

Many-Objective Genetic Type-2 Fuzzy Logic

Based Workforce Optimisation Strategies for

Large Scale Organisational Design

Andrew J. Starkey

A thesis submitted for the degree of Doctor of Philosophy in

Computer Science

School of Computer Science and Electronic Engineering

University of Essex

2018

I

Acknowledgements

I would like to thank the following people for their contributions to this PhD and my career,

for which I will always be indebted:

Professor Hani Hagras, the academic supervisor, I would like to extend my sincere gratitude

and thanks for his supervision, guidance and support. He has been an exceptional mentor and

role model, which has led to the best possible start to my career.

Dr Gilbert Owusu, one of the industrial supervisors, I would like to thank for the opportunities

given to me with respect to this PhD and the early development of my professional life. I would

also like to thank him for the experience and guidance given for implementing commercial,

impactful and professional research applications.

Dr Sid Shakya, one of the industrial supervisors, I would like to thank him for his exceptional

guidance on evolutionary algorithms and operational research. I would also like to thank him

for guiding me on best research practices and supporting me in my work.

Richard Chambers, the senior patch architect, I would like to thank him for his great

contribution to this work. He has provided detailed context, data, insight and ideas around the

development of iPatch. Without his drive to implement the results of this work, the real-world

benefits and opportunities may never have been realised.

I would like to thank British Telecom for supporting this PhD.

Finally, I would like to thank my family and friends, for their love, support and guidance.

II

Publications and Awards Arising from this

Work

Journal Papers

 A. Starkey, H Hagras, S Shakya, G Owusu, “iPatch: A Many-Objective Type-2 Fuzzy

Logic System for Field Workforce Optimisation”, IEEE Transactions on Fuzzy Systems

(UNDER REVIEW)

 A. Starkey, H Hagras, S Shakya, G Owusu, “A Genetic Algorithm Based System for

Simultaneous Optimisation of Workforce Skills & Teams”, Künstliche Intelligenz pp.1-16,

2018.

 A Starkey, H Hagras, S Shakya, G Owusu, A Mohamed, D Alghazzawi, “A Cloud

Computing Based Many Objective Type-2 Fuzzy Logic System for Mobile Field

Workforce Area Optimization”, Journal of Memetic Computing, vol. 8, no. 4, pp. 269-286,

2016.

 A. Starkey, H Hagras, S Shakya, G Owusu, “A multi-objective genetic type-2 fuzzy logic-

based system for mobile field workforce area optimization”, Information Sciences, vol.

321, no. 1, pp. 390-411, 2015.

Conference Papers

 A.Starkey, H.Hagras, S.Shakya, G.Owusu, “Fuzzy Dominance Rules for Real-World Many

Objective Optimization” , Proceeding of the 2017 IEEE International Conference on Fuzzy

Systems (FUZZ-IEEE 2017), Naples, Italy, July 2017

III

 A.Starkey, H.Hagras, S.Shakya, G.Owusu, “A Genetic Algorithm Based Approach for the

Simultaneous Optimisation of Workforce Skill Sets and Team Allocation”, Proceedings of

the 2016 International Conference of the BCS SGAI International Conference on Artificial

Intelligence, Cambridge, Cambridge, UK, December 2016

 A.Starkey, H.Hagras, S.Shakya, G.Owusu, “A Many-Objective Genetic Type-2 Fuzzy

Logic System for the Optimal Allocation of Mobile Field Engineers”, Proceedings of the

2016 World Congress on Computational Intelligence (WCCI 2016), Vancouver, Canada,

July 2016

 A.Starkey, H.Hagras, S.Shakya, G.Owusu, “A Comparison of Particle Swarm

Optimization and Genetic Algorithms for a Multi-Objective Type-2 Fuzzy Logic Based

System for the Optimal Allocation of Mobile Field Engineers”, Proceedings of the 2016

World Congress on Computational Intelligence (WCCI 2016), Vancouver, Canada, July

2016

 A.Starkey, H.Hagras, S.Shakya, G.Owusu, “A Genetic Algorithm Based Approach for the

Optimisation of Workforce Skill Sets”. Proceedings of the 2015 International Conference

of the BCS SGAI International Conference on Artificial Intelligence, Cambridge,

Cambridge, UK, December 2015

 A.Starkey, H.Hagras, S.Shakya, G.Owusu, “A Genetic Type-2 Fuzzy Logic Based

Approach for the Optimal Allocation of Mobile Field Engineers to their Working Areas”,

Proceeding of the 2015 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE

2015), , Istanbul, Turkey, August 2015.

IV

Awards & Nominations

 Awarded the Best Paper Award at the 36th International Conference of the BCS SGAI

International Conference on Artificial Intelligence, Cambridge, December 2016 for the

paper entitled “A Genetic Algorithm Based Approach for the Simultaneous Optimisation of

Workforce Skill Sets and Team Allocation”

 Won with BT and University of Essex, The 2015 Global Telecoms Business Innovation

Award for Business Innovation of the Year

 Nominated for Young IT Professional of the Year by the 2017 British Computer Society

IT Awards.

 Highly Commended in Model-Based Engineering by the 2016 Institution of Engineering

and Technology (IET) Innovation Awards,

 A 2015 IEEE Travel Grant for FUZZ-IEEE 2015, for the paper titled “A Genetic Type-2

Fuzzy Logic Based Approach for the Optimal Allocation of Mobile Field Engineers to their

Working Areas”

Awards Contributions

 With BT and University of Essex won the 2017 Global Telecoms Business Innovation

Award

 IEEE Outstanding Organisation Award for BT, presented at FUZZ-IEEE 2017 in Naples,

Italy.

V

Abstract

Workforce optimisation aims to maximise the productivity of a workforce and is a crucial

practice for large organisations. The more effective these workforce optimisation strategies are,

the better placed the organisation is to meet their objectives. Usually, the focus of workforce

optimisation is scheduling, routing and planning. These strategies are particularly relevant to

organisations with large mobile workforces, such as utility companies. There has been much

research focused on these areas. One aspect of workforce optimisation that gets overlooked is

organisational design.

Organisational design aims to maximise the potential utilisation of all resources while

minimising costs. If done correctly, other systems (scheduling, routing and planning) will be

more effective.

This thesis looks at organisational design, from geographical structures and team structures to

skilling and resource management. A many-objective optimisation system to tackle large-scale

optimisation problems will be presented. The system will employ interval type-2 fuzzy logic

to handle the uncertainties with the real-world data, such as travel times and task completion

times.

The proposed system was developed with data from British Telecom (BT) and was deployed

within the organisation. The techniques presented at the end of this thesis led to a very

significant improvement over the standard NSGA-II algorithm by 31.07% with a P-Value of

1.86-10.

The system has delivered an increase in productivity in BT of 0.5%, saving an estimated

£1million a year, cut fuel consumption by 2.9%, resulting in an additional saving of over £200k

a year. Due to less fuel consumption Carbon Dioxide (CO2) emissions have been reduced by

2,500 metric tonnes.

VI

Furthermore, a report by the United Kingdom’s (UK’s) Department of Transport found that for

every billion vehicle miles travelled, there were 15,409 serious injuries or deaths. The system

saved an estimated 7.7 million miles, equating to preventing more than 115 serious casualties

and fatalities.

VII

Table of Contents
ACKNOWLEDGEMENTS ... I

PUBLICATIONS AND AWARDS ARISING FROM THIS WORK ... II

JOURNAL PAPERS .. II

CONFERENCE PAPERS .. II

AWARDS & NOMINATIONS .. IV

AWARDS CONTRIBUTIONS ... IV

ABSTRACT ... V

LIST OF FIGURES ...XIII

LIST OF TABLES ... XVII

LIST OF ACRONYMS .. XX

CHAPTER 1. INTRODUCTION .. 1

1.1 AN INTRODUCTION TO WORKFORCE MANAGEMENT .. 1

1.2 AIMS OF THE THESIS .. 2

1.3 THESIS LAYOUT ... 4

CHAPTER 2. AN OVERVIEW ON WORKFORCE OPTIMISATION .. 6

2.1 THE TRAVELLING SALESMAN PROBLEM .. 6

2.1.1 The Orginal Travelling Salesman Problem .. 6

2.1.2 The Generalised Travelling Salesman Problem ... 8

2.1.3 The Clustered Travelling Salesman Problem ... 9

2.2 AN OVERVIEW OF WORKFORCE MANAGEMENT SYSTEMS ... 10

2.2.1 Working Areas (Patches) .. 13

2.3 LARGE SCALE WORKFORCE MANAGEMENT SOLUTIONS .. 14

2.4 WORKFORCE OPTIMISATION BEYOND THE WORKFORCE SCHEDULING AND ROUTING PROBLEM 17

2.4.1 The Vehicle Routing Problem (VRP) .. 17

2.4.2 The Workforce Scheduling and Routing Problem (WSRP) ... 17

2.4.3 Multi-skilled Workforces ... 19

VIII

2.4.4 Team Allocation .. 20

2.5 DISCUSSION ... 20

CHAPTER 3. AN OVERVIEW OF SELECTED OPTIMISATION ALGORITHMS 22

3.1 GENETIC ALGORITHMS ... 23

3.1.1 Biological Terminology .. 24

3.1.2 Genetic Operators .. 26

3.1.2.1 Selection ... 26

3.1.2.2 Crossover ... 27

3.1.2.3 Mutation ... 28

3.1.3 Chromosome Representation .. 29

3.1.4 Implementing a Genetic Algorithm ... 31

3.2 PARTICLE SWARM OPTIMISATION ... 32

3.2.1 Implementing a Particle Swarm Algorithm .. 33

3.3 SIMULATED ANNEALING ... 35

3.3.1 Implementing a Simulated Annealing Algorithm .. 39

3.4 MULTI-OBJECTIVE GENETIC ALGORITHMS .. 41

3.4.1 Dominance .. 42

3.4.2 Pareto Optimality ... 43

3.4.3 NSGA-II .. 45

3.4.3.1 Crowded Distance Tournament Selection .. 47

3.4.3.2 Crowding Distance ... 48

3.4.4 Implementing NSGA-II ... 49

3.5 MANY-OBJECTIVE PROBLEMS .. 51

3.6 HYPERVOLUME ... 51

3.7 DISCUSSION ... 52

CHAPTER 4. AN OVERVIEW OF LARGE-SCALE ORGANISATIONAL DESIGN PROBLEMS 53

4.1 THE GEOGRAPHICAL STRUCTURE OPTIMISATION PROBLEM.. 53

4.1.1 Objectives ... 55

4.1.2 Complexity of the Problem ... 57

IX

4.2 THE RESOURCE OPTIMISATION PROBLEM ... 57

4.2.1 Multi-Skilled Engineers .. 59

4.2.2 Team Organisation Optimisation ... 60

4.2.3 Objectives ... 61

4.2.4 Complexity of the Problem ... 61

4.3 THE SUITABILITY OF SIMULATED ANNEALING .. 63

4.4 DISCUSSION ... 64

CHAPTER 5. THE GENETIC TYPE-2 FUZZY LOGIC SYSTEM FOR FIELD WORKFORCE

OPTIMISATION .. 66

5.1 TASK ALLOCATION FUZZY LOGIC SYSTEM.. 70

5.2 PATCH CONSTRUCTION FUZZY LOGIC SYSTEM ... 74

5.2.1 Neighbourhood Clustering For Patch Construction ... 75

5.2.2 Fuzzy Neighbourhood Clustering For Patch Construction .. 76

5.3 USE OF GENETIC ALGORITHMS ... 80

5.4 INITIAL SYSTEM EXPERIMENTS & RESULTS .. 81

5.4.1 Single Vs Multi-Objective GAs ... 83

5.4.2 Single Vs Multi-Objective GAs with Type-1 Fuzzy Logic ... 84

5.4.3 Type-1 FLSs Vs Type-2 Fuzzy FLSs .. 86

5.4.4 Progressive Results ... 87

5.4.5 Subjective Evaluations .. 89

5.5 A COMPARISON OF PARTICLE SWARM OPTIMISATION AND GENETIC ALGORITHMS ... 92

5.6 DISCUSSION ... 99

CHAPTER 6. THE OPTIMISED MANY-OBJECTIVE OPTIMISATION CLOUD-BASED SYSTEM 102

6.1 GENETICALLY OPTIMISED FUZZY SYSTEMS .. 105

6.2 MANY-OBJECTIVE DISTANCE METRIC .. 107

6.3 CLOUD-BASED OPTIMISATION ... 108

6.4 EXPERIMENTS AND RESULTS FOR THE CLOUD-BASED OPTIMISED MANY-OBJECTIVE OPTIMISATION SYSTEM 109

6.4.1 Comparison of Genetically Optimised Fuzzy Systems .. 109

6.4.1.1 Quantitative Analysis ... 110

X

6.4.1.2 Subjective Analysis .. 114

6.4.2 The Speed of Optimisation Results ... 116

6.4.3 The Increased Population Results .. 119

6.4.4 Comments on the Experiments and Results .. 122

6.5 DISCUSSION ... 123

CHAPTER 7. A GENETIC ALGORITHM BASED APPROACH FOR THE OPTIMISATION OF

WORKFORCE SKILL SETS AND TEAM ALLOCATION ... 124

7.1 INITIAL WORKFORCE SKILL SET OPTIMISATION SYSTEM ... 124

7.2 SIMULTANEOUS OPTIMISATION OF SKILL SETS AND TEAMS .. 126

7.3 REAL-WORLD BACKGROUND ... 128

7.4 EXPERIMENTS AND RESULTS .. 130

7.4.1 Workforce Skill Optimisation .. 130

7.4.2 Simulaneous Optimisation of Skills and Teams .. 136

7.4.3 Hypervolume Analysis .. 142

7.5 DISCUSSION ... 146

CHAPTER 8. FUZZY DOMINANCE RULES IN REAL-WORLD MANY-OBJECTIVE

OPTIMISATION PROBLEMS. ... 148

8.1 DOMINANCE IN MANY-OBJECTIVE PROBLEMS .. 148

8.2 PROPOSED FUZZY DOMINANCE RULES ... 151

8.3 EXPERIMENTS AND RESULTS .. 153

8.3.1 Black Box Optimisation .. 153

8.3.2 Real-World implementation .. 156

8.3.3 Results for Fuzzy Dominance Rules in Real-World Many-Objective Problems 161

8.4 DISCUSSION ... 163

CHAPTER 9. CONCLUSIONS AND FUTURE WORK .. 165

9.1 CONCLUSIONS .. 165

9.2 REAL-WORLD IMPACT OF IPATCH ... 168

9.3 FUTURE WORK ... 169

XI

REFERENCES ... 171

APPENDIX A .. 188

A.1 A BRIEF INTRODUCTION TO FUZZY LOGIC ... 188

A.2 UNCERTAINTY .. 189

A.3 TYPE-1 FUZZY LOGIC SYSTEMS .. 190

A.3.1 Linguistic Variables ... 191

A.3.2 Membership Functions .. 193

A.3.3 Fuzzy Set Theoretic Operations ... 195

A.3.4 Fuzzifier ... 196

A.3.5 Rules .. 197

A.3.5.1 Incomplete IF Rules .. 198

A.3.5.2 Mixed Rules .. 198

A.3.5.3 Fuzzy Statement Rules .. 199

A.3.5.4 Comparative Rules .. 199

A.3.5.5 Unless Rules .. 199

A.3.5.6 Quantifier Rules .. 199

A.3.6 Inference Engine .. 200

A.3.7 Defuzzifier .. 200

A.3.7.1 Centroid Defuzzifier .. 201

A.3.7.2 Height Defuzzifier ... 201

A.3.7.3 Modified Height Defuzzifier ... 202

A.3.7.4 Centre-Of-Sets Defuzzifier .. 202

A.4 TYPE-2 FUZZY LOGIC SYSTEMS .. 202

A.4.1 Interval Type-2 Fuzzy Logic Systems ... 203

A.4.2 Interval Type-2 Fuzzy Sets ... 204

A.4.3 Type-Reduction .. 207

A.4.5 Deffuzzification .. 208

A.5 DESIGN METHODS FOR FUZZY LOGIC SYSTEMS ... 208

A.5.1 Surveys, Polls and Questionnaires .. 208

A.5.1.1 Polling ... 209

A.5.1.2 Direct Rating ... 209

XII

A.5.1.3 Reverse Rating .. 209

A.5.1.4 Interval Estimation .. 210

A.5.1.5 Membership Function Exemplification ... 210

A.5.1.6 Pairwise Comparison ... 210

A.5.2 Fuzzy Systems from Examples ... 211

A.5.3 Genetic Algorithm Optimised Fuzzy Logic Systems .. 218

A.5.4 Particle Swarm Optimised Fuzzy Logic Systems ... 220

A.5.6 Adaptive Fuzzy Logic Systems ... 221

XIII

List of Figures

Figure 2.1: Tours in the Travelling Salesman Problem (TSP)... 7

Figure 2.2: Tours in the Generalised Travelling Salesman Problem (GTSP) [17] 8

Figure 2.3: Tours in the Clustered Travelling Salesman Problem (CTSP) [19] 9

Figure 2.4 Local Area Map .. 12

Figure 2.5 Possible Patch Designs ... 13

Figure 2.6 Large Organisational Structures ... 14

Figure 3.1 Single-Point Crossover [36] ... 27

Figure 3.2 Multiple Point Crossover [36] .. 28

Figure 3.3 Uniform Crossover [38] ... 28

Figure 3.4 Chromosome Encoding a) Binary b) decimal c) Alphanumeric 30

Figure 3.5: Flow of a Genetic Algorithm (GA) ... 31

Figure 3.6: Pseudocode for a standard Genetic Algorithm [45] .. 32

Figure 3.7: Flow of a Particle Swarm Algorithm .. 34

Figure 3.8: Pseudocode for the PSO algorithm [46] .. 35

Figure 3.9: Ball and Hills Diagram [50] .. 37

Figure 3.10: Pseudocode for Metropolis Algorithm [50] .. 39

Figure 3.11: Five Solutions in a Two Objective Space [30] .. 43

Figure 3.12: Pareto-Set 4 Different Scenarios [30] ... 44

Figure 3.13 Fronts in a multi-objective optimisation problem .. 45

Figure 3.14: Illustration of the Sorting Procedure [30].. 46

Figure 3.15 Crowding Distance - Enclosing Cuboid [30] ... 48

Figure 3.16 NSGA-II Flow Diagram ... 49

Figure 3.17: Pseudocode for NSGA-II [68] ... 50

XIV

Figure 3.18: Hypervolume Indicator in two dimensions for a set A = {a1, ..., a4} ⊂ R 2 (left)

and in three dimensions for a set Y = {y1, . . . , y5} ⊂ R 3 (right) [73] 52

Figure 4.1: Possible Divisions of UK Geography ... 54

Figure 5.1: The multi-objective Genetic Type-2 Fuzzy Logic Based System for Mobile Field

Workforce Area Optimisation.. 66

Figure 5.2: ‘Distance to Task’ Type-2 Fuzzy Sets .. 72

Figure 5.3: Jobs in SDP Type-2 Fuzzy Sets .. 72

Figure 5.4: Probability of Picking Task Type-2 Fuzzy Sets .. 72

Figure 5.5: An example of the SDPs being clustered by their neighbours. 75

Figure 5.6: Patch Size Average Type-2 Fuzzy Set .. 77

Figure 5.7: SDP Size Average Type-2 Fuzzy Set .. 77

Figure 5.8: Average Distance Type-2 Fuzzy Set ... 77

Figure 5.9: Add/Not Add Fuzzy Set. ... 78

Figure 5.10: Version 1.0 of the Mobile Field Workforce Area Optimisation Tool 82

Figure 5.11: SOGA Optimisation Design (main city area is circled) 90

Figure 5.12: Multi-Objective Optimisation ... 90

Figure 5.13: MOGA with Type-1 Fuzzy. .. 91

Figure 5.14: MOGA- with Type-2 Fuzzy .. 91

Figure 6.1: The Proposed Cloud-based Many-Objective Type-2 Fuzzy Logic Based Mobile

Field Workforce Area Optimisation System.. 103

Figure 6.2: Real-Value Chromosome for the Parameters of Two Type-1 Fuzzy Sets

Membership Functions... 106

Figure 6.3: Real-Value Chromosome for Percentage Uncertainty Associated with the Type-2

Fuzzy Sets .. 106

Figure 6.4: Resulting Type-2 Membership Functions from Chromosomes 106

XV

Figure 6.5: Current Patch Design... 114

Figure 6.6: A Type-1 Un-Tuned Solution.. 114

Figure 6.7: A Type-1 Tuned Solution .. 115

Figure 6.8: A Type-2 Un-Tuned Solution.. 115

Figure 6.9: A Type-2 Tuned Solution .. 116

Figure 6.10: Optimisation Times ... 117

Figure 7.1: Upskilling Chromosome.. 126

Figure 7.2: Solution creation and evaluation ... 127

Figure 7.3: Coverage Benefit ... 134

Figure 7.4: Utilisation Benefit ... 134

Figure 7.5: Travel Cost .. 135

Figure 8.1: Fuzzy Set comparing A objectives to B objectives ... 152

Figure 8.2: Fuzzy Set Comparing B Objectives to A Objectives .. 152

Figure 8.3: Output Fuzzy Set for Comparing Two Objective Values 152

Figure 8.4: Value Plot and Trendline of BBComp Results ... 156

Figure 8.5: 3D plot of Pareto fronts (1) ... 159

Figure 8.6: 3D plot of Pareto fronts (2) ... 159

Figure 8.7: 3D plot of Pareto fronts (3) ... 160

Figure 8.8: Box plot of NSGA-II vs NSGAIIFDR for our real world many objective problem

.. 163

Figure 9.1: Final Version of BT’s iPatch Tool .. 168

Figure A.1: Type-1 Fuzzy Logic System [102] ... 191

Figure A.2 Membership Functions for T(temperature) ... 192

Figure A.3: Types of Membership Function a) Triangular.. 193

Figure A.4 a) Singleton Fuzzification b) Non-singleton Fuzzification [110] 197

XVI

Figure A.5 Type-2 Fuzzy Logic System [100] .. 203

Figure A.6 a) Type-1 Membership Function b) Blurred Type-1 Membership Function c)

