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Abstract 

Workforce optimisation aims to maximise the productivity of a workforce and is a crucial 

practice for large organisations. The more effective these workforce optimisation strategies are, 

the better placed the organisation is to meet their objectives. Usually, the focus of workforce 

optimisation is scheduling, routing and planning. These strategies are particularly relevant to 

organisations with large mobile workforces, such as utility companies. There has been much 

research focused on these areas. One aspect of workforce optimisation that gets overlooked is 

organisational design.  

Organisational design aims to maximise the potential utilisation of all resources while 

minimising costs. If done correctly, other systems (scheduling, routing and planning) will be 

more effective. 

This thesis looks at organisational design, from geographical structures and team structures to 

skilling and resource management.  A many-objective optimisation system to tackle large-scale 

optimisation problems will be presented. The system will employ interval type-2 fuzzy logic 

to handle the uncertainties with the real-world data, such as travel times and task completion 

times.  

The proposed system was developed with data from British Telecom (BT) and was deployed 

within the organisation. The techniques presented at the end of this thesis led to a very 

significant improvement over the standard NSGA-II algorithm by 31.07% with a P-Value of 

1.86-10. 

The system has delivered an increase in productivity in BT of 0.5%, saving an estimated 

£1million a year, cut fuel consumption by 2.9%, resulting in an additional saving of over £200k 

a year. Due to less fuel consumption Carbon Dioxide (CO2) emissions have been reduced by 

2,500 metric tonnes. 
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Furthermore, a report by the United Kingdom’s (UK’s) Department of Transport found that for 

every billion vehicle miles travelled, there were 15,409 serious injuries or deaths. The system 

saved an estimated 7.7 million miles, equating to preventing more than 115 serious casualties 

and fatalities. 
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Chapter 1. Introduction 

1.1 An Introduction to Workforce Management 

Workforce management (WFM) is broadly defined as a term that encompasses all the 

operational and decision activities needed to maintain a productive workforce, by providing an 

optimal plan, which will lead to significant cost reductions and performance improvements [1] 

[2]. 

For any organisation, having a well-managed workforce comes with a number of benefits, like 

reduced operating costs and increased capacity to handle incoming demand. The number of 

potential benefits increases when the workforce is mobile. Mobile workforces are far more 

difficult to manage as working locations continually change, so any task scheduling system has 

to factor in travelling times between locations. The larger the organisation, the more complex 

the management of the workforce becomes. Examples of organisations with both large and 

mobile workforces are delivery companies and companies that supply utility services, such as 

electricity, water, gas and telecoms. Demand for utility services are high, as they contribute to 

living standards and there is large amounts of infrastructure needed to supply utilities, which 

constantly need upgrading and maintaining. These factors mean there is high amounts of 

demand and pressure on workforces in these types of organisations.  

WFM can be derived from a number of optimisation problems. Effective workforce 

management can be measured using metrics like productivity, efficiency and output. The 

objective in any profit maximising organisation would be to maximise these measures through 

advanced optimisation algorithms. 

Optimisation of such complex real-world problems is often better suited to computer 

algorithms, rather than manual optimisation by a human. One notable reason is that there can 
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be, with only a few variables, many millions of possible solutions to the problem. For example 

in the Travelling Salesman Problem (which will be discussed at length in Chapter 2) a salesman 

has to travel to a number of cities, visiting each city only once and minimising the distance 

travelled. If there are just ten cities, there are over 181,000 possible routes the salesman can 

take, 16 cities would lead to more than 650 billion possible routes. 

According to [3], such problems are looking for an object from a possibly countable infinite 

set, which are a class of problems called Combinatorial Optimisation (CO) problems. 

Algorithms designed to tackle CO problems usually aim for a metaheuristic approach [4]  

because the optimisation must be completed within a reasonable amount of time. This is 

especially true for real-world optimisation problems as the environment changes on a frequent 

basis. A common approach to tackling these large scale complex optimisation problems are 

Evolutionary Algorithms (EAs) such as Genetic Algorithms (GAs) [5], [6], [7] and Particle 

Swarm Optimisation (PSO) [8], [9], [10]. 

The WFM challenges that will be discussed in this thesis are combinatorial optimisation 

problems, thus, metaheuristics will also be used as the proposed method to tackle these 

problems. The application of these optimisation methods to WFM is the practice of workforce 

optimisation.  

1.2 Aims of the Thesis 

This thesis aims to investigate and implement a system for optimising the organisational design 

of a large mobile workforce. The core aim is to develop fuzzy logic systems to handle the 

uncertainties present in real-world problems. Fuzzy logic is a well-known method for handling 

uncertainty. These uncertainties come from the input data, such as estimated travel times and 

task times and stem from unreliable collection methods, traffic & road conditions and 

unexpected issues on jobs or in the field. The uncertainties impact the quality of the solutions 
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and cause performance issues in optimisation techniques that rely on Pareto Dominance. For 

an in-depth look at the theory of Fuzzy Logic (both Type-1 and Type-2), please see Appendix 

A. The remaining aims of the thesis are as follows: 

 To investigate the most suitable optimisation methods for organisational design 

 To examine the potential benefits of implementing fuzzy logic to handle the 

uncertainties in the data. 

 To develop a system which should produce near optimal geography and team designs, 

reducing the amount the mobile workforce travels and increase the number of tasks the 

workforce completes.  

 To develop a system in which each proposed organisational design should consider the 

wide range of complex real-world constraints, to generate results that can easily be 

implemented into the real-world environment on which it is based.  

As the proposed system is complex and spans a wide range of workforce management 

techniques, the proposed system features are listed as follows: 

 A novel neighbourhood-based clustering algorithm for the design of the mobile 

workforce’s geographical areas.  

 A multi-objective approach to the geography optimisation problem 

 A simultaneous optimisation-based approach to the skilling and team allocation 

problem 

 A novel fuzzy logic-based workforce simulation 

 A novel fuzzy logic-based approach to improving the clustering algorithm 

 A novel fuzzy logic-based approach to improving multi-objective Pareto based 

algorithms in optimising many-objective problems 
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Over the first two years of deployment by BT, this application has increased productivity by 

0.5% across the mobile workforce. The application has also helped reduce travel by 

approximately 7.7 million miles over the same period, which has reduced fuel consumption by 

2.9%. These outcomes have led to a productivity benefit of £1million a year and an additional 

saving of over £200K a year in fuel costs.  

There are additional secondary benefits of this system, which were not initially planned for.  

As the engineers are travelling less, this has saved an estimated 2,500 Metric Tons of CO2 and 

potentially preventing the number of serious traffic casualties or fatalities, in the UK, by more 

than 115.   

1.3 Thesis Layout 

The thesis will be structured as follows; Chapter 2 will give an overview on workforce 

optimisation, covering its origins within the travelling salesman problem, how Working Areas 

(WAs), which are also known as patches, play their part in modern large-scale organisations 

and how this work expands beyond the traditional Workforce Scheduling and Routing Problem 

(WSRP).  

Chapter 3 will give an overview of optimisation algorithms. This section describes how some 

of the most common algorithms in this domain work, this includes; GAs, PSO algorithms and 

Simulated Annealing. The topic will then expand to multi-objective optimisation for problems 

with more than one objective, and then a description of many-objective problems and how they 

are measured and evaluated through hypervolumes is given.  

Chapter 4 will give an overview of the large-scale optimisation problems that this work will 

attempt to solve. These problems extend from geographical and structural optimisation 

problems to resource skilling and team setup optimisation problems.  
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Chapter 5 presents the type-2 fuzzy logic system for field workforce optimisation detailing how 

the overall system is set up, how fuzzy logic can be used to improve the optimisation algorithm 

and an initial evaluation of the first version of the optimisation tool created for the real-world 

implementation of this system. 

Chapter 6 expands on the work presented in Chapter 5. The work here looks at the practical 

and theoretical benefits of deploying the real-world optimisation tool in a cloud environment. 

Chapter 6 also looks at addressing the weaknesses in multi-objective algorithms when 

attempting to solve many-objective problems. Thus, a simple distance metric is described and 

implemented overcome this challenge.  

Chapter 7 describes the work completed on skill optimisation, team optimisation and the 

simultaneous approach for optimising both strategies together. This chapter aims at addressing 

the weaknesses in organisational design related to individuals and resource, as opposed to just 

the geographical or management hierarchy addressed in previous chapters.  

Chapter 8 describes the fuzzy dominance rules for real-world many-objective optimisation. At 

the core of the work in the previous chapters is a many-objective optimisation problem, this 

chapter describes a method for improving the results generated for many-objective problems 

in a general context, outside of organisational design and workforce management, but still 

within the context of real-world problems.  

Chapter 10 presents the conclusions of this thesis, the real-world impact and finally the 

potential future work is discussed. 

Appendix A is an overview of fuzzy logic systems. Firstly, describing Fuzzy Logic in a general 

context then describing the basics of type-1 fuzzy systems and then type-2 fuzzy systems.  
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Chapter 2. An Overview on Workforce 

Optimisation 

There are many workforce optimisation strategies for WFM, the selection of which is 

dependent on the workforce type, industry and time-period. Mobile field workforces are some 

of the most complex to manage. A mobile field workforce can be defined as a workforce that 

is required to travel between tasks and are usually expected to visit more than one work location 

on any given day. The exceptions to this are when the time to complete the task is greater than 

the time available to work on that day. This problem is comparable to the Travelling Salesman 

Problem (TSP). 

2.1 The Travelling Salesman Problem  

2.1.1 The Orginal Travelling Salesman Problem 

The travelling salesman problem is a defined as follows in [11]: given a set of cities, along with 

the cost of travel between each of them, find the cheapest way of visiting all cities and return 

to the starting point. A single solution to this problem is known as a tour or circuit, and simply 

lists the cities in the order they should be visited by the salesperson. The ‘cost’ here is kept 

general as it could be any metric that is deemed suitable for evaluating a tour, for example, fuel 

expense, time, distance, a cost function that combines these metrics or any other that are 

deemed suitable. See Figure 2.1, for an example of a number of tours through the same set of 

cities.  
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Figure 2.1: Tours in the Travelling Salesman Problem (TSP) 

In [11] the TSP is traced back to a German handbook from 1832, where numerous salesmen 

were interested in planning the most economical routes to their customers. It is quite possible 

that the problem has its origins much further back than 1832, it would not be unreasonable to 

assume that salesmen on the historic ‘Silk Road’ trading route between Europe and China 

would have been concerned with minimising their travelling costs. Indeed, a legitimate 

objective of this time may have been to minimise deaths in the group for each trip. 

Given that the problem has persisted throughout the centuries and has yet to be solved by a 

single algorithm, the complexity of the problem cannot be overstated.  The TSP falls into a 

category of problems called Nondeterministic Polynomial Time-Hard or NP-Hard. Problems 

for which there is a good algorithm, where the problem can be solved in polynomial time, with 

a polynomial algorithm, are known as P class problems. If there is a possible solution to a 

problem, i.e. find the tour with the least cost, but the time taken to find the solution is unknown 

then the problem is classed as NP.  
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The concepts of computational complexity theory generated much research in the 1970s. An 

impressive survey is presented by Garey & Johnson [12]. Although the NP-Hardness of the 

TSP does not imply the exponential worst-case running times for its solutions are unavoidable, 

it does serve to reinforce one's belief that existence of a polynomial algorithm for the TSP is 

extremely unlikely [13].  

The potential reward for coming up with the proof P = NP is so great that there is currently a 

$1,000,000 prize on offer by the Clay Mathematics Institute [11] [14].  

2.1.2 The Generalised Travelling Salesman Problem 

The Generalised Travelling Salesman Problem (GTSP) is a variation of the Traveling Salesman 

Problem in which not all nodes need to be visited by the tour [15]. The locations are clustered 

together, and only one location from each cluster needs to be visited by the salesman. For 

example, there are a number of cities across Europe, the cities are grouped by the country they 

are in, and a delivery driver has to visit one city from each country. This example would work 

in the same way in the United States of America (USA), where the driver had to visit one 

location within a selected number of states [16].  

Figure 2.2 gives an example of the GTSP. The standard TSP is a type of GTSP, where each set 

of cities to visit is of size one [17].  

 

Figure 2.2: Tours in the Generalised Travelling Salesman Problem (GTSP) [17] 
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2.1.3 The Clustered Travelling Salesman Problem 

The final type of TSP that will be discussed is the Clustered Travelling Salesman Problem 

(CTSP) [18]. The CTSP is a variant of the TSP where cities or locations are clustered together, 

the salesperson then travels to each cluster, but visits each location within each cluster before 

moving on to the next. The key difference between the GTSP and the CTSP is that the 

salesperson must visit all the cities in the cluster, instead of just one. There is an extra cost 

factor known as inter-cluster costs, the cost of travelling between clusters [18]. This can be 

seen in the real world for international travel. If the cities are clustered by country, there may 

be additional inter-cluster costs for travelling across borders, such as extra time due to border 

checks, visa costs, import duties etc. Figure 2.3 gives an example tour using the CTSP.  

  

Figure 2.3: Tours in the Clustered Travelling Salesman Problem (CTSP) [19] 

An additional dimension to the travelling salesman problem is the skills required to complete 

any given task at any given location. This means that the closest member of the workforce to a 

task may not necessarily have the required skill to complete the task. More will be discussed 

on multi-skilled workforces in section 2.4. 
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2.2 An Overview of Workforce Management Systems 

For any organisation of meaningful size, managing the workforce effectively so that 

productivity is kept high is a complex problem. There are established methods to help tackle 

these workforce management problems.  

One fundamental method for any organisation is scheduling. Scheduling can be defined as 

allocating tasks to resources. In many organisations, this can be real-time scheduling, which 

has the ability to adapt to ‘on the day’ changes and is the very-short-term. Any system in place 

that is tasked with scheduling will have to look at resource availability and skills. For mobile 

workforces, the complexity of this is increased by adding the resources current location and 

distance away from unscheduled tasks. 

An additional layer of workforce management can occur before the scheduling phase. This 

phase has a number of names but is commonly referred to as ‘Planning’ or ‘Tactical Planning’ 

[20]. This phase is designed to support and inform sales teams and resource planners. The 

planning systems know which resources are available on what days, letting the sales team know 

if there is available resource capacity to deliver a service to a customer on any given day. 

Described so far is a generalised view, so, for example, the planner will know there are 20 man-

hours available next Wednesday, it takes two hours to travel to and deliver services to any 

customer, meaning there are ten slots available for customers on that day. If eight have been 

taken, it is still okay to book that customer in. If ten customers have been booked already, then 

another day will have to be chosen by the customer. Alternatively, the planners will know that 

two hours of overtime are needed and can plan that before impacting the customers first choice 

of date for service delivery. The planning phase is short to medium term from two days to two 

weeks ahead of scheduling. 
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The planning system cannot account for absences or emergency appointments on the day; this 

would be the job of the scheduler. However, the planner would know what the estimated 

‘shrinkage’ would be and thus leave available time in each resource’s schedule to allow those 

resources to be allocated additional tasks on the day. Shrinkage here is the reduction in the 

expected supply due to factors that reduce overall productivity (i.e. illness, traffic and 

unexpected complications with a task). If too much time is left free the resources utilisation 

will become low, leave too little time and there is no capacity for error and appointments will 

be delayed, thus having an impact on customer service and causing a backlog to build up for 

the following day.  

Scheduling and planning systems are vital for large organisations, and there are many 

publications and case studies that document the research and application of these systems [21] 

[22] [23].  

There is one more area of workforce management, which is often overlooked, this is 

organisational design. Organisational design is particularly important for large organisations 

and especially large organisations that have a mobile workforce spread over a wide 

geographical area. Many large organisations have a hierarchical management structure and at 

the base of that structure are teams of resources, those teams are allocated responsibilities based 

on their skill sets. These teams can be anything from finance, human resources, call centre 

operators or sales. For mobile workforces, these teams could be a roaming sales force, utility 

engineers, home care workers or delivery personnel. Making sure each team has the right 

number of resources, in the right place, with the right skills is important to having an 

organisation set up correctly.  



 

12 

 

 

Figure 2.4 Local Area Map 

For the case of a utility company, each engineering team at the base of the hierarchy is 

responsible for certain parts of the infrastructure. This is allocated on a geographical basis. For 

example, Southend-on-Sea and Basildon might be grouped as one area (see Figure 2.4 for 

reference), with the local engineers servicing the infrastructure in that area, Colchester and 

Ipswich might be another. Then, due to the hierarchical nature of the organisation, the Southend 

& Basildon area and the Colchester & Ipswich area would form part of the East Anglia Region. 

This structure means that an area manager can be overseen by a regional manager and there is 

a fixed reporting structure. 

The challenge comes at the lower levels of this hierarchy. Is it the right decision to group 

Basildon and Southend in the first place, how broad should this area be? Who should work in 

these areas? If someone with the right skills lives in Chelmsford could they be assigned to 

Basildon & Southend, or maybe they are needed in the Colchester & Ipswich area. It’s these 

sorts of questions that come under organisational design.  

The benefits of getting these decisions correct can be significant. This means the planning 

systems will have better resourcing capabilities for the expected demands in each geographical 

area. It will also mean the organisation is more effectively set up to react to unexpected changes 
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in demand or resources. It won’t necessarily negate all the effects of these changes, but it will 

mean the negative effect on the organisation and on customers will be reduced.  

2.2.1 Working Areas (Patches) 

One key aspect to organisational design for mobile workforces is the geography or territory the 

teams in the workforce are allocated. Each team is allocated a territory and the engineers in the 

teams will only receive tasks in that territory. These territories are known as Working Areas 

(WAs) or Patches. If an engineer is to do work in a neighbouring patch then this is usually at 

the request of a planner or patch manager who has noticed the neighbouring patch will be under 

resourced for a particular day, so the resource can be loaned across. However, the goal is to 

minimise this loaning as much as possible by configuring the patches and engineering teams 

correctly. Too much loaning can lead to decreased productivity, the resource being unfamiliar 

with the patch they have been allocated and instability for the engineer as they may not know 

where they will be working from one week to the next. The risk of this increases for an engineer 

the closer they are to patch borders.  

The geographical patches are not fixed in their shape, they can be redesigned based on demand, 

this is a key aspect to organisational design for large scale workforces. The flexibility to change 

both the geographical shape of the patch and the team members that service that patch, give a 

greater range of flexibility to adapt to the ever-changing working environments. Figure 2.5 

shows how the same infrastructure can be divided up into different patch designs.  

 

Figure 2.5 Possible Patch Designs 
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2.3 Large Scale Workforce Management Solutions 

Due to the size of the workforce associated with utility companies, there have been several 

previous examples of successfully tackling parts of the workforce management problem. One 

such example is the scheduling system developed by British Telecom (BT) in the 1990s. The 

system was called Work Manager and was responsible for scheduling tasks to all of BT’s 

50,000 mobile engineers. In a paper summarising the success of this system, it states that the 

benefits of this solution were worth up to $250 million a year [24] 

However, this summary of Work Manager also explained how each scheduling system had to 

work within the constraints of “175 separate groups that operate within non-overlapping 

geographical domains”. This directly references the organisational design, where each of the 

‘domains’ would be made up of a number of working areas as illustrated in Figure 2.6. The 

summary then goes on to say “(Geographical) domain-dependent requirements are rare. In fact, 

domains differ only on non-essential features, such as their road networks, their distribution of 

customers, the size and skills of their workforces, or their task-notification patterns”. 

 

Figure 2.6 Large Organisational Structures 

From this last statement, we can conclude that factors such as the distribution of demand, sizes 

of teams, skill profiles of teams and travel networks were not considered, as they are described 
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as ‘non-essential features’. The view that the organisational design was not important was a 

key factor in the lack of research and development in this area over the following decade. This 

meant the process of redesigning the organisational structure was a time-consuming manual 

process that required managers of domains and working areas to adjust teams and infrastructure 

responsibilities manually. In addition to this manual process being time consuming and 

unappealing, the results of the process were sub-optimal, due to the vast number of variables 

and constraints that would be needed to create new organisational designs effectively.  

This example is specific to BT, however overlooking organisational design in favour of 

scheduling is not limited to infrastructure companies, [25] focuses on the scheduling and 

routing problem, very common for any mobile workforce, for healthcare workers that travel to 

patient homes. In this paper, they mention in relation to the feature of the problem, ‘the number 

of geographical areas (visit locations are grouped into areas)’. The features of each problem 

are then stated and ‘Number of Areas’ is one of just three major features. Lastly, when talking 

about preferences, the authors state ‘preferences include workers preferring to work in certain 

geographical areas, customers requiring workers with special skills’. The problem description 

is very similar to the one already stated by BT mobile engineering workforce. This highlights 

that there are many organisations that use a working area based organisational structure, yet 

the optimality of the organisation structure itself is overlooked in favour of scheduling.  

In the journal article Workforce scheduling and routing problems: literature survey and 

computational study [26] there is mention of organisation design under the term 

‘Clusterisation’. Where the reasons for clusterisation are stated as ‘employees may prefer not 

to travel more than a number of miles’, ‘companies assign employees to perform work only in 

certain geographical areas’ and ‘Clusters may also be created just to reduce the size of the 

problem by solving a number of clustered sub-problems’. This study also highlights the need 

for clusterisation in the home care service because ‘Clusterisation is based on municipalities’ 
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borders to clearly define which authority (e.g. council, district, etc.) is responsible for each 

area’. For technicians, it states ‘Companies with many branches across different regions use 

clusterisation to assign jobs to each branch when the scheduling is done centrally for all 

branches’ for security personnel ‘Customers are divided into regions (clusterisation) so that 

security guards living nearby are assigned to each region to reduce travelling time’. The 

conclusions of this survey say that for the workforce scheduling and routing problem 

clusterisation of locations is sometimes a characteristic that needs to be taken into account. 

However, the primary focus of the survey is to identify solutions to the broader problem of 

workforce scheduling and routing, of which it highlights a mixture of methods that include 

mixed integer linear programming (MIP), integer linear programming (IP) and a variety of 

meta-heuristics such as particle swarm optimisation (PSO) and simulated annealing (SA). 

However, clusterisation is treated as a feature to the WSRP and not as a separate optimisation 

problem in itself. If sub-optimal clusters are used as a feature to the WSRP, then any 

optimisation algorithm attempting to achieve the best solutions for the WSRP will be restricted, 

making the optimisation much more difficult, or impossible, to achieve the desired results. 
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2.4 Workforce Optimisation Beyond the Workforce 

Scheduling and Routing Problem 

2.4.1 The Vehicle Routing Problem (VRP) 

There are a large number of real-world applications, both in North America and Europe that 

have widely shown that the use of computerised procedures for the distribution process 

planning produces substantial savings (generally from 5% to 20%) in the global transportation 

costs [27]. 

The success of the utilisation of Operations Research techniques is due to the development of 

computer systems, from both hardware and the software point of view and to the increasing 

integration of information systems into the productive and commercial processes [27].  Indeed, 

the growing prevalence of mobile applications in these processes is just one example of the 

mentioned increasing integration of information systems. 

Problems concerning the distribution of goods between depots and final users are generally 

known as Vehicle Routing Problems (VRPs) [27]. VRPs can easily encompass the distribution 

of services too.  

The VRP calls for the determination of the optimal set of routes to be performed by the fleet 

of vehicles to serve a given customer set, and it is one of the most important, and studied, 

combinatorial optimisation problems [27].  

2.4.2 The Workforce Scheduling and Routing Problem (WSRP) 

The Workforce Scheduling and Routing Problem (WSRP) is a natural extension to the VRP, 

and an in-depth survey has been conducted in [26].  It is widely used when employees have to 

travel between tasks, and the tasks have to be distributed among all employees so as to meet 

the organisation's objectives. 
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There are a number of objectives when it comes to the WSRP, some will be specific to the 

organisation others will be generic. They include: 

 Maximising tasks completed, 

 Minimising the total amount travelled,  

 Minimising the task to travel ratio 

 Minimising the number of vehicles  

With a workforce of meaningful size (such as above 50) creating the most effective schedule 

is a challenging task without advanced software methods to assist in the decision-making.  

The greater the workforce and the greater the number of tasks the workforce must complete 

the more scheduling and routing solutions become available. The possible solutions usually 

become so great that it falls into a combinatorial optimisation problem. Because the WSRP is 

a CO problem, metaheuristics are often used as a method of coming up with suitable schedules 

that meet the problems as best as possible.  

To expand on the discussion of CO problems, CO is the field of discrete mathematics involving 

the resolution of the following problem. 

Let X be a set of solutions and f a function that measures the value of each solution in X. The 

objective is to determine a solution s* ∈ X minimizing f, i.e. [28]: 

𝑓(𝑠∗) = 𝑚𝑖𝑛𝑠∈𝑋𝑓(𝑠)     (2-1) 

Set X is presumed finite and is in general defined by a set of constraints. As an example, for a 

job scheduling problem on one machine, X can be made up of all job sequences satisfying 

precedence and priority constraints while f can correspond to the date at which the last job is 

finished (makespan) [28]. 
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Depending on the industry, solving the WSRP in real-time adds to the complexity of the 

optimisation as real-time optimisation doesn’t have the luxury of time as with offline 

optimisation task. However, if the real-time aspect is taken into account and the system 

produces results that are operationally good enough, where enough work is completed to meet 

task completion targets and reduce travel expenses, then this outcome is operationally 

acceptable. However, for larger, team-based multi-skilled workforces, this is only the first step 

to having a fully utilised workforce at the most efficient cost [28].  

2.4.3 Multi-skilled Workforces 

A multi-skilled workforce is one in which its employees can complete different types of tasks 

that require different skill sets, i.e. the workers possess a range of skills that allow them to 

participate in more than one work process [29]. For a simple example, a carpenter could be 

asked to do X and Y with no problem, but if asked to do Z would requires a different skill. 

Thus, would have to be trained in Z or reject the task.   

For more complex industries such as utilities and construction, it is necessary to train 

employees on multiple skills to maximise each workers utilisation and to minimise workforce 

turnover (also known as ‘churn’). Workforce turnover is defined as the percentage of new 

employees needed to replace the employees that have left the organisation. In large 

organisations a 5-10% churn is typical. However, if there is a much high rate of churn (over 

20%), it could indicate a number of issues that should be immediately addressed. One issue 

could be that part of the workforce is only required part of the time and contractors are needed 

to make up this part of the workforce. This is because the organisation could not guarantee 

enough work for full-time employment.  
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Another issue is working conditions; workforce optimisation can help with working conditions 

to evenly balance workloads between employees and help tasks to be managed efficiently, 

rather than expected unreasonable amounts of work to be completed within a short deadline.  

2.4.4 Team Allocation 

When workforces are large enough to divide into teams the team structure, skills and 

responsibilities of the team are important factors to consider when designing optimal 

organisational structures. If the size of the team and the skills available do not match the 

demand profile of the tasks to be allocated to the team, this can have a noticeable impact on 

the utilisation of the team or can push up operating costs unnecessarily.  

For mobile workforces, the task of optimal team allocation becomes more difficult. This is due 

to the location of the employees. A perfect candidate to meet the shortage in a team’s skill set 

might be available, but if their starting location is too far away, they cannot be allocated to that 

team.  

One aspect of team allocation that cannot necessarily be taken into account by any algorithm 

is the team dynamic. How employees work together, their own preferences, and with regards 

to mobile workforces and their local area knowledge.  The area manager must consider these 

aspects. It is important to note as there may be hidden infeasible solutions to a problem when 

it comes to optimisation of humans.  

2.5 Discussion 

In this chapter, a description of the origins of workforce optimisation was given, explaining 

how this stems from the travelling salesman problem (TSP) and its variants. This chapter gave 

a detailed overview of three types of TSP, specifically highlighting that the clustered TSP is 

the most relevant to this work. 
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An overview of workforce management systems was described, explaining scheduling, 

planning and tactical planning. This chapter explained that organisational design is often 

overlooked in favour of these other solutions and hence why this problem is being tackled. It 

described how working areas (or patches) work in large organisations and how it is used for 

the division of labour and management responsibilities.  

Other aspects of workforce optimisation that go beyond the traditional workforce scheduling 

and routing problem were described. The chapter also highlighted the aspects of multi-skilled 

workforce and team allocation as these directly link to some of the challenges of this thesis.  

The next chapter will describe optimisation algorithms.  
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Chapter 3. An Overview of Selected 

Optimisation Algorithms 

Optimisation is a procedure of finding and comparing feasible solutions until no better 

solutions can be found. Solutions are termed good or bad in terms of an objective which is 

often the cost of fabrication, amount of harmful gases, the efficiency of a process, product 

reliability or other factors [69]. 

When an optimisation problem modelling a physical system involves only one objective 

function, the task of finding optimal solutions is called single-objective optimisation. Currently, 

there exist single objective optimisation algorithms that work using gradient-based and 

heuristic-search techniques [69]. Heuristic search refers to the process of finding a solution to 

a problem that is ‘good enough’, because carrying out exhaustive search methods (looking at 

every single possible solution) is too costly, concerning time, computational power or monetary 

costs  

Deterministic search principles (there is no randomness, and the same input to a system will 

always produce the same output) and stochastic search principles (where there is randomness, 

and the same input may produce a different output, depending on system and environmental 

variables) These allow optimisation algorithms to find globally optimal (the best possible) 

solutions more reliably [69].  

In order to widen the applicability of an optimisation algorithm in various problem domains, 

natural and physical principles are mimicked to develop robust optimisation algorithms. 

Evolutionary algorithms and simulated annealing are two examples of such algorithms [69] 
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3.1 Genetic Algorithms 

Concerning its internal functioning, a genetic algorithm is an iterative procedure which usually 

operates on a population of consistent size and is executed in the following way: 

An initial population of individuals (also called “solutions”, “solution candidates” or 

“chromosomes”) is generated randomly or heuristically. During each iterative step (also called 

a “generation”) the individuals of the current population are evaluated and assigned a certain 

fitness value.  

The fitness value is crucial to identifying strong individuals from weak individuals. There is 

usually a fitness function which takes the characteristics of the individual to compute the fitness 

value based on the environment and objectives of the optimisation.  

In order to form a new population, individuals are first selected (usually with a probability 

proportional to their relative fitness value), and then produce offspring candidates, which in 

turn forms the next generation of parents. This ensures that the expected number of times an 

individual is chosen is approximately proportional to its relative performance in the population 

[70].  

For producing new solution candidates, genetic algorithms use two operators, namely 

crossover and mutation: 

 Crossover is the primary genetic operator. It takes two individuals, called parents, and 

produces one or two new individuals, called offspring, by combining parts of the 

parents’ characteristics (also known as “genes”). In its simplest form, the operator 

works by swapping (exchanging) substrings before and after a randomly selected 

crossover point. More on Crossover operators can be found in Section 3.1.2.2 [70] 
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 Mutation is the second genetic operator. It is essentially an arbitrary modification which 

helps to prevent premature convergence by randomly sampling new points in the search 

space. In the case of bit strings, mutation is applied by simply flipping bits randomly in 

a string, with a certain probability called mutation rate. See more on representation and 

mutation in sections 3.1.3 and 3.1.2.3 respectively [70] 

Genetic Algorithms (GAs) are stochastic iterative algorithms, which cannot guarantee 

convergence (all individuals in the population are identical); termination is at this moment 

commonly triggered by reaching a maximum number of generations, by finding an acceptable 

solution or more sophisticated termination criteria, including permutation convergence.  

3.1.1 Biological Terminology  

The approximate way of solving optimisation problems by genetic algorithms holds a strong 

analogy to the basic principles of biological evolution. The fundamentals of natural evolution 

theory, as it is considered nowadays, refer to the theories of Charles Darwin, which were 

published in 1859 in his most well-known work “The Origin of Species: By Means of Natural 

Selection or the Preservation of Favoured Races in the Struggle for Life” [71]. In this work 

Darwin states the following five major ideas: 

 Evolution, changes in lineages, occurs and occurred over time. 

 All creatures have common descent. 

 Natural selection determines changes in nature. 

 Gradual change, i.e. nature changes somehow successively  

 Speciation, i.e. Darwin claimed that the process of natural selection results in 

populations diverging enough to become separate species.  

This formed the solid foundations on which evolutionary biology has been based. From the 

field of evolutionary biology comes the terminology used in genetic algorithms [70].  
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 All living organisms consist of cells containing the same set of one or more 

chromosomes, i.e. strings of DNA. A gene can be understood as an “encoder” of a 

characteristic, such as eye colour. The different possibilities for a characteristic (i.e. 

brown, green, blue and grey) are called alleles. Each gene is located in a particular 

position (locus) on the chromosome [70].  

 Most organisms have multiple chromosomes in each cell. The sum of all chromosomes, 

i.e. the complete collection of genetic material, is called the genome of the organism 

and the term genotype refers to the particular set of genes contained in a genome. 

Therefore, if two individuals have identical genomes, they are said to have the same 

genotype [70].  

 Organisms whose chromosomes are arranged in pairs are called diploid, whereas 

organisms with unpaired chromosomes are called haploid. In nature, most sexually 

reproductive species are diploid.  Humans, for instance, have 23 pairs of chromosomes 

in each somatic cell in their body. Recombination (crossover) occurs during sexual 

reproduction in the following way [70]: 

 For producing a new child, the genes of the parents are combined to eventually perform 

a new diploid set of chromosomes. Offspring are subject to mutation where elementary 

parts of the DNA (nucleotides) are changed. The fitness of an organism (individual) is 

typically defined as its probability to reproduce, or as a function of the number of 

offspring the organism has produced [70].  

For the sake of simplification, in genetic algorithms, the term chromosome refers to a solution 

candidate. The genes are either single bits or small blocks of neighbouring bits that encode as 

a particular element of the solution. Alleles are usually 0 or 1, however, for larger alphabets, 

more alleles are possible at each locus (i.e. Real-Value encoding) [70]. 
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Despite human evolution being based on diploid representation, most applications of genetic 

algorithms are haploid representation. This is likely due to its simplicity in representation and 

implementation [70].  

3.1.2 Genetic Operators 

3.1.2.1 Selection 

In genetic algorithms, once a fitness value has been assigned to each individual in a population, 

the set of solutions, that are to be “mated” in a given generation, is to be produced. In a standard 

genetic algorithm, the probability that a chromosome of the current population is selected for 

reproduction is proportional to its fitness. There are many methods available to accomplish this 

selection, Proportional Selection (also known as Roulette wheel Selection) and Tournament 

Selection are two of the most popular [72] [34] [35].   

 Roulette Wheel Selection: In this method of selection, the expected number of 

descendants for an individual i is given as 𝑝𝑖 =  
𝑓𝑖

�̅�
 with 𝑓: 𝑆 →  ℝ+ denoting the fitness 

function and 𝑓 ̅ representing the average fitness for all individuals. Therefore, each 

individual of the population is represented by a space proportional to its fitness. By 

repeatedly spinning the wheel, individuals are chosen with random sampling with 

replacement [31] [33].   

 Tournament Selection: There are a number of variations. However the most common 

is k-tournament selection where k individuals are selected from the population at 

random. Then the fittest individual of the k selected ones is considered for reproduction. 

In this variant selection pressure can be scaled quite easily by choosing an appropriate 

number for k [31] [33].  
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3.1.2.2 Crossover 

In its easiest formulation, which is suggested in the canonical GA for binary encoding, 

crossover takes two individuals and cuts their chromosome strings at some chosen position. 

The produced substrings are then swapped to produce two new full-length chromosomes [31].  

Conventional crossover techniques for binary representation include: 

 Single Point Crossover 

A single random cut is made, producing two head sections and two tail sections. The two tail 

sections are then swapped to create two new individuals (chromosomes). Figure 3.1 

schematically sketches this crossover method which is also called one-point crossover [31]. 

