phosphoenolpyruvate-carboxylase (PEPCase), are both active. In 

contrast, homogeneity in Fq’/Fm’ is observed across the leaf surface during Phase III 

(remobilisation of malic acid from the vacuole and subsequent decarboxylation, followed by 

re-fixing of carbon by RUBISCO and assimilation via the Calvin cycle ), when internal CO2 

concentrations are high due to decarboxylation of malic acid, stomata are closed and PEPCase 

is inhibited. During the transition from Phase III to Phase IV in the later light period, 

heterogeneity in Fq’/Fm’ returns, occurring as wave fronts initiated at the leaf base and 

extending over the entire leaf. These wave fronts persist until the end of phase IV, when malic 

acid stores are exhausted and stomata open to allow uptake of CO2 and subsequent direct 

assimilation by RUBISCO. The oscillations in Fq’/Fm’ measured over the entire Kalancoë leaf 
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cycle in step with rhythms in carbon assimilation. The waveform of Fq’/Fm’ exhibits sections 

of both fast and slow change, with a gradual increase in Fq’/Fm’ occurring as carbon 

assimilation increases (from minimum) from approximately midday to midnight, followed by 

a rapid decline in Fq’/Fm’ from maximum to minimum as carbon assimilation again reaches 

minimum at midday the following day. This rapid decline in total leaf Fq’/Fm’ corresponds to 

isolated peaks in heterogeneity that occur as the weakly-coupled patches of tissue that act as 

individual oscillators become desynchronised. After minimum Fq’/Fm’ is reached around 

midday, gradual resynchronisation of the individual oscillators occurs, which manifests as a 

gradual increase in Fq’/Fm’ observed from midday to midnight. Under free-running conditions, 

however, the individual oscillators become increasingly desynchronised with increased time 

from the last Zeitgeber. After extensive free-run, some leaf regions exhibit increased amplitude 

in Fq’/Fm’ rhythms while others cease to oscillate, with antiphasic oscillations even occurring 

among different patches of tissue. This desynchronization results in a decline in the amplitude 

of total leaf Fq’/Fm’ and dampening of observable rhythms (Rascher et al., 2001). Further 

analysis needs to be done to determine whether the effect of phototropin function on the 

rhythms in PSII operating efficiency in Arabidopsis are due to changes in the light harvesting 

apparatus or through regulation of photochemistry. Alternatively, the effect of phototropin 

function on Fq’/Fm’ rhythms could be indirect, through regulation of chloroplast accumulation 

(Kagawa et al., 2001; Sakai et al., 2001) or stomatal opening (Kinoshita et al., 2001; Doi et al., 

2004). In a light-adapted leaf, the parameter Fq’/Fm’ is calculated as the product of two 

fluorescence parameters, Fv’/Fm’ and Fq’/Fv’ (Baker, 2008). These parameters allow 

assessment of whether changes in PSII operating efficiency are due to changes in 

nonphotochemical quenching or due to the ability of an excited PSII reaction centre to drive 

electron transport. Fv’/Fm’ estimates the maximum quantum yield of PSII photochemistry when 

QA is maximally oxidised and can therefore be used to assess the effect of nonphotochemical 

quenching on changes in PSII operating efficiency. In contrast, Fq’/Fv’ provides an indication 

of the proportion of ‘open’ PSII centres where QA is oxidised, and estimates the fraction of the 

maximum PSII efficiency that is realized in the leaf (Baker, 2008). In p1p2 mutants, loss in 
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amplitude occurred in rhythms of both Fq’/Fm’ (Figure 3.3) and Fq’/Fv’ (Figure 3.7c and d) after 

~3 days of free-run, while rhythms were maintained in Col-0 and phot single mutants. Loss of 

Fq’/Fv’ rhythms in p1p2 suggests an effect of phototropin function on changes in proteins and 

components involved in photochemistry (Baker, 2008; Litthauer et al., 2015). Rhythms in 

Fv’/Fm’ have also been shown to dampen in p1p2 mutants, suggesting that both regulation of 

photochemistry and changes in the light harvesting apparatus are involved in the Fq’/Fm’ 

rhythms observed in the p1p2 mutant (Litthauer et al., 2015). In addition, Fv’/Fm’ rhythms 

oscillate with a later phase (~2 h) in comparison to Fq’/Fv’ rhythms in Col-0 under constant 

light conditions. This suggests that the organisation of components involved in light harvesting 

are not synchronised with the organisation of proteins involved in photochemical reactions 

(Litthauer et al., 2015). 

Even though NPH3 has been reported as being required for phototropic responses under blue 

light (Inoue et al., 2008; Liscum et al., 2014), loss of NPH3 function had no effect on the period 

or amplitude of Fq’/Fm’ rhythms under constant blue light (Figure 3.7a). In addition, no effect 

was observed on the parameter Fq’/Fv’ (PSII efficiency factor; Figure 3.7). While rhythms in 

Fq
’/Fv

’ dampened in the p1p2 mutant, rhythms of Fq’/Fm’ and Fq’/Fv’ in nph3 mutants were 

indistinguishable from WT (Figure 3.7a and b), suggesting that another signalling intermediate 

may be involved in regulation of PSII efficiency. This corresponds to previous reports that 

NPH3 is needed for only a subset of phototropin-regulated responses. During phot1-regulated 

phototropic responses, curvature, but not growth inhibition, relies on NPH3 activity (Folta and 

Spalding, 2001), while mediation of stomatal opening and chloroplast accumulation through 

phot1 also occurs without NPH3 involvement (Inoue et al., 2008). 

 

3.3.3. Different photoperiods may affect the regulation of Fq’/Fm’ rhythms by phototropins 

When analysing rhythms in Fq’/Fm’ in plants entrained in different photoperiods, it was 

revealed that Fq’/Fm’ rhythms in Col-0 peak ~4 hours before subjective dawn whether plants 
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are entrained to 12h:12h (Figure 3.1c), 8h:16h (Figure 3.8a) or 16h:8h (Figure 3.8b) light:dark 

cycles prior to imaging. This corresponds to previous reports of circadian gene transcript 

analysis suggesting that the Arabidopsis clock as dawn-dominant (Flis et al., 2016; Millar, 

2016). While Fq’/Fm’ rhythms dampened in p1p2 seedlings entrained to 12h photoperiods 

(Figure 3.3a), the loss of amplitude was less severe in plants entrained to long days (Figure 

3.8c and d) and absent in plants entrained to short days (Figure 3.8a and b). Furthermore, while 

loss of phototropin function had no effect on Fq’/Fm’ rhythms in plants entrained to 12h:12h 

light:dark cycles (Figure 3.3), Fq’/Fm’ rhythms in p1p2 mutants entrained to either short or long 

days exhibited significantly longer periods compared to Col-0 (Figure 3.8). Loss of NPH3 

function had no effect on the amplitude or period of Fq’/Fm’ rhythms in plants entrained in 

either long, short or 12-hour photoperiods (Figure 3.7 and Figure 3.8). These data suggest a 

possible role for phototropins in maintaining Fq’/Fm’ rhythms in different photoperiods through 

a signalling cascade in which NPH3 is not involved. Since the sensing of photoperiods plays a 

key role synchronising plant responses to rhythms in seasonal changes (Song et al., 2015), these 

observations suggest that phototropins could function to regulate seasonal processes such as 

flowering, senescence or growth. Further analysis, including analysis of delayed fluorescence 

and accumulation of circadian-regulated gene transcripts in phot mutants under long- and short-

day conditions, could reveal possible targets involved in phototopin regulation of circadian 

rhythms under different photoperiods. 

This chapter has demonstrated that PSII operating efficiency is a rhythmic circadian output 

which is controlled by the nuclear central oscillator, and which maintains robust rhythms under 

a variety of photoperiods independent of leaf movement. In the following chapters, chlorophyll 

a fluorescence imaging, and in particular the parameter Fq’/Fm’, will be used extensively to 

identify and characterise the circadian phenotypes of various mutants. 
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Chapter 4 

The effect of SAL1 activity on circadian rhythms 

 

4.1. Introduction 

Chloroplasts serve as sensors that detect signals from the environment, and regulate 

developmental and stress responses by changing the expression of both chloroplast- and 

nuclear-encoded genes (Chan et al., 2016b; Millar, 2016) Signalling between the nucleus and 

chloroplasts also plays an important role in circadian regulation of processes such as 

photosynthesis (Dodd et al., 2014; Belbin et al., 2017). The regulation of nuclear gene 

expression through chloroplast-nucleus retrograde signalling involves numerous pathways and 

cellular signals, including phosphoadenosines, carotenoid derivatives, isoprenes, tetrapyrroles, 

proteins and reactive oxygen species (Noordally et al., 2013; Chan et al., 2016b). One such 

pathway involves the activity of the redox-sensitive chloroplast-localised enzyme SAL1 

(Estavillo et al., 2011; Chan et al., 2016a). In this chapter, the function of SAL1 in the circadian 

system of Arabidopsis is investigated. 

 

4.2. Results 

4.2.1. Loss-of-function mutations in SAL1 

Mutations in Arabidopsis SAL1 are highly pleotropic and sal1 mutants have been identified in 

a variety of genetic screens, including screens for altered regulation of cold-induced gene 

expression (Lee et al., 1999), elevated expression of ABA- and osmotic stress-inducible genes 

(Xiong et al., 2001), elevated expression of APX2 (Rossel et al., 2004), restoration of 

posttranscriptional gene silencing (Gy et al., 2007), altered regulation of photo-morphogenic 

processes including hypocotyl elongation and late flowering time (Kim and von Arnim, 2009), 
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altered leaf morphogenesis and venation patterning (Robles et al., 2010) and lateral root 

initiation (Chen and Xiong, 2010), as well as deregulation of the high affinity phosphate 

transporter PHT1;4 (Hirsch et al., 2011) and of fatty acid oxygenation rates (Rodriguez et al., 

2010). In addition, sal1 mutants exhibit increased tolerance to drought and osmotic stress 

(Wilson et al., 2009; Estavillo et al., 2011), and accumulate significantly higher levels of PAP 

compared to wild-type, both in the absence and presence of abiotic stress (Chen et al., 2011; 

Estavillo et al., 2011; Lee et al., 2012). 

In this study, analysis focused on the sal1 null mutant alleles alx8-1 (Rossel et al., 2006), fry1-

6 (Gy et al., 2007) and fou8 (Rodriguez et al., 2010) (Figure 4.1a). alx8-1 was identified in a 

screen for altered high light-induced expression of APX2 performed on Col-0 carrying an 

APX2:LUC reporter gene and mutagenized with ethyl methanesulfonate (Rossel et al., 2006). 

alx8-1 was described as a gain-of-function mutant with constitutively higher APX2 expression 

compared to wild type (Rossel et al., 2006), and the alx8-1 mutation was mapped to a single 

nucleotide change (G1226A) that results in a G217D amino acid substitution occurring on an 

internal �-sheet of unknown function (Wilson et al., 2009). fry1-6 (SALK_020882) was first 

described in a study identifying SAL1 as an endogenous suppressor of posttranscriptional gene 

silencing, and the mutation was mapped to a T-DNA insertion in exon 3 that results in 

truncation of the SAL1 protein at amino acid position 71 (Gy et al., 2007). fou8 was identified 

in a screen of ethyl methanesulfonate-mutagenised Col-0 as exhibiting higher rates of �-

linolenic acid oxygenation (Rodriguez et al., 2010). The fou8 mutation was mapped to a single 

nucleotide substitution (G531A) in the splicing donor sequence of intron 2, which results in the 

skipping of exon 2 during splicing (Rodriguez et al., 2010).  

sal1 loss-of-function mutants exhibit obvious morphological characteristics that are more 

pronounced in adult plants than in seedlings (Figure 4.1b and c). At 7 days old, seedlings of 

alx8-1 and fry1-6 grown on 0.5x MS agar in 12h:12h light:dark cycles under 60 µmol.m-2.s-1 

white light are slightly smaller, but strongly resemble Col-0 seedlings (Figure 4.1b).  
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Figure 4.1 sal1 loss-of-function mutations in Arabidopsis Col-0. (A) Schematic representation of the Arabidopsis 

SAL1 gene showing positions of mutations for alx8-1 (G1226A), fry1-6 (T-DNA insertion at exon 3) and fou8

(G531A). White blocks indicate UTR regions, with grey blocks and lines indicating exons and introns respectively. 
Start (ATG) and stop (TGA) codons shown. (B) Morphology of Col-0, alx8-1 and fry1-6 seedlings 7 days (top) 
and 14 days (bottom) after germination. Seedlings were grown on 0.5x MS agar plates in 12h:12h light:dark cycles 
under 60 µmol.m-2.s-1 white light. (C) Quantification of hypocotyl lengths of Col-0, alx8-1 and fry1-6 seedlings 
grown on 0.5x MS agar plates for 6 days under 5 µmol.m-2.s-1 constant blue light (left) or 10 µmol.m-2.s-1 constant 
red light (right). Error bars indicate standard error of the mean, with n>16. Asterisks indicate statistical significance 
compared to Col-0 control (** p<0.001; * p<0.01; Student’s T-test) (D) Morphology of Col-0 and fry1-6 after 7-8 
weeks growth. Black arrow indicates position of inflorescence with buds in Col-0. Plants were grown on soil in 
8h:16h light:dark cycles under 120 µmol.m-2.s-1 white light.  
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After 14 days of growth under the same conditions, the differences are more visible, with sal1 

mutant seedlings exhibiting shortened petioles and rounded leaves (Figure 4.1b). 

Morphological characteristics are much more pronounced in ~8-week old plants grown on soil 

in 8h:16h light:dark cycles under 120 µmol.m-2.s-1 white light (Figure 4.1d). In these older 

plants, sal1 mutants such as fry1-6 exhibit dwarfed rosettes, and shortened, rounder leaves with 

undulating surfaces and more lobed edges, as well as shortened petioles (Gy et al., 2007; 

Wilson et al., 2009; Hirsch et al., 2011). In addition, fry1-6 flowers significantly later than Col-

0, as has been reported for other sal1mutant alleles (Gy et al., 2007; Kim and von Arnim, 2009; 

Rodriguez et al., 2010). fry1-6 seedlings have been reported as having shortened hypocotyls 

under both blue and red light (Kim and von Arnim, 2009). To analyse hypocotyl length in sal1 

seedlings, Col-0, alx8-1 and fry1-6 seedlings were grown on 0.5x MS agar plates for 6 days 

under 5 µmol.m-2.s-1 constant blue or 10 µmol.m-2.s-1 constant red light. Quantification of 

hypocotyl length revealed significantly shortened hypocotyls in alx8-1 and fry1-6 compared to 

Col-0 under constant blue and constant red light (Figure 4.1d). This corresponds to previous 

reports of sal1 mutants exhibiting slower growth, shortened hypocotyls and petioles, limited 

primary root and lateral root growth, and shorter and rounder leaves (Xiong et al., 2001; Kim 

and von Arnim, 2009; Wilson et al., 2009; Hirsch et al., 2011).  

 

4.2.2. SAL1 protein is present throughout the day, with no circadian rhythm in transcript 

accumulation 

Transcript of SAL1 is detectable in Col-0 at both dawn and dusk in plants grown under 16h:8h 

light:dark cycles (Figure 4.2a and b), which corresponds with previous reports (Wilson et al., 

2009; Estavillo et al., 2011). qRT-PCR analysis can be used to distinguish between alx8-1 and 

fry1-6 by using primers targeted to either exons 3 and 4 (Figure 4.2a) or exons 6 and 7 (Figure 

4.2b). Primer pairs were designed with one primer bridging an intron, such that one end of the 

primer is complementary to the 3� end of one exon and the other end is complementary to the 

5� end of the next downstream exon.  
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Figure 4.2 Transcription of SAL1 in Col-0 and sal1 mutants. (A-B) qRT-PCR analysis of SAL1 transcript levels 
in Col-0, alx8-1 and fry1-6 at dawn (ZT0) and dusk (ZT16) respectively. Transcript levels were analysed using 
primers targeted to (A) exon 3 or (B) exon 7. Simplified gene diagrams of SAL1 gene with arrows indicating 
positions of primer binding are shown. Data from one of three independent experiments are shown. Error bars 
indicate standard error of the mean for three technical replicates. (C)� qRT-PCR analysis of SAL1 transcript 
accumulation in Col-0 seedlings under constant white light. Transcript levels were analysed using primers targeted 
to exon 7. Seeding were entrained in 12h:12h light:dark cycles under 60 µmol.m-2.s-1 white light for 10 days before 
being transferred to 60 µmol.m-2.s-1 constant white light at subjective dawn. After 48 hours in free-run (ZT48), 
seedlings were sampled every 3 hours for 2 days. White bars and grey bars indicate subjective day and subjective 
night, respectively. (D) qRT-PCR analysis of SAL1 transcript accumulation in Col-0 seedlings under long-day 
conditions. Seedlings were grown on 0.5x MS agar plates in 16h:8h light:dark cycles under 60 µmol.m-2.s-1 white 
light for 12 days before sampling. White bars indicate light period, black bars indicate dark period. (C-D) Data are 
average of two independent experiments. Error bars indicate standard error of the mean. All data were normalised 
to an internal control (PP2a).  
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This allows for amplification to occur only if the primer binds to cDNA from a spliced mRNA 

transcript. Primers targeted to exons 3 and 4 detect no SAL1 transcript in fry1-6 due to the T-

DNA insertion at exon 3, while primers targeted to exons 6 and 7 detects elevated levels of 

SAL1 in fry1-6. Both primer pairs detect SAL1 transcript in the alx8-1 mutant allele (Figure 

4.2a and b). Despite the presence of transcript, no SAL1 protein is detected in these mutants 

(Wilson et al., 2009; Estavillo et al., 2011). 

While the abundance of SAL1 transcript in Col-0 is reportedly not regulated by osmotic stress 

treatment (Xiong et al., 2001), light induction and dark repression of SAL1 transcription has 

been reported (Kim and von Arnim, 2009). Previous cDNA microarray analysis of the early 

dark response in Arabidopsis seedlings identified repression of SAL1 transcripts within 1 hour 

of transfer from constant light to dark (Kim and von Arnim, 2006). In addition, time series 

microarray studies have indicated rhythms in SAL1 transcription under light:dark cycles in both 

long and short photoperiods, with less pronounced oscillations occurring under constant light 

conditions (Mockler et al., 2007). To determine whether transcription of SAL1 is regulated by 

the circadian system, the accumulation of SAL1 transcripts under constant light conditions was 

analysed in Col-0 using qRT-PCR. Seedlings were grown on 0.5x MS agar plates in 12h:12h 

light:dark cycles under 60 µmol.m-2.s-1 white light for 10 days and, following entrainment, were 

transferred to constant light conditions under 60 µmol.m-2.s-1 white light at subjective dawn 

(ZT0). After 48 hours of free run, 10-12 seedlings per time point were sampled from subjective 

dawn (ZT48) every 3 hours for two days. Transcripts were analysed using primers targeted to 

exon 7. A modest rhythm in SAL1 transcript accumulation was observed under constant white 

light, with transcript levels lowest at subjective dawn and peaking during the subjective night 

(Figure 4.2c). Oscillations in SAL1 transcript levels were also examined under light:dark cycles 

(Figure 4.2d). Seedlings were entrained on 0.5x MS agar plates in 16h:8h light:dark cycles 

under 60 µmol.m-2.s-1 white light for 12 days, and tissue (10-12 seedlings per timepoint) 

harvested from dawn (ZT0) the following day. A rhythm in SAL1 transcript accumulation under 

long-day conditions was observed, with SAL1 transcript levels increasing from dawn (ZT0) 
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throughout the 16 h photoperiod to reach peak transcript levels at dusk (ZT16), followed by a 

decrease in transcript level within 1 hour from dusk. These data correspond with the SAL1 

transcription dark response previously reported (Kim and von Arnim, 2006), as well as with 

SAL1 transcription rhythms reported in long and short photoperiods, and in constant light 

conditions (Mockler et al., 2007). 

Expression of SAL1 fused at the C-terminal to GFP and driven by the native SAL1 promoter 

has been used successfully to study localisation of SAL1 protein and complementation of sal1 

phenotypes (Wilson et al., 2009; Rodriguez et al., 2010; Estavillo et al., 2011). In order to 

analyse the accumulation of SAL1 protein over time under dark:light cycles, alx8-1 was 

transformed with a Gateway® plasmid construct for expression of a SAL1-GFP fusion under 

control of the native SAL1 promoter (alx8-1 SAL1::SAL1:GFP; Appendix II). Protein time 

course analysis was performed on homozygous T3 seedlings of two independent alx8-1 

SAL1::SAL1:GFP lines, one line (#1) expressing SAL1-GFP at higher levels and one line (#2) 

expressing SAL1-GFP at lower levels. Seedlings were grown on 0.5x MS agar plates in 16h:8h 

light:dark cycles under 60 µmol.m-2.s-1 white light for 12 days, and tissue (12-15 seedlings per 

timepoint) harvested from dawn (ZT0) on the 13th day. Immunoblot analysis was performed on 

total protein extracts using an anti-GFP antibody, and intensity of protein bands quantified 

(Figure 4.3a and b). SAL1-GFP protein was detected in both independent lines of alx8-1 

SAL1::SAL1:GFP throughout the entire day (Figure 4.3a). Despite the increase in transcript 

levels towards the end of the 16 h photoperiod and a subsequent decrease in transcript levels 

occurring from dusk (Figure 4.2d), no obvious rhythm in protein levels was detected in either 

of the two alx8-1 SAL1::SAL1:GFP independent lines under entraining conditions (Figure 4.3a 

and b). 

To confirm the subcellular localisation of the SAL protein, alx8-1 SAL1::SAL1:GFP seedlings 

were subjected to confocal laser microscopy imaging (Figure 4.4).  
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Figure 4.3 Rhythms of SAL1 expression in Col-0 under long-day conditions. (A) Immunoblot analysis and (B) 

quantification of SAL-GFP levels under long-day conditions using an anti-GFP antibody in Col-0, alx8-1 and two 
independent alx8-1 SAL1::SAL1:GFP lines, one with higher (#1, top) and one lower expression of SAL1-GFP (#2, 
bottom). Anti-Actin antibody used to detect actin levels for loading control. Seedlings were grown on 0.5x MS agar 
plates in 16h:8h light:dark cycles under 60 µmol.m-2.s-1 white light for 12 days before sampling. White bars indicate 
light period, black bars indicate dark period. Immunoblots from one of two independent experiments are shown. 
Protein level quantification data are average of three independent experiments. Data were normalised to internal 
control (Actin). Error bars indicate standard error of the mean.  
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Figure 4.4 Subcellular localisation of SAL1-GFP. Confocal laser scanning microscopy images of leaves of Col-
0 (top) and alx8-1 SAL1::SAL1:GFP (bottom) seedlings showing red (chlorophyll) channel, green (GFP) channel 
and merged images. Seedlings were grown on 0.5x MS media in 12h:12h light:dark cycles under 60 µmol.m-2.s-1

white light for 12 days before imaging. 
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Seedlings were grown on 0.5x MS media for 12 days in 12h:12h light:dark cycles under 60 

µmol.m-2.s-1 white light before leaves of intact seedlings were subjected to confocal microscopy 

imaging in the late afternoon. SAL1-GFP was detected in the chloroplasts and in the cytosol of 

alx8-1SAL1::SAL:GFP seedlings, as has been previously reported for sal1 mutants (Zhang et 

al., 2011; Estavillo et al., 2011). 

 

4.2.3. sal1 mutants exhibit long period rhythms in chloroplasts under constant blue light, 

but not under constant red light 

Production and scavenging of ROS is regulated by both by diurnal cycles and the circadian 

clock, and the core clock gene CCA1 regulates the coordinated transcription of ROS genes 

under non-stressed conditions (Lai et al., 2012). The sensitivity of SAL1 activity to the redox 

poise of the plastids (Chan et al., 2016a), combined with the late flowering phenotype exhibited 

by sal1 mutants (Gy et al., 2007; Wilson et al., 2009; Rodriguez et al., 2010) suggests a possible 

role for SAL1 within the Arabidopsis circadian system. 

In order to determine whether loss of SAL1 function has an impact on the circadian system, 

Fq’/Fm’ rhythms were monitored in the sal1 mutant alleles alx8-1, fry1-6 and fou8 under 

constant blue light (Figure 4.5). Imaging was performed across three separate experiments, 

analysing one sal1 mutant allele along with Col-0 in each case to allow analysis of >8 

individual seedlings per genotype. Seedlings were grown on 0.5x MS agar plates and entrained 

for 12 days in 12h:12h light:dark cycles under 60 µmol.m-2.s-1 white light. Following 

entrainment, individual seedlings were imaged under 20 µmol.m-2.s-1 constant blue light for ~5 

days. Circadian period estimates were determined through FFT-NLLS analysis of time series 

data using BRASS (Millar et al., 2010) as described in Chapter 3. Robust Fq’/Fm’ rhythms were 

maintained across all 5 days of free-run in Col-0 and in all sal1 mutant alleles, with no 

significant difference in RAE in alx8-1 (0.15 ± 0.01; Figure 4.5a and b), fry1-6 (0.13 ± 0.01; 

Figure 4.5c and d) or fou8 (0.21 ± 0.02; Figure 4.5e and f) compared to Col-0.  
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Figure 4.5 Fq’/Fm’ rhythms in sal1 mutants under constant blue light. (A,C,E) Waveforms and (B,D,F)

circadian period estimates plotted against Relative Amplitude Error (RAE) for Fq’/Fm’ oscillations in Col-0, (A-B)

alx8-1, (C-D) fry1-6 and (D-E) fou8 seedlings under constant blue light. Seedlings were grown on 0.5x MS agar 
plates and entrained in 12h:12h light:dark cycles under 60 µmol.m-2.s-1 white light for 12 days before imaging under 
20 µmol.m-2.s-1 constant blue light. White bars and grey bars indicate subjective day and subjective night, 
respectively. Error bars indicate standard error of the mean, with n>8. For waveforms, error bars are shown every 
10 hours for clarity. RAE is a measure of rhythmic robustness, with a value of 0 indicating an exact fit to a cosine 
wave (Plautz et al., 1997). Data from one of three independent experiments are shown. Asterisks indicate statistically 
significant difference in period compared to Col-0 control (** p<0.001; * p<0.01; Student’s T-test).  
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While Fq’/Fm’ rhythms cycled with circadian period of ~24 h in Col-0 across all three 

experiments (Figure 4.5 b, d and f), a significantly longer period in Fq’/Fm’ rhythms was 

observed in alx8-1 (25.4 ± 0.06 h; Figure 4.5b) and fry1-6 (25.39 ± 0.09 h; Figure 4.5d) 

compared to Col-0 (p<0.001; Student’s T-test). While the period of Fq’/Fm’ rhythms was also 

significantly longer in fou8 (25.17 ± 0.19; Figure 4.5f) compared to Col-0 (p<0.01, Student’s 

T-test), the long period was less pronounced than in alx8-1 and fry1-6. 

To confirm the effect of SAL1 activity on chloroplast circadian rhythms, rhythms in delayed 

fluorescence were monitored in Col-0, alx8-1 and fry1-6 under constant blue light. Seedlings 

were grown on 0.5x MS agar plates in clusters of 10-15 and entrained for 12 days in 12h:12h 

light:dark cycles under 60 µmol.m-2.s-1 white light before imaging under 20 µmol.m-2.s-1 

constant blue light (Figure 4.6a and b). FFT-NLLS analysis was performed on time series data 

using BRASS (Millar et al., 2010) as described. As had been observed for Fq’/Fm’ rhythms 

(Figure 4.5), rhythms in delayed fluorescence remained robust in Col-0, alx8-1 and fry1-6 with 

RAE<0.6 following ~5 days of free-run (Figure 4.6b). sal1 mutant alleles did exhibit a 

significantly higher RAE (0.39 ± 0.03 for alx8-1, 0.34 ± 0.03 for fry1-6) compared to Col-0 

(0.23 ± 0.02; p<0.001, Student’s T-test). Period estimates for delayed fluorescence rhythms 

revealed significantly longer period in both alx8-1 (25.09 ± 0.28 h) and fry1-6 (25.07 ± 0.26 h) 

compared to Col-0 (23.83 ± 0.19 h; p<0.001, Student’s T-test), confirming the long period of 

chloroplast rhythms in sal1 mutants under constant blue light.  

The sal1 mutant allele fry1-6 has been reported has being hypersensitive to both red and blue 

light, with shortened hypocotyls and petioles observed in fry1-6 mutants under far-red and blue 

light conditions, and even more dramatically under monochromatic red light (Kim and von 

Arnim, 2009). To determine whether the long circadian period in chloroplast rhythms of sal1 

mutants is blue light specific, delayed fluorescence rhythms in alx8-1 mutants were monitored 

under constant red light. Seedlings were grown as described for Figure 4.6a, and following 

entrainment were imaged under 30 µmol.m-2.s-1 constant red light for ~ 5 days (Figure 4.6c and 

d). 
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Figure 4.6 Delayed fluorescence rhythms in sal1 mutants under constant blue and constant red light. (A,C) 

Waveforms and (C,D) circadian period estimates plotted against Relative Amplitude Error (RAE) for normalised 
delayed fluorescence rhythms in Col-0, alx8-1 and fry1-6 seedlings under (A-B) 20 µmol.m-2.s-1 constant blue light 
and (C-D) 30 µmol.m-2.s-1 constant red light. Seedlings were grown on 0.5x MS agar plates and entrained in 12h:12h 
light:dark cycles under 60 µmol.m-2.s-1 white light for 12 days before imaging under constant light. White bars and 
grey bars indicate subjective day and subjective night, respectively. Error bars indicate standard error of the mean,
with n=10. For waveforms, error bars are shown every 10 hours for clarity. RAE is a measure of rhythmic 
robustness, with a value of 0 indicating an exact fit to a cosine wave (Plautz et al., 1997). Asterisks indicate 
statistically significant difference in period compared to Col-0 control (p<0.001; Student’s T-test). Data from one 
of two independent experiments are shown. 
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Unlike sal1 mutants grown under constant blue light, alx8-1 mutants did not exhibit a longer 

period in delayed fluorescence rhythms (24.57 ± 0.18 h) compared to Col-0 (24.42 ± 0.19 h) 

under constant red light. 

 

4.2.4. Loss of SAL1 function affects rhythms in CCA1 expression under constant blue light 

Since rhythms in Fq’/Fm’ and delayed fluorescence are affected by the nuclear circadian 

oscillator (Gould et al., 2009; Litthauer et al., 2015), rhythms in expression of the morning-

phased nuclear core clock gene CCA1 was examined using luciferase imaging. A fry1-6 

CCA1::LUC2 reporter line was obtained by crossing the fry1-6 allele into a Col-0 reporter line 

expressing LUCIFERASE2 under control of the CCA1 promoter (Jones et al., 2015). To 

monitor rhythms in CCA1 promoter activity under constant blue light, Col-0 CCA1::LUC2 and 

fry1-6 CCA1::LUC2 seedlings were grown on 0.5x MS agar plates for 6 days in 12h:12h light 

dark cycle under 60 µmol.m-2.s-1 white light. Following entrainment, individual seedlings were 

imaged under 20 µmol.m-2.s-1 constant blue light for ~5 days, and time series data subjected to 

FFT-NLLS analysis as described (Figure 4.7a and b). Bioluminescence from CCA1::LUC2 

activity cycled with robust circadian rhythm in Col-0, peaking shortly after dawn as previously 

described (Jones et al., 2015). CCA1::LUC2 rhythms also cycled with robust circadian rhythm 

in fry1-6, with no loss in amplitude or significant difference in RAE compared to Col-0. A 

phase shift in peak CCA1::LUC2 activity was observed in fry1-6 within the first day of free-

run, growing more pronounced on successive days under constant light conditions (Figure 

4.7a). Circadian period estimates determined for CCA1::LUC rhythms (Figure 4.7b) were 

significantly longer in fry1-6 (25.42 ± 0.04 h) than in Col-0 (23.65 ± 0.11 h; p<0.001, Student’s 

T-test). 

In order to determine whether the long period of CCA1 expression in fry1-6 was as a result of 

altered CCA1 expression during entrainment, rhythms in CCA1::LUC2 were monitored under 

light:dark cycles.  
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Figure 4.7 Rhythms in CCA1 expression in fry1-6 under constant light and entraining conditions. (A) 

Waveforms and (B) circadian period estimates plotted against Relative Amplitude Error (RAE) for luciferase
activity monitored in Col-0 CCA1::LUC2 and fry1-6 CCA1::LUC2 seedlings under constant blue light. Seedlings 
were entrained on 0.5x MS agar plates and entrained in 12h:12h light:dark cycles under 60 µmol.m-2.s-1 white light 
for 6 days before imaging under 20 µmol.m-2.s-1 constant blue light. White bars and grey bars indicate subjective 
day and subjective night, respectively. (C) Waveforms of CCA1::LUC2 activity in Col-0 and fry1-6 in 12h:12h light 
dark cycles under 20 µmol.m-2.s-1 blue light supplemented with 30 µmol.m-2.s-1red light. Seedlings were grown on 
0.5x MS agar plates and entrained in 12h:12h light:dark cycles under 60 µmol.m-2.s-1 white light for 6 days before
imaging. White bars and black bars indicate light and dark periods, respectively. Error bars indicate standard error 
of the mean, with n=10. For waveforms, error bars shown every 10 hours for clarity. RAE is a measure of rhythmic 
robustness, with a value of 0 indicating an exact fit to a cosine wave (Plautz et al., 1997). Data from one of three 
independent experiments are shown. Asterisks indicate statistically significant difference in period compared to 
Col-0 control (p<0.001; Student’s T-test).  
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Seedlings were grown on 0.5x MS agar plates for 6 days in 12h:12h light dark cycle under 60 

µmol.m-2.s-1 white light, and subsequently imaged in 12h:12h light:dark cycles under 20 

µmol.m-2.s-1 blue light supplemented with 30 µmol.m-2.s-1 red light (Figure 4.7c). No phase 

shift in peak CCA1::LUC2 activity was observed in fry1-6, with both Col-0 and fry1-6 

exhibiting peak CCA1::LUC2 activity 2 hours after dawn. A decreased amplitude in peak 

bioluminescence was observed in fry1-6, but this could be due to the smaller size of individual 

fry1-6 seedlings compared to Col-0 (Kim and von Arnim, 2009).  

 

4.2.5. Complementation by SAL1 restores Fq’/Fm’ rhythms in sal1 mutants 

Previous studies have reported complementation of sal1 morphological phenotypes by SAL1 

cDNA driven either by the CaMV 35S promoter (Kim and von Arnim, 2009; Chen et al., 2011; 

Hirsch et al., 2011) or the SAL1 native promoter region (Kim and von Arnim, 2009; Wilson et 

al., 2009). To determine whether complementation by SAL1 cDNA under control of the native 

SAL1 promoter complements the long circadian period phenotype of a sal1 mutant, alx8-1 was 

transformed with a Gateway pGWB4 (Nakagawa et al., 2007) plasmid construct for expression 

of a SAL1-GFP fusion under control of the native SAL1 promoter region (alx8-1 

SAL1::SAL1:GFP; Appendix II). Fq’/Fm’ rhythms in homozygous T3 alx8-1 SAL1::SAL1:GFP 

seedlings from three independent lines were monitored under constant blue light. Seedlings 

were grown on 0.5x MS agar plates and entrained in 12h:12h light:dark cycles under 60 

µmol.m-2.s-1 white light for 12 days before imaging under 20 µmol.m-2.s-1 constant blue light 

(Figure 4.8). As observed previously (Figure 4.5a and b) Fq’/Fm’ rhythms in alx8-1 and Col-0 

were robust with RAE<0.3 (Figure 4.8a and b), and a significantly longer period observed in 

alx8-1 (24.68 ± 0.25 h) compared to Col-0 (23.54 ± 0.22 h; p<0.001, Student’s T-test). This 

period lengthening of ~1 hour in alx8-1 was absent in alx8-1 seedlings expressing SAL1-GFP 

under control of the native SAL1 promoter. 
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Figure 4.8 Fq’/Fm’ rhythms in sal1 mutants complemented with SAL1 or �N-SAL1 under constant blue light.