Footprint of Uncertainty [100] ... 205

Figure A.7: Division of Domain Intervals [127] ... 213

Figure A.8: Form of Fuzzy Rule Base [127] ... 216

Figure A.9: Chromosome Structure for Optimising Fuzzy Sets [89] 219

XVII

List of Tables

Table 5-1 Task Allocation Rule Base .. 73

Table 5-2 Patch Construction Rule Base ... 78

Table 5-3 Original Vs Single Vs Multi-Objective GA .. 83

Table 5-4 Addition of Type-1 FLS to Patch construction and Job Allocation 85

Table 5-5 Type 1 FLS vs Type-2 FLS in Work Area Optimisation System 87

Table 5-6 Progressive Real-World Run Results .. 88

Table 5-7 Initial Benchmark Values to Optimise .. 93

Table 5-8 Genetic Algorithm Optimisation Results .. 93

Table 5-9 Particle Swarm Optimisation Results .. 94

Table 5-10 PSO Geographic Organisation Results .. 95

Table 5-11 NSGA-II Optimisation Results.. 96

Table 5-12 MOPSO Optimisation Results ... 97

Table 5-13 MOPSO Geographic Organisation Results ... 97

Table 6-1 Current Benchmark Values ... 109

Table 6-2 Results from Untuned Type-1 Fuzzy Systems .. 110

Table 6-3 Results from Tuned Type-1 Fuzzy Systems .. 111

Table 6-4 Results from Untuned Type-2 Fuzzy Systems .. 112

Table 6-5 Results from Tuned Type-2 Fuzzy Systems .. 113

Table 6-6 Optimisation Hardware Comparison ... 116

Table 6-7 Results from Increasing Population to 200 ... 120

Table 6-8 Results from Increasing Population to 400 ... 121

Table 6-9 Cloud Optimisation Results Summary .. 121

Table 7-1 Benchmark Results for Resource Optimisation .. 130

Table 7-2 Tournament Selection with Crossover of 0.4 .. 131

XVIII

Table 7-3 Tournament Selection with Crossover of 0.2 .. 131

Table 7-4 Roulette Selection with Crossover of 0.4 .. 131

Table 7-5 Roulette Selection with Crossover of 0.2 .. 132

Table 7-6 Optimisation with 10 Upskills ... 133

Table 7-7 Optimisation with 15 upskills .. 133

Table 7-8 Maximum Number of Upskills for Test Area ... 134

Table 7-9 Resource Optimisation Results for Sub-Region 1 ... 136

Table 7-10 Resource Optimisation Results for Sub-Region 2 ... 136

Table 7-11 Resource Optimisation Results for Sub-Region 3 ... 137

Table 7-12 Resource Optimisation Results for Sub-Region 4 ... 137

Table 7-13 Resource Optimisation Results for Sub-Region 5 ... 137

Table 7-14 Resource Optimisation Results for Sub-Region 6 ... 137

Table 7-15 Resource Optimisation Results for Sub-Region 7 ... 137

Table 7-16 Resource Optimisation Results for Sub-Region 8 ... 137

Table 7-17 Coverage Results Evaluation from Resource Optimisation Sub-Regions 140

Table 7-18 Travel Results Evaluation from Resource Optimisation Sub-Regions 141

Table 7-19 Resource Optimisation Hypervolume Analysis for Sub-Region 1 143

Table 7-20 Resource Optimisation Hypervolume Analysis for Sub-Region 2 143

Table 7-21 Resource Optimisation Hypervolume Analysis for Sub-Region 3 143

Table 7-22 Resource Optimisation Hypervolume Analysis for Sub-Region 4 144

Table 7-23 Resource Optimisation Hypervolume Analysis for Sub-Region 5 144

Table 7-24 Resource Optimisation Hypervolume Analysis for Sub-Region 6 144

Table 7-25 Resource Optimisation Hypervolume Analysis for Sub-Region 7 145

Table 7-26 Resource Optimisation Hypervolume Analysis for Sub-Region 8 145

Table 8-1 Dominance in Many-Objective Problems: Example I ... 149

XIX

Table 8-2 Dominance in Many-Objective Problems: Example II ... 149

Table 8-3 Dominance in Many-Objective Problems: Example III .. 150

Table 8-4 Fuzzy Dominance Rule Base... 153

Table 8-5 Results from BBCOMP Problems ... 155

Table 8-6 Benchmark Results for Fuzzy Dominance Rules .. 157

Table 8-7 Hypervolume Summary Table for Integrated Fuzzy Logic Systems in iPatch 158

Table 8-8 Hypervolume Summary Table for Fuzzy Dominance Rules in iPatch 162

XX

List of Acronyms

AD Average Distance

AW Amount of Work

BBComp Black Box Optimisation Competition

BSC British Computer Society

BT British Telecommunications Plc

CO2 Carbon Dioxide

CPU Central Processing Unit

CTSP Clustered Travelling Salesman Problem

DDoS Distributed Denial of Service

FDR Fuzzy Dominance Rules

FL Fuzzy Logic

FLS Fuzzy Logic System

FTE Full Time Employment

GA Genetic Algorithm

GB Gigabyte

XXI

GTSP Generalised Travelling Salesman Problem

ID Identifier

IET Institution of Engineering and Technology

km Kilometre

MOGA Multi Objective Genetic Algorithm

MOPSO Multi Objective Particle Swarm Algorithm

NP Nondeterministic Polynomial time

NSGA-II Non-Dominated Sorting Genetic Algorithm II

NSGAIIFDR Non-Dominated Sorting Genetic Algorithm II with

Fuzzy Dominance Rules

PA Patch Average

PCFLS Patch Constructor Fuzzy Logic System

PSO Particle Swarm Optimisation

RMS Root Mean Square

RMSE Root Mean Square Error

RVGA Real-Valued Genetic Algorithm

XXII

SD Standard Deviation

SDP Service Delivery Point

SDPA Service Delivery Point Average

SGAI Specialist Group on Artificial Intelligence

SOGA Single Objective Genetic Algorithm

TAFLS Task Allocation Fuzzy Logic System

TSP Travelling Salesman Problem

UK United Kingdom

USA United States of America

VRP Vehicle Routing Problem

WA Working Area

WFM Workforce Management

WSRP Workforce Scheduling and Routing Problem

1

Chapter 1. Introduction

1.1 An Introduction to Workforce Management

Workforce management (WFM) is broadly defined as a term that encompasses all the

operational and decision activities needed to maintain a productive workforce, by providing an

optimal plan, which will lead to significant cost reductions and performance improvements [1]

[2].

For any organisation, having a well-managed workforce comes with a number of benefits, like

reduced operating costs and increased capacity to handle incoming demand. The number of

potential benefits increases when the workforce is mobile. Mobile workforces are far more

difficult to manage as working locations continually change, so any task scheduling system has

to factor in travelling times between locations. The larger the organisation, the more complex

the management of the workforce becomes. Examples of organisations with both large and

mobile workforces are delivery companies and companies that supply utility services, such as

electricity, water, gas and telecoms. Demand for utility services are high, as they contribute to

living standards and there is large amounts of infrastructure needed to supply utilities, which

constantly need upgrading and maintaining. These factors mean there is high amounts of

demand and pressure on workforces in these types of organisations.

WFM can be derived from a number of optimisation problems. Effective workforce

management can be measured using metrics like productivity, efficiency and output. The

objective in any profit maximising organisation would be to maximise these measures through

advanced optimisation algorithms.

Optimisation of such complex real-world problems is often better suited to computer

algorithms, rather than manual optimisation by a human. One notable reason is that there can

2

be, with only a few variables, many millions of possible solutions to the problem. For example

in the Travelling Salesman Problem (which will be discussed at length in Chapter 2) a salesman

has to travel to a number of cities, visiting each city only once and minimising the distance

travelled. If there are just ten cities, there are over 181,000 possible routes the salesman can

take, 16 cities would lead to more than 650 billion possible routes.

According to [3], such problems are looking for an object from a possibly countable infinite

set, which are a class of problems called Combinatorial Optimisation (CO) problems.

Algorithms designed to tackle CO problems usually aim for a metaheuristic approach [4]

because the optimisation must be completed within a reasonable amount of time. This is

especially true for real-world optimisation problems as the environment changes on a frequent

basis. A common approach to tackling these large scale complex optimisation problems are

Evolutionary Algorithms (EAs) such as Genetic Algorithms (GAs) [5], [6], [7] and Particle

Swarm Optimisation (PSO) [8], [9], [10].

The WFM challenges that will be discussed in this thesis are combinatorial optimisation

problems, thus, metaheuristics will also be used as the proposed method to tackle these

problems. The application of these optimisation methods to WFM is the practice of workforce

optimisation.

1.2 Aims of the Thesis

This thesis aims to investigate and implement a system for optimising the organisational design

of a large mobile workforce. The core aim is to develop fuzzy logic systems to handle the

uncertainties present in real-world problems. Fuzzy logic is a well-known method for handling

uncertainty. These uncertainties come from the input data, such as estimated travel times and

task times and stem from unreliable collection methods, traffic & road conditions and

unexpected issues on jobs or in the field. The uncertainties impact the quality of the solutions

3

and cause performance issues in optimisation techniques that rely on Pareto Dominance. For

an in-depth look at the theory of Fuzzy Logic (both Type-1 and Type-2), please see Appendix

A. The remaining aims of the thesis are as follows:

 To investigate the most suitable optimisation methods for organisational design

 To examine the potential benefits of implementing fuzzy logic to handle the

uncertainties in the data.

 To develop a system which should produce near optimal geography and team designs,

reducing the amount the mobile workforce travels and increase the number of tasks the

workforce completes.

 To develop a system in which each proposed organisational design should consider the

wide range of complex real-world constraints, to generate results that can easily be

implemented into the real-world environment on which it is based.

As the proposed system is complex and spans a wide range of workforce management

techniques, the proposed system features are listed as follows:

 A novel neighbourhood-based clustering algorithm for the design of the mobile

workforce’s geographical areas.

 A multi-objective approach to the geography optimisation problem

 A simultaneous optimisation-based approach to the skilling and team allocation

problem

 A novel fuzzy logic-based workforce simulation

 A novel fuzzy logic-based approach to improving the clustering algorithm

 A novel fuzzy logic-based approach to improving multi-objective Pareto based

algorithms in optimising many-objective problems

4

Over the first two years of deployment by BT, this application has increased productivity by

0.5% across the mobile workforce. The application has also helped reduce travel by

approximately 7.7 million miles over the same period, which has reduced fuel consumption by

2.9%. These outcomes have led to a productivity benefit of £1million a year and an additional

saving of over £200K a year in fuel costs.

There are additional secondary benefits of this system, which were not initially planned for.

As the engineers are travelling less, this has saved an estimated 2,500 Metric Tons of CO2 and

potentially preventing the number of serious traffic casualties or fatalities, in the UK, by more

than 115.

1.3 Thesis Layout

The thesis will be structured as follows; Chapter 2 will give an overview on workforce

optimisation, covering its origins within the travelling salesman problem, how Working Areas

(WAs), which are also known as patches, play their part in modern large-scale organisations

and how this work expands beyond the traditional Workforce Scheduling and Routing Problem

(WSRP).

Chapter 3 will give an overview of optimisation algorithms. This section describes how some

of the most common algorithms in this domain work, this includes; GAs, PSO algorithms and

Simulated Annealing. The topic will then expand to multi-objective optimisation for problems

with more than one objective, and then a description of many-objective problems and how they

are measured and evaluated through hypervolumes is given.

Chapter 4 will give an overview of the large-scale optimisation problems that this work will

attempt to solve. These problems extend from geographical and structural optimisation

problems to resource skilling and team setup optimisation problems.

5

Chapter 5 presents the type-2 fuzzy logic system for field workforce optimisation detailing how

the overall system is set up, how fuzzy logic can be used to improve the optimisation algorithm

and an initial evaluation of the first version of the optimisation tool created for the real-world

implementation of this system.

Chapter 6 expands on the work presented in Chapter 5. The work here looks at the practical

and theoretical benefits of deploying the real-world optimisation tool in a cloud environment.

Chapter 6 also looks at addressing the weaknesses in multi-objective algorithms when

attempting to solve many-objective problems. Thus, a simple distance metric is described and

implemented overcome this challenge.

Chapter 7 describes the work completed on skill optimisation, team optimisation and the

simultaneous approach for optimising both strategies together. This chapter aims at addressing

the weaknesses in organisational design related to individuals and resource, as opposed to just

the geographical or management hierarchy addressed in previous chapters.

Chapter 8 describes the fuzzy dominance rules for real-world many-objective optimisation. At

the core of the work in the previous chapters is a many-objective optimisation problem, this

chapter describes a method for improving the results generated for many-objective problems

in a general context, outside of organisational design and workforce management, but still

within the context of real-world problems.

Chapter 10 presents the conclusions of this thesis, the real-world impact and finally the

potential future work is discussed.

Appendix A is an overview of fuzzy logic systems. Firstly, describing Fuzzy Logic in a general

context then describing the basics of type-1 fuzzy systems and then type-2 fuzzy systems.

6

Chapter 2. An Overview on Workforce

Optimisation

There are many workforce optimisation strategies for WFM, the selection of which is

dependent on the workforce type, industry and time-period. Mobile field workforces are some

of the most complex to manage. A mobile field workforce can be defined as a workforce that

is required to travel between tasks and are usually expected to visit more than one work location

on any given day. The exceptions to this are when the time to complete the task is greater than

the time available to work on that day. This problem is comparable to the Travelling Salesman

Problem (TSP).

2.1 The Travelling Salesman Problem

2.1.1 The Orginal Travelling Salesman Problem

The travelling salesman problem is a defined as follows in [11]: given a set of cities, along with

the cost of travel between each of them, find the cheapest way of visiting all cities and return

to the starting point. A single solution to this problem is known as a tour or circuit, and simply

lists the cities in the order they should be visited by the salesperson. The ‘cost’ here is kept

general as it could be any metric that is deemed suitable for evaluating a tour, for example, fuel

expense, time, distance, a cost function that combines these metrics or any other that are

deemed suitable. See Figure 2.1, for an example of a number of tours through the same set of

cities.

7

Figure 2.1: Tours in the Travelling Salesman Problem (TSP)

In [11] the TSP is traced back to a German handbook from 1832, where numerous salesmen

were interested in planning the most economical routes to their customers. It is quite possible

that the problem has its origins much further back than 1832, it would not be unreasonable to

assume that salesmen on the historic ‘Silk Road’ trading route between Europe and China

would have been concerned with minimising their travelling costs. Indeed, a legitimate

objective of this time may have been to minimise deaths in the group for each trip.

Given that the problem has persisted throughout the centuries and has yet to be solved by a

single algorithm, the complexity of the problem cannot be overstated. The TSP falls into a

category of problems called Nondeterministic Polynomial Time-Hard or NP-Hard. Problems

for which there is a good algorithm, where the problem can be solved in polynomial time, with

a polynomial algorithm, are known as P class problems. If there is a possible solution to a

problem, i.e. find the tour with the least cost, but the time taken to find the solution is unknown

then the problem is classed as NP.

8

The concepts of computational complexity theory generated much research in the 1970s. An

impressive survey is presented by Garey & Johnson [12]. Although the NP-Hardness of the

TSP does not imply the exponential worst-case running times for its solutions are unavoidable,

it does serve to reinforce one's belief that existence of a polynomial algorithm for the TSP is

extremely unlikely [13].

The potential reward for coming up with the proof P = NP is so great that there is currently a

$1,000,000 prize on offer by the Clay Mathematics Institute [11] [14].

2.1.2 The Generalised Travelling Salesman Problem

The Generalised Travelling Salesman Problem (GTSP) is a variation of the Traveling Salesman

Problem in which not all nodes need to be visited by the tour [15]. The locations are clustered

together, and only one location from each cluster needs to be visited by the salesman. For

example, there are a number of cities across Europe, the cities are grouped by the country they

are in, and a delivery driver has to visit one city from each country. This example would work

in the same way in the United States of America (USA), where the driver had to visit one

location within a selected number of states [16].

Figure 2.2 gives an example of the GTSP. The standard TSP is a type of GTSP, where each set

of cities to visit is of size one [17].

Figure 2.2: Tours in the Generalised Travelling Salesman Problem (GTSP) [17]

9

2.1.3 The Clustered Travelling Salesman Problem

The final type of TSP that will be discussed is the Clustered Travelling Salesman Problem

(CTSP) [18]. The CTSP is a variant of the TSP where cities or locations are clustered together,

the salesperson then travels to each cluster, but visits each location within each cluster before

moving on to the next. The key difference between the GTSP and the CTSP is that the

salesperson must visit all the cities in the cluster, instead of just one. There is an extra cost

factor known as inter-cluster costs, the cost of travelling between clusters [18]. This can be

seen in the real world for international travel. If the cities are clustered by country, there may

be additional inter-cluster costs for travelling across borders, such as extra time due to border

checks, visa costs, import duties etc. Figure 2.3 gives an example tour using the CTSP.

Figure 2.3: Tours in the Clustered Travelling Salesman Problem (CTSP) [19]

An additional dimension to the travelling salesman problem is the skills required to complete

any given task at any given location. This means that the closest member of the workforce to a

task may not necessarily have the required skill to complete the task. More will be discussed

on multi-skilled workforces in section 2.4.

10

2.2 An Overview of Workforce Management Systems

For any organisation of meaningful size, managing the workforce effectively so that

productivity is kept high is a complex problem. There are established methods to help tackle

these workforce management problems.

One fundamental method for any organisation is scheduling. Scheduling can be defined as

allocating tasks to resources. In many organisations, this can be real-time scheduling, which

has the ability to adapt to ‘on the day’ changes and is the very-short-term. Any system in place

that is tasked with scheduling will have to look at resource availability and skills. For mobile

workforces, the complexity of this is increased by adding the resources current location and

distance away from unscheduled tasks.

An additional layer of workforce management can occur before the scheduling phase. This

phase has a number of names but is commonly referred to as ‘Planning’ or ‘Tactical Planning’

[20]. This phase is designed to support and inform sales teams and resource planners. The

planning systems know which resources are available on what days, letting the sales team know

if there is available resource capacity to deliver a service to a customer on any given day.

Described so far is a generalised view, so, for example, the planner will know there are 20 man-

hours available next Wednesday, it takes two hours to travel to and deliver services to any

customer, meaning there are ten slots available for customers on that day. If eight have been

taken, it is still okay to book that customer in. If ten customers have been booked already, then

another day will have to be chosen by the customer. Alternatively, the planners will know that

two hours of overtime are needed and can plan that before impacting the customers first choice

of date for service delivery. The planning phase is short to medium term from two days to two

weeks ahead of scheduling.

11

The planning system cannot account for absences or emergency appointments on the day; this

would be the job of the scheduler. However, the planner would know what the estimated

‘shrinkage’ would be and thus leave available time in each resource’s schedule to allow those

resources to be allocated additional tasks on the day. Shrinkage here is the reduction in the

expected supply due to factors that reduce overall productivity (i.e. illness, traffic and

unexpected complications with a task). If too much time is left free the resources utilisation

will become low, leave too little time and there is no capacity for error and appointments will

be delayed, thus having an impact on customer service and causing a backlog to build up for

the following day.

Scheduling and planning systems are vital for large organisations, and there are many

publications and case studies that document the research and application of these systems [21]

[22] [23].

There is one more area of workforce management, which is often overlooked, this is

organisational design. Organisational design is particularly important for large organisations

and especially large organisations that have a mobile workforce spread over a wide

geographical area. Many large organisations have a hierarchical management structure and at

the base of that structure are teams of resources, those teams are allocated responsibilities based

on their skill sets. These teams can be anything from finance, human resources, call centre

operators or sales. For mobile workforces, these teams could be a roaming sales force, utility

engineers, home care workers or delivery personnel. Making sure each team has the right

number of resources, in the right place, with the right skills is important to having an

organisation set up correctly.

12

Figure 2.4 Local Area Map

For the case of a utility company, each engineering team at the base of the hierarchy is

responsible for certain parts of the infrastructure. This is allocated on a geographical basis. For

example, Southend-on-Sea and Basildon might be grouped as one area (see Figure 2.4 for

reference), with the local engineers servicing the infrastructure in that area, Colchester and

Ipswich might be another. Then, due to the hierarchical nature of the organisation, the Southend

& Basildon area and the Colchester & Ipswich area would form part of the East Anglia Region.

This structure means that an area manager can be overseen by a regional manager and there is

a fixed reporting structure.

The challenge comes at the lower levels of this hierarchy. Is it the right decision to group

Basildon and Southend in the first place, how broad should this area be? Who should work in

these areas? If someone with the right skills lives in Chelmsford could they be assigned to

Basildon & Southend, or maybe they are needed in the Colchester & Ipswich area. It’s these

sorts of questions that come under organisational design.

The benefits of getting these decisions correct can be significant. This means the planning

systems will have better resourcing capabilities for the expected demands in each geographical

area. It will also mean the organisation is more effectively set up to react to unexpected changes

13

in demand or resources. It won’t necessarily negate all the effects of these changes, but it will

mean the negative effect on the organisation and on customers will be reduced.

2.2.1 Working Areas (Patches)

One key aspect to organisational design for mobile workforces is the geography or territory the

teams in the workforce are allocated. Each team is allocated a territory and the engineers in the

teams will only receive tasks in that territory. These territories are known as Working Areas

(WAs) or Patches. If an engineer is to do work in a neighbouring patch then this is usually at

the request of a planner or patch manager who has noticed the neighbouring patch will be under

resourced for a particular day, so the resource can be loaned across. However, the goal is to

minimise this loaning as much as possible by configuring the patches and engineering teams

correctly. Too much loaning can lead to decreased productivity, the resource being unfamiliar

with the patch they have been allocated and instability for the engineer as they may not know

where they will be working from one week to the next. The risk of this increases for an engineer

the closer they are to patch borders.

The geographical patches are not fixed in their shape, they can be redesigned based on demand,

this is a key aspect to organisational design for large scale workforces. The flexibility to change

both the geographical shape of the patch and the team members that service that patch, give a

greater range of flexibility to adapt to the ever-changing working environments. Figure 2.5

shows how the same infrastructure can be divided up into different patch designs.

Figure 2.5 Possible Patch Designs

14

2.3 Large Scale Workforce Management Solutions

Due to the size of the workforce associated with utility companies, there have been several

previous examples of successfully tackling parts of the workforce management problem. One

such example is the scheduling system developed by British Telecom (BT) in the 1990s. The

system was called Work Manager and was responsible for scheduling tasks to all of BT’s

50,000 mobile engineers. In a paper summarising the success of this system, it states that the

benefits of this solution were worth up to $250 million a year [24]

However, this summary of Work Manager also explained how each scheduling system had to

work within the constraints of “175 separate groups that operate within non-overlapping

geographical domains”. This directly references the organisational design, where each of the

‘domains’ would be made up of a number of working areas as illustrated in Figure 2.6. The

summary then goes on to say “(Geographical) domain-dependent requirements are rare. In fact,

domains differ only on non-essential features, such as their road networks, their distribution of

customers, the size and skills of their workforces, or their task-notification patterns”.