 

Figure 3.1 Single-Point Crossover [36] 

 Multiple Point Crossover 

One natural extension of the single point crossover is the multiple point crossover: In an n-

point crossover there are n crossover points and substrings are swapped between the n points.  

According to some researchers, multiple point crossover is more suitable to combine good 

features present in strings, because it samples uniformly along the full length of a chromosome 

[37]. At the same time, multiple point crossover becomes increasingly disruptive with an 

increasing number of crossover points, i.e. the evolution of longer building blocks becomes 

more and more difficult. Decreasing the number of crossover points during the run of the GA 

may be a good compromise [31]. Multiple point crossover is illustrated in Figure 3.2. 
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Figure 3.2 Multiple Point Crossover [36] 

 Uniform Crossover 

Given two parents, each gene in the offspring is created by copying the corresponding gene 

from one of the parents. The selection of the corresponding parent is undertaken by a randomly 

generated crossover mask: At each index, the offspring gene is taken from the first parent if 

there is a 1 in the mask at this index, and otherwise (if there is a 0 in the mask at this index) the 

gene is taken from the second parent. Due to this construction principle uniform crossover does 

not support the evolvement of higher order building blocks [31]. Uniform crossover is 

illustrated in Figure 3.3 

 

Figure 3.3 Uniform Crossover [38] 

As the number of proposed problem-specific crossover techniques has been growing, a good 

discussion of crossover related issues can be found in [39] and [40]. 

3.1.2.3 Mutation 

Mutation allows undirected jumps to slightly different areas of the search space. The basic 

mutation operator for binary coded problems is bitwise mutation. Mutation occurs randomly 
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and vary rarely with a probability pm; typically, the mutation rate is less than ten percent. In 

some cases, mutation is interpreted as generating a new bit, and in others, it is interpreted as 

flipping the bit [31].  

In higher order alphabets, such as integer numbering formulations, mutation takes the form of 

replacing as allele with a randomly chosen value in the appropriate range with probability pm. 

However, for combinatorial optimisation problems, such mutation schemes can cause 

difficulties with chromosome legality; for example, multiple copies of a given value can occur 

which might be illegal for some problems (including routing). Alternatives suggested in the 

literature include pairwise swap and shift operations, as described in [41]. 

Also, adaptive mutation schemes similar to mutation in the context of evolutionary strategies 

are worth mentioning. Adaptive mutation schemes vary either the rate or the form of mutation, 

or both during a GA run. For instance, mutation is sometimes defined in such a way that the 

search space is explored uniformly at first and more locally towards the end, in order to do a 

kind of local improvement of candidate solutions [39]. 

3.1.3 Chromosome Representation 

A key issue with most evolutionary algorithm techniques is the choice of a suitable encoding 

scheme, or how the solution to a problem will be represented through a chromosome. The 

choices are mainly binary, floating-point, or some grammar-based representation, see Figure 

3.4. Holland [42] used the argument that a genome with a small number of alleles but long 

strings has a higher degree of parallelism than a numeric scheme with a larger number of alleles 

but short (floating point) strings. [43] 



 

30 

 

 

Figure 3.4 Chromosome Encoding a) Binary b) decimal c) Alphanumeric 

However, as Mitchel [44] points out, for real-world applications it is frequently more natural 

to use a decimal or symbolic representation scheme, as this is an easier mapping to the actual 

representation of the problem space; for example, the weights in a neural network. 

The text by Michalewicz [39] also offers a useful analysis of the relative merits of binary versus 

floating-point representations. The conclusion is that a floating-point scheme is faster, is more 

consistent between runs, and can provide a higher precision for large domain applications [43].  

The binary alphabet offers the maximum number of schemata per bit of 

information of any coding and consequently the bit string representation 

dominated genetic algorithm research. This coding also facilitates 

theoretical analysis and allows elegant genetic operators. But the implicit 

parallelism does not depend on using bit strings and it may be worth-while to 

experiment with large alphabets. In particular for parameter optimisation 

problems with variables over continuous domains, we may experiment with 

real-coded genes together with special genetic operators developed for them 

[39] 

In relation to the workforce optimisation problems outline later in this thesis, floating point (or 

real-value) representation is the most suitable given the outlined advantages.   
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3.1.4 Implementing a Genetic Algorithm 

The steps to genetic algorithms are shown in Figure 3.5 and the pseudocode for implementing 

a standard genetic algorithm is shown in Figure 3.6. 

 

Figure 3.5: Flow of a Genetic Algorithm (GA) 

 
Figure 3.6: Pseudocode for a standard Genetic Algorithm [45] 

t = 0; 

initPopulation P(t); 

evaluatePopulation(P); 

Loop (until stopping criteria){ 

 For i = 1 to number of individuals 

 P’ = selectParents(P(t)) 

 P’ = crossover(P’) 

 P’ = mutate(P’) 

 evaluatePopulation(P’) 

 P = newPopulation(P’) 

 t++; 

} 
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3.2 Particle Swarm Optimisation 

Particle Swarm Optimisation (PSO), which has its roots in artificial life and social psychology 

as well as engineering and computer science, differs from other evolutionary computation 

methods (such as the discussed GA in Section 3.1) in that the population members, called 

particles, are flown through the problem hyperspace. When the population is initialised, in 

addition to the variables being given random values, they are stochastically assigned velocities. 

Each iteration each particle’s velocity stochastically accelerated towards its previous best 

position (where it had its highest fitness value) and towards a neighbourhood best position (the 

position of the highest fitness by any particle in the neighbourhood/population) [46] 

The process of the optimisation is as follows [46]: 

Each individual in the population, a particle, represents a potential solution to a problem. Each 

particle is treated as a point in a D-dimensional space. The ith particle is represented as 𝑋𝐼 =

(𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝐷) . The best previous position (the position giving the best fitness) of any 

particle is recorded and represented as 𝑃𝐼 = (𝑝𝑖1, 𝑝𝑖2, … , 𝑝𝑖𝐷). The index of the best particle 

among all the particles in the population is represented by the symbol g. The rate of the position 

change (velocity) for particle i is represented as 𝑉𝐼 = (𝑣𝑖1, 𝑣𝑖2, … , 𝑣𝑖𝐷). The particles are 

manipulated according to the following [46]:  

𝑣𝑖𝑑 = 𝑣𝑖𝑑 + 𝑐1 × 𝑅1 × (𝑝𝑖𝑑 − 𝑥𝑖𝑑) + 𝑐2  × 𝑅2 × (𝑝𝑔𝑑 − 𝑥𝑖𝑑)    (3-1) 

𝑥𝑖𝑑 =  𝑥𝑖𝑑 +  𝑣𝑖𝑑       (3-2) 

Where 𝑐1 and 𝑐2 are two positive constants, R1 and R2 are two random values in the range 0 

to 1. The second part of equation (3-1) is the ‘cognition’ part. Which represents the private 

thinking of the particle itself. The third part of equation (3-1) is the ‘social’ part which 

represents the collaboration among the particles. Equation (3-1) is used to calculate the 

particles new velocity according to its previous velocity and the distance from its current 
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position from its own best experience (position) and the group’s best experience. Then the 

particle flies towards a new position according to equation (4-2). The performance of each 

particle is measured by a predefined fitness function [47]. The fitness function here is like the 

fitness function of a GA. As mentioned in [48] a recommended choice for the constants 𝑐1 and 

𝑐2 is 2. 

3.2.1 Implementing a Particle Swarm Algorithm  

The flow for a PSO is shown in Figure 3.7, and the Pseudocode for the PSO algorithm is shown 

in Figure 3.8 [46]: 

  

Figure 3.7: Flow of a Particle Swarm Algorithm 
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Figure 3.8: Pseudocode for the PSO algorithm [46] 

3.3 Simulated Annealing 

Simulated annealing is a technique for combinatorial optimisation problems, such as 

minimising functions of very many variables. Because many real-world design problems can 

be cast in the form of such optimisation problems, there is intense interest in general techniques 

for their solution. Simulated annealing is one such technique (it was introduced in 1983 by 

Loop (until stopping criteria){ 

 For i = 1 to number of individuals 

  If(𝐺(�⃗�𝑖) > 𝐺(�⃗�𝑖)){  //G()evaluates fitness 

   For d = 1 to dimensions { 

    𝑝𝑖𝑑 = 𝑥𝑖𝑑  //𝑝𝑖𝑑 is best so far 

   } 

   Next d 

} 

g = i    //arbitrary  

  For j = indexes of neighbours 

   If(𝐺(𝑝𝑗) > 𝐺(�⃗�𝑔)) 

    g = j 

  Next j 

  For d = 1 to number of dimensions 

   𝑣𝑖(𝑡) =  𝑣𝑖(𝑡 − 1) + 𝜑1(𝑝𝑖𝑑 − 𝑥𝑖𝑑(𝑡 − 1)) + 𝜑2 (𝑝𝑔𝑑 − 𝑥𝑖𝑑(𝑡 − 1)) 

   𝑣𝑖𝑑  ∈ (−𝑉𝑚𝑎𝑥, +𝑉𝑚𝑎𝑥) 

   𝑥𝑖𝑑(𝑡) =  𝑥𝑖𝑑(𝑡 − 1) + 𝑣𝑖𝑑(𝑡) 

   If 𝑝𝑖𝑑 < 𝑆(𝑣𝑖𝑑(𝑡)) then 𝑥𝑖𝑑(𝑡) = 1; else 𝑥𝑖𝑑(𝑡) = 0;  

  Next d 

 Next i 

} 
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Kirkpatrick et al. [49]) with an unusual pedigree: it is motivated by an analogy to the statistical 

mechanics of annealing in solids [50]. 

To understand why such a physics problem is of interest, consider how to coerce a solid into a 

low energy state. A low energy state usually means a highly ordered state, such as a crystal 

lattice; a relevant example here is the need to grow silicon in the form of highly ordered, defect-

free crystals for use in semiconductor manufacturing. To accomplish this, the material is 

annealed: heated to a temperature that permits many atomic rearrangements, then cooled 

carefully and slowly, until the material freezes into a good crystal. Simulated annealing 

techniques use an analogous set of “controlled cooling" operations for non-physical 

optimisation problems, in effect transforming a poor, unordered solution into a highly 

optimised, desirable solution. Thus, simulated annealing offers an appealing physical analogy 

for the solution of optimisation problems, and more importantly, the potential to reshape 

mathematical insights from the domain of physics into insights for real optimisation problems 

[50]. 

For our purposes, a combinatorial optimisation problem is one in which we seek to find some 

configuration of parameters �̅� = (𝑋1, 𝑋2, … , 𝑋𝑁) that minimises some function 𝑓(�̅�). This 

function is usually referred to as the cost or objective function (like it is in GAs). Realistic 

design problems may require many parameters and a complex cost function. Consider, for 

example, deciding the placement of components on the surface of an integrated circuit in an 

optimal way. We may seek to maximise the ability to route wires to interconnect these 

components, minimise the overall chip area, maximise the manufacturing yield of the chip, 

minimise the deviation from specified timing constraints, and so forth. The cost function may 

be very sophisticated, and the number of parameters large: perhaps 103 to 105 variables to 

specify the positions for each component [50]. 
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Heuristic strategies for solving such problems come in several styles. Sometimes constructive 

heuristics can be found, which build up a good answer directly, piece by piece. Of more interest 

are iterative improvement strategies, which attempt to perturb (alter or change) some existing, 

suboptimal solution in the direction of a better, lower-cost solution.  The idea can be neatly 

illustrated with a “balls and hills” diagram, as shown in Figure 3.9. All the values of 𝑓(�̅�) 

define a cost surface. In Figure 3.9 it is shown schematically for N = 1, i.e. a single parameter, 

as a set of hills and valleys in the cost surface. The ball represents the current configuration we 

plan to perturb. In practice, iterative improvement algorithms often start with a random initial 

configuration or where possible, with a heuristically constructed initial configuration that is not 

as costly as a random solution [50]. 

 

Figure 3.9: Ball and Hills Diagram [50] 

From Figure 3.9, an obvious approach is to explore easily reached neighbouring configurations 

and to select the one with the least cost. In practice, some small random perturbation is 

attempted, to yield a nearby solution. This process can continue starting from the new 

configuration until no further improvements are obtained, at which point the process 

terminates. This strategy seems reasonable, but it has a serious problem, it is easily trapped in 
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local minima; solutions that look good in some small neighbourhood of the cost function but 

are not necessarily global optimal [50]. 

Standard iterative improvement is a downhill-only style. In Figure 3.9 each new perturbation 

moves to a configuration downhill from the previous one, thus becoming trapped in the local 

minima. In practice, one scheme to overcome this is simply to try many random initial 

configurations, improve each, and use the best answer found. However, for very large problems 

the computational expense is great. The number of random starts needed to sample the cost 

surface adequately is unreasonable, and we still have no guarantees of finding a good answer 

[50].  

Simulated annealing offers a strategy very similar to iterative improvement, with one major 

difference: annealing allows perturbations to move uphill in a controlled fashion.  Individual 

perturbations are now referred to as moves. As each move can now transform one configuration 

to a worse configuration, it is possible to jump out of local minima and potentially fall into a 

more promising downhill path. However, because the uphill moves are carefully controlled, 

we need not worry about getting close to a good solution, only to randomly jump uphill to some 

far worse one [50]. 

The relevant analogy here is physical annealing of a solid. To coerce some material into a low 

energy state, we heat it, then cool it very slowly, allowing it to come to thermal equilibrium 

(no heat flows between two systems when they are connected by a path permeable to heat) at 

each temperature. Simulating this process is very similar to a combinatorial optimisation task. 

For the physical system, the goal is to find some arrangement of atomic particles (a 

configuration) that minimise the energy (cost) of the system. The basic requirement for 

simulating this process it the ability to simulate how the system reaches thermodynamic 

equilibrium at each fixed temperature in the schedule of decreasing temperatures used to anneal 
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it. Toward this end, the Metropolis algorithm, developed in 1953 [51], can be employed. The 

algorithm is described in Section 3.3.1 

3.3.1 Implementing a Simulated Annealing Algorithm  

As mentioned in Section 3.3, the Metropolis algorithm, which is shown in Figure 3.10, can be 

used to simulate the annealing process, thus forming a simulated annealing algorithm for 

combinatorial optimisation.  

 

Figure 3.10: Pseudocode for Metropolis Algorithm [50] 

The idea, as in iterative improvement, is to propose some random perturbation, such as moving 

a particle to a new location, then evaluating the resulting change in energy ∆𝐸. If the energy is 

reduced,  ∆𝐸 < 0, the new configuration has lower energy and is accepted as the starting point 

for the next move. However, if the energy is increased, ∆𝐸 > 0, the move may still happen: the 

M = number of moves to attempt 

T = current temperature  

For m = 1 to M{ 

 Generate a random move, e.g. move a particle; 

 Evaluate the change in energy ∆E; 

 If(∆E < 0){ 

  //Downhill move, accept it. 

  Accept this move and update the configuration; 

}else{ 

 //Uphill move, accept maybe. 

 Accept with probability P = 𝑒−∆E 𝑇⁄  

 Update configuration if accepted 

 

} 

} 
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new, higher energy configuration may be accepted. In physical systems, jumps to higher energy 

actually do happen, but they are moderated by the current temperature T. [50]. 

At higher temperatures the probability of large uphill moves in energy is large; at low 

temperatures the probability is small. The Metropolis Algorithm models this with a Boltzmann 

distribution: the probability of an uphill move of size ∆𝐸 at tempreture 𝑇 is Pr[𝑎𝑐𝑐𝑒𝑝𝑡] =

 𝑒−∆𝐸/𝑇. In practice, this probabilistic acceptance is achieved by generating a uniform random 

number R in [0,1] and comparing it against the threshold Pr [𝑎𝑐𝑐𝑒𝑝𝑡]. Only if 𝑅 < 𝑃𝑟 [𝑎𝑐𝑐𝑒𝑝𝑡] 

s the move accepted. Thus, very probable moves can be rejected, and very improbable moves 

can be accepted, at least occasionally. By successively lowering the temperature and running 

the algorithm, we can simulate the material coming into equilibrium at each newly reduced 

temperature, and thus effectively simulate the physical annealing [50]. 

We can readily apply this simulated annealing procedure to arbitrary combinatorial 

optimisation problems concerning standard iterative improvement; the only addition is the 

notion of a temperature parameter. In physical systems, temperature has a physical meaning; 

in arbitrary nonphysical optimisation tasks, the temperature is simply a control mechanism.  

The idea is to employ a cooling schedule, a sequence of decreasing temperatures, to moderate 

the acceptance of uphill moves over the course of the solution [50].  

Initially, the effective temperature parameter is high enough to permit an aggressive, essentially 

a random search of the configuration space. Most uphill moves are allowed: we tend to improve 

the value of the cost function here, but some local minima can also be avoided. At the coldest 

temperatures the solution is close to freezing into its final form, and very few disruptive uphill 

moves are permitted. In this temperature regime, annealing closely resembles standard 

downhill –only iterative improvement [50].  
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3.4 Multi-Objective Genetic Algorithms 

A significant portion of research and application in the field of optimisation considers a single 

objective, although most real-world problems involve more than one objective. The presence 

of multiple conflicting objectives (such as simultaneously minimising the cost of fabrication 

and maximising product reliability) are natural in many problems and makes the optimisation 

problem interesting to solve [30]. 

Since no one solution can be termed as an optimal solution to multiple conflicting objectives, 

the resulting multi-objective optimisation problem resorts to a number of trade-off solutions. 

Classical optimisation methods can, at best, find one solution in one simulation run, thereby 

making those methods inconvenient to solve multi-objective optimisation problems [30]. 

Current evolutionary multi-objective optimisation applications can be roughly classified into 

three large groups: engineering, industrial and scientific [52]. 

Engineering applications are by far the most popular in the literature. Engineering disciplines 

normally have problems with better understood mathematical models which facilitate the use 

of evolutionary algorithms like genetic algorithms. Some examples include structural 

engineering [53] [54], robotics [55] [56] and telecommunications [57] [58] [52]. 

Industrial applications occupy the second place in popularity, with scheduling being the most 

popular sub-discipline [59] [60]. The industrial applications area is where the problems in this 

thesis sit. Particularly as some aspects are derived from scheduling problems. Other 

applications include design and manufacture [61] and management [62] [52].  

Finally, there is a wide variety of scientific applications, with computer science being the most 

popular [63] [64]. Other applications include chemistry [65], physics [66] and medicine [67] 

[52]. 
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3.4.1 Dominance  

Most multi-objective optimisation algorithms use the concept of domination. Domination is 

described as the following: 

We assume there are M objective functions. In order to cover both minimisation and 

maximisation of objective functions, we use the operator ⊲ between two solutions i and j as 

i⊲j to denote that solution i is better than solution j on a particular objective. Similarly, i⊳j for 

a particular objective implies that solution i is worse than solution j on this objective. For 

example, if an objective function is to be minimised, the operator ⊲ would mean the < operator, 

whereas if the objective function is to be maximised, the operator ⊲ would mean the > operator 

[30]. 

The following outlined conditions required for dominance covers both minimisation and 

maximisation objectives. A solution 𝑥(1) is said to dominate the other solution 𝑥(2), if both 

conditions 1 and 2 are true [30]: 

1. The solution 𝑥(1) is no worse than 𝑥(2) in all objectives, or 𝑓𝑗(𝑥(1)) ⋫  𝑓𝑗(𝑥(2)) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑗 =

1, 2, … , 𝑀 [30] 

2. The solution 𝑥(1) is strictly better than 𝑥(2) in at least one objective, or 𝑓�̅�(𝑥(1)) ⊲  𝑓�̅�(𝑥(2)) 

for at least one 𝑗̅  ∈ {1, 2, … , 𝑀} [30] 

If any of the conditions are violated, the solution 𝑥(1) does not dominate the solution 𝑥(2). If 

𝑥(1) dominates the solution 𝑥(2) (or mathematically  𝑥(1)  ≺ 𝑥(2)), it is also customary to write 

the following [30]: 

 𝑥(2) is dominated by 𝑥(1) 

 𝑥(1) is non-dominated by 𝑥(2), or 

 𝑥(1)  is non-inferior to 𝑥(2) 
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Let us consider a two-objective optimisation problem, with five different solutions shown in 

the objective space as illustrated in Figure 3.11. Objective 1 needs to be maximised and 

Objective 2 needs to be minimised. Since both objectives are important to us it is difficult to 

determine which solution is best with respect to both objectives. We can use the dominance 

conditions to decide which solution is better among any two given solutions in terms of both 

objectives. For example, if solution 1 and solution 2 are to be compared, we observe that 

solution 1 is better in both objectives. Thus, both the dominance conditions are met in this case, 

so solution 1 is dominant, i.e. better [30].  

 

Figure 3.11: Five Solutions in a Two Objective Space [30] 

3.4.2 Pareto Optimality 

If we continue to analyse Figure 3.11, we can compare solutions 3 and 5. We observe that 

solution 5 is better than solution 3 in the first objective, while solution 5 is worse than solution 

3 in the second objective. Thus, the first condition is not satisfied for both of these solutions. 

This simply suggests we cannot conclude that solution 5 dominates solution 3, nor can we say 

solution 3 dominates solution 5. When this happens, it is customary to say solutions 3 and 5 
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are non-dominated with respect to each other. When both objectives are important, it cannot 

be said which of the two solutions 3 and 5 is better [30]. 

For a given finite set of solutions, we can perform all possible pair-wise comparisons and find 

which solution dominates which and which solutions are non-dominated concerning each 

other. At the end, we expect to have a set of solutions, any two of which do not dominate each 

other [30].  

This set also has another property. For any solution outside of this set, we can always find a 

solution in this set which will dominate the former.  Thus, this particular set has the property 

of dominating all other solutions which do not belong to that set. This set is given special 

names; it is called the non-dominated set or the Pareto-Optimal set. Sets are also known as 

Fronts, and thus the term Pareto Front is commonly used to describe the non-dominated set. 

[30] Figure 3.12 marks the Pareto-optimal set with continuous curves for four different 

scenarios with two objectives.  

 

Figure 3.12: Pareto-Set 4 Different Scenarios [30] 
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One final example of Pareto optimality and how all solutions are grouped into sets is shown in 

Figure 3.13. This diagram shows solutions in a multi-objective problem with two minimisation 

objectives. All the solutions have been grouped into a total of four sets, or fronts, with the 

dominating set shown as the Pareto front. Figure 3.13 also shows an infeasible point, a point 

in the search space which is impossible to achieve given the optimisation and environmental 

constraints.  

 

Figure 3.13 Fronts in a multi-objective optimisation problem 

3.4.3  NSGA-II 

The elitist Non-Dominated Sorting Genetic Algorithm II (NSGA-II) was proposed by Deb et 

al [68]. It was created to address a number of issues associated with multi-objective GAs that 

existed at the time. Issues such as: 

 High Computational Complexity of sorting algorithm:  

 Lack of elitism. 

 The need to specify the sharing parameter.   
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Multi-objective GAs (MOGAs) differ from traditional (or single-objective) GAs in the fitness 

evaluation and comparison only. The remaining parts of the algorithm, such as Selection, 

Crossover, Mutation (as described in Section 4.1.2) are largely identical. NSGA-II concerns 

itself with the population of solutions.  

 In NSGA-II, when the offspring population 𝑄𝑡 is being generated from the parent population 

𝑃𝑡 the two populations are combined together to form 𝑅𝑡 of size 2N (where N is the size of the 

initial population) [30].  

Then a non-dominated sorting algorithm is used to classify the entire population 𝑅𝑡. Although 

this requires more effort compared to performing the non-dominated sort on 𝑄𝑡 alone, it allows 

a global non-domination check among the offspring and parent solutions. This global check is 

how elitism is handled in NSGA-II [30].  

Once the non-dominated sorting is over, the new population is filled by solutions of different 

fronts, one at a time. The filling starts with the Pareto front and continues with solutions on the 

second front, then the third and so on. Since the overall population size of 𝑅𝑡 is 2N, not all 

fronts may be accommodated in N slots. All fronts which could not be accommodated are 

simply deleted. Figure 3.14 illustrates this sorting procedure. 

 
Figure 3.14: Illustration of the Sorting Procedure [30] 
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The following is an outline of NSGA-II steps, where initially a random population 𝑃0 is created. 

Each member of the initial population is evaluated and ranked, then used to create an offspring 

population 𝑄0 of size N [30].  

Step 1: Combine parent and offspring populations and create 𝑅𝑡 =  𝑃𝑡  ∪  𝑄𝑡. Perform non-

dominated sorting on 𝑅𝑡 and identify the different fronts: 𝐹𝑖 , 𝑖 = 1, 2, … , 𝑒𝑡𝑐. [30] 

Step 2: Set new population 𝑃𝑡+1 =  ∅, set a counter i = 1. While |𝑅𝑡+1| + |𝐹𝑖| < 𝑁, perform 

𝑃𝑡+1 =  𝑃𝑡+1  ∪  𝐹𝑖 and i = i +1 [30]. 

Step 3: Perform the crowding-sort (𝐹𝑖  <𝑐) procedure and include the most widely spread 

(𝑁 −  |𝑃𝑡+1|) solutions by using the crowding distance values in the sorted 𝐹𝑖 to 𝑃𝑡+1 [30]. 

Step 4: Create offspring population 𝑄𝑡+1 from 𝑃𝑡+1 by using the crowding tournament 

selection, crossover and mutation operators [30]. 

3.4.3.1 Crowded Distance Tournament Selection 

The crowded comparison operator <𝑐 compares two solutions and returns the winner of the 

tournament. It assumes that every solution i has two attributes [30]: 

1. A non-domination rank 𝑟𝑖 in the population 

2. A local crowding distance (𝑑𝑖) in the population. 𝑑𝑖 of a solution i is a measure of the 

search space around i which is not occupied by any other solution in the population.  

Based on these two attributes, we can define the crowded tournament selection operator as 

follows [30]: 

1. If solution i has a better rank, that is 𝑟𝑖 <  𝑟𝑗 

2. If they have the same rank, but solution i has a better crowding distance than solution 

j, that is 𝑟𝑖 <  𝑟𝑗 and 𝑑𝑖 >  𝑑𝑗 
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This states that either the solution with the highest rank wins or if they have the same rank, the 

solution with the highest crowding distance wins [30].  

3.4.3.2 Crowding Distance  

The following is used to compute the crowding distance of each point in the set 𝐹 [30]. 

Step 1: Call the number of solutions in F as 𝑙 =   |𝐹|. For each i in the set, first assign 𝑑𝑖 = 0 

[30]. 

Step 2: For each objective function 𝑚 = 1, 2, … , 𝑀, sort the set in worse order of 𝑓𝑚, or find 

the sorted indices vector: 𝐼𝑚 = 𝑠𝑜𝑟𝑡 (𝑓𝑚, >) [30]. 

Step 3: For 𝑚 = 1, 2, … , 𝑀 assign a large value to the boundary solutions, or 𝑑𝑖1
𝑚 =  𝑑𝑖𝑙

𝑚 =  ∞ 

and for all other solutions 𝑗 =  2 𝑡𝑜 (𝑙 − 1) , assign [30]: 

𝑑𝐼𝑗
𝑚 =  𝑑𝐼𝑗

𝑚 +  
𝑓𝑚

(𝐼𝑗+1
𝑚 )

− 𝑓𝑚

(𝐼𝑗−1
𝑚 )

𝑓𝑚
𝑚𝑎𝑥− 𝑓𝑚

𝑚𝑖𝑛      (3-3) 

The index 𝐼𝑗 denotes the solution index of the jth member in the sorted list. This metric denotes 

half the perimeter of the enclosing cuboid with the nearest neighbour solutions placed on the 

vertices of the cuboid, this is illustrated in Figure 3.15 [30].  

 

Figure 3.15 Crowding Distance - Enclosing Cuboid [30] 

l 
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3.4.4 Implementing NSGA-II 

The flow for NSGA-II is shown in Figure 3.16 

 

Figure 3.16 NSGA-II Flow Diagram 
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Pseudocode for implementing NSGA-II is as follows [68]:  

 

Figure 3.17: Pseudocode for NSGA-II [68] 

 

For Each p ϵ P { 

 Sp = ∅ 

 np = 0 

 For each q ∈ P 

  If (p ≺ q) then  if p dominates q 

   Sp = Sp ∪ {q}  Add q to the set dominated by p 

  Else if (q ≺ p) then 

   np = np + 1   Increment the domination count 

 if np = 0 then    p belongs to the first front 

  prank = 1 

  F1 = F1 ∪ {p} 

i = 1    initialise the front counter 

while Fi ≠ ∅ 

 Q = ∅   used to store the members of the next front 

 For each p ∈ Fi 

  For each q ∈ Sp 

   nq = nq – 1 

  if nq = 0 then    q belongs to the next front 

   qrank = i + 1 

   Q = Q ∪ {q} 

i = i + 1 

Fi = Q 

      



 

50 

 

3.5 Many-Objective Problems 

Real-world optimisation problems often contain several conflicting objectives that are 

simultaneously optimised. Problems with more than three objectives are defined as many-

objective optimisation problems (MaOP) [69] [70]. The definition was first conceived by 

Farina et al. [71] 

Pareto’s definition captures the notion of “optimality” in a narrowly prescribed sense. In fact, 

the definition is relevant and useful for engineering and design problems, where typically the 

objective number is small, and the computational cost of each objective is high but is less 

suitable for many other kinds of problems (especially decision-making problems) where the 

number of objectives may be big (though computationally costless). Let us consider, for 

example, a minimisation problem with 50 objectives, f1, …, f50 ( a number which is unusual for 

engineering problems, but common for many real-world decision-making problems), and two 

points V1 and V2 such that in 49 objectives V1 is better than V2, and in just one objective j it 

holds fj (V2) < fj(V1)  (maybe for a small value ε ) V2 is better than V1. It is obvious to any person 

would vote V1 as a better solution than V2. However, by Pareto definition, they are absolutely 

equivalent. [71] 

3.6 Hypervolume 

Once a MOGA produces a Pareto front we can measure the hypervolume of the shape [72], 

where the shape is produced by the Pareto solutions and reference points. The hypervolume for 

2-dimensional problems would be more commonly known as area, and for 3-dimensional 

shapes, volume. A reference point (r in figure 3.18), represent the worst possible solution in 

the search space and acts as an anchor point to measure pareto fronts against. The reference 

point is the maximum value for all minimisation objectives and the minimum value for all 

maximisation objectives. Figure 3.18 illustrates the hypervolume for a 2-dimensional and 3-
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dimensional problem.   A hypervolume value gives us the quality of the Pareto front. The larger 

the hypervolume the better the quality of the Pareto front. This means for experiments, we can 

measure any improvements to a multi-objective algorithm by measuring the subsequent 

increase in the hypervolume after changes to the algorithm have been made.  

 

Figure 3.18: Hypervolume Indicator in two dimensions for a set A = {a1, ..., a4} ⊂ R 2 (left) 

and in three dimensions for a set Y = {y1, . . . , y5} ⊂ R 3 (right) [73] 

 

3.7 Discussion 

This chapter gave an overview of genetic algorithms (GAs), Particle Swarm Optimisation 

(PSO), simulated annealing and looked at multi-objective evolutionary algorithms.  

The chapter when on to explain the issues with traditional multi-objective algorithms when 

attempting to solve many-objective problems (problems with four or more objectives). A brief 

overview on hypervolume was given, as a way to measure the quality of results from multi-

objective algorithms.  

The next chapter will give an overview of large-scale organisational design problems. These 

problems will be tackled by the systems in later chapters.  
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Chapter 4. An Overview of Large-Scale 

Organisational Design Problems 

For large organisations, such as utility companies, an effective and responsive organisational 

design can limit the inefficiencies and reduce the impact unexpected events can have on the 

organisation. In Chapter 2 we disused how tactical planning and scheduling systems handle the 

allocation of tasks to resources on a weekly or daily basis. However, the effectiveness of these 

systems often relies on the organisation be set up as best as possible, else the organisation will 

hit a productivity ceiling, regardless of if there are enough resources to handle the overall 

demand. Organisational design is often overlooked when it comes to optimisation in large 

organisations; this is what we will be addressing in the next few chapters.  

The problems being addressed are real-world problems that BT decided to address to improve 

their levels of productivity. Levels which could not be achieved by their current planning and 

scheduling tools. BT is responsible for much of the United Kingdom’s communications 

network infrastructure and provides services such as telephone, television and internet services 

to households and businesses.  

4.1 The Geographical Structure Optimisation Problem 

As BT is primarily a utility company, their responsibilities include maintaining the 

communications infrastructure that extends across the UK; it also includes providing new 

communications infrastructure to new properties and upgrading the infrastructure as new 

technologies become available. To manage these complex responsibilities across such a large 

and diverse geography requires a management hierarchy based on geographical regions. This 

hierarchy is key to allow decisions made by executives at the top levels to flow down 

effectively to each part of the country. The deeper the level of the hierarchy the more increased 

level of specialist knowledge there is about people, geography and inventory. This type of 
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management hierarchy is common among many organisations, most famously the military 

[74]. See Figure 4.1 for how the UK might be divided up. 

 

Figure 4.1: Possible Divisions of UK Geography 

The organisational design problem that emerges from this are the decisions about what 

geographical regions should make up the lowest level of the hierarchy, which of these regions 

should be grouped to form the level above and so on. For BT we can group local geographical 

zones together based on how the infrastructure network is set up. Each property will be 

connected to a local Service Delivery Point (SDP), which is a building containing racks of 

network equipment to allow those properties to connect to the global network. Within BT there 

are over 5,500 SDPs across the country. The distribution trends towards population density, 

i.e. the more people there are, the more SDPs are needed to service them. This means more 

SDPs are required in urban areas than in rural areas.  

Clustering together SDPs forms the patches a team of engineers will be responsible for. 

However, when it comes to real-world geography, there are some restrictions, requirements 

and special cases that need to be taken into account. For example, patches should not cross 

large rivers or other geographical obstacles.  
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Additionally, these constraints on the patches extend from the engineers in each of the teams. 

Examples of these constraints include; all the engineers will not all be working at all times (as 

some of them might fall sick, have holidays or day off), so there is a degree of workforce 

shrinkage that needs to be taken into account. Of the engineers that remain, they can only be 

assigned tasks that they are qualified to complete. Of these tasks, each engineer has preferred 

tasks that they work on. Taking this into account can help improve the average time taken to 

complete the tasks. Lastly, each engineer is limited by the amount of work they can do each 

day (travel time must be included in this), and each team has to be of equal size.  

4.1.1 Objectives 

For the particular geographical workforce optimisation strategy being tackled in this thesis, I 

have five potential objectives. If all of five objectives are used, it qualifies the optimisation 

problem as many-objective (discussed in Chapter 3.5). The objectives for the workforce 

optimisation process are as follows: 

 Maximise Coverage: This is the basic measure of work that is expected to be 

completed by the engineers. This is measured as a percentage of total completed 

work. Equation (4-1) represents the sum of all engineers (n) expected completed work 

over the region’s total work (RTW) where the region contains all the patches being 

optimised. An individual engineer’s coverage is represented by Ci while the total 

completed work is represented by C. 

𝐶 =
1

𝑅𝑇𝑊
∑ 𝐶𝑖

𝑛
𝑖=1     (4-1) 

 Minimise Travel: Minimising the amount an engineer travels increases the available 

productive time for each engineer. Reducing travel also reduces costs, due to less fuel 

consumption. Minimising travel conflicts with maximising coverage as an engineer 

will usually be required to travel to each task. As coverage increases, travel also 
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increases. In Equation (4-2), this is represented as the sum of all engineers’ travel 

distance divided by the total number of engineers (n) representing travel as an average 

for the workforce. An individual engineer’s travel is represented by Ti while the total 

travel is represented by T 

𝑇 =
1

𝑛
∑ 𝑇𝑖

𝑛
𝑖=1     (4-2) 

 Maximise Utilisation: Unutilised time is when the engineer is idle or travelling, and 

hence we want to maximise the utilisation of the workforce. Equation (4-3) shows 

the sum of each engineer completed work (Ci) divided by the engineer’s available 

time (Ai), this sum is then divided by the total number of engineers (n). 