(A) Waveforms and (B) circadian period estimates plotted against Relative Amplitude Error (RAE) for Fq’/Fm’ 

oscillations in Col-0, alx8-1 and three independent homozygous alx8-1 SAL1::SAL1:GFP lines under constant blue 
light. (C) Circadian period estimates for Fq’/Fm’ oscillations in Col-0, fry1-6 and fry1-6 expressing SAL1-GFP in 
the nucleus and cytosol (�N-SAL1) under constant blue light. Seedlings were grown on 0.5x MS agar plates and 
entrained in 12h:12h light:dark cycles under 60 µmol.m-2.s-1 white light for 12 days before imaging under 20 
µmol.m-2.s-1 constant blue light. White bars and grey bars indicate subjective day and subjective night, respectively. 
Error bars indicate standard error of the mean, with n=8. For waveforms, error bars are shown every 10 hours for 
clarity. RAE is a measure of rhythmic robustness, with a value of 0 indicating an exact fit to a cosine wave (Plautz 
et al., 1997). Data from one of three independent experiments are shown. Asterisk indicates statistically significant 
difference in period compared to Col-0 control (** p<0.001; * p<0.01 Student’s T-test).  
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Fq’/Fm’ rhythms were restored in all three independent lines of alx8-1 SAL1::SAL1::GFP, with 

circadian period estimates (23.28 ± 0.12 h for line #1; 23.75 ± 0.27 h for line #2; 23.37 ± 0.26 

h for line #3) indicating no significant difference in period length compared to Col-0 (23.54 ± 

0.22 h). 

Although SAL1 is reported as accumulating and acting in the chloroplasts, targeting of SAL1 

to the nucleus and cytosol of fry1-6 has been shown to decrease PAP levels and result in 

complementation of APX2 expression and morphological phenotypes (Kim and von Arnim, 

2009; Estavillo et al., 2011). To determine whether SAL1 localised in the nucleus also 

complements the long period circadian phenotype of fry1-6, Fq’/Fm’ rhythms were monitored 

in homozygous fry1-6 seedlings expressing the cDNA of SAL1 lacking the nucleotides coding 

the chloroplastic transit peptide and driven by the CaMV 35S promoter (�N-SAL1; Kim and 

Von Arnim, 2009). Upon complementation with nuclear-localised SAL1, Fq’/Fm’ rhythms in 

fry1-6 were restored (Figure 4.8c). While circadian period estimates were significantly longer 

in fry1-6 (25.02 ± 0.13 h) compared to Col-0 (24.21 ± 0.12 h; p<0.001, Student’s T-test), there 

was no significant difference in period length in �N-SAL1 seedlings (24.14 ± 0.13 h) compared 

to Col-0.  

 

4.2.6. Loss of SAL1 function results in a late phase of core clock transcript accumulation 

under constant blue light 

Inhibition of SAL1 activity (whether through oxidative stress or mutation) results in increased 

transcript levels for numerous plastid redox associated nuclear genes (PRANGs) involved in 

stress responses (Wilson et al., 2009; Estavillo et al., 2011; Chan et al., 2016a). Since SAL1 

activity affects transcript levels of PRANGs, and rhythmic expression of nuclear clock gene 

CCA1 is altered in fry1-6 (Figure 4.7a and b), the effect of SAL1 activity on the accumulation 

of nuclear clock gene transcripts was analysed using qRT-PCR. Seedlings were grown on 0.5x 

MS agar plates in 12h:12h light:dark cycles under 60 µmol.m-2.s-1 white light for 10 days and, 
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following entrainment, were transferred to 20 µmol.m-2.s-1 constant blue light at subjective 

dawn (ZT0). After 48 hours of free run, 10-12 seedlings per time point were sampled from 

subjective dawn (ZT48) every 3 hours for two days. Under constant blue light, rhythmic 

accumulation was observed for the nuclear clock gene transcripts CCA1 and LHY (morning-

phased) and PRR9 and GI (evening-phased) in Col-0, alx8-1 and fry1-6 (Figure 4.9). A clear 

late phase (~6 hours) in peak transcript levels was observed for both morning- and evening-

phased clock genes in alx8-1 and fry1-6 compared to Col-0, corresponding with the long period 

of rhythmic CCA1 expression in fry1-6 (Figure 4.7a and b). 

Since delayed fluorescence oscillates with lengthened period in alx8-1 under constant blue, but 

not under constant red light (Figure 4.6), the accumulation of clock gene transcripts under 

constant red light was also examined. Seedlings were entrained as described for Figure 4.9, 

with plants transferred to 30 µmol.m-2.s-1 constant red light following entrainment. qRT-PCR 

analysis revealed rhythmic transcript accumulation for CCA1, LHY, PRR9 and GI transcripts 

in Col-0, alx8-1 and fry1-6 (Figure 4.10). A late phase in peak transcript levels was observed 

for evening-phased clock genes in alx8-1 and fry1-6 compared to Col-0, but was less 

pronounced under constant red light than under constant blue light (~3 hours). Furthermore, 

the late phase in transcript accumulation of morning-phased components that was observed 

under constant blue light (Figure 4.9) was much less severe (or absent) in sal1 seedlings under 

constant red light. These data corresponded with period estimates for rhythms in delayed 

fluorescence measured under constant blue and constant red light (Figure 4.6), which indicated 

period lengthening in sal1 under constant blue light, but not under constant red. When viewed 

in combination with the long period of rhythms in Fq’/Fm’ (Figure 4.5) and in CCA1::LUC2 

activity (Figure 4.7) observed in sal1mutants under constant blue light conditions, it was clear 

that the long circadian period phenotype of sal1 less severe (or even absent) under constant red 

light compared to constant blue light. 
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Figure 4.9 Expression of core nuclear circadian clock genes in sal1 mutants under constant blue light. qRT-
PCR analysis of transcript accumulation for morning-phased core clock genes (A) CCA1 and (B) LHY, and evening-
phased core clock genes (C) PRR9 and (D) GI in Col-0 and sal1 mutants alx8-1 and fry1-6 under constant blue 
light. Seedlings were grown on 0.5x MS agar plates and entrained in 12h:12h light:dark cycles under 60 µmol.m-

2.s-1 white light for 10 days before being transferred to 20 µmol.m-2.s-1 constant blue light at subjective dawn. After 
48 hours in free-run, 10-12 seedlings were sampled and pooled, with sampling repeated every three hours for two 
days. Data for each gene were normalised to an internal control (PP2a). White bars and grey bars indicate subjective 
day and subjective night, respectively. Data are the average of three biological replicates. Error bars indicate 
standard error of the mean. 
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Figure 4.10 Expression of core nuclear circadian clock genes in sal1 mutants under constant red light. qRT-
PCR analysis of transcript accumulation for morning-phased core clock genes (A) CCA1 and (B) LHY, and evening-
phased clock genes (C) PRR9 and (D) GI in Col-0 and sal1 mutants alx8-1 and fry1-6 under constant red light. 
Seedlings were grown on 0.5x MS agar plates and entrained in 12h:12h light:dark cycles under 60 µmol.m-2.s-1

white light for 10 days before being transferred to 30 µmol.m-2.s-1 constant blue light at subjective dawn. After 48 
hours in free-run, 10-12 seedlings were sampled and pooled, with sampling repeated every three hours for two days. 
Data for each gene were normalised to an internal control (PP2a). White bars and grey bars indicate subjective day 
and subjective night, respectively. Data are the average of two biological replicates. Error bars indicate standard 
error of the mean. 
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The mechanism of circadian regulation of chloroplast function can occur through the activity 

of nuclear-encoded chloroplast components such as SIG5 and STN7 (Dodd et al., 2014; Belbin 

et al., 2017). One of the mechanisms through which circadian regulation from the nucleus is 

communicated to the chloroplasts is through the action of SIGMA FACTOR5 (SIG5) 

(Noordally et al., 2013). SIG5 is a nuclear-encoded sigma factor that confers promoter 

specificity to the plastid-encoded plastid RNA polymerase (PEP), thereby regulating the 

transcription of a specific subset of chloroplast genes (Noordally et al., 2013; Belbin et al., 

2017). Another mechanisms through which chloroplast function is regulated by nuclear gene 

expression is through the action of State Transition 7 (STT7 HOMOLOG, STN7), a protein 

kinase involved in the phosphorylation of the D1 protein of PSII (Bellafiore et al., 2005; 

Pesaresi et al., 2009). Transcription of SIG5 and STN7 in the nucleus are regulated by the 

circadian clock (Noordally et al., 2013; Dodd et al., 2014). To determine whether expression 

of SIG5 and STN7 are affected by SAL1 activity, accumulation of SIG5 and STN7 transcripts 

were analysed in alx8-1 under constant blue light (Figure 4.11). Circadian oscillations in SIG5 

and STN7 transcript abundance were observed in Col-0 with peak abundance at dawn (Figure 

4.11a and b), as has been previously reported (Noordally et al., 2013; Dodd et al., 2014). 

Oscillations in transcript abundance were also observed in alx8-1, with transcripts of SIG5 and 

STN7 accumulating with a similar late phase in peak transcript abundance observed for core 

clock gene transcripts under constant blue light (Figure 4.9). 

 

4.2.7. Constitutive overexpression of SAL1 has no effect on the rhythmic expression of 

CCR2 in Col-0 under constant light 

Since loss of SAL1 function lengthens circadian rhythms in sal1 mutants, the effect of SAL1 

overexpression on the circadian system in Col-0 was examined. Circadian rhythms were 

analysed by monitoring rhythmic expression of the clock-regulated RNA-binding protein 

CCR2 through luciferase imaging under constant blue light.  
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Figure 4.11 Rhythms in expression of SIG5 and STN7 in sal1 mutants under constant blue light. qRT-PCR 
analysis of transcript accumulation for (A) SIG5 and (B) STN7 in Col-0 and alx8-1 under constant blue light. 
Seedlings were grown on 0.5x MS agar plates and entrained in 12h:12h light:dark cycles under 60 µmol.m-2.s-1

white light for 10 days before being transferred to 20 µmol.m-2.s-1 constant blue light at subjective dawn. After 48 
hours in free-run, 10-12 seedlings were sampled and pooled, with sampling repeated every three hours for two days. 
Data for each gene were normalised to an internal control (PP2a). White bars and grey bars indicate subjective day 
and subjective night, respectively. Data are representative of two biological replicates. Error bars indicate standard 
error of the mean. 
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Col-0 expressing the CCR2::LUC reporter gene construct (Strayer et al., 2000) was 

transformed with a pEarlyGate (Earley et al., 2006) plasmid construct for expression of a 

SAL1-GFP fusion under control of the CaMV 35S promoter (Col-0 35S::SAL1:GFP; Col-0 

SAL-OX; Appendix II). Luciferase imaging was performed on homozygous T3 seedlings of 

three independent Col-0 35S::SAL1:GFP lines. Seedlings were grown on 0.5x MS agar plates 

for 6 days in 12h:12h light dark cycle under 60 µmol.m-2.s-1 white light. Following entrainment, 

seedlings (in groups of 5-10) were imaged under 20 µmol.m-2.s-1 constant blue light for ~5 days 

(Figure 4.12). Bioluminescence from CCR2::LUC activity cycled with robust circadian rhythm 

in Col-0 and Col-0 SAL1-OX (RAE<0.3; Figure 4.12a and b), peaking shortly after dusk as 

previously described (Martin-Tryon et al., 2006). No shift in peak CCR2::LUC activity was 

observed in Col-0 SAL1-OX across all 5 days of free run (Figure 4.12a). Circadian parameter 

estimates determined for CCR2::LUC rhythms revealed no significant difference in RAE or 

period in Col-0 SAL1-OX compared to Col-0 (Figure 4.12b), with CCR2::LUC rhythms 

oscillating with circadian period in Col-0 (23.71 ± 0.06 h), Col-0 SAL1-OX #1 (23.71 ± 0.10 

h), Col-0 SAL1-OX #2 (23.73 ± 0.05 h) and Col-0 SAL1-OX #3 (23.93 ± 0.06 h). 

 

4.3. Discussion 

4.3.1. SAL1 protein accumulates in chloroplasts, and SAL expression is not a rhythmic 

clock output 

Arabidopsis SAL1 is expressed ubiquitously in most plant organs (Xiong et al., 2001; Chen et 

al., 2011; Hirsch et al., 2011), and loss of function results in a range of morphological 

phenotypes, including slowed growth, altered leaf and root morphology, and hypersensitivity 

to light (Figure 4.1a, b and c; Gy et al., 2007; Kim and Von Arnim, 2009; Hirsch et al., 2011). 

The subcellular localisation of SAL1 has been a subject of debate.  
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Figure 4.12 Rhythms in CCR2 expression in Col-0 SAL1-OX lines under constant blue light. (A) Waveforms 
and (B) circadian period estimates plotted against Relative Amplitude Error (RAE) of CCR2::LUC luciferase
activity monitored in Col-0 and three independent Col-0 SAL1-OX lines under constant blue light. Seedlings (in 
groups of 5-10) were grown on 0.5x MS agar plates and entrained in 12h:12h light:dark cycles under 60 µmol.m-

2.s-1 white light for 6 days before imaging under 20 µmol.m-2.s-1.constant blue light. White and grey bars indicate 
subjective day and subjective night, respectively. Error bars indicate standard error of the mean, with n=10. For 
waveforms, error bars shown every 10 hours for clarity. RAE is a measure of rhythmic robustness, with a value of 
0 indicating an exact fit to a cosine wave (Plautz et al., 1997). Data from one of two independent experiments are 
shown.  
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Mass spectrometry analysis of the Arabidopsis stromal proteome identified SAL1 as a 

chloroplast-localised protein (Peltier, 2005), and transient expression of a SAL1 fused at the 

C-terminus with GFP (SAL1-GFP) in onion epidermal cells identified SAL1 as being present 

in the chloroplasts (Rodriguez et al., 2010). Reports of expression of SAL1-GFP fusion in 

stable Arabidopsis lines revealed localization to the cytoplasm (Zhang et al., 2011) or plastids 

(Chen et al., 2011) of roots, as well as to chloroplasts and unidentified small organelles (Chen 

et al., 2011). A tripartite approach to establishing the subcellular localization of SAL1 

involving both stable and transient transformation of Arabidopsis using SAL1-GFP fusion, as 

well as immunological detection of native SAL1 protein in purified chloroplastic and 

mitochondrial fractions of Col-0 leaves, revealed accumulation of the SAL1 protein in 

chloroplasts and mitochondria (Estavillo et al., 2011). Through this method, no SAL1 protein 

was detected in the cytosolic fraction or in nuclei. Furthermore, expression of SAL1 without 

the N-terminal signal peptide results in localization to the cytosol and nuclei (Kim and von 

Arnim, 2009; Chen et al., 2011). In this chapter, stable expression of a SAL1-GPF fusion in 

alx8-1 revealed localisation of SAL1-GFP in both the chloroplasts and the cytosol (Figure 4.4). 

However, these data must be interpreted with caution, as it is not clear whether SAL1 is 

overexpressed or over-accumulates in the transgenic lines used. Indeed, the observations in this 

study further demonstrate the need for a combined approach in determining the subcellular 

localisation of proteins (Estavillo et al., 2011). SAL1 transcript abundance exhibits no rhythm 

under constant white light and a modest rhythm under dark:light cycles, with transcript levels 

increasing throughout the day and peaking at dusk under long-day conditions (Figure 4.2). 

Despite this pattern in SAL1 transcript accumulation, there is no rhythm in SAL1 protein 

accumulation under long-day conditions (Figure 4.3).  

 

4.3.2. SAL1 activity affects the circadian system under constant blue light 

Although SAL1 expression is not regulated by the circadian system, activity of SAL1 affects 

circadian rhythms in chloroplasts. In sal1 mutants, loss of SAL1 activity lengthens the period 
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of Fq’/Fm’ and delayed fluorescence rhythms under constant blue light (Figure 4.5 and 4.6). 

This long period circadian phenotype of sal1 mutants appears to be limited to blue light, as a 

lengthening in period of delayed fluorescence rhythms is not observed in a sal1 mutant under 

constant red light (Figure 4.6). These data are in contrast with a previous study which reported 

that sal1 mutants exhibit shortened hypocotyls both under constant blue and constant red light 

(Figure 4.1d; Kim and Von Arnim, 2009). 

The long period in rhythmic expression of the nuclear clock gene CCA1 under constant blue 

light (Figure 4.7a and b) indicates that the altered chloroplast rhythms in sal1 mutants are not 

merely a direct result of SAL1 activity in chloroplasts, and that the effect of SAL1 activity on 

circadian rhythms is not limited to these organelles. Indeed, expression of SAL1 targeted either 

to the plastids (Figure 4.8a and b) or to the nucleus and cytosol (�N-SAL1; Figure 4.8c) of a 

sal1 mutant restores rhythms in Fq’/Fm’, confirming that activity of SAL1 in either the 

chloroplasts or nucleus complements the sal1 phenotype as previously reported (Estavillo et 

al., 2011). The effect of SAL1 activity on nuclear clock components is not limited to CCA1 

promoter activity. Analysis of transcript accumulation in sal1 mutants indicated a late phase in 

peak transcript accumulation for both morning-phased (CCA1 and LHY) and evening-phased 

(PRR9 and GI) clock transcripts under constant blue light (Figure 4.9), corresponding to the 

long period in Fq’/Fm’ (Figure 4.5), delayed fluorescence (Figure 4.6) and CCA1::LUC2 

rhythms (Figure 4.7a and b) observed under constant blue light. As had been observed for 

rhythms in delayed fluorescence (Figure 4.6), these altered circadian rhythms in transcript 

accumulation in sal1 are a blue light-specific phenotype. A less severe phase shift in peak 

transcript accumulation is observed for evening-phased core clock transcripts in sal1 mutants 

grown under constant red light compared to constant blue light, while no late phase is observed 

for accumulation of transcripts of morning-phased clock genes (Figure 4.10). Interestingly, 

CCA1 promoter activity is only affected in sal1 mutants under free-run (constant blue light), 

with no effect of SAL1 activity on patterns of CCA1 expression under entraining conditions 

(Figure 4.6b). These data suggest a need for further analysis of the effect of SAL1 activity on 
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circadian rhythms under different light qualities and regimes, which will be discussed in 

Chapter 6. 

 

4.3.3. The effect of SAL1 on nuclear circadian rhythms suggests involvement of an 

interorganellar signalling mechanism 

Since the chloroplast-localised SAL1 enzyme affects circadian rhythms not only in chloroplasts 

but also in the nucleus, the involvement of communication between these two organelles must 

be investigated. Rhythms in chloroplasts, as monitored through delayed fluorescence and 

chlorophyll a fluorescence, are regulated by the rhythmic expression of clock-regulated genes 

in the nucleus (Chapter 3; Gould et al., 2009; Litthauer et al., 2015). Numerous pathways that 

facilitate communication between chloroplasts and the nucleus have been described, and the 

SAL1/PAP pathway does not function in isolation (Chan et al., 2016b). Two of these 

mechanisms, involving activity of nuclear-encoded chloroplast components SIG5 and STN7, 

have been implicated in circadian regulation of chloroplast function from the nucleus 

(Noordally et al., 2013; Belbin et al., 2017; Dodd et al., 2014). In sal1 mutants, a late phase in 

transcript accumulation is observed for SIG5 and STN7 (Figure 4.11), which corresponds to the 

late phase in core clock transcripts and long period phenotypes observed in sal1. This indicates 

that signalling via SIG5 and STN7 remains intact and under circadian control in sal1 mutants, 

and suggests that these mechanisms are not directly involved in the sal1 circadian phenotype. 

It has been reported that neither SAL1 transcript levels (Xiong et al., 2001) nor SAL1 protein 

levels (Chan et al., 2016a) change significantly in response to abiotic stress. Previous reports 

have shown that overexpression of SAL1 under control of the 35S promoter in Col-0 has no 

effect on salt stress tolerance in plants (Chen et al., 2011), which corresponds with the 

observation in the current study that constitutive overexpression of SAL1 in Col-0 had no effect 

on the period or amplitude of rhythms in CCR2::LUC activity (Figure 4.12). SAL1 exhibits 

high enzymatic activity both as pure protein and in plant cell extracts (Quintero et al., 1996; 
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Chen et al., 2011; Chan et al., 2016a), and the sensitivity of SAL1 activity to oxidising 

environments implies allosteric regulation of SAL1 activity via the redox poise of the plastid 

(Chan et al., 2016a). These findings suggest that allosteric regulation of SAL1 activity plays a 

more important role than SAL1 protein levels in mediating function in vivo. Indeed, while 

SAL1 protein is not expressed with a clear diurnal rhythm (Figure 4.2 and 4.3), the time-of-

day-specific oscillations of ROS production and scavenging, along with the diurnal and 

circadian regulation of ROS-responsive genes (Lai et al., 2012), could provide a mechanism 

through which SAL1 acts within the circadian system.  

This chapter has demonstrated that the chloroplast-localised enzyme SAL1 acts within the 

Arabidopsis circadian system, influencing rhythms in chloroplasts and the nucleus. Since SAL1 

has been described as modulating the activity of both the XRN family of exoribonucleases and 

sulfur metabolism (Rodriguez et al., 2010; Chen et al., 2011; Estavillo et al., 2011; Lee et al., 

2012), the mechanism through which SAL1 acts within the circadian system will be further 

investigated in Chapter 5. 
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  Chapter 5 

The effect of 5’�3’ exoribonuclease (XRN) activity on circadian 

rhythms 

5.1. Introduction 

Circadian regulation is in part achieved through the rhythmic modulation of gene expression, 

and the processing of mRNA plays an important role in the circadian system (Millar, 2016; 

Nolte and Staiger, 2015). In Arabidopsis, SAL1 activity has been shown to affect sulfur 

metabolism (Rodriguez et al., 2010; Lee et al., 2012), as well as the function of 5’�3’ 

exoribonucleases (XRNs) (Gy et al., 2007; Estavillo et al., 2011; Kurihara et al., 2012). Indeed, 

redox regulation of SAL1 has been proposed as a metabolic mechanism through which both 

sulfur assimilation and nuclear gene expression can be controlled (Chan et al., 2016a, 2016b). 

To further understand the mechanism through which SAL1 influences circadian rhythms, this 

chapter investigates the role of altered sulfur metabolism and XRN activity in the circadian 

system. 

 

5.2. Results 

5.2.1. Sulfate deficiency does not cause lengthening of circadian period 

Sulfur is an element essential to plant growth and survival, and total loss of sulfur assimilation 

is lethal to plants (Mugford et al., 2010). In nature, sulfur is most commonly present in its most 

oxidised form as sulfate (SO4
2-) (Kopriva et al., 2012; Takahashi et al., 2011). The influx of 

sulfate into plant cells occurs against the gradient of membrane potential and is facilitated 

through plasma membrane-bound high-affinity sulfate transporters (SULTR; Figure 5.1a). 
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Figure 5.1 Sulfur metabolism in sal1 mutants. (A) Schematic representation of sulfur metabolism in Arabidopsis 

(Takahashi et al., 2011). Uptake of sulfate (SO4
2-) through the activity of sulfate transporters (SULTR), and 

subsequent activation of sulfate through synthesis of adenosine 5’-phosphosulfate (APS) by the activity of ATP 
sulfurylases in the cytoplasm (cyt-ATPS) and plastid (ATPS) are shown. Branching to primary sulfur metabolism 
occurs through the activity of APS reductase (APR) in plastids and the formation of sulfite (SO3

2-). Subsequent 
reduction to sulfide (S2-) by sulfite reductase (SiR) allows assimilation into cysteine (Cys), methionine (Met) and 
glutathione (GSH). Secondary sulfur metabolism occurs in plastids and the cytosol through activity of APS kinase 
(APK) and the formation of 3’-phosphoadenosine-5’-phosphosulfate (PAPS). In the cytoplasm, sulfotransferases 
(SOT) catalyse sulfation reactions, producing 3’-phosphoadenosine-5’-phosphate (PAP) as byproduct. PAPS 
transporter 1 (PAPST1) allows movement of PAPS and PAP between cytosol and plastid. SAL1 acts in the plastid 
to prevent accumulation of PAP. (B) Transcript levels for APR1 (left) and SULTR4;2 (right) in Col-0 and fry1-6 in 
non-sulfate-limiting conditions. Seedlings were grown on 0.5x MS media for 12 days in 12h:12h light:dark cycles 
under 60 µmol.m-2.s-1 white light. Data for each gene were normalised to an internal control (PP2a). Error bars 
indicate standard error of the mean for three technical replicates. 
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Plants contain four distinct subfamilies of SULTR-type sulfate transporters, bound to the 

plasma membrane (SULTR1, SULTR2 and SULTR3) and localised in the tonoplast (SULTR4) 

(Takahashi et al., 2012). Once absorbed, sulfate can be used directly for assimilation or 

transported into the vacuole for storage (Kopriva et al., 2012). Sulfate is highly stable, and must 

be activated before assimilation can occur (Kopriva et al., 2012; Takahashi et al., 2011). This 

is achieved by replacing the pyrophosphate in ATP with sulfate, resulting in adenosine 5’-

phosphosulfate (APS) through a reaction catalysed by ATP sulfurylase (ATPS, Figure 5.1a). 

APS serves as a branching point between primary and secondary sulfate metabolism, with 

primary metabolites (such as cysteine, methionine, glutathione and co-enzymes) containing the 

reduced form of sulfur (sulfide or thiol), and secondary metabolites (such as glucosinolates) 

utilising oxidised sulfur. In the primary assimilation pathway occurring in plastids and 

chloroplasts, APS is reduced to sulfite (SO3
2) by APS reductase (APR; Figure 5.1a), which is 

in turn reduced to sulfide (S2-) by ferredoxin-dependent sulfite reductase (SiR; Figure 5.1a). 

Sulfide is the form of reduced sulfur incorporated to form cysteine, the first product of primary 

sulfate assimilation. Cysteine can be used for peptide synthesis, or as a reduced sulfur donor 

for the biosynthesis of methionine and a large range of co-enzymes and co-factors, including 

glutathione (GSH). Alternatively, APS can be utilised for secondary sulfur metabolism via 

phosphorylation by APS kinase (APK; Figure 5.1a) to 3’-phosphoadenosine 5’-phosphosulfate 

(PAPS). Formation of PAPS occurs mainly through the action of three plastid-localised APK 

isoforms (APK1, APK2 and APK3), and to a lesser extent in the cytosol through the action of 

APK3 (Mugford et al., 2009). In the cytosol, PAPS acts as an active sulfate donor for the 

incorporation of sulfur into a variety of secondary metabolites through sulfation reactions (the 

transfer of the functional sulfo group to hydroxylated substrates), which is catalysed by 

sulfotransferases (SOT). The resulting by-product, 3’-phosphoadenosine 5’-phosphate (PAP), 

is hydrolysed through the activity of SAL1 in chloroplasts, with the movement of PAPS and 

PAP between plastid and cytosol possibly facilitated by the transporter PAPST1 (Klein and 

Papenbrock, 2004; Mugford et al., 2009; Gigolashvili et al., 2012). 
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In the sal1 mutant allele fou8, loss of SAL1 function has been reported to result in lower levels 

of internal sulfate and gene expression patterns similar to Col-0 plants subjected to sulfate 

deficiency, even when external sulfate is available (Lee et al., 2012). To confirm the sulfur-

deficient phenotype of sal1 mutants, transcript levels of the plastid-localised APR isoform 

APR1 and the tonoplast-localised sulfate transporter SULTR4;2 were determined in Col-0 and 

fry1-6 seedlings in non-sulfate-limiting conditions using qRT-PCR (Figure 5.1b). Both APR1 

and SULTR4;2 are nuclear-encoded genes for which expression is upregulated in response to 

sulfur depletion (Nikiforova et al., 2003; Kataoka et al., 2004), and which do not exhibit 

circadian rhythms in transcript abundance under constant light conditions (Covington and 

Harmer, 2007). Seedlings were grown on 0.5x MS agar plates for 12 days in 12h:12h light:dark 

cycles under 60 µmol.m-2.s-1 white light before harvesting in the late afternoon. Elevated levels 

of both APR1 and SULTR4;2 were observed in fry1-6 seedlings grown on 0.5x MS agar plates, 

which corresponds to the upregulation of sulfur starvation-responsive genes previously 

reported in 5-week old soil-grown fou8 plants (Lee et al., 2012). 

In Arabidopsis seedlings, iron (Fe2+) deficiency has been shown to increase circadian period 

under constant light conditions, while neither the absence nor excess of zinc (Zn2+), copper 

(Cu2+) or manganese (Mn2+) has any effect on free-running circadian period (Salomé et al., 

2012). To determine whether the long period circadian phenotype of sal1 could be as a result 

of sulfate deficiency, circadian rhythms in plants grown on sulfate-deficient media were 

analysed. For experimental controls, MS media was prepared according to the composition for 

MS basal media, and sulfate-deficient media prepared by replacing all sulfates with chlorides 

(see Section 2.1.1). qRT-PCR analysis of APR1 and SULT4;2 transcript levels was performed 

to confirm that seedlings grown on sulfate-deficient media were indeed experiencing sulfate 

starvation. Col-0 and alx8-1 seedlings were grown on 0.5x MS and 0.5x MS-sulfate agar plates 

for 12 days in 12h:12h light:dark cycles under 60 µmol.m-2.s-1 white light before harvesting in 

the late afternoon. As has been observed for fou8 (Lee et al., 2012) and fry1-6 (Figure 5.1b), 

alx8-1 seedlings grown in the presence of sulfate exhibited elevated levels of APR1 and 
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SULTR4;2 transcripts compared to Col-0 (Figure 5.2a and b). In addition, APR1 and SULTR4;2 

transcript levels were elevated in both Col-0 and alx8-1 seedlings grown on MS-sulfate media 

compared to seedlings grown on control MS media, indicating that growth on MS-sulfate agar 

plates results in sulfate deficiency stress gene responses (Nikiforova et al., 2003; Kataoka et 

al., 2004). 

With the efficacy of the MS-sulfate media to induce sulfate deficiency stress confirmed, 

chlorophyll a fluorescence imaging was used to analyse circadian rhythms in Col-0 and alx8-

1 grown on sulfate-deficient media under constant blue light. Seedlings were grown on 0.5x 

MS or 0.5x MS-sulfate agar plates for 12 days in 12h:12h light:dark cycles under 60 µmol.m-

2.s-1 white light before imaging under 20 µmol.m-2.s-1 constant blue light for ~5 days (Figure 

5.2c and d). FFT-NLLS analysis was performed on time series data using BRASS (Millar et 

al., 2010). As had been observed for seedlings grown on commercially-available 0.5x MS 

media (Section 4.2.3), Fq’/Fm’ fluctuations cycled with robust circadian rhythm in both Col-0 

and alx8-1 seedlings grown on control plates, with alx8-1 exhibiting a significantly longer 

period in Fq’/Fm’ fluctuations (25.03 ± 0.23 h) compared to Col-0 (23.12 ± 0.25 h; p<0.001, 

Student’s T-test). Under sulfate deficient conditions, Fq’/Fm’ rhythms remained robust in both 

Col-0 and alx8-1. Although a loss of amplitude in Fq’/Fm’ rhythms was observed in alx8-1 

towards the end of the ~5 days free run (Figure 5.2c), no significant difference in RAE was 

observed in either Col-0 or alx8-1 under sulfate-deficient conditions compared to control 

conditions (Figure 5.3d). Circadian period estimates for Fq’/Fm’ rhythms revealed a shortening 

of period in both Col-0 (22.73 ± 0.17 h) and alx8-1 (24.35 ± 0.30 h) seedlings grown without 

sulfate compared to their counterparts grown on control media, although this difference in 

period was not statistically significant (Figure 5.2d). Despite the shortening in period, alx8-1 

seedlings exhibited a longer period in Fq’/Fm’ rhythms compared to Col-0 even when grown in 

the absence of sulfate (p<0.01, Student’s T-test). 
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Figure 5.2 Chloroplast rhythms in sal1 grown under sulfate starvation conditions. (A) Transcript levels for 
APR1 and (B) SULTR4;2 in Col-0 and alx8-1 grown in sulfate-deficient and non-sulfate-deficient control 
conditions. Seedlings were grown on 0.5x MS or 0.5x MS-sulfate agar plates for 12 days in 12h:12h light:dark 
cycles under 60 µmol.m-2.s-1 white light. Data for each gene were normalised to an internal control (PP2a). Error 
bars indicate standard error of the mean for three technical replicates. (C) Waveforms and (D) circadian period 
estimates plotted against Relative Amplitude Error (RAE) for Fq’/Fm’ oscillations in Col-0 and alx8-1 grown in 
sulfate-deficient and non-sulfate-deficient control conditions under constant blue light. Seedlings were grown on 
0.5x MS or 0.5MS-sulfate agar plates and entrained in 12h:12h light:dark cycles under 60 µmol.m-2.s-1 white light 
for 12 days before imaging under 20 µmol.m-2.s-1 constant blue light. White bars and grey bars indicate subjective 
day and subjective night, respectively. Error bars indicate standard error of the mean, with n=8. For waveforms, 
error bars are shown every 10 hours for clarity. RAE is a measure of rhythmic robustness, with a value of 0 indicating 
an exact fit to a cosine wave (Plautz et al., 1997). Data from one of three independent experiments are shown. 
Asterisks indicate statistically significant difference in period compared to Col-0 grown on the comparative medium 
(** p<0.001; * p<0.01 Student’s T-test). 
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Since no lengthening in chloroplast rhythms was induced in either Col-0 or sal1 under sulfate-

deficient conditions, the effect of sulfate deficiency on nuclear rhythms was examined by 

monitoring rhythms in CCA1 expression under constant blue light. Col-0 CCA1::LUC2 and 

fry1-6 CCA1::LUC2 seedlings were grown on 0.5x MS or 0.5x MS-sulfate agar plates for 12 

days in 12h:12h light dark cycle under 60 µmol.m-2.s-1 white light, and subsequently imaged 

under 20 µmol.m-2.s-1 constant blue light for ~5 days. As had been observed for Fq’/Fm’ rhythms 

(Figure 5.2c and d), bioluminescence from CCA1::LUC2 activity cycled with robust circadian 

rhythm in both Col-0 and fry1-6 grown on control 0.5x MS plates (Figure 5.3a and b). 

CCA1::LUC2 activity peaked shortly after dawn as previously described (Jones et al., 2015), 

with circadian period estimates determined for CCA1::LUC2 rhythms (Figure 5.3b) 

significantly longer in fry1-6 (26.31 ± 0.10 h) than in Col-0 (24.70 ± 0.11 h; p<0.001, Student’s 

T-test). No effect on amplitude was observed in Col-0 or fry1-6 grown on sulfate-deficient 

media (Figure 5.3a). In addition, sulfate deficiency had no effect on period of CCA1::LUC2 

rhythms in Col-0 grown under sulfate-limited conditions, yet shortening of period was 

observed in fry1-6 plants grown in sulfate-deficient conditions compare to control conditions 

(Figure 5.3b). Despite the shortening of period under sulfate deficiency, period of CCA1::LU2 

rhythms remained significantly longer in fry1-6 (25.57 ± 0.08 h) than in Col-0 (24.76 ± 0.11 h; 

p<0.001, Student’s T-test).  