Figure 2.6 Large Organisational Structures

From this last statement, we can conclude that factors such as the distribution of demand, sizes

of teams, skill profiles of teams and travel networks were not considered, as they are described

15

as ‘non-essential features’. The view that the organisational design was not important was a

key factor in the lack of research and development in this area over the following decade. This

meant the process of redesigning the organisational structure was a time-consuming manual

process that required managers of domains and working areas to adjust teams and infrastructure

responsibilities manually. In addition to this manual process being time consuming and

unappealing, the results of the process were sub-optimal, due to the vast number of variables

and constraints that would be needed to create new organisational designs effectively.

This example is specific to BT, however overlooking organisational design in favour of

scheduling is not limited to infrastructure companies, [25] focuses on the scheduling and

routing problem, very common for any mobile workforce, for healthcare workers that travel to

patient homes. In this paper, they mention in relation to the feature of the problem, ‘the number

of geographical areas (visit locations are grouped into areas)’. The features of each problem

are then stated and ‘Number of Areas’ is one of just three major features. Lastly, when talking

about preferences, the authors state ‘preferences include workers preferring to work in certain

geographical areas, customers requiring workers with special skills’. The problem description

is very similar to the one already stated by BT mobile engineering workforce. This highlights

that there are many organisations that use a working area based organisational structure, yet

the optimality of the organisation structure itself is overlooked in favour of scheduling.

In the journal article Workforce scheduling and routing problems: literature survey and

computational study [26] there is mention of organisation design under the term

‘Clusterisation’. Where the reasons for clusterisation are stated as ‘employees may prefer not

to travel more than a number of miles’, ‘companies assign employees to perform work only in

certain geographical areas’ and ‘Clusters may also be created just to reduce the size of the

problem by solving a number of clustered sub-problems’. This study also highlights the need

for clusterisation in the home care service because ‘Clusterisation is based on municipalities’

16

borders to clearly define which authority (e.g. council, district, etc.) is responsible for each

area’. For technicians, it states ‘Companies with many branches across different regions use

clusterisation to assign jobs to each branch when the scheduling is done centrally for all

branches’ for security personnel ‘Customers are divided into regions (clusterisation) so that

security guards living nearby are assigned to each region to reduce travelling time’. The

conclusions of this survey say that for the workforce scheduling and routing problem

clusterisation of locations is sometimes a characteristic that needs to be taken into account.

However, the primary focus of the survey is to identify solutions to the broader problem of

workforce scheduling and routing, of which it highlights a mixture of methods that include

mixed integer linear programming (MIP), integer linear programming (IP) and a variety of

meta-heuristics such as particle swarm optimisation (PSO) and simulated annealing (SA).

However, clusterisation is treated as a feature to the WSRP and not as a separate optimisation

problem in itself. If sub-optimal clusters are used as a feature to the WSRP, then any

optimisation algorithm attempting to achieve the best solutions for the WSRP will be restricted,

making the optimisation much more difficult, or impossible, to achieve the desired results.

17

2.4 Workforce Optimisation Beyond the Workforce

Scheduling and Routing Problem

2.4.1 The Vehicle Routing Problem (VRP)

There are a large number of real-world applications, both in North America and Europe that

have widely shown that the use of computerised procedures for the distribution process

planning produces substantial savings (generally from 5% to 20%) in the global transportation

costs [27].

The success of the utilisation of Operations Research techniques is due to the development of

computer systems, from both hardware and the software point of view and to the increasing

integration of information systems into the productive and commercial processes [27]. Indeed,

the growing prevalence of mobile applications in these processes is just one example of the

mentioned increasing integration of information systems.

Problems concerning the distribution of goods between depots and final users are generally

known as Vehicle Routing Problems (VRPs) [27]. VRPs can easily encompass the distribution

of services too.

The VRP calls for the determination of the optimal set of routes to be performed by the fleet

of vehicles to serve a given customer set, and it is one of the most important, and studied,

combinatorial optimisation problems [27].

2.4.2 The Workforce Scheduling and Routing Problem (WSRP)

The Workforce Scheduling and Routing Problem (WSRP) is a natural extension to the VRP,

and an in-depth survey has been conducted in [26]. It is widely used when employees have to

travel between tasks, and the tasks have to be distributed among all employees so as to meet

the organisation's objectives.

18

There are a number of objectives when it comes to the WSRP, some will be specific to the

organisation others will be generic. They include:

 Maximising tasks completed,

 Minimising the total amount travelled,

 Minimising the task to travel ratio

 Minimising the number of vehicles

With a workforce of meaningful size (such as above 50) creating the most effective schedule

is a challenging task without advanced software methods to assist in the decision-making.

The greater the workforce and the greater the number of tasks the workforce must complete

the more scheduling and routing solutions become available. The possible solutions usually

become so great that it falls into a combinatorial optimisation problem. Because the WSRP is

a CO problem, metaheuristics are often used as a method of coming up with suitable schedules

that meet the problems as best as possible.

To expand on the discussion of CO problems, CO is the field of discrete mathematics involving

the resolution of the following problem.

Let X be a set of solutions and f a function that measures the value of each solution in X. The

objective is to determine a solution s* ∈ X minimizing f, i.e. [28]:

𝑓(𝑠∗) = 𝑚𝑖𝑛𝑠∈𝑋𝑓(𝑠) (2-1)

Set X is presumed finite and is in general defined by a set of constraints. As an example, for a

job scheduling problem on one machine, X can be made up of all job sequences satisfying

precedence and priority constraints while f can correspond to the date at which the last job is

finished (makespan) [28].

19

Depending on the industry, solving the WSRP in real-time adds to the complexity of the

optimisation as real-time optimisation doesn’t have the luxury of time as with offline

optimisation task. However, if the real-time aspect is taken into account and the system

produces results that are operationally good enough, where enough work is completed to meet

task completion targets and reduce travel expenses, then this outcome is operationally

acceptable. However, for larger, team-based multi-skilled workforces, this is only the first step

to having a fully utilised workforce at the most efficient cost [28].

2.4.3 Multi-skilled Workforces

A multi-skilled workforce is one in which its employees can complete different types of tasks

that require different skill sets, i.e. the workers possess a range of skills that allow them to

participate in more than one work process [29]. For a simple example, a carpenter could be

asked to do X and Y with no problem, but if asked to do Z would requires a different skill.

Thus, would have to be trained in Z or reject the task.

For more complex industries such as utilities and construction, it is necessary to train

employees on multiple skills to maximise each workers utilisation and to minimise workforce

turnover (also known as ‘churn’). Workforce turnover is defined as the percentage of new

employees needed to replace the employees that have left the organisation. In large

organisations a 5-10% churn is typical. However, if there is a much high rate of churn (over

20%), it could indicate a number of issues that should be immediately addressed. One issue

could be that part of the workforce is only required part of the time and contractors are needed

to make up this part of the workforce. This is because the organisation could not guarantee

enough work for full-time employment.

20

Another issue is working conditions; workforce optimisation can help with working conditions

to evenly balance workloads between employees and help tasks to be managed efficiently,

rather than expected unreasonable amounts of work to be completed within a short deadline.

2.4.4 Team Allocation

When workforces are large enough to divide into teams the team structure, skills and

responsibilities of the team are important factors to consider when designing optimal

organisational structures. If the size of the team and the skills available do not match the

demand profile of the tasks to be allocated to the team, this can have a noticeable impact on

the utilisation of the team or can push up operating costs unnecessarily.

For mobile workforces, the task of optimal team allocation becomes more difficult. This is due

to the location of the employees. A perfect candidate to meet the shortage in a team’s skill set

might be available, but if their starting location is too far away, they cannot be allocated to that

team.

One aspect of team allocation that cannot necessarily be taken into account by any algorithm

is the team dynamic. How employees work together, their own preferences, and with regards

to mobile workforces and their local area knowledge. The area manager must consider these

aspects. It is important to note as there may be hidden infeasible solutions to a problem when

it comes to optimisation of humans.

2.5 Discussion

In this chapter, a description of the origins of workforce optimisation was given, explaining

how this stems from the travelling salesman problem (TSP) and its variants. This chapter gave

a detailed overview of three types of TSP, specifically highlighting that the clustered TSP is

the most relevant to this work.

21

An overview of workforce management systems was described, explaining scheduling,

planning and tactical planning. This chapter explained that organisational design is often

overlooked in favour of these other solutions and hence why this problem is being tackled. It

described how working areas (or patches) work in large organisations and how it is used for

the division of labour and management responsibilities.

Other aspects of workforce optimisation that go beyond the traditional workforce scheduling

and routing problem were described. The chapter also highlighted the aspects of multi-skilled

workforce and team allocation as these directly link to some of the challenges of this thesis.

The next chapter will describe optimisation algorithms.

22

Chapter 3. An Overview of Selected

Optimisation Algorithms

Optimisation is a procedure of finding and comparing feasible solutions until no better

solutions can be found. Solutions are termed good or bad in terms of an objective which is

often the cost of fabrication, amount of harmful gases, the efficiency of a process, product

reliability or other factors [69].

When an optimisation problem modelling a physical system involves only one objective

function, the task of finding optimal solutions is called single-objective optimisation. Currently,

there exist single objective optimisation algorithms that work using gradient-based and

heuristic-search techniques [69]. Heuristic search refers to the process of finding a solution to

a problem that is ‘good enough’, because carrying out exhaustive search methods (looking at

every single possible solution) is too costly, concerning time, computational power or monetary

costs

Deterministic search principles (there is no randomness, and the same input to a system will

always produce the same output) and stochastic search principles (where there is randomness,

and the same input may produce a different output, depending on system and environmental

variables) These allow optimisation algorithms to find globally optimal (the best possible)

solutions more reliably [69].

In order to widen the applicability of an optimisation algorithm in various problem domains,

natural and physical principles are mimicked to develop robust optimisation algorithms.

Evolutionary algorithms and simulated annealing are two examples of such algorithms [69]

23

3.1 Genetic Algorithms

Concerning its internal functioning, a genetic algorithm is an iterative procedure which usually

operates on a population of consistent size and is executed in the following way:

An initial population of individuals (also called “solutions”, “solution candidates” or

“chromosomes”) is generated randomly or heuristically. During each iterative step (also called

a “generation”) the individuals of the current population are evaluated and assigned a certain

fitness value.

The fitness value is crucial to identifying strong individuals from weak individuals. There is

usually a fitness function which takes the characteristics of the individual to compute the fitness

value based on the environment and objectives of the optimisation.

In order to form a new population, individuals are first selected (usually with a probability

proportional to their relative fitness value), and then produce offspring candidates, which in

turn forms the next generation of parents. This ensures that the expected number of times an

individual is chosen is approximately proportional to its relative performance in the population

[70].

For producing new solution candidates, genetic algorithms use two operators, namely

crossover and mutation:

 Crossover is the primary genetic operator. It takes two individuals, called parents, and

produces one or two new individuals, called offspring, by combining parts of the

parents’ characteristics (also known as “genes”). In its simplest form, the operator

works by swapping (exchanging) substrings before and after a randomly selected

crossover point. More on Crossover operators can be found in Section 3.1.2.2 [70]

24

 Mutation is the second genetic operator. It is essentially an arbitrary modification which

helps to prevent premature convergence by randomly sampling new points in the search

space. In the case of bit strings, mutation is applied by simply flipping bits randomly in

a string, with a certain probability called mutation rate. See more on representation and

mutation in sections 3.1.3 and 3.1.2.3 respectively [70]

Genetic Algorithms (GAs) are stochastic iterative algorithms, which cannot guarantee

convergence (all individuals in the population are identical); termination is at this moment

commonly triggered by reaching a maximum number of generations, by finding an acceptable

solution or more sophisticated termination criteria, including permutation convergence.

3.1.1 Biological Terminology

The approximate way of solving optimisation problems by genetic algorithms holds a strong

analogy to the basic principles of biological evolution. The fundamentals of natural evolution

theory, as it is considered nowadays, refer to the theories of Charles Darwin, which were

published in 1859 in his most well-known work “The Origin of Species: By Means of Natural

Selection or the Preservation of Favoured Races in the Struggle for Life” [71]. In this work

Darwin states the following five major ideas:

 Evolution, changes in lineages, occurs and occurred over time.

 All creatures have common descent.

 Natural selection determines changes in nature.

 Gradual change, i.e. nature changes somehow successively

 Speciation, i.e. Darwin claimed that the process of natural selection results in

populations diverging enough to become separate species.

This formed the solid foundations on which evolutionary biology has been based. From the

field of evolutionary biology comes the terminology used in genetic algorithms [70].

25

 All living organisms consist of cells containing the same set of one or more

chromosomes, i.e. strings of DNA. A gene can be understood as an “encoder” of a

characteristic, such as eye colour. The different possibilities for a characteristic (i.e.

brown, green, blue and grey) are called alleles. Each gene is located in a particular

position (locus) on the chromosome [70].

 Most organisms have multiple chromosomes in each cell. The sum of all chromosomes,

i.e. the complete collection of genetic material, is called the genome of the organism

and the term genotype refers to the particular set of genes contained in a genome.

Therefore, if two individuals have identical genomes, they are said to have the same

genotype [70].

 Organisms whose chromosomes are arranged in pairs are called diploid, whereas

organisms with unpaired chromosomes are called haploid. In nature, most sexually

reproductive species are diploid. Humans, for instance, have 23 pairs of chromosomes

in each somatic cell in their body. Recombination (crossover) occurs during sexual

reproduction in the following way [70]:

 For producing a new child, the genes of the parents are combined to eventually perform

a new diploid set of chromosomes. Offspring are subject to mutation where elementary

parts of the DNA (nucleotides) are changed. The fitness of an organism (individual) is

typically defined as its probability to reproduce, or as a function of the number of

offspring the organism has produced [70].

For the sake of simplification, in genetic algorithms, the term chromosome refers to a solution

candidate. The genes are either single bits or small blocks of neighbouring bits that encode as

a particular element of the solution. Alleles are usually 0 or 1, however, for larger alphabets,

more alleles are possible at each locus (i.e. Real-Value encoding) [70].

26

Despite human evolution being based on diploid representation, most applications of genetic

algorithms are haploid representation. This is likely due to its simplicity in representation and

implementation [70].

3.1.2 Genetic Operators

3.1.2.1 Selection

In genetic algorithms, once a fitness value has been assigned to each individual in a population,

the set of solutions, that are to be “mated” in a given generation, is to be produced. In a standard

genetic algorithm, the probability that a chromosome of the current population is selected for

reproduction is proportional to its fitness. There are many methods available to accomplish this

selection, Proportional Selection (also known as Roulette wheel Selection) and Tournament

Selection are two of the most popular [72] [34] [35].

 Roulette Wheel Selection: In this method of selection, the expected number of

descendants for an individual i is given as 𝑝𝑖 =
𝑓𝑖

�̅�
 with 𝑓: 𝑆 → ℝ+ denoting the fitness

function and 𝑓 ̅ representing the average fitness for all individuals. Therefore, each

individual of the population is represented by a space proportional to its fitness. By

repeatedly spinning the wheel, individuals are chosen with random sampling with

replacement [31] [33].

 Tournament Selection: There are a number of variations. However the most common

is k-tournament selection where k individuals are selected from the population at

random. Then the fittest individual of the k selected ones is considered for reproduction.

In this variant selection pressure can be scaled quite easily by choosing an appropriate

number for k [31] [33].

27

3.1.2.2 Crossover

In its easiest formulation, which is suggested in the canonical GA for binary encoding,

crossover takes two individuals and cuts their chromosome strings at some chosen position.

The produced substrings are then swapped to produce two new full-length chromosomes [31].

Conventional crossover techniques for binary representation include:

 Single Point Crossover

A single random cut is made, producing two head sections and two tail sections. The two tail

sections are then swapped to create two new individuals (chromosomes). Figure 3.1

schematically sketches this crossover method which is also called one-point crossover [31].

Figure 3.1 Single-Point Crossover [36]

 Multiple Point Crossover

One natural extension of the single point crossover is the multiple point crossover: In an n-

point crossover there are n crossover points and substrings are swapped between the n points.

According to some researchers, multiple point crossover is more suitable to combine good

features present in strings, because it samples uniformly along the full length of a chromosome

[37]. At the same time, multiple point crossover becomes increasingly disruptive with an

increasing number of crossover points, i.e. the evolution of longer building blocks becomes

more and more difficult. Decreasing the number of crossover points during the run of the GA

may be a good compromise [31]. Multiple point crossover is illustrated in Figure 3.2.

28

Figure 3.2 Multiple Point Crossover [36]

 Uniform Crossover

Given two parents, each gene in the offspring is created by copying the corresponding gene

from one of the parents. The selection of the corresponding parent is undertaken by a randomly

generated crossover mask: At each index, the offspring gene is taken from the first parent if

there is a 1 in the mask at this index, and otherwise (if there is a 0 in the mask at this index) the

gene is taken from the second parent. Due to this construction principle uniform crossover does

not support the evolvement of higher order building blocks [31]. Uniform crossover is

illustrated in Figure 3.3

Figure 3.3 Uniform Crossover [38]

As the number of proposed problem-specific crossover techniques has been growing, a good

discussion of crossover related issues can be found in [39] and [40].

3.1.2.3 Mutation

Mutation allows undirected jumps to slightly different areas of the search space. The basic

mutation operator for binary coded problems is bitwise mutation. Mutation occurs randomly

29

and vary rarely with a probability pm; typically, the mutation rate is less than ten percent. In

some cases, mutation is interpreted as generating a new bit, and in others, it is interpreted as

flipping the bit [31].

In higher order alphabets, such as integer numbering formulations, mutation takes the form of

replacing as allele with a randomly chosen value in the appropriate range with probability pm.

However, for combinatorial optimisation problems, such mutation schemes can cause

difficulties with chromosome legality; for example, multiple copies of a given value can occur

which might be illegal for some problems (including routing). Alternatives suggested in the

literature include pairwise swap and shift operations, as described in [41].

Also, adaptive mutation schemes similar to mutation in the context of evolutionary strategies

are worth mentioning. Adaptive mutation schemes vary either the rate or the form of mutation,

or both during a GA run. For instance, mutation is sometimes defined in such a way that the

search space is explored uniformly at first and more locally towards the end, in order to do a

kind of local improvement of candidate solutions [39].

3.1.3 Chromosome Representation

A key issue with most evolutionary algorithm techniques is the choice of a suitable encoding

scheme, or how the solution to a problem will be represented through a chromosome. The

choices are mainly binary, floating-point, or some grammar-based representation, see Figure

3.4. Holland [42] used the argument that a genome with a small number of alleles but long

strings has a higher degree of parallelism than a numeric scheme with a larger number of alleles

but short (floating point) strings. [43]

30

Figure 3.4 Chromosome Encoding a) Binary b) decimal c) Alphanumeric

However, as Mitchel [44] points out, for real-world applications it is frequently more natural

to use a decimal or symbolic representation scheme, as this is an easier mapping to the actual

representation of the problem space; for example, the weights in a neural network.

The text by Michalewicz [39] also offers a useful analysis of the relative merits of binary versus

floating-point representations. The conclusion is that a floating-point scheme is faster, is more

consistent between runs, and can provide a higher precision for large domain applications [43].

The binary alphabet offers the maximum number of schemata per bit of

information of any coding and consequently the bit string representation

dominated genetic algorithm research. This coding also facilitates

theoretical analysis and allows elegant genetic operators. But the implicit

parallelism does not depend on using bit strings and it may be worth-while to

experiment with large alphabets. In particular for parameter optimisation

problems with variables over continuous domains, we may experiment with

real-coded genes together with special genetic operators developed for them

[39]

In relation to the workforce optimisation problems outline later in this thesis, floating point (or

real-value) representation is the most suitable given the outlined advantages.

31

3.1.4 Implementing a Genetic Algorithm

The steps to genetic algorithms are shown in Figure 3.5 and the pseudocode for implementing

a standard genetic algorithm is shown in Figure 3.6.

Figure 3.5: Flow of a Genetic Algorithm (GA)

Figure 3.6: Pseudocode for a standard Genetic Algorithm [45]

t = 0;

initPopulation P(t);

evaluatePopulation(P);

Loop (until stopping criteria){

 For i = 1 to number of individuals

 P’ = selectParents(P(t))

 P’ = crossover(P’)

 P’ = mutate(P’)

 evaluatePopulation(P’)

 P = newPopulation(P’)

 t++;

}

32

3.2 Particle Swarm Optimisation

Particle Swarm Optimisation (PSO), which has its roots in artificial life and social psychology

as well as engineering and computer science, differs from other evolutionary computation

methods (such as the discussed GA in Section 3.1) in that the population members, called

particles, are flown through the problem hyperspace. When the population is initialised, in

addition to the variables being given random values, they are stochastically assigned velocities.

Each iteration each particle’s velocity stochastically accelerated towards its previous best

position (where it had its highest fitness value) and towards a neighbourhood best position (the

position of the highest fitness by any particle in the neighbourhood/population) [46]

The process of the optimisation is as follows [46]:

Each individual in the population, a particle, represents a potential solution to a problem. Each

particle is treated as a point in a D-dimensional space. The ith particle is represented as 𝑋𝐼 =

(𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝐷) . The best previous position (the position giving the best fitness) of any

particle is recorded and represented as 𝑃𝐼 = (𝑝𝑖1, 𝑝𝑖2, … , 𝑝𝑖𝐷). The index of the best particle

among all the particles in the population is represented by the symbol g. The rate of the position

change (velocity) for particle i is represented as 𝑉𝐼 = (𝑣𝑖1, 𝑣𝑖2, … , 𝑣𝑖𝐷). The particles are

manipulated according to the following [46]:

𝑣𝑖𝑑 = 𝑣𝑖𝑑 + 𝑐1 × 𝑅1 × (𝑝𝑖𝑑 − 𝑥𝑖𝑑) + 𝑐2 × 𝑅2 × (𝑝𝑔𝑑 − 𝑥𝑖𝑑) (3-1)

𝑥𝑖𝑑 = 𝑥𝑖𝑑 + 𝑣𝑖𝑑 (3-2)

Where 𝑐1 and 𝑐2 are two positive constants, R1 and R2 are two random values in the range 0

to 1. The second part of equation (3-1) is the ‘cognition’ part. Which represents the private

thinking of the particle itself. The third part of equation (3-1) is the ‘social’ part which

represents the collaboration among the particles. Equation (3-1) is used to calculate the

particles new velocity according to its previous velocity and the distance from its current

33

position from its own best experience (position) and the group’s best experience. Then the

particle flies towards a new position according to equation (4-2). The performance of each

particle is measured by a predefined fitness function [47]. The fitness function here is like the

fitness function of a GA. As mentioned in [48] a recommended choice for the constants 𝑐1 and

𝑐2 is 2.