𝑈 =
1

𝑛
∑

𝐶𝑖

𝐴𝑖

𝑛
𝑖=1     (4-3) 

 Minimise Area Imbalance: Patches should have an even distribution of demand. This 

will lead to smaller patches for urban areas, and larger patches for rural areas. This 

conflicts with minimising travel (and maximising utilisation) because the larger rural 

areas favoured by this objective will increase the distance a particular engineer has 

to travel in the rural area. Area balancing is the difference between the largest (Pmax) 

and smallest (Pmin) patches in hours of available work, shown in Equation (4-4).  

𝐴𝐵 = (𝑃𝑀𝐴𝑋 −  𝑃𝑀𝐼𝑁)          (4-4) 

 Minimise Team Imbalance: Patches should have evenly balanced teams. This will 

conflict with the maximising the utilisation objective because having balanced teams 

a) doesn’t mean the work is balanced in the patches and b) the number of engineers 

does not reflect the skill mix, work patterns and capabilities of the team. This 

objective is a management and human resource constraint. Having one team of 5 

engineers and another of 35 engineers is not practical to manage, the manager of the 

larger team will be envious of the manager with the smaller team, and the smaller 
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team is less adaptable to spikes in demand. Team Balance is the difference between 

the largest (Tmax) and smallest (Tmin) teams, shown in Equation (4-5), and measured 

in the number of people.  

𝑇𝐵 = (𝑇𝑀𝐴𝑋 − 𝑇𝑀𝐼𝑁)         (4-5) 

4.1.2 Complexity of the Problem 

For any geographical area being optimised, the complexity of the optimisation can vary 

dramatically. This complexity is based on the number of SDPs in the area and the number of 

patches being optimised. The search space size can be calculated using the equation (4-6) where 

S is the number of SDPs in the area to be optimised, and P is the number of patches in the area. 

𝑆𝑃      (4-6) 

Using 5-6, we can see for an average sized area of 109 SDPs with 150 engineers, 7 patches 

would be required. This results in a search space of 1.82e14 states. If it takes 0.1 seconds to run 

the simulation to evaluate each state, it would take almost 580,000 years to check every 

possible solution. The area with the most required patches, 13, has 106 SDPs. This would result 

in 2.13e26 states and would take 6.76 e17 years to search exhaustively.  

4.2 The Resource Optimisation Problem 

For any company with a large multi-skilled workforce, management of skills and teams poses 

many challenges. A multi-skilled workforce here is defined as one in which the members of 

the workforce are trained in multiple skills, allowing them to complete different types of tasks. 

The benefit is that a multi-skilled workforce is capable of completing a range of different tasks, 

with the aim of making the workforce more productive, more flexible to the changing demand 

and better at meeting customer needs [75]. This is part of the core principles of workforce 

optimisation and workforce management, which is about assigning the right employees with 

the right skills, to the right job, at the right time [1]. 
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Additional arguments have been made for a multi-skilled workforce, such as employees with 

multiple skills are useful when demand is high, and the company wants to maintain a high level 

of customer satisfaction [76] [77]. Additionally, a multi-skilled workforce can help where the 

labour market is scarce of the types of people that are needed [78] [79]. Also, to get the most 

productivity out of a multi-skilled engineer, the skills they should be trained in should be 

correlated in some way [78]. 

The effect of the different mixture of skills in the workforce can have an impact on the 

utilisation of each member of the workforce and the overall performance of the company as a 

whole.  

A study by the University of Texas in Austin looked at the effects of a multi-skilled workforce 

in the construction industry [79]. By conducting interviews with many large construction 

companies, they were able to evaluate the best practice for multi-skilling on large construction 

projects (where more than 200 workers are needed). They found that if all the workforce is 

multi-skilled, then there are no specialists, meaning more complex tasks take longer. If there 

are not enough multi-skilled engineers then there will be a significant increase in the hires and 

fires with the changing demand as the construction project develops, multi-skilling reduces 

this.  

It is also mentioned that, as a result of a multi-skilled workforce, previous studies have shown 

a 5-20% reduction in labour costs and a 35% reduction in the required workforce. Similarly, 

we are investigating the most optimal configurations of skills to get the maximum benefit from 

the multi-skilled workforce, to further increase the reduction in operating costs.  

Deciding which members of the workforce will produce the most benefit when they are trained 

with more skills can depend on various factors, such as the location of the engineer, the type 
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of tasks that are near to them and also the career pathway of the engineer to determine at which 

stage he is in terms of progression.  

However, when engineers are trained with more skills, other engineers in the same area will 

have their utilisation impacted. This may be because an engineer has low-level skills that other 

engineers could train for and then pick up the work that engineer was doing. As a result, it may 

be more beneficial to move the low-skilled engineer to a neighbouring team, which is low on 

resources, and could benefit from the lower skilled engineer freeing up time from the higher 

skilled engineers in that team.   

Due to these complex interactions, it may be more beneficial to evaluate the resultant effects 

of upskilling engineers at the time the selection of these engineers is evaluated. Upskilling is 

the process of training a resource and adding to their skillset. A multi-skilled workforce comes 

with the mentioned benefits, but there is little work in the optimisation of the workforce skill 

sets.  

4.2.1 Multi-Skilled Engineers 

Engineers could have varying numbers of skills based on the types of tasks they work on and 

how experienced they are. More experienced engineers are more likely to have more skills and 

more likely to have more advanced skills.  

The skill sets of the engineers will differ between the different geographical areas that the 

groups of engineers (teams) are assigned to. So, a team with a given number of engineers and 

an optimised set of skills for each engineer will not necessarily be the best setup for another 

area.  

In [80], it is noted that the skill optimisation problem is a combinatorial optimisation problem. 

The optimisation would need to be frequently run due to changes in customer demand and 
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churn of engineers. A common approach to tackling these large scale and complex optimisation 

problems is genetic algorithms, as discussed in Chapter 4, and examples are given in [5], [6] 

and [7]. 

4.2.2 Team Organisation Optimisation 

Making sure engineers have the most optimal skill sets is just one part of the problem. This is 

because any change in the team’s abilities can have sub-optimal implications. As such it would 

be necessary to reorganise the teams after the engineer skill sets have been changed.  

An example of one of these implications would be that in an area of low utilisation a few 

engineers may be selected to train in a specialist skill, so they can pick up more work and hence 

be more utilised. However, for the engineer that was already a specialist, their work will be 

reduced. Possibly to a point where the engineer becomes grossly underutilised. As a result, it 

may be more beneficial to move that engineer into a neighbouring team. Especially if that 

area’s team is near maximum utilisation but low completion of tasks (meaning there are more 

tasks than there is time available from the engineers). Another sub-optimal outcome form this 

scenario is that; if the engineers are trained in a specialist skill that is needed for the whole area, 

but the engineers live in a section of the geography that doesn’t need those skills, the scheduling 

system may still allocate them the nearest work. As the scheduler is tasked with minimising 

travel. Thus, engineers may be trained in a new skill and rarely use it.  

A potential solution here is to move someone in from a neighbouring area that is close to the 

specialist tasks, in this situation the engineer could already have the specialist skill, or they 

could then be trained in the specialist skill once they have moved team. 

This additional layer of change adds more complexity to the problem, because if the re-

organisation of teams happens after the skill optimisation has taken place, then the results will 
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be sub-optimal. The team re-organisation has to be done during the solution evaluation when 

engineers are being selected for training. 

4.2.3 Objectives  

From our list of primary objectives found in Section 4.1.1, the objectives applicable to this 

problem are the following: 

 Task Coverage (C): the percentage of the tasks estimated to be completed by the 

engineers at the end of the simulation. This is a maximisation objective. 

 Travel Distance (T): the distance in km an engineer, on average, has to travel in the 

simulated area. This is a minimisation objective. 

 Utilisation (U): the average utilisation of the engineers. This is a maximisation 

objective 

If a single objective GA is used, the fitness function used can be given in Equations (4-7) and 

(5-8) 

𝑭 =  
(

𝟏

𝑾
∑ 𝑪𝒊

𝒏
𝒊=𝟏 )(

𝟏

𝒏
∑

𝑪𝒊
𝑨𝒊

𝒏
𝒊=𝟏 )

𝟏

𝒏
∑ 𝑻𝒊

𝒏
𝒊=𝟏

      (4-7) 

𝑭 =  
𝑪𝑼

𝑻
       (4-8) 

We do not include any weighting factors in the fitness function. Business objectives change on 

a regular basis, so we will evaluate any solution to our problem with all objectives equal. This 

will help to determine what solutions to our problem are the best not only overall but in any 

particular objective. 

4.2.4 Complexity of the Problem  

The complexity of the resource optimisation problem stems from the uncertainty of the 

operational impact of any decision. When moving engineers between teams there is a utilisation 
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trade-off between the two teams that may not be equal. An engineer’s skill and start location 

will be critical factors in how much they contribute to their new team. If the engineer has very 

little skills required by the new team, their impact will be limited. 

Upskilling is no less trivial, as mentioned the algorithm will trend towards upskilling all 

engineers, but this is obvious. The reason upskilling is non-trivial is because of the limiting 

factor. The limiting factor is the maximum number of engineers that should be upskilled. The 

knock-on effects of upskilling one engineer may be difficult to determine until the simulation 

has taken place. Thus, it is difficult to know whom to choose for the second upskill and so on. 

Upskilling two engineers in the same location with the same skill may be very beneficial 

depending on the type of work, or it may be a waste of a training slot. Typically, any sub-region 

will have between 100-150 engineers; these subregions will contain 5-7 teams. The total 

possible operational choices for moving engineers is given in Equation (4-9), where n is the 

number of engineers, and t is the number of teams in the sub-region.  

(𝑛2)𝑡      (4-9) 

Meaning for any subregion there could be up to 2.92e30 possible move choices per region, in 

one example of this in Chapter 8 there are eight sub-regions. Thus, there can be 2.33e31 possible 

move choices for a regional manager. The size of this search space is too large for heuristic 

search to traverse in a reasonable time. If the simulation returns results within 0.1 seconds (a 

measure which is entirely dependent on the hardware the algorithm is run on), it will take 

approximately 7.40e22 years to arrive at a definitive answer. Hence, we use meta-heuristics, 

specifically GAs, which are explained in Chapter 3. This search space size does not account 

for the upskilling options, which add another complex dimension. Every engineer has two 

states within this optimisation, either their current skill set, or their upskilled skill set. The 

limiting factor states the maximum number of engineers that should be upskilled in the set of 



 

62 

 

total engineers. Given that the engineers have a binary state, we can calculate the total number 

of upskilling options (U) for a set of engineers (n) and a limiting factor (x) using (4-10) 

𝑈 =  
𝑛!

𝑥!((𝑛−𝑥)!)
    (4-10) 

However, this will calculate the number of possible upskill options for the maximum number. 

Thus, we need to sum up all options from 0 to the limiting factor to obtain the true total of 

possible options. So, we can derive (4-11): 

𝑈 =  ∑
𝑛!

𝑚!((𝑛−𝑚)!)

𝑥
𝑚=0     (4-11) 

Hence, if we have 150 engineers and we set the limiting factor to 10 (i.e. we have a maximum 

budget for 10 training slots), we would have 1.26e15 upskilling combination options. If we 

apply the same computation time of 0.1s per simulation, this will result in a total computation 

time of 3.99e6 years to arrive at a definitive answer. Thus, if we try to compute the most optimal 

move and upskilling combination simultaneously it would take 2.89e92 years (7.40e223.99e6) or 

2.09e81 lifetimes of the universe. 

4.3 The Suitability of Simulated Annealing  

As discussed in section 4.1.1 and 4.2.4, the search spaces for problems associated with large-

scale organisational design are potentially infinitely vast. To add to the complexity of solving 

these problems, there are a number of real-world constraints that irregularly warp the search 

space.  

In a short survey of GAs versus simulated annealing, there seems to be evidence that there are 

more benefits to using a GA for large optimisation problems. 
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[81] concludes that simulated annealing is a popular contemporary placement method; 

however, the results of this study indicate that genetic algorithms may lead to better results. 

[82] states that the results show better convergence of shortest length chromosome using GA 

than simulated annealing. 

[83] concludes that their outcomes showed that both of the algorithms are able to tackle the 

problem. However, the GA could return better results in a shorter computation time. 

Finally, [84] concludes, simulated annealing needed longer computation times compared to the 

genetic algorithm. 

As a result of this survey and the size and complexity of the problems, simulated annealing 

solutions will not be developed to reduce the scope of this work.  

4.4 Discussion 

This chapter gave an introduction to the specific large-scale organisational design problems 

that will be tackled. It then explained the two distinct domains, geographical structure 

optimisation problem and the resource optimisation problem. The objectives for these problems 

were detailed, which are the following 

 Coverage:  How much work is completed 

 Travel:  How much the engineers travel 

 Utilisation: How utilised is the workforce (are they idol or travelling a lot?) 

 Area balancing: also known as patch balancing, the measure of how balanced each of 

the areas is. 

 Team balancing: a measure of how equally balanced the teams are regarding Full-Time 

Employment (FTE) 
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The first three objectives are applicable to both problem areas; the last two objectives are only 

applicable to the geographical optimisation problem.  

The computational complexities of the optimisation problems were detailed, as a result it is 

reasonable to try and solve these problems with meta-heuristics, such as those described in 

Chapter 3.  

The next chapter will give an overview of the type-2 fuzzy logic system for field workforce 

optimisation.   
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Chapter 5.  The Genetic Type-2 Fuzzy Logic 

System for Field Workforce Optimisation  

Figure 5.1 provides an overview of the framework of the multi-objective genetic type-2 fuzzy 

logic-based system for mobile field workforce area optimisation.  

 

Figure 5.1: The multi-objective Genetic Type-2 Fuzzy Logic Based System for Mobile 

Field Workforce Area Optimisation 

The first step in this system is to collect the list of engineers and the list of SDPs to optimise. 

The engineers and SDPs will already be grouped together into teams and patches from their 
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current set-up in the real-world environment, so the system organises the entities into the 

groupings from the data presented.  

The system now has the current setup of patches with their respective teams. This configuration 

is then put through the one-day simulation to assess how the current setup is performing. The 

one-day simulation cycles through each engineer and assigns them tasks, based on their skills 

and the patch they are in. The simulation will attempt to assign the closest relevant tasks to the 

engineer but also considers task density, as it would be less efficient to send an engineer to a 

location far away if there is only an hour’s worth of work there. Once a task has been assigned, 

it will be removed from the available task list.  

Each engineer will be assigned tasks until their time has been filled or there are no more tasks 

available for that engineer. Each engineer is allocated 7 hours, and each task has an estimated 

completion time attached to it. When an engineer is assigned to a task the time will be added 

to their utilised time, while the time it takes to travel to the task will be added to the engineer's 

travel time (part of the engineers unutilised time). The distance travelled per task is also stored 

for each engineer.  The simulation will stop assigning tasks once the utilised time combined 

with the travel time is over 7 hours. Any remaining time an engineer has will be idle time, 

which is part of the engineer’s unutilised time.  

The one-day simulation step is where the Task Allocation Fuzzy Logic System (TAFLS) can 

be applied. When choosing which task to assign to an engineer the distance and time to the task 

is fuzzified. The number of tasks at the SDP is calculated and fuzzified, due to the uncertainty 

around the completion time and the number of tasks on any given day. This helps the simulation 

take into account the uncertainty of the travel time and to direct the engineer to SDPs that will 

better reflect real-world conditions. More on this can be found in Section 5.1. 
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Once each engineer has been cycled through, the system will calculate the objective results. 

The objectives calculated within the simulation are coverage, travel and utilisation. The area 

balancing objective is a trivial calculation, but an important one. For this stage of the research, 

the Team Balancing objective was not used. The details of these objectives were discussed in 

Section 5.1.1. 

Given that the current live organisational structure is available and can be evaluated using the 

proposed simulation, the values generated from the current design can be used as a simple 

benchmark for the optimisation process to improve upon. The system gives the user the option 

to adjust any of the GA’s parameters (crossover rate, mutation rate, population size, number of 

generations and elite solutions) before the optimisation process is started.   

When the GA begins, it will create a new population of solutions. Each member of the 

population has P genes, where P is the number of patches to optimise for. Each gene is the 

centre location of a patch, and the rest of the patch will be constructed from these points.  

As each solution needs to be evaluated, the first step to this is building the patch setup from the 

centre points. Certain restrictions apply to the patch construction. SDPs in the same patch 

cannot be separated by rivers or by other patches, as described in Section 5.1. A high-level 

description of how the patch construction works is given in the following: Each centre point 

(extracted from the genes in the solution’s chromosome) works out who its neighbouring SDPs 

are. Then out of these neighbours, works out which is the closest. If no other patch has deemed 

that SDP to be the closest it will be added to the patch. The next patch will do the same. Each 

time an SDP is removed from the list and added to a patch, each patch has to recalculate who 

its available neighbours are.  

The patch construction is where the Patch Construction Fuzzy Logic System (PCFLS) can be 

applied. This will allow the system to account for the uncertainty in travel times across the 
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patches. When it is being decided if an SDP should be added to a patch, the list of all 

neighbouring SDPs will be passed through the FLS whose inputs are the size of the SDP (in 

hours), the size of the patch (in hours) and the distance to the SDP from the centre point. More 

on this can be found in section 5.2. 

Once the patches have been constructed from the centre points, the teams for each patch need 

to be assigned. This first step in this process is to assign each engineer to the patch they live in 

(or are closest to, if they do not live in any patch). This will usually mean the teams are 

extremely unbalanced as city/town patches will have overpopulated teams and rural patches 

will have underpopulated teams.  

So, the next step is to balance out the teams. This is done by a bidding process. The system will 

cycle through each overpopulated patch and ‘sell off’ its engineers to the highest bidders. Each 

underpopulated patch will cycle through the current overpopulated patch’s engineers and give 

each a bid value. If there are no other bids for this engineer, they will move over to the 

underpopulated patch and if there are other bids the highest bid wins. The bid value is made up 

of the distance the engineer is from the underpopulated patch, how much their skills are needed 

and the level of under-population the patch is at. Once the bidding process is complete, the 

engineers should be spread as best as possible between the patches.  

The newly constructed patches and teams will then go through the same one-day simulation 

process just as the original setup did (also using the TAFLS if specified) if the generated 

solution is valid. There are certain criteria that if not met the solution will be rejected or altered 

before the one-day simulation is run on it. This includes the number of patches constructed. As 

the user specifies the number of patches and each gene represents a patch centre, any solution 

cannot have two genes that represent the same centre point. Also, all SDPs must be added to 

the patch design, so the list of unassigned SDPs has to be empty before the simulation can be 
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run. If there are any SDPs on the list, they will be assigned the same patch as their closest 

neighbour.   

Once the solution has passed the checks and is deemed valid, the objective values for this 

solution will be calculated. The GA will carry out the ‘Solution Evaluation’ for every solution 

it generates. More about how the single objective and multi-objective algorithms affect the 

optimisation can be found in section 5.3. 

With each solution in the population evaluated, regular GA processes are resumed. The 

stopping criterion that is currently being used in the system is the maximum number of 

generations reached. Once the GA has stopped the results are reported, and output files can be 

generated. The output files list each engineer and their newly assigned patch and the structure 

of these new patches.  

5.1 Task Allocation Fuzzy Logic System  

The closer the one-simulation is to replicating real life, the better the result of the optimisation 

will transfer into the real world. One key part of the simulation is how an engineer is allocated 

tasks. The simplest form of this is to allocate the nearest available task the engineer is capable 

of doing. The more complex and detailed solution to this is to implement a version of the 

organisation’s full scheduling system.  

The simplest form is not representative of real decision-making. Indeed, choosing the tasks 

with the smallest travel distance may actually increase overall travel. For example, the closest 

tasks to an engineer may only be small tasks that take a total of one hour at that location. The 

engineer will have to travel to the next location only after this short time. If the next closest 

task at this point is also only another hour in duration the engineer will spend a lot longer 

travelling, and less time completing tasks. This is compared to the engineer choosing a location 

with four or five hours’ worth of work but is a further away.  



 

70 

 

The complex form of allocating tasks to engineers is far too computationally expensive for a 

population-based evolutionary algorithm. Implementing such a complex scheduling system to 

the solution evaluation stage would increase the run time of the algorithm to a point where it is 

not practical to use on a daily basis.  

The middle ground of these two scenarios is the proposed Task Allocation Fuzzy Logic System 

(TAFLS). This is because the fuzzy logic can handle the uncertainty about the quantity and 

complexity of tasks, in a genralised way, whilst not having to know the exact tasks that might 

appear on any given day over the next few months. By using fuzzy decision-making system 

designed by an expert, the computational time of these decisions is relatively cheap and lead 

to more realistic task allocation decisions that a crisp system.   

The TAFLS is compatible with both Type-1 and Type-2 FLS, and the below describes the more 

complex Type-2 version. The type-1 TAFLS can be inferred from the membership functions 

with 0% uncertainty in these sets (thus there is no footprint of uncertainty and 𝑓𝑀 =  𝑓
𝑀

 or  

𝑌𝑇𝑅 =  𝑦𝑙 =  𝑦𝑟 ). 

Figure 5.2, Figure 5.3 and Figure 5.4 show the interval type-2 fuzzy sets used to decide which 

tasks to allocate to the engineer. The average distance to a task (AD in Figure 5.2) is calculated 

for the area being optimised and is done before the initial one-day simulation when the teams 

and SDPs are first loaded into the system. The average amount of work in an SDP for the area 

(AW in Figure 5.3) is also calculated at this point. Figure 5.4 shows the output of the interval 

type-2 FLS which represent the probability of picking a task. This interval type-2 FLS uses the 

Centre of Sets type-reduction as it has reasonable computational complexity.  

The footprints of uncertainty, shown in Figure 5.2, Figure 5.3 and Figure 5.4  as the grey areas, 

is variable. The uncertainty value is given to the system as an input, and the footprint extends 

each side of the base point by the required percentage. The base points of the membership 
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functions were tuned by running experiments to find the most suitable setup, with a human 

expert. 

 

Figure 5.2: ‘Distance to Task’ Type-2 Fuzzy Sets 

 

Figure 5.3: Jobs in SDP Type-2 Fuzzy Sets 

 

Figure 5.4: Probability of Picking Task Type-2 Fuzzy Sets 

The values for the average distance (AD) and average work (AW) had to be calculated so that 

their values were relative to the area that was being optimised. For example, an average 
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distance per job in London might be 100 meters, but in the Scottish Highlands, this value might 

be 5km or more. Having the base points relative to the area is important, else input values will 

be wrongly categorised relative to the local area. The reason for the triangular and trapezoid 

membership functions is that they easy to explain to the non-technical experts. In addition, due 

to the need to generate the membership functions dynamically, it is faster to use the triangular 

and trapezoid membership functions generated from calculated base points and scale them 

accordingly. Table 5-1 shows the list of rules used in this FLS. 

Distance to Task Tasks at SDP Probability of Choosing SDP 

Low Low Average 

Low LessAvg Average 

Low Average MoreAvg 

Low MoreAvg High 

Low High High 

Average Low LessAvg 

Average LessAvg LessAvg 

Average Average Average 

Average MoreAvg MoreAvg 

Average High MoreAvg 

High Low Low 

High LessAvg Low 

High Average Low 

High MoreAvg LesAvg 

High High Average 

Table 5-1 Task Allocation Rule Base 
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The following is an example of how this fuzzy system might work: 

The system wants to find the next best SDP to send an engineer to, so the system finds out that 

the average amount of work in all SDPs in the patch is five hours. The average distance to a 

task is calculated to be two kilometres. The current engineer has three SDPs to choose to go to 

next. The first is three kilometres away with five hours’ worth of work. The second is one 

kilometre away with six hours’ worth of work, and the third is two kilometres away with eight 

hours’ worth of work.  

Given these options, the fuzzy system would classify the first option as High distance and 

Average amount of work giving a Low probability of choosing that SDP. The second option 

would be classified as Low distance and More than Average amount of work giving a High 

probability of choosing the SDP. The third option would be classified as Average Distance and 

High amount of work giving a More than Average probability of being chosen. With these 

three results, their output defuzzified values are compared, which would give option two the 

highest value and this SDP would then be assigned to the current engineer. 

5.2 Patch Construction Fuzzy Logic System 

A key aspect to generating a solution from the chromosomes in the GA is the geographical 

design of the patches. This is a critical part of the evaluation process, as without the 

geographical structure no engineers can be allocated, and no work can be completed.  

The way patches are constructed from the chromosomes is to map each gene in a solution to 

an SDP based on the genes value. Each member of the population has P genes, where P is the 

number of patches to optimise for. If we represent the total number of SDPs as ST, P <=ST. 

From a practical perspective it is always the case that P < ST, this means there are SDPs that 

are not assigned to any patch. The process of assigning the remaining SDPs to the patches is 

via a neighbourhood based clustering technique.  
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5.2.1 Neighbourhood Clustering For Patch Construction 

Given that there are strict requirements for how patches for can be designed the way the SDPs 

are clustered together has to be intelligent.  

Each gene in a solution represents an SDP to act as a centre point to each cluster. The clustering 

process is illustrated in Figure 5.5. Figure 5.5a shows three SDPs selected as the centre points. 

Figure 5.5b shows the immediate neighbours being added; Figure 5.5c shows the next few 

layers of SDPs being added. Finally, Figure 5.5d shows the final design created from the three 

SDPs selected by the GA in Figure 5.5a. If an SDP neighbours more than one cluster, we use 

a decision system to decide which cluster that SDP should be added to. In its most basic form, 

this decision is based on the closest distance.  

This form of neighbourhood-based clustering ensures that all SDPs will be added if the 

geographical region is connected from one side to the other. This method also ensures patches 

are not split into more than one continuously connected grouping.     

 

Figure 5.5: An example of the SDPs being clustered by their neighbours. 
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5.2.2 Fuzzy Neighbourhood Clustering For Patch Construction 

When an SDP can be added to more than one patch, the decision-making process of just 

choosing the nearest patch by travel distance or travel time is weak. Adding any SDP has a 

significant impact on the whole design. This is particularly true in the early stages; a few key 

decisions can dramatically change the outcome of the design from the same centre points.  

To make the decision-making process more intelligent a fuzzy logic system, known as the Patch 

Construction Fuzzy Logic System (PCFLS), has been developed. The aim of the PCFLS is to 

take into account the relative amounts of work within each SDP and within each of the 

constructed patches. It also aims to fuzzify the travel element so that an SDP does not simply 

get added to the patch that is 0.1km closer than another (or 2 minutes closer if time is used). 

This means the design understands there is much uncertainty around travel estimations.  

The PCFLS is compatible with both Type-1 and Type-2 FLS, and the below describes the more 

complex Type-2 version. The type-1 PCFLS can be inferred from the membership functions 

with 0% uncertainty in these sets (thus there is no footprint of uncertainty and 𝑓𝑀 =  𝑓
𝑀

 or  

𝑌𝑇𝑅 =  𝑦𝑙 =  𝑦𝑟 ), just like the TAFLS. 

Figure 5.6, Figure 5.7 and Figure 5.8 show the type-2 fuzzy sets that are used in the PCFLS. 

When the area to be optimised is initially loaded up, the average patch size in hours of work, 

Patch Average (PA), is calculated along with the average SDP size (SDPA). This is because 

these values can vary a lot between urban and rural areas. Hence, for London, the average SDP 

may carry 500 hours’ worth of work, but in the Scottish Highlands, there may only be an 

average of 20 hours’ worth of work, or even less.  
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The base points of the membership functions were tested to see if reasonable categorisation of 

SDPs and patch sizes were given. This interval type-2 FLS also uses the Centre of Sets type-

reduction, again because it has a reasonable computational complexity. 

 

Figure 5.6: Patch Size Average Type-2 Fuzzy Set 

 

Figure 5.7: SDP Size Average Type-2 Fuzzy Set 

 

Figure 5.8: Average Distance Type-2 Fuzzy Set 
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Figure 5.9: Add/Not Add Fuzzy Set.  

WA 

Size 

Distance 

to SDP 

SDP 

Size 

Consequence 

Small Small Small Add 

Small Small Average Add 

Small Small Large Add 

Small Average Small Add 

Small Average Average Add 

Small Average Large Add 

Small Large Small Add 

Small Large Average Add 

Small Large Large NotAdd 

Average Small Small Add 

Average Small Average Add 

Average Small Large NotAdd 

Average Average Small Add 

Average Average Average Add 

Average Average Large NotAdd 

Average Large Small Add 

Average Large Average NotAdd 

Average Large Large NotAdd 

Large Small Small Add 

Large Small Average NotAdd 

Large Small Large NotAdd 

Large Average Small NotAdd 

Large Average Average NotAdd 

Large Average Large NotAdd 

Large Large Small NotAdd 

Large Large Average NotAdd 

Large Large Large NotAdd 

Table 5-2 Patch Construction Rule Base 
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The centre points of the patches are provided to the fuzzy system. The size of the patch is re-

calculated each time an SDP is added to it. Figure 5.9 shows the type-1 fuzzy sets representing 

the output of the type-1 FLS which is the chance of an SDP being added. 

The Add/NotAdd membership functions were designed in such a way that a rule with a Not 

Add consequence would have more of an impact on the outcome than an Add consequence. 

The output values are compared between the patches, with the SDP being added to the patch 

with the highest output value. Table 5-2 shows the list of rules used in the PCFLS. 

The PCFLS will cycle through each patch. Initially, each patch only contains one SDP, but will 

still have at least one neighbour. There is no guarantee this one neighbour will not be the centre 

point of another patch; this would result in one of the patches only containing one SDP, which 

could be a valid solution if that SDP contains a significant amount of work (i.e. a city centre).  

When the PCFLS is looking at a patch, it will look at all the neighbouring SDPs to choose the 

best one to add. The PCFLS finds out that the average amount of work in all SDPs in the area 

to be designed and computes a score for each SDP. The best one will be added, the available 

neighbours of this patch will be updated (by removing the SDP that was just added and adding 

its neighbours that aren’t already assigned to another patch). The PCFLS will then cycle to the 

next patch, only adding one SDP to each patch at a time. 

The decision-making process becomes a little more complex when an available SDP borders 

more than one patch. In this situation, the SDP will only be added to the current patch if it has 

the highest score from all the neighbouring patches. This means if it does not have the highest 

score, it is likely that SDP will be added to the better-suited patch when the PCFLS cycles 

around to that patch.  
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A short example of the PCFLS might work as follows: 

The average amount of work in an SDP for an area is 5 hours. The current patch is deemed to 

be an Average sized patch based on its current total amount of work. The current patch has 

three SDPs to choose from to add to itself. The first is 3.0 kilometres away with 5 hours’ worth 

of work. The second is 2.0 kilometres away with 6 hours’ worth of work, and the third is 2.5 

kilometres away with 2 hours’ worth of work.  

Given these options, the PCFLS would classify the first option as Large distance and Average 

amount of work giving a consequence of suggesting Not to Add this SDP to the current patch. 

The second option would be classified as Low distance and Large amount of work giving a 

consequence of suggesting Not to Add this SDP to the current patch. The third option would be 

classified as Average Distance and Small amount of work giving a consequence of suggesting 

too Add this SDP to the current patch. With these three results, their output defuzzified values 

are compared which would give option 3 the highest value and this SDP would then be added 

to the current patch. The PCFLS will then move to the next patch. 

It is worth noting that it does not matter how low the score is from the PCFLS, the highest 

value always wins. This is to ensure that all exchanges are added to a WA, even if that means 

adding a Large SDP to a Large patch. Ultimately this will just mean this solution will perform 

badly in the patch balancing objective, yet it would still be a valid solution as all SDPs would 

have been added to the design.  

5.3 Use of Genetic Algorithms 

Both single objective and multi-objective genetic algorithms can be used with the proposed 

system and the different results that are given by each can be found in section 5.4. If a single 

objective GA is being used, then the following fitness function (equation 5-1) will be used to 

assess the solutions.  
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𝐹𝑖𝑡𝑛𝑒𝑠𝑠 =  
(𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 × 𝑊1 ) × (𝑈𝑡𝑖𝑙𝑖𝑠𝑎𝑡𝑖𝑜𝑛 × 𝑊2)

(𝑇𝑟𝑎𝑣𝑒𝑙 ×𝑊3 ) × (𝐵𝑎𝑙𝑎𝑛𝑐𝑖𝑛𝑔 × 𝑊4)
     (5-1) 

W is the weighting of each objective, w1 is the weighting of the coverage objective, w2 is the 

weighting of the utilisation objective, w3 is the weighting of the travel objective, and w4 is the 

weighting of the balancing objective. Changing these values pushes the optimisation to find 

solutions that satisfy the objectives with the higher weightings. Any weighting could be set to 

0 to remove that objective from the fitness function. If this is done, the objective value 

combined with the weighting defaults to a value of 1. 

If a multi-objective GA is being used, there will be no single fitness value, only each individual 

objective value. The output will also be a set of solutions (provided there is more than one 

solution on the Pareto front). This allows managers to pick a setup that is best-suited based on 

local knowledge that could not be taken into account by the proposed system. This adds an 

extra layer of validation before any new organisational designs get rolled out to a live 

environment. 

5.4 Initial System Experiments & Results 

To test the proposed type-2 fuzzy logic system for field workforce optimisation, the techniques 

and methods need to be integrated into a user-friendly interactive tool. This allows non-

technical users to run the algorithms and get a visual output of the results. An early version of 

the real-world tool created for this process is shown in Figure 5.10. This version of the tool 

allows the visualisation of SDPs (the dots) and the patches (coloured areas). 
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Figure 5.10: Version 1.0 of the Mobile Field Workforce Area Optimisation Tool 

Once the initial system had been developed, the underlying algorithms and optimisation 

methods needed to be tested. This forms the first set of experiments.  

These experiments aim to take an existing patch structure in a telecommunications domain, 

then run it through the optimisation process to see the levels of improvement that can be 

obtained. These experiments are then repeated with enhancements, to examine the impact these 

potential changes will make. The experiments involved altering the optimisation process by 

gradually increasing the use of more advanced optimisation methods.  

The process started by comparing the use of single and multi-objective GAs and then 

progressed to evaluate the effect of employing type-1 and type-2 FLSs.  

For all the experiments, both single objective and multi-objective genetic algorithms (GA and 

MOGA) were set to carry out 20 generations and have a population size of 40. Due to the 

complexity in generating designs of patches and simulating one-day, the time it took to 

complete one generation within this version of the tool, was significant enough, at this stage of 

development, to prevent more generations from being carried out. In addition, because the tool 
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is under the constraint of being used by non-technical users on a daily basis, so the user 

experience has to be factored into the time constraint of the optimisation process. 

Both the GA and the MOGA ran with a crossover rate of 0.4 and a mutation rate of 0.05. These 

settings were already in place from the daily use of the single objective GA, which was already 

in use in the tool. These settings were kept for the following experiments for a fair comparison 

on how implementing fuzzy logic and a MOGA would affect those daily results. 

5.4.1 Single Vs Multi-Objective GAs   

The goal of this first experiment was to see if our chosen MOGA, NSGA-II, optimised more 

objectives than the standard Single Objective GA (SOGA). Where Travel is measured in 

kilometres (km) and balancing and coverage are measured in hours (hrs.). 

Table 5-3 shows a sample of the results for three different areas when comparing single and 

multi-objective GAs to the current live design. Where a result is in bold, it indicates it has 

performed better than the current design. 

Current Live Score Single Objective Multi-Objective 

Travel 

(km) 

Balancing 

(hrs.) 