As sulfate deficiency had no effect on rhythms in CCA1 expression in Col-0, the effect of 

sulfate deficiency on the expression of other nuclear clock genes was investigated using various 

luciferase reporter lines. Col-0 expressing the luciferase reporter constructs CAB2::LUC, 

CCR2::LUC, LHY::LUC, PRR7::LUC or TOC1::LUC were grown on 0.5x MS or 0.5x MS-

sulfate agar plates for 12 days in 12h:12h light dark cycle under 60 µmol.m-2.s-1 white light, 

and subsequently imaged under 20 µmol.m-2.s-1 constant blue light for ~5 days. While a 

shortening of period was observed in CAB2::LUC and CCR2::LUC in Col-0 grown without 

sulfate compared to controls, these differences in period were not significant (Figure 5.3c).  
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Figure 5.3 Nuclear circadian rhythms in Col-0 and sal1 grown under sulfate starvation conditions. (A) 

Waveforms and (B) circadian period estimates plotted against Relative Amplitude Error (RAE) for luciferase
activity monitored in Col-0 CCA1::LUC2 and fry1-6 CCA1::LUC2 seedlings under constant blue light grown under 
sulfate-deficient and control conditions. (C) Period estimates of CAB2::LUC, CCR2::LUC, LHY::LUC, 
PRR7::LUC and TOC1::LUC activity in Col-0 grown under sulfur-deficient and control conditions under constant 
blue light. Seedlings were grown on 0.5x MS or 0.5x MS-sulfate agar plates and entrained in 12h:12h light:dark 
cycles under 60 µmol.m-2.s-1 white light for 12 days before imaging under 20 µmol.m-2.s-1 constant blue light. White 
bars and grey bars indicate subjective day and subjective night, respectively. Error bars indicate standard error of 
the mean, with n=10. For waveforms, error bars shown every 10 hours for clarity. RAE is a measure of rhythmic 
robustness, with a value of 0 indicating an exact fit to a cosine wave (Plautz et al., 1997). Data from one of three 
independent experiments are shown. Asterisks indicate statistically significant difference in period compared to 
Col-0 grown on comparative medium (** p<0.001; * p<0.01 Student’s T-test). 
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However, rhythms in LHY::LUC and PRR7::LUC were significantly shorter in plants grown 

in sulfate-deficient media compared to controls (p<0.01; Student’s T-test). As had been 

observed for CCA1::LUC2 rhythms, no effect on circadian period was observed in TOC1::LUC 

rhythms under sulfate deficiency. Such data suggest that sulfate deficiency may shorten the 

circadian period reported by specific promoters, although additional work will be necessary to 

assess this possibility. 

 

5.2.2. Plants with impaired secondary sulfur metabolism do not have a lengthened 

circadian period 

Since total removal of sulfate from media is not an accurate representation of the altered sulfur 

metabolism observed in sal1 mutants (Rodriguez et al., 2010; Lee et al., 2012), the effect of 

impaired secondary sulfur metabolism on circadian rhythms was examined. The apk1 apk2 

double mutant lacks the plastid-localised APS kinase APK1 and APK2 activities, and is 

inhibited in the production of PAPS (Mugford et al., 2009). The apk1 apk2 mutant exhibits 

smaller rosette size and lower levels of aliphatic glucosinolates and sulfated jasmonate, higher 

levels of the desulfo-precursors of glucosinolates and upregulation of genes involved in 

glucosinolate synthesis – all phenotypes associated with the sal1 mutant allele fou8 (Mugford 

et al., 2009; Rodriguez et al., 2010; Lee et al., 2012). In addition, introduction of the fou8 

mutation into the apk1 apk2 mutant background does not rescue these phenotypes, with the 

apk1 apk2 fou8 triple mutant exhibiting low levels of aliphatic glucosinolates, higher levels of 

desulfo- glucosinolate precursors and enhanced glucosinolate synthesis gene expression similar 

to apk1 apk2 (Lee et al., 2012). To determine whether impaired secondary metabolism 

influences circadian rhythms, rhythms in Fq’/Fm’ were monitored in Col-0, fou8, apk1 apk2 

and apk1 apk2 fou8 seedlings under constant blue light. Seedlings were grown on 0.5x MS agar 

plates for 12 days in 12h:12h light:dark cycles under 60 µmol.m-2.s-1 white light before imaging 

under 20 µmol.m-2.s-1 constant blue light for ~5 days (Figure 5.4a and b). 
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Figure 5.4 Chloroplast rhythms in seedlings deficient in secondary sulfur metabolism under constant blue 

light. (A) Waveforms and (B) circadian period estimates plotted against Relative Amplitude Error (RAE) for 
Fq’/Fm’ oscillations in Col-0, fou8, apk1 apk2 and apk1 apk2 fou8 under conditions under constant blue light. 
Seedlings were grown on 0.5x MS agar plates and entrained in 12h:12h light:dark cycles under 60 µmol.m-2.s-1

white light for 12 days before imaging under 20 µmol.m-2.s-1 constant blue light. White bars and grey bars indicate 
subjective day and subjective night, respectively. Error bars indicate standard error of the mean, with n=8. For 
waveforms, error bars are shown every 10 hours for clarity. RAE is a measure of rhythmic robustness, with a value 
of 0 indicating an exact fit to a cosine wave (Plautz et al., 1997). Data from one of three independent experiments 
are shown. Asterisks indicate statistically significant difference in period compared to Col-0 control (** p<0.001, 
Student’s T-test). 
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As had been observed for plants grown on sulfate-deficient media (Figure 5.2), Fq’/Fm’ rhythms 

cycled with robust circadian rhythm in Col-0, fou8, apk1 apk2 and apk1 apk2 fou8, while no 

dampening of rhythms was observed over the course of the ~5 days in free-run (Figure 5.4a). 

Circadian period estimates confirmed the significant long period of Fq’/Fm’ rhythms in fou8 

(24.60 ± 0.13 h) compared to Col-0 (23.67 ± 0.07 h; p<0.001; Student’s T-test), as had been 

previously observed for sal1 mutants under constant blue light (Section 4.2.3). However, no 

long period in Fq’/Fm’ rhythms was observed for apk1 apk2 or apk1 apk2 fou8 compared to 

Col-0. While the period of these rhythms tended to be shorter in apk1 apk2 (23.30 ± 0.13 h) 

and apk1 apk2 fou8 (23.46 ± 0.16 h) compared to Col-0, differences were not statistically 

significant. These data correspond to previous reports that mutation of fou8 does not rescue the 

apk1 apk2 phenotype, and that APK1 and APK2 function in the same pathway as SAL1. (Lee 

et al., 2012). 

 

5.2.3. No changes in splicing of core clock transcripts is observed in sal1 mutants under 

constant blue light 

Alternative splicing (AS), particularly intron retention events, has been shown to play an 

important role in regulating circadian responses to environment changes. To determine whether 

any intron retention events in core clock transcripts occur in sal1 mutants grown under constant 

blue light, full-length transcripts of morning- and evening-phased clock genes were examined 

using RT-PCR (Figure 5.5). Seedling were grown on 0.5x MS agar plates in 12h:12h light:dark 

cycles under 60 µmol.m-2.s-1 white light for 10 days, and subsequently transferred to 20 

µmol.m-2.s-1 constant blue light at subjective dawn. After three days in free-run, seedlings (10-

12 per time point) were harvested and RT-PCR analysis performed on extracted total mRNA 

following DNase treatment. For each clock transcript, the time point with the highest transcript 

abundance in sal1 (Figure 4.9) was chosen for analysis. Analysis of transcripts for the morning-

phased LHY gene, and for the evening-phased genes PRR5 and TOC1 showed only a single, 

clear band corresponding to fully spliced transcripts in Col-0, alx8-1 and fry1-6. 
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Figure 5.5 Intron retention events in core clock mRNA transcripts in sal1 mutants under constant blue light.

RT-PCR analysis of full-length mRNA transcripts for the core clock genes CCA1, LHY, PRR5 and TOC1. Simplified 
gene diagrams indicate position of forward and reverse primer binding near transcription start and stop codons, 
respectively. Orange arrow indicates bands corresponding to the CCA1� mRNA isoform retaining intron 4. NT is 
non-template control. Seedlings were grown on 0.5x MS agar plates in 12h:12h light:dark cycles under 60 µmol.m-

2.s-1 white light for 10 days before being transferred to 20 µmol.m-2.s-1 constant blue light. 10-12 seedlings were 
sampled per time point. For each gene, the time point with highest transcript levels in alx8-1 were chosen. 
Amplification of transcripts at ZT51 (CCA1 and LHY), ZT57 (PRR5) and ZT87 (TOC1) are shown. 
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In contrast, two bands were visible for CCA1 transcripts in Col-0 and sal1mutants, one 

corresponding to the fully spliced CCA1 transcript and the other to an mRNA isoform retaining 

intron 4. This CCA1 mRNA isoform (CCA1�), arising from an intron retention event involving 

intron 4, has been shown to occur ubiquitously in Arabidopsis and plays a role in low 

temperature and high light responses (Filichkin et al., 2010; James et al., 2012; Seo et al., 2012). 

Under non-stressed conditions, rhythms in accumulation of the two CCA1 mRNA isoforms are 

synchronised, with no difference in period or phase of oscillations (Filichkin et al., 2010; James 

et al., 2012). To determine whether the retention of CCA1 intron 4 is affected in sal1, rhythms 

in accumulation of the two CCA1 mRNA isoforms in constant white light was analysed using 

qRT-PCR (Figure 5.6). Seedlings were entrained as described for Figure 5.5, and following 

entrainment were transferred to 60 µmol.m-2.s-1 constant white light at subjective dawn (ZT0). 

After 48 hours of free run, 10-12 seedlings per time point were sampled every 3 hours from 

subjective dawn. As had been observed under constant blue light (Figure 4.2.6), analysis of 

transcripts amplified by targeting CCA1 exon 6 reveals circadian oscillations in transcript 

abundance, with a late phase in peak transcript accumulation in alx8-1 and fry1-6 (Figure 5.6a). 

When targeting the fully spliced mRNA isoform (with forward primer and reverse primer 

binding to exon 3 and exon 4, respectively), peak transcript accumulation at ZT48 and ZT72 

in Col-0, as well as a late phase in alx8-1 and fry1-6 are again observed (Figure 5.6b). Similarly, 

targeting the CCA1� isoform (with forward primer and reverse primer binding to intron 4 and 

exon 4, respectively) reveals transcription level peaks at subjective dawn in Col-0 and a late 

phase in transcript oscillation in sal1 mutants (Figure 5.6c). As had been previously reported 

(Filichkin et al., 2010; James et al., 2012), both mRNA isoforms are synchronised in transcript 

level oscillations in Col-0, and the same phase in oscillations is obtained when using primers 

that do not distinguish between the two isoforms (Figure 5.6a). Furthermore, oscillations in 

abundance of the two RNA isoforms are synchronised in sal1 as in Col-0, with both CCA1 

mRNA isoforms oscillating with the same late phase in sal1. 
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Figure 5.6 Rhythms in transcript accumulation of CCA1 mRNA isoforms under constant white light. qRT-
PCR analysis of accumulation of (A) all mRNA isoforms combined, (B) fully spliced mRNA isoform and (C) 

alternatively spliced mRNA isoform retaining intron 4 of the morning-phased core clock gene CCA1 (CCA1�). 
Simplified gene diagrams indicate the positions of primer binding. Seedlings were grown on 0.5x MS agar plates 
and entrained in 12h:12h light:dark cycles under 60 µmol.m-2.s-1 white light for 10 days before being transferred to 
60 µmol.m-2.s-1 constant white light at subjective dawn. After 48 hours in free-run, 10-12 seedlings were sampled 
and pooled, with sampling repeated every three hours for two days. White bars and grey bars indicate subjective 
day and subjective night, respectively. Data for each gene were normalised to an internal control PP2a, and are 
averages of three biological replicates. Error bars indicate standard error of the mean. 
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5.2.4. Loss of XRN4 activity lengthens circadian period 

The broad range of morphological and molecular phenotypes associated with sal1 mutants has 

been attributed to the inhibition of 5’�3’ exoribonucleases (XRNs) in the absence of SAL1 

activity (Gy et al., 2007; Kim and von Arnim, 2009; Chen and Xiong, 2010; Estavillo et al., 

2011; Hirsch et al., 2011; Chan et al., 2016a). PAP is known to inhibit XRN activity in vitro 

(Dichtl et al., 1997; Estavillo et al., 2011), and sal1 mutants share numerous phenotypes with 

xrn mutants (Gy et al., 2007; Chen and Xiong, 2010; Estavillo et al., 2011; Hirsch et al., 2011). 

The Arabidopsis genome contains three XRNs, each structurally similar to the cytoplasmic 

Xrn2p/Rat1p 5’�3’ exoribonuclease ortholog in Saccharomyces cerevisiae (Kastenmayer and 

Green, 2000). XRN2 and XRN3 function in the nucleus, while XRN4 (also called ETHYLENE 

INSENSITIVE 5, EIN5) is localised in the cytoplasm and acts as a functional homologue of 

the S. cerevisiae Xrn1p (Kastenmayer and Green, 2000). While the mechanisms and exact 

function of Arabidopsis XRNs are not as well characterised as for the yeast homologues, XRNs 

have been shown to play important roles in numerous RNA processing pathways including 

miRNA-mediated RNA decay, and also act as suppressors of posttranscriptional gene silencing 

(PTGS) (Kastenmayer and Green, 2000; Souret et al., 2004; Gy et al., 2007; Zakrzewska-

Placzek et al., 2010).  

Since RNA stability plays an important role in circadian regulation (Nolte and Staiger, 2015), 

the effect of reducing XRN activity within the circadian system was investigated. Rhythms in 

Fq’/Fm’ were monitored in the xrn2-1, xrn3-3 and ein5-1 (xrn4) single mutants (Roman et al., 

1995; Gy et al., 2007), as well as in the xrn2-1 xrn3-3 xrn4-6 triple mutant (Hirsch et al., 2011) 

under constant blue light. xrn2-1 and ein5-1 are loss-of-function mutations while xrn3-3 is 

hypomorphic, with homozygous complete loss-of-function xrn3 allele reported as being lethal 

(Gy et al., 2007). Seedlings were grown on 0.5x MS agar plates for 12 days in 12h:12h 

light:dark cycles under 60 µmol.m-2.s-1 white light before imaging under 20 µmol.m-2.s-1 

constant blue light for ~5 days (Figure 5.7a, b and c).  

  



170 
 

 

 
Figure 5.7 Chloroplast rhythms in xrn mutants under constant blue light. (A-B) Circadian period estimates and 
(C) circadian period estimates plotted against Relative Amplitude Error (RAE) for Fq’/Fm’ oscillations in (A) Col-
0, xrn2-1, xrn3-3, ein5-1 single mutants and in the xrn234 triple mutant, in (B) Col-0, ein5-1 and xrn4-3, and in (C)

individual seedlings from a segregating xrn2- xrn3-3 double mutant population under constant blue light. Seedlings 
were grown on 0.5x MS agar plates and entrained in 12h:12h light:dark cycles under 60 µmol.m-2.s-1 white light for 
12 days before imaging under 20 µmol.m-2.s-1 constant blue light. Error bars indicate standard error of the mean,
with n=8. RAE is a measure of rhythmic robustness, with a value of 0 indicating an exact fit to a cosine wave (Plautz 
et al., 1997). Data from one of three independent experiments are shown. Asterisks indicate statistically significant 
difference in period compared to Col-0 control (* p<0.01, ** p<0.001, Student’s T-test). 
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Circadian period estimates indicated no significant difference in period of Fq’/Fm’ rhythms in 

xrn2 (23.97 ± 0.07 h) or xrn3 (23.82 ± 0.08 h) compared to Col-0 (24.09 ± 0.12 h; Figure 5.7a). 

Interestingly, a significantly longer period was observed in both ein5-1 (25.10 ± 0.21 h) and 

xrn234 (25.14 ± 0.13 h) compared to Col-0 (p<0.01; Student’s T-test), with no significant 

difference in period between ein5-1 and xrn234 (Figure 5.7a). The significantly lengthened 

circadian period observed in ein5-1 was also observed in a second xrn4 mutant allele, xrn4-3 

(Figure 5.7b). 

Since loss of cytoplasmic XRN (XRN4) activity resulted in lengthening of circadian period, 

the effect of loss of nuclear XRN activity on circadian rhythms was investigated. The nuclear 

XRNs, XRN2 and XRN3, have overlapping functions (Gy et al., 2007), and therefore rhythms 

in Fq’/Fm’ were monitored in the xrn2-1 xrn3-3 double mutant (Gy et al., 2007). As the 

homozygous xrn2 xrn3 mutant is sterile (Gy et al., 2007; Hirsch et al., 2011), a segregating 

xrn2-1(-/-) xrn3-3(-/+) population was used and Fq’/Fm’ rhythms monitored in individual 

seedlings. If the combined total loss of nuclear XRN function lengthened circadian rhythms, ¼ 

of the segregating xrn2-1(-/-) xrn3-3(-/+) population would be expected to exhibit long period 

rhythms in Fq’/Fm’. Upon analysis of 58 individual xrn2-1 xrn3-3 seedlings and 45 individual 

Col-0 seedlings, no lengthening in circadian period was observed between the xrn2 xrn3 double 

mutant and Col-0 seedlings (24.13 ± 0.24 h average period; Figure 5.7c).  

To further analyse the long circadian period observed upon loss of XRN4 function, the 

accumulation of nuclear clock gene transcripts were analysed in Col-0 and ein5-1 under 

constant white light (Figure 5.8). Seedlings were grown on 0.5x MS agar plates in 12h:12h 

light:dark cycles under 60 µmol.m-2.s-1 white light for 10 days and, following entrainment, were 

transferred to 60 µmol.m-2.s-1 constant white light at subjective dawn (ZT0). After 48 hours of 

free run, 10-12 seedlings per time point were sampled from subjective dawn (ZT48) every 3 

hours for two days. Rhythmic accumulation was observed for the morning-phased nuclear 

clock gene transcripts CCA1 and LHY, as well as for the evening-phased ELF4, GI and PRR5 

transcripts in both Col-0 and ein5-1 (Figure 5.8).  
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Figure 5.8 Expression of core nuclear circadian clock genes in ein5-1 mutants under constant white light.

qRT-PCR analysis of transcript accumulation for morning-phased core clock genes (A) CCA1 and (B) LHY, and
evening-phased core clock genes (C) ELF4 (D) GI and (E) PRR5 in Col-0 and xrn4 single mutant ein5-1 under 
constant white light. Seedlings were grown on 0.5x MS agar plates and entrained in 12h:12h light:dark cycles under 
60 µmol.m-2.s-1 white light for 10 days before being transferred to 60 µmol.m-2.s-1 constant white light at subjective 
dawn. After 48 hours in free-run, 10-12 seedlings were sampled and pooled, with sampling repeated every three 
hours for two days. Data for each gene were normalised to an internal control (PP2a). White bars and grey bars 
indicate subjective day and subjective night, respectively. Data are representative of two biological replicates. Error 
bars indicate standard error of the mean. 
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A modest late phase (~3 hours) in peak transcript accumulation was observed for analysed 

clock gene transcripts in ein5-1 compared to Col-0 (particularly for the evening-phased genes 

GI and PRR5), with the phase shift more pronounced on the second day of free-run. Although 

not as pronounced, this late phase in transcript accumulation corresponded to the long period 

observed in Fq’/Fm’ rhythms in ein5-1 under constant blue light (Figure 5.7a and b), and support 

a previous report of long period rhythmic CCA1 transcription in ein5-1 under constant light 

conditions (Hanano et al., 2006). 

To determine whether the long period phenotype of ein5-1 is as a result of mis-regulation of 

nuclear clock gene transcription under entraining conditions, accumulation of clock gene 

transcripts under light:dark cycles was analysed in Col-0 and ein5-1. Seedlings were entrained 

on 0.5x MS agar plates in 16h:8h light:dark cycles under 60 µmol.m-2.s-1 white light for 12 

days, and tissue (10-12 seedlings per timepoint) harvested from dawn (ZT0) the following day. 

Rhythms of transcription of clock genes was as previously reported (Hsu and Harmer, 2014; 

Millar, 2016), with transcripts of morning-phased components peaking at dawn and transcripts 

of evening-phased clock components accumulating at highest levels in the afternoon or early 

evening (Figure 5.9). In Col-0, transcript levels for the morning-phased clock components 

CCA1 and LHY peak 1 hour after dawn (Figure 5.9a and b). This was followed by a steady 

decrease in transcript abundance over the course of the day until the lowest levels were reached 

~8 hours after dawn, and a subsequent increase in transcript towards the end of the night in 

anticipation of dawn. Rhythms in CCA1 and LHY transcript accumulation were similar to Col-

0 in ein5-1, but with a modest (~2 hour) delay in peak transcript abundance compared to Col-

0. However, no delay in CCA1 or LHY transcript accumulation was observed in ein5-1 over the 

course of the day, with transcripts reaching wild-type levels within 4 hours after dawn and 

morning-phased transcripts at low levels in both Col-0 and ein5-1 in the afternoon. A similarly 

modest late phase in peak transcript abundance was observed for evening-phased ELF4, with 

transcripts peaking at ZT12 in Col-0 and an ~2 hour phase shift observed in ein5-1 (Figure 

5.9d).  
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Figure 5.9 Expression of core nuclear circadian clock genes in ein5-1 mutants under long-day conditions.

qRT-PCR analysis of transcript accumulation for morning-phased core clock genes (A) CCA1 and (B) LHY, and
evening-phased core clock genes (C) GI  (D) ELF4, (E) PRR5 and (F) TOC1 in Col-0 and xrn single mutant ein5-

1 under long-day conditions. Seedlings were grown on 0.5x MS agar plates and entrained in 16h:8h light:dark cycles 
under 60 µmol.m-2.s-1 white light for 12 days before sampling. Data for each gene were normalised to an internal 
control (PP2a). White bars and black bars indicate day and night, respectively. Data are representative of two 
biological replicates. Error bars indicate standard error of the mean. 
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No late phase was observed for evening-phased components GI and PRR5 in ein5-1, with 

transcripts peaking at ZT9 (Figure 5.9c and e). Transcripts for evening component TOC1 were 

present at lower levels during the day in ein5-1 compared to Col-0, with a possible late phase 

in peak transcript abundance observed towards the end of the day in ein5-1 (Figure 5.9f).  

 

5.2.5. The xrn234 triple mutant mimics the long-period circadian phenotype of sal1 

mutants 

While the long period observed in the ein5-1 single mutant suggests that inhibition of XRN4 

correlates with lengthened circadian period, previous reports have linked sal1 phenotypes to 

the activities of XRN2 and XRN3 (Gy et al., 2007; Estavillo et al., 2011; Kurihara et al., 2012), 

as well as to XRN4 (Gy et al., 2007). Indeed, a certain level of functional redundancy has been 

reported among the three Arabidopsis XRNs (Kastenmayer and Green, 2000; Gy et al., 2007; 

Zakrzewska-Placzek et al., 2010). In order to account for the functional redundancy among the 

XRNs, the xrn234 mutant was chosen for further analysis into the role of XRN activity in 

maintaining circadian rhythms. To confirm whether the long circadian period of chloroplast 

rhythms observed in sal1 mutants is mimicked in the xrn234 triple mutant, rhythms in Fq’/Fm’ 

and delayed fluorescence oscillations were monitored in sal11 and xrn234 under constant blue 

light conditions. Seedlings were grown on 0.5x MS agar plates individually (for chlorophyll a 

fluorescence) or in clusters of 10-15 (for delayed fluorescence) and entrained for 10 or 12 days, 

respectively, in 12h:12h light:dark cycles under 60 µmol.m-2.s-1 white light before imaging 

under 20 µmol.m-2.s-1 constant blue light (Figure 5.10a and b). Chlorophyll a fluorescence 

imaging confirmed the long period phenotype of alx8-1 and xrn234 (Figure 5.10 and b), with 

Fq’/Fm’ rhythms robust and exhibiting a significantly longer period in both alx8-1 (24.97 ± 

0.19) and xrn234 (25.08 ± 0.19) compared to Col-0 (23.86 ± 0.18; p<0.001; Student’s T-test).  
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Figure 5.10 Circadian rhythms in chloroplasts of xrn234 under constant blue light. (A,C) Waveforms and 
(B,D) circadian parameter estimates for (A-B) Fq’/Fm’ and (C-D) delayed fluorescence oscillations in Col-0, sal1

and the xrn triple mutant xrn234. Seedlings were grown on 0.5x MS agar plates and entrained in 12h:12h light:dark 
cycles under 60 µmol.m-2.s-1 white light for 12 days before imaging under 20 µmol.m-2.s-1 constant blue light. White 
bars and grey bars indicate subjective day and subjective night, respectively. Error bars indicate standard error of 
the mean, with n=8. For waveforms, error bars are shown every 10 hours for clarity. RAE is a measure of rhythmic 
robustness, with a value of 0 indicating an exact fit to a cosine wave (Plautz et al., 1997). Data from one of three
independent experiments are shown. Asterisks indicate statistically significant difference in period compared to 
Col-0 control (** p<0.001, Student’s T-test). 
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Similarly, delayed fluorescence rhythms remained robust in Col-0, alx8-1, fry1-6 and xrn234 

(Figure 5.10b and c), with circadian period estimates confirming a significantly longer period 

in alx8-1 (25.11 ± 0.34 h), fry1-6 (25.07 ± 0.26 h) and xrn234 (25.07 ± 0.18 h) compared to 

Col-0 (23.88 ± 0.19 h; p<0.001, Student’s T-test). Furthermore, no difference in period was 

observed between sal1 mutants and the xrn234 triple mutant for either Fq’/Fm’ or delayed 

fluorescence rhythms. 

Since long-period chloroplast rhythms were observed in both sal1 and xrn234, circadian 

regulation of rhythmic transcript accumulation was investigated in xrn234 under constant blue 

and constant white light conditions. Seedlings were grown on 0.5x MS agar plates in 12h:12h 

light:dark cycles under 60 µmol.m-2.s-1 white light for 10 days, transferred to 20 µmol.m-2.s-1 

constant blue light or 60 µmol.m-2.s-1 constant white light at subjective dawn (ZT0), and 

harvested after 48 hours of free run as previously described. As had been previously observed 

(Section 4.2.6), morning-phased nuclear clock gene transcripts CCA1 and LHY, and evening-

phased ELF4, GI and PRR5 transcripts accumulated with circadian rhythm in Col-0 under 

constant blue light (Figure 5.11). A late phase in peak transcript accumulation for morning- 

and evening phased transcripts (~3 hours on the first day of free-run, and more pronounced on 

the second day) was observed for alx8-1, fry1-6 and xrn234 under constant blue light. This 

phase shift corresponded to the long-period phenotype of chloroplast rhythms in sal1 and 

xrn234 under constant blue light (Figure 5.10). Interestingly, this late phase in transcript 

accumulation rhythms was visible, but less pronounced under constant white light than under 

constant blue light in sal1 mutant alleles and in xrn234 for both morning-and evening-phased 

transcripts (Figure 5.12). Finally, the regulation of clock gene transcription under entraining 

conditions was investigated in sal11 and xrn234. Col-0, alx8-1, fry1-6 and xrn234 seedlings 

were entrained on 0.5x MS agar plates in 16h:8h light:dark cycles under 60 µmol.m-2.s-1 white 

light for 12 days, and tissue harvested from dawn (ZT0) the following day as previously 

described.  
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Figure 5.11 Expression of core nuclear circadian clock genes in sal1 and xrn234 mutant under constant blue 

light. qRT-PCR analysis of transcript accumulation for morning-phased core clock genes (A) CCA1 and (B) LHY, 
and evening-phased core clock genes (C) ELF4 (D) GI and (E) PRR5 in Col-0, alx8-1, fry1-6 and xrn234 mutants 
under constant blue light. Seedlings were grown on 0.5x MS agar plates and entrained in 12h:12h light:dark cycles 
under 60 µmol.m-2.s-1 white light for 10 days before being transferred to 20 µmol.m-2.s-1 constant blue light at 
subjective dawn. After 48 hours in free-run, 10-12 seedlings were sampled and pooled, with sampling repeated 
every three hours for two days. Data for each gene were normalised to an internal control (PP2a). White bars and 
grey bars indicate subjective day and subjective night, respectively. Data are average of three biological replicates. 
Error bars indicate standard error of the mean. 
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Figure 5.12 Expression of core nuclear circadian clock genes in sal1 and xrn234 mutant under constant white 

light. qRT-PCR analysis of transcript accumulation for morning-phased core clock genes (A) CCA1 and (B) LHY, 
and evening-phased core clock genes (C) ELF4 (D) GI (E) PRR5 and (F) TOC1 in Col-0, alx8-1, fry1-6 and xrn234

mutants under constant white light. Seedlings were grown on 0.5x MS agar plates and entrained in 12h:12h 
light:dark cycles under 60 µmol.m-2.s-1 white light for 10 days before being transferred to 60 µmol.m-2.s-1 constant 
white light at subjective dawn. After 48 hours in free-run, 10-12 seedlings were sampled and pooled, with sampling 
repeated every three hours for two days. Data for each gene were normalised to an internal control (PP2a). White 
bars and grey bars indicate subjective day and subjective night, respectively. Data are average of three biological 
replicates. Error bars indicate standard error of the mean. 
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While delayed accumulation of CCA1 transcript was visible in both sal1 alleles and xrn234 

(Figure 5.13a), no difference in transcript accumulation rhythms was observed for LHY 

transcripts in alx8-1, fry1-6 or xrn234 compared to Col-0 (Figure 5.13b). CCA1 transcripts 

were present throughout the afternoon in alx8-1 and fry1-6, and detectable until midday in 

xrn234, while these levels were almost undetectable in Col-0 beyond ZT8. A less pronounced 

delay in transcript accumulation was observed for evening-phased ELF4, GI and PRR5 

transcripts in alx8-1, fry1-6 and xrn234 compared to WT (Figure 5.13c, d and e). Furthermore, 

ELF4 and GI transcripts were present in lower levels throughout the day in xrn234, compared 

to Col-0 and sal1 mutants (Figure 5.13c and d). 

 

5.2.6. 3’ non-coding transcripts and 4CL1 as possible targets for XRN regulation of 

circadian rhythms 

A study of fry1-6 and xrn mutants employing whole genome sequencing (RNA-sequencing and 

whole-genome tiling array methods) identified the accumulation of several thousand non-

coding transcripts mapping to the 3’ ends of certain genes in both fry1-6 and xrn3-3, and to a 

lesser extent in the xrn2 xrn3 and xrn3 xrn4 double mutants (Kurihara et al., 2012). These 3’ 

non-coding regions belong to genes that are actively transcribed, occur as separate transcripts 

(not as a result of extensions of 5’-mRNA), and are thought to arise from mRNA and miRNA 

precursor transcripts. Analysis of the publicly-available RNA-seq data revealed 3’ non-coding 

transcripts for ELF4 and PRR5 had been identified as accumulating in fry1-6 (Kurihara et al., 

2012). As a starting point to determine whether these 3’ non-coding transcripts play a role in 

the long-period circadian phenotype of sal1 and xrn234, qRT-PCR analysis was employed to 

analyse the levels of 3’ non-coding transcripts for ELF4 and PRR5 under constant light 

conditions. Col-0, alx8-1, fry1-6 and xrn234 seedlings were grown on 0.5x MS agar plates in 

12h:12h light:dark cycles under 60 µmol.m-2.s-1 white light for 10 days, and transferred to 20 

µmol.m-2.s-1 constant blue light or 60 µmol.m-2.s-1 constant white light at subjective dawn. 

Under constant blue and constant white light, accumulation of 3’ non-coding regions of ELF4  
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Figure 5.13 Expression of core nuclear circadian clock genes in sal1 and xrn234 mutants under long-day 

conditions. qRT-PCR analysis of transcript accumulation for morning-phased core clock genes (A) CCA1 and (B) 

LHY, and evening-phased core clock genes (C) ELF4 (D) GI and (E) PRR5 in Col-0, alx8-1, fry1-6 and xrn234

under long-day conditions. Seedlings were grown on 0.5x MS agar plates and entrained in 16h:8h light:dark cycles 
under 60 µmol.m-2.s-1 white light for 12 days before sampling. Data for each gene were normalised to an internal 
control (PP2a). White bars and black bars indicate day and night, respectively. Data are averages of three biological 
replicates. Error bars indicate standard error of the mean. 
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and PRR5 were detected in both alx8-1 and fry1-6 while levels of these transcripts were almost 

undetectable in Col-0 (Figure 5.14), corresponding to previous reports (Kurihara et al., 2012). 

In both alx8-1 and fry1-6, accumulation of ELF4 3’ non-coding transcripts was higher under 

constant blue light (Figure 5.14a) than under constant white light (Figure 5.14c). Interestingly, 

3’ non-coding transcripts for ELF4 or PRR5 did not accumulate in xrn234 under constant blue 

or constant white light (Figure 5.14b and d), suggesting that accumulation of these transcripts 

is not involved in the long-period circadian phenotype observed in xrn234. 

Several putative targets of XRN4 have been identified through the use of cDNA microarray 

analysis comparing xrn4-5 and Col-0 plants (Souret et al., 2004). Of these possible targets, 4-

COUMARATE:COA LIGASE 1 (4CL1), exhibits a 1.9-fold increase in expression in xrn4-5, 

and has been identified through previous microarray studies as being under circadian regulation 

(Souret et al., 2004; Mockler et al., 2007). In an attempt to identify a possible mechanisms 

through which XRN4 activity influences circadian rhythms, accumulation of 4CL1 transcript 

was analysed in Col-0, sal1 and xrn mutants under constant light and long-day conditions 

(Figure 4.15). For analysis under constant light, seedling were entrained in 12h:12h light:dark 

cycles and transferred to constant light conditions as previously described. For analysis under 

long-day conditions, seedlings were entrained for 12 days in 16h:8h light:dark cycles for 12 

days as previously described. Despite previous reports to the contrary (Mockler et al., 2007), 

qRT-PCR analysis of 4CL1 transcripts revealed no circadian rhythm in transcript accumulation 

under constant white light (Figure 5.15a). Furthermore, no difference in 4CL1 transcript 

abundance was visible in ein5-1 or xrn234 compared to Col-0 under any of light regimes 

(Figure 5.15a, b and c). These data suggest that 4CL1 is unlikely to be a mechanism through 

which XRN activity impacts the circadian system. 
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Figure 5.14 Accumulation of 3’ non-coding transcripts of core nuclear circadian clock genes in sal1 and 

xrn234 mutants under constant light conditions. qRT-PCR analysis of the accumulation of 3’ non-coding 
transcripts for evening-phased core clock genes (A,C) ELF4 and (B,D) PRR5 in Col-0, alx8-1, fry1-6 and xrn234

under constant (A-B) blue and (C-D) white light.. Seedlings were grown on 0.5x MS agar plates and entrained in 
12h:12h light:dark cycles under 60 µmol.m-2.s-1 white light for 10 days before being transferred to 20 µmol.m-2.s-1

constant blue light or 60 µmol.m-2.s-1 constant white light at subjective dawn. After 48 hours in free-run, 10-12 
seedlings were sampled and pooled, with sampling repeated every three hours for two days. Data for each gene were 
normalised to an internal control (PP2a). White bars and grey bars indicate subjective day and subjective night, 
respectively. Data are average of three biological replicates. Error bars indicate standard error of the mean. 
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Figure 5.15 Transcription of 4CL1 in sal1 and xrn mutants under constant light and long-day conditions.

qRT-PCR analysis of accumulation of 4CL1 transcripts in (A-B) Col-0 and ein5-1, and in (C) Col-0, alx8-1, fry1-6 

and xrn234 under (A) constant white light or (B-C) long-day conditions. (A) Seedlings were grown on 0.5x MS 
agar plates and entrained in 12h:12h light:dark cycles under 60 µmol.m-2.s-1 white light for 10 days before being 
transferred to 60 µmol.m-2.s-1 constant white light at subjective dawn. After 48 hours in free-run, 10-12 seedlings 
were sampled and pooled, with sampling repeated every three hours for two days. White bars and grey bars indicate 
subjective day and subjective night, respectively (B-C) Seedlings were grown on 0.5x MS agar plates and entrained 
in 12h:12h light:dark cycles under 60 µmol.m-2.s-1 white light for 12 days before harvesting. White bars and black 
bars indicate day and night, respectively. Data for each gene were normalised to an internal control (PP2a). Data 
are average of three biological replicates. Error bars indicate standard error of the mean. 
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5.3. Discussion 

5.3.1. The long circadian period of sal1 mutants is not due to altered sulfur metabolism 

Upon loss of SAL1 function, the accumulation of PAP in sal1 mutants results in mis-regulation 

of sulfur metabolism (Rodriguez et al., 2010; Lee et al., 2012). sal1 mutants exhibit gene 

expression patterns similar to wild-type plants exposed to sulfate stress, whether in the presence 

or absence of external sulfate (Figure 5.1, 5.2; Lee et al., 2012). Micronutrients can have an 

effect on circadian rhythms, as is demonstrated by the long period in rhythmic expression of 

CCA1, PRR7 and TOC1 under Fe-starvation conditions (Salomé et al., 2012). In contrast, the 

micronutrients Cu, Mn and Zn have no effect on circadian period, whether absent or present in 

excess (Salomé et al., 2012). Very little is known about the effect of sulfur and sulfur 

metabolism on the circadian system. Previous microarray analysis identifies a small cluster of 

5 genes involved in sulfur assimilation that are under circadian control, including genes 

involved in the uptake and reduction of sulfate and formation of the serine biosynthesis 

intermediate O-acetyl-serine (Harmer et al., 2000). However, analysis of chloroplast and 

nuclear circadian rhythms in both Col and sal1 under sulfate starvation conditions did not 

reveal any lengthening of circadian period under constant light conditions (Figure 5.2 and 5.3). 