3.2.1 Implementing a Particle Swarm Algorithm

The flow for a PSO is shown in Figure 3.7, and the Pseudocode for the PSO algorithm is shown

in Figure 3.8 [46]:

Figure 3.7: Flow of a Particle Swarm Algorithm

34

Figure 3.8: Pseudocode for the PSO algorithm [46]

3.3 Simulated Annealing

Simulated annealing is a technique for combinatorial optimisation problems, such as

minimising functions of very many variables. Because many real-world design problems can

be cast in the form of such optimisation problems, there is intense interest in general techniques

for their solution. Simulated annealing is one such technique (it was introduced in 1983 by

Loop (until stopping criteria){

 For i = 1 to number of individuals

 If(𝐺(�⃗�𝑖) > 𝐺(�⃗�𝑖)){ //G()evaluates fitness

 For d = 1 to dimensions {

 𝑝𝑖𝑑 = 𝑥𝑖𝑑 //𝑝𝑖𝑑 is best so far

 }

 Next d

}

g = i //arbitrary

 For j = indexes of neighbours

 If(𝐺(𝑝𝑗) > 𝐺(�⃗�𝑔))

 g = j

 Next j

 For d = 1 to number of dimensions

 𝑣𝑖(𝑡) = 𝑣𝑖(𝑡 − 1) + 𝜑1(𝑝𝑖𝑑 − 𝑥𝑖𝑑(𝑡 − 1)) + 𝜑2 (𝑝𝑔𝑑 − 𝑥𝑖𝑑(𝑡 − 1))

 𝑣𝑖𝑑 ∈ (−𝑉𝑚𝑎𝑥, +𝑉𝑚𝑎𝑥)

 𝑥𝑖𝑑(𝑡) = 𝑥𝑖𝑑(𝑡 − 1) + 𝑣𝑖𝑑(𝑡)

 If 𝑝𝑖𝑑 < 𝑆(𝑣𝑖𝑑(𝑡)) then 𝑥𝑖𝑑(𝑡) = 1; else 𝑥𝑖𝑑(𝑡) = 0;

 Next d

 Next i

}

35

Kirkpatrick et al. [49]) with an unusual pedigree: it is motivated by an analogy to the statistical

mechanics of annealing in solids [50].

To understand why such a physics problem is of interest, consider how to coerce a solid into a

low energy state. A low energy state usually means a highly ordered state, such as a crystal

lattice; a relevant example here is the need to grow silicon in the form of highly ordered, defect-

free crystals for use in semiconductor manufacturing. To accomplish this, the material is

annealed: heated to a temperature that permits many atomic rearrangements, then cooled

carefully and slowly, until the material freezes into a good crystal. Simulated annealing

techniques use an analogous set of “controlled cooling" operations for non-physical

optimisation problems, in effect transforming a poor, unordered solution into a highly

optimised, desirable solution. Thus, simulated annealing offers an appealing physical analogy

for the solution of optimisation problems, and more importantly, the potential to reshape

mathematical insights from the domain of physics into insights for real optimisation problems

[50].

For our purposes, a combinatorial optimisation problem is one in which we seek to find some

configuration of parameters �̅� = (𝑋1, 𝑋2, … , 𝑋𝑁) that minimises some function 𝑓(�̅�). This

function is usually referred to as the cost or objective function (like it is in GAs). Realistic

design problems may require many parameters and a complex cost function. Consider, for

example, deciding the placement of components on the surface of an integrated circuit in an

optimal way. We may seek to maximise the ability to route wires to interconnect these

components, minimise the overall chip area, maximise the manufacturing yield of the chip,

minimise the deviation from specified timing constraints, and so forth. The cost function may

be very sophisticated, and the number of parameters large: perhaps 103 to 105 variables to

specify the positions for each component [50].

36

Heuristic strategies for solving such problems come in several styles. Sometimes constructive

heuristics can be found, which build up a good answer directly, piece by piece. Of more interest

are iterative improvement strategies, which attempt to perturb (alter or change) some existing,

suboptimal solution in the direction of a better, lower-cost solution. The idea can be neatly

illustrated with a “balls and hills” diagram, as shown in Figure 3.9. All the values of 𝑓(�̅�)

define a cost surface. In Figure 3.9 it is shown schematically for N = 1, i.e. a single parameter,

as a set of hills and valleys in the cost surface. The ball represents the current configuration we

plan to perturb. In practice, iterative improvement algorithms often start with a random initial

configuration or where possible, with a heuristically constructed initial configuration that is not

as costly as a random solution [50].

Figure 3.9: Ball and Hills Diagram [50]

From Figure 3.9, an obvious approach is to explore easily reached neighbouring configurations

and to select the one with the least cost. In practice, some small random perturbation is

attempted, to yield a nearby solution. This process can continue starting from the new

configuration until no further improvements are obtained, at which point the process

terminates. This strategy seems reasonable, but it has a serious problem, it is easily trapped in

37

local minima; solutions that look good in some small neighbourhood of the cost function but

are not necessarily global optimal [50].

Standard iterative improvement is a downhill-only style. In Figure 3.9 each new perturbation

moves to a configuration downhill from the previous one, thus becoming trapped in the local

minima. In practice, one scheme to overcome this is simply to try many random initial

configurations, improve each, and use the best answer found. However, for very large problems

the computational expense is great. The number of random starts needed to sample the cost

surface adequately is unreasonable, and we still have no guarantees of finding a good answer

[50].

Simulated annealing offers a strategy very similar to iterative improvement, with one major

difference: annealing allows perturbations to move uphill in a controlled fashion. Individual

perturbations are now referred to as moves. As each move can now transform one configuration

to a worse configuration, it is possible to jump out of local minima and potentially fall into a

more promising downhill path. However, because the uphill moves are carefully controlled,

we need not worry about getting close to a good solution, only to randomly jump uphill to some

far worse one [50].

The relevant analogy here is physical annealing of a solid. To coerce some material into a low

energy state, we heat it, then cool it very slowly, allowing it to come to thermal equilibrium

(no heat flows between two systems when they are connected by a path permeable to heat) at

each temperature. Simulating this process is very similar to a combinatorial optimisation task.

For the physical system, the goal is to find some arrangement of atomic particles (a

configuration) that minimise the energy (cost) of the system. The basic requirement for

simulating this process it the ability to simulate how the system reaches thermodynamic

equilibrium at each fixed temperature in the schedule of decreasing temperatures used to anneal

38

it. Toward this end, the Metropolis algorithm, developed in 1953 [51], can be employed. The

algorithm is described in Section 3.3.1

3.3.1 Implementing a Simulated Annealing Algorithm

As mentioned in Section 3.3, the Metropolis algorithm, which is shown in Figure 3.10, can be

used to simulate the annealing process, thus forming a simulated annealing algorithm for

combinatorial optimisation.

Figure 3.10: Pseudocode for Metropolis Algorithm [50]

The idea, as in iterative improvement, is to propose some random perturbation, such as moving

a particle to a new location, then evaluating the resulting change in energy ∆𝐸. If the energy is

reduced, ∆𝐸 < 0, the new configuration has lower energy and is accepted as the starting point

for the next move. However, if the energy is increased, ∆𝐸 > 0, the move may still happen: the

M = number of moves to attempt

T = current temperature

For m = 1 to M{

 Generate a random move, e.g. move a particle;

 Evaluate the change in energy ∆E;

 If(∆E < 0){

 //Downhill move, accept it.

 Accept this move and update the configuration;

}else{

 //Uphill move, accept maybe.

 Accept with probability P = 𝑒−∆E 𝑇⁄

 Update configuration if accepted

}

}

39

new, higher energy configuration may be accepted. In physical systems, jumps to higher energy

actually do happen, but they are moderated by the current temperature T. [50].

At higher temperatures the probability of large uphill moves in energy is large; at low

temperatures the probability is small. The Metropolis Algorithm models this with a Boltzmann

distribution: the probability of an uphill move of size ∆𝐸 at tempreture 𝑇 is Pr[𝑎𝑐𝑐𝑒𝑝𝑡] =

 𝑒−∆𝐸/𝑇. In practice, this probabilistic acceptance is achieved by generating a uniform random

number R in [0,1] and comparing it against the threshold Pr [𝑎𝑐𝑐𝑒𝑝𝑡]. Only if 𝑅 < 𝑃𝑟 [𝑎𝑐𝑐𝑒𝑝𝑡]

s the move accepted. Thus, very probable moves can be rejected, and very improbable moves

can be accepted, at least occasionally. By successively lowering the temperature and running

the algorithm, we can simulate the material coming into equilibrium at each newly reduced

temperature, and thus effectively simulate the physical annealing [50].

We can readily apply this simulated annealing procedure to arbitrary combinatorial

optimisation problems concerning standard iterative improvement; the only addition is the

notion of a temperature parameter. In physical systems, temperature has a physical meaning;

in arbitrary nonphysical optimisation tasks, the temperature is simply a control mechanism.

The idea is to employ a cooling schedule, a sequence of decreasing temperatures, to moderate

the acceptance of uphill moves over the course of the solution [50].

Initially, the effective temperature parameter is high enough to permit an aggressive, essentially

a random search of the configuration space. Most uphill moves are allowed: we tend to improve

the value of the cost function here, but some local minima can also be avoided. At the coldest

temperatures the solution is close to freezing into its final form, and very few disruptive uphill

moves are permitted. In this temperature regime, annealing closely resembles standard

downhill –only iterative improvement [50].

40

3.4 Multi-Objective Genetic Algorithms

A significant portion of research and application in the field of optimisation considers a single

objective, although most real-world problems involve more than one objective. The presence

of multiple conflicting objectives (such as simultaneously minimising the cost of fabrication

and maximising product reliability) are natural in many problems and makes the optimisation

problem interesting to solve [30].

Since no one solution can be termed as an optimal solution to multiple conflicting objectives,

the resulting multi-objective optimisation problem resorts to a number of trade-off solutions.

Classical optimisation methods can, at best, find one solution in one simulation run, thereby

making those methods inconvenient to solve multi-objective optimisation problems [30].

Current evolutionary multi-objective optimisation applications can be roughly classified into

three large groups: engineering, industrial and scientific [52].

Engineering applications are by far the most popular in the literature. Engineering disciplines

normally have problems with better understood mathematical models which facilitate the use

of evolutionary algorithms like genetic algorithms. Some examples include structural

engineering [53] [54], robotics [55] [56] and telecommunications [57] [58] [52].

Industrial applications occupy the second place in popularity, with scheduling being the most

popular sub-discipline [59] [60]. The industrial applications area is where the problems in this

thesis sit. Particularly as some aspects are derived from scheduling problems. Other

applications include design and manufacture [61] and management [62] [52].

Finally, there is a wide variety of scientific applications, with computer science being the most

popular [63] [64]. Other applications include chemistry [65], physics [66] and medicine [67]

[52].

41

3.4.1 Dominance

Most multi-objective optimisation algorithms use the concept of domination. Domination is

described as the following:

We assume there are M objective functions. In order to cover both minimisation and

maximisation of objective functions, we use the operator ⊲ between two solutions i and j as

i⊲j to denote that solution i is better than solution j on a particular objective. Similarly, i⊳j for

a particular objective implies that solution i is worse than solution j on this objective. For

example, if an objective function is to be minimised, the operator ⊲ would mean the < operator,

whereas if the objective function is to be maximised, the operator ⊲ would mean the > operator

[30].

The following outlined conditions required for dominance covers both minimisation and

maximisation objectives. A solution 𝑥(1) is said to dominate the other solution 𝑥(2), if both

conditions 1 and 2 are true [30]:

1. The solution 𝑥(1) is no worse than 𝑥(2) in all objectives, or 𝑓𝑗(𝑥(1)) ⋫ 𝑓𝑗(𝑥(2)) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑗 =

1, 2, … , 𝑀 [30]

2. The solution 𝑥(1) is strictly better than 𝑥(2) in at least one objective, or 𝑓�̅�(𝑥(1)) ⊲ 𝑓�̅�(𝑥(2))

for at least one 𝑗̅ ∈ {1, 2, … , 𝑀} [30]

If any of the conditions are violated, the solution 𝑥(1) does not dominate the solution 𝑥(2). If

𝑥(1) dominates the solution 𝑥(2) (or mathematically 𝑥(1) ≺ 𝑥(2)), it is also customary to write

the following [30]:

 𝑥(2) is dominated by 𝑥(1)

 𝑥(1) is non-dominated by 𝑥(2), or

 𝑥(1) is non-inferior to 𝑥(2)

42

Let us consider a two-objective optimisation problem, with five different solutions shown in

the objective space as illustrated in Figure 3.11. Objective 1 needs to be maximised and

Objective 2 needs to be minimised. Since both objectives are important to us it is difficult to

determine which solution is best with respect to both objectives. We can use the dominance

conditions to decide which solution is better among any two given solutions in terms of both

objectives. For example, if solution 1 and solution 2 are to be compared, we observe that

solution 1 is better in both objectives. Thus, both the dominance conditions are met in this case,

so solution 1 is dominant, i.e. better [30].

Figure 3.11: Five Solutions in a Two Objective Space [30]

3.4.2 Pareto Optimality

If we continue to analyse Figure 3.11, we can compare solutions 3 and 5. We observe that

solution 5 is better than solution 3 in the first objective, while solution 5 is worse than solution

3 in the second objective. Thus, the first condition is not satisfied for both of these solutions.

This simply suggests we cannot conclude that solution 5 dominates solution 3, nor can we say

solution 3 dominates solution 5. When this happens, it is customary to say solutions 3 and 5

43

are non-dominated with respect to each other. When both objectives are important, it cannot

be said which of the two solutions 3 and 5 is better [30].

For a given finite set of solutions, we can perform all possible pair-wise comparisons and find

which solution dominates which and which solutions are non-dominated concerning each

other. At the end, we expect to have a set of solutions, any two of which do not dominate each

other [30].

This set also has another property. For any solution outside of this set, we can always find a

solution in this set which will dominate the former. Thus, this particular set has the property

of dominating all other solutions which do not belong to that set. This set is given special

names; it is called the non-dominated set or the Pareto-Optimal set. Sets are also known as

Fronts, and thus the term Pareto Front is commonly used to describe the non-dominated set.

[30] Figure 3.12 marks the Pareto-optimal set with continuous curves for four different

scenarios with two objectives.

Figure 3.12: Pareto-Set 4 Different Scenarios [30]

44

One final example of Pareto optimality and how all solutions are grouped into sets is shown in

Figure 3.13. This diagram shows solutions in a multi-objective problem with two minimisation

objectives. All the solutions have been grouped into a total of four sets, or fronts, with the

dominating set shown as the Pareto front. Figure 3.13 also shows an infeasible point, a point

in the search space which is impossible to achieve given the optimisation and environmental

constraints.

Figure 3.13 Fronts in a multi-objective optimisation problem

3.4.3 NSGA-II

The elitist Non-Dominated Sorting Genetic Algorithm II (NSGA-II) was proposed by Deb et

al [68]. It was created to address a number of issues associated with multi-objective GAs that

existed at the time. Issues such as:

 High Computational Complexity of sorting algorithm:

 Lack of elitism.

 The need to specify the sharing parameter.

45

Multi-objective GAs (MOGAs) differ from traditional (or single-objective) GAs in the fitness

evaluation and comparison only. The remaining parts of the algorithm, such as Selection,

Crossover, Mutation (as described in Section 4.1.2) are largely identical. NSGA-II concerns

itself with the population of solutions.

 In NSGA-II, when the offspring population 𝑄𝑡 is being generated from the parent population

𝑃𝑡 the two populations are combined together to form 𝑅𝑡 of size 2N (where N is the size of the

initial population) [30].

Then a non-dominated sorting algorithm is used to classify the entire population 𝑅𝑡. Although

this requires more effort compared to performing the non-dominated sort on 𝑄𝑡 alone, it allows

a global non-domination check among the offspring and parent solutions. This global check is

how elitism is handled in NSGA-II [30].

Once the non-dominated sorting is over, the new population is filled by solutions of different

fronts, one at a time. The filling starts with the Pareto front and continues with solutions on the

second front, then the third and so on. Since the overall population size of 𝑅𝑡 is 2N, not all

fronts may be accommodated in N slots. All fronts which could not be accommodated are

simply deleted. Figure 3.14 illustrates this sorting procedure.

Figure 3.14: Illustration of the Sorting Procedure [30]

46

The following is an outline of NSGA-II steps, where initially a random population 𝑃0 is created.

Each member of the initial population is evaluated and ranked, then used to create an offspring

population 𝑄0 of size N [30].

Step 1: Combine parent and offspring populations and create 𝑅𝑡 = 𝑃𝑡 ∪ 𝑄𝑡. Perform non-

dominated sorting on 𝑅𝑡 and identify the different fronts: 𝐹𝑖 , 𝑖 = 1, 2, … , 𝑒𝑡𝑐. [30]

Step 2: Set new population 𝑃𝑡+1 = ∅, set a counter i = 1. While |𝑅𝑡+1| + |𝐹𝑖| < 𝑁, perform

𝑃𝑡+1 = 𝑃𝑡+1 ∪ 𝐹𝑖 and i = i +1 [30].

Step 3: Perform the crowding-sort (𝐹𝑖 <𝑐) procedure and include the most widely spread

(𝑁 − |𝑃𝑡+1|) solutions by using the crowding distance values in the sorted 𝐹𝑖 to 𝑃𝑡+1 [30].

Step 4: Create offspring population 𝑄𝑡+1 from 𝑃𝑡+1 by using the crowding tournament

selection, crossover and mutation operators [30].

3.4.3.1 Crowded Distance Tournament Selection

The crowded comparison operator <𝑐 compares two solutions and returns the winner of the

tournament. It assumes that every solution i has two attributes [30]:

1. A non-domination rank 𝑟𝑖 in the population

2. A local crowding distance (𝑑𝑖) in the population. 𝑑𝑖 of a solution i is a measure of the

search space around i which is not occupied by any other solution in the population.

Based on these two attributes, we can define the crowded tournament selection operator as

follows [30]:

1. If solution i has a better rank, that is 𝑟𝑖 < 𝑟𝑗

2. If they have the same rank, but solution i has a better crowding distance than solution

j, that is 𝑟𝑖 < 𝑟𝑗 and 𝑑𝑖 > 𝑑𝑗

47

This states that either the solution with the highest rank wins or if they have the same rank, the

solution with the highest crowding distance wins [30].

3.4.3.2 Crowding Distance

The following is used to compute the crowding distance of each point in the set 𝐹 [30].

Step 1: Call the number of solutions in F as 𝑙 = |𝐹|. For each i in the set, first assign 𝑑𝑖 = 0

[30].

Step 2: For each objective function 𝑚 = 1, 2, … , 𝑀, sort the set in worse order of 𝑓𝑚, or find

the sorted indices vector: 𝐼𝑚 = 𝑠𝑜𝑟𝑡 (𝑓𝑚, >) [30].

Step 3: For 𝑚 = 1, 2, … , 𝑀 assign a large value to the boundary solutions, or 𝑑𝑖1
𝑚 = 𝑑𝑖𝑙

𝑚 = ∞

and for all other solutions 𝑗 = 2 𝑡𝑜 (𝑙 − 1) , assign [30]:

𝑑𝐼𝑗
𝑚 = 𝑑𝐼𝑗

𝑚 +
𝑓𝑚

(𝐼𝑗+1
𝑚)

− 𝑓𝑚

(𝐼𝑗−1
𝑚)

𝑓𝑚
𝑚𝑎𝑥− 𝑓𝑚

𝑚𝑖𝑛 (3-3)

The index 𝐼𝑗 denotes the solution index of the jth member in the sorted list. This metric denotes

half the perimeter of the enclosing cuboid with the nearest neighbour solutions placed on the

vertices of the cuboid, this is illustrated in Figure 3.15 [30].

Figure 3.15 Crowding Distance - Enclosing Cuboid [30]

l

48

3.4.4 Implementing NSGA-II

The flow for NSGA-II is shown in Figure 3.16

Figure 3.16 NSGA-II Flow Diagram

49

Pseudocode for implementing NSGA-II is as follows [68]:

Figure 3.17: Pseudocode for NSGA-II [68]

For Each p ϵ P {

 Sp = ∅

 np = 0

 For each q ∈ P

 If (p ≺ q) then if p dominates q

 Sp = Sp ∪ {q} Add q to the set dominated by p

 Else if (q ≺ p) then

 np = np + 1 Increment the domination count

 if np = 0 then p belongs to the first front

 prank = 1

 F1 = F1 ∪ {p}

i = 1 initialise the front counter

while Fi ≠ ∅

 Q = ∅ used to store the members of the next front

 For each p ∈ Fi

 For each q ∈ Sp

 nq = nq – 1

 if nq = 0 then q belongs to the next front

 qrank = i + 1

 Q = Q ∪ {q}

i = i + 1

Fi = Q

50

3.5 Many-Objective Problems

Real-world optimisation problems often contain several conflicting objectives that are

simultaneously optimised. Problems with more than three objectives are defined as many-

objective optimisation problems (MaOP) [69] [70]. The definition was first conceived by

Farina et al. [71]

Pareto’s definition captures the notion of “optimality” in a narrowly prescribed sense. In fact,

the definition is relevant and useful for engineering and design problems, where typically the

objective number is small, and the computational cost of each objective is high but is less

suitable for many other kinds of problems (especially decision-making problems) where the

number of objectives may be big (though computationally costless). Let us consider, for

example, a minimisation problem with 50 objectives, f1, …, f50 (a number which is unusual for

engineering problems, but common for many real-world decision-making problems), and two

points V1 and V2 such that in 49 objectives V1 is better than V2, and in just one objective j it

holds fj (V2) < fj(V1) (maybe for a small value ε) V2 is better than V1. It is obvious to any person

would vote V1 as a better solution than V2. However, by Pareto definition, they are absolutely

equivalent. [71]

3.6 Hypervolume

Once a MOGA produces a Pareto front we can measure the hypervolume of the shape [72],

where the shape is produced by the Pareto solutions and reference points. The hypervolume for

2-dimensional problems would be more commonly known as area, and for 3-dimensional

shapes, volume. A reference point (r in figure 3.18), represent the worst possible solution in

the search space and acts as an anchor point to measure pareto fronts against. The reference

point is the maximum value for all minimisation objectives and the minimum value for all

maximisation objectives. Figure 3.18 illustrates the hypervolume for a 2-dimensional and 3-

51

dimensional problem. A hypervolume value gives us the quality of the Pareto front. The larger

the hypervolume the better the quality of the Pareto front. This means for experiments, we can

measure any improvements to a multi-objective algorithm by measuring the subsequent

increase in the hypervolume after changes to the algorithm have been made.