Coverage 

(hrs.) 

Travel 

(km) 

Balancing 

(hrs.) 

Coverage 

(hrs.) 

Travel 

(km) 

Balancing 

(hrs.) 

Coverage 

(hrs.) 

80.00 17.00 455.00 73.86 22.28 453.25 73.20 44.70 460.59 

99.00 68.00 476.00 102.17 38.21 485.64 97.39 64.38 492.11 

50.00 102.00 212.00 52.55 12.13 214.73 45.86 48.40 214.74 

Table 5-3 Original Vs Single Vs Multi-Objective GA 

The first row of results from Table 5-3 shows that the SOGA optimised in travel only, whereas 

the MOGA optimised in both travel and coverage. Although the SOGA did a better job of 

optimising in the balancing objective than the MOGA, neither beat the current system at 

balancing in this case.  
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In the second and third rows of results, the SOGA optimises in balancing and coverage but not 

travel. However, the MOGA optimises in all objectives when compared to the current patch 

set up. In the SOGA results, the balancing objective is better than the MOGA result. However, 

this is due to the fact that the SOGA has sacrificed the travel objective to reach this level of 

balancing. The goal is to optimise in all objectives; the SOGA fails to do this because a good 

result in one of the objectives out weights the poor result in the fitness function. 

In the results presented in Table 5-3, the MOGA optimises in more objectives than the SOGA 

when compared to the current patch set up. This supports the concept that MOGAs are better 

at dealing with problems with multiple conflicting objectives.  

5.4.2 Single Vs Multi-Objective GAs with Type-1 Fuzzy Logic 

The next set of experiments aim to assess the impact of the inclusion of type-1 fuzzy logic in 

the patch construction and one-day simulation processes, i.e. adding in the type-1 PCFLS and 

TAFLS respectively. In the results shown in Table 5-4, there are two different areas (A1 and 

A2) that are optimised. Rows 1 to 3 show that in area 1 (A1) when a SOGA is used and the 

FLSs are used, the coverage is increased by 24.72%, reduce the imbalance between the patches 

by 46.10% and increase the utilisation by 24.72%. Coverage and utilisation are linked very 

closely together, so the rate of change of these values is almost the same, this pattern of 

improvement continues through all the results in Table 5-4. However, as a result of these 

significant improvements, there is an increase in the level of travel by 8.76%. 

In rows 4 to 6, we see the results of the MOGA on area A1 with and without the FLSs. In this 

instance, we get a 64.53% reduction in travel, with a slight increase in coverage and utilisation 

when the FLSs are used.  This very small increase may be due to the coverage being topped 

out by the MOGA (very little work left in the SDPs). 
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Area & System Type Travel  

(km) 

Coverage 

(hours) 

Balancing 

(hours) 

Utilisation 

(%) 

A1 SOGA without Fuzzy  122.63 763.74 369.16 57.03 

A1 SOGA with Type-1 

FLS  

133.37 952.53 170.18 71.13 

A1 SOGA Effect with 

Type-1 FLS 

8.76% 24.72% -46.10% 24.72% 

A1 MOGA without Fuzzy  135.70 1014.15 70.02 75.72 

A1 MOGA with Type-1 

FLS 

48.14 1021.36 82.19 76.27 

A1 MOGA Effect with 

Type-1 FLS 

-64.53% 0.71% 17.38% 0.73% 

A2 SOGA without Fuzzy  123.48 624.38 310.20 61.50 

A2 SOGA with Type-1 

FLS 

145.87 739.75 174.01 72.97 

A2 SOGA Effect with 

Type-1 FLS 

18.13% 18.47% -43.90% 18.65% 

A2 MOGA without Fuzzy  165.44 799.16 74.80 78.72 

A2 MOGA with Type-1 

FLS  

44.90 779.90 16.19 76.82 

A2 MOGA Effect with 

Type-1 FLS 

-72.86% -2.41% -71.06% -2.41% 

Table 5-4 Addition of Type-1 FLS to Patch construction and Job Allocation 

As the MOGA improves over the SOGA results, the coverage value may have already hit the 

upper limits, so the potential improvements that could be made by the FLSs on coverage are 

very small. Hence the much-improved travel objective, as the FLSs cannot improve on 

coverage, they can improve on the rate of travel per task. In this example, it is the balancing 

objective that has suffered to the largest degree. However, when comparing this value to the 

SOGA with FLSs value we still get a 51.71% reduction in the imbalance of the patches, 

showing that MOGA is still outperforming the SOGA.  

When the same experiments were run on area A2, we get similar results for the SOGA. Rows 

7 to 9 show that when the FLSs are used we achieved an 18.47% increase in coverage, a 18.65% 

increase in utilisation and a 43.90% reduction in the imbalance of the patches.  
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When we look at the MOGA results for area A2, rows 10 to 12, we see that with the FLSs in 

use we get a 72.86% reduction in travel and a 71.06% reduction in the imbalance of the patches. 

As a result of these very large improvements, we suffer a small decrease in coverage and 

utilisation at a rate of 2.41% each. It would then be up to the user to decide if these significant 

improvements out-weighed the minor reductions. 

If we take area A2 as an example and compare the SOGA without the FLSs and the MOGA 

with the FLSs, we see 63.64% reduction in travel, a 24.91% increase in coverage and utilisation 

and a 94.78% reduction in the imbalance of the patches, which is regarded as significant 

improvements in all areas and most notably in travel and patch balancing, which are the two 

primary areas where the FLSs are applied.  

The results shown in Table 5-4 suggest that including the FLSs in the task allocation and patch 

construction procedures have the capability of a significant improvement on the results 

generated by the proposed system.  

5.4.3 Type-1 FLSs Vs Type-2 Fuzzy FLSs 

The third experiment aims to test the impact type-2 FLSs have on the results. The following 

results include the type-1 FLS results and the type-2 FLS results with different uncertainty 

values. If the uncertainty value is 1%, this means that the footprint of uncertainty extends 1% 

(of the average value) either side of the base point. For example, if the average SDP hours is 

50, then the FOU will extend 0.5 hours either side of the base points. 

For this experiment seeding was used in the GA to allow a more accurate comparison of the 

results. It is more accurate because the GA, for each run, is given the same starting population 

and conditions, giving a more accurate reflection of how the final outcome is affected by the 

different types of FLS and uncertainty values. A single objective GA was used in this 
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experiment so that the fitness values can be directly compared between results and there is no 

ambiguity as to which result is better.  

Table 5-5 gives a sample of the results collected for the comparison of the type-1(T1) and type-

2 (T2) FLSs. Any uncertainty (U) associated with the type-2 FLSs is noted in brackets. 

Type (U) Travel 

(km) 

Coverage 

(hours) 

Balancing 

(hours) 

Utilisation 

(%) 

Fitness 

T1 180.30 819.33 133.28 62.93 1.83 

T2 (1%) 165.22 833.72 111.47 64.03 4.60 

T2 (3%) 157.25 794.94 161.30 61.06 2.82 

T2 (5%) 180.30 819.33 133.28 62.93 1.83 

Table 5-5 Type 1 FLS vs Type-2 FLS in Work Area Optimisation System 

In Table 5-5, the type-1 FLSs gave an overall fitness value of 1.83. This is now compared with 

the results from the type-2 FLSs where three uncertainty values were tested. A 5% uncertainty 

gave the same result as the type-1 FLSs; this is possible because of the seeding and the same 

optimisation conditions. A 3% uncertainty value significantly improved on the fitness by 54%. 

Finally, an uncertainty value of 1% gave a fitness value of 4.60 a 151% increase over the type-

1 FLSs. 

The results shown in Table 5-5 suggest that upgrading from a type-1 FLS to a type-2 FLS can 

have significant improvements to the final results. However, the uncertainty values must be 

tuned correctly for these results to be realised.  

5.4.4 Progressive Results 

One final set of results aims to test the suggestions given by the previous experiments in one 

sequential real-time test. These results are not an average, not seeded, they use the same patch, 
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and run as if they would be in the real world. Coverage here is expressed as a percentage of the 

total amount of work available.  

Method Travel  

(km) 

Coverage 

(%) 

Balancing 

(hours) 

Utilisation 

(%) 

Current 172.00  71.34% 68.96  63.88% 

SOGA 187.16  68.86% 110.16  61.67% 

MOGA 173.26  68.46% 54.21  61.30% 

MOGA-Fuzzy 

T1 
67.01  69.68% 62.09  62.40% 

MOGA-Fuzzy 

T2 (Tuned) 
68.15  71.25% 30.08  63.81% 

Table 5-6 Progressive Real-World Run Results 

Table 5-6 shows the results of the progressive tests. The current patch’s values are given in 

row one. The first step is to optimise this patch with the SOGA. Row two shows us that on this 

occasion the SOGA failed to optimise in any objective. This means that the optimisation would 

have to be run again and the GA setting would need to be tuned for this specific area to get a 

better result. This would cause frustration to the user and cost time.  

Row three shows us the most suitable solution from the MOGA. On this occasion the MOGA 

has optimised in balancing, travel is less than 1% worse, so the difference here is negligible. 

However, the MOGA has failed to optimise in coverage and utilisation. If the user was looking 

to only improve on balancing and was happy to suffer the reduction in the other two objectives 

then this may be acceptable, else the optimisation would need to be run again.  

Row four shows the most suitable solution from the MOGA using type-1 FLSs in the 

optimisation. Here we can see that the MOGA has now optimised in two objectives, with travel 

being significantly improved, now being only 38.96% of the original travel value. Coverage 

and utilisation still suffer. However, these objectives suffer less than if the MOGA did not use 
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the type-1 FLSs. There is a 1.80% increase in both coverage and utilisation over the MOGA 

that does not use any FLSs. 

Finally, row five shows the most suitable result from the MOGA system with type-2 FLSs (that 

has been tuned to 1% uncertainty). On this occasion, two objectives have been optimised, and 

the remaining two do not suffer noticeably. The effects are less than 0.13% for coverage and 

less than 0.11% for utilisation. This gives the user a solid result and can confidently say that 

these new patches are better than the current patches. This is on one run of the optimisation 

and with no specific tuning of the GA required, which is great from a user’s point of view. 

Consequently, it can be said that these results support the use of a multi-objective genetic type-

2 fuzzy logic-based system for mobile field workforce area optimisation.  

5.4.5 Subjective Evaluations 

To demonstrate how the visual representation of the results from the system may be interpreted 

there are images captured from the optimisation process of each tested method.    

Figure 5.11, Figure 5.12, Figure 5.13 and Figure 5.14 show the visualisation of how the results 

change with each incremental improvement of the proposed system. Figure 5.11 shows that the 

SOGA divided the selected area into nine patches. The selected area includes both rural and 

urban areas, including the densely populated city area and surrounding suburbs. The single 

objective optimisation has split the city area (circled in Figure 5.11) up into three patches; this 

is not good as engineers will have to keep travelling in and out of the city. The other patches 

are either too large or too small. 
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Figure 5.11: SOGA Optimisation Design (main city area is circled) 

Figure 5.12 shows one of the solutions on the Pareto front from the MOGA with no FLS in 

use. This solution is slightly better as it has sectioned off the centre of the city. However, this 

city patch is now too small as the outside of the city forms part of another patch to the north. 

This has left one suburb in a very oversized patch (purple) and another in a small patch (light 

blue). The remaining patches are of reasonable size.   

 

Figure 5.12: Multi-Objective Optimisation 

Figure 5.13 shows a solution that used the MOGA with type-1 FLSs in the optimisation 

process. This has done a slightly better job of sectioning off the city, but there are a few SDPs 

that were not included in the city patch that should have been. There is also a patch in the west 

that is too small, and there is a suburb still in an oversized patch.  
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Figure 5.13: MOGA with Type-1 Fuzzy. 

 

Figure 5.14: MOGA- with Type-2 Fuzzy 

Figure 5.14 shows a solution that has replaced the type-1 fuzzy with type-2 fuzzy logic in the 

MOGA. This solution has done a good job of sectioning off the city. Each patch is more 

balanced in size and even the town to the west is its own patch. There also seems to be 

reasonable utilisation of the road networks in the area. The MOGA with type-2 FLSs has 

produced the most sensible patch designs from a visual perspective; this is important to the 

engineers and managers who have to accept these designs. Not only are the designs good, it 

has the best results from the simulation to back it up.  
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5.5 A Comparison of Particle Swarm Optimisation and 

Genetic Algorithms  

The main aim of these experiments is to evaluate the differences when using a GA compared 

to a using a Particle Swarm Optimisation (PSO) algorithm for our system for mobile field 

workforce area optimisation. The best algorithm can then be used in the tool shown previously 

in Figure 5.10.  

To avoid the issues associated with many-objective problems (as described in Section 4.5) only 

two objectives will be optimised. The first objective is utilisation of the engineers, the more an 

engineer is working, the more they are utilised. The second objective is patch balancing. 

Meaning that more balanced patches are better (patch balance is defined by the difference in 

demand, in hours, between biggest and smallest patches). These two objectives will help us to 

evaluate the performance of the engineers in the designed patches and how manageable the 

patches will be.  

Our first set of experiments within this section is to evaluate the performance of the GA and 

PSO that use the fitness function to accommodate multiple objectives. Because this fitness 

function method may not be the most optimal the multi-objective algorithms, NSGA-II and 

Multi-Objective PSO (MOPSO), will be evaluated too. Finally, comments will be made on the 

difference between the best fitness function-based algorithm and the best multi-objective 

algorithm.  

First, one of the 60 areas that need optimising was selected. This area contained 252 resources 

and 776 jobs (totalling 1265 hours of work) in 140 SDPs. When evaluated by the existing 

system, the area gave us the following results. 
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Objective Value 

Utilisation 78.72% 

Balancing 428.74 Hours 

Table 5-7 Initial Benchmark Values to Optimise 

The following experiments were run on a machine with a CPU clock speed of 2 × 1.9GHz, 

4GB of RAM and the capability of 4 CPU threads. The GA was run with a crossover probability 

of 0.4 and a mutation rate of 0.1. The first run of experiments uses the fitness function outlined 

in equation (6-2). This equation is a derivative of the full fitness function given in equation (6-

1). For these experiments the weightings of each objective, given by W1 and W2, are equal. 

The GA was run on this area five times to get an average. These results are given in Table 5-8.  

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 =  
 (𝑈𝑡𝑖𝑙𝑖𝑠𝑎𝑡𝑖𝑜𝑛 × 𝑊1)

(𝐵𝑎𝑙𝑎𝑛𝑐𝑖𝑛𝑔 × 𝑊2)
     (5-2) 

 Utilisation (%) Balance (Hours) Time (seconds) 

 95.17 39.32 132 

 95.06 45.55 139 

 94.43 37.7 143 

 97.06 68.47 144 

 95.67 95.87 141 

Average  95.48 57.38 139.80 

Table 5-8 Genetic Algorithm Optimisation Results 

Using this genetic algorithm resulted in an average increase of the utilisation by 16.76% when 

compared to the current design for this area. There was also a significant improvement to the 

balance of the patches. With the difference between the biggest and smallest patch being 

reduced on average to 57.38 hours from 428.74 hours, a reduction of 86.62%.  
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The second run of experiments was to run the PSO with the fitness function on this area. This 

produced the results in Table 5-9. 

 Utilisation (%) Balance 

(Hours) 

Time (seconds) 

 92.30 113.59 113.00 

 93.67 94.04 140.00 

 93.08 137.70 139.00 

 92.28 142.28 118.00 

 95.97 110.52 141.00 

Average          93.46 119.63 130.20 

Table 5-9 Particle Swarm Optimisation Results 

Using the PSO also resulted in improvement in both objectives. There was, on average, an 

increase of 14.74% in utilisation. The patch balancing also improved with the difference 

between the smallest and largest patch reducing, on average, to 119.63 hours, a 72.10% 

reduction.  

If each algorithm was compared separately, each algorithm could be seen as performing well. 

However, if a comparison is made between the GA results in Table 5-8 and the PSO results in 

Table 5-9, it can be seen that the GA has produced better results, on average, in both objectives. 

The GA increased utilisation by 2.12% more when compared to PSO. The GA has also 

improved in the balancing objective, reducing the difference by an extra 62.24 hours, or 

14.52%  

Table 5-8 and Table 5-9 contain a column of time. The amount of time in seconds to complete 

all 100 generations of the optimisation process with a population size of 20.  
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This is important as if the algorithm is used on areas significantly larger than the area for these 

experiments; the time may exponentially increase. Time is a factor of how practical the 

algorithm is to use in a live application. On average PSO is 9.6 seconds quicker than the GA, 

which could increase the more SDPs and patches there are. For these experiments, almost 10 

seconds does not have a significant impact on the algorithms practicality.  

The difference between the GA and PSO results led us to analyse what could cause this 

difference. As PSO moves around the search space using the numerical representation of the 

areas, it was conceived that changing the way the PSO sees the search space could have an 

impact. As SDPs are geographical locations, they were ordered them from nearest to furthest 

from an origin point. Whereas before they were ordered alphabetically by their name, which 

may not necessarily allow PSO to move to the next nearest neighbour if the next neighbour is 

represented by an ID value, which is further away from the current geographical position. 

 Utilisation  

(%) 

Balance 

(Hours) 

Fitness 

 91.62 150.62 0.30 

 93.64 102.83 0.46 

 93.32 121.68 0.38 

 96.18 61.89 0.78 

 93.81 96.54 0.49 

Average 93.71 106.71 0.48 

Standard Dev. 1.46 29.26 0.16 

Table 5-10 PSO Geographic Organisation Results 

Changing this value to a distance would allow the PSO to move to the nearest neighbour more 

easily. The results for this modification can be found in Table 5-10. There is no difference in 

run-time between the geographically ordered and alphabetically ordered runs of the PSO. 
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The geographically ordered PSO increases the utilisation by 0.27% and the patch balancing by 

10.80%. The utilisation increase is not significant enough to say this option is better, but the 

patch balancing is. This could be because the patch balancing objective relies on the optimal 

selection of SDPs, where SDPs are geographical objects. Having the PSO search this 

geography seems to improve the construction of the patches. 

The second set of experiments for this section is evaluating the multi-objective variations of 

these algorithms to see how they compared.  The results for the multi-objective GA (NSGA-

II) can be found in Table 5-11, and the results for the multi-objective PSO (MOPSO) can be 

found in Table 5-12. 

NSGA-II performs significantly better than the MOPSO. NSGA-II is 5.48% better in utilisation 

and 59.40% better in balancing. NSGA-II also has a better standard deviation, with an 82.80% 

improvement in utilisation and 74.69% improvement in balancing, showing NSGA-II’s results 

are more consistent. 

 Utilisation  

(%) 

Balance 

(Hours) 

Dist. Value 

 97.65 134.75 0.46 

 96.96 131.51 0.46 

 97.92 126.89 0.47 

 97.42 216.29 0.37 

 97.42 153.64 0.44 

Average 97.47 152.62 0.44 

Standard Dev. 0.32 33.11 0.04 

Table 5-11 NSGA-II Optimisation Results  
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 Utilisation  

(%) 

Balance 

(Hours) 

Dist. Value 

 94.63 181.33 0.39 

 88.93 496.68 -0.01 

 92.18 447.85 0.06 

 91.48 495.13 0.00 

 92.75 258.69 0.29 

Average 91.99 375.94 0.15 

Standard Dev. 1.86 130.82 0.16 

Table 5-12 MOPSO Optimisation Results  

As seen with PSO, reorganising the SDPs in geographical order, as opposed to the alphabetical 

order used by the GA improved the results. The results for the geographically ordered MOPSO 

can be found in Table 5-13. When the results are compared with Table 5-12, it can be seen 

again that organising the SDPs geographically improves the results. With utilisation improving 

by 1.48% and balancing improving by 81.54 hours or 21.69%. The standard deviation also 

improves by 50.53% for utilisation and 19.39% for balancing. 

 Utilisation  

(%) 

Balance 

(Hours) 

Dist. Value 

 92.14 297.11 0.24 

 93.15 214.17 0.34 

 93.03 461.92 0.05 

 94.47 341.73 0.20 

 94.54 157.07 0.42 

Average 93.47 294.40 0.25 

Standard Dev.     0.92 105.46 0.12 

Table 5-13 MOPSO Geographic Organisation Results 
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Because of the multi-objective nature of the problem and the conflicts in the objective values, 

it is difficult to determine the overall quality of a solution. A distance metric can be used to 

measure how far away from the original solution a new solution is. A higher distance value 

would represent a better solution than the original; a negative value would represent a worse 

solution. The simple distance metric used for this problem is given in (5-3). This concept will 

be expanded upon in Section 6.2, where many-objective solutions are measured using this 

method. 

𝐷𝐼𝑆𝑇 = (
𝑈𝑠−𝑈𝑜

𝑈𝑜
−

𝐴𝐵𝑠−𝐴𝐵𝑜

𝐴𝐵𝑜
)            (5-3) 

𝐷𝐼𝑆𝑇 =  
𝑁𝑒𝑤−𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙

𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙
                                             (5-4) 

In (5-3) the utilisation for the new solution is denoted by (Us), and the utilisation for the original 

is denoted by (UO). The area balance given by the new solution is denoted by (ABs), and the 

area balance given by the original is denoted by (ABO). Each objective in equation (5-3) 

calculates the distance using equation (5-4).  

Using the distance value as a metric of comparison we can see that the NSGA-II has a 

significantly higher average value when compared to the geographically organised MOPSO, 

as it is 0.19 or 76% stronger on average. NSGA-II’s standard deviation of the distance metric 

is also reduced by 66.67%, reducing from a value of 0.12 to 0.04.  

For completeness, the single objective GA and results from Table 5-8 and the NSGA-II results 

from Table 5-11 can be compared, as these were the best algorithms from each set of 

experiments. Both algorithms have their strengths. The single objective GA has, on average, 

much better patch balancing, improving over NSGA-II by 62.40%. However, the utilisation is 

improved by 1.99% when using NSGA-II. 

The weighting of each of these improvements would be down to the user’s own preference. 

Usually, utilisation of the workforce is more beneficial, and so a reduction in the balance of the 



 

98 

 

patches would be acceptable, especially given that the NSGA-II options still significantly 

improves over the current design. NSGA-II is very consistent with its utilisation, suggesting it 

may have hit the upper limit of utilisation of engineers for the area. 

Overall, it can be said that the GA based algorithms performed better for our multi-objective 

problem in both the fitness function (single objective GA) and multi-objective based variations. 

Additionally, although the PSO based algorithms performed worse, if the problem is 

geographical in nature, the performance of PSO algorithms could be increased if the search 

space is organised geographically. This perhaps suits the underlying model of the PSO 

algorithm better.   

5.6 Discussion 

This chapter discussed the different optimisation methodologies first proposed to tackle the 

multi-objective mobile field workforce area optimisation problem. It discussed the need to 

compare both single objective optimisation algorithms and multi-objective optimisation 

algorithms. The chapter then introduced employing fuzzy systems to certain elements of the 

system, namely task allocation and patch construction. This lead to a significant improvement 

to both travel and patch balancing, the two objectives most affected by these fuzzy systems.  

A discussion on upgrading of the type-1 fuzzy systems to type-2 systems was given,  to analyse 

if there was further benefit to be gained.  

It was explained why traditional single objective GAs cannot fully handle optimisation 

processes with multiple objectives, especially when those objectives are conflicting. As a 

result, multi-objective genetic algorithms were introduced, specifically NSGA-II. This gave 

the optimisation process the ability to compare the results of the individual objectives between 

possible solutions and rank them accordingly.  
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As the proposed system is designed to tackle a real-world problem with real-world data, there 

are many uncertainties. Thus, justifying the development of the fuzzy systems.  

To fully evaluate each aspect of the proposed system, several experiments were conceived and 

executed. Each were designed to assess the impact of the different methodologies. The results 

of these experiments showed that a multi-objective system was able to optimise in more 

objectives than a single objective system. The results also showed that including type-1 fuzzy 

logic systems on the task allocation and the patch construction parts of the optimisation 

improved the results the system generated. With one example showing that we could have 

better performance in all objectives when compared to the SOGA system that employed crisp 

logic. With some minimisation objectives being reduced by up to 94.78%.   

The results showed that upgrading the type-1 fuzzy logic systems to type-2 further improved 

on the results, giving up to 151% improvement over type-1 fuzzy in some instances. As this is 

a real-world problem being tackled, there are many aspects that could be improved upon to 

have a system that generates even stronger results. One area of improvement is where the 

parameters of the type-2 systems could be optimised.  

The final section compared both a genetic algorithm-based solution against a particle swarm 

optimisation-based solution.  This comparison has been extended to multi-objective versions 

of these algorithms using NSGA-II as the multi-objective GA and MOPSO as the multi-

objective PSO.  

The GA has, on average, increased utilisation by 2.12% when compared to PSO. GA has also 

improved on average in the balancing objective, improving by 14.52%, or reducing the 

difference by an extra 62.24 hours. 

For the multi-objective variations, NSGA-II performed better than the MOPSO. NSGA-II is 

5.48% better in utilisation and 59.40% better in balancing. NSGA-II also has a better standard 
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deviation with an 82.80% improvement in utilisation and 74.69% improvement in balancing, 

so its results are more consistent. Additionally, it was found that representing the search space 

geographically for the PSO based algorithms improved the results, however not enough to 

outperform the GA based algorithms. 

The next chapter will discuss the proposed improvements to this system by utilising cloud 

resources and addressing many-objective optimisation.  
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Chapter 6. The Optimised Many-Objective 

Optimisation Cloud-Based System 

The preliminary results given in section 6.4 indicated that a genetic algorithm-based system 

would be the most appropriate, with fuzzy logic systems in place to support some of the key 

decision making processes (i.e. the task allocation in the simulation and the patch construction). 

Both type-1 and type-2 fuzzy systems were implemented and evaluated. 

Given that a foundation in which to build and develop the system has been established, it is 

important to continue to enhance the system’s modules and complete more comprehensive 

research and analysis.  

This chapter addresses several enhancements to the system, including its framework, 

scalability, advanced tuning and optimising for many-objectives.  

The first two points to be addressed will be the framework and advanced tuning methods. The 

proposed enhancements to the system are illustrated in Figure 6.1. The two fuzzy systems used 

within the tool will be optimised by a separate genetic algorithm, as opposed to just being 

designed by an expert. The purpose of this is that there are many geographical regions, which 

change frequently, it is challenging to have a human expert continuously update the fuzzy 

systems for each area to keep them relevant. Details on the optimisation of the fuzzy systems 

can be found in Section 6.1. 

The framework of the tool will be updated to allow the genetic algorithm to take advantage of 

multiple CPUs by creating multiple threads during the evaluation stage of the optimisation. 

The evaluation stage is the most computationally expensive part of the optimisation because it 

requires the simulation to run on every generated solution.  
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Currently, the system requires the user to enter parameters, such as the number of patches to 

optimise for and the various GA specific parameters (number of generations, population size 

etc.). Once the user then confirms the settings and starts the optimisation process, the system 

will check if it should optimise the fuzzy systems that will be used. If yes, the system will use 

a GA to optimise the membership functions. If the system has been selected to use type-2 fuzzy 

systems, it will then proceed to optimise the Footprint of Uncertainty (FOU) of each 

membership function.  

 

Figure 6.1: The Proposed Cloud-based Many-Objective Type-2 Fuzzy Logic Based 

Mobile Field Workforce Area Optimisation System 

For each GA used in the proposed system, including those that optimise the fuzzy systems, 

multiple threads will be created at the point each solution in the population is about to be 

evaluated. In this way, the solutions can be evaluated in parallel, and this will have the potential 

to decrease the optimisation time [85]. This is where multiple threads are best placed because, 
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as mentioned, the evaluation of each solution takes the most time plus this step does not require 

all other solutions to be available, such as in the selection and crossover steps.  

Once the fuzzy systems have been optimised, the system will simulate the current design. This 

run of the simulation is designed to get the objective values of the design currently being 

utilised by the mobile workforce, so that these values can be used for comparisons or 

benchmarking.  

When the current design has been evaluated, the NSGA-II will start the optimisation process. 

It will create a population of solutions and evaluate each one, giving each solution, a value 

based on the proposed distance metric. The proposed distance metric is used to help address 

some of the weaknesses in NSGA-II when it comes to many-objective problems, see Section 

7.2 for more details. 

Multiple threads will again be created, and the population will fork into these threads, splitting 

the population evenly between the threads. Once all solutions have been evaluated, the 

population will join back up again allowing the NSGA-II to operate as normal and start 

calculating the dominance of each solution, creating the fronts. Because of the many-objective 

issues we have outlined, with all solutions ending up on the Pareto front, the distance metric is 

used to help with parent selection. 

If the stopping criteria for the algorithm are met, then the latest Pareto front of solutions will 

be presented to the user with the solution that has the highest distance value being highlighted 

as the best, or most recommended, result.  
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6.1 Genetically Optimised Fuzzy Systems 

Fuzzy Logic Systems have been shown to handle imprecisions and uncertainties within an 

environment. The majority of FLSs are type-1 based and therefore cannot fully handle the 

imprecisions and uncertainties presented by dynamic environments whereas type-2 systems 

have demonstrated they can outperform type-1 systems in these environments [86], [87], [88]. 

Additionally, when some fuzzy systems are created their membership functions are generated 

by a human expert.  These membership functions could then be sub-optimal and therefore need 

to be tuned to perform well in a changing environment. When a type-2 system is used the 

uncertainty also needs to be calibrated to suit the environment the FLS will be used on. 

Wagner [89] looked at this issue and proposed using a GA to tune the membership functions 

of a type-2 fuzzy set. 

As the proposed system will be used in multiple problem environments, its membership 

functions cannot be tuned offline because it is unknown which set of working areas the user 

will be optimising. Therefore, in our proposed system the membership functions and FOUs 

will be tuned using a Real-Valued GA at the start of each optimisation process. The genes of 

each solution will represent the points each membership function has along the x-axis.  

Figure 6.2 shows an example of a chromosome for the parameters of the membership functions 

of two type-1 fuzzy sets. Each membership function will have four points associated with it 

giving a total of eight genes. The first four values are for the first membership function 

parameters, and the last four values are for the second membership function parameters.  

Figure 6.3 shows an example of a chromosome for the uncertainty associated with type-1 fuzzy 

sets.  Each gene represents the uncertainty percentage associated with the base values of the 
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type-1 fuzzy sets to result in the upper and lower membership functions of the type-2 fuzzy 

sets. 

 

Figure 6.2: Real-Value Chromosome for the Parameters of Two Type-1 Fuzzy Sets 

Membership Functions. 

 

Figure 6.3: Real-Value Chromosome for Percentage Uncertainty Associated with the 

Type-2 Fuzzy Sets 

  

Figure 6.4: Resulting Type-2 Membership Functions from Chromosomes 

Figure 6.4 shows the resulting type-2 fuzzy set, given from the genes in Figure 6.2 and Figure 

6.3. This GA will evaluate the fuzzy systems on their primary purpose for ten seeded 

chromosomes. So, for the PCFLS it will evaluate how much the proposed membership function 

improves on the patch balancing objective. For the TAFLS, the system will evaluate how much 

improvement there is to the coverage to travel ratio. Once the ten solutions have been evaluated, 

the fitness of the solution is the average objective value from these ten solutions.  

For the type-2 fuzzy systems, the uncertainty tuning happens after the membership function 

tuning has taken place.  
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6.2 Many-Objective Distance Metric  

The proposed distance metric is used to help the parent selection process and suggest the best 

result to the user. The distance metric for our given objectives is shown by (6-1) 

𝐷𝐼𝑆𝑇 = (
𝐶𝑠−𝐶𝑜

𝐶𝑜
−

𝑇𝑠−𝑇𝑜

𝑇𝑜
+

𝑈𝑠−𝑈𝑜

𝑈𝑜
−

𝐴𝐵𝑠−𝐴𝐵𝑜

𝐴𝐵𝑜
−

𝑇𝐵𝑠−𝑇𝐵𝑜

𝑇𝐵𝑜
)          (6-1) 

𝐷𝐼𝑆𝑇 =  
𝑁𝑒𝑤−𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙

𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙
                                  (6-2) 

In Equation (7-1) the coverage is given by the new solution (𝐶𝑠) and the coverage given by the 

original (𝐶𝑂). The travel value given by the new solution (𝑇𝑠) and the travel value given by the 

original (𝑇𝑂). The utilisation given by the new solution (𝑈𝑠) and the utilisation given by the 

original (𝑈𝑂). The area balance given by the new solution (𝐴𝐵𝑠) and the area balance given by 

the original (𝐴𝐵𝑂). Finally, there is the team balance given by the new solution (𝑇𝐵𝑠) and the 

team balance given by the original (𝑇𝐵𝑂).  

Each objective in (6-1) calculates the distance using (6-2). This change in objective value is 

normalised over the original value, giving the distance as a value between 0 and 1 for each 

objective. 

Coverage and utilisation are both maximisation objectives and add to the distance value. The 

remaining objectives are minimisation objectives, so they subtract from the distance value. This 

is, for example, if the travel value in the new solution is lower than the original, it will give a 

negative distance for that objective, and so subtracting this negative value increases our overall 

distance value, giving us an indication that this solution is stronger. 

It is worth noting that for this distance metric to work there needs to be original values. If we 

do not have a base to compare to, we do not know if we have improved over the currently 

implemented solution. Thus, making it difficult to assess the real-world impacts of the work.  
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This metric could be used if there are no original results, for example creating new patches 

where there weren’t any before. However, this would require the new patches to be designed 

by an expert or by a GA process that does not use the distance metric. Such as how new patch 

designs were created in Section 6. Once these “original” results have been created, then this 

proposed system could be used to improve upon these results. 

6.3 Cloud-Based Optimisation 

As mentioned, one of the first enhancements to the system is to do with framework and 

scalability. It has been discussed how the solution evaluation of the GA will support multi-

threading. This is immediately beneficial to the speed of the optimisation for desktop 

computers the tool is run on. However, this also means more CPU resource is allocated to the 

tool, and the user will have less resource to carry out other tasks while the optimisation is taking 

place.  

One way around this is using a server, or cloud resource to run the tool on. This not only has 

the benefit of completely freeing up the user's personal machine, allowing them to complete 

tasks unhindered, but cloud resources typically have more processing power and more cores 

than a typical desktop machine.  

The downsides to utilising cloud resources are security and accessibility. If the security of the 

cloud is not maintained, the sensitive data (from engineers) is at risk. If the cloud servers go 

down or receive too many requests (such as in a Distributed Denial of Service attack), the tool 

may become inaccessible. This requires there to be a reliance on a competent and responsive 

cloud maintenance team.  
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6.4 Experiments and Results for the Cloud-Based 

Optimised Many-Objective Optimisation System 

The first set of experiments in this section are the comparison of the un-optimised, and the GA 

optimised fuzzy systems. These results include a comparison of both genetically optimised 

type-1 fuzzy systems and type-2 fuzzy systems. 

The second set of results will look at the benefits brought to this system by multi-threaded 

cloud computing.  

6.4.1 Comparison of Genetically Optimised Fuzzy Systems 

An aim of one of the experiments is to compare a system that used type-1 fuzzy sets and type-

2 fuzzy sets both tuned and untuned by a genetic algorithm. However, because of the problems 

associated with many-objective optimisation, a solution was needed to solve the problem of 

Pareto front saturation simultaneously. As a result, the proposed distance metric is used to help 

evaluate dominating solutions.  

As the distance metric needs comparison scores to work from, an area in the real-world 

environment was selected based on its need for optimisation. The current designs for these 

active patches were created by experts who have local knowledge about the area.  