In both Col-0 and sal1 sulfate starvation either had no effect on circadian rhythm, or resulted 

in a shortening of period. Similarly the apk1 apk2 double mutant, in which secondary sulfur 

metabolism is disrupted (Mugford et al., 2009), does not exhibit a long-period circadian 

phenotype (Figure 5.4). Rhythms in Fq’/Fm’ cycled with a shortened period in apk1 apk2 

compared to Col-0, although this difference was not statistically significant. The observation 

that sulfate starvation significantly shortens the period of some nuclear rhythms in wild-type 

(LHY::LUC and PRR7::LUC), but not others (CCA1::LUC2, CAB2::LUC, CCR2::LUC, and 

TOC1::LUC) needs further investigation. According to the circadian model, a single oscillator 

can produce rhythmic outputs with different phases, but with only one period (Wood et al., 

2001; Hall et al., 2002). Therefore, rhythmic outputs with different periods require different 

clocks (Wood et al., 2001; Hall et al., 2002). In tobacco, rhythms in cytosolic calcium oscillate 
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with a shorter period than rhythms of CAB expression, while in Arabidopsis the rhythmic 

expression of PHYB has an ~1 hour longer free-running period than CAB expression (Sai and 

Johnson, 1999; Hall et al., 2002). It has been suggested that the period difference between 

PHYB and CAB expression rhythms is due to regulation by separate copies of the clock 

mechanism in separate cells that are modified in a tissue-specific manner: CAB expression is 

confined to the mesophyll and guard cells, while PHYB is expressed more broadly throughout 

the aerial organs of the plant (Hall et al., 2002). Distinct, coupled clocks have been reported to 

occur in the vasculature and mesophyll of Arabidopsis (Endo et al., 2014), and it is possible 

that the different period lengths observed for core clock expression rhythms can be due to 

tissue-specific effects of sulfate metabolism on oscillators. However, to confirm that the 

differences in period lengths are significant, circadian rhythms in response to sulfate starvation 

should be monitored in multiple independent lines for each reporter construct. In addition, 

investigating the effect of sulfate starvation on rhythms in various clock mutants can shed light 

on the different roles of specific clock components in rhythmic regulation by sulfur metabolism 

pathways. 

While the exact mechanism underlying the regulation of sulfur metabolism by SAL1 needs 

further investigation, it has been suggested that the accumulation of PAP may directly inhibit 

sulfotransferases by shifting the equilibrium towards substrates, thereby leading to reduced 

efficiency in the sulfation of desulfo-gucosinolates which requires PAPS (Lee et al., 2012). 

sal1 shares numerous phenotypes with the apk1 apk2 double mutant (Rodriguez et al., 2010; 

Lee et al., 2012). Arabidopsis encodes 4 APK isoforms, with APK1, APK2 and APK4 localised 

in plasmids, and APK3 functioning in the cytosol (Mugford et al., 2009). While single knock-

outs of APK do not result in visible phenotypical changes, the apk1 apk2 mutant exhibits a 

semi-dwarf phenotype and flowers ~1 week later than wild-type, although the wrinkled leaf 

shape of sal1 is not present in apk1 apk2. Total glucosinolate levels in apk1 apk2 are reduced 

to ~20% of wild-type levels, with the greatest reduction occurring in total aliphatic 

glucosinolates, while indolic glucosinolates are less severely affected. In contrast, the apk1 
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apk4 double mutant contains 30% more glucosinolates than wild-type, while the other apk 

double mutant combinations are not affected (Mugford et al., 2009). Both sal1 and apk1 apk2 

have lower levels of total glucosinolates (particularly aliphatic glucosinolates) and higher 

levels of the desulfo-precursors, although this is much more severe in apk1 apk2 than in fou8 

(Mugford et al., 2009; Lee et al., 2012). Interestingly, quantitative loci mapping of circadian 

clock outputs have identified quantitative trait loci involved in both circadian regulation and 

glucosinolate synthesis (Kerwin et al., 2011). The AOP locus is linked to natural variation in 

levels of glucosinolates, and interacts epistatically with two MYB QTLs (MYB28 and 

MYB19). The natural AOP2 knockout leads to higher glucosinolate levels compared to Col-0 

and exhibits a shortened circadian period (Kerwin et al., 2011). In contrast, the myb28 myb19 

double mutant has lower total glucosinolates and no aliphatic glucosinolates, while also 

exhibiting a shortened circadian phenotype (Kerwin et al., 2011). These data suggest a possible 

role for aliphatic glucosinolates in the shortened circadian period observed in apk1 apk2, and 

even sulfate-starved plants. 

While the apk1 fou8, apk2 fou8 and apk3 fou8 double mutants are phenotypically similar to 

fou8, the apk1 apk2 fou8 triple mutant loses many of the described fou8 phenotypes and is 

indistinguishable from apk1 apk2 in rosette shape and glucosinolate synthesis regulation 

(Rodriguez et al., 2010; Lee et al., 2012). This pattern was also observed in the analysis of 

circadian rhythms. No significant difference in the period of Fq’/Fm’ rhythms was observed 

between apk1 apk2 and apk1 apk2 fou8 while fou8 exhibits the characteristically long circadian 

period of sal1 mutants (Figure 5.4), suggesting that SAL1 is epistatic to APK1 and APK2. 

Furthermore, the absence of a long-period phenotype in apk1 apk2 or apk1 apk2 fou8 suggests 

that the circadian phenotype of sal1 mutants is not due to a direct perturbation of sulfate 

metabolism caused by the accumulation of PAP. 
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5.3.2. Splicing of core clock-regulated transcripts mechanisms remain intact in sal1 

mutants 

Transcript processing, in particular alternative splicing (AS), plays an important role in 

circadian regulation. Unproductive alternative splicing is widespread among circadian genes, 

often producing non-functional transcripts or inducing nonsense-mediated decay (Filichkin and 

Mockler, 2012; James et al., 2012). In particular, intron retention events in CCA1, LHY, and 

PRR7 transcripts regulate the expression and function of clock components in response to 

temperature (James et al., 2012). Intact splicing mechanism are needed to maintain circadian 

rhythms. Mutation in PROTEIN ARGININE METHYL TRANSFERASE 5 (PRMT5), the gene 

product of which transfers methyl groups to arginine residues present in histones and 

spliceosomal proteins, changes the levels of unproductive PRR9 AS transcripts formed through 

intron retention events, and results in a long period phenotype (Hong et al., 2010; Sanchez et 

al., 2010). Similarly, mutation in the RNA-binding protein SPLICEOSOMAL TIMEKEEPER 

LOCUS1 (STIPL1) result in a long period phenotype, possibly as a result of less effective 

splicing of various clock transcripts, including CCA1, LHY, PRR9, GI and TOC1 (Jones et al., 

2012b). In sal1 mutants, there was no indication of AS events for CCA1, LHY, PRR5 or TOC1 

(Figure 5.5). Only fully spliced transcripts for LHY, PRR5 and TOC1 were detected, while the 

only intron retention event corresponded to the well-conserved and reported retention of intron 

4 in CCA1 (Filichkin et al., 2010). The resulting splice variant, CCA1�, encodes a truncated 

CCA1 form which interferes with CCA1 activity, thereby facilitating a self-regulatory circuit 

of CCA1 activity involved in temperature regulation of the clock (Seo et al., 2012). In ambient 

temperatures, oscillation of transcript levels for the two CCA1 isoforms are synchronised, while 

CCA1� production is repressed under cold temperatures. In sal1 mutants, oscillations in 

accumulation of the two CCA1 isoforms remain synchronised in sal1 mutants (Figure 5.6), 

with the same late phase compared to Col-0 that had been observed for other core clock 

transcripts (Section 4.2.6). These data suggest that the long period phenotype in sal1 mutants 

are not as a result of AS in core clock components. This is perhaps not surprising, since the 
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SAL1/PAP signalling pathway is proposed to act through the inhibition of XRNs, and XRNs 

are not directly involved in splicing (Nagarajan et al., 2013). 

 

5.3.3. Loss of XRN activity affects the circadian system 

While the pleotropic nature of the sal1 mutation is thought to be due to general inhibition of 

XRN activities by the accumulation of PAP, identifying the mechanisms through which these 

phenotypes occur needs further investigation (Hirsch et al., 2011; Estavillo et al., 2011; Chan 

et al., 2016b). Cells transcribe more RNA than is accumulated and most genomes code a variety 

of intracellular RNA degrading enzymes, often with functional redundancy (Houseley and 

Tollervey, 2009; Nagarajan et al., 2013). These RNases occur either as endonucleases that cut 

RNA internally, as 3’ exonucleases that degrade RNA from the 3’ end, or as 5’ 

exoribonucleases that degrade RNA from the 5’ end (Houseley and Tollervey, 2009). A variety 

of different types of RNA are degraded in eukaryotes. Almost all RNA species are synthesized 

as larger precursors that must undergo 3’ and/or 5’ nuclease processing, while excised rRNA 

spacer fragments and introns excised from precursor mRNA (pre-mRNA) must also be 

degraded. Active RNA degradation systems also degrade RNA at the end of its useful life, 

whether rRNA or as part of the highly regulated turnover of mRNA. In addition, a large number 

of unstable, non-protein-coding RNAs, as well as defective RNAs are continually identified 

and degraded (Houseley and Tollervey, 2009; Nagarajan et al., 2013). In eukaryotes, the bulk 

of mRNA is degraded in the cytoplasm and nucleus by the exosome complex, which has 

endoribonucleolytic and 3’�5’ exoribonuclease activities, as well as by the 5’�3’ 

exoribonuclease activities of cytoplasmic (XRN1) and nuclear (XRN2) XRNs following 

decapping (Jones et al., 2012a; Houseley and Tollervey, 2009). Through the endonucleolytic 

pathway, RNA decay is initiated by endonucleolytic cleavage and followed by 3’�5’ and 

5’�3’ exonucleolytic decay of the 5’ and 3’ cleavage products, respectively (Chiba and Green, 

2009).  In the decapping/5’�3’ pathway, removal of the cap structure produces RNAs with 5’ 

monophosphates, which are the preferred substrates of the 5’�3’ exoribonucleases (XRNs) 
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(Chiba and Green, 2009). In addition to the degradation of mRNA, XRNs also function in other 

aspects of RNA metabolism, including RNA silencing, rRNA maturation and transcription 

termination (Nagarajan et al., 2013). The Arabidopsis genome codes for three XRN2 orthologs, 

two of which (XRN2 an XRN3) function in the nucleus, while the third (XRN4) functions in 

the cytoplasm (Kastenmayer and Green, 2000). The Arabidopsis XRNs have distinct identified 

targets, but also exhibit a degree of functional redundancy which adds to the complexity of 

XRN activity (Kastenmayer and Green, 2000; Souret et al., 2004; Gy et al., 2007; Rymarquis 

et al., 2011; Kurihara et al., 2012). While the single null xrn2 mutation does not result in any 

visible morphological phenotypes, the homozygous knock-out of xrn3 is lethal, and the xrn4 

knock-out results in serrated leaves and ethylene insensitivity (Potuschak et al., 2006; Gy et 

al., 2007; Zakrzewska-Placzek et al., 2010). Analysis of Fq’/Fm’ rhythms in xrn single, double 

and triple mutants (Figure 5.7) suggests that activity of the cytoplasmic XRN4, rather than the 

nuclear XRN2 an XRN3 function within the circadian system. Both the xrn2 and xrn3 single 

mutants, as well as the xrn2 xrn3 double mutant exhibited wild-type circadian rhythms, yet loss 

of only XRN4 activity resulted in a significant lengthening of period in the ein5 mutant (Figure 

5.7a, b and c). In addition, no additive effect was observed between ein5 and the long-period 

xrn234 triple mutant (Figure 5.7a). 

The long period in chloroplast rhythms of ein5-1 was echoed in the nuclear rhythms, with a 

modest late phase in peak transcript accumulation of morning- and evening-phased clock 

transcripts occurring under constant white light (Figure 5.8). A long circadian period in free-

running conditions can manifest as a late phase under entraining conditions (Salomé and 

McClung, 2005). For example, in the stipl1 mutant, mutation of the SPLICEOSOMAL 

TIMEKEEPER LOCUS 1 results in mis-regulation of pre-mRNA splicing and a long circadian 

period under constant light conditions (Jones et al., 2012b). The long period phenotype of the 

stipl1 mutant correlates with delayed accumulation of CCA1, GI, TOC1, PRR9 and (to a lesser 

extent) LHY transcripts under long-day light:dark conditions. In the ein5-1 mutant, a similar 
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but less severe delay in transcript accumulation is observed in the morning for CCA1 and LHY, 

and in the afternoon for ELF4 and TOC1 transcripts (Figure 5.9). 

Previous studies have associated XRN4 function with certain sal1 mutant phenotypes. xrn4 

and sal1 have a reduced number of lateral roots, and sal1 and xrn4 exhibit reduced sensitivity 

to IAA in inducing lateral root growth, which is not observed in xrn2 or xrn3 single mutants 

(Chen and Xiong, 2010). Furthermore, microarray analysis revealed a two-fold upregulation of 

two of the 14 targets of XRN4 in both alx8-1 and xrn4-5 mutants (Souret et al., 2004; Wilson 

et al., 2009). While the ein5-1 single mutant and the xrn234 triple mutant mimic the long-

period phenotype of sal1, the activities of nuclear XRN2 and XRN3 cannot be discounted. In 

many cases, a combination of XRN2, XRN3 and XRN4 activities seems to be involved in the 

various sal1 phenotypes, and studies have attributed sal1 phenotypes to loss of XRN2 and/or 

XRN3 activity (Kastenmayer and Green, 2000; Souret et al., 2004; Gy et al., 2007; Estavillo et 

al., 2011; Nagarajan et al., 2013). Gene expression profiling of alx8-1 and xrn2 xrn3 revealed 

~4000 and ~2500 transcripts, respectively, that showed a significant change in transcript 

abundance compared to Col-0 (Estavillo et al., 2011). Of these transcripts, ~50% were 

coregulated in alx8-1 and xrn2 xrn3. (Souret et al., 2004; Estavillo et al., 2011).  In contrast, a 

much smaller number of transcripts (~150) were significantly altered in xrn4 compared to Col-

0. While null mutation in XRN2 does not result in morphological changes, xrn4 mutants have 

smooth, serrated leaves, and the xrn3 knock-down mutant exhibits a wrinkled leaf morphology 

similar to that observed in sal1 plants (Gy et al., 2007). These morphological characteristics of 

xrn3, including round, crinkled leaves, short petioles, and small rosette size are exacerbated in 

the xrn2 xrn3 mutant (Gy et al., 2007). In addition, xrn2 xrn3, like sal1, has an enhanced 

response to light in hypocotyl elongation which is not observed in xrn4 (Kim and von Arnim, 

2009; Chen and Xiong, 2011). While null mutation in XRN2 does not result in late flowering, 

xrn4 and xrn3 single mutants both exhibit moderately delayed flowering, which is more 

pronounced in xrn2 xrn3 and xrn234 (Potuschak et al., 2006; Gy et al., 2007). In xrn4, lateral 

roots exhibit wild-type architecture and a primary root length that is intermediate between Col-
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0 and sal1 primary root lengths (Hirsch et al., 2011).  The xrn234 triple mutant has the same 

altered lateral root architecture as seen in sal1, yet shortened lateral roots are observed in sal1 

but not in xrn234. Furthermore, the restoration of fertility in the xrn234 mutant compared to 

the infertile xrn2 xrn3 double mutant suggests that XRN4 can act to suppress XRN2 and XRN3 

activity (Hirsch et al., 2011; Kurihara et al., 2012). The varied effects of XRN activities are 

also observed in plants under stress conditions, and XRN2 and XRN3 (not XRN4) are regarded 

as playing a role in the negative regulation of stress-responsive genes under drought and high 

light stress (Estavillo et al., 2011; Chan et al., 2016a). sal1 mutants survive drought almost 

50% longer than wild-type (Wilson et al., 2009), and xrn2 xrn3 are more drought tolerant than 

wild-type (but less so than sal1) and show similar induction of stress-responsive genes under 

high light stress (Estavillo et al., 2011). xrn4 does not exhibit enhanced drought tolerance 

compared to wild-type (Estavillo et al., 2011), while the xrn234 is drought tolerant (Hirsch et 

al., 2011).  

The possible overlapping function of XRN2, XRN3 and XRN4 was also observed in circadian 

regulation. The xrn234 triple mutant mimics the sal1 long-period phenotype in chloroplast 

rhythms (for both chlorophyll a fluorescence and delayed fluorescence rhythms, Figure 5.10), 

while similar late phase patterns in clock-related transcript accumulation are observed in 

xrn234 as in sal1 under constant blue and constant white light conditions (Figure 5.11 and 

5.12). Under long-day conditions, however, sal1 mutants exhibit a clear delay in CCA1 

transcript accumulation, with transcripts present throughout the afternoon in sal1 (Figure 5.13). 

This delay also occurs to a lesser extent for ELF4, GI and PRR5 transcripts in sal1. Similar 

patterns were observed in the xrn234 triple mutant, to a lesser extent than in sal1, but more 

pronounced than in ein5-1 (Figure 5.9). In addition, a dampening of GI transcript levels occurs 

in xrn234 which is not observed in xrn4, further suggesting that the activity of the nuclear 

XRNs cannot be discounted. Interestingly, in both sal1 mutant alleles and in xrn234, the late 

phase in clock transcript accumulation is more pronounced under constant blue light than under 
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constant white light, which would be in agreement with the blue light-specific nature of the 

sal1 circadian phenotype. 

 

5.3.4. A mechanism for circadian regulation by XRN activity remains elusive 

While these findings shed light on the involvement of individual XRNs in the numerous sal1 

phenotypes, the targets down-stream of XRNs remain elusive. XRNs are known to function as 

suppressors of post-transcriptional gene silencing (PTGS) (Gazzani et al., 2004; Gy et al., 2007; 

Rymarquis et al., 2011), and there is strong evidence to suggest that numerous sal1 phenotypes 

result from mis-regulation of PTGS arising from the inhibition of XRN2, XRN3 and XRN4 

activities (Gy et al., 2007; Chen and Xiong, 2010; Estavillo et al., 2011; Hirsch et al., 2011). 

PTGS is performed by conserved ARGONAUTE (AGO) proteins to represses gene expression 

via RNA silencing activity, and is directed in a sequence-specific manner by short, noncoding 

RNAs called short-interfering RNAs (siRNAs) and microRNAs (miRNAs) (Bartel, 2004; 

Ambros and Chen, 2007; Peters and Meister, 2007). siRNAs are produced from double-

stranded RNA precursors, while miRNAs are generated from RNA hairpins. Both siRNAs and 

miRNAs associate with protein complexes containing AGO, which cleave target mRNAs that 

share complementarity to the small RNAs  (Bartel, 2004; Ambros and Chen, 2007; Peters and 

Meister, 2007). The cytoplasmic XRN4 is involved in mRNA degradation by hydrolysing 

decapped (5’ monophosphorylated) mRNA, as well as degrading the 3’ intermediate products 

of smallRNA-directed cleavage, including degradation of the 3’ fragment of miRNA-cleaved 

mRNA (Gazzani et al., 2004; Souret et al., 2004). In the xrn4 mutant, silencing of a transgene 

expressed under control of the 35S CaMV promoter is attributed to the accumulation of siRNAs 

and 5’-decapped mRNA corresponding to transgene sequences (Gazzani et al., 2004). 

Uncapped mRNAs can be substrates of the RNA-dependent RNA polymerase RDR6 and lead 

to the formation of double-stranded RNA precursors that are used for siRNA synthesis 

(Gazzani et al., 2004; Gregory et al., 2008). Interestingly, XRN4 appears to exhibit selectivity 

among its substrates, as only a select number of miRNA-generated 3’ cleavage products 
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accumulate in xrn4 (Souret et al., 2004; Rymarquis et al., 2011). The affected 3’ cleavage 

products map to certain functional gene categories, with stamen-associated proteins and 

hydrolases over-represented among transcripts decreased in xrn4, and transcripts encoding 

nuclear-encoded chloroplast-targeted proteins and nucleic acid–binding proteins over-

represented in transcripts that increased in xrn4 (Rymarquis et al., 2011). One of these targets 

of XRN4, 4CL1, provided a promising avenue for further study as its transcript levels are 

predicted to cycle with circadian rhythm (Souret et al., 2004; Mockler et al., 2007). However, 

analysis of 4CL1 transcripts in this study indicated no circadian effect, and no change in 

transcript levels between Col-0 and xrn mutants (Figure 5.15). In addition, a more recent 

analysis of various microarray datasets does not identify 4CL1 as a target of XRN4 (Rymarquis 

et al., 2011), further suggesting that XRN4 acts within the circadian system through another 

mechanism. 

A few key studies provide insight into the role of XRN2 and XRN3 in gene silencing, 

particularly as it pertains to the sal1 mutant phenotype (Gy et al., 2007; Zakrzewska-Placzek 

et al., 2010; Estavillo et al., 2011; Kurihara et al., 2012). Like XRN4, the nucleus-localised 

XRN2 and XRN3 act as suppressors of PTGS, although to a lesser extent than XRN4 (Gy et 

al., 2007). In addition, XRN2 and XRN3 are also involved in the processing of pre-ribosomal 

RNA (Zakrzewska-Placzek et al., 2010). Mutation in xrn2 or xrn3 restores PTGS in ago1 

mutants defective for PTGS, but less effectively than mutation in xrn4 (Gy et al., 2007). 

Importantly, the sal1 mutation restores PTGS in ago1 efficiently, likely as a result of the 

spontaneous inhibition of XRN2, XRN3 and XRN4 activity. Transgene expression in an ago1 

mutant results in high accumulation of transgene mRNA and undetectable levels of transgene 

siRNAs compared to controls, while sal1 ago1 mutants have restored transgene mRNA and 

siRNA accumulation. PTGS is also involved in targeting viral infections, and sal1 and xrn4 are 

hyper-resistant to Cucumber mosaic virus (CMV) infection, exhibiting reduced CMV RNA 

accumulation and reduced CMV-derived siRNA accumulation than in Col-0. In contrast, 

mutation in xrn2 or xrn3 have no obvious effect on CMV RNA accumulation. As has been 
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reported for xrn4, sal1 mutants overaccumulate miRNA target 3’ cleavage products, but do not 

exhibit altered accumulation of miRNA-targeted full-length mRNA. This suggests that SAL1 

functions during the degradation of intermediates or non-functional end products of small RNA 

pathways. Excised MIRNA loops (but not stem-loops or partially processed stem loops) 

derived from DCL1-mediated maturation of miRNA precursors accumulate in sal1. This 

accumulation of MIRNA loops and miRNA cleavage products further suggest impaired 

exoribonuclease activity in sal1 mutants. Indeed, MIRNA loops overaccumulate in the 

hypomorphic xrn3 single mutant (although to a lesser extent than in sal1), while the xrn2 xrn3 

double mutant accumulates MIRNA loops at a higher level than xrn3 (Gy et al., 2007). 

Furthermore, the 3’ remnants of many DCL1-procesed miRNA precursors also accumulate in 

sal1 and xrn3 mutants (Kurihara et al., 2012). 

In addition to MIRNA loops, 3’ remnants of miRNA precursors and miRNA cleavage products, 

sal1 mutants also accumulate thousands of non-coding transcripts that map to the 3’ ends of 

genes (Kurihara et al., 2012). These 3’ non-coding transcripts associate with genes that are 

actively being transcribed, and SAL1 is suggested to provide general surveillance of these non-

coding transcripts, rather than targeting specific gene classes. The accumulation of these 

transcripts in sal1 is suggested to be mostly due to the inhibition of XRN3 activity, yet the roles 

of XRN2 and XRN4 in surveillance of 3’ non-coding transcripts needs further investigation. 

Over 2 000 identified 3’ non-coding transcripts are shown to accumulate in sal1, with ~500 

identified in the hypomorphic xrn3 mutant. In contrast, ~400 3’ non-coding transcripts have 

been identified in xrn2 xrn3 and in xrn3 xrn4, with only 64 present in xrn2 xrn4 (Kurihara et 

al., 2012). Since 3’ non-coding transcripts mapping to the core nuclear clock components ELF4 

and PRR5 were identified as accumulating in sal1 (Kurihara et al., 2012), these transcripts were 

investigated as a possible avenue of circadian regulation through XRN activity. While 3’ non-

coding transcripts for ELF4 and PRR5 accumulated to higher level in sal1 mutant compared to 

Col-0 under constant light conditions (Figure 5.13), they are unlikely to serve as a mechanism 

for XRN regulation of the clock in the long-period sal1 or xrn mutants. Firstly, no accumulation 
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of ELF4 or PRR5 3’ non-coding transcripts were observed in xrn234, further illustrating the 

complex nature of overlapping functions between XRN2, XRN3 and XRN4. Secondly, the 

biological significance of the 3’ non-coding transcripts remains a point for debate. These 3’ 

non-coding transcripts are not attached to 5’ mRNAs and are not gene transcript extensions 

(Kurihara et al., 2012). While the possibility exists that these detached 3’ non-coding transcripts 

could function in their capacity as short, non-coding RNAs, the mechanism through which this 

would occur remains unclear. In addition, while 3’ non-coding RNAs map to actively 

transcribed genes, the 3’ non-coding transcripts do not affect the expression levels of their 5’ 

mRNAs (Kurihara et al., 2012), further complicating the question of biological significance of 

these non-coding transcripts. 

The bifunctional nature of the SAL1 enzyme adds yet another level of complexity to an already 

complicated system that results in the vast array of phenotypes observed in sal1mutants. 

However, data from this chapter strongly suggest that elongation of circadian rhythms in sal1 

occurs through the inhibition of XRN activity rather than through altered sulfur metabolism. 

These data suggest that the cytoplasmic XRN4, rather than the nuclear XRNs, is involved in 

circadian regulation, yet the role of XRN2 and XRN3 cannot be discounted. While further 

study of the exact mechanism of XRN regulation of the clock is needed, it falls beyond the 

scope of this chapter. In the next chapter, the effect of various environmental inputs on the 

regulation of circadian rhythms by SAL1 will be investigated. 
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Chapter 6 

Understanding how PAP modulates circadian rhythms in 

Arabidopsis 

 

6.1. Introduction 

The inactivation of SAL1 by oxidative stress induces the accumulation of PAP within the cell 

(Estavillo et al., 2011; Chan et al., 2016). In addition, a number of the broad phenotypes 

associated with sal1 mutants correlate with increased endogenous PAP levels (Kim and von 

Arnim, 2009; Chen et al., 2011; Estavillo et al., 2011; Hirsch et al., 2011). This chapter will 

investigate the effect of PAP levels on circadian rhythms in Col-0 and sal1 mutants. The effect 

of light and osmotic stress on circadian rhythms and PAP accumulation will also be 

investigated. 

 

6.2. Results 

6.2.1. The long-period circadian phenotype of sal1 is light-specific 

Analysis of chloroplast and nuclear rhythms in sal1 mutants had revealed a more pronounced 

long circadian period phenotype in seedlings grown under constant blue light compared to 

seedlings grown under constant red or constant white light, suggesting that the circadian 

phenotype of sal1 mutants may be dependent upon the wavelength of light (Sections 4.2.3, 

4.2.4, 4.3.6 and Section 5.2.5). Furthermore, the shortened hypocotyl phenotype of sal1 

mutants, while observed under both blue and red light (Figure 4.1d), has been reported as being 

absent in constant darkness (Kim and von Arnim, 2009; Chen and Xiong, 2011). To determine 

whether the long period circadian phenotype of sal1 mutants is observed in the absence of light, 

rhythms in CCA1 expression was monitored in seedlings grown under constant darkness. Col-
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0 CCA1::LUC2 and fry1-6 CCA1::LUC2 seedlings were grown on 0.5x MS agar plates 

supplemented with sucrose for 6 days in 12h:12h light dark cycle under 60 µmol.m-2.s-1 white 

light. Following entrainment, individual seedlings were imaged under constant darkness and 

time series data subjected to FFT-NLLS analysis. Bioluminescence from CCA1::LUC2 activity 

cycled with robust circadian rhythm in Col-0 in constant darkness, with a slightly longer period 

than normally observed in constant light (25.27 ± 0.16 h; Figure 6.1a and b). The robust 

circadian rhythm with a period of ~25 hours corresponded to a previous report describing 

rhythms in CCR2::LUC in Col-0 seedlings imaged under constant darkness and in the presence 

of sucrose (Jones et al., 2012). CCA1::LUC2 rhythms also cycled with circadian rhythm in 

fry1-6, and no significant difference in period (25.70 ± 0.20 h) compared to Col-0 was 

observed, indicating that the circadian phenotype of sal1 is observed only in the presence of 

light.  

To further investigate whether the long period phenotype of sal1 is affected by the wavelength 

or fluence rate of light, rhythms in CCA1 expression was monitored under different fluence 

rates of constant blue light or constant red light. Col-0 CCA1::LUC2 and fry1-6 CCA1::LUC2 

seedlings were grown on 0.5x MS agar plates for 6 days in 12h:12h light dark cycle under 60 

µmol.m-2.s-1 white light. Following entrainment, individual seedlings were imaged under 

different fluence rates of constant blue light (3, 6, 20 or 40 µmol.m2.s-1) or constant red light 

(3, 11, 30 or 53 µmol.m-2.s-1) for ~5 days. Bioluminescence from CCA1::LUC2 activity cycled 

with circadian rhythm in both Col-0 and fry1-6 under all 4 fluence rates of constant blue light 

analysed (Figure 6.2). As had been observed under constant darkness, Col-0 and fry1-6 

seedlings grown under low fluence rates (3 µmol.m-2.s-1 or 6 µmol.m-2.s-1) exhibited 

CCA1::LUC2 rhythms with period >24 hours (Figure 6.2a and b). However, no significant 

difference in period was observed in fry1-6 compared to Col-0 in seedlings grown under either 

3 or 6 µmol.m-2.s-1 constant blue light (p>0.05, Student’s t-test). At higher fluence rates of blue 

light, rhythms in CCA1::LUC2 cycled with ~24 hour period in Col-0 (Figure 6.2a, c and d).  
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Figure 6.1  Rhythms in CCA1 expression in sal1 in constant darkness. (A) Waveforms and (B) circadian period 
estimates plotted against Relative Amplitude Error (RAE) for luciferase activity monitored in Col-0 CCA1::LUC2

and fry1-6 CCA1::LUC2 seedlings  under constant dark conditions.  Seedlings were grown on 0.5x MS agar plates 
supplemented with sucrose, and entrained in 12h:12h light:dark cycles under 60 µmol.m-2.s-1 white light for 6 days 
before imaging in constant darkness.  White bars and grey bars indicate subjective day and subjective night, 
respectively.  Error bars indicate standard error of the mean, with n=20.  For waveforms, error bars are shown every 
10 hours for clarity.  RAE is a measure of rhythmic robustness, with a value of 0 indicating an exact fit to a cosine 
wave (Plautz et al., 1997).  Data from one of two independent experiments are shown.  
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Figure 6.2  Rhythms in CCA1 expression in sal1 under different fluence rates of constant blue light. (A) 

Fluence rate response curve of circadian period estimates for luciferase activity monitored in Col-0 CCA1::LUC2

and fry1-6 CCA1::LUC2 seedlings under 3, 6, 20 and 40 µmol.m-2.s-1 constant blue light .  (B-D) Waveforms of 
luciferase activity monitored in Col-0 CCA1::LUC2 and fry1-6 CCA1::LUC2 seedlings under (B) 6 µmol.m-2.s-1, 
(C) 20 µmol.m-2.s-1 and (D) 40 µmol.m-2.s-1 constant blue light  Seedlings were grown on 0.5x MS agar plates and 
entrained in 12h:12h light:dark cycles under 60 µmol.m-2.s-1 white light for 6 days before imaging under constant 
blue light.  White bars and grey bars indicate subjective day and subjective night, respectively.  Error bars indicate 
standard error of the mean, with n=30.  For waveforms, error bars  shown every 10 hours for clarity.  RAE is a 
measure of rhythmic robustness, with a value of 0 indicating an exact fit to a cosine wave (Plautz et al., 1997).  Data 
from one of two independent experiments are shown.  Asterisks indicate statistically significant difference in period 
compared to Col-0 control at the comparative fluence rate (** p<0.001, Student’s T-test). 



201 
 

Under 20 µmol.m-2.s-1, rhythms in CCA1:LUC2 cycled with a significantly longer period in 

fry1-6 (24.74 ± 0.10 h) compared to Col-0 (23.60 ± 0.09 h; p<0.001, Student’s T-test) as had 

been previously observed (Section 4.2.4). Similarly under 40 µmol.m-2.s-1 constant blue light, 

rhythms in CCA1::LUC2 cycled with ~1 hour longer period in fry1-6 (24.22 ± 0.12 h) 

compared to Col-0 (23.26 ± 0.07 h; p<0.001, Student’s T-test). 

Under constant red light as under constant blue light, CCA1::LUC2 activity oscillated with 

robust rhythms in both fry1-6 and Col-0 under all 4 different fluence rates (Figure 6.3), with 

circadian period estimates indicating a period of more than 24 hours in both Col-0 and fry1-6 

under low fluence rates (3 µmol.m-2.s-1 or 11 µmol.m-2.s-1), and shorter under higher fluence 

rates (30 µmol.m-2.s-1 or 53 µmol.m-2.s-1). Under 3 µmol.m2.s-1 constant red light, CCA1::LUC2 

activity appeared to oscillate with longer circadian rhythm in Col-0 (31.28 ± 0.28 h) compared 

to rhythms in fry1-6 (30.25 ± 0.25 h), although this difference was not significant (p>0.05, 

Student’s t-test; Figure 6.3a). Similarly, under 11 µmol.m-2.s-1, CCA1::LUC2 rhythms observed 

in Col-0 (27.42 ± 0.15 h) tended towards being longer than in fry1-6 (26.70 ± 0.16 h), but this 

was not significant (Figure 6.3a and b). As was observed in DF rhythms in alx8-1 under 

constant red light (Section 4.2.3), no significant period lengthening in CCA1::LUC2 rhythms 

was observed in fry1-6 under 30 µmol.m-2.s-1 constant red light, with 24.32 ± 0.12 h period in 

Col-0, and 24.50 ± 0.12 h period in fry1-6 (Figure 6.3a and c). These data agree with the less 

severe circadian phenotype observed in chloroplast and transcript accumulation rhythms of 

sal1 under 30 µmol.m-2.s-1 constant red light compared to 20 µmol.m-2.s-1 constant blue light 

(Sections 4.2.3, 4.2.4 and 4.2.6). Furthermore, no significant difference in period was observed 

in CCA1::LUC2 rhythms between fry1-6 and Col-0 under the highest fluence rate of constant 

red light (53 µmol.m-2.s-1; Figure 6.3a and d). 
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Figure 6.3  Rhythms in CCA1 expression in sal1 under different fluence rates of constant red light. (A) Fluence 
rate response curve of circadian period estimates for luciferase activity monitored in Col-0 CCA1::LUC2 and fry1-

6 CCA1::LUC2 seedlings under 3, 11, 30 and 53 µmol.m-2.s-1 constant red light .  (B-D) Waveforms of luciferase 
activity monitored in Col-0 CCA1::LUC2 and fry1-6 CCA1::LUC2 seedlings under (B) 11 µmol.m-2.s-1, (C) 30 
µmol.m-2.s-1 and (D) 53 µmol.m-2.s-1 constant red light  Seedlings were grown on 0.5x MS agar plates and entrained 
in 12h:12h light:dark cycles under 60 µmol.m-2.s-1 white light for 6 days before imaging under constant red light. 
White bars and grey bars indicate subjective day and subjective night, respectively.  Error bars indicate standard 
error of the mean, with n=20.  For waveforms, error bars  shown every 10 hours for clarity.  RAE is a measure of 
rhythmic robustness, with a value of 0 indicating an exact fit to a cosine wave (Plautz et al., 1997).  Data from one 
of two independent experiments are shown.  Asterisks indicate statistically significant difference in period compared 
to Col-0 control at the comparative fluence rate (** p<0.001, Student’s T-test). 
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6.2.2. Circadian rhythms are restored in sal1 mutants overexpressing the SAL1 homologue 

AHL 

Irrespective of the absence or presence of abiotic stresses such as high light, drought or salt 

stress, sal1 mutants accumulate higher levels of endogenous PAP than wild-type plants both as 

seedlings (Chen et al., 2011) and as adult plants (Estavillo et al., 2011; Lee et al., 2012). To 

confirm that sal1 mutants accumulate PAP under the experimental conditions used in this 

study, the PAP content of fry1-6 seedlings grown under constant light was examined. Col-0 

and fry1-6 seedlings were grown on 0.5x MS agar plates for 12 days in 12h:12h light:dark 

cycles under 60 µmol.m-2.s-1 white light before being transferred to 60 µmol.m-2.s-1 constant 

white light at subjective dawn. After 4 days in constant conditions, ~50 seedlings per genotype 

(150-300 mg tissue) were harvested at subjective dawn (ZT96), and PAP extracted and 

quantified using reverse-phase HPLC analysis according to a published method (Bürstenbinder 

et al., 2007; Estavillo et al., 2011). PAP was present in very low levels in Col-0 seedlings, and 

a ~10-fold higher PAP content was detected in fry1-6 seedlings grown under constant white 

light (9 nmol nmol.g-1 FW; p<0.001, Student’s T-test; Figure 6.4a). The increased level of PAP 

in fry1-6 seedlings under constant white light correlated with the ~3 hour late phase in transcript 

accumulation for the evening-phased clock component PRR5 under the constant white light 

conditions (Figure 6.4b). 