Figure 3.18: Hypervolume Indicator in two dimensions for a set A = {a1, ..., a4} ⊂ R 2 (left)

and in three dimensions for a set Y = {y1, . . . , y5} ⊂ R 3 (right) [73]

3.7 Discussion

This chapter gave an overview of genetic algorithms (GAs), Particle Swarm Optimisation

(PSO), simulated annealing and looked at multi-objective evolutionary algorithms.

The chapter when on to explain the issues with traditional multi-objective algorithms when

attempting to solve many-objective problems (problems with four or more objectives). A brief

overview on hypervolume was given, as a way to measure the quality of results from multi-

objective algorithms.

The next chapter will give an overview of large-scale organisational design problems. These

problems will be tackled by the systems in later chapters.

52

Chapter 4. An Overview of Large-Scale

Organisational Design Problems

For large organisations, such as utility companies, an effective and responsive organisational

design can limit the inefficiencies and reduce the impact unexpected events can have on the

organisation. In Chapter 2 we disused how tactical planning and scheduling systems handle the

allocation of tasks to resources on a weekly or daily basis. However, the effectiveness of these

systems often relies on the organisation be set up as best as possible, else the organisation will

hit a productivity ceiling, regardless of if there are enough resources to handle the overall

demand. Organisational design is often overlooked when it comes to optimisation in large

organisations; this is what we will be addressing in the next few chapters.

The problems being addressed are real-world problems that BT decided to address to improve

their levels of productivity. Levels which could not be achieved by their current planning and

scheduling tools. BT is responsible for much of the United Kingdom’s communications

network infrastructure and provides services such as telephone, television and internet services

to households and businesses.

4.1 The Geographical Structure Optimisation Problem

As BT is primarily a utility company, their responsibilities include maintaining the

communications infrastructure that extends across the UK; it also includes providing new

communications infrastructure to new properties and upgrading the infrastructure as new

technologies become available. To manage these complex responsibilities across such a large

and diverse geography requires a management hierarchy based on geographical regions. This

hierarchy is key to allow decisions made by executives at the top levels to flow down

effectively to each part of the country. The deeper the level of the hierarchy the more increased

level of specialist knowledge there is about people, geography and inventory. This type of

53

management hierarchy is common among many organisations, most famously the military

[74]. See Figure 4.1 for how the UK might be divided up.

Figure 4.1: Possible Divisions of UK Geography

The organisational design problem that emerges from this are the decisions about what

geographical regions should make up the lowest level of the hierarchy, which of these regions

should be grouped to form the level above and so on. For BT we can group local geographical

zones together based on how the infrastructure network is set up. Each property will be

connected to a local Service Delivery Point (SDP), which is a building containing racks of

network equipment to allow those properties to connect to the global network. Within BT there

are over 5,500 SDPs across the country. The distribution trends towards population density,

i.e. the more people there are, the more SDPs are needed to service them. This means more

SDPs are required in urban areas than in rural areas.

Clustering together SDPs forms the patches a team of engineers will be responsible for.

However, when it comes to real-world geography, there are some restrictions, requirements

and special cases that need to be taken into account. For example, patches should not cross

large rivers or other geographical obstacles.

54

Additionally, these constraints on the patches extend from the engineers in each of the teams.

Examples of these constraints include; all the engineers will not all be working at all times (as

some of them might fall sick, have holidays or day off), so there is a degree of workforce

shrinkage that needs to be taken into account. Of the engineers that remain, they can only be

assigned tasks that they are qualified to complete. Of these tasks, each engineer has preferred

tasks that they work on. Taking this into account can help improve the average time taken to

complete the tasks. Lastly, each engineer is limited by the amount of work they can do each

day (travel time must be included in this), and each team has to be of equal size.

4.1.1 Objectives

For the particular geographical workforce optimisation strategy being tackled in this thesis, I

have five potential objectives. If all of five objectives are used, it qualifies the optimisation

problem as many-objective (discussed in Chapter 3.5). The objectives for the workforce

optimisation process are as follows:

 Maximise Coverage: This is the basic measure of work that is expected to be

completed by the engineers. This is measured as a percentage of total completed

work. Equation (4-1) represents the sum of all engineers (n) expected completed work

over the region’s total work (RTW) where the region contains all the patches being

optimised. An individual engineer’s coverage is represented by Ci while the total

completed work is represented by C.

𝐶 =
1

𝑅𝑇𝑊
∑ 𝐶𝑖

𝑛
𝑖=1 (4-1)

 Minimise Travel: Minimising the amount an engineer travels increases the available

productive time for each engineer. Reducing travel also reduces costs, due to less fuel

consumption. Minimising travel conflicts with maximising coverage as an engineer

will usually be required to travel to each task. As coverage increases, travel also

55

increases. In Equation (4-2), this is represented as the sum of all engineers’ travel

distance divided by the total number of engineers (n) representing travel as an average

for the workforce. An individual engineer’s travel is represented by Ti while the total

travel is represented by T

𝑇 =
1

𝑛
∑ 𝑇𝑖

𝑛
𝑖=1 (4-2)

 Maximise Utilisation: Unutilised time is when the engineer is idle or travelling, and

hence we want to maximise the utilisation of the workforce. Equation (4-3) shows

the sum of each engineer completed work (Ci) divided by the engineer’s available

time (Ai), this sum is then divided by the total number of engineers (n).

𝑈 =
1

𝑛
∑

𝐶𝑖

𝐴𝑖

𝑛
𝑖=1 (4-3)

 Minimise Area Imbalance: Patches should have an even distribution of demand. This

will lead to smaller patches for urban areas, and larger patches for rural areas. This

conflicts with minimising travel (and maximising utilisation) because the larger rural

areas favoured by this objective will increase the distance a particular engineer has

to travel in the rural area. Area balancing is the difference between the largest (Pmax)

and smallest (Pmin) patches in hours of available work, shown in Equation (4-4).

𝐴𝐵 = (𝑃𝑀𝐴𝑋 − 𝑃𝑀𝐼𝑁) (4-4)

 Minimise Team Imbalance: Patches should have evenly balanced teams. This will

conflict with the maximising the utilisation objective because having balanced teams

a) doesn’t mean the work is balanced in the patches and b) the number of engineers

does not reflect the skill mix, work patterns and capabilities of the team. This

objective is a management and human resource constraint. Having one team of 5

engineers and another of 35 engineers is not practical to manage, the manager of the

larger team will be envious of the manager with the smaller team, and the smaller

56

team is less adaptable to spikes in demand. Team Balance is the difference between

the largest (Tmax) and smallest (Tmin) teams, shown in Equation (4-5), and measured

in the number of people.

𝑇𝐵 = (𝑇𝑀𝐴𝑋 − 𝑇𝑀𝐼𝑁) (4-5)

4.1.2 Complexity of the Problem

For any geographical area being optimised, the complexity of the optimisation can vary

dramatically. This complexity is based on the number of SDPs in the area and the number of

patches being optimised. The search space size can be calculated using the equation (4-6) where

S is the number of SDPs in the area to be optimised, and P is the number of patches in the area.

𝑆𝑃 (4-6)

Using 5-6, we can see for an average sized area of 109 SDPs with 150 engineers, 7 patches

would be required. This results in a search space of 1.82e14 states. If it takes 0.1 seconds to run

the simulation to evaluate each state, it would take almost 580,000 years to check every

possible solution. The area with the most required patches, 13, has 106 SDPs. This would result

in 2.13e26 states and would take 6.76 e17 years to search exhaustively.

4.2 The Resource Optimisation Problem

For any company with a large multi-skilled workforce, management of skills and teams poses

many challenges. A multi-skilled workforce here is defined as one in which the members of

the workforce are trained in multiple skills, allowing them to complete different types of tasks.

The benefit is that a multi-skilled workforce is capable of completing a range of different tasks,

with the aim of making the workforce more productive, more flexible to the changing demand

and better at meeting customer needs [75]. This is part of the core principles of workforce

optimisation and workforce management, which is about assigning the right employees with

the right skills, to the right job, at the right time [1].

57

Additional arguments have been made for a multi-skilled workforce, such as employees with

multiple skills are useful when demand is high, and the company wants to maintain a high level

of customer satisfaction [76] [77]. Additionally, a multi-skilled workforce can help where the

labour market is scarce of the types of people that are needed [78] [79]. Also, to get the most

productivity out of a multi-skilled engineer, the skills they should be trained in should be

correlated in some way [78].

The effect of the different mixture of skills in the workforce can have an impact on the

utilisation of each member of the workforce and the overall performance of the company as a

whole.

A study by the University of Texas in Austin looked at the effects of a multi-skilled workforce

in the construction industry [79]. By conducting interviews with many large construction

companies, they were able to evaluate the best practice for multi-skilling on large construction

projects (where more than 200 workers are needed). They found that if all the workforce is

multi-skilled, then there are no specialists, meaning more complex tasks take longer. If there

are not enough multi-skilled engineers then there will be a significant increase in the hires and

fires with the changing demand as the construction project develops, multi-skilling reduces

this.

It is also mentioned that, as a result of a multi-skilled workforce, previous studies have shown

a 5-20% reduction in labour costs and a 35% reduction in the required workforce. Similarly,

we are investigating the most optimal configurations of skills to get the maximum benefit from

the multi-skilled workforce, to further increase the reduction in operating costs.

Deciding which members of the workforce will produce the most benefit when they are trained

with more skills can depend on various factors, such as the location of the engineer, the type

58

of tasks that are near to them and also the career pathway of the engineer to determine at which

stage he is in terms of progression.

However, when engineers are trained with more skills, other engineers in the same area will

have their utilisation impacted. This may be because an engineer has low-level skills that other

engineers could train for and then pick up the work that engineer was doing. As a result, it may

be more beneficial to move the low-skilled engineer to a neighbouring team, which is low on

resources, and could benefit from the lower skilled engineer freeing up time from the higher

skilled engineers in that team.

Due to these complex interactions, it may be more beneficial to evaluate the resultant effects

of upskilling engineers at the time the selection of these engineers is evaluated. Upskilling is

the process of training a resource and adding to their skillset. A multi-skilled workforce comes

with the mentioned benefits, but there is little work in the optimisation of the workforce skill

sets.

4.2.1 Multi-Skilled Engineers

Engineers could have varying numbers of skills based on the types of tasks they work on and

how experienced they are. More experienced engineers are more likely to have more skills and

more likely to have more advanced skills.

The skill sets of the engineers will differ between the different geographical areas that the

groups of engineers (teams) are assigned to. So, a team with a given number of engineers and

an optimised set of skills for each engineer will not necessarily be the best setup for another

area.

In [80], it is noted that the skill optimisation problem is a combinatorial optimisation problem.

The optimisation would need to be frequently run due to changes in customer demand and

59

churn of engineers. A common approach to tackling these large scale and complex optimisation

problems is genetic algorithms, as discussed in Chapter 4, and examples are given in [5], [6]

and [7].

4.2.2 Team Organisation Optimisation

Making sure engineers have the most optimal skill sets is just one part of the problem. This is

because any change in the team’s abilities can have sub-optimal implications. As such it would

be necessary to reorganise the teams after the engineer skill sets have been changed.

An example of one of these implications would be that in an area of low utilisation a few

engineers may be selected to train in a specialist skill, so they can pick up more work and hence

be more utilised. However, for the engineer that was already a specialist, their work will be

reduced. Possibly to a point where the engineer becomes grossly underutilised. As a result, it

may be more beneficial to move that engineer into a neighbouring team. Especially if that

area’s team is near maximum utilisation but low completion of tasks (meaning there are more

tasks than there is time available from the engineers). Another sub-optimal outcome form this

scenario is that; if the engineers are trained in a specialist skill that is needed for the whole area,

but the engineers live in a section of the geography that doesn’t need those skills, the scheduling

system may still allocate them the nearest work. As the scheduler is tasked with minimising

travel. Thus, engineers may be trained in a new skill and rarely use it.

A potential solution here is to move someone in from a neighbouring area that is close to the

specialist tasks, in this situation the engineer could already have the specialist skill, or they

could then be trained in the specialist skill once they have moved team.

This additional layer of change adds more complexity to the problem, because if the re-

organisation of teams happens after the skill optimisation has taken place, then the results will

60

be sub-optimal. The team re-organisation has to be done during the solution evaluation when

engineers are being selected for training.

4.2.3 Objectives

From our list of primary objectives found in Section 4.1.1, the objectives applicable to this

problem are the following:

 Task Coverage (C): the percentage of the tasks estimated to be completed by the

engineers at the end of the simulation. This is a maximisation objective.

 Travel Distance (T): the distance in km an engineer, on average, has to travel in the

simulated area. This is a minimisation objective.

 Utilisation (U): the average utilisation of the engineers. This is a maximisation

objective

If a single objective GA is used, the fitness function used can be given in Equations (4-7) and

(5-8)

𝑭 =
(

𝟏

𝑾
∑ 𝑪𝒊

𝒏
𝒊=𝟏)(

𝟏

𝒏
∑

𝑪𝒊
𝑨𝒊

𝒏
𝒊=𝟏)

𝟏

𝒏
∑ 𝑻𝒊

𝒏
𝒊=𝟏

 (4-7)

𝑭 =
𝑪𝑼

𝑻
 (4-8)

We do not include any weighting factors in the fitness function. Business objectives change on

a regular basis, so we will evaluate any solution to our problem with all objectives equal. This

will help to determine what solutions to our problem are the best not only overall but in any

particular objective.

4.2.4 Complexity of the Problem

The complexity of the resource optimisation problem stems from the uncertainty of the

operational impact of any decision. When moving engineers between teams there is a utilisation

61

trade-off between the two teams that may not be equal. An engineer’s skill and start location

will be critical factors in how much they contribute to their new team. If the engineer has very

little skills required by the new team, their impact will be limited.

Upskilling is no less trivial, as mentioned the algorithm will trend towards upskilling all

engineers, but this is obvious. The reason upskilling is non-trivial is because of the limiting

factor. The limiting factor is the maximum number of engineers that should be upskilled. The

knock-on effects of upskilling one engineer may be difficult to determine until the simulation

has taken place. Thus, it is difficult to know whom to choose for the second upskill and so on.

Upskilling two engineers in the same location with the same skill may be very beneficial

depending on the type of work, or it may be a waste of a training slot. Typically, any sub-region

will have between 100-150 engineers; these subregions will contain 5-7 teams. The total

possible operational choices for moving engineers is given in Equation (4-9), where n is the

number of engineers, and t is the number of teams in the sub-region.

(𝑛2)𝑡 (4-9)

Meaning for any subregion there could be up to 2.92e30 possible move choices per region, in

one example of this in Chapter 8 there are eight sub-regions. Thus, there can be 2.33e31 possible

move choices for a regional manager. The size of this search space is too large for heuristic

search to traverse in a reasonable time. If the simulation returns results within 0.1 seconds (a

measure which is entirely dependent on the hardware the algorithm is run on), it will take

approximately 7.40e22 years to arrive at a definitive answer. Hence, we use meta-heuristics,

specifically GAs, which are explained in Chapter 3. This search space size does not account

for the upskilling options, which add another complex dimension. Every engineer has two

states within this optimisation, either their current skill set, or their upskilled skill set. The

limiting factor states the maximum number of engineers that should be upskilled in the set of

62

total engineers. Given that the engineers have a binary state, we can calculate the total number

of upskilling options (U) for a set of engineers (n) and a limiting factor (x) using (4-10)

𝑈 =
𝑛!

𝑥!((𝑛−𝑥)!)
 (4-10)

However, this will calculate the number of possible upskill options for the maximum number.

Thus, we need to sum up all options from 0 to the limiting factor to obtain the true total of

possible options. So, we can derive (4-11):

𝑈 = ∑
𝑛!

𝑚!((𝑛−𝑚)!)

𝑥
𝑚=0 (4-11)

Hence, if we have 150 engineers and we set the limiting factor to 10 (i.e. we have a maximum

budget for 10 training slots), we would have 1.26e15 upskilling combination options. If we

apply the same computation time of 0.1s per simulation, this will result in a total computation

time of 3.99e6 years to arrive at a definitive answer. Thus, if we try to compute the most optimal

move and upskilling combination simultaneously it would take 2.89e92 years (7.40e223.99e6) or

2.09e81 lifetimes of the universe.

4.3 The Suitability of Simulated Annealing

As discussed in section 4.1.1 and 4.2.4, the search spaces for problems associated with large-

scale organisational design are potentially infinitely vast. To add to the complexity of solving

these problems, there are a number of real-world constraints that irregularly warp the search

space.

In a short survey of GAs versus simulated annealing, there seems to be evidence that there are

more benefits to using a GA for large optimisation problems.

63

[81] concludes that simulated annealing is a popular contemporary placement method;

however, the results of this study indicate that genetic algorithms may lead to better results.

[82] states that the results show better convergence of shortest length chromosome using GA

than simulated annealing.

[83] concludes that their outcomes showed that both of the algorithms are able to tackle the

problem. However, the GA could return better results in a shorter computation time.

Finally, [84] concludes, simulated annealing needed longer computation times compared to the

genetic algorithm.

As a result of this survey and the size and complexity of the problems, simulated annealing

solutions will not be developed to reduce the scope of this work.

4.4 Discussion

This chapter gave an introduction to the specific large-scale organisational design problems

that will be tackled. It then explained the two distinct domains, geographical structure

optimisation problem and the resource optimisation problem. The objectives for these problems

were detailed, which are the following

 Coverage: How much work is completed

 Travel: How much the engineers travel

 Utilisation: How utilised is the workforce (are they idol or travelling a lot?)

 Area balancing: also known as patch balancing, the measure of how balanced each of

the areas is.

 Team balancing: a measure of how equally balanced the teams are regarding Full-Time

Employment (FTE)

64

The first three objectives are applicable to both problem areas; the last two objectives are only

applicable to the geographical optimisation problem.

The computational complexities of the optimisation problems were detailed, as a result it is

reasonable to try and solve these problems with meta-heuristics, such as those described in

Chapter 3.

The next chapter will give an overview of the type-2 fuzzy logic system for field workforce

optimisation.

65

Chapter 5. The Genetic Type-2 Fuzzy Logic

System for Field Workforce Optimisation

Figure 5.1 provides an overview of the framework of the multi-objective genetic type-2 fuzzy

logic-based system for mobile field workforce area optimisation.

Figure 5.1: The multi-objective Genetic Type-2 Fuzzy Logic Based System for Mobile

Field Workforce Area Optimisation

The first step in this system is to collect the list of engineers and the list of SDPs to optimise.

The engineers and SDPs will already be grouped together into teams and patches from their

66

current set-up in the real-world environment, so the system organises the entities into the

groupings from the data presented.

The system now has the current setup of patches with their respective teams. This configuration

is then put through the one-day simulation to assess how the current setup is performing. The

one-day simulation cycles through each engineer and assigns them tasks, based on their skills

and the patch they are in. The simulation will attempt to assign the closest relevant tasks to the

engineer but also considers task density, as it would be less efficient to send an engineer to a

location far away if there is only an hour’s worth of work there. Once a task has been assigned,

it will be removed from the available task list.

Each engineer will be assigned tasks until their time has been filled or there are no more tasks

available for that engineer. Each engineer is allocated 7 hours, and each task has an estimated

completion time attached to it. When an engineer is assigned to a task the time will be added

to their utilised time, while the time it takes to travel to the task will be added to the engineer's

travel time (part of the engineers unutilised time). The distance travelled per task is also stored

for each engineer. The simulation will stop assigning tasks once the utilised time combined

with the travel time is over 7 hours. Any remaining time an engineer has will be idle time,

which is part of the engineer’s unutilised time.

The one-day simulation step is where the Task Allocation Fuzzy Logic System (TAFLS) can

be applied. When choosing which task to assign to an engineer the distance and time to the task

is fuzzified. The number of tasks at the SDP is calculated and fuzzified, due to the uncertainty

around the completion time and the number of tasks on any given day. This helps the simulation

take into account the uncertainty of the travel time and to direct the engineer to SDPs that will

better reflect real-world conditions. More on this can be found in Section 5.1.

67

Once each engineer has been cycled through, the system will calculate the objective results.

The objectives calculated within the simulation are coverage, travel and utilisation. The area

balancing objective is a trivial calculation, but an important one. For this stage of the research,

the Team Balancing objective was not used. The details of these objectives were discussed in

Section 5.1.1.

Given that the current live organisational structure is available and can be evaluated using the

proposed simulation, the values generated from the current design can be used as a simple

benchmark for the optimisation process to improve upon. The system gives the user the option

to adjust any of the GA’s parameters (crossover rate, mutation rate, population size, number of

generations and elite solutions) before the optimisation process is started.

When the GA begins, it will create a new population of solutions. Each member of the

population has P genes, where P is the number of patches to optimise for. Each gene is the

centre location of a patch, and the rest of the patch will be constructed from these points.

As each solution needs to be evaluated, the first step to this is building the patch setup from the

centre points. Certain restrictions apply to the patch construction. SDPs in the same patch

cannot be separated by rivers or by other patches, as described in Section 5.1. A high-level

description of how the patch construction works is given in the following: Each centre point

(extracted from the genes in the solution’s chromosome) works out who its neighbouring SDPs

are. Then out of these neighbours, works out which is the closest. If no other patch has deemed

that SDP to be the closest it will be added to the patch. The next patch will do the same. Each

time an SDP is removed from the list and added to a patch, each patch has to recalculate who

its available neighbours are.

The patch construction is where the Patch Construction Fuzzy Logic System (PCFLS) can be

applied. This will allow the system to account for the uncertainty in travel times across the

68

patches. When it is being decided if an SDP should be added to a patch, the list of all

neighbouring SDPs will be passed through the FLS whose inputs are the size of the SDP (in

hours), the size of the patch (in hours) and the distance to the SDP from the centre point. More

on this can be found in section 5.2.

Once the patches have been constructed from the centre points, the teams for each patch need

to be assigned. This first step in this process is to assign each engineer to the patch they live in

(or are closest to, if they do not live in any patch). This will usually mean the teams are

extremely unbalanced as city/town patches will have overpopulated teams and rural patches

will have underpopulated teams.

So, the next step is to balance out the teams. This is done by a bidding process. The system will

cycle through each overpopulated patch and ‘sell off’ its engineers to the highest bidders. Each

underpopulated patch will cycle through the current overpopulated patch’s engineers and give

each a bid value. If there are no other bids for this engineer, they will move over to the

underpopulated patch and if there are other bids the highest bid wins. The bid value is made up

of the distance the engineer is from the underpopulated patch, how much their skills are needed

and the level of under-population the patch is at. Once the bidding process is complete, the

engineers should be spread as best as possible between the patches.