Coverage 

(%) 

Travel 

(km) 

Utilisation 

(%) 

Balance 

(Hours) 

Team Balance 

(People) 

74.6 7.00 74.03 428.74 71 

Table 6-1 Current Benchmark Values 

Once we had chosen a suitable area to optimise we simulated that area to see what performance 

levels it was currently operating at. These values can be seen in Table 6-1. 
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6.4.1.1 Quantitative Analysis 

The initial test was to run the optimisation with untuned type-1 PCFLS and TAFLS.  This 

configuration of optimisation was repeated for the same area 10 times. For each run, the best 

result based on the distance metric is shown in Table 6-2. 

 Coverage 

(%) 

Travel 

(km) 

Utilisation 

(%) 

Balance 

(Hours) 

Team Balance 

(People) 

Dist. Val 

 87.86 2.75 87.19 117.48 19.00 0.48 

 87.20 3.33 86.53 302.15 30.00 0.36 

 90.50 3.19 89.81 321.14 49.00 0.31 

 94.46 2.92 93.74 253.84 38.00 0.40 

 86.14 4.12 85.48 258.32 14.00 0.38 

 91.10 4.55 90.41 278.15 26.00 0.36 

 93.41 3.08 92.70 150.86 24.00 0.47 

 90.19 4.04 89.50 221.18 20.00 0.41 

 89.41 3.56 88.73 202.13 40.00 0.37 

 84.72 3.16 84.07 362.07 53.00 0.25 

Avg. 89.50 3.47 88.82 246.73 31.30 0.36 

SD 3.09 0.59 3.07 75.73 13.19 0.07 

Table 6-2 Results from Untuned Type-1 Fuzzy Systems 

The average of these ten runs is shown, in bold, on row 12 (with row 1 being the header row) 

and the standard deviation of each objective in bold on row 13. We can then see that the 

distance metric used on the average of the ten runs, gives the value 0.38 for the system with 

untuned type-1 systems.  

The experiment was repeated with the genetic tuning of the type-1 membership functions. The 

best solution from each of these ten runs can be seen in Table 6-3. Row 12 shows the average 
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of the ten solutions for each objective and gives us a distance value of 0.41. An improvement 

on the untuned type-1 system of 8.40%. 

A comparison of the standard deviation (SD), of the un-tuned and tuned systems, can also be 

made. With the tuned system's SD for the patch balance and team balance objectives improving 

by 9.93% and 43.14% respectively. 

 Coverage 

(%) 

Travel 

(km) 

Utilisation 

(%) 

Balance 

(Hours) 

Team Balance 

(People) 

Dist. Val 

 89.93 3.44 89.24 203.74 26.00 0.42 

 90.15 2.71 89.46 153.65 20.00 0.48 

 86.46 3.25 85.80 247.37 18.00 0.40 

 92.70 4.54 91.99 105.49 14.00 0.48 

 85.28 3.55 84.63 267.11 20.00 0.37 

 85.68 4.31 85.02 230.90 12.00 0.39 

 85.10 3.57 84.44 233.91 10.00 0.42 

 93.37 4.20 92.66 189.72 33.00 0.40 

 88.31 3.11 87.64 237.09 14.00 0.43 

 84.07 3.83 83.43 360.32 28.00 0.29 

Avg. 88.11 3.65 87.43 222.93 19.50 0.41 

SD 3.30 0.57 3.28 68.21 7.50 0.05 

Table 6-3 Results from Tuned Type-1 Fuzzy Systems 

The experiment is then repeated with the type-2 systems. Again, the optimisation is run ten 

times and the best result, based on the distance, is shown for each run. We have put the results 

for the untuned type-2 systems in Table 6-4. The untuned type-2 systems have the same 

membership functions as the untuned type-1 systems. However, they also have 1% uncertainty 

applied to them. This is based on the results in Section 6.4.3 where about 1% uncertainly 

performed the best. 
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Table 6-4 shows that the distance value, based on the average of the ten solutions, is better than 

the untuned type-1 system. The average of these ten runs is 0.40 compared with the untuned 

type-1 result of 0.36. The type-2 untuned gives an 11.11% improvement over the type-1 

untuned system. This strengthens the case for type-2 systems being applied to this domain. 

However, the results also show that the untuned type-2 systems performed slightly worse than 

the tuned type-1 system, by about 2.44%. This result suggests that tuning a type-1 system can 

improve the results by taking some of the uncertainty out of the membership functions. Given 

that type-2 fuzzy sets are designed to handle this uncertainty, it is reasonable for this to be the 

reason.  

 Coverage 

(%) 

Travel 

(km) 

Utilisation 

(%) 

Balance 

(Hours) 

Team Balance 

(People) 

Dist. Val 

 90.74 2.45 90.04 147.40 28.00 0.47 

 92.01 3.72 91.30 106.31 11.00 0.51 

 84.31 4.83 83.66 223.52 11.00 0.39 

 89.12 3.91 88.44 180.32 17.00 0.43 

 83.42 2.92 82.78 261.61 16.00 0.40 

 83.57 3.97 82.93 322.10 31.00 0.30 

 91.24 3.73 90.54 230.78 38.00 0.37 

 89.83 3.46 89.14 285.34 42.00 0.33 

 91.12 2.30 90.42 247.30 46.00 0.38 

 85.60 3.19 84.95 224.93 18.00 0.41 

Avg. 88.10 3.45 87.42 222.96 25.80 0.40 

SD 3.47 0.76 3.44 64.12 13.01 0.06 

Table 6-4 Results from Untuned Type-2 Fuzzy Systems 
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Finally, the tuned type-2 system was run ten times. Table 6-5 gives us the results of the tuned 

type-2 systems. Here we can see the tuned type-2 performed better, on average, than the 

untuned type-2 by 10.00% (0.40 vs 0.44) and performed better than the tuned type-1 by 7.23% 

(0.41 vs 0.44). Additionally, we can see that the tuned type-2 systems gave results with a 

smaller average standard deviation in Coverage, Utilisation and Patch Balancing than all other 

systems, meaning these results are more reliable and we can expect more consistency from the 

tuned type-2 systems. 

Again, we can compare the improvement of the SD for the balance and team balance objectives 

in both the untuned and tuned type-2 systems. With area balance improving by 18.70% and the 

team balance improving by 11.99%.  

 Coverage 

(%) 

Travel 

(km) 

Utilisation 

(%) 

Balance 

(Hours) 

Team Balance 

(People) 

Dist. Val 

 90.72 3.25 90.03 155.48 24.00 0.45 

 90.45 4.29 89.76 275.61 38.00 0.37 

 92.91 3.59 92.20 131.11 8.00 0.51 

 88.43 2.44 87.75 174.89 36.00 0.42 

 91.05 2.68 90.35 190.63 30.00 0.44 

 90.75 3.67 90.05 140.34 7.00 0.50 

 87.44 3.14 86.77 206.36 31.00 0.40 

 87.23 3.62 86.56 186.20 12.00 0.44 

 92.19 4.50 91.48 128.64 15.00 0.46 

 87.58 3.91 86.91 223.40 19.00 0.40 

Avg. 89.88 3.51 89.19 181.26 22.00 0.44 

SD 2.06 0.65 2.04 46.05 11.45 0.05 

Table 6-5 Results from Tuned Type-2 Fuzzy Systems 
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6.4.1.2 Subjective Analysis 

The results can be compared visually to analyse the results from a subjective view. Figure 6.5 

shows the current design. Area “1” in Figure 6.5 is a large urban area. Because this large urban 

area is all in one patch, it results in the large imbalance of the patches given in Table 6-1. 

Figure 6.6, Figure 6.7, Figure 6.8 and Figure 6.9 show a ‘best’ result from each of the system 

configurations that we ran experiments for in Section 7.4.1.1. Figure 6.6 shows the untuned 

type-1 system split this large urban area up into two patches, which is a reasonable proposal as 

this much improves the area balance over the current design. Having three patches for this large 

urban area will likely improve the result further.  

 

Figure 6.5: Current Patch Design 

 

Figure 6.6: A Type-1 Un-Tuned Solution 

1 
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The idea of needing three patches is supported by Figure 6.7, which shows a tuned type-1 

design that has splits the area into three and improved on the balancing objective. However, 

because area “1” in Figure 6.7 is small and area “2” is so large, it impacts on the travel, and 

subsequently the coverage. 

 

Figure 6.7: A Type-1 Tuned Solution 

 

Figure 6.8: A Type-2 Un-Tuned Solution 

Figure 6.8 shows us an untuned type-2 result. It splits up the urban area into three patches 

which is good, but area “3” extends far away from the urban area. Similar to Figure 6.7. The 

similarities of Figure 6.7 and Figure 6.8 are backed up by the similar results of the type-1 tuned 

and the type-2 untuned results in Table 6-3 and Table 6-4. 

Visually, it is clear from Figure 6.9 that the tuned type-2 result is more logical. The urban area 

is split into three equal patches (1-3) with the rural patches outside and much larger.  

1 

2 

1 

2 
3 
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Figure 6.9: A Type-2 Tuned Solution 

6.4.2 The Speed of Optimisation Results 

The first experiments, for improving the speed of the optimisation process, will consist of 

evaluating the time difference of running the system on the current hardware, compared to 

running the system in the cloud. These tests include splitting the population into multiple 

threads as well as comparing just the single thread option. 

The model of CPU in the standard laptop that runs the desktop application version of the tool, 

is an Intel Core i5-4300U, whereas the model of CPU in the Cloud is stated to be an Intel Xeon 

E5-2680. A comparison of the specification of the laptop and the cloud is given in Table 6-6. 

Clearly, the cloud has much more processing resources available. The use of the cloud helps 

solve the problem of resource scarcity with personal devices such as laptops. 

Hardware Comparison Laptop Cloud 

CPU Clock Speed 2 x 1.9GHz 8 x 2.7GHz  

CPU Threads 4 16 

RAM 4GB 32GB 

Table 6-6 Optimisation Hardware Comparison 

The experiments in Section 6.4.1 have established that the type-2 tuned fuzzy logic version of 

the optimisation system is the strongest. We can look at the potential benefits of utilising cloud 

resources. Figure 6.10 shows the comparison of how long a GA (and MOGA) would take. This 

is important as if we want to use the type-2 tuned fuzzy systems we add two additional GAs 

1 

2 

3 
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into the optimisation process (one for the membership functions and one for the FOUs). Figure 

6.10 gives us an indication of the level of improvement we would expect, before moving onto 

GAs with larger populations.  

 

Figure 6.10: Optimisation Times 

In Figure 6.10, we can see that on the laptop for a population size of 100 and the old single-

threaded model it takes approximately 12 minutes to complete the optimisation. However, if 

the system is moved into the cloud and run the same optimisation, with a population of 100, 

the time taken to optimise can be dramatically reduced. The overall time is reduced by 

approximately 66.66% to about 4 minutes. This is clearly just due to the extra CPU resources 

available in the cloud. We can then increase the population and measure the increase in time in 

the cloud. The optimisation was then run with a population of 200, giving an average 

optimisation time of 8 minutes. Doubling the population size again, to 400, and the optimisation 

takes 14 minutes. This tells us that we can quadruple the population size in the optimisation, 

and on the cloud and it only takes 16.67% longer.  

However, this is just the single threaded model. If the CPU power is utilised as much as possible 

the optimisation time can be further reduced. By increasing the number of threads to two, we 
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can reduce the time taken to optimise on the laptop by about 33.33% to 8 minutes. However, 

the reduction in optimisation time is greater in the cloud, as the optimisation time is reduced to 

approximately 2 minutes 23 seconds. By adding multi-threading capabilities to the system and 

moving the system into the cloud, we can reduce the optimisation time form approximately 12 

minutes to 2 minutes 23 seconds, give a reduction in time of about 9 minutes and 37 seconds, 

or about 80.14 %.  

By increasing the threads, the optimisation time can be further reduced. However, there is 

evidence of diminishing returns having a significant effect. Increasing the number of threads 

to four reduces the average time to 2 minutes 17 seconds. Increasing the number of threads to 

8 reduces the time to approximately 2 minutes for a population size of 100. Giving a total 

reduction in time of 10 minutes, or 83.33% 

Due to this significant time reduction in the multi-threaded model, the population size can be 

increased as was done with the single threaded model. If we increase the population size to 200 

we get times of 3 minutes 12 seconds for two threads, 4 minutes 21 seconds for four threads 

and 3 minutes 42 seconds for eight threads. The minor fluctuations in time can be attributed to 

a few causes. It could be that there were a different number of processes taking place in the 

cloud at the time of optimisation, thus affecting the time to optimise. This is one of the minor 

drawbacks, as there may not be total control over the available resources in the cloud. 

Additionally, it could be that there needs to be a minimum number of solutions per thread to 

have a practical benefit. For example, if a population of 200 is split into eight threads then that 

is only 25 solutions per thread.  

If the population is increased to 400, we get times of 8 minutes for two threads, 7 minutes 27 

seconds for four threads and 7 minutes for eight threads. The continued reduction in time seems 
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to support the theory of a minimum number of solutions per thread to have maximum time 

benefit.  

Overall, for the time experiments, we can conclude that moving the system to the cloud and 

adding multi-threading capabilities significantly improve the time. However, some tuning may 

be required to optimise the number of threads to be used, to gain the most time benefit. With 

this reduced time to optimise we can then increase the population size in the optimisation to 

400. This gives us a similar time to optimise in the cloud when compared to the time to optimise 

on the laptop with a population of 100 and two threads.   

6.4.3 The Increased Population Results 

Now that significant time benefit has been gained, because the system now runs in the cloud, 

the population size can now be increased, thus covering more of the search space. However, 

the aim here is to see if increasing the population size gives improved results. As if there is 

minimal benefit in the results of the optimisation, then it may be that the most benefit from 

moving the system to the cloud is just time. Thus the population should stay at 100 to gain the 

most time benefit.  

The optimisation with the type-2 genetically optimised fuzzy systems selected is used in the 

following experiments due to the results from section 7.4.1. We increased the population to 

200, and the results of this experiment are given in Table 6-7 

The optimisation was run five times, smaller than the 10 for the other experiments. However, 

the standard deviation (SD) is significantly reduced due to the increase in population size. It 

has been reduced from 0.05 to 0.02 or by 60%. In addition to more consistent results, the results 

give improved objective values and result in an increased average distance value of 0.06 or 

13.64%. Perhaps more significantly this increased population size has helped the NSGA-II and 

the many-objective problem, as all five objectives are improved over the average results of the 
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type-2 tune system with a smaller population given in Table 6-5 

 Coverage 

(%) 

Travel 

(km) 

Utilisation 

(%) 

Balance 

(Hours) 

Team Balance 

(People) 

Dist. Val 

 90.60 2.76 90.10 153.48 20.00 0.48 

 89.66 3.38 89.16 93.84 4.00 0.53 

 90.96 3.13 90.45 92.66 17.00 0.51 

 92.77 4.59 92.26 84.71 8.00 0.50 

 90.91 3.58 90.40 105.00 16.00 0.49 

Avg. 90.98 3.49 90.48 105.94 13.00 0.50 

SD 1.13 0.69 1.12 27.54 6.71 0.02 

Table 6-7 Results from Increasing Population to 200 

The next experiment involved running the optimisation with a population of 400. These results 

can be found in Table 6-8. The standard deviation is the same as a population of 200. However, 

the average distance value has increased to 0.52, an increase of 4%. As with the population of 

200, all objectives have been improved over the average results given in is Table 6-5. 

Additionally, these results improve in 4 out of 5 objectives when compared to the population 

of 200 results.  

A summary of the average results can be found in Table 6-9. Where T1 means type-1 fuzzy 

systems and T2 means type-2 fuzzy systems. T2_POP200 and T2_POP400 are the tuned type 

2 systems with populations of 200 and 400 respectively. All the results improve over the 

original, in all objectives. This is a result of using the fuzzy systems with a multi-objective 

genetic algorithm. We have also shown that tuning any fuzzy system that is to be used will 

improve the results and showing that the tuned type-2 systems improve the results the most.  
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 Coverage 

(%) 

Travel 

(km) 

Utilisation 

(%) 

Balance 

(Hours) 

Team Balance 

(People) 

Dist. Val 

 92.10 3.55 91.59 102.89 14.00 0.51 

 87.26 2.87 86.78 137.65 8.00 0.50 

 92.45 4.17 91.94 100.40 9.00 0.50 

 92.74 2.72 92.23 102.55 10.00 0.54 

 92.49 2.98 91.98 115.19 8.00 0.54 

Avg. 91.41 3.26 90.90 111.73 9.80 0.52 

SD 2.33 0.60 2.32 15.61 2.49 0.02 

Table 6-8 Results from Increasing Population to 400 

 
Coverage 

(%) 

Travel 

(km) 

Utilisation 

(%) 

Balance 

(Hours) 

Team Balance 

(People) 

Dist. Val SD 

Current 

 

74.60 7.00 74.03 428.74 71.00 - - 

T1 

 

89.50 3.47 88.82 246.73 31.30 0.38 0.07 

T2 

 

88.11 3.65 87.43 222.93 19.50 0.41 0.05 

T1_Tuned 

 

88.10 3.45 87.42 222.96 25.80 0.40 0.06 

T2_Tuned 

 

89.88 3.51 89.19 181.26 22.00 0.44 0.05 

T2_POP200  90.98 3.49 90.48 105.94 13.00 0.50 0.02 

T2_POP400 91.41 3.26 90.90 111.73 9.80 0.52 0.02 

Table 6-9 Cloud Optimisation Results Summary 

Due to the availability of cloud resources and the modification of the software to support multi-

threaded genetic algorithms, we can improve the optimisation process in 2 ways. The system 

can either run the optimisation in a greatly reduced time or we can run it for the same time, but 

with a greatly increased population size. The increase in population has produced even stronger 

and more consistent results. Improving by as much as 18.18% if the population is increased to 

400. 



 

121 

 

6.4.4 Comments on the Experiments and Results 

In this section of the results, a cloud-based many-objective type-2 fuzzy logic based mobile 

field workforce area optimisation system has been presented. The cloud in this context was 

secure on-site hardware with more CPU capacity and more multi-threading capabilities. Due 

to high-levels of security, the data had to remain on BT premises and thus BT’s own internal 

‘Cloud’ systems were used. These results have demonstrated the need to optimise any fuzzy 

logic system used in the optimisation process. The optimisation of our type-2 fuzzy logic 

system improved the results by 10.00%. Additionally, the potential practical benefits have been 

explained.  

Potential improvements in results can be gained from moving the system from personal 

hardware to the cloud. This allows the optimisation process to run much faster, by as much as 

83.33%, allowing the population size of the genetic algorithm to be increased by 300%. This 

increase in population resulted in better results. These results improved, on average, in all 

objectives when compared to the smaller population tests by as much as 18.18%.  

These improvements allow the system to be effectively used on a daily basis. The users of the 

system will still run it for the same amount of time but are presented with better results. In 

addition to this, their CPU’s are freed up, and they can run the optimisation as long as they 

want, without having to worry about shutting off their laptops for travel purposes. One of the 

key benefits of cloud computing.   
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6.5 Discussion 

This chapter presented a many-objective fuzzy logic system for the optimal design of patches. 

This system includes a distance metric for analysing the solutions that are generated by a multi-

objective optimisation algorithm, and ultimately resulting in a single recommended solution 

that can be given to the user. I tested this metric on a system where we changed the type of 

fuzzy logic used and compared the effect tuning of these systems had on the results.  

The chapter demonstrated that a genetically optimised type-2 fuzzy logic system would 

produce better results than an un-optimised type-1 system. The results I obtained showed that 

the optimised type-2 system improved over the un-optimised type-1 system by 15.27% and 

also improved on the standard deviation of the results by almost 35%. Additionally, our results 

also showed the optimised type-2 system improved over the optimised type-1 systems by 

6.34% and reduced the standard deviation by 24.88%. 

The next chapter will discuss the proposed genetic algorithm-based approach for the 

simultaneous optimisation of workforce skill sets and team allocation. This next chapter 

focuses on the resource optimisation problem.   
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Chapter 7.  A Genetic Algorithm Based 

Approach for the Optimisation of 

Workforce Skill Sets and Team Allocation 

This chapter describes the work around skill optimisation, team optimisation and the approach 

for optimising both objectives together. This chapter aims at addressing the weaknesses in 

organisational design related to individuals and resource, as opposed to the geographical or 

management hierarchy addressed in previous chapters. 

7.1 Initial Workforce Skill Set Optimisation System 

Initially, the system created to optimise the workforce skill sets is primarily a real-valued 

genetic algorithm (RVGA). The genes in each of the solutions represent an engineer ID. The 

solution length (number of genes) is related to the number of upskills, where an upskill in the 

next logical skill set for any given engineer. 

The next logical skill set is an important aspect that should have already been decided based 

on the type of engineers an organisation has. These next logical skill sets are designed to build 

upon the skill set the engineer already has. So, for example, if an engineer already has the skills 

of server installation the next logical skill to give this engineer might be server repair rather 

than air conditioning installation. The next logical skill set may also be tailored by technical 

managers who see engineers have an aptitude (or ineptitude) for a particular type of task. 

As with the previous chapters’ method for evaluating good organisational design decisions, 

this system also uses a daily simulation. This simulation is able to estimate the coverage, travel 

and utilisation values for any given solution, i.e. the team and their proposed skills including 

any new skills. This is extremely important as the values given from this simulation are fed 

into the fitness function.  



 

124 

 

The crucial variable for this problem, with respect to the simulation’s task assignment, is the 

skill compatibility of an engineer to a task. From the GA we get the ID’s of engineers to be 

upskilled, so if the simulation comes to one of these engineers, their skill set will be different 

and will contain more skills than if they were not in their upskilled state.  

As a result, the engineer has more tasks to choose from, and their route may be different as a 

result. The way this simulation system is designed means that utilisation and coverage should 

always increase regardless of the skill configurations from solution to solution. This is because 

once the N number of upskilled engineers have been chosen, the order in which engineers are 

selected from the list to simulated will change. The list will choose the engineers with the least 

amount of skills first and leave the engineers with the most amount of skills last. This means 

that there won’t be a situation where an engineer is chosen to be upskilled and are then given 

some of the tasks that a lower skilled engineer could have done.  

In this situation utilisation is likely to be reduced as the low-skilled engineer has fewer tasks to 

choose from, meaning either travelling more to find work (reducing utilisation) or not matching 

with enough compatible tasks to fill all their available hours.    

However, because the upskilled engineer will be further down the list, the minimum the 

engineer will do is exactly the same as if he/she were not upskilled. This ultimately means that 

this engineer is a poor choice to spend time and money on training. This solution is then more 

likely to be lost as the GA evolves. 
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7.2 Simultaneous Optimisation of Skill Sets and Teams 

As described, the proposed optimisation system is a real-valued genetic algorithm based 

solution. The genes in each of the solutions represent an engineer ID. The solution length 

(number of genes) is related to the number of upskills, where an upskill is the next logical skill 

set for any given engineer. Once a team has more skills available, the team dynamic will 

change, and the members of the team may need changing to for the most optimal resource set-

up. This would require team members moving across to neighbouring teams. However, just 

moving engineers may be sufficient. The benefit of this option is that it has no cost attached. 

Choosing the right people is crucial because there is a knock-on effect as to how this will the 

distribution of tasks to the remaining engineers.  

Figure 7.1 shows an example of the real-valued chromosome, where an ID of an engineer is 

stored within each gene. This then tells the simulation that this set of engineers needs to use 

their upskilled skill set. It can also be used to decide which engineers to move to a different 

team.  

 

Figure 7.1: Upskilling Chromosome 

The reason why we do not use a binary valued GA here is that each gene would have to 

represent an engineer that could be upskilled. The GA would then switch on/off engineers to 

be trained, but this would be uncontrolled. The GA could select any number of engineers to 

train and not optimise for the number we have specified. In most situations, the binary GA will 

switch on all engineers to be trained as this gives the most benefit. However, this is not practical 

from a business point of view for several reasons, not least the cost of training all engineers, as 

well as the opportunity cost of the lost time while the engineers are on training courses. 
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One problem with the RVGA that we have controlled for is the chromosome containing 

duplicates of the same engineer ID. As if there is a duplicate the GA will then give a result of 

one engineer less than we wanted. This solution will be penalised and given a zero-fitness 

value, as the solution does not meet the optimisation criteria. 

To simplify the optimisation, not all engineers are eligible to be upkilled. Either they are at the 

maximum level of their skill path, or they do not yet have enough experience to be given 

another higher-level skill. These engineers will be filtered out to avoid redundant selections by 

the GA.  

 

Figure 7.2: Solution creation and evaluation 
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During the solution evaluation section of the GA, shown in Figure 7.2, each solution will take 

the workforce to be optimised and give engineers (that have been selected by the genes) their 

next set of skills. This is the upskill candidates step. The daily simulation will run at the end of 

this step, and the effect of the upskills will be measured. After the upskilling, we have two 

options for moving engineers. We either set a fixed number of engineers to move (N) or try to 

evaluate how many would be the best to move. 

If we have a fixed number, we move onto the next step and move N number of engineers. If 

we want the system to decide how many engineers to move, we start at 0 moves and evaluate 

the effect of increasing the number of moves up to the maximum number we want to test for. 

As a result, N number of moves will be equal to the number of moves that gave the best result.   

Once we have determined N, we select N number of engineers to move to their closest 

alternative team. The alternative team is the one that is geographically closest to them. We do 

not want engineers to travel too far to their first task. The engineers selected here are those 

deemed least utilised, based on the simulation.  

The system then runs the simulation again, once the teams have been altered, and the results of 

this second simulation are put into the fitness function to score the solution. This way the 

selection of the engineers to be upskilled will affect the engineers that will move teams, with 

the hope that both aspects will be considered during the optimisation process, Thus, producing 

better results than upskilling or moving engineers in two separate optimisation systems.   

7.3 Real-World Background  

The developed system has been deployed as part of BT’s iPatch software. Initially, a business 

problem with resource management was highlighted, so I looked at how we could develop the 

iPatch tool to help solve this problem using similar techniques we have had success with before, 

with regards to the geographic optimisation techniques described in Chapters 6 and 7. The 
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resource optimisation problem was originally proposed by BT’s Field Engineering Division 

where they wanted to know which engineers would give the greatest benefit, after they were 

trained in more skills. Although they were the primary stakeholder, one of the focuses was to 

keep the solution to the problem generic, so that it could be applied to other areas of the 

business. We then developed the GA to select any given number of engineers, then simulated 

the effect they would have with new skills.  

We had to model the problem well to give a realistic view of the effect of training the selected 

engineers. The model to evaluate any of the proposed solutions involved simulating an average 

day’s work. This began with setting up the engineers to be as close to reality as possible. The 

engineers were grouped into their current teams, placed at their known starting location, given 

the skills they currently have listed. BT provided this data.  

The simulation then involved allocating the closest tasks to the engineers based on the skills 

they have (and how much time they had left for the day). Further feedback from the 

stakeholders led us to reorder the task allocation so those with few skills would be allocated 

tasks first. A greedy logic was then implemented here so that the list will choose the engineers 

with the least amount of skills first and leave the engineers with the most amount of skill last. 

This meant that highly skilled engineers were not taking jobs from the lower skilled engineers. 

If this happened, those engineers would be poorly utilised, and the higher skilled tasks would 

not be completed because the relevant engineers would be doing something else. 

The simulation was then run on areas and teams where the objective values were roughly 

known so that the simulation results could compare against these. The comparison of the real 

coverage, travel and utilisation were close enough that the stakeholders were happy with the 

simulation as a means of testing solutions to the resource problem. 
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The focus between the stakeholders and us after this point was to discuss how the optimisation 

of upskilling was performing and if the suggestions were logical. After the upskills were seen 

to be logical another problem was highlighted, with under-resourced areas and underutilised 

resources in neighbouring areas. The solution here would be to move engineers between teams, 

but the most optimal solution to this problem was not known. Thus, we set out the discussed 

experiments to investigate this issue. The results presented gave the stakeholders confidence in 

the best methods presented for getting the most out of each engineer.  

7.4 Experiments and Results 

7.4.1 Workforce Skill Optimisation  

In the data there is a list of engineers and their current skill sets and the task data that would be 

presented to them on an average day. This enables us to simulate the overall utilisation of the 

engineers. This initial utilisation value gives us a base value to compare our optimisation 

results. This is important because this initial utilisation value has been created from the current 

system of choosing engineers to upskill, i.e. by managers picking who they think is suitable for 

more training. The original results for the area being tested shown in Table 7-1. 

Coverage 

(%) 

Travel per Engineer 

(km) 

Average Utilisation 

(%) 

90.20 24.84 77.03 

Table 7-1 Benchmark Results for Resource Optimisation 

Our first set of experiments aim to tune the GA. These experiments test whether Tournament 

Selection or Roulette Selection is better for the problem. It also tests if a crossover value of 0.4 

or 0.2 is better for this problem. Tables Table 7-2 to Table 7-5 outline these results. The 

following results are for five upskills. This means the system will try to pick the five best 

possible candidates to be trained to their next logical skill set. 
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  Coverage  

(%) 

Travel 

 (km) 

Utilisation  

(%)  
94.12 25.61 80.38 

 
94.01 26.02 80.29 

 
94.06 25.48 80.33 

 
93.94 25.23 80.23 

 
94.12 25.10 80.38 

Average 94.05 25.49 80.32 

 Table 7-2 Tournament Selection with Crossover of 0.4 

  Coverage  

(%) 

Travel  

(km) 

Utilisation 

 (%)  
94.01 25.61 80.29 

 
94.01 25.88 80.29 

 
94.12 25.48 80.38 

 
93.94 25.23 80.23 

 
94.05 25.57 80.32 

Average 94.03 25.55 80.30 

 Table 7-3 Tournament Selection with Crossover of 0.2 

  Coverage 

 (%) 

Travel  

(km) 

Utilisation  

(%)  
93.90 26.07 80.20 

 
93.90 25.75 80.20 

 
93.63 25.70 79.97 

 
94.01 25.63 80.29 

 
93.73 25.64 80.05 

Average 93.83 25.76 80.14 

 Table 7-4 Roulette Selection with Crossover of 0.4 
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Coverage 

(%) 

Travel 

(km) 

Utilisation 

(%)  
93.44 25.43 79.80 

 
93.42 25.62 79.79 

 
93.96 25.53 80.25 

 
93.90 26.16 80.20 

 
93.76 25.40 80.08 

Average 93.70 25.63 80.02 

 Table 7-5 Roulette Selection with Crossover of 0.2 

From the results in Table 7-2 to Table 7-5 there is no statistical significance between a 

crossover rate of 0.2 and 0.4 for either method. However, for the coverage and utilisation 

objectives, Tournament selection performed statistically significantly better. Taking the 0.4 

crossover rates results as an example (Table 7-2 and Table 7-4), the one-way ANOVA P-

Values are 0.022, 0.171 and 0.023 for Coverage, Travel and Utilisation respectively. The travel 

value is difficult to assess from a P-Value perspective because travel should increase the better 

the result, so a P-Value comparison would not be able to tell if the values weren’t significantly 

different because of a bad result, or a good result that required a bit higher travelling. On this 

point, Tournament Selection also produced a lower average travel rate than Roulette Selection. 

As mentioned it is typical for travel to increase the more tasks that are covered. This increase 

in coverage and reduced increase in travel explains the overall increase in utilisation. Based on 

these results Tournament Selection is the selection method we will proceed with. The crossover 

rate will be 0.4, based on this being our default value and 0.2 makes no difference.  

Our second set of results focus on the number of engineers to be upskilled vs the benefit from 

the upskill. Table 7-6 and Table 7-7 add to the results we already have from Table 7-2 as the 

following results used Tournament selection with a crossover rate of 0.4. 
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Table 8-2 gives us the results for 5 upskill, Table 8-6 gives the results for 10 upskills and table 

8-7 gives the results for 15 upskills. 

  Coverage 

 (%) 

Travel  

(km) 

Utilisation  

(%)  
95.19 26.33 81.30 

 
95.02 25.72 81.16 

 
95.19 26.21 81.30 

 
95.00 25.62 81.13 

 
94.94 26.64 81.09 

Average 95.07 26.10 81.20 

Table 7-6 Optimisation with 10 Upskills 

 

  Coverage  

(%) 

Travel  

(km) 

Utilisation  

(%)  
95.33 25.86 81.42 

 
95.28 26.47 81.37 

 
95.09 25.52 81.21 

 
95.33 25.92 81.42 

 
95.27 26.39 81.36 

Average 95.26 26.03 81.35 

Table 7-7 Optimisation with 15 upskills 

The maximum number of engineers who can be upskilled, for the area the experiments are 

being run on, is 107 out of 141. The remaining 34 engineers already hold the maximum amount 

of skills available to them. The results for the maximum number of possible upskills are shown 

in Table 7-8. 
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Coverage  

(%) 

Travel per Engineer 

(km) 

Average Utilisation 

(%) 

95.36 24.75 81.45 

Table 7-8 Maximum Number of Upskills for Test Area 

Given that we now have the original results, results for 5, 10, 15 and maximum upskills we can 

plot them to see the level of diminishing returns for each upskill. This is important as the 

number of upskills directly correlates to training costs.  Figure 7.3, Figure 7.4 and Figure 7.5 

show the graphs for the number of engineer upskilling vs the coverage benefit, utilisation 

benefit and travel cost respectively. 

 

Figure 7.3: Coverage Benefit 

 

Figure 7.4: Utilisation Benefit 
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Figure 7.5: Travel Cost 

Figure 7.3 and Figure 7.4 show that the most benefit per upskill is gained within the first five. 

After this, the benefit of both coverage and utilisation is greatly reduced. The benefit to 

coverage and utilisation becomes almost negligible after 15 upskills.  

Figure 7.5 shows the average travel per engineer, which for the first 10 upskills increases 

linearly. However, after this point travel starts to be reduced with a significant drop at 

maximum upskills. This is likely because engineers have many more tasks to choose from that 

are closer to their current location, allowing them to always choose the closest task.  

From this, we can say the only significant benefit gained after ten upskills comes from the 

reduction in travel.  

If we compare the genetic algorithm based system with the current manual system, (where 

managers choose engineers they think are suitable for more training, results shown in Table 8-

1), the results show that using this system to select employees for training has a 4.27% increase 

in overall employee utilisation, with only 3.52% of the workforce being trained (5 out of 141 

engineers in the workforce). It also shows that there is a 5.41% increase in overall engineer 

utilisation when 7.04% is selected to be trained (10 out of 141 engineers in the workforce). 

This shows that the first few employees to be selected for training can produce the most benefit 

so selecting the right people is crucial and hence the proposed use of genetic algorithms for 
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this problem should be used. At this point, there is a potentially an exponential level of 

diminishing returns on employee utilisation 

7.4.2 Simulaneous Optimisation of Skills and Teams  

In the following experiments, which investigate the impact moving engineers has on the 

optimisation of the teams, we selected a region to optimise. This region contained eight sub-

regions. Each sub-region contains patches. The teams are allocated to the patches, and any team 

reorganisation at the sub-region level involves moving engineers between the patches. These 

experiments build on from the experiments in the previous section and used the system laid out 

in Figure 7-2 of section 7.2. 

Table 7-9 to Table 7-16 shows the optimisation results for each sub-region. The tables show 

the original results from the current teams with their current skill sets. Then each column shows 

the results from a different experiment with the aim of improving in the three objectives. The 

results shown from these experiments are the average of five runs of each of the experiments. 

The full results for the simultaneous optimisation methods can be found in our hypervolume 

analysis, section 7.5. 