In the fry1-6 mutant, overexpression of the PAP-specific SAL1 paralog AHL has been shown 

to complement the rosette shape, reduced hypocotyl length, altered root architecture and 

increased drought tolerance phenotypes of sal1 (Kim and von Arnim, 2009; Hirsch et al., 2011). 

To determine whether overexpression of AHL could restore circadian rhythms in a sal1 mutant, 

Fq’/Fm’ rhythms were monitored in T1 generation alx8-1 seedlings expressing the cDNA of 

AHL driven by the CaMV 35S promoter (alx8-1 35S::AHL:GFP, Appendix II) under 20 

µmol.m-2.s-1 constant blue light (Figure 6.4c).  
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Figure 6.4  PAP accumulation and circadian rhythms in sal1 mutants under constant light conditions. (A) 

Quantification of endogenous PAP in Col-0 and fry1-6 seedlings under constant white light.  Seedlings were grown 
on 0.5x MS agar plates and entrained in 12h:12h light:dark cycles under 60 µmol.m-2.s-1 white light for 12 days 
before transfer to 60 µmol.m-2.s-1 constant white light at subjective dawn.  Following 4 days in constant conditions, 
~50 seedlings per genotype were harvested at subjective dawn (ZT96) and PAP quantified by reverse-phase HPLC 
as previously described (Bürstenbinder et al., 2007; Estavillo et al., 2011).  Error bars indicate standard deviation, 
with n=4. (B) Rhythms in accumulation of the core clock transcript PRR5 in Col-0 and fry1-6 seedlings under 
constant white light.  Seedlings were grown on 0.5x MS agar plates and entrained in 12h:12h light:dark cycles under 
60 µmol.m-2.s-1 white light for 10 days before being transferred to 60 µmol.m-2.s-1 constant white light at subjective 
dawn.  After 48 hours in free-run, 10-12 seedlings were sampled and pooled, with sampling repeated every three 
hours for two days.  Data for each gene were normalised to an internal control (PP2a).  White bars and grey bars 
indicate subjective day and subjective night, respectively.  Data are representative of three biological replicates.
Error bars indicate standard error of the mean of three technical replicates.  (C) Circadian period estimates plotted 
against RAE of oscillations in Fq’/Fm’ in Col-0, alx8-1 and individual seedlings of the T1 generation of three 
independent alx8-1 35S::AHL:GFP (alx8-1 AHL-OX). Seedlings were grown on 0.5x MS agar plates and entrained 
in 12h:12h light:dark cycles under 60 µmol.m-2.s-1 white light for 12 days before imaging in 20 µmol.m-2.s-1 constant 
blue light. Error bars indicate standard error of the mean, with n=8.  RAE is a measure of rhythmic robustness, with 
a value of 0 indicating an exact fit to a cosine wave (Plautz et al., 1997).  Data from one of two independent 
experiments are shown.  (D) Quantification of endogenous PAP in Col-0, alx8-1 and three independent homozygous 
alx8-1 35S::AHL:GFP lines (alx8-1 AHL-OX) under constant blue light.  Seedlings were grown on 0.5x MS agar 
plates and entrained in 12h:12h light:dark cycles under 60 µmol.m-2.s-1 white light for 12 days before transfer to 20 
µmol.m-2.s-1 constant blue light at subjective dawn.  Following 4 days in constant conditions, ~50 seedlings per 
genotype were harvested at subjective dawn (ZT96) and PAP quantified by reverse-phase HPLC as previously 
described (Bürstenbinder et al., 2007; Estavillo et al., 2011).  Error bars indicate standard deviation, with n=4.  
Asterisks indicate statistically significant difference in (A,C) PAP content or (B) circadian period, compared to Col-
0 control (* p<0.01, ** p<0.001, Student’s T-test). 
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While Fq’/Fm’ rhythms in alx8-1 exhibited a significantly long period (25.45 ± 0.34 h) 

compared to Col-0 (24.34 ± 0.20 h; p<0.01, Student’s T-test), the ~1 hour longer period of 

alx8-1 was not observed in individual T1 alx8-1 35S::AHL:GFP, seedlings (24.15 ± 0.17 h for 

line #1; 24.05 ± 0.26 h for line #2; 24.06 ± 0.33 h for line #3). To examine the effect of AHL 

overexpression on PAP accumulation in a sal1 mutant grown under constant blue light, the 

level of endogenous PAP was examined in Col, alx8-1 and homozygous T3 seedlings of three 

independent alx8-1 35S::AHL:GFP lines. Seedlings were grown on 0.5x MS agar plates for 12 

days in 12h:12h light:dark cycles under 60 µmol.m-2.s-1 white light before being transferred to 

20 µmol.m-2.s-1 constant blue light at subjective dawn. After 4 days in constant blue light, 

seedlings were harvested and PAP quantified as described above. As had been observed under 

constant white light, PAP was present in low levels in Col-0 seedlings (1.2 nmol.g-1 FW; Figure 

6.4d) under constant blue light. alx8-1 seedlings accumulated ~13-fold more endogenous PAP 

than Col-0 seedlings (16.3 nmol.g-1 FW; p<0.001,Students’ T-test), marginally higher than 

observed for fry1-6 grown under constant white light (Figure 6.4a). In contrast, overexpression 

of AHL resulted in a significant decrease in endogenous PAP content in sal1, with no 

significant difference in PAP content between alx8-1 35S::AHL:GFP seedlings and Col-0 

(p>0.05, Student’s t-test). 

 

6.2.3. Increase in endogenous PAP content in sal1 is dependent on light intensity 

In sal1 seedlings, the long period circadian phenotype correlates with higher endogenous PAP 

levels relative to wild-type under 60 µmol.m-2.s-1 constant white light or 20 µmol.m-2.s-1 

constant blue light (Figure 6.4). To determine whether the accumulation of PAP, like circadian 

period, is affected by the fluence rate of light in sal1 mutants, endogenous PAP content of sal1 

mutants grown under different fluence rates of constant blue light was examined. Seedlings 

were grown on 0.5x MS agar plates for 12 days in 12h:12h light:dark cycles under 60 µmol.m-

2.s-1 white light before being transferred to 5, 20 or 40 µmol.m-2.s-1 constant blue light at 

subjective dawn. After 4 days in constant conditions, seedling were harvested and PAP 
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extracted and quantified as described for Figure 6.4. PAP was present in very low levels (or 

undetectable) in Col-0, compared to significantly higher quantities in fry1-6, alx8-1 and fou8 

under all fluence rates of constant blue light (Figure 6.5a, b and c). This corresponds to previous 

reports of very low PAP levels in wild-type seedlings, and accumulation of PAP in sal1 

seedlings, under non-stressed conditions (Section 6.2.2; Chen et al., 2011). Furthermore, no 

difference in PAP content was observed in Col-0 under different fluence rates of constant blue 

light. Interestingly, PAP accumulated at significantly higher levels under 20 µmol.m-2.s-1 and 

40 µmol.m-2.s-1 constant blue light compared to 5 µmol.m-2.s-1 (p<0.001, Student’s T-test) in 

fry1-6 (Figure 6.5a) with no difference in PAP content observed between fry1-6 seedlings 

grown under the two highest fluence rates. Similarly, alx8-1 seedlings accumulated ~6-fold 

more endogenous PAP when grown under 40 µmol.m-2.s-1 compared to alx8-1 seedlings grown 

under 5 µmol.m-2.s-1 (p<0.001, Student’s T-test; Figure 6.5b). The same pattern of increased 

PAP accumulation under higher fluence rates of constant blue light was observed in fou8 

(Figure 6.5c) with a ~5-fold increase in PAP quantity in seedlings grown under 5 µmol.m-2.s-1 

compared to 40 µmol.m-2.s-1 constant blue light. 

 

6.2.4. Accumulation of SAL1 is not altered under different light qualities 

Since the circadian phenotype and the accumulation of PAP in sal1 were affected by light 

conditions, the effect of different wavelengths and fluence rates of constant light on the 

expression of SAL1 was investigated. Firstly, the transcription of SAL1 in Col-0 was examined 

under constant darkness using qRT-PCR. Col-0 seedlings were grown on 0.5x MS agar plates 

in 12h:12h light:dark cycles under 60 µmol.m-2.s-1 white light for 10 days, subsequently 

transferred to constant darkness at subjective dawn, and 10-12 seedlings per time point sampled 

from subjective dawn (ZT24) every 3 hours for two days. Strong circadian rhythms in transcript 

accumulation for the evening-phased core clock component GI confirmed that gene 

transcription was still actively taking place in seedlings after three days in constant darkness 

(Figure 6.6a).  
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Figure 6.5  Accumulation of PAP in sal1 under different fluence rates of constant blue light.  (A-C)  

Quantification of endogenous PAP in (A) Col-0 and fry1-6 seedlings, in (B) Col-0 and alx8-1 seedlings, and in (C) 

Col-0 and fou8 seedlings under 5, 20 or 40 µmol.m-2.s-1 constant blue light.  Seedlings were grown on 0.5x MS agar 
plates and entrained in 12h:12h light:dark cycles under 60 µmol.m-2.s-1 white light for 12 days before transfer to 
constant blue light at subjective dawn.  Following 4 days in constant conditions, ~50 seedlings per genotype were 
harvested at subjective dawn (ZT96) and PAP quantified by reverse-phase HPLC as previously described 
(Bürstenbinder et al., 2007; Estavillo et al., 2011).  Error bars indicate standard deviation, with n=4. Asterisks 
indicate statistically significant difference in PAP content compared to comparative sal1 mutant grown under 5 
µmol.m-2.s-1 constant blue light  (* p<0.01, ** p<0.001, Student’s T-test). 
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Figure 6.6 Expression of SAL1 under different light conditions.  (A-B) Rhythms in accumulation of (A) the core 
clock transcript GI and (B) SAL1 in Col-0 and fry1-6 seedlings under constant darkness.  Seedlings were grown on 
0.5x MS agar plates and entrained in 12h:12h light:dark cycles under 60 µmol.m-2.s-1 white light for 10 days before 
being transferred to constant darkness at subjective dawn.  After 24 hours in free-run, 10-12 seedlings were sampled 
and pooled, with sampling repeated every three hours for two days.  Data for each gene were normalised to an 
internal control (PP2a).  White bars and grey bars indicate subjective day and subjective night, respectively.  Data 
are representative of two biological replicates.  Error bars indicate standard error of the mean.  (C) Immunoblot 
analysis and (D) quantification of SAL-GFP levels under constant light conditions using an anti-GFP antibody in 
Col-0, alx8-1 and two independent alx8-1 SAL1::SAL1:GFP lines, one with higher (#1) and one with lower 
expression of SAL1-GFP (#2).  Anti-Actin antibody was used to detect actin levels for loading control.  Seedlings 
were grown on 0.5x MS agar plates in 12h:12h light:dark cycles under 60 µmol.m-2.s-1 white light for 12 days before 
transfer to constant darkness (D), constant low blue light (5 µmol.m-2.s-1 blue light, LB), constant higher blue light 
(40 µmol.m-2.s-1 blue light) or constant white light (60 µmol.m-2.s-1 white light).  Immunoblots from one of three 
independent experiments are shown.  Protein level quantification data are average of three independent experiments.  
Data were normalised to internal control (Actin). Error bars indicate standard error of the mean.  Asterisks indicate 
statistical significance of SAL1-GFP protein level compared to level under constant darkness for each independent 
line (* p<0.01, ** p<0.001, Student’s T-test). 
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No rhythm in transcript accumulation was observed for SAL1 transcripts (Figure 6.6b), which 

is similar to transcription patterns of SAL1 observed under constant light and long-day 

conditions (Section 4.2.2). Unlike GI transcripts, which continue to cycle under constant 

darkness, transcript levels of SAL1 were suppressed within 6 hours of transfer to constant 

darkness. This corresponds to a previous reports of rapid downregulation of SAL1 transcription 

within 1 hour of transferring seedlings from light:dark cycles to darkness (Kim and von Arnim, 

2006, 2009). 

To analyse the accumulation of SAL1 protein under different light conditions, immunoblot 

analyses was performed on total protein extracts from homozygous T3 seedlings of two 

independent alx8-1 SAL1::SAL1:GFP lines (alx8-1 SAL1::SAL1:GFP #1 and #2; Section 4.2.5, 

Appendix II). Seedlings were grown on 0.5x MS agar plates in 12h:12h light:dark cycles under 

60 µmol.m-2.s-1 white light for 12 days, and subsequently transferred to 60 µmol.m-2.s-1 constant 

white light, 40 µmol.m-2.s-1 constant blue light, 5 µmol.m-2.s-1 constant blue light or constant 

darkness. After 3 days in free-running conditions, tissue (12-15 seedlings) was harvested in the 

subjective afternoon (ZT77). Immunoblot analysis was performed on total protein extracts 

using an anti-GFP antibody, and intensity of protein bands quantified using ImageJ. SAL1-

GFP protein was detected in both independent lines of alx8-1 SAL1::SAL1:GFP under all 4 

different light conditions (Figure 6.6c and d). Interestingly, quantification of SAL1-GFP 

revealed significantly higher protein expression accumulation in seedlings grown under 

constant darkness compared to constant light, despite the suppression of transcript levels under 

constant darkness (Figure 6.6b). No significant difference in protein levels was observed in 

seedling grown under 5 or 40 µmol.m-2.s-1 constant blue light, or 60 µmol.m2.s1 constant white 

light (Figure 6.6c and d). 
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6.2.5. Application of LiCl or exogenous PAP affects circadian period 

Since the long period circadian phenotype of sal1 correlated with increased accumulation of 

endogenous PAP (Figure 6.4 and 6.5), the effect of exogenous PAP treatments on circadian 

period was investigated. Loss or inhibition of SAL1 function results in the accumulation of 

PAP (Estavillo et al., 2011; Chan et al., 2016), and lithium (Li+) is a known inhibitor of the 

3’,5’-bisphosphate nucleotidase activity of Arabidopsis SAL1 (Quintero et al., 1996; Xiong et 

al., 2004). To determine whether lithium affects circadian rhythms in Col-0, the rhythmic 

expression of nuclear clock-controlled components CAB2, CCA1, LHY, GI and TOC1 were 

examined through imaging of the Col-0 luciferase reporter lines CAB2::LUC+, CCA1::LUC+, 

GI::LUC+, LHY::LUC+ and TOC1::LUC+ treated with LiCl under constant blue light. 

Seedlings were grown on 0.5x MS agar plates for 6 days in 12h:12h light dark cycle under 60 

µmol.m-2.s-1 white light. Seedling (in clusters of ~5) were subsequently imaged under 20 

µmol.m-2.s-1 constant blue light for 1 day, after which plants were sprayed with LiCl (100 mM, 

prepared in 0.01% Triton X-100) or a mock control (0.01% Triton X-100) in the subjective 

afternoon (~ZT30). Luciferase imaging was continued for an additional 5 days, and time series 

data collected after application of treatments subjected to FFT-NLLS analysis. Application of 

LiCl had no effect on the robustness of circadian rhythms, but resulted in a significant, >1 h 

elongation in period for rhythmic expression of CAB, CCA1 and GI in Col-0 compared to 

mock-treated Col-0 luciferase reporter seedlings (p<0.001, Student’s T-test; Figure 6.7a). A 

similar, but less severe (~0.5 h) elongation in period was observed for rhythmic expression of 

LHY and TOC1 in Col-0 reporter line seedlings treated with LiCl compared to mock controls 

(p<0.01, Student’s T-test). To determine whether application of SAL1-inhibiting LiCl affects 

circadian rhythms in a loss-of-function sal1 mutant, rhythmic expression of CCA1 was 

examined in Col-0 CCA1::LUC2 and fry1-6 CCA1::LUC2 treated with LiCl. Individual 

seedlings were entrained, imaged under constant blue light and treated with LiCl or a mock 

control as described for Figure 6.7a above.  
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Figure 6.7  Effect of LiCl or exogenous PAP on nuclear circadian rhythms in Col-0 and sal1 under constant 

blue light. (A-B)  Circadian period estimates for luciferase activity monitored in (A) Col-0 CAB2::LUC+, 

CCA1::LUC+, GI::LUC+, LHY::LUC+ and TOC1::LUC+ seedlings, and in (B) Col-0 CCA1::LUC2 and fry1-6 

CCA1::LUC2 seedlings treated with LiCl under constant blue light.  (C) Circadian period estimates for luciferase 
activity monitored in Col-0 CCA1::LUC2 and fry1-6 CCA1::LUC2 seedlings treated with PAP under constant blue 
light.  Seedlings were grown on 0.5x MS agar plates and entrained in 12h:12h light:dark cycles under 60 µmol.m-

2.s-1 white light for 6 days before imaging in 20 µmol.m-2.s-1 constant blue light.  After 1 day of imaging, seedlings 
were sprayed with (A-B) 100 mM LiCl or (C) 1 mM PAP in the subjective afternoon (~ZT30) and imaging 
continued for ~5 days.  Error bars indicate standard error of the mean, with n=20.  Data from one of three
independent experiments are shown.  Asterisks indicate statistical significance in circadian period compared to 
mock-treated control for each comparative genotype (* p<0.01, ** p<0.001, Student’ T-test). 
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Bioluminescence from CCA1::LUC2 activity cycled with robust circadian rhythm in LiCl- and 

mock-treated seedlings of both genotypes, with a significant, ~1 hour elongation in period 

observed in Col-0 seedlings treated with LiCl (24.56 27 ± 0.20 h) compared to mock-treated 

Col-0 seedlings (23.60 27 ± 0.06 h; p<0.001, Student’s T-test; Figure 6.7b). Interestingly, no 

significant difference in period was observed between fry1-6 seedlings treated with LiCl and 

fry1-6 seedlings treated with mock control. 

In a more direct approach to investigate the effect of increased PAP on circadian period, 

rhythms in expression of CCA1 were monitored in Col-0 and fry1-6 seedlings treated with 

exogenous PAP. CCA1::LUC2 and fry1-6 CCA1::LUC2 seedlings were entrained and imaged 

under constant blue light as described for Figure 6.7a above. After 1 day of imaging, seedlings 

were sprayed with PAP (1 mM, prepared in 0.01% Triton X-100) or a mock control (0.01% 

Triton X-100) in the subjective afternoon (~ZT30). Luciferase imaging was continued for an 

additional 5 days, and time series data collected after application of treatments subjected to 

FFT-NLLS analysis. Application of PAP had no effect on circadian rhythms in Col-0, with 

bioluminescence from CCA1::LUC2 activity cycling with robust, ~24 h circadian rhythm in 

PAP- and mock-treated Col-0 seedlings (Figure 6.7c). However, application of exogenous PAP 

caused a significant period lengthening of ~1 h in fry1-6, with fry1-6 seedlings treated with 

PAP exhibiting CCA1::LUC2 rhythms with period of 25.25 ± 0.12 h compared to mock-treated 

fry1-6 seedlings (24.52 ± 0.14 h; p<0.001, Student’s T-test; Figure 6.7c). 

   

6.2.6. Mannitol treatment lengthens circadian period and results in PAP accumulation in 

Col-0 

Under drought stress, adult Col-0 and sal1 plants accumulate PAP at higher levels than under 

non-stressed conditions, which correlates with the upregulation of stress-induced genes 

(Estavillo et al., 2011). In order to investigate whether the accumulation of PAP in response to 

stress correlates with an effect on circadian rhythms, the effect of mannitol on the endogenous 
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PAP content and circadian rhythms in Col-0 was investigated. Although not identical to 

drought treatments, the induction of osmotic stress through the application of mannitol has 

been used previously to study stress responses in Arabidopsis (Xiong et al., 2001; Bray, 2004). 

Firstly, the effect of mannitol treatment on the endogenous PAP levels of Col-0 and alx8-1 

under constant blue light was examined. Col-0 and alx8-1 seedlings were grown on 0.5x MS 

agar plates for 11 days in 12h:12h light:dark cycles under 60 µmol.m-2.s-1 white light before 

being transferred to 0.5x MS agar plates substituted with 200 mM mannitol (or to fresh 0.5x 

MS agar plates as control). After 1 day, plants were transferred to 20 µmol.m-2.s-1 constant blue 

light at subjective dawn. Following 4 days in constant conditions, seedlings were harvested, 

and PAP extracted and quantified as previously described. As observed previously (Figure 6.4 

and 6.5), PAP was undetectable in Col-0, but accumulated in alx8-1 on 0.5x MS control plates 

(Figure 6.8a). Treatment with mannitol resulted in a significant accumulation of PAP in Col-0 

(p<0.001, Student’s T-test) relative to Col-0 under control conditions, with PAP quantity 

comparable to that observed in alx8-1 seedlings grown under control conditions (although 

values were overall smaller than obtained during previous quantifications of PAP in sal1 

mutants; Figure 6.4 and 6.5). In contrast, no significant increase in PAP was observed in alx8-

1 seedlings treated with mannitol relative to alx8-1 under control conditions. These data 

confirm that PAP accumulates in wild-type in response to stress (Estavillo et al., 2011), and 

indicates that application of stress does not cause accumulation of additional PAP in the sal1 

mutant. 

Since mannitol treatment resulted in a significant increase in endogenous PAP content in Col-

0 under constant blue light, the effect of mannitol treatment on circadian rhythms in Col-0 was 

investigated. The expression of nuclear clock-controlled components CCA1, LHY and TOC1 

were examined through imaging of the Col-0 luciferase reporter lines CCA1::LUC+, 

LHY::LUC+ and TOC1::LUC+ treated with mannitol under constant blue light.  
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Figure 6.8  Effect of mannitol on PAP accumulation and circadian period under constant blue light. (A) 

Quantification of endogenous PAP in Col-0 and alx8-1 seedlings treated with mannitol under constant blue light.  
Seedlings were grown on 0.5x MS agar plates and entrained in 12h:12h light:dark cycles under 60 µmol.m-2.s-1

white light for 11 days before transfer to 0.5x MS plates substituted with 200 mM mannitol (or to 0.5x MS plates 
as mock treatment).  After 1 day, plants were transferred to 20 µmol.m-2.s-1 constant blue light at subjective dawn.  
Following 4 days in constant conditions, ~50 seedlings per genotype were harvested at subjective dawn (ZT96) and 
PAP quantified by reverse-phase HPLC as previously described (Bürstenbinder et al., 2007; Estavillo et al., 2011).  
Error bars indicate standard deviation, with n=4. Asterisks indicate statistically significant difference in PAP content 
compared to comparative genotype grown on 0.5x MS control plates  (* p<0.01, ** p<0.001, Student’s T-test).  (B)

Circadian period estimates for luciferase activity monitored in Col-0 CCA1::LUC+, LHY::LUC+ and TOC1::LUC+

seedlings treated with mannitol under constant blue light.  Seedlings were grown on 0.5x MS agar plates and 
entrained in 12h:12h light:dark cycles under 60 µmol.m-2.s-1 white light for 5 days before transfer to 0.5x MS plates 
substituted with 200 mM mannitol (or to 0.5x MS plates as mock treatment).  After 1 day, plants were imaged under 
20 µmol.m-2.s-1 constant blue light.  Error bars indicate standard error of the mean, with n=10.  Asterisks indicate 
statistical significance in circadian period compared to mock-treated control for each comparative genotype (* 
p<0.01, ** p<0.001, Student’ T-test). 
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Seedlings were grown on 0.5x MS agar plates for 5 days in 12h:12h light dark cycle under 60 

µmol.m-2.s-1 white light before being transferred to 0.5x MS agar plates supplemented with 200 

mM mannitol (or 0.5x MS agar plates for control treatments). After one day, seedlings were 

imaged under 20 µmol.m-2.s-1 constant blue light for 5 days. While promoter activity of all three 

clock components analysed oscillated with robust rhythms both in the presence and absence of 

mannitol, treatment with mannitol resulted in a significant >1 h elongation in circadian period 

of rhythmic CCA1, LHY and TOC1 expression in Col-0 relative to Col-0 seedlings grown on 

control medium (Figure 6.8b). These data correspond to the previous observations that long 

circadian period correlates with increased endogenous PAP in sal1 seedlings (Figure 6.4 and 

6.5).  

 

6.3. Discussion 

6.3.1. Lengthening of circadian period occurs in sal1 mutants in a light-dependent manner 

In the stipl1 mutant – a mutant with lost function of the putative RNA binding protein 

SPLICEOSOMAL TIMEKEEPER LOCUS 1 (STIPL) – impaired transcript processing 

(particularly of circadian-associated transcripts) is associated with a long circadian period 

phenotype, which is present under both constant light and constant darkness (Jones et al., 2012). 

Contrary to these findings, the long circadian period observed in sal1 mutants under constant 

light is not observed under constant darkness, suggesting a light-dependent element to the 

circadian phenotype of sal1 (Figure 6.1). This observation correlates with a previous report 

which indicates that the shortened hypocotyl phenotype of sal1 is present under constant light, 

but not under constant darkness (Kim and Von Arnim, 2009). Interestingly, the loss-of-function 

xrn4 mutant ein5-1 also exhibits a long period circadian phenotype under constant light 

conditions, but not under constant darkness (Hanano et al., 2006), further suggesting a possible 

role of SAL1/PAP/XRN4 in regulating circadian rhythm in a light-depended manner. However, 

the light-specific element of the sal1 circadian phenotype appears to extend beyond merely the 
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presence or absence of a light signal. While the shortened hypocotyl phenotype of sal1 is 

observed both under constant blue and constant red light (Figure 4.1d; Kim and Von Arnim, 

2009), the long circadian period of sal1 is more severe under constant blue light than under 

constant red light. Previous analysis of delayed fluorescence rhythms and rhythmic transcript 

accumulation had indicated a wavelength-specific effect, with a more severe long-period 

phenotype in sal1 under 20 µmol.m-2.s-1 constant blue light than under 30 µmol.m-2.s-1 constant 

red light (Sections 4.2.3 and 4.2.4). This was confirmed through analysis of CCA1::LUC2 

rhythms in Col-0 and fry1-6 luciferase reporter lines, with an ~1 h elongation in period 

observed in fry1-6 relative to Col-0 under constant blue light, compared to a less severe, ~0.5 

h period lengthening under constant red light (Figure 6.2 and 6.3). The circadian period of sal1 

is sensitive not only to the wavelength of light, but also to fluence rate. Under very low levels 

of constant blue light, as under constant darkness, no long period is observed in sal1 relative 

to Col-0. Indeed, the long period phenotype of sal1 only emerges under comparatively higher 

levels of constant blue light (20 or 40 µmol.m-2.s-1). Confirming the blue light-specific long 

period circadian phenotype of sal1, the long period of sal1 is absent under low and higher 

fluence rate of constant red light tested. 

 

6.3.2. Lengthening of circadian period correlates with PAP levels in sal1 mutants 

The numerous sal1 mutant phenotypes, including morphological characteristics, altered sulfur 

metabolism, and super-induction of stress-induced genes, correlate with – and are attributed to 

– the accumulation of PAP, which in turn results in the inhibition of XRN activity (Estavillo et 

al., 2011; Chen et al., 2011; Lee et al., 2012). The Arabidopsis genome contains four genes 

homologous to SAL1, namely SAL2 (AT5G64000), SAL3 (AT5G63990), SAL4 (AT5G09290) 

and AHL (AT5G54390), all of which share >40% amino acid sequence identity to SAL1 

(Quintero et al., 1996; Gil-Mascarell et al., 1999; Xiong et al., 2001; Chen et al., 2011). The 

SAL1 homologue genes are located on chromosome V and SAL1, SAL2 and SAL3 are arranged 

in tandem on chromosome V, indicating possible duplication from a common ancestor (Chen 
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et al., 2011). Transcript levels of SAL1 and AHL are at approximately the same level, which is 

significantly higher than for the remaining SAL1 homologues (Chen et al., 2011). Of the SAL1 

homologues, in vitro enzyme activity data are available only for SAL1, SAL2 and AHL 

(Quintero et al., 1996; Gil-Mascarell et al., 1999; Xiong et al., 2001). Like the yeast HAL2 

enzyme, SAL1 and SAL2 are bifunctional enzymes with inositol polyphosphate 1-phosphatase 

and 3’(2’),5’-bisphosphate nucleotidase activities (Quintero et al., 1996; Gil-Mascarell et al., 

1999; Xiong et al., 2001). In vitro substrate specificity studies of SAL1 and SAL2 using 

purified recombinant protein revealed phosphatase activity towards 3’-phosphoadenosine 5’-

phosphate (PAP), 2’-PAP and 3’-phosphoadenosine 5’-phosphosulfate (PAPS), but not 

towards phosphate esters such as ATP or fructose 1,6-bisphosphate. SAL1 and SAL2 also 

catalyse hydrolysis of inositol 1,4-bisphosphate and inositol 1,3,4-triphosphate (but not inositol 

1-phosphate) in vitro, with lower activities than towards PAP (Quintero et al., 1996; Gil-

Mascarell et al., 1999; Xiong et al., 2001). In contrast, AHL hydrolyses only PAP and PAPS 

(Gil-Mascarell et al., 1999) in vitro. SAL1, SAL2 and AHL all require the presence of Mg2+ as 

cofactor for enzyme activity, and SAL1 exhibits significantly higher activity than SAL2 and 

AHL towards all substrates (Quintero et al., 1996; Gil-Mascarell et al., 1999; Chen et al., 2011). 

Despite the presence of functionally redundant homologues, SAL1 is regarded as the main 

enzyme controlling PAP levels in vivo (Chen et al., 2011; Estavillo et al., 2011). Analysis of 

Arabidopsis sal1, sal2, sal3, sal4 and ahl null mutants revealed that only sal1 mutants have 

significantly higher levels of PAP (Chen et al., 2011). This could be due to the relatively high 

expression levels of SAL1 and AHL compared to other SAL1 homologues, combined with the 

significantly higher enzyme activity of SAL1 towards PAP (Quintero et al., 1996; Gil-

Mascarell et al., 1999; Chen et al., 2011). 

PAP, not 1,4,5-triphosphate, is regarded as the in vivo substrate of SAL1 (Gy et al., 2007; 

Wilson et al., 2009; Chen and Xiong, 2010; Hirsch et al., 2011; Estavillo et al., 2011). 

Recombinant SAL1 has a significantly higher affinity towards PAP (Km of 2-10 µM) than 

towards IP3 (Km of 90 µM), with ~4% activity on IP3 relative to its activity towards PAP (Gil-
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Mascarell et al., 1999; Xiong et al., 2001). Previous reports have attributed the slower 

germination and changes in postembryonic development, leaf shape, venation patterning and 

lateral root formation in sal1 mutants to the accumulation of IP3 and a subsequent effect on 

Ca2+-mediated ABA- and auxin signalling (Xiong et al., 2001; Robles et al., 2010; Zhang et 

al., 2011). The relatively high levels of SAL1 transcript in buds within the first 4 days of 

flowering, along with the expression of SAL1 in seed coats, further suggest a role for SAL1 in 

seed development, possibly through effect of increased IP3 on myo-inositol biosynthesis (Sato 

et al., 2011; Zhang et al., 2011). However, the studies attributing sal1 phenotypes to the 

increased levels of IP3 only examined SAL1 activity towards polyphosphoinositols and did not 

investigate PAP levels (Xiong et al., 2001; Xiong et al., 2004; Sato et al., 2011; Zhang et al., 

2011). Relative to wild-type, sal1 mutants accumulate ~20-fold PAP under non-stressed 

conditions, compared to no increase or a 2-fold increase in IP3 and other polyphosphoinositols 

(Estavillo et al., 2011; Zhang et al., 2011). In addition, constitutive overexpression of the PAP-

specific homologue AHL in sal1 mutants complements the root and rosette phenotypes of sal1 

and restores hypocotyl elongation in these mutants, indicating that loss of SAL1 3’,(2’),5’-

bisphosphate nucleotidase activity is responsible for these phenotypes (Kim and von Arnim, 

2009; Hirsch et al., 2011). While in vitro assays indicate SAL1 activity towards PAPS is 

comparable to enzyme activity towards PAP (Quintero et al., 1996; Gil-Mascarell et al., 1999), 

only a small increase in PAPS is observed in a sal1 mutant compared to wild-type (Estavillo et 

al., 2011). In addition, SAL1 is localised mainly in the chloroplasts and mitochondria, while 

PAPS accumulates in the cytosol for utilisation by SOTs (Klein and Papenbrock, 2004; 

Mugford et al., 2009; Estavillo et al., 2011). These reports suggest that PAP, not PAPS, is the 

in vivo substrate of SAL1. Indeed, the long period phenotype of sal1 under constant white light 

conditions correlates with higher PAP levels compared to Col-0 (Figure 6.4a and b).  In the 

current study, overexpression of AHL in sal1 not only restored circadian rhythms, but also 

restored PAP levels in sal1 mutants to wild-type levels (Figure 6.4c and d). 
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The emergence of the long period circadian phenotype under relatively higher levels of 

constant blue light correlates with increased accumulation of PAP in sal1 under these fluence 

rates (Figure 6.4 and 6.5). fry1-6 seedlings accumulate >2-fold more PAP under 20 µmol.m-

2.s-1 than under 5 µmol.m-2.s-1 constant blue light, which correlates with an ~1 h period 

elongation relative to Col-0 under 20 µmol.m-2.s-1 and no period lengthening under 5 µmol.m-

2.s-1. Furthermore, the absence of a difference in PAP accumulation between fry1-6 seedlings 

grown under 20 µmol.m-2.s-1 or 40 µmol.m-2.s-1 constant blue light correlates with no difference 

in period between fry1-6 seedlings under these fluence rates. These relatively small increases 

in fluence rate also affect PAP accumulation in other sal1 mutant alleles, with both alx8-1 and 

fou8 accumulating >5-fold more PAP under 40 µmol.m-2.s-1 than under 5 µmol.m-2.s-1 constant 

blue light. 