The newly constructed patches and teams will then go through the same one-day simulation

process just as the original setup did (also using the TAFLS if specified) if the generated

solution is valid. There are certain criteria that if not met the solution will be rejected or altered

before the one-day simulation is run on it. This includes the number of patches constructed. As

the user specifies the number of patches and each gene represents a patch centre, any solution

cannot have two genes that represent the same centre point. Also, all SDPs must be added to

the patch design, so the list of unassigned SDPs has to be empty before the simulation can be

69

run. If there are any SDPs on the list, they will be assigned the same patch as their closest

neighbour.

Once the solution has passed the checks and is deemed valid, the objective values for this

solution will be calculated. The GA will carry out the ‘Solution Evaluation’ for every solution

it generates. More about how the single objective and multi-objective algorithms affect the

optimisation can be found in section 5.3.

With each solution in the population evaluated, regular GA processes are resumed. The

stopping criterion that is currently being used in the system is the maximum number of

generations reached. Once the GA has stopped the results are reported, and output files can be

generated. The output files list each engineer and their newly assigned patch and the structure

of these new patches.

5.1 Task Allocation Fuzzy Logic System

The closer the one-simulation is to replicating real life, the better the result of the optimisation

will transfer into the real world. One key part of the simulation is how an engineer is allocated

tasks. The simplest form of this is to allocate the nearest available task the engineer is capable

of doing. The more complex and detailed solution to this is to implement a version of the

organisation’s full scheduling system.

The simplest form is not representative of real decision-making. Indeed, choosing the tasks

with the smallest travel distance may actually increase overall travel. For example, the closest

tasks to an engineer may only be small tasks that take a total of one hour at that location. The

engineer will have to travel to the next location only after this short time. If the next closest

task at this point is also only another hour in duration the engineer will spend a lot longer

travelling, and less time completing tasks. This is compared to the engineer choosing a location

with four or five hours’ worth of work but is a further away.

70

The complex form of allocating tasks to engineers is far too computationally expensive for a

population-based evolutionary algorithm. Implementing such a complex scheduling system to

the solution evaluation stage would increase the run time of the algorithm to a point where it is

not practical to use on a daily basis.

The middle ground of these two scenarios is the proposed Task Allocation Fuzzy Logic System

(TAFLS). This is because the fuzzy logic can handle the uncertainty about the quantity and

complexity of tasks, in a genralised way, whilst not having to know the exact tasks that might

appear on any given day over the next few months. By using fuzzy decision-making system

designed by an expert, the computational time of these decisions is relatively cheap and lead

to more realistic task allocation decisions that a crisp system.

The TAFLS is compatible with both Type-1 and Type-2 FLS, and the below describes the more

complex Type-2 version. The type-1 TAFLS can be inferred from the membership functions

with 0% uncertainty in these sets (thus there is no footprint of uncertainty and 𝑓𝑀 = 𝑓
𝑀

 or

𝑌𝑇𝑅 = 𝑦𝑙 = 𝑦𝑟).

Figure 5.2, Figure 5.3 and Figure 5.4 show the interval type-2 fuzzy sets used to decide which

tasks to allocate to the engineer. The average distance to a task (AD in Figure 5.2) is calculated

for the area being optimised and is done before the initial one-day simulation when the teams

and SDPs are first loaded into the system. The average amount of work in an SDP for the area

(AW in Figure 5.3) is also calculated at this point. Figure 5.4 shows the output of the interval

type-2 FLS which represent the probability of picking a task. This interval type-2 FLS uses the

Centre of Sets type-reduction as it has reasonable computational complexity.

The footprints of uncertainty, shown in Figure 5.2, Figure 5.3 and Figure 5.4 as the grey areas,

is variable. The uncertainty value is given to the system as an input, and the footprint extends

each side of the base point by the required percentage. The base points of the membership

71

functions were tuned by running experiments to find the most suitable setup, with a human

expert.

Figure 5.2: ‘Distance to Task’ Type-2 Fuzzy Sets

Figure 5.3: Jobs in SDP Type-2 Fuzzy Sets

Figure 5.4: Probability of Picking Task Type-2 Fuzzy Sets

The values for the average distance (AD) and average work (AW) had to be calculated so that

their values were relative to the area that was being optimised. For example, an average

72

distance per job in London might be 100 meters, but in the Scottish Highlands, this value might

be 5km or more. Having the base points relative to the area is important, else input values will

be wrongly categorised relative to the local area. The reason for the triangular and trapezoid

membership functions is that they easy to explain to the non-technical experts. In addition, due

to the need to generate the membership functions dynamically, it is faster to use the triangular

and trapezoid membership functions generated from calculated base points and scale them

accordingly. Table 5-1 shows the list of rules used in this FLS.

Distance to Task Tasks at SDP Probability of Choosing SDP

Low Low Average

Low LessAvg Average

Low Average MoreAvg

Low MoreAvg High

Low High High

Average Low LessAvg

Average LessAvg LessAvg

Average Average Average

Average MoreAvg MoreAvg

Average High MoreAvg

High Low Low

High LessAvg Low

High Average Low

High MoreAvg LesAvg

High High Average

Table 5-1 Task Allocation Rule Base

73

The following is an example of how this fuzzy system might work:

The system wants to find the next best SDP to send an engineer to, so the system finds out that

the average amount of work in all SDPs in the patch is five hours. The average distance to a

task is calculated to be two kilometres. The current engineer has three SDPs to choose to go to

next. The first is three kilometres away with five hours’ worth of work. The second is one

kilometre away with six hours’ worth of work, and the third is two kilometres away with eight

hours’ worth of work.

Given these options, the fuzzy system would classify the first option as High distance and

Average amount of work giving a Low probability of choosing that SDP. The second option

would be classified as Low distance and More than Average amount of work giving a High

probability of choosing the SDP. The third option would be classified as Average Distance and

High amount of work giving a More than Average probability of being chosen. With these

three results, their output defuzzified values are compared, which would give option two the

highest value and this SDP would then be assigned to the current engineer.

5.2 Patch Construction Fuzzy Logic System

A key aspect to generating a solution from the chromosomes in the GA is the geographical

design of the patches. This is a critical part of the evaluation process, as without the

geographical structure no engineers can be allocated, and no work can be completed.

The way patches are constructed from the chromosomes is to map each gene in a solution to

an SDP based on the genes value. Each member of the population has P genes, where P is the

number of patches to optimise for. If we represent the total number of SDPs as ST, P <=ST.

From a practical perspective it is always the case that P < ST, this means there are SDPs that

are not assigned to any patch. The process of assigning the remaining SDPs to the patches is

via a neighbourhood based clustering technique.

74

5.2.1 Neighbourhood Clustering For Patch Construction

Given that there are strict requirements for how patches for can be designed the way the SDPs

are clustered together has to be intelligent.

Each gene in a solution represents an SDP to act as a centre point to each cluster. The clustering

process is illustrated in Figure 5.5. Figure 5.5a shows three SDPs selected as the centre points.

Figure 5.5b shows the immediate neighbours being added; Figure 5.5c shows the next few

layers of SDPs being added. Finally, Figure 5.5d shows the final design created from the three

SDPs selected by the GA in Figure 5.5a. If an SDP neighbours more than one cluster, we use

a decision system to decide which cluster that SDP should be added to. In its most basic form,

this decision is based on the closest distance.

This form of neighbourhood-based clustering ensures that all SDPs will be added if the

geographical region is connected from one side to the other. This method also ensures patches

are not split into more than one continuously connected grouping.

Figure 5.5: An example of the SDPs being clustered by their neighbours.

75

5.2.2 Fuzzy Neighbourhood Clustering For Patch Construction

When an SDP can be added to more than one patch, the decision-making process of just

choosing the nearest patch by travel distance or travel time is weak. Adding any SDP has a

significant impact on the whole design. This is particularly true in the early stages; a few key

decisions can dramatically change the outcome of the design from the same centre points.

To make the decision-making process more intelligent a fuzzy logic system, known as the Patch

Construction Fuzzy Logic System (PCFLS), has been developed. The aim of the PCFLS is to

take into account the relative amounts of work within each SDP and within each of the

constructed patches. It also aims to fuzzify the travel element so that an SDP does not simply

get added to the patch that is 0.1km closer than another (or 2 minutes closer if time is used).

This means the design understands there is much uncertainty around travel estimations.

The PCFLS is compatible with both Type-1 and Type-2 FLS, and the below describes the more

complex Type-2 version. The type-1 PCFLS can be inferred from the membership functions

with 0% uncertainty in these sets (thus there is no footprint of uncertainty and 𝑓𝑀 = 𝑓
𝑀

 or

𝑌𝑇𝑅 = 𝑦𝑙 = 𝑦𝑟), just like the TAFLS.

Figure 5.6, Figure 5.7 and Figure 5.8 show the type-2 fuzzy sets that are used in the PCFLS.

When the area to be optimised is initially loaded up, the average patch size in hours of work,

Patch Average (PA), is calculated along with the average SDP size (SDPA). This is because

these values can vary a lot between urban and rural areas. Hence, for London, the average SDP

may carry 500 hours’ worth of work, but in the Scottish Highlands, there may only be an

average of 20 hours’ worth of work, or even less.

76

The base points of the membership functions were tested to see if reasonable categorisation of

SDPs and patch sizes were given. This interval type-2 FLS also uses the Centre of Sets type-

reduction, again because it has a reasonable computational complexity.

Figure 5.6: Patch Size Average Type-2 Fuzzy Set

Figure 5.7: SDP Size Average Type-2 Fuzzy Set

Figure 5.8: Average Distance Type-2 Fuzzy Set

77

Figure 5.9: Add/Not Add Fuzzy Set.

WA

Size

Distance

to SDP

SDP

Size

Consequence

Small Small Small Add

Small Small Average Add

Small Small Large Add

Small Average Small Add

Small Average Average Add

Small Average Large Add

Small Large Small Add

Small Large Average Add

Small Large Large NotAdd

Average Small Small Add

Average Small Average Add

Average Small Large NotAdd

Average Average Small Add

Average Average Average Add

Average Average Large NotAdd

Average Large Small Add

Average Large Average NotAdd

Average Large Large NotAdd

Large Small Small Add

Large Small Average NotAdd

Large Small Large NotAdd

Large Average Small NotAdd

Large Average Average NotAdd

Large Average Large NotAdd

Large Large Small NotAdd

Large Large Average NotAdd

Large Large Large NotAdd

Table 5-2 Patch Construction Rule Base

78

The centre points of the patches are provided to the fuzzy system. The size of the patch is re-

calculated each time an SDP is added to it. Figure 5.9 shows the type-1 fuzzy sets representing

the output of the type-1 FLS which is the chance of an SDP being added.

The Add/NotAdd membership functions were designed in such a way that a rule with a Not

Add consequence would have more of an impact on the outcome than an Add consequence.

The output values are compared between the patches, with the SDP being added to the patch

with the highest output value. Table 5-2 shows the list of rules used in the PCFLS.

The PCFLS will cycle through each patch. Initially, each patch only contains one SDP, but will

still have at least one neighbour. There is no guarantee this one neighbour will not be the centre

point of another patch; this would result in one of the patches only containing one SDP, which

could be a valid solution if that SDP contains a significant amount of work (i.e. a city centre).

When the PCFLS is looking at a patch, it will look at all the neighbouring SDPs to choose the

best one to add. The PCFLS finds out that the average amount of work in all SDPs in the area

to be designed and computes a score for each SDP. The best one will be added, the available

neighbours of this patch will be updated (by removing the SDP that was just added and adding

its neighbours that aren’t already assigned to another patch). The PCFLS will then cycle to the

next patch, only adding one SDP to each patch at a time.

The decision-making process becomes a little more complex when an available SDP borders

more than one patch. In this situation, the SDP will only be added to the current patch if it has

the highest score from all the neighbouring patches. This means if it does not have the highest

score, it is likely that SDP will be added to the better-suited patch when the PCFLS cycles

around to that patch.

79

A short example of the PCFLS might work as follows:

The average amount of work in an SDP for an area is 5 hours. The current patch is deemed to

be an Average sized patch based on its current total amount of work. The current patch has

three SDPs to choose from to add to itself. The first is 3.0 kilometres away with 5 hours’ worth

of work. The second is 2.0 kilometres away with 6 hours’ worth of work, and the third is 2.5

kilometres away with 2 hours’ worth of work.

Given these options, the PCFLS would classify the first option as Large distance and Average

amount of work giving a consequence of suggesting Not to Add this SDP to the current patch.

The second option would be classified as Low distance and Large amount of work giving a

consequence of suggesting Not to Add this SDP to the current patch. The third option would be

classified as Average Distance and Small amount of work giving a consequence of suggesting

too Add this SDP to the current patch. With these three results, their output defuzzified values

are compared which would give option 3 the highest value and this SDP would then be added

to the current patch. The PCFLS will then move to the next patch.

It is worth noting that it does not matter how low the score is from the PCFLS, the highest

value always wins. This is to ensure that all exchanges are added to a WA, even if that means

adding a Large SDP to a Large patch. Ultimately this will just mean this solution will perform

badly in the patch balancing objective, yet it would still be a valid solution as all SDPs would

have been added to the design.

5.3 Use of Genetic Algorithms

Both single objective and multi-objective genetic algorithms can be used with the proposed

system and the different results that are given by each can be found in section 5.4. If a single

objective GA is being used, then the following fitness function (equation 5-1) will be used to

assess the solutions.

80

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 =
(𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 × 𝑊1) × (𝑈𝑡𝑖𝑙𝑖𝑠𝑎𝑡𝑖𝑜𝑛 × 𝑊2)

(𝑇𝑟𝑎𝑣𝑒𝑙 ×𝑊3) × (𝐵𝑎𝑙𝑎𝑛𝑐𝑖𝑛𝑔 × 𝑊4)
 (5-1)

W is the weighting of each objective, w1 is the weighting of the coverage objective, w2 is the

weighting of the utilisation objective, w3 is the weighting of the travel objective, and w4 is the

weighting of the balancing objective. Changing these values pushes the optimisation to find

solutions that satisfy the objectives with the higher weightings. Any weighting could be set to

0 to remove that objective from the fitness function. If this is done, the objective value

combined with the weighting defaults to a value of 1.

If a multi-objective GA is being used, there will be no single fitness value, only each individual

objective value. The output will also be a set of solutions (provided there is more than one

solution on the Pareto front). This allows managers to pick a setup that is best-suited based on

local knowledge that could not be taken into account by the proposed system. This adds an

extra layer of validation before any new organisational designs get rolled out to a live

environment.

5.4 Initial System Experiments & Results

To test the proposed type-2 fuzzy logic system for field workforce optimisation, the techniques

and methods need to be integrated into a user-friendly interactive tool. This allows non-

technical users to run the algorithms and get a visual output of the results. An early version of

the real-world tool created for this process is shown in Figure 5.10. This version of the tool

allows the visualisation of SDPs (the dots) and the patches (coloured areas).

81

Figure 5.10: Version 1.0 of the Mobile Field Workforce Area Optimisation Tool

Once the initial system had been developed, the underlying algorithms and optimisation

methods needed to be tested. This forms the first set of experiments.

These experiments aim to take an existing patch structure in a telecommunications domain,

then run it through the optimisation process to see the levels of improvement that can be

obtained. These experiments are then repeated with enhancements, to examine the impact these

potential changes will make. The experiments involved altering the optimisation process by

gradually increasing the use of more advanced optimisation methods.

The process started by comparing the use of single and multi-objective GAs and then

progressed to evaluate the effect of employing type-1 and type-2 FLSs.

For all the experiments, both single objective and multi-objective genetic algorithms (GA and

MOGA) were set to carry out 20 generations and have a population size of 40. Due to the

complexity in generating designs of patches and simulating one-day, the time it took to

complete one generation within this version of the tool, was significant enough, at this stage of

development, to prevent more generations from being carried out. In addition, because the tool

82

is under the constraint of being used by non-technical users on a daily basis, so the user

experience has to be factored into the time constraint of the optimisation process.

Both the GA and the MOGA ran with a crossover rate of 0.4 and a mutation rate of 0.05. These

settings were already in place from the daily use of the single objective GA, which was already

in use in the tool. These settings were kept for the following experiments for a fair comparison

on how implementing fuzzy logic and a MOGA would affect those daily results.

5.4.1 Single Vs Multi-Objective GAs

The goal of this first experiment was to see if our chosen MOGA, NSGA-II, optimised more

objectives than the standard Single Objective GA (SOGA). Where Travel is measured in

kilometres (km) and balancing and coverage are measured in hours (hrs.).

Table 5-3 shows a sample of the results for three different areas when comparing single and

multi-objective GAs to the current live design. Where a result is in bold, it indicates it has

performed better than the current design.

Current Live Score Single Objective Multi-Objective

Travel

(km)

Balancing

(hrs.)

Coverage

(hrs.)

Travel

(km)

Balancing

(hrs.)

Coverage

(hrs.)

Travel

(km)

Balancing

(hrs.)

Coverage

(hrs.)

80.00 17.00 455.00 73.86 22.28 453.25 73.20 44.70 460.59

99.00 68.00 476.00 102.17 38.21 485.64 97.39 64.38 492.11

50.00 102.00 212.00 52.55 12.13 214.73 45.86 48.40 214.74

Table 5-3 Original Vs Single Vs Multi-Objective GA

The first row of results from Table 5-3 shows that the SOGA optimised in travel only, whereas

the MOGA optimised in both travel and coverage. Although the SOGA did a better job of

optimising in the balancing objective than the MOGA, neither beat the current system at

balancing in this case.

83

In the second and third rows of results, the SOGA optimises in balancing and coverage but not

travel. However, the MOGA optimises in all objectives when compared to the current patch

set up. In the SOGA results, the balancing objective is better than the MOGA result. However,

this is due to the fact that the SOGA has sacrificed the travel objective to reach this level of

balancing. The goal is to optimise in all objectives; the SOGA fails to do this because a good

result in one of the objectives out weights the poor result in the fitness function.

In the results presented in Table 5-3, the MOGA optimises in more objectives than the SOGA

when compared to the current patch set up. This supports the concept that MOGAs are better

at dealing with problems with multiple conflicting objectives.

5.4.2 Single Vs Multi-Objective GAs with Type-1 Fuzzy Logic

The next set of experiments aim to assess the impact of the inclusion of type-1 fuzzy logic in

the patch construction and one-day simulation processes, i.e. adding in the type-1 PCFLS and

TAFLS respectively. In the results shown in Table 5-4, there are two different areas (A1 and

A2) that are optimised. Rows 1 to 3 show that in area 1 (A1) when a SOGA is used and the

FLSs are used, the coverage is increased by 24.72%, reduce the imbalance between the patches

by 46.10% and increase the utilisation by 24.72%. Coverage and utilisation are linked very

closely together, so the rate of change of these values is almost the same, this pattern of

improvement continues through all the results in Table 5-4. However, as a result of these

significant improvements, there is an increase in the level of travel by 8.76%.

In rows 4 to 6, we see the results of the MOGA on area A1 with and without the FLSs. In this

instance, we get a 64.53% reduction in travel, with a slight increase in coverage and utilisation

when the FLSs are used. This very small increase may be due to the coverage being topped

out by the MOGA (very little work left in the SDPs).

84

Area & System Type Travel

(km)

Coverage

(hours)

Balancing

(hours)

Utilisation

(%)

A1 SOGA without Fuzzy 122.63 763.74 369.16 57.03

A1 SOGA with Type-1

FLS

133.37 952.53 170.18 71.13

A1 SOGA Effect with

Type-1 FLS

8.76% 24.72% -46.10% 24.72%

A1 MOGA without Fuzzy 135.70 1014.15 70.02 75.72

A1 MOGA with Type-1

FLS

48.14 1021.36 82.19 76.27

A1 MOGA Effect with

Type-1 FLS

-64.53% 0.71% 17.38% 0.73%

A2 SOGA without Fuzzy 123.48 624.38 310.20 61.50

A2 SOGA with Type-1

FLS

145.87 739.75 174.01 72.97

A2 SOGA Effect with

Type-1 FLS

18.13% 18.47% -43.90% 18.65%

A2 MOGA without Fuzzy 165.44 799.16 74.80 78.72

A2 MOGA with Type-1

FLS

44.90 779.90 16.19 76.82

A2 MOGA Effect with

Type-1 FLS

-72.86% -2.41% -71.06% -2.41%

Table 5-4 Addition of Type-1 FLS to Patch construction and Job Allocation

As the MOGA improves over the SOGA results, the coverage value may have already hit the

upper limits, so the potential improvements that could be made by the FLSs on coverage are

very small. Hence the much-improved travel objective, as the FLSs cannot improve on

coverage, they can improve on the rate of travel per task. In this example, it is the balancing

objective that has suffered to the largest degree. However, when comparing this value to the

SOGA with FLSs value we still get a 51.71% reduction in the imbalance of the patches,

showing that MOGA is still outperforming the SOGA.

When the same experiments were run on area A2, we get similar results for the SOGA. Rows

7 to 9 show that when the FLSs are used we achieved an 18.47% increase in coverage, a 18.65%

increase in utilisation and a 43.90% reduction in the imbalance of the patches.

85

When we look at the MOGA results for area A2, rows 10 to 12, we see that with the FLSs in

use we get a 72.86% reduction in travel and a 71.06% reduction in the imbalance of the patches.

As a result of these very large improvements, we suffer a small decrease in coverage and

utilisation at a rate of 2.41% each. It would then be up to the user to decide if these significant

improvements out-weighed the minor reductions.

If we take area A2 as an example and compare the SOGA without the FLSs and the MOGA

with the FLSs, we see 63.64% reduction in travel, a 24.91% increase in coverage and utilisation

and a 94.78% reduction in the imbalance of the patches, which is regarded as significant

improvements in all areas and most notably in travel and patch balancing, which are the two

primary areas where the FLSs are applied.

The results shown in Table 5-4 suggest that including the FLSs in the task allocation and patch

construction procedures have the capability of a significant improvement on the results

generated by the proposed system.

5.4.3 Type-1 FLSs Vs Type-2 Fuzzy FLSs

The third experiment aims to test the impact type-2 FLSs have on the results. The following

results include the type-1 FLS results and the type-2 FLS results with different uncertainty

values. If the uncertainty value is 1%, this means that the footprint of uncertainty extends 1%

(of the average value) either side of the base point. For example, if the average SDP hours is

50, then the FOU will extend 0.5 hours either side of the base points.

For this experiment seeding was used in the GA to allow a more accurate comparison of the

results. It is more accurate because the GA, for each run, is given the same starting population

and conditions, giving a more accurate reflection of how the final outcome is affected by the

different types of FLS and uncertainty values. A single objective GA was used in this

86

experiment so that the fitness values can be directly compared between results and there is no

ambiguity as to which result is better.