Objective Original Moves 

Only 

Upskill 

Only 

Upskill 

then 

Move 

Upskills 

& Move 

Upskills 

Dynamic 

Moves 

Coverage 89.47 89.47 91.92 91.95 92.24 92.34 

Travel 9.15 9.15 8.07 8.29 8.12 8.09 

Utilisation 80.69 80.69 82.90 82.93 83.20 83.29 

Table 7-9 Resource Optimisation Results for Sub-Region 1 

Objective Original Moves 

Only 

Upskill 

Only 

Upskill 

then 

Move 

Upskills 

& Move 

Upskills 

Dynamic 

Moves 

Coverage 94.18 94.96 94.18 94.18 94.82 94.18 

Travel 7.28 7.32 5.87 5.92 5.93 5.88 

Utilisation 84.30 84.99 84.30 84.30 84.87 84.30 

Table 7-10 Resource Optimisation Results for Sub-Region 2 
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Objective Original Moves 

Only 

Upskill 

Only 

Upskill 

then 

Move 

Upskills 

& Move 

Upskills 

Dynamic 

Moves 

Coverage 86.10 86.89 88.24 87.80 89.70 88.34 

Travel 5.81 6.24 4.96 5.59 6.32 5.33 

Utilisation 68.80 69.43 70.51 70.16 71.68 70.59 

Table 7-11 Resource Optimisation Results for Sub-Region 3 

Objective Original Moves 

Only 

Upskill 

Only 

Upskill 

then 

Move 

Moves & 

Upskills 

Upskills 

Dynamic 

Moves 

Coverage 95.52 95.52 95.57 95.57 95.59 95.59 

Travel 8.15 8.15 6.85 7.07 6.83 6.84 

Utilisation 81.39 81.39 81.44 81.44 81.46 81.46 

Table 7-12 Resource Optimisation Results for Sub-Region 4 

Objective Original Moves 

Only 

Upskill 

Only 

Upskill 

then 

Move 

Upskills 

& Move 

Upskills 

Dynamic 

Moves 

Coverage 89.84 89.84 90.06 90.06 89.79 90.06 

Travel 6.66 6.66 6.52 6.61 6.90 6.54 

Utilisation 80.57 80.57 80.76 80.76 80.51 80.76 

Table 7-13 Resource Optimisation Results for Sub-Region 5 

Objective Original Moves 

Only 

Upskill 

Only 

Upskill 

then 

Move 

Upskills 

& Move 

Upskills 

Dynamic 

Moves 

Coverage 89.36 89.36 89.20 89.14 89.17 89.11 

Travel 9.06 9.06 7.73 7.78 7.68 7.69 

Utilisation 88.87 88.87 88.71 88.65 88.68 88.62 

Table 7-14 Resource Optimisation Results for Sub-Region 6 

Objective Original Moves 

Only 

Upskill 

Only 

Upskill 

then 

Move 

Upskills 

& Move 

Upskills 

Dynamic 

Moves 

Coverage 81.56 82.30 81.87 82.08 84.47 82.06 

Travel 6.27 6.29 5.54 5.59 5.66 5.47 

Utilisation 75.86 76.55 76.15 76.35 78.57 76.30 

Table 7-15 Resource Optimisation Results for Sub-Region 7 

Objective Original Moves 

Only 

Upskill 

Only 

Upskill 

then 

Move 

Upskills 

& Move 

Upskills 

Dynamic 

Moves 

Coverage 93.32 93.32 93.33 93.33 93.16 93.34 

Travel 11.65 12.00 10.54 10.67 10.71 10.53 

Utilisation 81.57 81.57 81.58 81.58 81.43 81.59 

Table 7-16 Resource Optimisation Results for Sub-Region 8 
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For the purpose of our experiments, we keep the number of upskills at 10; this is based on our 

previous results from Section 7.4.1. The number of fixed moves we set at five. Our GA settings 

are 0.4 for crossover, 0.05 for mutation, a population of 100 and max generations is set at 30 

(Convergence of results with these settings is easily obtained by 30 generations). 

Fixed moves without any upskilling is our first experiment. We want to know the effect of just 

moving the five least utilised workers in each sub-region.  

From Table 7-9 to Table 7-16 we can see that just by moving the least utilised we will increase 

the coverage in three of the eight sub-regions with the remaining five having no effect. Also, 

travel increases as a result of moving engineers in four of the eight sub-regions.  

This is most likely for two reasons. Firstly, the move only process is not part of the GA system, 

so it does not use the fitness function and is not constrained by travel. Secondly, it simply looks 

at the least utilised engineers and assigns them to a different team. Thus, the engineer will then 

have to travel further to their new patch, as they will now be assigned to one that is further 

away. 

Our second set of experiments look at just running the upskilling optimisation (the same 

process completed in section 7.4.1). With ten engineers throughout the sub-region being 

selected for training. This has the effect of increasing coverage in six of the eight areas. Of 

these six areas, four of them performed better in coverage than just moving engineers. In sub-

region 7 (Table 7-15), moving only performed better than upskill only. However, both improved 

on the original.  

Our third set of experiments looked at a step process in which we first upskill ten engineers via 

the GA process; then once the GA process is complete, we move the five least utilised workers 

based on the new upskills. The method produces suboptimal results as the GA has attempted 
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to find the best solution for upskilling engineers, then the solution is impacted (usually made 

worse) by moving engineers between teams. 

Although this method produced coverage result that were better than just moving the engineers 

(sub-regions 1, 3, 4, 5 and 8) in the majority of cases, 75%, this method performed worse than 

upskill only when travel was also taken into account (sub-regions 2, 3, 4, 5, 6 and 8). This led 

us to the last two experiments. 

The fourth set of experiments looked at combining the upskilling optimisation with moving the 

least utilised engineers within the GA process. This experiment now has the advantage of 

applying the fitness function to new team configurations.  This process improves in coverage 

in five of the eight sub-regions and six of the eight in travel.  

The final set of experiments looks at allowing the system to run simulation tests to alter the 

number of moves to find the best number of engineers to move within each sub-region. The 

system could choose up to 10 engineers to move. This resulted in six of the sub-regions being 

improved in coverage, with only sub-region 6 (Table 7-14) performing worse. All sub-regions 

have improved travel distances when compared to upskill then move. The reason for sub-region 

6 performing worse in coverage could be because of the fitness function. The reduction in travel 

of 15.12% may be why the solutions produced for sub-region 6 has a small 0.28% reduction in 

coverage, given the equal weighting of these objectives. 

In all cases for the combined optimisation methods, either fixed moves or dynamic moves 

outperformed the step process of upskilling then moving engineers. With a fixed number of 

moves being the process that outperforms the step process most often, in 75% of cases (Sub-

Regions: 1, 2, 3, 4, 6 and 7). This shows us that combining these methods produces better 

results.  
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Table 7-17 gives an overview of the coverage improvements with the different experiments. 

On average for the eight sub-regions, we can see that only moving engineers gives a 0.29% 

improvement. Only upskilling gives a 0.63% improvement. Upskilling then moving give a 

0.58% improvement (smaller than just upskilling). Moving and upskilling simultaneously 

produces the best improvement, with the dynamic number of moves giving a 0.71% 

improvement and the fixed number of moves giving a 1.20% improvement.  When this is 

applied to the 7571 hours’ worth of work across the region, this 1.20% improvement is equal 

to 90.85 hours work per day.  

Sub-Region Moves 

Only 

Upskill Only Upskill then 

Move 

Upskills 

& Move 

Upskills & 

Dynamic 

Moves 

1 0.00% 2.45% 2.48% 2.77% 2.87% 

2 0.78% 0.00% 0.00% 0.64% 0.00% 

3 0.79% 2.14% 1.70% 3.60% 2.24% 

4 0.00% 0.05% 0.05% 0.07% 0.07% 

5 0.00% 0.22% 0.22% -0.05% 0.22% 

6 0.00% -0.16% -0.25% -0.19% -0.25% 

7 0.74% 0.31% 0.52% 2.91% 0.50% 

8 0.00% 0.01% 0.01% -0.16% 0.02% 

AVG.  0.29% 0.63% 0.59% 1.20% 0.71% 

Table 7-17 Coverage Results Evaluation from Resource Optimisation Sub-Regions 

Table 7-18 gives an overview of the travel improvements. If coverage increases, we expect 

travel to increase also. Because the engineers are travelling and completing more tasks. So, 

these are directly conflicting objectives. If the travel is also being reduced at the same time as 

increased coverage, then the task allocation for the engineers has become much more efficient. 
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Table 7-18 also shows the extra kilometres travelled per engineer as a result of the optimisation 

attempts. Moving only will increase travel on average for the sub-regions, this is expected 

given we are forcing the engineers to travel to a patch further away. Upskilling only produces 

the most travel benefit. This is logical as the same teams are given a wider selection of jobs to 

choose from, meaning they are more likely to choose jobs that are closer to them. Upskill then 

move produces a good reduction in travel, but again not as good as upskilling only. A fixed 

number of moves and upskills, simultaneously, increases travel the most on average. This 

makes sense as it is also the optimisation technique that increases coverage the most. 

Sub-

Region 

Moves 

Only 

Upskill Only Upskill then 

Move 

Upskills & 

Move 

Upskills & 

Dynamic 

Moves 

1 0.00km -1.08km -0.86km 0.05km -0.03km 

2 0.04km -1.45km -1.36km 0.06km -0.05km 

3 0.43km -1.28km -0.22km 1.36km -0.99km 

4 0.00km -1.30km -1.08km -0.01km 0.00km 

5 0.00km -0.14km -0.05km 0.38km -0.36km 

6 0.00km -1.33km -1.37km -0.05km 0.01km 

7 0.02km -0.75km -0.68km 0.12km -0.18km 

8 0.35km -1.46km -0.98km 0.17km -0.18km 

AVG. 0.11km -1.10km -0.82km 0.26km -0.22km 

Table 7-18 Travel Results Evaluation from Resource Optimisation Sub-Regions 

Upskilling with a dynamic number of moves reduces travel despite having the second highest 

coverage increase. The difference between fixed moves and dynamic moves is 0.48km per 

engineer. Which is significant as in this region there are 1481 engineers. Resulting in a 

difference of about 710km per day.  
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Given this, for the simultaneous optimisation techniques, fixed moves increase travel 385km 

per day, while dynamic moves give a reduction of 325km per day. If the regional manager is 

looking to reduce fuel consumption cost and CO2 emissions, using the dynamic system looks 

far more attractive, because not only will fuel costs be reduced, more work will be completed. 

Alternatively, if the regional manager has the goal of completing more tasks, which results in 

increased customer satisfaction and a reduced reliance on contractor work, then the fixed option 

looks better, just from a maximise job completion perspective.  

Whichever of these options is chosen, it will be with the simultaneous optimisation, as these 

combined optimisation techniques outperform either move only, upskill only and upskill then 

move methods in coverage. If travel is of concern, the dynamic moves option may be the best, 

given that it is the second best at increasing coverage but also has the benefit of reducing travel.  

7.4.3 Hypervolume Analysis  

In section 7.4.2 we established that the simultaneous optimisation methods, either a fixed 

number of moves or a dynamic number of moves, were the strongest options depending on the 

goals of the managers. This was based on our simple analysis of the average improvement in 

the objective values for each area. To definitively prove if these methods are better, we will 

compare the hypervolumes created by the five runs of these methods in each area. Then 

statistical analysis is performed on these hypervolumes.  

Table 7-19 to Table 7-26 show the results of the hypervolumes. In many cases, the GA 

produced the same results in either method. This helps to prove the GA is producing strong and 

consistent results. This also helps the real-world users to have more confidence in the results. 

The Root Mean Square (RMS) of all hypervolumes against their respective original solutions 

is 0.025. Thus we present the hypervolumes to two digits of precision. 
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Sub-Region 1 Coverage Travel Utilisation Hypervolume 

Original Solution 89.47 9.15 80.69 0.39 

Upskills & Fixed Move 91.79 8.08 82.78  

 

0.47 

 
92.63 8.12 83.54  
92.45 8.00 83.39  
91.97 8.11 82.95  
92.38 8.30 83.32 

Upskills & Dynamic 

Moves 

92.83 8.17 83.72  

 

0.46 

92.80 8.06 83.70 

91.80 8.07 82.80 

91.98 8.06 82.96 

92.30 8.08 83.25 

Table 7-19 Resource Optimisation Hypervolume Analysis for Sub-Region 1 

 

Sub-Region 2 Coverage Travel Utilisation Hypervolume 

Original Solution 94.18 7.28 84.30 0.52 

Upskills & Fixed Move   94.96 5.90 84.99  

 

0.61 

 
94.69 6.00 84.75  
94.62 6.01 84.69  
94.96 5.92 84.99  
94.96 5.91 84.99 

Upskills & Dynamic 

Moves 

94.18 5.91 84.30  

 

0.61 

94.18 5.88 84.30 

94.18 5.90 84.30 

94.18 5.84 84.30  
94.18 5.86 84.30 

Table 7-20 Resource Optimisation Hypervolume Analysis for Sub-Region 2 

 

Sub-Region 3 Coverage Travel Utilisation Hypervolume 

Original Solution 86.10 5.81 68.80 0.61 

Upskills & Fixed Move   90.38 6.30 72.22  

 

0.62 

 
90.47 6.36 72.29  
86.10 5.75 68.80  
90.79 6.28 72.55  
90.78 6.90 72.54 

Upskills & Dynamic 

Moves 

87.70 5.24 70.07  

 

0.65 

88.58 5.39 70.78 

88.26 5.27 70.52 

88.58 5.43 70.78 

88.58 5.32 70.78 

Table 7-21 Resource Optimisation Hypervolume Analysis for Sub-Region 3 
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Sub-Region 4 Coverage Travel Utilisation Hypervolume 

Original Solution 95.52 8.15 81.39 0.46 

Upskills & Fixed Move   95.10 7.03 81.03  

 

0.53 

 
95.07 6.99 81.01  
95.12 7.02 81.05  
95.07 7.16 81.01  
95.42 7.03 81.31 

Upskills & Dynamic 

Moves 

95.59 6.84 81.46  

 

0.55 

95.59 6.83 81.46 

95.59 6.84 81.46 

95.59 6.85 81.46  
95.59 6.82 81.46 

Table 7-22 Resource Optimisation Hypervolume Analysis for Sub-Region 4 

 

Sub-Region 5 Coverage Travel Utilisation Hypervolume 

Original Solution 89.84 6.66 80.57 0.56 

Upskills & Fixed Move   89.84 6.66 80.57  

 

0.56 

 
89.93 7.26 80.64  
89.71 7.27 80.44  
89.84 6.88 80.57  
90.10 6.81 80.79 

Upskills & Dynamic 

Moves 

90.06 6.50 80.76  

 

0.56 

89.94 6.51 80.65 

90.10 6.57 80.79  
90.10 6.57 80.79  
90.10 6.57 80.79 

Table 7-23 Resource Optimisation Hypervolume Analysis for Sub-Region 5 

 

Sub-Region 6 Coverage Travel Utilisation Hypervolume 

Original Solution 89.36 9.06 88.87 0.40 

Upskills & Fixed Move   89.27 7.65 88.78  

 

0.49 

 
89.12 7.71 88.63  
89.27 7.76 88.78  
89.27 7.73 88.78  
89.27 7.65 88.78 

Upskills & Dynamic 

Moves 

89.12 7.63 88.63  

 

0.49 

89.12 7.63 88.63 

89.12 7.69 88.63 

89.12 7.69 88.63  
89.08 7.82 88.59 

Table 7-24 Resource Optimisation Hypervolume Analysis for Sub-Region 6 
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Sub-Region 7 Coverage Travel Utilisation Hypervolume 

Original Solution 81.56 6.27 75.86 0.58 

Upskills & Fixed Move   84.37 5.66 78.47  

 

0.62 

 
84.37 5.73 78.47  
84.49 5.69 78.59  
83.75 5.71 77.90  
84.37 5.75 78.47 

Upskills & Dynamic 

Moves 

82.27 5.45 76.52  

 

0.64 

82.07 5.48 76.34 

81.95 5.46 76.22  
81.95 5.47 76.22  
82.07 5.51 76.22 

Table 7-25 Resource Optimisation Hypervolume Analysis for Sub-Region 7 

 

Sub-Region 8 Coverage Travel Utilisation Hypervolume 

Original Solution 93.32 11.65 81.57 0.22 

Upskills & Fixed Move   84.37 5.66 78.47  

 

0.62 

 
84.37 5.73 78.47  
84.49 5.69 78.59  
83.75 5.71 77.90  
84.37 5.75 78.47 

Upskills & Dynamic 

Moves 

82.27 5.45 76.52  

 

0.64 

82.07 5.48 76.34 

81.95 5.46 76.22 

81.95 5.47 76.22 

82.07 5.51 76.22 

Table 7-26 Resource Optimisation Hypervolume Analysis for Sub-Region 8 

What we can see from tables Table 7-19 to Table 7-26 is that in all cases, except sub-region 5, 

the hypervolume of the simultaneous optimisation methods are greater than the original 

solution’s hypervolume. When comparing the fixed upskill & move method with the dynamic 

move method, the dynamic version usually outperforms the static method.  

If we create three hypervolume sets for the original, fixed methods and dynamic methods, we 

can perform statistical analysis (specifically the Kruskal–Wallis test) and attain p-values for 

the comparisons. 

If we compare the original hypervolume set and to the fixed moves hypervolume set we get a 

p-value of 0.074, which is good, but not below the 0.05 threshold to show significance. If we 
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compare the original hypervolume set with the dynamic moves hypervolume set, we get a p-

value of 0.046, which is below the 0.05 thresholds and indicates that the results from this 

method are a statistically significant improvement over the original results.  

7.5 Discussion 

This chapter presented a real value GA system for engineer upskilling recommendations. The 

results showed that for this particular problem Tournament selection with a crossover 

probability of 0.4 performed better.  

Once the system was tuned, the optimisation for the area found that the most benefits gained 

from the system were in the first five engineers who were upskilled. However, it also found 

that upskilling all possible engineers is the best way to reduce travel costs.  

After this initial investigation, a real-value GA system for engineer upskilling and move 

recommendations was presented. The first experiment was to only move the least utilised 

engineers; the second was to only upskill ten engineers across the sub-region. The third was to 

combine both moves and upskilling sequentially.  The final two experiments were to combine 

both the moves and the upskills in a simultaneous optimisation method, with either a fixed 

number of moves or a dynamic number of moves.  

The results showed that combining team moves and engineer upskilling in the same 

optimisation process lead to an overall 1.20% increase in coverage across the region with the 

fixed moves option and a 0.71% increase with a dynamic number of moves. Both of these 

results produced better coverage than only moving engineers between teams, just upskilling 

the engineers or upskilling then moving the engineers in a sequential process.  

Finally, the hypervolumes created by the results of the simultaneous optimisation methods were 

evaluated. From this it was seen that these algorithms outperformed the original solutions. 
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When performing the Kruskal–Wallis test to calculate a p-value we saw that the dynamic 

moves simultaneous optimisation method gave us a p-value of 0.046, below the threshold to 

show statistical significance. This test indicated that this method is clearly better than the 

method to create the original solutions (which was primarily manual).  

The next chapter will discuss fuzzy dominance in real-world many-objective optimisation 

problems.   
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Chapter 8.  Fuzzy Dominance Rules in Real-

World Many-Objective Optimisation 

Problems.  

In the previous chapters the proposed cloud-based type-2 fuzzy logic many-objective 

optimisation system has been developed and enhanced; additional workforce optimisation 

functionality has been introduced to the tool in the form of optimisation methods for workforce 

skill sets and team allocation.   

However, at its core, the system is a multi-objective optimisation algorithm. A distance metric 

was introduced in Section 6.2 to help with the problem of solutions saturating the Pareto front. 

This method, while providing some benefit, doesn’t address the main reason why Pareto based 

algorithms fail to effectively navigate a many-objective search space.   

In this chapter, the problem with dominance and the Pareto front will be described. Then a 

solution to this problem will be introduced in the form of Fuzzy Dominance Rules.  

8.1 Dominance in Many-Objective Problems 

As mentioned in Section 3.5, Many-objective problems are described as those with four or 

more objectives [69] [70]. The more objectives there are, the more likely that the mentioned 

dominance rules will not be sufficient to distinguish between good solutions. Thus, the Pareto 

front will become saturated with solutions (potentially containing all solutions in the 

population) making it very difficult to choose parents in the selection stage of the GA.  

The problem stems from the first rule; that no objective can be worse. Consider the results in 

Table 8-1. Table 8-1 shows five solutions to a problem that has five objectives, where each of 

the five objectives should be minimised.  
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Solution 

No. 

Objective 

1 (min) 

Objective 

2 (min) 

Objective 

3 (min) 

Objective 

4 (min) 

Objective 

5 (min) 

Solutions 

Dominated 

1 3.0 6.0 8.0 4.0 7.0 0 

2 2.0 5.0 5.0 4.0 8.0 0 

3 2.0 6.0 1.0 5.0 1.0 0 

4 1.0 1.0 1.0 5.0 2.0 0 

5 8.0 1.0 1.0 1.0 1.0 0 

Table 8-1 Dominance in Many-Objective Problems: Example I 

In Table 8-1, solution ‘4’ does a very good job of minimising all objective, except objective 4. 

This objective has been sacrificed for all others. This is an expected outcome with conflicting 

objectives. The same could be said of solution 5. These are clearly two good solutions, however 

because of the rule stating no objective can be worse, these solutions fail to dominate the clearly 

weaker ones. Selection pressure (when selecting the parents for the next generation) does not 

consider the stronger solutions because of this; it has to rely on weaker or secondary selection 

pressures such as crowding distance, or the distance metric which has been proposed. The 

problem is exaggerated in Table 8-2. 

Solution 

No. 

Objective 

1 (min) 

Objective 

2 (min) 

Objective 

3 (min) 

Objective 

4 (min) 

Objective 

5 (min) 

Solutions 

Dominated 

1 3.0 100.0 800.0 4.0 70.0 0 

2 2.0 100.0 50.0 4.0 80.0 0 

3 2.0 410.0 1.0 50.0 1.0 0 

4 1.0 1.0 1.0 4.1 1.1 0 

5 3.1 1.0 1.0 1.0 1.0 0 

Table 8-2 Dominance in Many-Objective Problems: Example II 

Table 8-2 shows another situation where we have five solutions that do not dominate each 

other. However, to any human solutions, 4 and 5 are clearly better. Solutions 1, 2 and 3 have 
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failed in the majority of the objectives, but under dominance, they are good candidates for 

selection stage in the GA.  

To address this problem, we will use the proposed Fuzzy Dominance Rules (FDRs). This is the 

introduction of a fuzzy logic system in place of the standard dominance rule check. Each 

objective value is fuzzified and then compared. The membership functions for this FLS are 

proportional to the values being compared. For example, a 10% tolerance value on objective 4 

when comparing solutions 2 and 4 from Table 8-2 would mean solution 4 could have a value 

of 4.4 and the condition of ‘no objective worse’ would instead be satisfied.  

 The need to make the dominance rule less strict by fuzzifying what it sees as ‘Worse’, ‘Equal’ 

or ‘Better’ can be illustrated in Table 8-3. In Table 4 we have allowed a tolerance of 10%, 

meaning when comparing X to Y, Y can be up to 10% of Xs value larger and still not be 

considered as worse. With this fuzzification of the rules, we can now see that solutions 4 and 

5 dominate the 3 other solutions (solutions 1, 2 and 3). 

Solution 

No 

Objective 

1 (min) 

Objective 

2 (min) 

Objective 

3 (min) 

Objective 

4 (min) 

Objective 

5 (min) 

Solutions 

Dominated 

1 3.0 100.0 800.0 4.0 70.0 0 

2 2.9 100.0 50.0 4.0 80.0 0 

3 2.9 410.0 1.0 50.0 1.0 0 

4 1.0 1.0 1.0 4.1 1.1 3 

5 3.1 1.0 1.0 1.0 1.0 3 

Table 8-3 Dominance in Many-Objective Problems: Example III 

The context of the objective values can determine the design of the membership functions. The 

most critical membership function in our system is what values can be considered equal. For 

example, most people would consider an outside temperature of 20 and 22 degrees Celsius ‘the 



 

150 

 

same’ i.e. they would not make any changes to their clothing or behaviour. However, people 

may consider 20 and 25 degrees different enough to change their behaviour. Similarly, if the 

price of coffee increases from £1.85 to £1.90 there may be little change in behaviour so that 

most people would view that as the ‘same’ price. However, if the price increased to £2.00, this 

could affect sales as the price change increase from 2.70% to 8.11%. 

8.2 Proposed Fuzzy Dominance Rules 

The proposed fuzzy dominance rules work like any traditional type-1 FLS where the inputs are 

the objective values of the solutions being compared. The FLS will then decide if the relative 

objective value is worse, equal or better for each objective for solution A and solution B.  

Once the FLS has processed each objective, these outcomes will be used to work out dominance 

using the standard dominance rules described in Section 4.4.1, except now these rules are not 

comparing the raw crisp values for each objective. They will use the output of the FLS. Thus, 

the dominance rules become Fuzzy Dominance Rules (FDR). 

There are three fuzzy sets representing the inputs and outputs as shown in Figure 8.1, Figure 

8.2 and Figure 8.3. Figure 8.1 shows the input fuzzy set of solution A’s objective values being 

compared to solution B’s. In this example set, we allow a tolerance of 10%. So, if the objective 

value for A is 10.5, then B can have an objective value of between 9.45 and 11.55 and be seen 

as equal. In an example where B is 9.5, B still falls into the range of ‘Equal’ with a membership 

value of 0.048. 

The reverse comparison is then made between B and A, shown in Figure 8.2. In this case, if 

the B value is 9.5 and the A value is 10.5. A will be seen as ‘Better’ to the degree of 1.0 and 

won’t be seen as ‘Equal’ to any degree (as the maximum value for ‘Equal’ would be 10.45). 

This two-way validation strengthens the dominance decision. This is reflected in the A to B 

and B to A fuzzy sets. 
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Figure 8.1: Fuzzy Set comparing A objectives to B objectives 

 

Figure 8.2: Fuzzy Set Comparing B Objectives to A Objectives 

 

Figure 8.3: Output Fuzzy Set for Comparing Two Objective Values 

The rules in this fuzzy system are given in Table 8-4. So, for the example where ‘Equal and 

Better’ would fire B is ‘Worse’, this is also the case for ‘Worse and Better’. Meaning, of 

the two rules, that fire we are certain that B is worse than A. The rules here are also designed 

to accommodate non-uniform membership functions. The output set shown in Figure 8.3 

will dictate the final outcome of the dominance. A crisp output will then be given using the 

centre of sets defuzzification. The output value is then used to determine dominance. If a 

crisp value of less than 10 is given, then B is worse. If the defuzzification gives a value of 
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between 10 and 20, then B and A are equal, and if the value if greater than 20, then B is 

better. These values are determined by the output fuzzy set.  

Compare A to B Compare B to A Final Output 

Comparing A to B 

Worse Worse Equal 

Worse Equal Worse 

Worse Better Worse 

Equal Worse Better 

Equal Equal Equal 

Equal Better Worse 

Better Worse Better 

Better Equal Better 

Better Better Equal 

Table 8-4 Fuzzy Dominance Rule Base 

8.3 Experiments and Results 

8.3.1 Black Box Optimisation 

Our experiments involve applying the NSGA-II algorithm to some many-objective problems 

then comparing the difference in the Pareto fronts against an NSGA-II algorithm that utilised 

the described FDR in place of the crisp domination evaluation described in section 3.4.1.  To 

compare the Pareto fronts of the two algorithms the hypervolume, mentioned in section 3.6, 

will be used 

The first set of experiments involves the Black Box Optimization Competition (BBComp) [90]. 

The BBComp allows competitors to test their optimisation algorithms on a number of black 

box problems, with the winning algorithm being the one that optimises the best in the most 

problems. There are single-objective and multi-objective tracks for this competition.  
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There are specific optimisation rules imposed, such as; competitors cannot run their algorithm 

on a problem more than once, and there is a budget for each problem. Where the budget is 

described as, the number of times the evaluation of a solution can be called. Meaning higher 

populations would lead to a reduced number of generations.  

The first rule is a problem if enough runs of the same problem are to be collected, for the 

purpose of performing statistical analysis on the two algorithms. Fortunately, there is a ‘Test 

Track’ within the competition which can be run any number of times, so that track will be used. 

With regards to the budget, it will be divided equally between population and generations. For 

example, if the budget is 100, the population size will be set to 10, and the number of 

generations will be set to 10. This would lead to 100 solution evaluation calls. For multi or 

many-objective problems in the competition, the value returned at the end of each problem will 

be 1-hypervolume value. Smaller values are stronger Pareto fronts.  

The system was run on 120 of the available problems in the multi-objective track; each problem 

was run 30 times for both the NSGA-II and the NSGA-II with FDR (NSGAIIFDR), leading to 

a total of 7,200 hypervolume values.  

Within the first 50 problems, there wasn’t any significant improvement. However, given the 

earlier problems have fewer problem dimensions (i.e. two dimensions for problems 0-49), this 

falls in line with what is expected, this is because the FDRs are designed to tackle the issues 

with many-objective optimisation, and two objectives do not fall within this. Instead, the 

remaining 70 problems will be analysed.  

Table 8-5 shows that problems where NSGAIIFDR gives a statistically significant smaller 

average 1-hypervolume values. The Kruskal–Wallis test was performed on the two sets given 

for each problem to obtain the P-Value in column five. These two sets are the 30 runs without 

the FDR, and the 30 runs with the FDR for each problem, in columns three and four 
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respectively. Significance when comparing the hypervolume sets for the listed problems of the 

two algorithms is <0.05 (the threshold for significance). The Root Mean Square (RMS) for the 

P-Value is 0.038, thus these values are given to 3 decimal places.  

Problem Problem 

Dimensions 

Average NSGA-II 

1-Hypervolume 

Average 

NSGAIIFDR           

1-Hypervolume 

P Value 

50 4 0.58 0.57 0.047 

52 4 0.81 0.80 0.042 

59 4 0.85 0.85 0.037 

63 4 0.79 0.79 0.038 

73 4 0.96 0.96 0.042 

81 4 0.95 0.95 0.044 

84 4 0.58 0.57 0.048 

91 4 0.95 0.95 0.017 

116 5 0.84 0.84 0.035 

119 5 0.87 0.86 0.007 

Table 8-5 Results from BBCOMP Problems 

There is a trend towards more significant improvements as the number of objectives increase 

in the problems, shown in Figure 8.4. The number in brackets in Figure 8.4 represents the 

number of dimensions in each problem. Problem 119 has a P value of just 0.0068 (or <1%). In 

total, there were ten statistically significant improvements from the remaining 70 problems. 

Leading to at least 14.29% of problems being improved when using NSGAIIFDR. Importantly 

this is just using a generic model, with no tuning on any of the problems. There has yet to be 

specifically optimised aspects for each problem.  
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Figure 8.4: Value Plot and Trendline of BBComp Results 

Some minor tuning of the algorithm for each test problem could also achieve greater 

significance, rather than having a general setup for all problems. This could also help a greater 

number of problems being improved to fall under the 0.05 significance threshold. As those 

slightly above the threshold have not been listed. 

As the optimisation is blind and restricted on the budget, we can say with a degree of confidence 

that we can improve on the results given by NSGA-II by adding our proposed Fuzzy 

Dominance Rules.   

8.3.2 Real-World implementation 

To further test the hypothesis of whether implementing FDR to multi-objective algorithms help 

solve many-objective problems, and to validate its usefulness, the next step was to apply 

NSGAIIFDR to the described real-world many-objective problem.  

There are a number of experiments that aim to show improvements to the modified NSGA-II 

(NSGAIIFDR) algorithm. The first experiment utilises the type-1 fuzzy versions of the PCFLS 

and TAFLS as outlined in Sections 5.1 and 5.2. The second experiment replaces the fuzzy 
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systems with type-2 FLSs. The third experiments utilise the type-2 FLSs but have a short 

optimisation with a GA; this is the genetically optimised system from Chapter 6.  

Coverage 

(%) 

Travel 

(km) 

Utilisation 

(%) 

Area Balance 

(Hours) 

Team Balance 

(people) 

76.12 26.50 68.15 354.65 71 

Table 8-6 Benchmark Results for Fuzzy Dominance Rules 

The experiments start by choosing a single geographical area to optimise. The current design 

is evaluated to get our benchmark objective values for this area. These values can be found in 

Table 8-6. 

Our first aim is to show that the introduction of the FLSs improves our system, like the 

experiments from Chapter 6. However, only three objectives will be chosen so the benefit of 

these FLS can be separated from the many-objective environment. Thus, the optimisation is 

not hindered by the problems associated with many-objective optimisation and shows the 

distinct contribution the FLSs have on the ability to improve the results. Hence, the results from 

Chapter 6 cannot be compared as they include five objectives.  

For the first four sets of results only Coverage, Travel and Patch Balancing will be used as 

objectives. Each experiment will run the optimisation 30 times and will be given 30 unique 

seed values each time. Each experiment will use the same 30 unique seed values to reduce the 

elements of randomness further.  Each run will give a Pareto front where we will use the 

discussed hypervolume metric, from Section 4.6, to evaluate the Pareto fronts. Each 

hypervolume value will be given to two decimal places. The reference points for the three 

objectives will be 0, 100 and 1000 for Coverage, Travel and Patch Balance respectively.   

Maximisation objectives are multiplied by -1 to make sure the hypervolume forms a convex 

shape. This is so that any improvement in any objective value will cause a point on the Pareto 

front to trend in the same direction in the objective space. i.e. if travel reduces from 10 to 5, 
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this is an improvement, so if we multiply coverage by -1, an improvement of 5 to 10 will be 

shown in the hypervolume shape as an improvement from -5 to -10.  

All the hypervolumes from the experiments are shown in the Hypervolume Summary Table, 

Table 8-7. Table 8-7 shows the hypervolume set for the NSGA-II algorithm as N, the 

introduction of type-1 fuzzy systems gives the hypervolume set noted by T1. The upgrade to 

type-2 systems gives the hypervolume set noted by T2. Finally, the hypervolume set given by 

the NSGA-II algorithm with genetically optimised type-2 fuzzy logic systems is denoted by 

OT2. We can plot a Pareto front result from each of the hypervolume sets for a visual 

comparison. Figure 8.5 to Figure 8.7 show different perspectives of the same four Pareto fronts 

                      Avg. 

N 

0.63 0.73 0.69 0.62 0.65 0.65 0.68 0.71 0.68 0.63  

 

0.67 

 

0.68 0.67 0.69 0.67 0.74 0.70 0.71 0.64 0.63 0.64 

0.67 0.65 0.64 0.70 0.71 0.69 0.62 0.70 0.71 0.72 

T1 

0.72 0.67 0.67 0.70 0.72 0.59 0.67 0.67 0.69 0.66  

 

0.68 

 

0.69 0.70 0.67 0.69 0.68 0.66 0.69 0.67 0.74 0.66 

0.65 0.67 0.69 0.71 0.63 0.67 0.68 0.65 0.66 0.69 

T2 

0.62 0.66 0.70 0.71 0.71 0.71 0.69 0.70 0.71 0.71  

 

0.68 

 

0.64 0.66 0.66 0.67 0.65 0.75 0.70 0.68 0.68 0.66 

0.65 0.65 0.67 0.69 0.70 0.65 0.64 0.69 0.69 0.70 

OT2 

0.65 0.72 0.67 0.68 0.66 0.72 0.73 0.75 0.72 0.68  

 

0.70 
0.67 0.71 0.74 0.70 0.73 0.74 0.72 0.73 0.74 0.69 

0.67 0.66 0.75 0.70 0.69 0.68 0.74 0.70 0.67 0.70 

Table 8-7 Hypervolume Summary Table for Integrated Fuzzy Logic Systems in iPatch 
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Figure 8.5: 3D plot of Pareto fronts (1) 

 

Figure 8.6: 3D plot of Pareto fronts (2) 
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Figure 8.7: 3D plot of Pareto fronts (3) 

These Pareto fronts were taken from each method’s final result from the same seed. These 

graphs clearly show the conflicting relationship between coverage and travel. They also 

highlight a positive correlation showing more balanced patch designs lead to higher levels of 

task coverage.  