While having a significant effect on PAP levels in sal1, wavelength and fluence rate of light 

does not appear to have an effect on SAL1 protein accumulation. No significant difference in 

SAL1-GFP protein levels were observed in alx8-1 SAL1::SAL1:GFP seedlings grown under 

60 µmol.m-2.s-1 constant white light, 20 µmol.m-2.s-1 constant blue light or 20 µmol.m-2.s-1 

constant blue light (Figure 6.6). These data correspond with the observation that SAL1 protein 

expression does not change over the course of the day (Section 4.2.2) or in response to stress 

(Chan et al., 2016), further supporting the proposal that regulation of SAL1 activity, rather than 

SAL1 protein expression, is important in the SAL1/PAP/XRN signalling pathway (Chan et al., 

2016). The downregulation of SAL1 transcription under constant darkness observed in this 

study (Figure 6.6b) has been previously reported (Kim and von Arnim, 2006, 2009), but 

appears to correlate with increased level of SAL1-GFP protein under constant darkness (Figure 

6.6c and d). Since SAL1 activity rather than SAL1 protein level is considered to be of 

importance in SAL1/PAP signalling, the effect of constant darkness on SAL1 expression and 

PAP signalling needs further investigation. 
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6.3.3. Inhibition of SAL1 and application of exogenous PAP affects circadian period 

In Arabidopsis SAL1, as well as in the yeast homologue HAL2 and the mammalian homologue 

BPntase, 3’,(2’),5’-bisphosphate nucleotidase enzyme activity is inhibited by lithium (Murguía 

et al., 1996; Quintero et al., 1996; Spiegelberg et al., 1999; Xiong et al., 2004). In yeast, HAL2 

acts as a target of lithium and salt toxicity, and the application of LiCl results in the 

accumulation of PAP and the inhibition of sulfur assimilation in yeast cells (Murguía et al., 

1996). In this study, application of LiCl resulted in a significant lengthening of circadian period 

in Col-0, as is evident from the rhythmic expression of both morning- and evening-phased 

clock components (Figure 6.7a). However, care must be taken when attributing the observed 

period lengthening to the inhibition of SAL1 activity by LiCl. LiCl is thought to inhibit a range 

of enzymes, including glycogen synthase kinase-3 (GSK) in plants – a multigene family (with 

ten GSK genes in the Arabidopsis genome) which is involved in numerous different processes, 

including flower development, NaCl stress and wound responses (Phiel and Klein, 2001; Jonak 

and Hirt, 2002). Even so, the observation that LiCl causes a significant period lengthening in 

Col-0 but not in sal1 (Figure 6.7b) suggests the possible involvement of increased PAP levels 

resulting from inhibition SAL1 activity. A previous study reported no indication of lithium 

tolerance in a sal1 mutant, or indeed any inhibition of SAL1 or accumulation of PAP in Col-0 

or sal1 in response to lithium treatment (Xiong et al., 2004; Chen et al., 2011). However, these 

lithium treatments were performed by growing plants on media supplemented with, at most, 

20 mM LiCl, while previous studies showing inhibition of SAL1 in yeast (Murguía et al., 

1996), as well as this study, used a LiCl concentration of 100 mM (although the intracellular 

LiCl concentration remains unknown). In yeast, HOS2 is thought to confer lithium tolerance 

by acting as a target for lithium inhibition, with subsequent overexpression of HOS2 resulting 

in increased 3’,(2’),5’-bisphosphate nucleotidase activity and a resulting decrease in 

intracellular lithium toxicity (Murguía et al., 1996; Quintero et al., 1996). It is therefore 

possible that, under low LiCl concentration, an increase in SAL1 expression counteracts the 

effect of lithium toxicity, masking the effect of LiCl on SAL1 activity. Interestingly, the single 



221 
 

nucleotide mutation in the SAL1 gene of the Arabidopsis hos2 mutant confers lithium resistance 

to hos2 plants and to the hos2 mutant protein, without resulting in loss of 3’,(2’),5’-

bisphosphate nucleotidase activity. Previous studies have indicated that lithium acts as a non-

competitive inhibitor of SAL1 and binds to the Asp288 and Asp134 residues of the enzyme, 

with the hos2 mutation resulting in modification of metal binding sites and loss of accessibility 

to lithium (Spiegelberg et al., 1999; Xiong et al., 2004). 

The Li-induced inhibition of SAL1 activity is a crude way of monitoring the effect of increased 

PAP on circadian rhythms, and the application of exogenous PAP provides a more targeted 

approach (Figure 6.7c). The significant increase in circadian period upon application of 

exogenous PAP in sal1 further supports the correlation between increased PAP accumulation 

and lengthening of circadian period in sal1. No significant difference in period was observed 

in Col-0 upon application of exogenous PAP, which could be due to the rapid degradation of 

applied PAP by the highly active wild-type SAL1 enzyme (Quintero et al., 1996; Estavillo et 

al., 2011; Chan et al., 2016). 

 

6.3.4. Osmotic stress lengthens circadian period possibly through accumulation of PAP in 

wild-type 

Since exogenous PAP could be degraded by the highly active wild-type SAL1 enzyme, and the 

inhibition of SAL1 by lithium is not specific, studying the effect of PAP accumulation on 

circadian rhythms in wild-type Arabidopsis was problematic. The proposed model of the 

SAL1/PAP/XRN signalling pathway suggests that the presence of abiotic stresses such as high 

light or drought results in changes in the redox poise of plastids, which in turn cause inhibition 

of SAL1 and a subsequent accumulation of endogenous PAP in wild-type (Chan et al., 2016). 

Indeed, treatment of Col-0 with the osmotic stressor mannitol resulted in the accumulation of 

endogenous PAP to levels comparable to that observed in sal1 (Figure 6.8a). This increase in 

endogenous PAP correlated with a significant period lengthening of > 1 hour in rhythmic 
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expression of both morning- and evening-phased clock components in Col-0 (Figure 6.8b). 

These data not only strengthen the correlation between increased PAP accumulation and long 

circadian period, but also suggest a possible role for SAL1/PAP regulation of the circadian 

system in response to abiotic stress. 

This chapter demonstrated that SAL1 acts on the circadian system in a light-dependent manner, 

and that lengthening of circadian period directly correlates with the accumulation of PAP in 

planta. Furthermore, a possible link between SAL1/PAP signalling and circadian rhythms 

under abiotic stress was determined. The implications of these findings and the role of the 

SAL1/PAP/XRN signalling pathway in the broader context of circadian regulation will be 

discussed in the final chapter. 
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Chapter 7 

General discussion 

 

7.1. Introduction 

Throughout their lifecycle, plants are continuously exposed to various, often challenging, 

environmental changes, and have developed complex, integrated mechanisms to sense and 

adapt to these conditions (Millar, 2016; de Souza et al., 2017). Among these environmental 

changes are rhythmic cues generated by the Earth’s rotation and orbit: predictable day-night 

cycles of light and temperature, and seasonal changes in temperature and day length (Hut and 

Beersma, 2011; Millar, 2016). Like most organisms, plants have developed an endogenous 

timing mechanism that serves both to coordinate the various complex biological components 

of the cell, and to synchronise the organism’s responses to environmental rhythms (Golombek 

and Rosenstein, 2010; Millar, 2016). The circadian system provides plants with adaptive 

advantages, including synchronisation of organ movement, carbon assimilation and light 

harvesting to day/night cycles and increasing photosynthesis; accurate timing of starch 

degradation and growth processes to prevent carbohydrate starvation during the night; and 

sensing photoperiodic information to time seasonal flowering for optimal survival (Dodd et al., 

2005; Graf et al., 2010; Dodd et al., 2014; Song et al., 2015).  

The plant circadian clock is entrained most strongly by light which is sensed through a variety 

of photoreceptors, including receptors that respond to blue light (cryptochromes and LOV-

domain photoreceptors), or red and far-red light (phytochromes) (Christie et al., 2015; Millar, 

2016). The Arabidopsis circadian system is well studied and serves as a model for the 

transcription-translation feedback loops and post-transcriptional mechanisms that comprise the 

circadian clock in plants (Hsu and Harmer, 2014; Millar, 2016). At dawn, expression of the 

MYB-related transcription factors LHY and CCA1 peaks, with CCA1 and LHY inhibiting the 
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expression of later-phased clock genes including PSEUDORESPONSE REGULATOR (PRR) 

genes, GIGANTEA (GI), and the evening-phased EARLY FLOWERING 3 (ELF3), ELF4 and 

LUX ARRHYTHMO (LUX) (Alabadí et al., 2001; Hazen et al., 2005b; Locke et al., 2006; 

Herrero et al., 2012; Adams et al., 2015). In turn, PRRs acts sequentially from dawn to limit 

expression of CCA1 and LHY to a small window in the morning (Matsushika et al., 2000; 

Nakamichi et al., 2010; Gendron et al., 2012; Huang et al., 2012). The repressive function of 

the PRRs extend further to include RVE8, a MYB-like transcription factor which acts in the 

afternoon to activate the expression of numerous evening-phased clock components, including 

PRR5, TOC1, PRR3, GI, LUX and ELF4 (Rawat et al., 2011; Hsu et al., 2013). During the early 

night, ELF3, ELF4 and LUX interact to form a protein complex that acts to repress expression 

of day- and morning-phased circadian genes during the night (Hazen et al., 2005b; Helfer et 

al., 2011; Nusinow et al., 2011; Herrero et al., 2012). The oscillations generated by these 

nuclear feedback loops control a variety of biological processes, including growth, 

photosynthesis, flowering time and responses to stress (Wang et al., 2011; Hsu and Harmer, 

2014; Dodd et al., 2014; Grundy et al., 2015; Song et al., 2015; Millar, 2016). However, 

overlaps exist among the ‘input’, ‘oscillator’ and ‘output’ components, such as circadian 

control of expression of the photoreceptors that relay entraining signals to the oscillator, and 

the ability of metabolic outputs (such as sugar) to in turn regulate the oscillator (Harmer et al., 

2000; Hsu and Harmer, 2014; Dodd et al., 2015; Millar, 2016). 

In addition to the rhythmic cues of the environment, plants are often exposed to abiotic stressors 

such as drought, high light or frost, and the circadian clock can allow plants to adapt and predict 

when these stresses are likely to occur (Jones, 2009; Hsu and Harmer, 2014; Grundy et al., 

2015). The oxidative damage caused by environmental stresses are mostly sensed in 

chloroplasts and mitochondria, and adequate adaptive responses require inter- and intra-cellular 

cooperation maintained by interorganellar signalling mechanisms (de Souza et al., 2017). 

Retrograde signalling pathways are often initiated by the action of ROS or Ca2+ (signalling 

“master switches”), and can involve the action of fatty acids or other metabolites that act as 
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interorganellar signals. One such retrograde signalling pathway is the SAL1-PAP pathway – a 

ROS-sensitive chloroplast-to-nucleus signalling mechanism that is proposed to alter nuclear 

expression through XRN activity in response to abiotic stress (Estavillo et al., 2011; Chan et 

al., 2016a, 2016b). This project examined the role of SAL1 in the circadian system by 

employing chlorophyll a fluorescence imaging and established circadian assays to monitor 

rhythms in Arabidopsis seedlings in vivo. In addition, a combination of molecular, imaging and 

analytical techniques were used to further elucidate the mechanisms through which SAL1 

functions within the circadian system. In this final chapter, data from the previous chapters are 

discussed and possible avenues of further research are suggested. 

 

7.2. Chlorophyll a fluorescence imaging allows in vivo monitoring of circadian rhythms 

and identification of circadian mutants 

In vitro and in vivo assays have been instrumental in identifying circadian components and 

their functions in plants, and can provide insight into clock effects under different 

environmental conditions (Gould et al., 2009; Nagel and Kay, 2012; Millar, 2016). Much of 

the insight into the workings of the Arabidopsis circadian system has been gained through the 

use of luciferase assays (Gould et al., 2009; Tindall et al., 2015). Clock-controlled promoter-

luciferase reporter fusions provide a robust, high-throughput assay to monitor circadian 

rhythms, and high-resolution luciferase assays can be used to monitor circadian gene activity 

at tissue- and cellular levels (Millar et al., 1992; Gould et al., 2009; Wenden et al., 2012; Endo 

et al., 2014). However, luciferase assays are indirect assays that monitor single circadian target 

genes, are often laborious (requiring the use of transgenics), and are limited to transformable 

plant species such as Arabidopsis (Gould et al., 2009; Tindall et al., 2015). Physiological assays 

that monitor overall circadian health provide more information about the implications of 

circadian components (Tindall et al., 2015). Of these, leaf movement assays are robust and 

easily used across a range of different plant species, but are limited to plants with petioles and 

often (in species such as Arabidopsis) limited to use in young leaves (Edwards and Millar, 
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2007; Tindall et al., 2015). More recently, delayed fluorescence (DF) was proposed as a simple, 

high-throughput method that allows monitoring of circadian rhythms in chloroplasts of most – 

if not all – plant species (Gould et al., 2009). DF is described as the post-illumination emission 

of light from Photosystem II (PSII) as a result of charge recombination between excited 

plastoquinone QA (the primary quinone acceptor of PSII ) and chlorophyll P680 (Rutherford et 

al., 1984; Gould et al., 2009). The circadian rhythms observed in DF under constant conditions 

suggest that the composition of the photosynthetic apparatus varies over circadian time, and 

DF has been proposed as a simple method or probing PSII photochemistry (Gould et al., 2009; 

Dodd et al., 2014). However, the exact mechanism underlying DF remains unknown (Gould et 

al., 2009; Tindall et al., 2015). In addition, the signal obtained by DF imaging is weaker than 

that collected by luciferase imaging and prone to background noise which must be corrected 

for, and data must be presented as normalised averages for groups of seedlings (Gould et al., 

2009). In order to improve on the current methods for studying photosynthetic rhythms, the 

current study investigated chlorophyll a fluorescence (prompt fluorescence) for use as a 

medium-throughput assay to monitor rhythms in Arabidopsis seedlings in planta. Chlorophyll 

a fluorescence imaging is a non-invasive method used widely to determine photosynthetic 

performance in plants and algae, and involves monitoring the light re-emitted by a leaf upon 

illumination (Butler, 1978; Baker, 2008). Light energy absorbed by the pigment antennae of 

PSII can be used to drive photochemistry, in which an electron is transferred from chlorophyll 

P680 to QA. However, the excitation energy in the PSII pigment antennae can also be lost as 

PSII fluorescence or heat. Photochemistry (photochemical quenching), heat loss (non-

photochemical quenching) and chlorophyll fluorescence are therefore directly competing 

processes (Butler, 1978; Baker, 2008). Unlike DF, the relationship between chlorophyll a 

fluorescence parameters and photosynthetic electron transport in vivo is well understood 

(Baker, 2008; Gould et al., 2009). Under non-photorespiratory conditions, these parameters 

correlate with photosynthetic rates, providing insight into CO2 assimilation (Baker, 2008). The 

parameter Fq’/Fm’ (�F/Fm’; �PSII) represents the PSII operating efficiency of a leaf grown in 

constant light, and provides an estimate of the efficiency with which light absorbed by the PSII 
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antennae is used for QA reduction. Circadian rhythms of Fq’/Fm’ under constant light conditions 

have previously been reported in individual leaves of the Crassulacean acid metabolism (CAM) 

plant Kalanchoë daigremontiana (Wyka et al., 2005; Malpas and Jones, 2016). The current 

study confirms that similar circadian oscillations in Fq’/Fm’ occur in whole seedlings of wild-

type (Col-0) Arabidopsis thaliana under constant blue light conditions (Section 3.2.1; Litthauer 

et al., 2015). Similar to circadian rhythms monitored by DF or luciferase assays (using a 

CCA1::LUC2 reporter), rhythms in Fq’/Fm’ oscillate with an approximately 24 h free running 

period (FRP) in Arabidopsis seedlings under 20 µmol.m-2.s-1. However, the phase of DF 

rhythms peak shortly before subjective dusk (ZT11), while the phasing of peak Fq’/Fm’ occurs 

approximately 10 hours later, shortly before subjective dawn. In addition, circadian rhythms in 

Fq’/Fm’ remain robust across 5 days under constant light conditions, and exhibit a lower 

Relative Amplitude Error (RAE) than DF rhythms under these conditions (Section 3.2.1; 

Litthauer et al., 2015). 

The mechanism underlying these robust circadian fluctuations in Fq’/Fm’ remains unknown 

(Litthauer et al., 2015). Fq’/Fm’ is a ratiometric measurement and therefore not directly affected 

by chloroplast movement (Brugnoli and Björkman, 1992). Furthermore, these rhythms 

continue in plants for which leaf movement is restrained, confirming that Fq’/Fm’ oscillations 

occur due to subcellular processes and not as a result of shading artefacts introduced by 

circadian leaf movement (Litthauer et al., 2015). Fq’/Fm’ is affected by a variety of 

physiological factors, including stomatal conductance (and therefore intercellular CO2 

concentration), and CO2 assimilation (Baker, 2008). In K. daigremontiana leaves, Fq’/Fm’ 

oscillations (peaking at subjective dusk) are antiphasic to rhythms in gas exchange, and 

continue independent of stomatal regulation (Wyka et al., 2005). The mechanism underlying 

Fq’/Fm’ rhythms in K. daigremontiana leaves in which gas exchange is inhibited is explained 

by circadian activity of phosphoenolpyruvate carboxylase (PEPC). At peaks of PEPC activity, 

the low internal CO2 levels are depleted, inhibiting the carboxylase activity of Rubisco and 

causing a decrease in electron transport rates, which in turn results in troughs of Fq’/Fm’ 
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oscillations. Similarly, downregulation of PEPC leads to improved supply of CO2 to Rubisco, 

resulting in increased electron transport rates and peaks of Fq’/Fm’ (Wyka et al., 2005). This 

mechanism of CAM photosynthesis is different to the mechanisms present in Arabidopsis, 

which could explain the difference in phasing of peak Fq’/Fm’ in K. daigremontiana compared 

to Arabidopsis (Wyka et al., 2005; Litthauer et al., 2015). Arabidopsis also exhibits circadian 

rhythms in stomatal conductance under constant blue light, but rhythms peak during the 

subjective morning, several hours after peaks in Fq’/Fm’ are observed (Litthauer et al., 2015). 

While this suggests that Fq’/Fm’ rhythms do not occur as a direct result of stomatal opening, it 

is possible that rhythmic stomatal opening contributes to fluctuations in Fq’/Fm’ by affecting 

the rate of photochemistry through alterations in CO2 availability (Litthauer et al., 2015). 

Alternatively, feedback mechanisms to the clock from the daily production of starch and sugars 

might induce alterations in the use of light for photochemistry (Dodd et al., 2015).  

While the molecular mechanism underlying Fq’/Fm’ circadian oscillations remains elusive, it 

can be suggested that components of the photosynthetic apparatus vary over the course of the 

day to limit damage caused by excessive light harvesting, while at the same time maximising 

energy absorption for efficient photosynthesis (Dodd et al., 2004, 2014; Litthauer et al., 2015). 

Circadian oscillations in reporters of light harvesting, such as the rate of electron transport, rate 

of O2 evolution, or oscillations in post-translational modification of reaction centre proteins, 

are well reported (Lonergan, 1981; Bonardi et al., 2005; Pesaresi et al., 2009; Dodd et al., 

2014). Furthermore, the circadian clock controls photosynthetic processes (such as light 

harvesting) both at transcriptional and post-transcriptional levels, with many genes required for 

photosynthesis encoded in the nucleus, while circadian control of a subset of chloroplast gene 

transcription is driven by rhythms of nuclear gene expression (Dodd et al., 2014; Noordally et 

al., 2013). Indeed, this study confirms that rhythms in photosynthetic efficiency are controlled 

by the nuclear circadian system (Section 3.2.2; Litthauer et al., 2015), with short period Fq’/Fm’ 

oscillations observed in the toc1-4 mutant – a toc1 null mutant with a short FRP in 

transcriptional rhythms (Hazen et al., 2005a; Jones and Harmer, 2011; Litthauer et al., 2015). 
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Similarly, a long period phenotype is observed in the long-period prr7-3 mutant, while no 

Fq’/Fm’ rhythms are observed in lux-2 mutants in which no transcriptional circadian rhythms 

can be detected (Hazen et al., 2005a, 2005b; Litthauer et al., 2015). These findings demonstrate 

not only that the nuclear clock is required to maintain rhythms of Fq’/Fm’ in the chloroplast, 

but also that chlorophyll a fluorescence imaging can potentially be used as a screening assay 

to identify mutants with altered circadian rhythms. The nuclear regulation of Fq’/Fm’ circadian 

rhythms is not surprising, as the clock is known to regulate approximately one third of the 

Arabidopsis genome, and similar nuclear regulation is observed in DF rhythms (Covington et 

al., 2008; Gould et al., 2009). Interestingly, analysis of the nuclear-encoded sigma factor SIG5 

revealed no effect on the period or amplitude of DF rhythms in sig5 mutants, despite SIG5 

being a known regulator of the blue light-responsive promoter of the chloroplast psbD operon 

(Nagashima et al., 2004; Noordally et al., 2013). SIG5 expression is circadian regulated and 

rapidly induced by high light treatment, and it has been suggested that SIG5 is involved in 

repair of PSII after photoinhibition (Nagashima et al., 2004). It would therefore be interesting 

to determine whether Fq’/Fm’ rhythms are maintained, along with DF rhythms, in sig5 mutants, 

or whether the SIG5-mediated mechanism provides a distinction between the two fluorescence 

phenomena. 

While phytochromes, cryptochromes, UVR8 and members of the ZTL protein family entrain 

the circadian system, a role for phototropin blue light receptors in light input to the clock has 

not yet been identified (Fankhauser and Staiger, 2002; Hsu and Harmer, 2014; Christie et al., 

2015). In addition, a portion of the plant cell’s phototropins (both phot1 and phot2) have been 

shown to localise to the surface of chloroplasts in response to blue light as part of the 

chloroplast avoidance mechanism (Kong and Wada, 2011; Kong et al., 2013). In order to gain 

more insight into the mechanism involved in Fq’/Fm’ oscillations, this study examined whether 

phototropin activity is required to maintain rhythms in PSII operating efficiency under constant 

dim blue light (Section 3.2.3; Litthauer et al., 2015). While loss of phototropin function had no 

effect on the period or phase of Fq’/Fm’ rhythms under 20 µmol.m-2.s-1 constant blue light, these 
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rhythms exhibited reduced amplitude in the p1p2 double mutant, dampening to near 

arrhythmicity within 4 days of free-run. As is often the case in phototropin-regulated responses, 

phot1 and phot2 act redundantly to maintain these rhythms, with no effect on Fq’/Fm’ circadian 

oscillations observed in phot1-5 or phot2-1 single mutants (Kagawa et al., 2001; Sakai et al., 

2001; Higa et al., 2014; Litthauer et al., 2015). Interestingly, no dampening of rhythms was 

observed in DF oscillations under the same dim blue light conditions either in single phot 

mutants or in the p1p2 double mutants (Section 3.2.4; Litthauer et al., 2015). DF rhythms 

tended towards long period in the p1p2 mutant, but this difference was not statistically 

significant. These differences observed between Fq’/Fm’ and DF rhythms further suggest that 

the two fluorescence processes are regulated by distinct mechanisms, although further analysis 

the biological processes is needed. 

The mechanism through which phototropins maintain oscillations in PSII operating efficiency 

remains elusive. While phototropins are known to function in the chloroplast avoidance 

response in response to blue light, chloroplast movement is not expected to play a role in 

Fq’/Fm’ fluctuations over time due to the ratiometric nature of the Fq’/Fm’ parameter (Brugnoli 

and Björkman, 1992). However, further investigation is needed to determine whether 

phototropins regulate the turnover of light harvesting complexes, or whether the effect on PSII 

operating efficiency is an indirect consequence of impaired chloroplast movement or stomatal 

conductance in the absence of phototropin activity (Litthauer et al., 2015). Previous studies 

have associated dampening of circadian rhythms under free-run with the weak coupling of 

individual, self-autonomous clocks that reside in different cells and tissues (Rascher et al., 

2001; Wenden et al., 2012). In K. daigremontiana, the rapid decline in total leaf Fq’/Fm’ occurs 

as the weakly-coupled patches of tissue, each acting as an individual oscillator, become 

desynchronised (Rascher et al., 2001). The level of heterogeneity among tissues is influenced 

by the specific phase of CAM metabolism and is not tissue-type specific, but is rather due to 

the dynamics of metabolite pools and the limitations of CO2 diffusion between tightly packed 

cells (Rascher et al., 2001). In Arabidopsis, weak coupling between tissue- and organ-specific 
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clocks have been reported, while weak intercellular coupling results in desynchronisation of 

transcriptional rhythms in individual cells (and therefore dampening of overall rhythms) under 

constant light conditions (Wenden et al., 2012; Endo et al., 2014; Bordage et al., 2016; Millar, 

2016). The current study cannot address the patterns of desynchronization that could cause 

dampening of Fq’/Fm’ rhythms in the absence of phototropins, as this would require higher 

resolution imaging and analysis of PSII operating efficiency at tissue- or cellular level. 

However, it is unlikely that loss of amplitude in Fq’/Fm’ oscillations under constant blue light 

is due to desynchronization of transcriptional oscillations, as loss of phototropin function has 

no effect on rhythms of transcript accumulation for either morning- or evening-phased nuclear 

clock genes (Section 3.2.5; Litthauer et al., 2015, 2016).  

While these data imply that the dampening of Fq’/Fm’ rhythms under constant blue light is due 

to processes occurring within the chloroplast, it remains to be determined whether phototropins 

impact PSII operating efficiency through changes to the light harvesting apparatus, through 

regulation of photochemistry, or through both (Litthauer et al., 2015, 2016). This study does, 

however, indicate that maintenance of Fq’/Fm’ oscillations under constant blue light does not 

involve NPH3 (NONPHOTOTROPIC HYPOCOTYL3) – the phototropin-interacting 

component necessary for phot-dependent phototropism under blue light (Section 3.2.6; 

Motchoulski and Liscum, 1999; Roberts et al., 2011; Litthauer et al., 2015). Further 

investigation could provide insight into whether regulation of PSII operating efficiency by 

phototropins occurs through an alternative cytoplasmic signalling intermediate, or through a 

phototropin-initiated cascade that allows transmission of signals across the chloroplast 

membrane (Litthauer et al., 2015). Interestingly, a significant FRP lengthening of Fq’/Fm’ 

rhythms in p1p2 mutants entrained under short- or long days is observed, which suggests a 

possible role for phototropins in timing of chloroplast rhythms to regulate photoperiod-

sensitive processes (Section 3.2.7). While this study does not provide further insight into the 

mechanism or function of phototropin regulation of PSII operating efficiency, it does 
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demonstrate the effectiveness of using chlorophyll a fluorescence imaging to monitor circadian 

rhythms in both wild-type and mutant Arabidopsis seedlings. 

 

7.3. SAL1 is a chloroplast-localised protein that acts on the nuclear circadian clock by 

controlling levels of endogenous PAP 

SAL1 is an enzyme with phosphatase activity towards polyphosphoinositols such as inositol 

1,4,5-triphosphate (IP3), and 3’(2’)5’-biphosphate nucleotides such as 3’-phosphoadenosine 5’-

phosphate (PAP) (Quintero et al., 1996; Xiong et al., 2001; Estavillo et al., 2011). The enzyme 

is expressed ubiquitously throughout most plant organs, and previous microarray studies have 

indicated that SAL1 transcript oscillates in long- and short-day conditions but exhibits less 

pronounced rhythms under constant light conditions (Xiong et al., 2001; Mockler et al., 2007). 

The current study confirmed that no discernible rhythms in SAL1 transcript accumulation are 

observed under constant white light and that, while SAL1 transcripts gradually accumulate over 

the course of the day under entraining conditions, no changes in protein accumulation were 

apparent in transgenic lines expressing SAL1-GFP under control of its native promoter (Section 

4.2.2). SAL1 is encoded in the nucleus, but is localised and active mainly in chloroplasts (Chen 

et al., 2011; Estavillo et al., 2011). Mutations in SAL1 are highly pleiotropic, with phenotypes 

including morphological characteristics such as delayed germination and growth, limited root 

growth, shortened hypocotyls, shortened petioles and rounded leaves, and delayed flowering 

(Section 4.2.1; Xiong et al., 2001; Kim and Von Arnim, 2009; Wilson et al., 2009; Hirsch et 

al., 2011); increased tolerance to drought, and hypersensitivity to light and ABA (Xiong et al., 

2001; Rossel et al., 2006; Kim and Von Arnim, 2009; Wilson et al., 2009); altered sulfate- and 

fatty acid metabolism (Rodriguez et al., 2010; Lee et al., 2012); increased RNA silencing 

triggers (Gy et al., 2007); and increased expression in stress-related genes such as APX2 

(Wilson et al., 2009; Estavillo et al., 2011). As SAL1 accumulates in chloroplasts and 

mitochondria, this study first used chlorophyll a fluorescence imaging to determine whether 

circadian rhythms in chloroplasts were maintained in the absence of SAL1 activity (Section 
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4.2.3). Loss of SAL1 function resulted in a significant increase in FRP under constant blue 

light in the alx8-1, fry1-6 and fou8 mutant alleles of sal1 compared to wild-type seedlings. 

Furthermore, circadian oscillations in Fq’/Fm’ were restored in alx8-1 upon complementation 

with a wild-type copy of the SAL1 gene, suggesting that the loss-of-function mutation in sal1 

underlies the observed long period phenotype (Section 4.2.5). Unlike phototropins, which 

affect the amplitude of rhythms in PSII operating efficiency but not DF (Section 3.2.3, Section 

3.2.4; Litthauer et al., 2015), loss of SAL1 activity also resulted in a significant increase in FRP 

in DF rhythms under constant blue light (Section 4.2.3). 

In order to determine whether SAL1 activity also affects circadian rhythms in the nucleus, a 

fry1-6 CCA1::LUC2 reporter line was used to study rhythms in CCA1 activity, and revealed a 

significantly long FRP in CCA1 promoter activity in fry1-6 under 20 µmol.m-2.s-1 constant blue 

light (Section 4.2.4). In addition, alx8-1 and fry1-6 exhibit a 3-6 hour late phase in peak 

transcript accumulation for multiple morning- and evening-phased nuclear circadian genes 

under constant blue light (Section 4.2.6). The observation that the activity of a chloroplast-

localised protein (that is absent in the nucleus) has a significant effect on circadian rhythms in 

the nucleus suggests the involvement of chloroplast-to-nucleus signalling mechanisms. The 

circadian clock is very closely integrated with photosynthesis and its metabolic products, and 

metabolites acting as signals to the nuclear circadian system have been reported (Dodd et al., 

2007; Haydon et al., 2013; Dodd et al., 2015). Endogenous sucrose acts as a retrograde signal 

that entrains the circadian clock by respectively repressing and promoting transcription of the 

morning-active components PRR7 and CCA1 (Haydon et al., 2013; Dodd et al., 2015). At 

dawn, the circadian oscillator is adjusted in response to the low intensity light sensed by cry 

and phy photoreceptors, after which the activity of sucrose creates a “metabolic dawn” that 

occurs during the period of higher light intensity occurring after dawn. During this second 

entraining event, the phase of the oscillator is advanced in response to the rhythmic 

accumulation of sugars in the morning that results from the daily activation of photosynthesis 

(Haydon et al., 2013). Photosynthetic electron transport has also been reported to generate a 
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yet-unidentified retrograde signal that affects alternative splicing of nuclear-encoded 

transcripts (including transcripts encoding splicing factors) in response to light/dark conditions 

(Petrillo et al., 2014). In addition, the cytosolic ligand cyclic adenosine diphosphate ribose 

(cADPR), which promotes the release of Ca2+ from internal stores into the cytosol, drives 

circadian oscillations in cytosolic Ca2+ and regulates the nuclear oscillator’s transcriptional 

feedback loops (Dodd et al., 2007).  

Although SAL1 has phosphatase activity towards both IP3 and PAP, PAP is regarded as the 

enzyme’s in vivo substrate, with the morphological-, stress tolerance- and gene expression 

phenotypes observed in sal1 mutants associated with increased endogenous PAP levels (Kim 

and von Arnim, 2009; Chen and Xiong, 2010; Hirsch et al., 2011; Estavillo et al., 2011; Lee et 

al., 2012). sal1 loss-of-function mutants accumulate up to 20-fold more PAP than wild type, 

and abiotic stress treatment of wild type plants causes an increase in endogenous PAP and 

resulting changes in PRANG (plastid redox associated nuclear gene) expression (Estavillo et 

al., 2011; Chan et al., 2016a). If PAP acts as a signal to relay environmental information sensed 

in chloroplasts (Chen et al., 2011; Estavillo et al., 2011), modulation of PAP accumulation 

should be sufficient to lengthen circadian period. Indeed, the current study suggested that the 

accumulation of endogenous PAP underlies the circadian phenotype observed in sal1 mutants. 

The ~3-hour phase shift in transcript accumulation observed in sal1 mutant seedlings under 

constant white light correlated with an ~10-fold increase in endogenous PAP compared to wild-

type (Section 6.2.2). Furthermore, specifically reducing endogenous PAP levels by constitutive 

overexpression of the PAP-specific SAL1 paralog AHL (Kim and von Arnim, 2009; Chen and 

Xiong, 2010; Hirsch et al., 2011) restored both circadian rhythms in Fq’/Fm’ and PAP to wild-

type levels in a sal1 mutant under constant blue light, and demonstrates that PAP phosphatase 

activity is sufficient to complement the sal1 circadian phenotype (Section 6.2.2). In addition, 

under constant blue light, application of exogenous PAP was sufficient to further extend the 

long circadian period of sal1 mutants that are unable to degrade the metabolite, further 

suggesting that accumulation of PAP underlies the circadian phenotype in these plants (Section 
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6.2.5). Previous studies have provided reports of exogenous feeding of metabolites and 

subsequent responses in plants as supporting evidence that these compounds act as retrograde 

signals (de Souza et al., 2017). Treatment of adult wild-type Arabidopsis plants with the 

putative retrograde signal �-cyclocitral induces changes in expression of ROS-responsive and 

defence genes, as well as accumulation of salicylic acid and reduction in ROS production in 

chloroplasts (Ramel et al., 2012; Lv et al., 2015). Similarly, exogenous application of free 

linolenic acid or linoleic acid rapidly activates the pathogen-related Rapid Stress Response 

Element in plants (Walley et al., 2013), and exogenous treatment with the plastid metabolite 

MEcPP induces a subset of genes involved in the ER Unfolded Protein Response in wild-type 

plants (Walley et al., 2015). In the current study, exogenous application of PAP to wild-type 

Arabidopsis seedlings had no effect on circadian rhythms (Section 6.2.5). This observation 

agrees with a previous report that treatment with exogenous PAP does not induce expected 

changes in stress gene expression in wild-type Arabidopsis leaves (Estavillo et al., 2011). This 

negative result has been attributed to the high catalytic activity of SAL1 towards PAP in 

chloroplasts (Estavillo et al., 2011; Pornsiriwong et al., 2017). Indeed, the current study 

confirmed that endogenous PAP levels are very low or undetectable in wild-type under non-

stressed conditions (Sections 6.2.2, 6.2.3 and 6.2.6), and showed that constitutive 

overexpression of SAL1 protein had no effect on circadian rhythms in wild-type seedlings 

(Section 4.2.7). A recent study circumvented this challenge by including in the exogenous PAP 

treatments LiCl, for inhibition of native SAL1 activity, and ATP, for outcompeting PAP 

transport by the ADP/ATP bidirectional transporter TAAC/PAPST1 into plastids where SAL1 

is active (Pornsiriwong et al., 2017). However, this approach is unsuitable for use in the current 

study, as treatment with LiCl lengthened circadian period in Col-0 seedlings (Section 6.2.5), 

and the effect of exogenous ATP on the circadian system and on ATP-dependent luciferase 

circadian assays is unknown. 