Table 5-5 gives a sample of the results collected for the comparison of the type-1(T1) and type-

2 (T2) FLSs. Any uncertainty (U) associated with the type-2 FLSs is noted in brackets.

Type (U) Travel

(km)

Coverage

(hours)

Balancing

(hours)

Utilisation

(%)

Fitness

T1 180.30 819.33 133.28 62.93 1.83

T2 (1%) 165.22 833.72 111.47 64.03 4.60

T2 (3%) 157.25 794.94 161.30 61.06 2.82

T2 (5%) 180.30 819.33 133.28 62.93 1.83

Table 5-5 Type 1 FLS vs Type-2 FLS in Work Area Optimisation System

In Table 5-5, the type-1 FLSs gave an overall fitness value of 1.83. This is now compared with

the results from the type-2 FLSs where three uncertainty values were tested. A 5% uncertainty

gave the same result as the type-1 FLSs; this is possible because of the seeding and the same

optimisation conditions. A 3% uncertainty value significantly improved on the fitness by 54%.

Finally, an uncertainty value of 1% gave a fitness value of 4.60 a 151% increase over the type-

1 FLSs.

The results shown in Table 5-5 suggest that upgrading from a type-1 FLS to a type-2 FLS can

have significant improvements to the final results. However, the uncertainty values must be

tuned correctly for these results to be realised.

5.4.4 Progressive Results

One final set of results aims to test the suggestions given by the previous experiments in one

sequential real-time test. These results are not an average, not seeded, they use the same patch,

87

and run as if they would be in the real world. Coverage here is expressed as a percentage of the

total amount of work available.

Method Travel

(km)

Coverage

(%)

Balancing

(hours)

Utilisation

(%)

Current 172.00 71.34% 68.96 63.88%

SOGA 187.16 68.86% 110.16 61.67%

MOGA 173.26 68.46% 54.21 61.30%

MOGA-Fuzzy

T1
67.01 69.68% 62.09 62.40%

MOGA-Fuzzy

T2 (Tuned)
68.15 71.25% 30.08 63.81%

Table 5-6 Progressive Real-World Run Results

Table 5-6 shows the results of the progressive tests. The current patch’s values are given in

row one. The first step is to optimise this patch with the SOGA. Row two shows us that on this

occasion the SOGA failed to optimise in any objective. This means that the optimisation would

have to be run again and the GA setting would need to be tuned for this specific area to get a

better result. This would cause frustration to the user and cost time.

Row three shows us the most suitable solution from the MOGA. On this occasion the MOGA

has optimised in balancing, travel is less than 1% worse, so the difference here is negligible.

However, the MOGA has failed to optimise in coverage and utilisation. If the user was looking

to only improve on balancing and was happy to suffer the reduction in the other two objectives

then this may be acceptable, else the optimisation would need to be run again.

Row four shows the most suitable solution from the MOGA using type-1 FLSs in the

optimisation. Here we can see that the MOGA has now optimised in two objectives, with travel

being significantly improved, now being only 38.96% of the original travel value. Coverage

and utilisation still suffer. However, these objectives suffer less than if the MOGA did not use

88

the type-1 FLSs. There is a 1.80% increase in both coverage and utilisation over the MOGA

that does not use any FLSs.

Finally, row five shows the most suitable result from the MOGA system with type-2 FLSs (that

has been tuned to 1% uncertainty). On this occasion, two objectives have been optimised, and

the remaining two do not suffer noticeably. The effects are less than 0.13% for coverage and

less than 0.11% for utilisation. This gives the user a solid result and can confidently say that

these new patches are better than the current patches. This is on one run of the optimisation

and with no specific tuning of the GA required, which is great from a user’s point of view.

Consequently, it can be said that these results support the use of a multi-objective genetic type-

2 fuzzy logic-based system for mobile field workforce area optimisation.

5.4.5 Subjective Evaluations

To demonstrate how the visual representation of the results from the system may be interpreted

there are images captured from the optimisation process of each tested method.

Figure 5.11, Figure 5.12, Figure 5.13 and Figure 5.14 show the visualisation of how the results

change with each incremental improvement of the proposed system. Figure 5.11 shows that the

SOGA divided the selected area into nine patches. The selected area includes both rural and

urban areas, including the densely populated city area and surrounding suburbs. The single

objective optimisation has split the city area (circled in Figure 5.11) up into three patches; this

is not good as engineers will have to keep travelling in and out of the city. The other patches

are either too large or too small.

89

Figure 5.11: SOGA Optimisation Design (main city area is circled)

Figure 5.12 shows one of the solutions on the Pareto front from the MOGA with no FLS in

use. This solution is slightly better as it has sectioned off the centre of the city. However, this

city patch is now too small as the outside of the city forms part of another patch to the north.

This has left one suburb in a very oversized patch (purple) and another in a small patch (light

blue). The remaining patches are of reasonable size.

Figure 5.12: Multi-Objective Optimisation

Figure 5.13 shows a solution that used the MOGA with type-1 FLSs in the optimisation

process. This has done a slightly better job of sectioning off the city, but there are a few SDPs

that were not included in the city patch that should have been. There is also a patch in the west

that is too small, and there is a suburb still in an oversized patch.

90

Figure 5.13: MOGA with Type-1 Fuzzy.

Figure 5.14: MOGA- with Type-2 Fuzzy

Figure 5.14 shows a solution that has replaced the type-1 fuzzy with type-2 fuzzy logic in the

MOGA. This solution has done a good job of sectioning off the city. Each patch is more

balanced in size and even the town to the west is its own patch. There also seems to be

reasonable utilisation of the road networks in the area. The MOGA with type-2 FLSs has

produced the most sensible patch designs from a visual perspective; this is important to the

engineers and managers who have to accept these designs. Not only are the designs good, it

has the best results from the simulation to back it up.

91

5.5 A Comparison of Particle Swarm Optimisation and

Genetic Algorithms

The main aim of these experiments is to evaluate the differences when using a GA compared

to a using a Particle Swarm Optimisation (PSO) algorithm for our system for mobile field

workforce area optimisation. The best algorithm can then be used in the tool shown previously

in Figure 5.10.

To avoid the issues associated with many-objective problems (as described in Section 4.5) only

two objectives will be optimised. The first objective is utilisation of the engineers, the more an

engineer is working, the more they are utilised. The second objective is patch balancing.

Meaning that more balanced patches are better (patch balance is defined by the difference in

demand, in hours, between biggest and smallest patches). These two objectives will help us to

evaluate the performance of the engineers in the designed patches and how manageable the

patches will be.

Our first set of experiments within this section is to evaluate the performance of the GA and

PSO that use the fitness function to accommodate multiple objectives. Because this fitness

function method may not be the most optimal the multi-objective algorithms, NSGA-II and

Multi-Objective PSO (MOPSO), will be evaluated too. Finally, comments will be made on the

difference between the best fitness function-based algorithm and the best multi-objective

algorithm.

First, one of the 60 areas that need optimising was selected. This area contained 252 resources

and 776 jobs (totalling 1265 hours of work) in 140 SDPs. When evaluated by the existing

system, the area gave us the following results.

92

Objective Value

Utilisation 78.72%

Balancing 428.74 Hours

Table 5-7 Initial Benchmark Values to Optimise

The following experiments were run on a machine with a CPU clock speed of 2 × 1.9GHz,

4GB of RAM and the capability of 4 CPU threads. The GA was run with a crossover probability

of 0.4 and a mutation rate of 0.1. The first run of experiments uses the fitness function outlined

in equation (6-2). This equation is a derivative of the full fitness function given in equation (6-

1). For these experiments the weightings of each objective, given by W1 and W2, are equal.

The GA was run on this area five times to get an average. These results are given in Table 5-8.

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 =
 (𝑈𝑡𝑖𝑙𝑖𝑠𝑎𝑡𝑖𝑜𝑛 × 𝑊1)

(𝐵𝑎𝑙𝑎𝑛𝑐𝑖𝑛𝑔 × 𝑊2)
 (5-2)

 Utilisation (%) Balance (Hours) Time (seconds)

 95.17 39.32 132

 95.06 45.55 139

 94.43 37.7 143

 97.06 68.47 144

 95.67 95.87 141

Average 95.48 57.38 139.80

Table 5-8 Genetic Algorithm Optimisation Results

Using this genetic algorithm resulted in an average increase of the utilisation by 16.76% when

compared to the current design for this area. There was also a significant improvement to the

balance of the patches. With the difference between the biggest and smallest patch being

reduced on average to 57.38 hours from 428.74 hours, a reduction of 86.62%.

93

The second run of experiments was to run the PSO with the fitness function on this area. This

produced the results in Table 5-9.

 Utilisation (%) Balance

(Hours)

Time (seconds)

 92.30 113.59 113.00

 93.67 94.04 140.00

 93.08 137.70 139.00

 92.28 142.28 118.00

 95.97 110.52 141.00

Average 93.46 119.63 130.20

Table 5-9 Particle Swarm Optimisation Results

Using the PSO also resulted in improvement in both objectives. There was, on average, an

increase of 14.74% in utilisation. The patch balancing also improved with the difference

between the smallest and largest patch reducing, on average, to 119.63 hours, a 72.10%

reduction.

If each algorithm was compared separately, each algorithm could be seen as performing well.

However, if a comparison is made between the GA results in Table 5-8 and the PSO results in

Table 5-9, it can be seen that the GA has produced better results, on average, in both objectives.

The GA increased utilisation by 2.12% more when compared to PSO. The GA has also

improved in the balancing objective, reducing the difference by an extra 62.24 hours, or

14.52%

Table 5-8 and Table 5-9 contain a column of time. The amount of time in seconds to complete

all 100 generations of the optimisation process with a population size of 20.

94

This is important as if the algorithm is used on areas significantly larger than the area for these

experiments; the time may exponentially increase. Time is a factor of how practical the

algorithm is to use in a live application. On average PSO is 9.6 seconds quicker than the GA,

which could increase the more SDPs and patches there are. For these experiments, almost 10

seconds does not have a significant impact on the algorithms practicality.

The difference between the GA and PSO results led us to analyse what could cause this

difference. As PSO moves around the search space using the numerical representation of the

areas, it was conceived that changing the way the PSO sees the search space could have an

impact. As SDPs are geographical locations, they were ordered them from nearest to furthest

from an origin point. Whereas before they were ordered alphabetically by their name, which

may not necessarily allow PSO to move to the next nearest neighbour if the next neighbour is

represented by an ID value, which is further away from the current geographical position.

 Utilisation

(%)

Balance

(Hours)

Fitness

 91.62 150.62 0.30

 93.64 102.83 0.46

 93.32 121.68 0.38

 96.18 61.89 0.78

 93.81 96.54 0.49

Average 93.71 106.71 0.48

Standard Dev. 1.46 29.26 0.16

Table 5-10 PSO Geographic Organisation Results

Changing this value to a distance would allow the PSO to move to the nearest neighbour more

easily. The results for this modification can be found in Table 5-10. There is no difference in

run-time between the geographically ordered and alphabetically ordered runs of the PSO.

95

The geographically ordered PSO increases the utilisation by 0.27% and the patch balancing by

10.80%. The utilisation increase is not significant enough to say this option is better, but the

patch balancing is. This could be because the patch balancing objective relies on the optimal

selection of SDPs, where SDPs are geographical objects. Having the PSO search this

geography seems to improve the construction of the patches.

The second set of experiments for this section is evaluating the multi-objective variations of

these algorithms to see how they compared. The results for the multi-objective GA (NSGA-

II) can be found in Table 5-11, and the results for the multi-objective PSO (MOPSO) can be

found in Table 5-12.

NSGA-II performs significantly better than the MOPSO. NSGA-II is 5.48% better in utilisation

and 59.40% better in balancing. NSGA-II also has a better standard deviation, with an 82.80%

improvement in utilisation and 74.69% improvement in balancing, showing NSGA-II’s results

are more consistent.

 Utilisation

(%)

Balance

(Hours)

Dist. Value

 97.65 134.75 0.46

 96.96 131.51 0.46

 97.92 126.89 0.47

 97.42 216.29 0.37

 97.42 153.64 0.44

Average 97.47 152.62 0.44

Standard Dev. 0.32 33.11 0.04

Table 5-11 NSGA-II Optimisation Results

96

 Utilisation

(%)

Balance

(Hours)

Dist. Value

 94.63 181.33 0.39

 88.93 496.68 -0.01

 92.18 447.85 0.06

 91.48 495.13 0.00

 92.75 258.69 0.29

Average 91.99 375.94 0.15

Standard Dev. 1.86 130.82 0.16

Table 5-12 MOPSO Optimisation Results

As seen with PSO, reorganising the SDPs in geographical order, as opposed to the alphabetical

order used by the GA improved the results. The results for the geographically ordered MOPSO

can be found in Table 5-13. When the results are compared with Table 5-12, it can be seen

again that organising the SDPs geographically improves the results. With utilisation improving

by 1.48% and balancing improving by 81.54 hours or 21.69%. The standard deviation also

improves by 50.53% for utilisation and 19.39% for balancing.

 Utilisation

(%)

Balance

(Hours)

Dist. Value

 92.14 297.11 0.24

 93.15 214.17 0.34

 93.03 461.92 0.05

 94.47 341.73 0.20

 94.54 157.07 0.42

Average 93.47 294.40 0.25

Standard Dev. 0.92 105.46 0.12

Table 5-13 MOPSO Geographic Organisation Results

97

Because of the multi-objective nature of the problem and the conflicts in the objective values,

it is difficult to determine the overall quality of a solution. A distance metric can be used to

measure how far away from the original solution a new solution is. A higher distance value

would represent a better solution than the original; a negative value would represent a worse

solution. The simple distance metric used for this problem is given in (5-3). This concept will

be expanded upon in Section 6.2, where many-objective solutions are measured using this

method.

𝐷𝐼𝑆𝑇 = (
𝑈𝑠−𝑈𝑜

𝑈𝑜
−

𝐴𝐵𝑠−𝐴𝐵𝑜

𝐴𝐵𝑜
) (5-3)

𝐷𝐼𝑆𝑇 =
𝑁𝑒𝑤−𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙

𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙
 (5-4)

In (5-3) the utilisation for the new solution is denoted by (Us), and the utilisation for the original

is denoted by (UO). The area balance given by the new solution is denoted by (ABs), and the

area balance given by the original is denoted by (ABO). Each objective in equation (5-3)

calculates the distance using equation (5-4).

Using the distance value as a metric of comparison we can see that the NSGA-II has a

significantly higher average value when compared to the geographically organised MOPSO,

as it is 0.19 or 76% stronger on average. NSGA-II’s standard deviation of the distance metric

is also reduced by 66.67%, reducing from a value of 0.12 to 0.04.

For completeness, the single objective GA and results from Table 5-8 and the NSGA-II results

from Table 5-11 can be compared, as these were the best algorithms from each set of

experiments. Both algorithms have their strengths. The single objective GA has, on average,

much better patch balancing, improving over NSGA-II by 62.40%. However, the utilisation is

improved by 1.99% when using NSGA-II.

The weighting of each of these improvements would be down to the user’s own preference.

Usually, utilisation of the workforce is more beneficial, and so a reduction in the balance of the

98

patches would be acceptable, especially given that the NSGA-II options still significantly

improves over the current design. NSGA-II is very consistent with its utilisation, suggesting it

may have hit the upper limit of utilisation of engineers for the area.

Overall, it can be said that the GA based algorithms performed better for our multi-objective

problem in both the fitness function (single objective GA) and multi-objective based variations.

Additionally, although the PSO based algorithms performed worse, if the problem is

geographical in nature, the performance of PSO algorithms could be increased if the search

space is organised geographically. This perhaps suits the underlying model of the PSO

algorithm better.

5.6 Discussion

This chapter discussed the different optimisation methodologies first proposed to tackle the

multi-objective mobile field workforce area optimisation problem. It discussed the need to

compare both single objective optimisation algorithms and multi-objective optimisation

algorithms. The chapter then introduced employing fuzzy systems to certain elements of the

system, namely task allocation and patch construction. This lead to a significant improvement

to both travel and patch balancing, the two objectives most affected by these fuzzy systems.

A discussion on upgrading of the type-1 fuzzy systems to type-2 systems was given, to analyse

if there was further benefit to be gained.

It was explained why traditional single objective GAs cannot fully handle optimisation

processes with multiple objectives, especially when those objectives are conflicting. As a

result, multi-objective genetic algorithms were introduced, specifically NSGA-II. This gave

the optimisation process the ability to compare the results of the individual objectives between

possible solutions and rank them accordingly.

99

As the proposed system is designed to tackle a real-world problem with real-world data, there

are many uncertainties. Thus, justifying the development of the fuzzy systems.

To fully evaluate each aspect of the proposed system, several experiments were conceived and

executed. Each were designed to assess the impact of the different methodologies. The results

of these experiments showed that a multi-objective system was able to optimise in more

objectives than a single objective system. The results also showed that including type-1 fuzzy

logic systems on the task allocation and the patch construction parts of the optimisation

improved the results the system generated. With one example showing that we could have

better performance in all objectives when compared to the SOGA system that employed crisp

logic. With some minimisation objectives being reduced by up to 94.78%.

The results showed that upgrading the type-1 fuzzy logic systems to type-2 further improved

on the results, giving up to 151% improvement over type-1 fuzzy in some instances. As this is

a real-world problem being tackled, there are many aspects that could be improved upon to

have a system that generates even stronger results. One area of improvement is where the

parameters of the type-2 systems could be optimised.

The final section compared both a genetic algorithm-based solution against a particle swarm

optimisation-based solution. This comparison has been extended to multi-objective versions

of these algorithms using NSGA-II as the multi-objective GA and MOPSO as the multi-

objective PSO.

The GA has, on average, increased utilisation by 2.12% when compared to PSO. GA has also

improved on average in the balancing objective, improving by 14.52%, or reducing the

difference by an extra 62.24 hours.

For the multi-objective variations, NSGA-II performed better than the MOPSO. NSGA-II is

5.48% better in utilisation and 59.40% better in balancing. NSGA-II also has a better standard

100

deviation with an 82.80% improvement in utilisation and 74.69% improvement in balancing,

so its results are more consistent. Additionally, it was found that representing the search space

geographically for the PSO based algorithms improved the results, however not enough to

outperform the GA based algorithms.

The next chapter will discuss the proposed improvements to this system by utilising cloud

resources and addressing many-objective optimisation.

101

Chapter 6. The Optimised Many-Objective

Optimisation Cloud-Based System

The preliminary results given in section 6.4 indicated that a genetic algorithm-based system

would be the most appropriate, with fuzzy logic systems in place to support some of the key

decision making processes (i.e. the task allocation in the simulation and the patch construction).

Both type-1 and type-2 fuzzy systems were implemented and evaluated.

Given that a foundation in which to build and develop the system has been established, it is

important to continue to enhance the system’s modules and complete more comprehensive

research and analysis.

This chapter addresses several enhancements to the system, including its framework,

scalability, advanced tuning and optimising for many-objectives.

The first two points to be addressed will be the framework and advanced tuning methods. The

proposed enhancements to the system are illustrated in Figure 6.1. The two fuzzy systems used

within the tool will be optimised by a separate genetic algorithm, as opposed to just being

designed by an expert. The purpose of this is that there are many geographical regions, which

change frequently, it is challenging to have a human expert continuously update the fuzzy

systems for each area to keep them relevant. Details on the optimisation of the fuzzy systems

can be found in Section 6.1.

The framework of the tool will be updated to allow the genetic algorithm to take advantage of

multiple CPUs by creating multiple threads during the evaluation stage of the optimisation.

The evaluation stage is the most computationally expensive part of the optimisation because it

requires the simulation to run on every generated solution.

102

Currently, the system requires the user to enter parameters, such as the number of patches to

optimise for and the various GA specific parameters (number of generations, population size

etc.). Once the user then confirms the settings and starts the optimisation process, the system

will check if it should optimise the fuzzy systems that will be used. If yes, the system will use

a GA to optimise the membership functions. If the system has been selected to use type-2 fuzzy

systems, it will then proceed to optimise the Footprint of Uncertainty (FOU) of each

membership function.

Figure 6.1: The Proposed Cloud-based Many-Objective Type-2 Fuzzy Logic Based

Mobile Field Workforce Area Optimisation System

For each GA used in the proposed system, including those that optimise the fuzzy systems,

multiple threads will be created at the point each solution in the population is about to be

evaluated. In this way, the solutions can be evaluated in parallel, and this will have the potential

to decrease the optimisation time [85]. This is where multiple threads are best placed because,

103

as mentioned, the evaluation of each solution takes the most time plus this step does not require

all other solutions to be available, such as in the selection and crossover steps.

Once the fuzzy systems have been optimised, the system will simulate the current design. This

run of the simulation is designed to get the objective values of the design currently being

utilised by the mobile workforce, so that these values can be used for comparisons or

benchmarking.

When the current design has been evaluated, the NSGA-II will start the optimisation process.

It will create a population of solutions and evaluate each one, giving each solution, a value

based on the proposed distance metric. The proposed distance metric is used to help address

some of the weaknesses in NSGA-II when it comes to many-objective problems, see Section

7.2 for more details.

Multiple threads will again be created, and the population will fork into these threads, splitting

the population evenly between the threads. Once all solutions have been evaluated, the

population will join back up again allowing the NSGA-II to operate as normal and start

calculating the dominance of each solution, creating the fronts. Because of the many-objective

issues we have outlined, with all solutions ending up on the Pareto front, the distance metric is

used to help with parent selection.

If the stopping criteria for the algorithm are met, then the latest Pareto front of solutions will

be presented to the user with the solution that has the highest distance value being highlighted

as the best, or most recommended, result.

104

6.1 Genetically Optimised Fuzzy Systems

Fuzzy Logic Systems have been shown to handle imprecisions and uncertainties within an

environment. The majority of FLSs are type-1 based and therefore cannot fully handle the

imprecisions and uncertainties presented by dynamic environments whereas type-2 systems

have demonstrated they can outperform type-1 systems in these environments [86], [87], [88].

Additionally, when some fuzzy systems are created their membership functions are generated

by a human expert. These membership functions could then be sub-optimal and therefore need

to be tuned to perform well in a changing environment. When a type-2 system is used the

uncertainty also needs to be calibrated to suit the environment the FLS will be used on.

Wagner [89] looked at this issue and proposed using a GA to tune the membership functions

of a type-2 fuzzy set.

As the proposed system will be used in multiple problem environments, its membership

functions cannot be tuned offline because it is unknown which set of working areas the user

will be optimising. Therefore, in our proposed system the membership functions and FOUs

will be tuned using a Real-Valued GA at the start of each optimisation process. The genes of

each solution will represent the points each membership function has along the x-axis.