If we look at the average (Avg.) of the 30 runs in Table 8-7 for each hypervolume set, we can 

see that best average hypervolume was achieved by OT2, followed by T2 and T1 and finally 

N. This is a similar pattern seen in Chapter 7 where the distance metric was used in place of 

the hypervolume. This experiment helps to justify the use of the distance metric as an effective 

measure to distinguish between solutions and to compare fronts generated by different 

optimisation techniques. Also, we have shown that we can improve NSGA-II even further by 

including the type-2 FLSs and pre-optimising the membership functions and footprints of 

uncertainty before the primary patch optimisation takes place. To conclusively say this is the 

case, we can perform statistical analysis on the two sets of hypervolume values given by 

NSGA-II and the NSGA-II system with optimised type-2 FLSs.  
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The P-value given if we compare these two sets of hypervolume values is 0.0016, or 0.16% 

significantly below the alpha value of 0.05 (or 5%) to show a statistically significant difference 

between the sets.  

 

8.3.3 Results for Fuzzy Dominance Rules in Real-World Many-

Objective Problems 

The first set of experiments described in Section 9.3.2 builds upon the experiments of Chapter 

7 and concludes with a strong degree of certainty that the use of optimised type-2 FLSs improve 

the results for our multi-objective problem. However, we detailed that there are five total 

objectives, making this a many-objective problem. We talked about the issues surrounding 

parent selection for many-objective problems in 9.1. We discussed that it was believed to be a 

problem with the crisp value comparison in the dominance rules. Hence, the results were 

presented for our experiments using Fuzzy Dominance Rules (FDRs) described in Section 9.2 

and tested on black-box problems in 9.3.1.  

These results showed the that NSGAIIFDR could improve the optimisation of many-objective 

problems. To take this to a real case the following experiments will take the area for this section 

(benchmark results of this area were given in Table 9-6) and optimise it with all five objectives, 

firstly with NSGA-II, to get the multi-objective algorithm results. Then with NSGAIIFDR to 

measure any improvement of the implementation of the fuzzy dominance rules. Then the 

optimised type-2 fuzzy logic systems will we be switched on for the final set of results to get a 

complete view of how the full experimental system will improve over the standard NSGA-II. 

We will use a 10% tolerance for the objective values when we calculate the dominance. As we 

are using five objectives, we cannot compare the hypervolume values from Table 8-7.  

Now there are more objectives, there are also more reference points for the hypervolume. Once 

again, we multiply our maximisation objective by -1 when calculating the hypervolume. Our 
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reference points are now 0, 100, 0, 850 and 150 for coverage, travel, utilisation, patch balancing 

and team balancing respectively.  

                      Avg. 

N 

0.41 0.41 0.42 0.43 0.44 0.44 0.45 0.45 0.46 0.46 

0.48 0.46 0.47 0.47 0.47 0.47 0.47 0.47 0.48 0.49 0.49 

0.49 0.49 0.51 0.52 0.53 0.53 0.54 0.56 0.57 0.60 

FDR 

0.42 0.43 0.43 0.44 0.45 0.45 0.47 0.47 0.47 0.47 

0.51 0.48 0.48 0.49 0.50 0.51 0.51 0.51 0.52 0.52 0.52 

0.54 0.54 0.55 0.56 0.57 0.57 0.57 0.57 0.59 0.63 

OT2-

FDR 

0.54 0.54 0.54 0.55 0.56 0.57 0.58 0.60 0.60 0.61 

0.63 0.61 0.62 0.62 0.63 0.63 0.64 0.64 0.65 0.65 0.66 

0.66 0.67 0.67 0.67 0.69 0.69 0.70 0.70 0.73 0.73 

Table 8-8 Hypervolume Summary Table for Fuzzy Dominance Rules in iPatch 

Table 8-8 shows the hypervolume values for NSGA-II using crisp dominance, given by N. The 

average of these runs is 0.48. FDR gives the hypervolume values for NSGA-II with FDRs 

implemented, with an average hypervolume of 0.51. If Kruskal–Wallis statistical analysis is 

performed on these hypervolume sets, we get a P-value of 0.049, which is less than the required 

alpha value of 0.05 to prove the difference in the results are statistically significant.  

Figure 8.8 illustrates these results and shows a standard boxplot where all values (lower 

acceptance limit, interquartile ranges, median and upper acceptance limit) are stronger in the 

NSGAIIFDR results than they are in the NSGA-II results. When the hypervolume sets of 

NSGA-II and NSGAIIFDR are compared, this gives an average improvement of 5.46%.  
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Figure 8.8: Box plot of NSGA-II vs NSGAIIFDR for our real world many objective 

problem 

So far it has been proven that using genetically optimised type-2 systems or the introduction 

of FDRs statistically improves the Pareto front results independently. The final step is to 

measure the impact combining these two methods of improvement together. The results for 

this are shown in Table 8-8 as the OT2FDR hypervolume set. From the average hypervolume 

values, it can be seen that OT2FDR has improved the average hypervolume by 24.29% if this 

set is compared to the FDR results set. The Kruskal–Wallis test is performed, and this results 

in a P-value of 4.47-9 when comparing FDR to OT2FDR, for completeness, we also get a P 

value of 1.86-10 if we compare the N with OT2FDR.  

These results make a strong case for both types of fuzzy system to be introduced in our 

optimisation algorithm. As part of solution generation and evaluation (with the optimised type-

2 systems) and identifying dominant solutions (as with the Fuzzy Dominance Rules). Indeed, 

there is a significantly stronger case for these fuzzy methods to be implemented together.  

8.4 Discussion  

This chapter presented a solution to the help improve the weaknesses associated with many-

objective optimisation, specifically the saturation of the Pareto front. The chapter described the 
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need to fuzzify the objective values in the dominance comparison of the NSGA-II algorithm. 

Fuzzy dominance rules were applied to a set of budget restricted black-box optimisation 

problems. The results showed that some problems were statistically significantly improved, 

achieving a P-value of <1%. 

The chapter went on to discuss the emerging trend of the more dimensions the problem 

contained, the more effective NSGAIIFDR was able to improve over the standard NSGA-II. 

Because of the black-box nature of the competition, it is difficult to determine the particular 

strengths of the fuzzy dominance rules, in relation to the black-box problems.  

The NSGAIIFDR algorithm was applied to the problem of organisational structure 

optimisation. For this, it was presented that the results were statistically significant in their 

improvement in the solutions created, with a P-value of 0.048. The hypervolumes were on 

average 5.46% better for the real-world problem when Fuzzy Dominance Rules were applied. 

It was shown that genetically optimising the type-2 FLSs gave us a real improvement when 

comparing the hypervolumes of the NSGA-II and the genetically optimised type-2 FLSs. The 

P-value here was 0.0016 significantly below the required 0.05 to prove statistical significance.  

The work was extended by looking at how we could solve the many-objective issues given by 

standard crisp dominance rules. This showed that by including FDRs to the implemented 

NSGA-II algorithm improved on the hypervolumes given by the Pareto fronts. The P-value 

attained here was 0.048, again lower than the required 0.05. Combining the fuzzy systems and 

FDRs resulted in a significant improvement to the many-objective algorithm, with a P-value 

of 1.86-10 when compared to the standard MOGA we previously used.  

The next chapter will present the conclusions of this thesis, the real-world impact and the future 

work.   
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Chapter 9. Conclusions and Future Work 

In this thesis, a novel many-objective type-2 fuzzy logic system for the optimisation of large-

scale organisational design problems has been present. Further discussions about how the 

system can be improved through cloud resources have also been discussing. Additionally, a 

method for handling the saturation of the Pareto front in many-objective problems using a 

multi-objective algorithm has been presented. This method uses a simple fuzzy logic system in 

place of the crisp dominance rules to allow tolerance and flexibility between solutions.  

9.1 Conclusions  

The aims of the thesis were as follows: 

 To investigate the most suitable optimisation methods for organisational design.  

This was achieved by investigating meta-heuristic methods used to find near-optimal solutions 

in a vast search space. These methods were simulated annealing, genetic algorithms (GAs) and 

particle swarm optimisation (PSO). A GA and PSO algorithm was implemented while 

simulated annealing was not because of its slower traversal of the search space and potentially 

weaker overall results (as discussed in section 5.3). In the experiments, it was found that in 

both single-objective and multi-objective variations the GA outperformed the PSO. Thus, the 

recommended meta-heuristic for large-scale organisational design is a GA, with the NSGA-II 

algorithm being a suitable base for multi-objective optimisation. The NSGA-II algorithm was 

then adapted to handle many-objective problems by fuzzifying the dominance comparison.  

 To examine the potential benefits of implementing fuzzy logic to handle the 

uncertainties in the data. 

This was achieved by implementing fuzzy logic systems in the simulation to improve the 

results generated by the GA. The implemented fuzzy systems aimed to handle the uncertainties 
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in the task completion time and the travel time. When the type-1 systems were implemented 

and showed potential improvement, an interval type-2 variants of the fuzzy logic systems were 

implemented and this showed how changing to type-2 fuzzy systems can improve the 

optimisation further for this problem. The fuzzy systems’ performance was then improved by 

tuning the membership functions and footprints of uncertainty with a genetic algorithm. So not 

only is the conclusion here to fuzzify measures, that are widely known to be uncertain, but the 

fuzzy system should be tuned using an optimisation algorithm. For large-scale organisational 

design optimisation problems, optimised type-2 fuzzy systems can give the most benefit when 

handling uncertainties in the data used to measure performance.  

 To develop a system in which each proposed organisational design should take into 

account the wide range of complex real-world constraints, to give results that can easily 

be implemented into the real-world environment on which it is based.  

To take into account the wide range of complex constraints a neighbourhood-based clustering 

algorithm was implemented, that avoided generating geographical regions that would break the 

required constraints (such as not crossing rivers). This clustering algorithm was one part of the 

system that benefited from the fuzzy logic that handled the uncertainties in travel times and 

task times. This meant the proposed designs could be acceptable to area managers in the 

organisation. For highly constrained construction of geographies in large-scale organisational 

design problems, bespoke clustering algorithms are necessary to avoid key business constraints 

being broken.  

 To develop a system which should produce near-optimal geography and team designs, 

to reduce the amount the mobile workforce travels and increase the number of tasks the 

workforce completes.  
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This near-optimality was achieved through the many separate parts of this work that were 

effectively brought together into one system. The underlying meta-heuristic is a GA because it 

outperformed PSO. Uncertainties were well handled due to the GA tuned type-2 fuzzy logic 

systems. Finally, all objectives were able to be included into the optimisation due to the fuzzy 

dominance improvements developed for the NSGA-II algorithm. The fuzzification of the 

dominance comparison is a key improvement to the systems optimisation process. The near-

optimality of the system can be measured due to the real-world implementation of this tool. 

The organisation's productivity increased 0.5% and their travel reduced by 7.7 million miles. 

A more in-depth discussion on the real-world benefits of the implemented system see section 

10.3. 

One key aspect of the success of the system is the incremental process of development. Starting 

with a discussion with the users and stakeholders in the organisation, understanding the 

business problem, researching how the problem can be tackled with state of the art techniques 

and develop novel methods where appropriate. Then developing prototype functionality, 

testing this new functionality and building up the confidence of the newly implemented 

methods and features, to allow the system to tackle the real-world problems.  

Working with industry meant there was a constant flow of problems to solve and a feedback 

process that helped to tune the implemented methods. As a result, the final version of the 

system, which has been produced as a result of my work, is now a comprehensive tool 

developed to produce optimal, large-scale, organisational designs for geographical, skill and 

team design questions. As such this tool has been recognised as a cutting-edge, industry-leading 

tool by a number of external organisations, such as the British Computer Society, Institute of 

Engineering and Technology and the Global Telecoms Business Awards.    
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9.2 Real-World Impact of iPatch 

As mentioned in the developed iPatch tool (shown in Figure 9.1) was implemented with the 

goal of improving the organisational design of a large mobile workforce. Specifically, this was 

British Telecoms’ (BT’s) mobile engineering workforce. The work presented looks at the 

geographical optimisation and the resource optimisation functionality.  

 

Figure 9.1: Final Version of BT’s iPatch Tool 

The application was developed with a strong communication and relationships with our users. 

This, in turn, allowed detailed feedback on problems that came to light throughout 

development, which allowed the results produced by iPatch to translate into the real-world 

effectively. 

iPatch has generated an increase in productivity of 0.5% saving an estimated £1million a year 

over the first two years. iPatch has also cut fuel consumption by 2.9%, leading to an additional 

saving of over £200k a year. In addition to the financial benefits, customer commitments are 

now more effectively met, improving the service quality, and due to less fuel consumption, the 
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company can promote sustainability targets with less CO2 emitted. Over the period of 

deployment, iPatch has reduced CO2 emissions by more than 2,500 metric tonnes.  

Furthermore, a report by the UK’s Department of Transport found that for every billion vehicle 

miles travelled there were 15,409 serious injuries or deaths, or 1 per 64,900 miles [91]. 

As iPatch has saved an estimated 7.7 million miles of travelling, this equates to preventing 118 

casualties and fatalities. The system won the 2015 Global Telecommunications Business award 

for best business innovation of the year in its first year of use [92], was highly commended at 

the IET Innovation Awards 2016 [93] and won A BCS Best Application paper award at the 

36th International Conference of the BCS SGAI International Conference on Artificial 

Intelligence. 

These outcomes show the real world impact these AI technologies, including advanced fuzzy 

logic systems, are having on a large, nationwide, mobile engineering workforce. 

9.3 Future Work 

The future work will explore the tuning of the FDR along with the exploring different 

membership functions for the sets used in the FDR FLS. There is also the prospect of expanding 

this work into the type-2 fuzzy logic domain. Where a type-2 fuzzy dominance rules could 

improve the performance due to type-2’s ability to more effectively handle uncertainty. 

Uncertainty in this context would stem from the solution's strengths and weaknesses. In our 

real-world problem, there are high levels of uncertainty when evaluating each objective. 

Improving on the system’s ability to distinguish between stronger solutions would improve the 

transfer of results from the simulation to the real world.  

Additionally, addressing some of the potentially weaknesses of the optimisation which have 

thus far not been addressed due to scope will be looked at. This includes seeding the population 
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of the GA with SDPs considered as idea candidates to be centre points. The list of ideal SDPs 

will first come from the human patch optimisation team. Then, a neural network will take all 

the data available on each SDP and try to learn the most optimal exchanges for this seeding 

task. This will create a human vs machine comparison to benchmark the results against. 

Lastly, building on the deep neural network work will be looked at by implementing an iPatch 

assistant to tell the human patch optimisation team which patches are underperforming and 

how this can be addressed with the functionality available within the iPatch tool.  
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Appendix A 

A.1 A Brief Introduction to Fuzzy Logic  

Fuzzy Logic (FL) was first introduced by Lotfi Zadeh in his 1965 paper ‘Fuzzy Sets’ [94]. 

Zadeh describes the non-binary classification of elements to classes; that is, instead of 

classifying if an element belongs to a class as either true or false, there is instead a degree of 

membership to that class.  

An example of these imprecisely defined classes might be height. If there are three classes, 

short, average and tall how would people be classified? Certainly, there are many contextual 

factors that should be considered in such a classification like gender and age, but there would 

certainly be consensus that anyone over 1.9 metres (6 foot 3 inches) could only be classified as 

tall, however someone who is 1.7 meters (5 foot 7 inches) is more difficult to classify and may 

belong to both the average and tall classes, but with less certainty about both classifications. 

This is when fuzziness is introduced as the degree of membership to each class may be less 

than 1 (100% true) but greater than 0 (100% false). 

Zadeh goes on to state that such imprecisely defined classes exist throughout the real world 

and play an important part in human reasoning and decision-making. Particularly when it 

comes to pattern recognition, communication and abstraction.  

Since its conception, the field of fuzzy logic has expanded and has been applied to numerous 

real-world applications. [95] [86] [96] [97] [98] 

There are now sub-fields within the discipline of fuzzy logic including type-1 fuzzy logic 

systems (using the originally proposed fuzzy logic methods) and type-2 fuzzy logic.  
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A.2 Uncertainty 

Fuzzy logic has been designed to handle uncertainty in many forms. In general, uncertainty 

comes in many guises and is independent of what kind of fuzzy logic, or any kind of 

methodology, one uses to handle it. One of the best sources for general discussions about 

uncertainty is by Professor Klir [99] [100].  

Klir and his students have focused on uncertainty since the 1980s. Regarding the occurrence 

of uncertainty, they state [100]: 

When dealing with real-world problems, we can rarely avoid uncertainty. At the empirical 

level, uncertainty is an inseparable companion of almost any measurement, resulting from a 

combination of inevitable measurement errors and resolution limits of measuring instruments. 

At the cognitive level, it emerges from the vagueness and ambiguity inherent in natural 

language. At the social level, uncertainty has even strategic uses, and it is often created and 

maintained by people for different purposes (privacy, secrecy, propriety) [99] 

Regarding the causes of uncertainty, they state: 

The uncertainty involved in any problem-solving situation is a result of some information 

deficiency. Information (pertaining to the model within which the situation is conceptualised) 

may be incomplete, fragmented, not fully reliable, vague, contradictory, or deficient in some 

other way. In general, these various information deficiencies may result in different types of 

uncertainty [99].  

Regarding the nature of uncertainty, they state: 

Three types of uncertainty are now recognised…fuzziness (or vagueness), which results from 

imprecise boundaries of fuzzy sets; nonspecificity (or imprecision), which is concerned with 
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sizes (cardinalities) of relevant sets of alternatives; and strife (or discord) which expresses 

conflict among the various sets of alternatives [99].  

The types of uncertainty stated above are divided into two major classes, fuzziness and 

ambiguity, where ambiguity (one to many relationships) include non-specificity and strife. 

Another source for some general discussion of uncertainty is Berenji [101]. Who state, in 

agreement with Klir, that “uncertainty stems from the lack of complete information”. He also 

states that “uncertainty may also reflect incompleteness, imprecision, missing information, or 

randomness in data and a process”.  

A.3 Type-1 Fuzzy Logic Systems 

A fuzzy logic system (FLS) can be defined as a nonlinear mapping of an input data (feature) 

vector into a scalar output (the vector output case decomposes into a collection of independent 

multi-input/single-output systems). The richness of FL is that there are enormous numbers of 

possibilities that lead to lots of different mappings. This richness does require a careful 

understanding of FL and the elements that comprise FLS [102]. 

A fuzzy logic system has multiple components to it, the fuzzifier, the inference engine, the rule 

base and the defuzzifier. Figure A.1 illustrates these components and shows the process of 

taking in crisp input values and giving out crisp output values. Crisp values are real numbers 

and the uncertainty associated with the value is not represented. However real values are 

necessary for control and decision-making systems. For example, height in metres, the 

temperature in Celsius and speed in km/h are all examples of crisp values needed as either 

inputs or outputs to the fuzzy logic system.   
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Figure A.1: Type-1 Fuzzy Logic System [102] 

A.3.1 Linguistic Variables  

Zadeh describes linguistic variables as “variables whose values are not numbers but words or 

sentences in natural or artificial language”. This is because in general linguistic 

characterisations are less specific than numerical ones [103].  

This means that numerical values can be classified under certain linguistic variables and still 

retain its contextual meaning. Given that fuzzy logic allows classification [0, 1] rather than true 

or false, a numerical value may fall into two or more linguistic labels, but to varying degrees 

of membership.  

For fuzzy logic systems, linguistic variables are used to name the classes attributed to any input 

within the system. In turn, these linguistic variables can be classified or grouped, into sets, 

where the set also has a label. Let u denote the name of the set (e.g. temperature). Numerical 

values of a linguistic variable u are denoted x, where x ∈ U. Sometimes x and u are used 

interchangeably, especially when a linguistic variable is a letter, as in sometimes the case in 

engineering applications. A linguistic variable is usually decomposed into a set of terms, T(u), 
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which cover its universe of discourse [102]. The universe of discourse is defined as the 

complete range of values to be expressed within the discussion 

We can use an example to illustrate: Let temperature (u) be interpreted as a linguistic variable. 

It can be decomposed into the following terms: T(temperature) = {cold, cool, okay, warm, hot} 

each term in T(temperature) is characterised by a set in the universe of discourse X = [0°C, 

50°C]. We might interpret cold as a temperature below 10°C, cool to a temperature close to 

15°C, okay as a temperature close to 23°C, warm as a temperature close to 28°C and hot as a 

temperature above 32°C [104].  

 

Figure A.2 Membership Functions for T(temperature) 

These terms can be characterised as fuzzy sets whose membership functions are shown in 

Figure A.2. Measured values of temperature (x) lie along the temperature axis. In this example, 

a vertical line from any measured value intersects at most, two linguistic classes, also known 

as membership functions (see Membership Functions). For example, let x = 18°C and resides 

in the linguistic classes cool and okay, but to different degrees of similarity [100]. 
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A.3.2 Membership Functions 

In fuzzy logic systems membership functions (MFs) are associated with the linguistic labels 

and help to define the range of values that can be associated with that linguistic label and the 

degree in which it should be associated. Membership functions has the mathematical notation 

𝜇𝐹(𝑥) [100]. 

The most common geometric shapes used for membership functions are triangular, trapezoidal, 

Gaussian and singleton, shown in Figure A.3. Membership functions are sometimes chosen by 

the user arbitrarily, based on the user's experience; hence, the membership functions for two 

users could be quite different depending on their experiences, perspectives, cultures, etc. 

Membership functions can be designed using optimisation procedures (for example, [105] 

[106] [107] and [108]. 

One common method for designing the membership functions for a fuzzy set is to have an 

expert design them, where the term expert is loosely used here. The expert could be the person 

developing the system. Other methods of designing fuzzy systems can be found in Section 3.4.  

 

Figure A.3: Types of Membership Function a) Triangular  

b) Trapezoidal c) Gaussian d) Singleton [100] 
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The definition of the triangular membership function is  [100] 

𝑥 − 𝑎

𝑏 − 𝑎
      𝑎 ≤ 𝑥 ≤ 𝑏 

𝑐−𝑥

𝑐−𝑏
         𝑏 < 𝑥 ≤ 𝑐     (A-1) 

0            𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

The definition of the trapezoid membership function is  [100] 

𝑥 − 𝑎

𝑏 − 𝑎
      𝑎 ≤ 𝑥 ≤ 𝑏 

1              𝑏 < 𝑥 ≤ 𝑐     (A-2) 

𝑑 − 𝑥

𝑑 − 𝑐
      𝑐 < 𝑥 ≤ 𝑑 

0            𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

The definition of the Gaussian membership function is  [100] 

 𝑒(−0.5((𝑥 − 𝑎)/𝜃)2)     (A-3) 

The definition of the singleton membership function is  [100] 

𝜇𝐹(𝑥) = 𝑚     (A-4) 

Greater resolution is achieved by using more membership functions at the price of greater 

computational complexity. Membership functions must overlap. This expresses the fact that 

“The glass can be partially full and partially empty at the same time." In this way, we are able 

to distribute our decisions over more than one input class, which helps to make FL systems 

robust. Although membership functions do not have to be scaled between zero and unity, most 

people do this so that variables are normalised [102].  
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A.3.3 Fuzzy Set Theoretic Operations 

Now that we have defined fuzzy sets, what can we do with them? Let us describe the set 

operations of union, intersection and complement [100]. 

Let A and B be two subsets of X. The union of A and B, denoted by 𝐴 ∪ 𝐵, contains all the 

elements in either A or B, i.e [100]. 

𝜇𝐴∪𝐵(𝑥) =  {
1 𝑖𝑓 𝑥 ∈ 𝐴 𝑜𝑟 𝑥 ∈ 𝐵

 0 𝑖𝑓 𝑥 ∉ 𝐴 𝑎𝑛𝑑 𝑥 ∉ 𝐵
    (A-5) 

The intersection of A and B denoted 𝐴 ∩ 𝐵, contains all the elements that are simultaneously 

in A and B, i.e [100].  

𝜇𝐴∩𝐵(𝑥) =  {
   1 𝑖𝑓 𝑥 ∈ 𝐴 𝑎𝑛𝑑 𝑥 ∈ 𝐵

0 𝑖𝑓 𝑥 ∉ 𝐴 𝑜𝑟 𝑥 ∉ 𝐵
    (A-6) 

Let �̅� denote the complement of A; it contains all the elements not in A, i.e. [100],  

𝜇�̅�(𝑥) =  {
  1 𝑖𝑓 𝑥 ∉ 𝐴 
0 𝑖𝑓 𝑥 ∈ 𝐴 

     (A-7) 

From these facts, it is easy to show that [100]: 

𝐴 ∪ 𝐵 ⇒  𝜇𝐴∪𝐵(𝑥) = max [𝜇𝐴(𝑥), 𝜇𝐵(𝑥)]             (A-8) 

𝐴 ∩ 𝐵 ⇒  𝜇𝐴∩𝐵(𝑥) = min[𝜇𝐴(𝑥), 𝜇𝐵(𝑥)]        (A-9) 

𝜇�̅�(𝑥) = 1 − 𝜇𝐴(𝑥)      (A-10) 

In fuzzy logic, union, intersection and complement are defined in terms of their membership 

functions. Let fuzzy sets A and B be described by their membership functions 𝜇𝐴(𝑥) and 𝜇𝐵(𝑥). 

One definition of fuzzy union leads to the membership function [100]: 

𝜇𝐴∪𝐵(𝑥) = max [𝜇𝐴(𝑥), 𝜇𝐵(𝑥)]      (A-11) 
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Moreover, one definition of the fuzzy intersection leads to the membership function [100]:  

𝜇𝐴∩𝐵(𝑥) = min[𝜇𝐴(𝑥), 𝜇𝐵(𝑥)]    (A-12) 

Additionally, the membership function of fuzzy compliment is [100]: 

𝜇�̅�(𝑥) = 1 − 𝜇𝐴(𝑥)      (A-13) 

Although equations (A-8)-(A-10) and (A-11)-(A13) look exactly alike, we must remember 

that: 

1. Sets A and B in (3-8)-(3-10) are fuzzy, whereas in (3-11)-(313)  they are crisp. 

2. Fuzzy sets can only be characterised by their membership functions, whereas crisp 

users can be characterised by either their membership functions, a description of 

their elements, or a listing of their elements. [100] 

A.3.4 Fuzzifier 

The fuzzier maps a crisp point x = col(𝑥1, … , 𝑥𝑛)  ∈ 𝑈 into a fuzzy set A* in U. The most 

widely used fuzzier is the singleton fuzzier which is nothing more than a fuzzy singleton [102]. 

Singleton fuzzification may not always be adequate, especially when data is corrupted by 

measurement noise. Nonsingleton fuzzification provides a means for handling such 

uncertainties totally within the framework of FLS's [102]. 

In non-singleton fuzzification, measurement 𝑥𝑖 =  𝑥𝑖
′ is mapped into a fuzzy number [109]. i.e. 

a membership function is associated with it. More specifically: 

A non-singleton fuzzifier is one for which 𝜇𝑥𝑖
(𝑥𝑖

′) = 1 (𝑖 = 1, … , 𝑝)𝑎𝑛𝑑 𝜇𝑥𝑖
(𝑥𝑖) decrases from 

unity as 𝑥𝑖 moves away from 𝑥𝑖
′. 

Conceptually, the non-singleton fuzzifier implies that the given input value 𝑥𝑖
′ is the most likely 

value to be the correct one from all the values in its immediate neighbourhood; however, 
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because the input is corrupted by noise, neighbouring points are also likely to be the correct 

value, but to a lesser degree. Figure A.4 illustrates singleton and non-singleton fuzzification. 

 

Figure A.4 a) Singleton Fuzzification b) Non-singleton Fuzzification [110] 

A.3.5 Rules 

Rules are at the heart of any fuzzy logic system. Rules can be provided by experts or can be 

extracted from numerical data. In either case, the rules that we are interested in can be expressed 

as a collection of IF-THEN statements. The IF-part of the rule is its antecedent, and the THEN-

part of a rule is its consequent [100] 

Consider a fuzzy logic system having 𝑝 inputs 𝑥1 ∈  𝑋1, … , 𝑥𝑝 ∈  𝑋𝑝 and one output 𝑦 ∈ 𝑌. Let 

us suppose it has 𝑀 rules, where the 𝑙th rule has the form [100]: 

𝑅1: 𝐼𝐹 𝑥1 𝑖𝑠 𝐹1
𝑙 𝑎𝑛𝑑 … 𝑎𝑛𝑑 𝑥𝑝 𝑖𝑠 𝐹𝑝

𝑙 , 𝑇𝐻𝐸𝑁 𝑦 𝑖𝑠 𝐺𝑙    𝑙 = 1, … , 𝑀   (A-14) 

This rule represents a fuzzy relation between the input space 𝑋1 × … ×  𝑋𝑝 and the output 

space, Y of the fuzzy logic system [100]. 

Multi-antecedent multi-consequent rules can be expressed as a group of multi-input single-

output rules. Six such rules are summarised next, with the first five being adapted from [111]. 

Of course, in practical applications, it is possible to have rules that combine non-obvious IF-

THEN rules in all sorts of interesting ways.  
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A.3.5.1 Incomplete IF Rules 

Suppose we have created a rule base where there are 𝑝 inputs, e.g [100]. 

𝐼𝐹 𝑥1𝑖𝑠 𝐹1𝑎𝑛𝑑 … 𝑎𝑛𝑑 𝑥𝑚 𝑖𝑠 𝐹𝑚, 𝑇𝐻𝐸𝑁 𝑦 𝑖𝑠 𝐺   (A-15) 

Such rules are called incomplete IF rules and apply regardless of 𝑥𝑚+1, … , 𝑥𝑝. They can be put 

into the format of the complete IF rule by treating the unnamed antecedents (e.g., 𝑥𝑚+1, … , 𝑥𝑝) 

as elements of the fuzzy set IN-COMPLETE (IN for short) where, by definition 𝜇𝐼𝑁 (𝑥)=1 for 

all 𝑥 ∈ 𝑋, i.e [100]. 

(𝐼𝐹 𝑥1𝑖𝑠 𝐹1𝑎𝑛𝑑 … 𝑎𝑛𝑑 𝑥𝑚 𝑖𝑓 𝐹𝑚, 𝑇𝐻𝐸𝑁 𝑦 𝑖𝑠 𝐺)    (A-16) 

⇔  (𝐼𝐹 𝑥1𝑖𝑠 𝐹1𝑎𝑛𝑑 … 𝑎𝑛𝑑 𝑥𝑚 𝑖𝑓 𝐹𝑚 𝑎𝑛𝑑 𝑥𝑚+1 𝑖𝑠 𝐼𝑁 … 𝑎𝑛𝑑 𝑥𝑝 𝑖𝑠 𝐼𝑁, 𝑇𝐻𝐸𝑁 𝑦 𝑖𝑠 𝐺) 

A.3.5.2 Mixed Rules 

Not all rules use the “and” connective; some use the “or” connective, and some use a mixture 

of both. The latter rules are called mixed rules. These rules can be decomposed into a collection 

of equivalent rules, using standard techniques from crisp logic. Suppose, for example; we have 

the rule [100]: 

𝐼𝐹(𝑥1𝑖𝑠 𝐹1 𝑎𝑛𝑑 … 𝑎𝑛𝑑 𝑥𝑚 𝑖𝑠 𝐹𝑚)𝑜𝑟(𝑥𝑚+1𝑖𝑠 𝐹𝑚+1 𝑎𝑛𝑑 … 𝑎𝑛𝑑 𝑥𝑝 𝑖𝑠 𝐹𝑝) THEN y is G (A-17) 

This rule can be expressed as the following two rules [100]: 

𝑅1: 𝐼𝐹𝑥1𝑖𝑠 𝐹1 𝑎𝑛𝑑 … 𝑎𝑛𝑑 𝑥𝑚 𝑖𝑠 𝐹𝑚 𝑇𝐻𝐸𝑁 𝑦 𝑖𝑠 𝐺   (A-18) 

𝑅2: 𝑥𝑚+1𝑖𝑠 𝐹𝑚+1 𝑎𝑛𝑑 … 𝑎𝑛𝑑 … 𝑥𝑝 𝑖𝑠 𝐹𝑝 𝑇𝐻𝐸𝑁 𝑦 𝑖𝑠 𝐺 

Observe that both of these rules are Incomplete IF rules. See [112] for a related discussion on 

nesting of rules. 
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A.3.5.3 Fuzzy Statement Rules 

Some rules do not appear to have antecedents; they are statements involving fuzzy sets. Hence, 

they are called fuzzy statement rules. For example, 𝑦 𝑖𝑠 𝐺 is such a rule. Clearly this is an 

extreme case of an incomplete IF rule, and can therefore be formulated as [100]:  

𝐼𝐹 𝑥1𝑖𝑠 𝐼𝑁 𝑎𝑛𝑑 … 𝑎𝑛𝑑 𝑥𝑝 𝑖𝑠 𝐼𝑁, 𝑇𝐻𝐸𝑁 𝑦 𝑖𝑠 𝐺  (A-19) 

A.3.5.4 Comparative Rules 

Some rules are comparative, e.g. 𝑇ℎ𝑒 𝑆𝑚𝑎𝑙𝑙𝑒𝑟 𝑡ℎ𝑒 𝑥 𝑡ℎ𝑒 𝑏𝑖𝑔𝑔𝑒𝑟 𝑡ℎ𝑒 𝑦. Such rules must first 

be reformulated as IF-THEN rules. This rule should then be expressed as 

𝐼𝐹 𝑥 𝑖𝑠 𝑆, 𝑇𝐻𝐸𝑁 𝑦 𝑖𝑠 𝐵. Where S is a fuzzy set representing smaller and B is a fuzzy set 

representing bigger [100].   

A.3.5.5 Unless Rules 

Rules are sometimes stated using the connective “unless”; such rules are called unless rules 

and can be put into the required format by using logical operators. For example, the rule [100]:  

𝑦 𝑖𝑠 𝐺 𝑢𝑛𝑙𝑒𝑠𝑠 𝑥1𝑖𝑠 𝐹1 𝑎𝑛𝑑 … 𝑎𝑛𝑑 𝑥𝑝𝑖𝑠 𝐹𝑝    (A-20) 

can be expressed as [100]: 

𝐼𝐹 𝑛𝑜𝑡 (𝑥1𝑖𝑠 𝐹1𝑎𝑛𝑑 … 𝑎𝑛𝑑 𝑥𝑝𝑖𝑠 𝐹𝑝), 𝑇𝐻𝐸𝑁 𝑦 𝑖𝑠 𝐺   (A-21) 

A.3.5.6 Quantifier Rules 

Rules sometimes include the quantifiers “some” or “all”; such rules are called quantifier rules. 

Because of the duality between propositional logic and set theory, rules with the quantifier 

“some” means that we have to apply the union operator to the antecedents or consequents to 

which the “some” applies, whereas rules with the quantifier “all” means we have to apply the 

intersection operator to the antecedents or consequents to which the “all” applies [100].  
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A.3.6 Inference Engine 

In the fuzzy inference engine (which is labelled fuzzy inference engine in Figure A.1), fuzzy 

logic principles are used to combine fuzzy IF-THEN rules from the fuzzy rule base into a 

mapping from fuzzy input sets in 𝑋1 × … × 𝑋𝑝 to fuzzy output sets in Y. Each rule is interpreted 

as a fuzzy implication. With reference to Figure A.1 [102]. Mamdani implications are the most 

commonly used in engineering applications. We treat the fuzzy inference engine as a system, 

one that maps fuzzy set into fuzzy sets by means of  𝜇𝐴→𝐵(𝑥, 𝑦) [100] 

Mamdani [113] simplified the computations associated with calculating weights associated 

with each rule. The weights of the rules are more commonly referred to as the firing strengths 

of the rules.  