The correlation between endogenous PAP levels and long circadian period was further 

demonstrated in the light-specific circadian phenotype of sal1 mutants (Sections 6.2.1 and 
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6.2.3). Plants with impaired SAL1 function have previously been reported as being 

hypersensitive to both red and blue monochromatic light (Kim and von Arnim, 2009), and the 

current study confirmed that sal1 mutant seedlings exhibit shortened hypocotyls both under 

constant blue and constant red light (Section 4.2.1). Since a long circadian period phenotype 

was observed in sal1 mutants under constant blue light (Sections 4.2.3 and 4.2.4), the light 

dependency of the sal1 circadian phenotype was further examined using the fry1-6 

CCA1::LUC2 luciferase reporter line (Section 6.2.1). The sal1 mutant phenotype was shown 

to be light-dependent, with the wavelength and intensity of light influencing the circadian 

phenotype even under relatively low fluence rates of light (Section 6.2.1). In contrast to the 

previously reported hypocotyl phenotypes (Kim and Von Arnim, 2009; Section 4.2.1), the 

current study showed that sal1 seedlings have a blue light-dependent circadian phenotype. 

While an ~1-hour period extension was observed under 20 µmol.m-2.s-1 constant blue light, no 

significant lengthening in FRP was observed in sal1 seedlings grown under constant darkness 

or under constant red light (Section 6.2.1). Similarly, DF rhythms oscillated with an ~1 hour 

elongated FRP in sal1 under constant blue light, while FRP of DF rhythms in sal1 mutants 

were indistinguishable from wild-type under constant red light (Section 4.2.3). These 

observations correlated with rhythms in accumulation of core clock transcripts in sal1 seedlings 

(Section 4.2.6). A clear shift of 3-6 hours was apparent in the circadian phase of transcript 

accumulation in sal1 seedlings transferred to 20 µmol.m-2.s-1 constant blue light, while a less 

severe (or no) phase shift was observed in sal1 seedlings under 30 µmol.m-2.s-1 constant red 

light. Similarly, a reduction in the phase difference between sal1 mutant alleles and wild-type 

was observed when clock transcript accumulation was monitored under 60 µmol.m-2.s-1 

constant white light (Section 5.2.5). Completion of a fluence rate response curve under constant 

blue light revealed that the intensity of constant blue light affects the circadian phenotype of 

sal1 plants (Section 6.2.1). A pronounced lengthening of FRP is observed in fry1-6 

CCA1::LUC2 seedlings transferred to �20 µmol.m-2.s-1 constant blue light, but transfer to very 

dim blue light (<5 µmol.m-2.s-1) had no effect on FRP in these seedlings compared to wild-

type. In contrast, different fluence rates of constant red light had no significant effect on FRP 
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in fry1-6 seedlings. The light-dependent lengthening of FRP in fry1-6 under constant blue light 

correlated with increased endogenous PAP levels at higher fluence rates, and the alx8-1, fry1-

6 and fou8 alleles all accumulated significantly higher endogenous PAP at 20 µmol.m-2.s-1 than 

at 5 µmol.m-2.s-1 constant blue light (Section 6.2.3). These findings suggest that PAP acts to 

alter FRP via a blue light dependent pathway, but that the blue light-dependent PAP pathway 

involved in regulating FRP is either not active or insignificant at very low fluence rates. 

 

7.4. A role for the SAL1-PAP pathway in regulating circadian rhythms in response to 

abiotic stress 

According to the SAL1-PAP signalling model, abiotic stresses such as drought or high light 

induce oxidative stress within chloroplasts, with the change in redox poise in the plastids 

causing conformational changes in the SAL1 enzyme and subsequent inhibition of SAL1 

catalytic activity (Chan et al., 2016a, 2016b). The stress-induced inhibition of SAL1 enzyme 

activity results in the accumulation of PAP in chloroplasts, and PAP in turn acts as a retrograde 

signal to affect the expression of stress genes (PRANGs) in the nucleus (Estavillo et al., 2011; 

Chan et al., 2016b). PAP accumulation is positively correlated with the extent to which SAL1 

phosphatase activity is inhibited and with the severity of abiotic stress (Estavillo et al., 2011; 

Chan et al., 2016a). While PAP accumulates in wild-type plants subjected to either high light 

or drought, SAL1 activity is particularly inhibited when plants are subjected to drought stress 

(Estavillo et al., 2011; Chan et al., 2016a). The effect of osmotic stress on PAP levels and 

circadian period on Col-0 under constant blue light was therefore investigated (Section 6.2.6). 

Treatment of seedlings with 200 mM mannitol resulted in a significant increase in endogenous 

PAP in wild-type, while no increase in PAP accumulation was observed in alx8-1 seedlings in 

response to osmotic stress treatment. The accumulation of PAP in Col-0 seedlings correlated 

with a >1 hour lengthening in FRP in nuclear circadian rhythms, suggesting that the SAL1-

PAP pathway acts to delay FRP in wild-type seedlings in response to osmotic stress. 
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A growing body of evidence suggests that the circadian clock contributes to plants’ ability to 

tolerate and acclimate to different types of environmental stress, yet the mechanisms by which 

the clock couples to stress-response pathways remain elusive (Grundy et al., 2015). The clock 

controls a broad range of abiotic stress-responsive genes, with over 40% of cold-regulated 

genes and 50% of genes responsive to heat, osmotic stress, salinity or water deprivation being 

under circadian control in Arabidopsis (Covington et al., 2008; Grundy et al., 2015). The 

majority of heat-inducible genes are expressed during the day, while the majority of cold-

induced genes (including CRE/DRE-BINDING FACTORs (CBF) 1, 2, and 3, master regulators 

of the cold acclimation response) peak in the afternoon, a few hours before temperatures drop 

at night (Harmer et al., 2000; Covington et al., 2008; Grundy et al., 2015). In the evening, heat-

repressed genes peak, while genes downregulated by cold peak around dawn, before the daily 

rise in temperature occurs. Similarly, many drought-induced genes peak around dawn, hours 

prior to when plants are expected to experience water deficit during the daytime (Harmer et al., 

2000; Covington et al., 2008; Grundy et al., 2015). The circadian clock also gates the amplitude 

of responses to abiotic stress, including maximal cold induction of CBF1,2,3 in the morning 

(Fowler et al., 2005; Thomashow, 2010), and maximal drought-induced changes in gene 

expression at dusk (Wilkins et al., 2010).  

Drought and osmotic stress cause changes in the redox state of chloroplast, resulting from the 

increased generation of reactive oxygen species during photosynthesis (Apel and Hirt, 2004; 

Chan et al., 2016b). Part of the antioxidant defence system in plants involves the action of 

peroxiredoxins: thiol-dependent enzymes that decompose peroxides through a three-step 

process that includes peroxide reduction, thiol resolving, and regeneration to the active form 

upon transfer of electrons to a donor such as glutathione or ascorbate (Dietz, 2011). The 

oxidation-reduction cycles that peroxiredoxins undergo oscillate with circadian rhythm under 

constant light conditions, suggesting an endogenous rhythm in the generation of ROS (Edgar 

et al., 2012). Indeed, ROS production and scavenging are regulated by light:dark cycles, with 

peaks in catalase activity and endogenous H2O2 around noon and troughs around midnight, and 
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the majority of ROS-responsive genes exhibiting time-of-day patterns that coincide with 

rhythms in ROS levels (Lai et al., 2012). ROS homeostasis is also under circadian control, with 

patterns in H2O2 levels and catalase levels apparent under constant light conditions (Lai et al., 

2012). A functional clock is required for the time-of-day-specific regulation of ROS 

production, and the rhythmic expression of CATALASE genes under constant light is perturbed 

in clock mutants (Lai et al., 2012). The circadian regulation of ROS production and scavenging 

provides a possible mechanism through which the SAL1-PAP pathway could link to the 

circadian clock. SAL1 transcript accumulation is not a clock-regulated output, and SAL1 

protein levels do not change throughout the course of the day (Section 4.2.2). Furthermore, 

despite increases in PAP levels in response to drought stress (Estavillo et al., 2011; Chan et al., 

2016a), osmotic stress (Section 6.2.6) or high light stress (Estavillo et al., 2011), abiotic stresses 

have no effect on SAL1 protein accumulation (Chan et al., 2016a). The increase in PAP levels 

in wild-type in response to drought, high light or oxidative stresses have been attributed to the 

ROS-induced inhibition of SAL1 activity (Chan et al., 2016a). The ROS-sensitive model of 

SAL1 regulation could also explain the accumulation of PAP in osmotically-stressed wild-type 

seedlings, as no significant increase in PAP was observed in a sal1 mutant following the same 

treatment (Section 6.2.6). Therefore, while SAL1 expression is not a clock output, the regulation 

of SAL1 activity by ROS could allow for interaction between the SAL1-PAP signalling 

pathway and circadian control of abiotic stress responses.  It would be interesting to monitor 

fluctuations in PAP in wild-type plants over circadian and diurnal time, yet the low (often 

undetectable) levels of endogenous PAP in wild-type in non-stressed conditions (Estavillo et 

al., 2011; Sections 6.2.2, 6.2.3 and 6.2.6) would make such analysis difficult.  Preliminary 

analysis of stress gene activation by high light stress in Col-0 and sal1 under constant light 

revealed higher activation of stress-responsive genes in both genotypes during the subjective 

day compared to the subjective night (Appendix III), and investigations into the role of SAL1-

PAP in circadian regulation of abiotic stress would be of further interest. One possible avenue 

of investigation could involve monitoring rhythms in ROS homeostasis in wild-type and sal1 

mutants by using ROS-sensitive biosensors, such as the H2O2-sensitive GFP-derived biosensor 
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HyPer (Exposito-Rodriguez et al., 2013).  Attempts to utilise stable transgenic Arabidopsis 

lines expressing HyPer1 were unsuccessful in the current study due to low protein levels and 

subsequent weak fluorescence signals (Appendix III), possibly as a result of silencing of the 

transgene (Exposito-Rodriguez et al., 2013). However, alternative ROS-sensitive biosensors 

(such as HyPer3 or the glutathione-sensitive roGFP2; Schwarzländer et al., 2008; Marty et al., 

2009; Bilan et al., 2013) are valuable resources that could be used to investigate the interplay 

between SAL1-PAP signalling and circadian regulation in abiotic stress responses. 

While a direct correlation between FRP and tolerance to abiotic stress is not always clear, a 

recent study suggests that a delay in the circadian system might improve a plant’s survival 

under abiotic stress conditions by slowing down metabolic processes and conserving energy 

(Syed et al., 2015). This is consistent with observations that accumulation of endogenous PAP 

- due to either mutation of SAL1 or application of osmotic stress - lengthens FRP (Sections 

6.2.1, 6.2.3 and 6.2.6), and delays flowering (Wilson et al., 2009). Since higher light intensities 

are known to accelerate circadian rhythms in plants (Aschoff, 1979), it could be suggested that 

PAP acts as a light-dependent metabolic ‘decelerator’, acting to slow clock-regulated metabolic 

processes under increasing light intensities. 

 

7.5. Regulation of circadian rhythms by SAL1 does not occur as a result of altered sulfate 

metabolism 

PAP is produced in secondary sulfur assimilation as a byproduct in the production of sulfated 

metabolites (Kopriva et al., 2012). In the cytosol, sulfotransferases (SOT) catalyse sulfation 

reactions, transfering a functional sulfo group from the sulfate donor (and PAP precursor) 3’-

phosphoadenosine 5’-phosphosulfate (PAPS) to the free hydroxyl group of an acceptor 

substrate (Mugford et al., 2009, 2010). PAPS itself is generated by two pathways: in plastids 

via the action of ATP sulfurylase (ATPS) 1-4 which catalyse the production of adenosine 

phosphosulfate (APS) from ATP and sulfate, followed by the phosphorylation of APS by APS 
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kinase (APK) 1, 2, and 4 to form PAPS; or in the cytosol via the action of ATPS and APK3. 

PAPS formed in plastids is exported into the cytosol for utilisation by SOTs through the action 

of the PAPS/PAP antiporter PAPST1 located in thylakoids and in the plastid envelope, and 

which also transfers PAP from the cytosol into plastids (Gigolashvili et al., 2012). PAP is also 

produced to a much lesser extent through the activity of the endoplasmic reticulum-resident 

tyrosyl protein sulfotransferase (TPST) that activates the low-abundance peptide hormones by 

sulfonation, although the relative sulfur consumption by TPST is negligible (Chan et al., 2013). 

The by-product PAP is an ‘unfavourable’ metabolite that inhibits activity of cytosolic SOTs 

and of the 5’�3’exoribonucleases (XRNs) located in the cytosol and nucleus (Dichtl et al., 

1997; Klaassen and Boles, 1997; Estavillo et al., 2011), and is therefore sequestered in plastids 

where it is rapidly convered into AMP and Pi by SAL1 (Mugford et al., 2009, 2010). Loss of 

SAL1 function causes low levels of internal sulfate and total elemental sulfur in the fou8 mutant 

which triggers a sulfate deficiency response, as is evident by gene expression patterns that are 

similar to that observed in wild-type plants subjected to sulfate starvation (Lee et al., 2012). As 

sulfate assimilation is vital for plant metabolism and photosynthesis (Takahashi et al., 2011), 

the current study investigated whether sal1 induces a long period circadian phenotype via the 

reduced accumulation of sulfate (Section 5.2.1). Growth of Col-0 plants under sulfate-deprived 

conditions resulted in upregulation of sulfate starvation-responsive genes, yet no FRP 

lengthening in rhythms of circadian gene promoter activity or Fq’/Fm’ was observed under 

constant blue light. In contrast, FRP in nuclear and chloroplast rhythms tended to be shortened 

under sulfate-deprived conditions compared to control conditions in both Col-0 and sal1 

(although this change was not always significant), and sal1 exhibited a longer circadian period 

compared to Col-0 both under sulfate-deprived and control conditions. Compared to wild-type, 

the fou8 mutant has lower levels of glucosinolates and accumulates desulfoglucosinolate 

precursors. These phenotypes also occur to a greater degree in plants lacking functional APK1 

and APK2, the enzymes responsible for the production of PAPS in chloroplasts (Lee et al., 

2012). To futher investigate the effect of disrupted sulfate metabolism on circadian rhythms, 

oscillations in Fq’/Fm’ were monitored in apk mutants under constant blue light (Section 5.2.2). 
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The apk1 apk2 double mutant does not mimic the fou8 phenotype: PAPS synthesis in 

chloroplasts is disrupted in the apk1 apk2 double mutant; a more profound decrease in 

glucosinolates and consequent increase in desulfoglucosinolates occurs in apk1 apk2 compared 

to fou8; and severely decreased glucosinolate levels in apk1 apk2 causes increases in transcript 

levels of the majority of genes involed in glucosinolate synthesis, while only one gene involved 

in glucosinolate backbone synthesis (CYP79F2) and the three SOT genes involved in 

glucosinolate synthesis are upregulated in fou8 (Lee et al., 2012). Even so, the apk1 apk2 

mutants provide insight into the effect of disrupted glucosinolate synthesis on circadian 

rhythms. As was observed in plants grown on sulfate-deficient media, no lengthening in FRP 

was observed either in the apk1 apk2 double mutant or in the apk1 apk2 fou8 triple mutant, 

with FRP again trending towards being shortened in these mutants. 

While the mechanims by which internal sulfate levels are affected in fou8 is not known, it is 

clear that the low sulfate content in fou8 is not due to differences in sulfate uptake or 

translocation, but rather due to increased sulfate reduction and assimilation into reduced 

compounds (thols and proteins) (Kopriva et al., 2012; Lee et al., 2012). The disruption in 

glucosinolate synthesis in fou8 has been suggested to occur as a result of inhibition of 

cytosplasmic SOTs activity by accumulated PAP: PAPS accumulates in fou8 (although to a 

lesser degree than PAP), and the desulfoglucosinolate sulfotransferase genes SOT16, SOT17 

and SOT18 are upregulated in fou8 (Chen et al., 2011; Estavillo et al., 2011; Lee et al., 2012). 

While perturbed secondary sulfate metabolism is not the cause of the long circadian period in 

sal1 mutants, the observed acceleration of circadian rhythms in the absence of sulfate or upon 

disruption of glucosinolate synthesis is an interesting avenue for further investigation. The 

current study’s observations on the effect of altered sulfate metabolism on the circadian system 

is in agreement with a recent report which demonstrates that perturbed glucosinolate 

accumulation shortens FRP under combined constant red+blue light (Kerwin et al., 2011). 

Glucosinolates contribute significantly to the total sulfur pool in plants and are an important 

sink for the sulfonation reactions that form PAP as byproduct (Chan et al., 2013). Indeed, SAL1 



243 
 

is co-regulated with genes involved in glucosinolate synthesis (Mugford et al., 2009; Lee et al., 

2012). Not all glucosinolates are affected equally in the fou8 mutant, with the decrease in total 

glucosinolates mostly due to lowering in levels of aliphatic glucosinolates, while the indolic 

glucosinolates are affected to a lesser desgree or unaffected (Lee et al., 2012). The aliphatic 

glucosinolates decreased in fou8 - glucoraphanin (4MSOB), its precursor glucoerucin (4MTB), 

and glucohirsutin 8(MSOO) – are among the most abundant glucosinolates normally present 

on leaf surfaces in wild-type Arabidopsis, and accumulate significantly in plants upon 

herbivorous feeding by caterpillars (Beekwilder et al., 2008; Lee et al., 2012; Shroff et al., 

2015). Similary, the indolic glucosinolates glucobrassicin (I3M) and 4-methoxyglucobrassicin 

(4MOI3M) accumulate in wild-type in response to herbivory, and are reduced in fou8 

(Beekwilder et al., 2008; Lee et al., 2012). Interestingly, neoglucobrassicin (1MOI3M) is the 

glucosinolate that shows the greatest increase in wild-type leaves following herbivory, yet 

levels of this indolic glucosinolate are increased in the fou8 mutant (Beekwilder et al., 2008; 

Lee et al., 2012). Studying the role of SOTs 16-18 and the effects of these indvidual 

glucosinolates on FRP could provide insight into the role of circadian regulation in biotic stress 

response. The circadian clock is known to prepare plant defensive mechanisms in anticipation 

of herbivore activity by regulating jasmonic acid (JA) and salicyclic acid biosynthesis and 

signalling pathways (Greenham and McClung, 2015). The accumulation of jasmonates and 

salicylates (which often act antagonistically to jasmonates) are circadian-regulated and 

antiphasic (Goodspeed et al., 2012). The Arabidopsis clock maximises JA signalling and 

synthesis during the day when cabbage loopers are gated by their own clocks to exhibit feeding 

activity, thereby maximising the plant’s resistance to herbivory (Goodspeed et al., 2012). Plants 

with disrupted clocks fail to enhance herbivory resistance during the day, and entrainment of 

Arabidopsis and cabbage loopers out of phase with one another (with looper feeding activity 

at the during the night when the plants were not anticipating attack), devastates plants 

(Goodspeed et al., 2012). In addition to the sulfate metabolism phenotype discussed, perturbed 

PAPS metabolism in fou8 mutants also results in higher levels of JA in undamaged leaves, as 

well as increased rates of triunsaturated fatty acid (particularly �-linolenic acid [18:3]) 
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oxygenation by lipoxygenases, a reaction which forms part of the JA synthesis pathway in 

chloroplasts (Rodriguez et al., 2010). Since linolenic acid is reported to act as a chloroplast-to-

nucleus retrograde signal that activates the Rapid Stress Response Element in plants (de Souza 

et al., 2017), the role of altered fatty acid metabolism in the fou8 long-period circadian 

phenotype needs further investigation. 

According to the SAL1-PAP model, the accumulation of endogenous PAP is attributed to the 

inhibition of SAL1 catalytic activity, either through mutations in SAL1 (Chen and Xiong, 2010; 

Estavillo et al., 2011; Lee et al., 2012), or through ROS-induced inhibition of SAL1 activity in 

wild type plants (Chan et al., 2016a). However, the current study showed that endogenous PAP 

levels increase under different fluence rates of constant blue light in sal1 mutants (Section 

6.2.3), which suggest a light-specific effect on PAP production even in non-stressed conditions. 

The production of the PAP precursor PAPS is mainly through the activity of plastid-localised 

APK1 and APK2, and to a lesser extent via the action of cytoplasmic APK3 (Kopriva et al., 

2012; Lee et al., 2012). Among all six combinations of apk double mutants, only the apk1 apk2 

combination results in smaller plants with perturbed gluocosinolate synthesis (Mugford et al., 

2009). In addition, the apk1 apk2 fou8 triple mutant has the same glucosinolate and 

desulfoglucosinolate levels and similar gene expression patterns as apk1 apk2, showing that 

the mutations affect the same metabolic step (Lee et al., 2012). Furthermore, while the apk1 

apk2 fou8 triple mutant loses many phenotypes visible in fou8, the apk3 fou8 mutant is 

indistinguishable from fou8 (Lee et al., 2012). Therefore, focusing on the conditions that induce 

APK1 and APK2 (and SOT16, SOT17 and SOT18) activity could provide further insight into 

the mechanisms that result in PAP production and accumulation. APK competes with APS 

reductase (APR) for the common substrate APS, which serves as the branching point between 

primary sulfate metabolism and secondary sulfate metabolism, and the activities of APK and 

APR are redox regulated (Kopriva et al., 2012; Chan et al., 2013). The fine tuning of sulfur 

partitioning between primary and secondary sulfate metabolism occurs through a combination 

of regulator circuits that combine competition between APK and APR, PAPS utilisation and 
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accumulation of PAP (Ravilious et al., 2012; Chan et al., 2013). APK1 and APK2 expression 

are upregulated by methyl jasmonate and by wounding, and treatment with jasmonate increases 

mRNA levels of SOT16 and SOT17 significantly (Kopriva et al., 2012). Interestingly, under 

prolonged drought, oxidative stress increases APR activity and attentuates APK activity, 

directing APS into glutahione (GSH) synthesis and away from PAPS synthesis (Ravilious et 

al., 2012). Furthermore, SOT16, SOT17 and SOT18 are not affected by drought at 

transcriptional level and glucosinolates are not assumed to have any role in the drought stress 

response (Chan et al., 2013).  

 

7.6. Altered hormone signalling and the sal1 circadian phenotype 

The role of altered hormone signalling in the various sal1 phenotypes, including the circadian 

phenotype, needs further investigation. As mentioned previously, the sal1 mutant allele fou8 

exhibits increased rates of oxygenation of triunsaturated fatty acids by lipoxygenases and 

higher basal JA levels (Rodriguez et al., 2010). The growth phenotype of fou8 is partly 

attributed to JA biosynthesis: mutation of ALLENE OXIDE SYNTHASE (AOS, an enzyme 

involved in the formation of JA precursors) in the fou8 background restores petiole length and 

flowering time, yet the fou8 aos mutant has a rosette size only slightly larger than fou8. In 

contrast. the increased fatty acid oxygenation phenotype of fou8 is dependent entirely on intact 

JA biosynthesis (Rodriguez et al., 2010). The alterations in fatty acid oxygenation and JA 

accumulation results from loss of SAL1 activity towards PAP (Mugford et al., 2010; Rodriguez 

et al., 2010), and it is yet unclear what effect increased JA biosynthesis has on circadian 

rhythms. Drought stress responses are largely regulated by the phytohormone ABA (Chan et 

al., 2013), and SAL1 regulates both ABA-dependent and ABA-indepenent drought stress 

signalling responses (Wilson et al., 2009). The role of ABA in sal1 circadian rhythms is 

therefore another avenue of further investigation. ABA modulates several components of 

sulfate assimilation including sulfate transport, cysteine syntheis and flux of sulfate into 

primary assimilation (Chan et al., 2013). ABA treatment results in GSH accumualtion in maize, 
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as well as increased recycling of GSH from GSSG in pea, while ABA conversely also appears 

to inhibit APR acitivty (Jiang and Zhang, 2001; Contour-Ansel et al., 2006; Chan et al., 2013). 

sal1 alleles exhibit reduced sensitivity to auxin, with many of the morphological phenotypes 

resembling those of auxin resistant mutants, yet (unlike previously reported auxin resistant 

mutants) sal1 mutants are ABA hyper-sensitive (Xiong et al., 2001; Chen and Xiong, 2010; 

Rodríguez et al., 2010). The exogenous application of ABA has been reported to either shorten 

or extend circadian period, and so it is possible that enhanced ABA sensitivity plays a role in 

the sal1 circadian phenotype (Hanano et al., 2006; Liu et al., 2013). In addition, the 

accumulation of PAP in sal1 plants up-regulates specific ABA signalling components to induce 

stomatal closure (Pornsiriwong et al., 2017) and it remains to be determined whether 

manipulation of these components contribute to the sal1 circadian phenotype. Furthermore, 

SAL1 activity towards IP3 has been shown to affect cytosolic Ca2+ levels and directional cell-

to-cell auxin transport through the action of polar PIN-FORMED (PIN) auxin efflux 

transporters (Zhang et al., 2011). Indeed, the sal1 mutant allele supo1 is defective in auxin 

transport and auxin-mediated development, with these phenotypes attributed to the 

accumulation of IP3 and subsequent accumulation of cytosolic Ca2+ and disruption of PIN 

localisation (Zhang et al., 2011). Previous reports have identified PAP, not IP3, as the 

physiological substrate of SAL1, as IP3 accumulates to a lesser extent than PAP in sal1 mutants, 

and restoration of PAP levels through overexpression of the PAP-specific enzyme AHL 

complements sal1 morphological phenotypes (Kim and von Arnim, 2009; Hirsch et al., 2011; 

Estavillo et al., 2011). Similarly in the current study, the accumulation of PAP corresponded 

with the lengthening of circadian period in sal1 and wild-type seedlings, while both 

endogenous PAP levels and circadian rhythms are restored in sal1 upon overexpression of 

AHL, further indicating that SAL1 activity towards PAP, not IP3, is important for maintaining 

circadian rhythms. Even so, the effect of IP3 (and subsequent Ca2+ and auxin signalling) on 

circadian rhythms provides yet another avenue for further investigation. It is possible that 

changes in plant hormone accumulation, signalling and sensitivity, as well as perturbed sulfate 
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metabolism in sal1 mutants jointly contribute to the observed circadian phenotype as part of 

the global developmental consequences of lost SAL1 activity. 

 

7.7. PAP as a metabolic modulator of circadian rhythms 

The action of PAP as a mobile chloroplast-to-nucleus retrograde signal that affects nuclear 

gene expression in response to stress remains an area of debate and requires further 

investigation (Xiao et al., 2013; de Souza et al., 2017). The targeting of SAL1 to the nucleus 

of a sal1 mutant in the �N-SAL1 line results in complete restoration of PAP levels, 

morphological phenotypes, APX2 mRNA abundance, and, in the current study, circadian 

rhythms (Kim and Von Arnim, 2009; Estavillo et al., 2011; Section 4.2.5). The 

complementation of the sal1 phenotype in this �N-SAL1 line has been proposed as evidence 

that PAP can be catabolized by either nuclear or chloroplastic targeting of SAL1 (Kim and von 

Arnim, 2009; Estavillo et al., 2011).  Since analysis of isolated chloroplasts has shown that 

PAP accumulates in chloroplasts (Estavillo et al., 2011), and not in the cytosol, 

complementation of the sal1 phenotype in �N-SAL1 plants has been used to demonstrates that 

PAP can move between cellular compartments (Estavillo et al., 2011). However, it must be 

considered that SAL1 protein in these �N-SAL1 results from expression of SAL1 cDNA 

lacking the chloroplastic transit peptide, driven by the CaMV 35S promoter, and that the effect 

of constitutive overexpression of the protein cannot be disregarded. The similar molecular and 

morphological phenotype of sal1 and the xrn2 xrn3 double mutant suggests that PAP 

accumulation can inhibit the function of nuclear-localised XRNs (Gy et al., 2007; Estavillo et 

al., 2011). This has been proposed as further evidence that PAP is able to move between cellular 

compartments, and that degradation of PAP pools in either the chloroplast, mitochondria or 

nucleus will therefor restore the wild-type phenotype (Estavillo et al., 2011). PAP is 

synthesised in the cytosol, but degraded in plastids, suggesting that transport of the metabolite 

across the plastid envelope occurs (Chan et al., 2013). Indeed, the PAPS/PAP antiporter 

PAPST1 has been proposed as a transporter for PAP and, once in the cytosol, PAP would 
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diffuse freely into the nucleus through the nuclear pore (as do other nucleotides) (Estavillo et 

al., 2011; Gigolashvili et al., 2012; Chan et al., 2013). In addition, a recent report has shown 

that upon exogenous application of defence signals such H2O2, chloroplasts produce dynamic 

tubular extensions (known as stromules) that surround the nucleus and act as a conduit for 

transport of signals into the nucleus (Caplan et al., 2015). However, the current study showed 

that loss of function of the cytoplasm-localised XRN4 mimics the light-dependent long 

circadian period of sal1 mutants (Section 5.2.4) which, along with reports that cytoplasmic 

SOT activity is inhibited by PAP in sal1 mutants (Kopriva et al., 2012; Lee et al., 2012) 

suggests that the effect of PAP accumulation in the cytosol cannot be discounted. Furthermore, 

while the proposal of a chloroplast-localised metabolite that moves between cellular 

compartments to act in the nucleus is an elegant notion, there is no indication whether PAP acts 

as a compartmentalised, mobile interorganellar signal, or whether the effect of PAP 

accumulation (or depletion) on nuclear gene expression is merely due to changes in global PAP 

levels within the cell. This study suggests that the PAP-induced effects on gene transcription 

could be dose-dependent, as application of exogenous PAP extends circadian period even 

further in sal1 mutants that already accumulate intercellular PAP (Section 6.2.5). It remains to 

be determined whether the effect of PAP on gene expression results from accumulation of 

intercellular PAP beyond a threshold level, or whether responses are triggered by a fold change. 

The changes in PAP levels that corresponded to emergence of the long period phenotype in 

sal1 mutants were relatively small, with only ~5-fold higher PAP levels in plants grown at 20 

µmol.m-2.s-1 (~10 nmol.g-1 FW) compared to plants grown at 5 µmol.m-2.s-1 (from ~2 nmol.g-1 

FW). This suggests that even small increases in light intensity at low fluence rates cause enough 

of an increase in PAP levels to have a significant impact on nuclear gene expression, or that 

the light-activated pathway affected is not active at very low light levels. Similarly, the 

significant lengthening of FRP in wild-type seedlings upon treatment with mannitol correlated 

with a significant 2-fold increase in PAP levels, but PAP levels were once again relatively low 

(undetectable in control plants, compared to ~2 nmol.g-1 FW; Section 6.2.6). That such low 

levels of endogenous PAP correspond with changes in nuclear gene expression has been 
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reported before (Estavillo et al., 2011): 30-day old Col-0 plants subjected to 11 days of drought 

exhibit increased expression of PRANGs and a 30-fold increase in endogenous PAP levels, 

with droughted adult Col-0 plants containing ~150 nmol.g-1 DW; in contrast, 30-day old Col-

0 plants exposed to 1 hour of high light treatment exhibit only a 1.5-fold increase and relatively 

low PAP levels (from 0.6 nmol.g-1 to 0.9 nmol.g-1 FW), with corresponding changes in PRANG 

expression still occurring (Estavillo et al., 2011). Together, these findings suggest that PAP is 

a highly effective molecular signal, capable of impacting nuclear gene expression even at very 

low levels either in the absence or presence of native SAL1 protein expression. Controlling 

endogenous PAP levels would therefore be of great importance to the plant cell, and could 

explain the high catalytic activity and continuous expression of the SAL1 protein regardless of 

light conditions (Section 6.2.4), presence or absence of stress (Chan et al., 2016a) or the time 

of day (Section 4.2.2). It has been suggested that, due to the small changes in PAP levels needed 

for initiation of a response, the regulation of PAP movement and relocation of PAP between 

compartments within the cell could contribute to the response, although there is currently no 

evidence to suggest that this is the case (Estavillo et al., 2011; Chan et al., 2013). 

 

7.8. Loss of XRN activity replicates the circadian phenotypes of sal1 mutants 

According to the SAL1-PAP retrograde signalling model, accumulated PAP causes changes in 

nuclear gene expression by inhibiting 5’�3’ exoribonuclease (XRN) activity (Dichtl et al., 

1997; Estavillo et al., 2011; Chan et al., 2016a, 2016b). Post-transcriptonal regulation of 

circadian gene expression plays an important role in responding to environmental changes 

(Sanchez et al., 2011; Nolte and Staiger, 2015; Millar, 2016): Mis-regulation of RNA 

processing can lead to alteration in circadian FRP, and alternative splicing of clock components 

modify circadian rhythms in response to temperature changes and drought (James et al., 2012; 

Jones et al., 2012; Wang et al., 2012; Perez-Santángelo et al., 2014; Filichkin et al., 2015). The 

current study therefore examined whether mutation of XRNs, to genetically simulate SAL1-

mediated inhibition of XRN activity, was sufficient to alter nuclear circadian rhythms (Sections 
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5.2.4 and 5.2.5). The Arabidopsis genome contains three XRN genes: XRN2 and XRN3 

function in the nucleas, while XRN4 functions in the cytoplasm (Kastenmayer and Green, 

2000; Nagarajan et al., 2013). xrn2 xrn3 double and xrn2 xrn3 xrn4 triple mutants exhibit 

similar developmental defects as sal1, including crinkly, rounded leaves, shortened petioles, 

hypersensitive inhibition of hypocotyl elongation and altered lateral root architecture, as well 

as delayed flowering (Gy et al., 2007; Kim and von Arnim, 2009; Chen and Xiong, 2010; 

Hirsch et al., 2011).  In the current study, analysis of both chloroplast and nuclear circadian 

rhythms under constant blue light revealed that the xrn234 triple mutant mimics the long-period 

circadian phenoytpe observed in sal1mutants: an ~1 hour lengthening in FRP in Fq’/Fm’ and 

DF rhythms was observed in xrn234 mutants under constant blue light, and the 3-6 hour late 

phase in circadian transcript accumulation observed in sal1 mutants was also visible in the 

xrn234 triple mutant under constant blue light. Similar to sal1 mutants, the late phase of clock 

transcript accumulation was much less pronounced in xrn234 mutants under constant white 

light compare to constant blue light. 

Action of nuclear-localised XRN2 and XRN3 are thought to play the most important role in 

SAL1-PAP-XRN-regulated stress responses (Estavillo et al., 2011). More than 50% of the 

genes with constitutively altered expression in sal1 and the xrn2 xrn3 double mutant are 

coregulated, and xrn2 xrn3 phenocopies sal1 in rosette morphology, as well as in drought 

tolerance and induction of stress-responsive genes under high light stress (Gy et al., 2007; 

Estavillo et al., 2011). In contrast, no statistically significant overlap in coregulated genes is 

observed between xrn4 and sal1, and xrn4 does not exhibit drought tolerance. The role of 

altered leaf morphology and small rosette shape in the drought tolerance phenotype of sal1 

should be considered, particularly as the xrn4 mutant exhibits smooth, serrated leaves, but 

rosette size and shape that resembles wild-type (Gy et al., 2007; Estavillo et al., 2011). 

However, the drought-tolerant xrn234 triple mutant exhibits wrinkled leaves with longer 

petioles and a larger rosette than sal1, suggesting that the drought tolerance observed in sal1 

and xrn234 is not merely linked to reduced leaf biomass, but rather to reduced XRN activity 
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(Hirsch et al., 2011). Furthermore, mannitol (as well as PAP and LiCl) treatments in this study 

were performed on seedlings after <14 days of growth, at which stage the visible morphological 

differences between Col-0 and sal1 plants are less pronounced than in adult plants, and sal1 

seedlings exhibit fatty acid oxygenation rates comparable to wild-type (Rodriguez et al., 2010; 

Hirsch et al., 2011; Estavillo et al., 2011). While the activities of nuclear XRN2 and XRN3 are 

involved in stress-responses nuclear gene expression, the current study suggested that the 

cytoplasmic XRN4 regulates expression of genes that modulate circadian period (Section 

5.2.4). Analysis of chloroplast circadian rhythms in xrn2, xrn3 and xrn4 single mutants under 

constant blue light revealed that only the xrn4 single mutant exhibits the significant lengthening 

in FRP observed in sal1 and xrn234 mutants. Similarly, no lengthening in FRP was observed 

in segregating xrn2 xrn3 double mutant seedlings, and no additive effect was observed when 

comparing FRP of Fq’/Fm’ in the xrn4 single mutant and the xrn234 double mutant. 

Interestingly, no pronounced phase shift in core clock transcript accumulation was observed in 

the xrn4 mutant under constant white light. This suggest that a similar blue light-specific 

circadian phenotype observed in sal1 and xrn234 mutants is apparent in xrn4 mutants, although 

analysis of transcript accumulation and FRP under different wavelengths and fluence rates of 

light must be investigated in xrn4. Indeed, the action of a blue light-specific pathway might 

explain the lack of overlap reported between transcriptomes of sal1 and xrn4 plants grown 

under white light (Estavillo et al., 2011). 

Identifying the targets of XRNs involved in regulation of nuclear gene expression would 

provide greater insight into how the SAL1-PAP-XRN pathway alters the clock, and how these 

two mechanisms integrate to regulate stress responses. The substrates of the nuclear-localised 

partially redundant XRN2 and XRN3 are uncapped RNAs, such as excised hairpin loops that 

form part of precursor miRNA transcripts, while the cytoplasmic XRN4 degrades 3’ cleavage 

products of miRNA targets (Souret et al., 2004; Gy et al., 2007). Excised mRNA loops 

accumulate in both sal1 and the xrn2 xrn3 double mutant, while the miRNA target cleavage 

proucts that accumulate in the xrn4 mutant also accumulate in sal1. In addition, XRN2, XRN3, 
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XRN4 and SAL1 acts as supressors of post-transcriptional gene silencing (Gy et al., 2007). 3’-

noncoding transcripts from actively transcribed genes (including for the clock genes PRR5 and 

ELF3) accumulate in sal1, xrn3 and xrn2 xrn3 (Kurihara et al., 2012), and were investigated in 

the current study as a possible mechanism through which circadian rhythms are altered by 

XRNs (Section 5.2.6). However, 3’-noncoding transcripts were not a consistent consequence 

of XRN inactivation in sal1 and xrn234 mutants, as these transcripts do not accumulate in the 

xrn234 mutant under constant blue or constant white light. 

 

7.9. Interactions between the circadian clock and abiotic stress responses 

Perturbation of the circadian clock affects tolerance to abiotic stress (Grundy et al., 2015). 

Overexpression of LKP2 enhances drought tolerance (Miyazaki et al., 2015), while 

overexpression of GI or TOC1 results in enhanced salt sensitivity and reduced survival under 

drought, respectively (Legnaioli et al., 2009; Kim et al., 2013). Conversely, reduced expression 

of TOC1 results in improved drought tolerance (Legnaioli et al., 2009), while gi mutants show 

enhanced salt tolerance and improved survival under drought and oxidative stress (Nakamichi 

et al., 2009; Kim et al., 2013; Fornara et al., 2015). Similarly, prr5 prr7 prr9 triple mutants 

show significantly increased tolerance to high salinity, drought and freezing (Nakamichi et al., 

2009; Keily et al., 2013), while gi, lux, lhy, cca1 and lhy cca1 mutants have reduced tolerance 

and acclimation to freezing stress (Cao et al., 2005; Espinoza et al., 2010; Dong et al., 2011; 

Chow et al., 2014). Mutations in core clock components also affect resistance to ROS-

producing agents: plants with mutations in CCA1, LHY, ELF3, ELF4, LUX, PRR5, PRR7 or 

PRR9 are hypersensitive to methyl viologen treatment, while plants overexpressing CCA1 have 

reduced sensitivity to methyl viologen (Lai et al., 2012). Interestingly, there is often no direct 

correlation between the effect on FRP and the effect on abiotic stress tolerance in circadian 

clock mutants (Grundy et al., 2015). For example, clock mutants with long-period phenotypes 

(prr9), short-period phenotypes (cca1, lhy, prr5) or arrhythmia (efl3, elf4, lux) exhibit the same 

hypersensitivity to methyl viologen (Lai et al., 2012). Short-period cca1, lhy and cca1 lhy 
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mutants, as well as arrhythmic elf3 and elf4 mutants all exhibit higher basal H2O2 levels. 

Similarly, the arrhythmic lux mutants and prr5,7,9 triple mutant have opposing freezing 

tolerance phenotypes (Nakamichi et al., 2009; Chow et al., 2014). In these cases, FRP of the 

clock is not the likely primary cause of the altered stress phenotype, but rather direct alteration 

in the expression of abiotic stress-responsive genes upon mutation of a specific core clock 

component (Grundy et al., 2015). Some oscillator components have been shown to exhibit dual 

functions, both in regulating the clock and in directly abiotic stress-responsive genes. For 

example, CCA1 specifically regulates responses to oxidative stress and binds directly to the 

Evening Element and/or CCA1-binding site at the promoter regions of 10 ROS genes involved 

in transcriptional regulation, including WRKY11, MYB59, PAL1, ZAT10 and ZAT12, to regulate 

their time-of-day expression (Lai et al., 2012). Similarly, promoters of CBF1, 2, and 3 contain 

Evening Elements, and CCA1 binds directly to the CFB1-3 locus, while rhythmic basal 

expression of CBF1-3 disrupted in cca1/lhy double mutant (Harmer et al., 2000; Dong et al., 

2011; Grundy et al., 2015). TOC1 and LUX proteins control correct gating of CFB3 responses 

and bind directly to the CFB3 promoter (Keily et al., 2013), while induction of the cold-

inducible genes CONSTANS-LIKE 1 and COLD REGULATED GENE 27 requires presence of 

an Evening Element (Mikkelsen and Thomashow, 2009). While the circadian clock has a clear 

impact on how plants respond to abiotic and biotic stresses, abiotic stress also has an effect on 

the circadian system (Grundy et al., 2015). . Differential splicing of a variety of core clock 

genes occur in response to changes in temperatures and temperature stress (James et al., 2012; 

Filichkin et al., 2015). In addition, several core clock components are regulated by stress-

related transcription factors: the heat shock transcription factor HsfB2b represses transcription 

of PRR7 at high temperatures and under drought stress (Kolmos et al., 2014); and binding of 

CFB1 to the promoter region of LUX plays a role in maintaining robust transcriptional rhythms 

at low temperatures (Chow and Kay, 2013). XRN activity could play a role in mediating both 

clock gene expression in response to stress and clock-regulated control of genes involved in 

stress responses. It has long been predicted that changes in mRNA half-life across the circadian 

cycle contribute to circadian transcript oscillations (Nolte and Staiger, 2015). CCR-LIKE 
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(CCL) and SENESCENCE ASSOCIATED GENE 1 are short-lived transcripts of which mRNA 

stability changes across the day and is under control of the circadian clock, and disruption of 

downstream RNA decay of these transcripts leads to circadian defects (Lidder et al., 2005). 

Furthermore, the stability of CCA1 transcript is regulated by light, with CCA1 mRNA relatively 

stable in the dark and in far-red light, but with a short half-life in red and blue light (Yakir et 

al., 2007). In the current study, analysis of clock transcript accumulation under entraining 

conditions revealed a delayed accumulation of CCA1 transcript visible in sal1 (despite no 

changes in CCA1::LUC2 promoter activity in sal1 under these conditions, Section 4.2.4), with 

the delay in accumulation occurring to a lesser extent in xrn234 (Section 5.2.5). This delay 

could be due to perturbed mRNA decay resulting from inhibited XRN activity, yet further work 

is required to determine whether CCA1 transcript is an XRN target that plays a role in delaying 

circadian rhythms in response to accumulated PAP. Indeed, no such delay in CCA1 transcript 

accumulation was observed in an xrn4 mutant (Section 5.2.4), suggesting that a more complex 

mechanism could be involved. 

 

7.10. Final conclusions and future work 

Circadian rhythms are integral to plant fitness and survival, playing a key role in regulating 

growth, metabolism and flowering, and improving readiness of defense mechanisms against 

biotic and abiotic stress (Dodd et al., 2015; Grundy et al., 2015). Monitoring circadian rhyhtms 

in planta can provide valuable insight into how the clock regulates plant responses under 

different conditions (Tindall et al., 2015). The curent study proposed that chlorophyll a 

fluorescence imaging can be used as a non-invasive, robust, medium-throughput assay to 

monitor circadian rhythms in chloroplasts in planta and to identify mutants with altered 

circadian rhythms (Section 3.2.1-3.2.2; Litthauer et al., 2015). Variations in the chlorophyll 

fluorescence parameter Fq’/Fm’ oscillate with circadian rhythm under constant blue light. These 

rhythms are under control of the nuclear circadian oscillator, and are maintained under constant 
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blue light by the redundant action of the blue light phototropin receptors, phot1 and phot2 

(Section 3.2.2-3.2.3). 

Using chlorophyll a fluorescence imaging, this study identified sal1 mutants as exhibiting a 

long-period circadian phenotype under constant blue light (Section 4.2.3). The chloroplast-

localised SAL1 enzyme is reported to act in a chloroplast-to-nucleus retrograde signalling 

pathway in which nuclear gene expression is controlled through the action of the metabolite 

PAP in response to abiotic stress (Estavillo et al., 2011; Chan et al., 2016a). Following from 

the work in this thesis, it is proposed that SAL1 acts within the circadian system, regulating 

nuclear rhythms via the action of PAP in a blue light-specific mechanism (Sections 4.2.3 -4.2.4; 

Section 4.2.6; Sections 6.2.1-6.2.3). The blue light-dependend pathways that induce PAP 

production in the absence of abiotic stress remains to be identified. Analysis of cryptochrome 

and ZTL pathways by transcriptional analysis and genetic manipulation of signalling 

components could shed light onto the mechanisms that stimulate PAP production under low 

light levels and in response to small changes in light. It remains to be seen whether the blue 

light specificity of the sal1 circadian phenotype is derived from misregulation of blue light 

photoreceptor expression, or from disruption of signalling components downstream of 

photoreceptor transcription or post-tanscriptional RNA processing. The current study 

demonstrated that PAP is an effective metabolic signal that can alter circadian gene expression 

upon small changes in low intercellular PAP levels. In addition, this study demonstrated that 

osmotic stress induces accumulation of PAP at low levels in wild-type, which correlates with 

a lengthening of circadian period (Section 6.2.6). It is therefore proposed that the inhibition of 

SAL1 activity under abiotic stress results in the accumulation of PAP in chloroplasts (Chan et 

al., 2016a), which in turn leads to deceleration of circadian rhythms in response to stress, 

possibly to improve stress resistance (Syed et al., 2015).  Indeed, it would be of interest to 

analyse the effect of osmotic stress on FRP in sal1 mutants, and in lines where SAL1 is 

constitutively overexpressed. An additional avenue of investigation would be to determine 

whether the stress-induced regulation of circadian timing is conserved in other plant species. It 
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has been proposed that the redox-sensitive SAL1-PAP pathway can regulate stress gene 

expression and stress tolerance across monocotyledonous and dicotyledonous plants (Chan et 

al., 2016a). The redox-responsive cysteine residues of Arabidopsis SAL1 are highly conserved 

across bryophyte, chlorophyte, early angiosperm, eudicot and monocot species. The SAL1 

homologue in Oryza sativa exhibits the same redox-sensitive inhibition of catalytic activity 

(Chan et al., 2016a), and virus-induced silencing of the SAL1 homologue in wheat improves 

drought tolerance (Manmathan et al., 2013). Interestingly, high salinity results in lengthening 

of circadian period in wheat (Erdei et al., 1998). It would therefore be intriguing to determine 

whether the SAL1-PAP signalling pathway is involved in circadian regulation of stress 

responses in agricultural crops. 

The SAL1-PAP pathway is proposed to act on nuclear gene expression in response to stress by 

inhibiting the activity of 5’�3’ exoribonuclease (XRN) activity (Estavillo et al., 2011; Chan 

et al., 2016b). The Arabidopsis genome contains three XRNs for which function is often 

redundant, and accumulated PAP in the sal1 mutant is reported to simultaneously inhibit all 

three XRNs (Dichtl et al., 1997; Gy et al., 2007; Estavillo et al., 2011; Nagarajan et al., 2013). 

The current study demonstrated a possible role for XRN activity in lengthening of circadian 

period, as loss of XRN function in the xrn234 mutant results in a blue light-specific long-period 

circadian phenotype similar to that of sal1 mutants (Section 5.2.5). While the nuclear-localised 

XRN2 and XRN3 are regarded as the regulators of stress gene expression in the SAL1-PAP-

XRN pathway (Gy et al., 2007; Estavillo et al., 2011), the current study suggests that the 

cytoplasmic XRN4 regulates the expression of nuclear circadian genes (Section 5.2.4). A role 

for cytoplasmic XRN activity within the Chlamydomonas reinhardtii circadian system has 

previously been reported, in which case loss of the XRN4 homologue XRN1 lengthened 

circadian rhythm of luciferase activity (Matsuo et al., 2008). xrn4 alleles have previously been 

reported as being insensitive to ethylene treatment due to accumulation of EIN3 BINDING F-

BOX PROTEIN1 (EBF1) and EBF2 mRNA (Olmedo et al., 2006; Potuschak et al., 2006), yet 

ethylene signalling does not contribute to the regulation of circadian rhythms (Thain et al., 
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2004; Hanano et al., 2006). Indeed, xrn4 mutants share similar lateral root defects observed in 

sal1 and, while sal1 mutants are relatively insensitive to ethylene, this lateral root phenotype 

is not caused by reduced ethylene response (Carrington and Ambros, 2003; Chen and Xiong, 

2011). Following from the observations in the current study, it is therefore proposed that XRN4 

regulates circadian period through its XRN activity in the cytosol by modulating global changes 

in circadian transcript abundance and stability, and that loss of this function results in the 

lengthening of circadian period observed in xrn4 and xrn234 mutants. Limiting the role of 

XRNs to the activity of XRN4 would be a helpful step towards identifying the XRN targets 

involved in regulating circadian rhythms in response to PAP. As transcripts of the three XRNs 

do not accumulate with daily rhythm (Mockler et al., 2007; Covington et al., 2008), it would 

be interesting to see whether constitutive overexpression of XRN4 restores circadian period in 

a sal1 mutant. In addition, monitoring RNA-protein interactions through crosslinking-

immunoprecipitation (CLIP) combined with sequencing techniques (Licatalosi et al., 2008), 

could potentially be used to identify the transcripts that act as XRN4 targets in the regulation 

of circadian rhythms. 

While the inhibition of XRN activity by PAP is regarded as the accepted mechanism through 

which the SAL1-PAP pathway regulates gene expression in response to stress (Estavillo et al., 

2011; Chan et al., 2016a, 2016b), the broad range of effects of PAP accumualtion on 

metabolism (as is evident from the pleiotropic nature of the sal1 mutation) cannot be 

disregarded. Indeed, the current study illustrated that sal1 mutants exhibit delayed 

accumulation of some circadian transcripts (particularly CCA1) under entraining conditions, 

but that this is less pronounced in xrn234 and absent in xrn4 (Sections 5.2.4 and 5.2.45). 

Similarly, 3’-noncoding transcripts accumulate in sal1 mutants, but not in the xrn234 mutants 

(Section 5.2.6), suggesting the possible involvement of an additional mechanism. Although 

sulfate deprivation and perturbation of glucosinolate synthesis do not contribute to the long-

period circadian phenotype of sal1 mutants (Sections 5.2.1 and 5.2.2), the effect of PAP 

accumulation on JA synthesis (Rodriguez et al., 2010), fatty acid oxidation (Rodriguez et al., 
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2010; Lee et al., 2012), as well as altered sensitivity to ABA and auxin (Xiong et al., 2001; 

Chen and Xiong, 2010; Rodriguez et al., 2010) would need further investigation. Interestingly, 

mutation of the well-defined signalling component HY5 has been shown to suppress the 

enhanced light sensitivity in sal1 hypocotyl elongation and restores lateral root formation (but 

not leaf morphology) in sal1 (Chen and Xiong, 2011). HY5 has also been identified as a direct 

regulator of ABA responses in seed germination, early seedling growth and root development 

(Chen et al., 2008), and the genetic interaction between HY5 and SAL1 indicates that these 

two components may act in overlapping pathways to mediate light signalling and root 

development (Chen and Xiong, 2011). Furthermore, the crossing of phyB (or hy1) into sal1 

suppresses the light sensitivity of sal1 and rescues the sal1 hypocotyl defect, as well as partially 

rescuing the leaf morphology phenotype of sal1 (Kim and von Arnim, 2009; Chen and Xiong, 

2011). Phytochromes are known to contribute to entrainment of the clock (Jones et al., 2015; 

Galvão and Fankhauser, 2015), and a role of a phytochrome-dependent factor in chloroplast 

retrograde signalling has previously been demonstrated (Salomé et al., 2012). It would 

therefore be interesting to investigate the role of phytochrome signalling in the circadian 

regulation by the SAL1-PAP pathway. In addition to XRNs, alternative targets of PAP could 

possibly play a role in regulating circadian rhythms. In addition to its activity on XRNs, PAP 

is reported to bind to and inhibit nucleoside diphosphate (NDP) kinases (Schneider et al., 1998). 

NDPKs are a small family of proteins that act as nucleoside phosphotransferases, but are also 

active in plant responses to environmental cues (Liu et al., 2014). Upregulated protein levels 

have been detected in plants grown at high salinity, in drought, in polluted soils containing 

metals, as well as in plants exposed to pathogen elicitors and oxidative stress treatments (Liu 

et al., 2014). Preliminary data indicates that loss of function of NDPK3 in the ndpk3 mutant 

lengthens period of chloroplast circadian rhythms, but to a lesser extent than observed in sal1 

(Appendix IV). The action of NDPK as an alternative to XRN activity in relaying chloroplast 

signals to the nuclear circadian clock would be an interesting avenue for further research. 
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Appendix I 

Table 8.1 Primers used for DNA cloning reactions.  

clo_AHL genomic F CAGCTCCTGATAAGAGGTTTTAATATG 

clo_AHL genomic R GAGACTGGAAGATTCCCAAC 

clo_FRY1 genomic F CCCTGCAGCACAAGAACC 

clo_FRY1 genomic R GAGAGCTGAAGCTTTCTCTTGC 

clo_FRY1ox_F CACCATGATGTCTATAAATTGTTTTCG 

clo_FRY1ox_R GAGAGCTGAAGCTTTCTCTTGCC 

clo_pGWB4 F TAATTTCCGTCAATATTTACCTTCC 

GW1 GTTGCAACAAATTGATGAGCAATGC 

GW2 GTTGCAACAAATTGATGAGCAATGC 

pUB-Dest F CGATTTTCTGGGTTTGATCG 

pUB-Dest R ACTGGTGATTTTTGCGGACT 

seq_FRY1 1256R TTGGAAGATTTACAAAATGGGTTT 

seq_FRY1 1879F CTGAAGGTGGTCCAAATGGT 

seq_FRY1 5' into vector GGCGTGTGAGAGAGCAAA 

seq_FRY1 878F TCTGCAATCAGAAAATGTGAAGA 

seq_GFP F TATATCATGGCCGACAAGCA 

seq_GFP R GAACTCCAGCAGGACCATGT 

seq_pEG103_F GGATTCCATTGCCCAGCTA 

seq_pEG103_mGFP_R CATCCATGCCATGTGTAATCC 

seq_pGWB41_F AGAGAACACGGGGGACTCTAG 

DNA oligonucleotides used to prime PCR and DNA sequencing reactions are listed. All 
primer sequences are given in the 5’-3’ orientation. 
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Table 8.2 Primers used for PCR reactions to analyse splicing of transcripts.   

PCR_CCA1_Ex1_F AAATTCGTCTGGAGAAGATCTGG 

PCR_CCA1_Ex7_R GGAAGCTTGAGTTTCCAACC 

PCR_ELF4_3'ext_R GGTCCAACTAAGAAGAAACAATTTGA 

PCR_ELF4_Ex1_F ATGAAGAGGAACGGCGAGA 

PCR_ELF4_Ex1_R TAAGCTCTAGTTCCGGCAGCA 

PCR_LHY_Ex1_F ATCTGGAGAAGAATTATTAGCTAAGGT 

PCR_LHY_Ex7_R GAAGCTTCTCCTTCCAATCG 

PCR_LHY_I5_F AACGAATTGAAGAACATATTGGGAC 

PCR_LHY_I5_R CCAGTTGATGTTTTCTCAGAGAACG 

PCR_PRR5_3'ext_R TCTAGTTGATGATACAAAATTGAACTG 

PCR_PRR5_Ex1_F GCCACGTCAGCCAATTC 

PCR_PRR5_Ex6_R CTATGGAGCTTGTGTGGATTG 

PCR_PRR9_Ex1_F ATGGGGGAGATTGTGGTT 

PCR_PRR9_Ex7_R ACGAACTGGCCTTTCACTC 

PCR_PRR9_I3_F TTTTGCTCTGCTTGCTTTGG 

PCR_PRR9_I3_R ATGAGCAGTAGGATCATCAC 

PCR_TOC1_Ex1_F ATGGATTTGAACGGTGAGTG 

PCR_TOC1_Ex1_R TCAAGTTCCCAAAGCATCA 

PCR_TOC1_I4_F GAAGTCCCTGTCGTTGTAAAGTG 

PCR_TOC1_I4_R TGTTCCATCAGCACCAAGACC 

DNA oligonucleotides used to prime PCR reactions are listed. All primer sequences are 
given in the 5’-3’ orientation. 
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Table 8.3 Primers used for PCR reactions for screening and genotyping Arabidopsis 

mutants. 

apk1-1 LP TTGGTGGGCCTAATAAATTCC 

apk1-1RP GATTCAAAGCACAAGCCAAAG 

apk2-1 LP CCTTTCAGGTTCTCCCATCTC 

apk2-1 RP ATCATTCACGTGACGAACCTC 

fou8_LP TGCATTGCATCTGTAATTGG 

fou8_RP TCTAATCAGGGACAGGTATAACAAACTGA 

FRY1_transgene_F CATCCATGGCTTACGAGAAAGAG 

FRY1_transgene_G ACTGGTGATTTTTGCGGACTC 

fry1-6 LP CTTCGAATGACTCGAAGAACG 

fry1-6 RP TTTTCGATTCAATCATGACCC 

FRY1-OX LP GAGACCTGATCCAAACTGCTG 

FRY1-OX RP TACAAATGATTGAAGCGGAGC 

LB-1  TAGCATCTGAATTTCATAACCAATCTCGATACAC 

LB1.3b  ATTTTGCCGATTTCGGAAC 

xrn2-1_LB CATCTCGTATCCGAGGAGGA 

xrn2-1_RB GGATGACCAGAAACTGACCA 

xrn3-3_LB GCCTTCGATTTCAACAGGC 

xrn3-3_RB GAAATCGAACACAAATCCG 

xrn4-6_LB GGGGAATCCACTCTAGTTTGG 

xrn4-6_RB TGTGGGCCTCTATGGTGATGT 

DNA oligonucleotides used to prime PCR reactions are listed. All primer sequences are 
given in the 5’-3’ orientation. 
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Table 8.4 Primers used for qRT-PCR reactions. 

Actin2A ACCTTGCTGGACGTGACCTTACTGAT 

Actin2B GTTGTCTCGTGGATTCCAGCAGCTT 

CCA1 F CAGCTCCAATATAACCGATCCAT 

CCA1 R CAATTCGACCCTCGTCAGACA 

HSFA R GCTTCTATCTTTCTGAAACCATAAGT 

HSFA7 TTGCATTCTTTCTCCACGATTC 

PP2a qPCR F TAACGTGGCCAAAATGATGC 

PP2a qPCR R GTTCTCCACAACCGATTGGT 

qPCR GI R GCTGGTAGACGACACTTCAATAGATT 

qPCR_4CL1_F GCTGTTGTCGCAATGAAAGAA 

qPCR_4CL1_R TTGCTTCACATCATCTTCTGATAACT 

qPCR_ACT2_F CCAAGCAGCATGAAGATTAAGG 

qPCR_ACT2_R GAGATCCACATCTGCTGGAATG 

qPCR_APR1_F GCTTGCTAAGAAGTTAGAGAATGCTT 

qPCR_APR1_R TCTGCACCACTAAATGCAATG 

qPCR_APX2 F CCATTTGTTGAAAAATATGCTG 

qPCR_APX2 R AGCAAACCCGAGTTCTGACA 

qPCR_CAB2 F GCCTCAACAATGGCTCTCTC 

qPCR_CAB2 R GCTTGGCAACAGTCTTCCTC 

qPCR_CCA1_5'ext_F TGATGTTAAGATGGACAAGAATGTAAC 

qPCR_CCA1_5'ext_R TTTCGAGGCTACAAAAGAAACTG 

qPCR_CCA1_Ex2-3_F AGATTGAAGAACATGTAGCAACAAAA 

qPCR_CCA1_Ex4_R ACCTTTAGCTTCAGCCTCTTTCT 

qPCR_CCA1_I4_R ACATCATTTCAAAATTAACCGATTTTA 

qPCR_CCR2 F TCGTTAATGATCTTGGAATCAAT 

qPCR_CCR2 R GTATCGGTGCTTCGTTGGA 

qPCR_ELF3_new_F GATGATGTTGTGGGTATATTAGGTC 

qPCR_ELF3_new_R CAATAAGTTTTTGAACCTTAATCAGTCT 

qPCR_ELF4 F new GGGAGAATCTTGACCGGAAT 

qPCR_ELF4 R new CAAAGCAACGTTCTTCGACA 

qPCR_ELF4_3'ext_F TGACTTTTCACTAGGCTGTGTATTAGA 

qPCR_ELF4_3'ext_R TACTGCAGTTTCTGTTTGCTTTTT 

qPCR_FRY1 F GGTGGCTGAAGAGGACTCAG 

qPCR_FRY1 R TCCTCGGTAGCCAAAGTGTC 

qPCR_GI F ACTAGCAGTGGTCGACGGTTTATC 

qPCR_HyPer F GTGCCACCAGAGAGGAAGAG 
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qPCR_HyPer R ATGGTGAACCTGGCCTGTAG 

qPCR_LHY F CAATGCAACTACTGATTCGTGGAA 

qPCR_LHY R GCTATACGACCCTCTTCGGAGAC 

qPCR_lux F2 GCACATCATATGGGTATGCAA 

qPCR_lux R GACACCAAGAACCATTTCCAC 

qPCR_pEG103GFP_R CCATCTCGAGCACCACTTTG 

qPCR_PRR5 F ATTCCGAATGAAGCGAAAGGA 

qPCR_PRR5 R TCGTAACGAACCTTTTTCTCATAACAT 

qPCR_PRR5_3'ext_F AAGCTATAGTGAGATCAAAACTTCTGG 

qPCR_PRR5_3'ext_R ATATGTTCATAATCATCTTCTTCGTTT 

qPCR_PRR7_F GAATGTGCTGAGGCGTTCAGA 

qPCR_PRR7_R GGCTGGATTATACCTTGAGAAAGC 

qPCR_PRR9 Exon 4 F ATATCATTCAGATCAAGGAAGTGGTG 

qPCR_PRR9 Exon 5 R TCAAATCCATTGTCACATCAAAAGTT 

qPCR_PRR9 F GTTGAAGAGGAAAGATCGATGCTT 

qPCR_PRR9 Intron4-5 R ATGCAATCTCAAGATGAAAATCTCAC 

qPCR_PRR9 R CTGCTCTGGTACCGAACCTTTT 

qPCR_PRR9_newF GAAACAACGTTGGAGTAGAAGC 

qPCR_PRR9_newR CTCTGGTACCGAACCTTTTTG 

qPCR_SAL1_F2 GTTACAGAGGCGGGTGGAATAGT 

qPCR_SAL1_R2 GCAACGATAATGCCTGTGTCC 

qPCR_SIG5 F GTGTTGGAGCTAATAACAGCAGACA 

qPCR_SIG5 R TGTCGAATAACCAGACTCTCTTTCG 

qPCR_STN7 F GGACTACAGTGAAGCAGCAAAT 

qPCR_STN7 R AGGCTCTTTCTCCCTGAGTTC 

qPCR_SULTR42_F GCTACGAGAATATGAAGTTGCTATCG 

qPCR_SULTR42_R TGTATGTGACAGGAGACATTTCCA 

qPCR_TOC1_newF AATCCAGCGCAATTTTCTTC 

qPCR_TOC1_newR CGTTAGTTCTAAGGACAGTAGATTTGA 

TOC1 F AATAGTAATCCAGCGCAATTTTCTTC 

TOC1 R CTTCAATCTACTTTTCTTCGGTGCT 

DNA oligonucleotides used to prime PCR reactions are listed. All primer sequences are 
given in the 5’-3’orientation 
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Appendix II 

 

Figure 9.1 Map of the pCR™8/GW/TOPO® entry vector (Invitrogen). TOPO® cloning site with 3’-T 
overhangs, attL1 and attL2 regions; pUC origin, rrnB T1 and rrnB T2 transcription termination sequences, and 
Spectinoycin resistance gene (SpnR) for bacterial selection are shown.�
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Figure 9.2 Map of the Gateway®-compatible vector pGWB4 (Nakagawa et al., 2007, 2009). Left border (LB) 
and right border (RB) sequences for Agrobacterium-mediated T-DNA transfer; Gateway® cloning cassette with 
attR1 and attR2 regions, Chlamphenicol resistance gene (CmR), and the ccdB killer gene; green fluorescent protein 
(sGFP) with 6x-Histidine for C-terminal fusion, with NOS terminator region; bacterial Kanamycin resistance gene 
(Kan) for microbial selection, with NOS promoter and NOS terminator regions; Hygromycin herbicide resistance 
gene (HygR) with Cauliflower Mosaic Virus 35S promoter (CaMV 35S) and NOS terminator regions for selection 
of transgenic plants are shown.�
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Figure 9.3 Map of the Gateway®-compatible vector pEarleyGate103 (Earley et al., 2006). Left border (LB) 
and right border (RB) sequences for Agrobacterium-mediated T-DNA transfer; Gateway® cloning cassette with 
attR1 and attR2 regions, lac UV5 promoter, Chlamphenicol resistance gene (CmR), and the ccdB killer gene; green 
fluorescent protein (mGFP) with 6x-Histidine for C-terminal fusion, with OCS terminator region; bacterial 
Kanamycin resistance gene (Kan) for microbial selection; Basta herbicide resistance gene (BaR) with MAS 
promoter and MAS terminator for selection of transgenic plants are shown. �
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  Figure 9.4 Preparation of alx8-1 SAL1::SAL1-GFP lines (A) Map of vector constructed from Gateway®cloning 
of SAL1 gDNA into the Gateway® vector pGWB4 (Nakagawa et al., 2007, 2009). Left border (LB) and right border 
(RB) sequences for Agrobacterium-mediated T-DNA transfer; attB1 and attB2 regions; green fluorescent protein 
(sGFP) with 6x-Histidine for C-terminal fusion, with NOS terminator region; bacterial Kanamycin resistance gene 
(Kan) for microbial selection, with NOS promoter and NOS terminator regions; Hygromycin herbicide resistance 
gene (HygR) with Cauliflower Mosaic Virus 35S promoter (CaMV 35S) and NOS terminator regions for selection 
of transgenic plants are shown. (B) PCR amplification of SAL1 gDNA following cloning into the 
pCR™8/GW/TOPO® entry vector (top) and pGWB4 (bottom) vectors. Reactions using independent clones, empty 
vector backbones and non-template controls are shown (NT) (C) Immunoblot analysis of SAL1 expression levels 
in independent homozygous T3 alx8-1 SAL1::SAL1-GFP lines. Arrows indicate lines selected for use in the study.
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Figure 9.5 Preparation of Col-0 SAL1-OX lines (A) Map of vector constructed from Gateway®cloning of SAL1 
cDNA into pEarleyGate103 (Earley et al., 2006). Left border (LB) and right border (RB) sequences for 
Agrobacterium-mediated T-DNA transfer; attB1 and attB2 regions; Cauliflower Mosaic Virus 35S promoter (35S) 
and OCS terminator regions; SAL1 cDNA; green fluorescent protein (mGFP) with 6x-Histidine for C-terminal 
fusion; bacterial Kanamycin resistance gene (Kan) for microbial selection; Basta herbicide resistance gene (BaR) 
with MAS promoter and MAS terminator for selection of transgenic plants are shown. (B) PCR amplification of 
SAL1cDNA following cloning into the pCR™8/GW/TOPO® entry vector (top) and pEarleyGate103 (bottom) 
vectors. Reactions using independent clones, empty vector backbones and non-template controls are shown (NT) 
(C) Immunoblot analysis of SAL1 expression levels in independent homozygous T2 Col-0 SAL1-OX lines. Arrows 
indicate lines selected for use in the study.�
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Figure 9.6 Map of vector constructed from Gateway®cloning of AHL cDNA into pEarleyGate103 (Earley et 
al., 2006). Left border (LB) and right border (RB) sequences for Agrobacterium-mediated T-DNA transfer; attB1 
and attB2 regions; Cauliflower Mosaic Virus 35S promoter (35S) and OCS terminator regions; AHL cDNA; green 
fluorescent protein (mGFP) with 6x-Histidine for C-terminal fusion; bacterial Kanamycin resistance gene (Kan) for 
microbial selection; Basta herbicide resistance gene (BaR) with MAS promoter and MAS terminator for selection 
of transgenic plants are shown.�
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Figure 10.1 Accumulation of stress-gene transcripts following high light treatments at different times of day. 
Transcript levels for (A-B) APX2 and (C-D) HSFA7 in Col-0, alx8-1 (left) and fry1-6 (right) after high light stress 
treatment was applied at different times of day. Seedlings were grown on 0.5x MS media for 10 days in 12h:12h 
light:dark cycles under 60 µmol.m-2.s-1 white light, before being transferred to constant white light.  After 48 hours 
in free-run, seedlings were treated with 1 000 µmol.m-2.s-1 white light for (A-B) 60 minutes or (C-D) 30 minutes at 
subjected dawn (ZT48), subjective midday (ZT52), subjective dusk (ZT60) or subjective mid-night (ZT64), using 
an IsoLight system (Technologica, Essex, UK). Data for each gene were normalised to an internal control (PP2a). 
and again to highest value for each gene.  Error bars indicate standard error of the mean for three technical replicates.
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Figure 10.2 Expression of ROS-sensitive biosensors in Arabidopsis. (A) Plot showing transcript and protein 
levels quantified (top) and immunoblot analysis, using Anti-GFP, of protein (bottom) from various independent 
homozygous T3 lines expressing the HyPer1 gene (Belousov et al., 2006) under control of the Ubiquitin promoter 
in a Col-0 background (Col-0 UBQ::HyPer1:GFP). (B) Confocal laser scanning microscopy images of leaves of 
Col-0 (left) and 2 independent Col-0 UBQ::HyPer:GFP lines showing green (GFP) channel images. (C)
Immunoblot analysis, using Anti-GFP, of 20 µg protein from Col-0, Col-0 UBQ::HyPer:GFP line #1 and 
Arabidopsis expressing roGFP2  (Schwarzländer et al., 2008; Marty et al., 2009). (D) Confocal laser scanning 
microscopy images of leaves of Col-0 (left) and Arabidopsis expressing roGFP2  showing green (GFP) channel 
images. Seedlings were grown on 0.5x MS media in 12h:12h light:dark cycles under 60 µmol.m-2.s-1 white light for 
12 days before analysis or imaging.�
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Figure 11.1 Fq’/Fm’ rhythms in sal1 and ndpk3 mutants under constant blue light. (A) Waveforms and (B)
circadian period estimates for Fq’/Fm’ oscillations in Col-0, alx8-1, ndpk3 seedlings under constant blue light. 
Seedlings were grown on 0.5x MS agar plates and entrained in 12h:12h light:dark cycles under 60 µmol.m-2.s-1

white light for 12 days before imaging under 20 µmol.m-2.s-1 constant blue light. White bars and grey bars indicate 
subjective day and subjective night, respectively. Error bars indicate standard error of the mean, with n=8. For 
waveforms, error bars are shown every 10 hours for clarity. Data from one of two independent experiments are 
shown. Asterisks indicate statistically significant difference in period compared to Col-0 control (** p<0.001; * 
p<0.01; Student’s T-test). 