There are three widely used implications to calculate firing strength. If all connectives in a rule 

are “And” then the minimum membership degree can be used (A-22) or the product of the 

membership degrees (A-23) (TNORMS) [100]: 

𝜇𝐴→𝐵(𝑥, 𝑦) ≡ min[𝜇𝐴(𝑥), 𝜇𝐵(𝑦)]    (A-22)  

𝜇𝐴→𝐵(𝑥, 𝑦) ≡  𝜇𝐴(𝑥) 𝜇𝐵(𝑦)               (A-23) 

If all the rule connectives are “Or” then the maximum membership degree can be used (A-22) 

(TCONORMS) [100]: 

𝜇𝐴→𝐵(𝑥, 𝑦) ≡ max[𝜇𝐴(𝑥), 𝜇𝐵(𝑦)]            (A-24) 

A.3.7 Defuzzifier 

Defuzzification produces a crisp output for FLS from the fuzzy set that is the output of the 

inference engine. Because we are interested in practical applications of FL, one criterion for 

the choice of a defuzzifier is computational simplicity. The case for computational simplicity 

is strengthened because we plan to use FLSs within population-based optimisation algorithms. 
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In this type of application, the calls to the FLS will be frequent and demanding. [100] Some 

defuzzification methods are as follows: 

A.3.7.1 Centroid Defuzzifier 

The centroid defuzzifier combines the output fuzzy sets using union (i.e. a t-cornorm, e.g. 

maximum) and then find the centroid of this set. If the composite fuzzy output set is B is [100]: 

𝐵 = ∪𝑙=1
𝑀 𝐵𝑙              (A-25) 

With associated membership function 𝜇𝐵(𝑦), and 𝜇𝐵𝑙(𝑦) is the membership function of the lth 

rule, then the centroid defuzzification is [100]: 

𝑦𝑐(𝑥) =  
∑ 𝑦𝑖𝜇𝐵(𝑦𝑖)𝑁

𝑖=1

∑ 𝜇𝐵(𝑦𝑖)𝑁
𝑖=1

     (A-26) 

Unfortunately, the centroid defuzzification is usually difficult to compute because of first 

having to compute the union (in A-25). However, in practice we can get around this by pre-

computing the centroids of the output sets, assuming they are fixed for the FLS. This would 

negate the performance impact of this defuzzification method [100]. 

A.3.7.2 Height Defuzzifier 

The height defuzzifier [114] , also called the centre average defuzzifier [111] [115], replaces 

each rule output fuzzy set with a singleton at the point of having maximum membership in the 

output set, then calculating the centroid of the type-1 set comprised of these singletons. The 

output of a height defuzzifier is given as [100]:  

𝑦ℎ(𝑥) =  
∑ �̅�𝑙𝜇

𝐵𝑙(�̅�𝑙)𝑀
𝑙=1

∑ 𝜇
𝐵𝑙(�̅�𝑙)𝑀

𝑙=1

     (A-27) 

(A-27) is very easy to use because the centres of gravity of commonly used membership 

functions are known ahead of time. For example, regardless of whether minimum or product 

inference are used, the centre of gravity of 𝐵𝑙for:  
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1. A symmetric triangular consequent membership function is at the apex of the triangle.  

2. A Gaussian consequent membership function is at the centre value of the Gaussian 

function.  

3. A symmetric trapezoidal membership function is at the midpoint of its support.  

A.3.7.3 Modified Height Defuzzifier 

The modified height defuzzifier, also called the modified centre average defuzzifier [102] 

[111], is very similar to the height defuzzifier, the only difference being that the modified 

height defuzzifier scales each 𝜇𝐵𝑙(�̅�𝑙) by the inverse of the square of the spread (or some 

measure of the spread) of the lth consequent set. Its output can be expressed as [100]: 

𝑦𝑚ℎ(𝑥) =  
∑ �̅�𝑙𝜇

𝐵𝑙(�̅�𝑙)𝑀
𝑙=1 𝛿𝑙2

⁄

∑ 𝜇
𝐵𝑙(�̅�𝑙)𝑀

𝑙=1 𝛿𝑙2
⁄

               (A-28) 

A.3.7.4 Centre-Of-Sets Defuzzifier 

In centre-of-sets defuzzification [116], we replace each rule consequent set by a singleton 

situated at its centroid, whose amplitude equals the firing level, and then the centroid of the 

type-1 set comprised of these singletons. The expression the output is given as [100] : 

𝑦𝑐𝑜𝑠(𝑥) =  
∑ 𝑐𝑙𝑇𝑖=1

𝑝𝑀
𝑙=1 𝜇

𝐹𝑖
𝑙(𝑥𝑖)

∑ 𝑇𝑖=1
𝑝𝑀

𝑙=1 𝜇
𝐹𝑖

𝑙(𝑥𝑖)
     (A-29) 

A.4 Type-2 Fuzzy Logic Systems 

Type-1 fuzzy logic systems have limited capabilities to directly handle data uncertainties, 

where handle means to model and minimise the effect of. As discussed, uncertainty comes in 

many guises and is independent of the kind of fuzzy system or methodology one uses to handle 

it. Two important aspects of uncertainties are linguistic and random. The former is associated 

with words, and the fact that words can mean different things to different people, and the latter 
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is associated with unpredictability. Probability theory is used to handle random uncertainty, 

and fuzzy systems are used to handle linguistic uncertainty, and sometimes FLSs can also be 

used to handle both kinds of uncertainty, because a fuzzy system may use noisy measurements 

or operate under random disturbances [117] 

Adding uncertainty to the type-1 membership functions means that the membership grade is 

no longer a crisp number, it is its own set in the range [0, 1]. Calculating all 𝑥 ∈ 𝑋 creates a 

three-dimensional membership function, a type-2 membership function that characterises a 

type-2 fuzzy set.   

A.4.1 Interval Type-2 Fuzzy Logic Systems 

The interval type-2 FLS uses interval type-2 fuzzy sets to represent the inputs and/or outputs. 

The interval type-2 FLS is depicted in Figure A.5 and it consists of a Fuzzifier, Inference 

Engine, Rule Base, Type-reducer and Defuzzifier.  

Only interval type-2 FLS will be implemented in this thesis.  

 

Figure A.5 Type-2 Fuzzy Logic System [100] 
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The interval type-2 FLS works as follows: the crisp inputs are first fuzzified into input type-2 

fuzzy sets; singleton fuzzification is usually used in interval type-2 FLC applications due to its 

simplicity and suitability for embedded processors and real-time applications. The input type-

2 fuzzy sets then activate the inference engine and the rule base to produce output type-2 fuzzy 

sets. The type-2 FLC rules will remain the same as in type-1 FLC, but the antecedents and/or 

the consequents will be represented by interval type-2 fuzzy sets. The inference engine 

combines the fired rules and gives a mapping from input type-2 fuzzy sets to output type-2 

fuzzy sets. The type-2 fuzzy outputs of the inference engine are then processed by the type-

reducer, which combines the output sets and performs a centroid calculation that leads to type-

1 fuzzy sets called the type reduced sets. After the type-reduction process, the type-reduced 

sets (or approximate type-reduced sets) are then defuzzified (by taking the average of the type 

reduced/approximated type-reduced set) to obtain crisp outputs [118]. 

A.4.2 Interval Type-2 Fuzzy Sets 

Consider the transition from ordinary sets to fuzzy sets. When we cannot determine the 

membership of an element in a set as 0 or 1, we use fuzzy sets of type-1. Similarly, When the 

circumstances are so fuzzy, we have trouble determining the membership grade even as a crisp 

number [0,1] we use fuzzy sets of type-2, a concept that was first introduced by Zadeh in 1975 

[103].  

A type-2 set can also be described as the blurring of a type-1. Figure A.6 a shows a type-1 

membership function, we can ‘blur’ in by shifting the points on the triangle to the left or right, 

but not necessarily by the same amount, this would generate Figure A.6 b. This means that at 

a specific value of 𝑥 say 𝑥′, there no longer is a single value for the membership function; 

instead, the membership function takes on values wherever the vertical line intersects the blurs. 
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Calculating all x ∈ X creates a three-dimensional membership function, a type-2 membership 

function that characterises a type-2 fuzzy set [100].  

 

Figure A.6 a) Type-1 Membership Function b) Blurred Type-1 Membership Function c) 

Footprint of Uncertainty [100] 

A type-2 fuzzy set denoted �̃�, is chracterised by a type-2 membership function 𝜇�̃�(𝑥, 𝑢) where 

x ∈ X and 𝑢 ∈  𝐽𝑥 ⊆ [0,1], i.e [100]. 

�̃� =  {(𝑥, 𝑢), 𝜇�̃�(𝑥, 𝑢)}  ∣  ∀𝑥 ∈ 𝑋, ∀𝑢 ∈  𝐽𝑥 ⊆ [0,1]  (A-30) 

In which 𝑂 ≤  𝜇�̃�(𝑥, 𝑢)  ≤ 1. �̃� can also be expressed as [100] 

�̃� =  ∫ ∫ 𝜇�̃�(𝑥, 𝑢)/(𝑥, 𝑢)     𝐽𝑥 ⊆ [0,1]  
𝑢∈ 𝐽𝑥𝑥∈𝑋

  (A-31) 

Where ∫∫ denotes union over all admissible x and u [100]. 

For the discrete universe of discourse, ∫ is replaced by ∑.  

In equation (A-30) the first restriction that ∀𝑢 ∈  𝐽𝑥 ⊆ [0,1] is consistent with the type-1 

constraint ≤  𝜇𝐴(𝑥)  ≤ 1 , i.e. when uncertainties disappear, a type-2 membership function 

must reduce to a type-1 membership function. The second restriction that 𝑂 ≤  𝜇�̃�(𝑥, 𝑢)  ≤ 1 

is consistent with the fact that the amplitudes of a membership function, should lie, or be equal 

to 0 and 1. When all 𝜇�̃�(𝑥, 𝑢) = 1 then �̃� is an interval type-2 fuzzy set [119]. 
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It has been argued that using interval type-2 fuzzy sets to represent the inputs and/or outputs 

of FLS has many advantages when compared to the type-1 fuzzy sets; some of these advantages 

are as follows [118]: 

 As the type-2 fuzzy sets membership functions are fuzzy and contain a footprint of 

uncertainty, then they can model and handle the linguistic and numerical uncertainties 

associated with the inputs and outputs of the FLS. Therefore, FLSs that are based on 

type-2 fuzzy sets will have the potential to produce a better performance than the type-

1 FLCs when dealing with uncertainties [86]. 

 Using type-2 fuzzy sets to represent the FLS inputs and outputs will result in the 

reduction of the FLS rule base when compared to using type-1 fuzzy sets, as the 

uncertainty represented in the footprint of uncertainty in type-2 fuzzy sets lets us cover 

the same range as type-1 fuzzy sets with a smaller number of labels and the rule 

reduction will be greater when the number of the FLS inputs increases [100]. 

 Each input and output will be represented by a large number of type-1 fuzzy sets, which 

are embedded in the type-2 fuzzy sets [100] [119]. The use of such a large number of 

type-1 fuzzy sets to describe the input and output variables allows for a detailed 

description of the analytical control surface as the addition of the extra levels of 

classification give a much smoother control surface and response. In addition, 

according to Karnik and Mendel [120], the type-2 FLS can be thought of as a collection 

of many different embedded type-1 FLSs. 

 It has been shown in [121] that the extra degrees of freedom provided by the footprint 

of uncertainty enables a type-2 FLS to produce outputs that cannot be achieved by type-

1 FLSs with the same number of membership functions. It has been shown that a type-

2 fuzzy set may give rise to an equivalent type-1 membership grade that is negative or 
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larger than unity. Thus, a type-2 FLS can model more complex input-output 

relationships than its type-1 counterpart and, thus, can give better control response. 

A.4.3 Type-Reduction 

Many defuzzification methods have been described in section 3.2.7; they involve computing 

the centroid of a type-1 fuzzy set. An important calculation for type-2 fuzzy logic systems is 

type-reduction. Type-Reduction represents a mapping of a type-2 fuzzy set into a type-1 fuzzy 

set [100].  

There exist many types of type-reduction, such as centroid, centre-of-sets, height, modified 

height. However, to illustrate the concept, and the type-reduction method used in later chapters, 

Centre-of-Sets type reduction is described [122]. Regardless of which type-reduction method 

is used, the type-reduced set is also an interval set and has the following structure [100]: 

𝑌𝑇𝑅 = [𝑦𝑙 , 𝑦𝑟]     (A-32) 

Center-of Sets type reduction,𝑌𝑐𝑜𝑠, which can be expressed as [100]:  

𝑌cos(𝑥) =  [𝑦𝑙 , 𝑦𝑟] =  ∫
𝑦1∈[𝑦𝑙,𝑦𝑟] … ∫

𝑦𝑚∈[𝑦𝑙
𝑚,𝑦𝑟

𝑚]
∫

𝑓1∈[𝑓1,𝑓
1

]
… ∫

𝑓1∈[𝑓𝑀,𝑓
𝑀

] 
1

∑ 𝑓𝑖𝑦𝑖𝑀
𝑖=1

∑ 𝑓𝑖𝑀
𝑖=1

⁄  (A-33) 

Where: 𝑌cos(𝑥) is an interval set determined by its two end-points, 𝑦𝑙 and 𝑦𝑟; and [𝑦𝑙
𝑖, 𝑦𝑟

𝑖] 

corresponds to the centroid of the type-2 interval consequence set �̃�𝑖, which can be obtained 

from [100]:  

𝐶�̃�𝑖 =  ∫
𝜃1∈𝐽𝑦1

… ∫
𝜃1∈ 𝐽𝑦𝑁

1
∑ 𝑦𝑖𝜃𝑖

𝑁
𝑖=1

∑ 𝜃𝑖
𝑁
𝑖=1

⁄ =  [𝑦𝑙
𝑖 , 𝑦𝑟

𝑖]   (A-34) 

Note that [𝑦𝑙
𝑖, 𝑦𝑟

𝑖] (i = 1,… M) must be computed before the computation of 𝑌cos(𝑥) [100]. 
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A.4.5 Deffuzzification 

As 𝑌cos is an interval set, we defuzzify it using the average of 𝑦𝑙 and 𝑦𝑟; hence the defuzzified 

output of an interval singleton type-2 fuzzy logic system is [100]: 

𝑌(𝑥) =  𝑓s2(𝑥) =  
𝑦𝑙+ 𝑦𝑟

2
    (A-35) 

A.5 Design Methods for Fuzzy Logic Systems 

As FLSs are expert systems (a system that uses expert knowledge to make decisions) one of 

the more difficult tasks when designing FLSs is the injection of this knowledge into the fuzzy 

sets and rules. To assist with this task there are a number of methods used to help produce the 

most effective systems.  

A.5.1 Surveys, Polls and Questionnaires 

There are six methods of elicitation to extract the required expert knowledge from relevant 

experts or groups of individuals [123] (if one is building a fuzzy system using the ‘Wisdom of 

Crowds’ principle). 

 Polling: Do you agree that John is ‘Tall’ (Yes/No) 

 Direct Rating (Point Estimation): Classify colour A according to its darkness, classify 

John according to his tallness, in general the  question is; “How F is a?”  

 Reverse Rating: Identify the person who is tall to the degree 0.6? In general, identify 

a who is F to the degree 𝜇𝐹(𝑎) 

 Interval Estimation (Set Value Statistics): Give an interval in which you think colour 

A lies, give an interval in which you think the height of John lies.  

 Membership Function Exemplification: What is the degree of belonging of the 

colour A to the (fuzzy) set of dark colours? What is the degree of belonging of John to 

the set of tall people? In general, to what degree a is F? 
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 Pairwise Comparison: Which colour, A or B, is darker (and by how much?). 

A.5.1.1 Polling 

In polling, one subscribes to the point of view that fuzziness arises from interpersonal 

disagreements. The question “do you agree that a is F?” is asked to different individuals, the 

answers are polled, and the average is taken to construct the fuzzy sets. Polling is one of the 

natural ways of eliciting membership functions for the likelihood interpretation [123].  

A.5.1.2 Direct Rating 

Direct rating seems to be the most straightforward way to come up with a membership function; 

this approach subscribes to the point of view that fuzziness arises from individual subjective 

vagueness. The subject is required to classify a with respect to F over and over again in time. 

The experiment has to be carefully designed so that it will be harder for the subject to remember 

past answers [123]. 

A.5.1.3 Reverse Rating 

In this method, the subject is given a membership degree and then asked to identify the object 

for which the degree corresponds to the fuzzy term in question. This method can be used for 

individuals repeating the same question for the same membership function as well as for a 

group of individuals. 

Once the subject’s (or subjects’) responses are recorded the conditional distribution can be 

taken to be normally distributed, and the unknown parameters (mean and variance) can be 

estimated as usual. This method also requires evaluations to be made on at least interval scales 

[123].  
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A.5.1.4 Interval Estimation 

Interval estimation subscribes to the random-set view of the membership function. The subject 

is asked to give an interval that describes a.  Let Ii be the set-valued observation (the interval) 

and 𝓂i the frequency with which Ii is observed. The R = (Ii , 𝓂i) defines a random set. Notice 

that this method is more appropriate to situations where there is a clear linear ordering in the 

measurement of the fuzzy concept, like in tallness, heat, time, etc [123].  

A.5.1.5 Membership Function Exemplification 

Regarding membership function exemplification, Hersh & Carmazza [124]performed a test for 

the direct elicitation of the membership function. In the test, they ordered 12 squares in 

ascending order and indicated each square with an ordinal number. They asked the subjects 

“Write the number(s) which is appropriate for ‘large’, ‘very large’, ‘small’ etc. The results are 

at variance with direct rating and polling most likely because there is no repetition in this 

elicitation method to normalise the effects of error or ‘noise’ [123]. 

The use of computer graphics to give an example membership function to be modified by the 

subject greatly enhanced the procedure as is usually witnessed in commercial applications of 

“fuzzy expert system shells” [123]. 

A.5.1.6 Pairwise Comparison  

Chameau and Santamarina [125] use pairwise comparison technique and report it to be as 

robust as polling and direct rating. They require the subjects to provide pairwise comparisons 

and the strength of preference. This yields a non-symmetrical full matrix of relative weights. 

The membership function is found by taking the components of the eigenvector (a vector which 

when operated on by a given operator gives a scalar multiple of itself) corresponding to the 

maximum eigenvalue (any number such that a given matrix minus that number times the 
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identity matrix has zero determinant). The values are also normalised. Chameau and 

Santamarina also find the requirement that evaluations on a ratio scale to be unnatural.  

However, they espouse a ‘comparison-based point estimation’ which determines the position 

of a set of stimuli on the reference axis by pairwise comparison and the membership is 

calculated by aggregating provided by several subjects. Although the subjects of Chameau and 

Santamarina experiments ranked the method almost as good as the interval estimation method 

(which was ranked as the best method) this method also needs the unfortunate assumption of a 

ration scale. Furthermore, pairwise comparison requires many comparison experiments in a 

relatively simple domain [126]. 

A.5.2 Fuzzy Systems from Examples 

Wang and Mendel developed a well-known method for developing fuzzy systems from 

examples, combining both expert knowledge and numerical data examples [127]. They 

proposed a five-step generalised method for constructing these fuzzy systems, with emphasis 

on generating fuzzy rules by learning from examples.   

Suppose we are given a set of desired input-output data pairs [127]: 

(𝑥1
(1)

, 𝑥2
(1)

; 𝑦(1)), (𝑥1
(2)

, 𝑥2
(2)

; 𝑦(2)), …     (A-36) 

Where 𝑥1and 𝑥2 are inputs and 𝑦 is an output. This simple two-input one-output case is chosen 

in order to emphasize and to clarify the basic ideas of the Wang and Mendel approach; 

extensions to general multi-input multi-output cases are straightforward. The task here is to 

generate a set of fuzzy rules from the desired input-output pairs of (1), and use these fuzzy 

rules to determine a mapping 𝑓 ∶ (𝑥1, 𝑥2) → 𝑦. The Wang and Mendel approach consists of the 

five following steps [127]: 

 Step 1 – Divide the input and output spaces into fuzzy regions. 
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Assume that the domain intervals 𝑥1, 𝑥2 and 𝑦 are [𝑥1
−, 𝑥1

+], [𝑥2
−, 𝑥2

+] and [𝑦−, 𝑦+], respectively, 

where “domain interval” of a variable means that most probably this variable will lie in this 

interval (the values of a variable are allowed to lie outside its domain interval). Divide each 

domain interval into 2N + 1 regions (N can be different for different variables, and the lengths 

of these regions can be equal or unequal), denoted by SN (Small N), …,S1 (Small 1), CE 

(Centre), B1 (Big 1), …, BN (Big N), and assign each region a fuzzy membership function 

[127]. 

Figure A.7 shows an example where the domain interval 𝑥1is divided into five regions (N = 2), 

the domain region of 𝑥2is divided into seven regions (N = 3), and the domain interval of 𝑦 is 

divided into five regions (N = 2). The shape of each membership function is triangular; one 

vertex lies at the centre of the region and has membership value unity; the other two vertices 

lie at the centres of the two neighbouring regions, respectively, and have membership value 

equal to zero. Of course, other divisions of the domain regions and other shapes of membership 

functions are possible [127].  
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Figure A.7: Division of Domain Intervals [127] 

Step 2 – Generate fuzzy rules from given data pairs.  

First, determine the degrees of given 𝑥1
(𝑖)

, 𝑥2
(𝑖)

 and 𝑦(𝑖) in different regions. For example, 𝑥1
(1)

 

in Figure A.7 has degree 0.8 in B1, degree 0.2 in B2 and zero degrees in all other regions. 

Similarly, 𝑥2
(2)

 in Figure A.7 has degree 1 in CE, and zero degrees in all other regions [127].  

Second, assign a given 𝑥1
(𝑖)

, 𝑥2
(𝑖)

 or 𝑦(𝑖) to the region with maximum degree. For example, 

𝑥1
(1)

in Figure A.7 is considered to be B1, and 𝑥2
(2)

 is considered to be CE [127]. 
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Finally, obtain one rule from one pair of desired input-output data, e.g [127]., 

(𝑥1
(1)

, 𝑥2
(1)

; 𝑦(1))  ⇒  [
𝑥1

(1)(0.1 𝑖𝑛 𝐵1, 𝑚𝑎𝑥), 𝑥2
(1)(0.7 𝑖𝑛 𝑆1, max);

𝑦(1)(0.9 𝑖𝑛 𝐶𝐸, 𝑚𝑎𝑥)
] ⇒ 𝑅𝑢𝑙𝑒 1: (0-37) 

IF 𝑥1 is B1 and 𝑥2 is S1, THEN 𝑦 is CE [127]; 

(𝑥1
(2)

, 𝑥2
(2)

; 𝑦(2))  ⇒  [
𝑥1

(2)(0.6 𝑖𝑛 𝐵1, 𝑚𝑎𝑥), 𝑥2
(2)(1 𝑖𝑛 𝐶𝐸, max);

𝑦(2)(0.7 𝑖𝑛 𝐵1, 𝑚𝑎𝑥)
] ⇒ 𝑅𝑢𝑙𝑒 2: (0-38) 

IF 𝑥1 is B1 and 𝑥2 is CE, THEN 𝑦 is B1; 

The rules generated in this way are “and” rules, i.e., rules in which conditions of the IF part 

must be met simultaneously in order for the result of the THEN part to occur [127].  

Step 3 – Assign a degree to each rule 

Since there are usually lots of data pairs, and each data pair generates one rule, it is highly 

probable that there will be some conflicting rules, i.e., rules that have the same IF part but a 

different THEN part. One way to resolve this conflict is to assign a degree to each rule 

generated from data pairs, and accept only the rule from a conflict group that has maximum 

degree. In this way not only is the conflict problem resolved, but also the number of rules is 

greatly reduced [127].  

We use the following product strategy to assign a degree to each rule: for the rule: “IF 𝑥1 is A 

and 𝑥2 is B, THEN 𝑦 is C” the degree of this rule, denoted by D(Rule), is defined as [127]: 

𝐷(𝑅𝑢𝑙𝑒) = 𝑚𝐴(𝑥1)𝑚𝐵(𝑥2)𝑚𝐶(𝑦)     (A-39) 

As examples, Rule 1 has degree [127] 

𝐷(𝑅𝑢𝑙𝑒 1) =  𝑚𝐵1(𝑥1)𝑚𝑆1(𝑥2)𝑚𝐶𝐸(𝑦)        (A-40) 

                        = 0.8 × 0.7 × 0.9 = 0.504 

(see Figure A.7) and Rule 2 has degree [127] 
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𝐷(𝑅𝑢𝑙𝑒 2) =  𝑚𝐵1(𝑥1)𝑚𝐶𝐸(𝑥2)𝑚𝐵1(𝑦)        (A-41) 

                      = 0.6 × 1.0 × 0.7 = 0.42 

In practice, we often have some prior information about the data pair. For example, if we let 

an expert check given data pairs, the expert may suggest that some are very useful and crucial, 

but others are very unlikely and may be caused just by measurement errors. Therefore, we can 

assign a degree to each data pair that represents our belief of its usefulness. In this sense, the 

data pairs constitute a fuzzy set, i.e. the fuzzy set is defined as the useful measurements; a data 

pair belongs to this set to a degree assigned by a human expert [127].  

Suppose the data pair (𝑥1
(1)

, 𝑥2
(1)

; 𝑦(1)) has degree 𝑚(1), then we redefine the degree of Rule 1 

as [127].  

𝐷(𝑅𝑢𝑙𝑒 1) =  𝑚𝐵1(𝑥1)𝑚𝑆1(𝑥2)𝑚𝐶𝐸(𝑦)𝑚(1)     (A-42) 

i.e., the degree of a rule is defined as the product of the degrees of its components and the 

degree of the data pair that generates this rule. This is important in practical applications 

because real numerical data have different reliabilities, e.g., some real data can be very bad 

(“wild data”). For good data, we assign higher degrees, and for bad data, we assign lower 

degrees. In this way, human experience about the data is used in a common base as other 

information. If one emphasises objectivity and does not want a human to judge the numerical 

data, our strategy still works by setting all the degrees of the data pairs equal to unity [127].  
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Step 4 – Create a combined fuzzy rule base 

 

Figure A.8: Form of Fuzzy Rule Base [127] 

The form of a fuzzy rule base is illustrated in Figure A.8. We will fill the boxes of the base 

with fuzzy rules according to the following strategy:  a combined fuzzy rule base is assigned 

rules from either those generated from the numerical or linguistic rules (we assume that a 

linguistic rule also has a degree that is assigned by the human expert and reflect the experts 

belief of the importance of the rule); if there is more than one rule in one box of the fuzzy rule 

base, use the rule that has maximum degree.  

In this way, both numerical and linguistic information is codified into a common framework – 

the combine fuzzy rule base. If a linguistic rule is an “and” rule, it fills only one box of the 

fuzzy rule base; but, if a linguistic rule is an “or” rule (i.e., a rule for which the THEN part 

follows if any condition of the IF part is satisfied), it fills all the boxes in the rows or columns 

corresponding to the regions of the IF part. For example, suppose we have the linguistic rule: 

“IF 𝑥1is S1 or  𝑥2 is CE, THEN  𝑦 is B2” for the fuzzy rule base of  Figure A.8; then we fill 
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the seven boxes in the column of S1 and the five boxes in the row of CE with B2. The degree 

of all the B2’s in these boxes equal the degree of this “or” rule [127].  

Step 5 – Determine a mapping based on the combined fuzzy rule base.  

We use the following defuzzification strategy to determine the output control 𝑦 for given inputs 

(𝑥1, 𝑥2): first, for given inputs (𝑥1, 𝑥2), we combine the antecedents of the ith fuzzy rule using 

product operation to determine the degree, 𝑚𝑂𝑖
𝑖 , of the output control corresponding to (𝑥1, 𝑥2), 

i.e. [127],  

𝑚𝑂𝑖
𝑖 =  𝑚𝐼1

𝑖 (𝑥1)𝑚𝐼2
𝑖 (𝑥2)     (A-43) 

Where 𝑂𝑖 denotes the output region of Rule i, and 𝐼𝑗
𝑖denotes the input region of Rule i for the 

jth component, e.g., Rule 1 gives [127] 

𝑚𝐶𝐸
1 =  𝑚𝐵!(𝑥1)𝑚𝑆1(𝑥2)     (A-44) 

Then we use the following centroid defuzzification formula to determine the output [127].  

𝑦 =  
∑ 𝑚

𝑂𝑖
𝑖 �̅�𝑖𝐾

𝑖=1

∑ 𝑚
𝑂𝑖
𝑖𝐾

𝑖=1

       (A-45) 

Where �̅�𝑖 denotes the centre value of region 𝑂𝑖 (the centre of a fuzzy region is defined as the 

point that has the smallest absolute value among all the points which the membership function 

for this region has membership value equal to one), and K is the number of fuzzy rules in the 

combined fuzzy rule base [127].  

 

 

 



 

217 

 

A.5.3 Genetic Algorithm Optimised Fuzzy Logic Systems 

Wagner and Hagras developed an architecture for evolving the parameters of a fuzzy logic 

system (both Type-1 and Type-2 FLSs) using a genetic algorithm [89]. The purpose of using a 

genetic algorithm is because they do not require a priori knowledge such as a model or data but 

perform a search through the solution space based on natural selection using a specified fitness 

function. A more in-depth discussion of genetic algorithms and other evolutionary techniques 

can be found in Chapter 4.  

Wagner and Hagras demonstrate their technique on interval type-2 fuzzy sets, which use 

Gaussian primary membership functions, with uncertain standard deviation. Their genetic 

algorithm system uses real value encoding to encode each gene in the chromosome. The genetic 

algorithm based system procedure can be summarised as follows [89]:  

 Step 1: 30 chromosomes are generated randomly while taking into account the grammatical 

correctness of the chromosome (for example the inner standard deviation 𝜎1 is less than the 

outer standard deviation 𝜎2). The “Chromosome Counter” is set to 1 (the first chromosome). 

The “Generation Counter” is set to 1 (the first generation) [89].   

Step 2: A type-2 FLS is constructed using the chromosome identified by the “Chromosome 

Counter”. The environment in which the FLS is tested is set up (which could be a simulation), 

and the fitness of the current controller is evaluated, based on how the chromosome performed 

in the environment. Any chromosome that fails any of the primary test conditions is 

automatically given a disastrous fitness [89].  

Step 3: If “Chromosome Counter” < 30, increment “Chromosome Counter” by 1 and go to Step 

2, else proceed to Step 4 [89]. 

Step 4: The best individual-so-far’s performance is preserved separately [89]. 
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Step 5: If “Generation Counter = 1 then store current population, copy it to a new population 

P and proceed to Step 6. Else, select 30 best chromosomes from population “Generation 

Counter” and population “Generation Counter”-1 and create a new population P [89]. 

Step 6: Use roulette wheel selection (See Section 3.1.2.1) on population P to populate the new 

breeding pool [89].  

Step 7: Crossover (See Section 3.1.2.2) is applied to chromosomes in the breeding pool and 

“chromosome consistency” is checked (*) [89].  

Step 8: “Generation Counter” is incremented. If “Generation Counter” < the number of 

maximum generations, or if the desired performance is achieved, reset “Chromosome Counter” 

to 1 and go to Step 2, else go to Step 9 [89].   

Step 9: The chromosome which resulted in the best fitness is kept, and the solution has been 

achieved; END [89].  

(*) The crossover operator used here computes the arithmetic average between two genes. With 

chromosome consistency, it is refereeing to the correctness of the genes of the chromosomes 

in relation to their function in the FLS. Chromosomes are completely eliminated if they violate 

this criterion or if the problem is restricted to the means of the MFs (for example the mean of 

the membership function “Far” < mean of the membership function “near”) [89]. Figure A.9 

shows an example of how a chromosome would look for a four input four output Gaussian 

membership function based FLS. 

 

Figure A.9: Chromosome Structure for Optimising Fuzzy Sets [89] 
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A.5.4 Particle Swarm Optimised Fuzzy Logic Systems 

Another method of optimisation by Evolutionary Algorithms (EAs) is to use particle swarm 

optimisation. A more in-depth discussion on PSO can be found in Chapter 4.2. 

Several researchers have shown that PSO can also be used to tune the membership functions 

of a fuzzy set [128] [129]. In [128] it is shown that by correlating the fitness of the PSO with 

the Route Mean Squared Error (RMSE) of the fuzzy systems output, the performance of the 

fuzzy systems can be improved. One important find from [128] is that the PSO search process 

is given an advantage if the fuzzy system is first designed by an expert. This ensures that the 

start of the PSO is not completely random. It was also found that optimising the output 

membership functions had more influence on the performance of the fuzzy model.  

The process of integrating the PSO algorithm with fuzzy control is as follows [129]: 

1. The subpopulation is defined as a link of the membership functions adjustment values.  

2. The parameters are the centers and widths of each fuzzy set. These parameters compose 

the particle (agent) 

3. To check the performance of the fuzzy system it is rolled up from an initial set of 

possible parameters 

4. This information is used to set up each sub-population adjustment (adaptability and the 

making of the evolution of the population. 

5. The cycle repetition is made up for completion of the defined PSO iteration number 

made by the user. To each PSO iteration is found the best value set for the membership 

function parameters.  
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A.5.6 Adaptive Fuzzy Logic Systems 

As described by Cox [130] an adaptive fuzzy logic system adjusts to time and processed phased 

conditions, and also changes the supporting system controls. This means that an adaptive 

system modifies the characteristics of the rules, the topology of the fuzzy sets, and the method 

of defuzzification based on predictive convergence metrics (or more simply, how quickly it is 

approaching or leaving a goal state). In the way, they work adaptive fuzzy systems resemble 

neural networks. Both systems are trained through a performance metric usually a set of cases 

indicating an input and desired output; and both act as classifiers, where the classification space 

is intensified by changes to weights that are adjusted according to how much the system is in 

error [130]. 

An adaptive fuzzy system, however, is much more sophisticated and has a higher degree of 

adaptive parameters. Such systems are able to deal with their human partners since they can, 

in effect, explain their reasoning – a task that neural networks do rather poorly, or not at all 

[130].  

Adaptive systems usually work like back-propagation in neural networks, by examining a 

solution with a target result. Like their neural network counterparts, fuzzy systems can run in 

both supervised and unsupervised (or autoadaptive) mode. However, unlike neural systems, 

fuzzy systems are more likely to run unsupervised by the very nature of their internal 

organisation and a priori knowledge base [130].  

Regardless of the adaptation method used, there are several interconnected means of allowing 

fuzzy systems to adapt. These include the management of weights attached to the rules (a 

concept spoken about in 0), the dynamic hedging of the fuzzy regions, the structural 

modification of the fuzzy sets, the redefinition of truth in the fuzzy model and the selection of 

alternative methods of defuzzification [130]. 
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In contrast to neural networks, the weights in an adaptive fuzzy system are associated with the 

rule nodes, not with the connecting edges of the network. Training, however, is conducted in a 

manner analogous to neural backpropagation. The error discriminant is propagated back to the 

rules. In general, the weight modification algorithm is fairly simple: it consists of multiplying 

the various 𝑊𝑖s by an error factor. In supervised learning the error factor is the ratio of the 

actual system output to the correct output. In an autoadaptive mode, it is the mean squared 

distance from the centre of the optimal control region to the center of the system response. An 

additional factor the fuzzy attenuation control, is sometimes included in the multiplication. If 

included this parameter attenuates, or controls, the strength of the training applies to each rule’s 

contribution weight. It is analogous to the training rate parameter that is to be found in certain 

neural networks [130].  

 

 