Figure 6.2 shows an example of a chromosome for the parameters of the membership functions

of two type-1 fuzzy sets. Each membership function will have four points associated with it

giving a total of eight genes. The first four values are for the first membership function

parameters, and the last four values are for the second membership function parameters.

Figure 6.3 shows an example of a chromosome for the uncertainty associated with type-1 fuzzy

sets. Each gene represents the uncertainty percentage associated with the base values of the

105

type-1 fuzzy sets to result in the upper and lower membership functions of the type-2 fuzzy

sets.

Figure 6.2: Real-Value Chromosome for the Parameters of Two Type-1 Fuzzy Sets

Membership Functions.

Figure 6.3: Real-Value Chromosome for Percentage Uncertainty Associated with the

Type-2 Fuzzy Sets

Figure 6.4: Resulting Type-2 Membership Functions from Chromosomes

Figure 6.4 shows the resulting type-2 fuzzy set, given from the genes in Figure 6.2 and Figure

6.3. This GA will evaluate the fuzzy systems on their primary purpose for ten seeded

chromosomes. So, for the PCFLS it will evaluate how much the proposed membership function

improves on the patch balancing objective. For the TAFLS, the system will evaluate how much

improvement there is to the coverage to travel ratio. Once the ten solutions have been evaluated,

the fitness of the solution is the average objective value from these ten solutions.

For the type-2 fuzzy systems, the uncertainty tuning happens after the membership function

tuning has taken place.

106

6.2 Many-Objective Distance Metric

The proposed distance metric is used to help the parent selection process and suggest the best

result to the user. The distance metric for our given objectives is shown by (6-1)

𝐷𝐼𝑆𝑇 = (
𝐶𝑠−𝐶𝑜

𝐶𝑜
−

𝑇𝑠−𝑇𝑜

𝑇𝑜
+

𝑈𝑠−𝑈𝑜

𝑈𝑜
−

𝐴𝐵𝑠−𝐴𝐵𝑜

𝐴𝐵𝑜
−

𝑇𝐵𝑠−𝑇𝐵𝑜

𝑇𝐵𝑜
) (6-1)

𝐷𝐼𝑆𝑇 =
𝑁𝑒𝑤−𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙

𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙
 (6-2)

In Equation (7-1) the coverage is given by the new solution (𝐶𝑠) and the coverage given by the

original (𝐶𝑂). The travel value given by the new solution (𝑇𝑠) and the travel value given by the

original (𝑇𝑂). The utilisation given by the new solution (𝑈𝑠) and the utilisation given by the

original (𝑈𝑂). The area balance given by the new solution (𝐴𝐵𝑠) and the area balance given by

the original (𝐴𝐵𝑂). Finally, there is the team balance given by the new solution (𝑇𝐵𝑠) and the

team balance given by the original (𝑇𝐵𝑂).

Each objective in (6-1) calculates the distance using (6-2). This change in objective value is

normalised over the original value, giving the distance as a value between 0 and 1 for each

objective.

Coverage and utilisation are both maximisation objectives and add to the distance value. The

remaining objectives are minimisation objectives, so they subtract from the distance value. This

is, for example, if the travel value in the new solution is lower than the original, it will give a

negative distance for that objective, and so subtracting this negative value increases our overall

distance value, giving us an indication that this solution is stronger.

It is worth noting that for this distance metric to work there needs to be original values. If we

do not have a base to compare to, we do not know if we have improved over the currently

implemented solution. Thus, making it difficult to assess the real-world impacts of the work.

107

This metric could be used if there are no original results, for example creating new patches

where there weren’t any before. However, this would require the new patches to be designed

by an expert or by a GA process that does not use the distance metric. Such as how new patch

designs were created in Section 6. Once these “original” results have been created, then this

proposed system could be used to improve upon these results.

6.3 Cloud-Based Optimisation

As mentioned, one of the first enhancements to the system is to do with framework and

scalability. It has been discussed how the solution evaluation of the GA will support multi-

threading. This is immediately beneficial to the speed of the optimisation for desktop

computers the tool is run on. However, this also means more CPU resource is allocated to the

tool, and the user will have less resource to carry out other tasks while the optimisation is taking

place.

One way around this is using a server, or cloud resource to run the tool on. This not only has

the benefit of completely freeing up the user's personal machine, allowing them to complete

tasks unhindered, but cloud resources typically have more processing power and more cores

than a typical desktop machine.

The downsides to utilising cloud resources are security and accessibility. If the security of the

cloud is not maintained, the sensitive data (from engineers) is at risk. If the cloud servers go

down or receive too many requests (such as in a Distributed Denial of Service attack), the tool

may become inaccessible. This requires there to be a reliance on a competent and responsive

cloud maintenance team.

108

6.4 Experiments and Results for the Cloud-Based

Optimised Many-Objective Optimisation System

The first set of experiments in this section are the comparison of the un-optimised, and the GA

optimised fuzzy systems. These results include a comparison of both genetically optimised

type-1 fuzzy systems and type-2 fuzzy systems.

The second set of results will look at the benefits brought to this system by multi-threaded

cloud computing.

6.4.1 Comparison of Genetically Optimised Fuzzy Systems

An aim of one of the experiments is to compare a system that used type-1 fuzzy sets and type-

2 fuzzy sets both tuned and untuned by a genetic algorithm. However, because of the problems

associated with many-objective optimisation, a solution was needed to solve the problem of

Pareto front saturation simultaneously. As a result, the proposed distance metric is used to help

evaluate dominating solutions.

As the distance metric needs comparison scores to work from, an area in the real-world

environment was selected based on its need for optimisation. The current designs for these

active patches were created by experts who have local knowledge about the area.

Coverage

(%)

Travel

(km)

Utilisation

(%)

Balance

(Hours)

Team Balance

(People)

74.6 7.00 74.03 428.74 71

Table 6-1 Current Benchmark Values

Once we had chosen a suitable area to optimise we simulated that area to see what performance

levels it was currently operating at. These values can be seen in Table 6-1.

109

6.4.1.1 Quantitative Analysis

The initial test was to run the optimisation with untuned type-1 PCFLS and TAFLS. This

configuration of optimisation was repeated for the same area 10 times. For each run, the best

result based on the distance metric is shown in Table 6-2.

 Coverage

(%)

Travel

(km)

Utilisation

(%)

Balance

(Hours)

Team Balance

(People)

Dist. Val

 87.86 2.75 87.19 117.48 19.00 0.48

 87.20 3.33 86.53 302.15 30.00 0.36

 90.50 3.19 89.81 321.14 49.00 0.31

 94.46 2.92 93.74 253.84 38.00 0.40

 86.14 4.12 85.48 258.32 14.00 0.38

 91.10 4.55 90.41 278.15 26.00 0.36

 93.41 3.08 92.70 150.86 24.00 0.47

 90.19 4.04 89.50 221.18 20.00 0.41

 89.41 3.56 88.73 202.13 40.00 0.37

 84.72 3.16 84.07 362.07 53.00 0.25

Avg. 89.50 3.47 88.82 246.73 31.30 0.36

SD 3.09 0.59 3.07 75.73 13.19 0.07

Table 6-2 Results from Untuned Type-1 Fuzzy Systems

The average of these ten runs is shown, in bold, on row 12 (with row 1 being the header row)

and the standard deviation of each objective in bold on row 13. We can then see that the

distance metric used on the average of the ten runs, gives the value 0.38 for the system with

untuned type-1 systems.

The experiment was repeated with the genetic tuning of the type-1 membership functions. The

best solution from each of these ten runs can be seen in Table 6-3. Row 12 shows the average

110

of the ten solutions for each objective and gives us a distance value of 0.41. An improvement

on the untuned type-1 system of 8.40%.

A comparison of the standard deviation (SD), of the un-tuned and tuned systems, can also be

made. With the tuned system's SD for the patch balance and team balance objectives improving

by 9.93% and 43.14% respectively.

 Coverage

(%)

Travel

(km)

Utilisation

(%)

Balance

(Hours)

Team Balance

(People)

Dist. Val

 89.93 3.44 89.24 203.74 26.00 0.42

 90.15 2.71 89.46 153.65 20.00 0.48

 86.46 3.25 85.80 247.37 18.00 0.40

 92.70 4.54 91.99 105.49 14.00 0.48

 85.28 3.55 84.63 267.11 20.00 0.37

 85.68 4.31 85.02 230.90 12.00 0.39

 85.10 3.57 84.44 233.91 10.00 0.42

 93.37 4.20 92.66 189.72 33.00 0.40

 88.31 3.11 87.64 237.09 14.00 0.43

 84.07 3.83 83.43 360.32 28.00 0.29

Avg. 88.11 3.65 87.43 222.93 19.50 0.41

SD 3.30 0.57 3.28 68.21 7.50 0.05

Table 6-3 Results from Tuned Type-1 Fuzzy Systems

The experiment is then repeated with the type-2 systems. Again, the optimisation is run ten

times and the best result, based on the distance, is shown for each run. We have put the results

for the untuned type-2 systems in Table 6-4. The untuned type-2 systems have the same

membership functions as the untuned type-1 systems. However, they also have 1% uncertainty

applied to them. This is based on the results in Section 6.4.3 where about 1% uncertainly

performed the best.

111

Table 6-4 shows that the distance value, based on the average of the ten solutions, is better than

the untuned type-1 system. The average of these ten runs is 0.40 compared with the untuned

type-1 result of 0.36. The type-2 untuned gives an 11.11% improvement over the type-1

untuned system. This strengthens the case for type-2 systems being applied to this domain.

However, the results also show that the untuned type-2 systems performed slightly worse than

the tuned type-1 system, by about 2.44%. This result suggests that tuning a type-1 system can

improve the results by taking some of the uncertainty out of the membership functions. Given

that type-2 fuzzy sets are designed to handle this uncertainty, it is reasonable for this to be the

reason.

 Coverage

(%)

Travel

(km)

Utilisation

(%)

Balance

(Hours)

Team Balance

(People)

Dist. Val

 90.74 2.45 90.04 147.40 28.00 0.47

 92.01 3.72 91.30 106.31 11.00 0.51

 84.31 4.83 83.66 223.52 11.00 0.39

 89.12 3.91 88.44 180.32 17.00 0.43

 83.42 2.92 82.78 261.61 16.00 0.40

 83.57 3.97 82.93 322.10 31.00 0.30

 91.24 3.73 90.54 230.78 38.00 0.37

 89.83 3.46 89.14 285.34 42.00 0.33

 91.12 2.30 90.42 247.30 46.00 0.38

 85.60 3.19 84.95 224.93 18.00 0.41

Avg. 88.10 3.45 87.42 222.96 25.80 0.40

SD 3.47 0.76 3.44 64.12 13.01 0.06

Table 6-4 Results from Untuned Type-2 Fuzzy Systems

112

Finally, the tuned type-2 system was run ten times. Table 6-5 gives us the results of the tuned

type-2 systems. Here we can see the tuned type-2 performed better, on average, than the

untuned type-2 by 10.00% (0.40 vs 0.44) and performed better than the tuned type-1 by 7.23%

(0.41 vs 0.44). Additionally, we can see that the tuned type-2 systems gave results with a

smaller average standard deviation in Coverage, Utilisation and Patch Balancing than all other

systems, meaning these results are more reliable and we can expect more consistency from the

tuned type-2 systems.

Again, we can compare the improvement of the SD for the balance and team balance objectives

in both the untuned and tuned type-2 systems. With area balance improving by 18.70% and the

team balance improving by 11.99%.

 Coverage

(%)

Travel

(km)

Utilisation

(%)

Balance

(Hours)

Team Balance

(People)

Dist. Val

 90.72 3.25 90.03 155.48 24.00 0.45

 90.45 4.29 89.76 275.61 38.00 0.37

 92.91 3.59 92.20 131.11 8.00 0.51

 88.43 2.44 87.75 174.89 36.00 0.42

 91.05 2.68 90.35 190.63 30.00 0.44

 90.75 3.67 90.05 140.34 7.00 0.50

 87.44 3.14 86.77 206.36 31.00 0.40

 87.23 3.62 86.56 186.20 12.00 0.44

 92.19 4.50 91.48 128.64 15.00 0.46

 87.58 3.91 86.91 223.40 19.00 0.40

Avg. 89.88 3.51 89.19 181.26 22.00 0.44

SD 2.06 0.65 2.04 46.05 11.45 0.05

Table 6-5 Results from Tuned Type-2 Fuzzy Systems

113

6.4.1.2 Subjective Analysis

The results can be compared visually to analyse the results from a subjective view. Figure 6.5

shows the current design. Area “1” in Figure 6.5 is a large urban area. Because this large urban

area is all in one patch, it results in the large imbalance of the patches given in Table 6-1.

Figure 6.6, Figure 6.7, Figure 6.8 and Figure 6.9 show a ‘best’ result from each of the system

configurations that we ran experiments for in Section 7.4.1.1. Figure 6.6 shows the untuned

type-1 system split this large urban area up into two patches, which is a reasonable proposal as

this much improves the area balance over the current design. Having three patches for this large

urban area will likely improve the result further.

Figure 6.5: Current Patch Design

Figure 6.6: A Type-1 Un-Tuned Solution

1

114

The idea of needing three patches is supported by Figure 6.7, which shows a tuned type-1

design that has splits the area into three and improved on the balancing objective. However,

because area “1” in Figure 6.7 is small and area “2” is so large, it impacts on the travel, and

subsequently the coverage.

Figure 6.7: A Type-1 Tuned Solution

Figure 6.8: A Type-2 Un-Tuned Solution

Figure 6.8 shows us an untuned type-2 result. It splits up the urban area into three patches

which is good, but area “3” extends far away from the urban area. Similar to Figure 6.7. The

similarities of Figure 6.7 and Figure 6.8 are backed up by the similar results of the type-1 tuned

and the type-2 untuned results in Table 6-3 and Table 6-4.

Visually, it is clear from Figure 6.9 that the tuned type-2 result is more logical. The urban area

is split into three equal patches (1-3) with the rural patches outside and much larger.

1

2

1

2
3

115

Figure 6.9: A Type-2 Tuned Solution

6.4.2 The Speed of Optimisation Results

The first experiments, for improving the speed of the optimisation process, will consist of

evaluating the time difference of running the system on the current hardware, compared to

running the system in the cloud. These tests include splitting the population into multiple

threads as well as comparing just the single thread option.

The model of CPU in the standard laptop that runs the desktop application version of the tool,

is an Intel Core i5-4300U, whereas the model of CPU in the Cloud is stated to be an Intel Xeon

E5-2680. A comparison of the specification of the laptop and the cloud is given in Table 6-6.

Clearly, the cloud has much more processing resources available. The use of the cloud helps

solve the problem of resource scarcity with personal devices such as laptops.

Hardware Comparison Laptop Cloud

CPU Clock Speed 2 x 1.9GHz 8 x 2.7GHz

CPU Threads 4 16

RAM 4GB 32GB

Table 6-6 Optimisation Hardware Comparison

The experiments in Section 6.4.1 have established that the type-2 tuned fuzzy logic version of

the optimisation system is the strongest. We can look at the potential benefits of utilising cloud

resources. Figure 6.10 shows the comparison of how long a GA (and MOGA) would take. This

is important as if we want to use the type-2 tuned fuzzy systems we add two additional GAs

1

2

3

116

into the optimisation process (one for the membership functions and one for the FOUs). Figure

6.10 gives us an indication of the level of improvement we would expect, before moving onto

GAs with larger populations.

Figure 6.10: Optimisation Times

In Figure 6.10, we can see that on the laptop for a population size of 100 and the old single-

threaded model it takes approximately 12 minutes to complete the optimisation. However, if

the system is moved into the cloud and run the same optimisation, with a population of 100,

the time taken to optimise can be dramatically reduced. The overall time is reduced by

approximately 66.66% to about 4 minutes. This is clearly just due to the extra CPU resources

available in the cloud. We can then increase the population and measure the increase in time in

the cloud. The optimisation was then run with a population of 200, giving an average

optimisation time of 8 minutes. Doubling the population size again, to 400, and the optimisation

takes 14 minutes. This tells us that we can quadruple the population size in the optimisation,

and on the cloud and it only takes 16.67% longer.

However, this is just the single threaded model. If the CPU power is utilised as much as possible

the optimisation time can be further reduced. By increasing the number of threads to two, we

0

2

4

6

8

10

12

14

16

Single Thread Multi-Thread (2) Multi-Thread (4) Multi-Thread (8)

Ti
m

e
(m

in
u

te
s)

Optimisation Time

Lap:100 Cloud:100 Cloud:200 Cloud:400

117

can reduce the time taken to optimise on the laptop by about 33.33% to 8 minutes. However,

the reduction in optimisation time is greater in the cloud, as the optimisation time is reduced to

approximately 2 minutes 23 seconds. By adding multi-threading capabilities to the system and

moving the system into the cloud, we can reduce the optimisation time form approximately 12

minutes to 2 minutes 23 seconds, give a reduction in time of about 9 minutes and 37 seconds,

or about 80.14 %.

By increasing the threads, the optimisation time can be further reduced. However, there is

evidence of diminishing returns having a significant effect. Increasing the number of threads

to four reduces the average time to 2 minutes 17 seconds. Increasing the number of threads to

8 reduces the time to approximately 2 minutes for a population size of 100. Giving a total

reduction in time of 10 minutes, or 83.33%

Due to this significant time reduction in the multi-threaded model, the population size can be

increased as was done with the single threaded model. If we increase the population size to 200

we get times of 3 minutes 12 seconds for two threads, 4 minutes 21 seconds for four threads

and 3 minutes 42 seconds for eight threads. The minor fluctuations in time can be attributed to

a few causes. It could be that there were a different number of processes taking place in the

cloud at the time of optimisation, thus affecting the time to optimise. This is one of the minor

drawbacks, as there may not be total control over the available resources in the cloud.

Additionally, it could be that there needs to be a minimum number of solutions per thread to

have a practical benefit. For example, if a population of 200 is split into eight threads then that

is only 25 solutions per thread.

If the population is increased to 400, we get times of 8 minutes for two threads, 7 minutes 27

seconds for four threads and 7 minutes for eight threads. The continued reduction in time seems

118

to support the theory of a minimum number of solutions per thread to have maximum time

benefit.

Overall, for the time experiments, we can conclude that moving the system to the cloud and

adding multi-threading capabilities significantly improve the time. However, some tuning may

be required to optimise the number of threads to be used, to gain the most time benefit. With

this reduced time to optimise we can then increase the population size in the optimisation to

400. This gives us a similar time to optimise in the cloud when compared to the time to optimise

on the laptop with a population of 100 and two threads.

6.4.3 The Increased Population Results

Now that significant time benefit has been gained, because the system now runs in the cloud,

the population size can now be increased, thus covering more of the search space. However,

the aim here is to see if increasing the population size gives improved results. As if there is

minimal benefit in the results of the optimisation, then it may be that the most benefit from

moving the system to the cloud is just time. Thus the population should stay at 100 to gain the

most time benefit.

The optimisation with the type-2 genetically optimised fuzzy systems selected is used in the

following experiments due to the results from section 7.4.1. We increased the population to

200, and the results of this experiment are given in Table 6-7

The optimisation was run five times, smaller than the 10 for the other experiments. However,

the standard deviation (SD) is significantly reduced due to the increase in population size. It

has been reduced from 0.05 to 0.02 or by 60%. In addition to more consistent results, the results

give improved objective values and result in an increased average distance value of 0.06 or

13.64%. Perhaps more significantly this increased population size has helped the NSGA-II and

the many-objective problem, as all five objectives are improved over the average results of the

119

type-2 tune system with a smaller population given in Table 6-5

 Coverage

(%)

Travel

(km)

Utilisation

(%)

Balance

(Hours)

Team Balance

(People)

Dist. Val

 90.60 2.76 90.10 153.48 20.00 0.48

 89.66 3.38 89.16 93.84 4.00 0.53

 90.96 3.13 90.45 92.66 17.00 0.51

 92.77 4.59 92.26 84.71 8.00 0.50

 90.91 3.58 90.40 105.00 16.00 0.49

Avg. 90.98 3.49 90.48 105.94 13.00 0.50

SD 1.13 0.69 1.12 27.54 6.71 0.02

Table 6-7 Results from Increasing Population to 200

The next experiment involved running the optimisation with a population of 400. These results

can be found in Table 6-8. The standard deviation is the same as a population of 200. However,

the average distance value has increased to 0.52, an increase of 4%. As with the population of

200, all objectives have been improved over the average results given in is Table 6-5.

Additionally, these results improve in 4 out of 5 objectives when compared to the population

of 200 results.

A summary of the average results can be found in Table 6-9. Where T1 means type-1 fuzzy

systems and T2 means type-2 fuzzy systems. T2_POP200 and T2_POP400 are the tuned type

2 systems with populations of 200 and 400 respectively. All the results improve over the

original, in all objectives. This is a result of using the fuzzy systems with a multi-objective

genetic algorithm. We have also shown that tuning any fuzzy system that is to be used will

improve the results and showing that the tuned type-2 systems improve the results the most.

120

 Coverage

(%)

Travel

(km)

Utilisation

(%)

Balance

(Hours)

Team Balance

(People)

Dist. Val

 92.10 3.55 91.59 102.89 14.00 0.51

 87.26 2.87 86.78 137.65 8.00 0.50

 92.45 4.17 91.94 100.40 9.00 0.50

 92.74 2.72 92.23 102.55 10.00 0.54

 92.49 2.98 91.98 115.19 8.00 0.54

Avg. 91.41 3.26 90.90 111.73 9.80 0.52

SD 2.33 0.60 2.32 15.61 2.49 0.02

Table 6-8 Results from Increasing Population to 400

Coverage

(%)

Travel

(km)

Utilisation

(%)

Balance

(Hours)

Team Balance

(People)

Dist. Val SD

Current

74.60 7.00 74.03 428.74 71.00 - -

T1

89.50 3.47 88.82 246.73 31.30 0.38 0.07

T2

88.11 3.65 87.43 222.93 19.50 0.41 0.05

T1_Tuned

88.10 3.45 87.42 222.96 25.80 0.40 0.06

T2_Tuned

89.88 3.51 89.19 181.26 22.00 0.44 0.05

T2_POP200 90.98 3.49 90.48 105.94 13.00 0.50 0.02

T2_POP400 91.41 3.26 90.90 111.73 9.80 0.52 0.02

Table 6-9 Cloud Optimisation Results Summary

Due to the availability of cloud resources and the modification of the software to support multi-

threaded genetic algorithms, we can improve the optimisation process in 2 ways. The system

can either run the optimisation in a greatly reduced time or we can run it for the same time, but

with a greatly increased population size. The increase in population has produced even stronger

and more consistent results. Improving by as much as 18.18% if the population is increased to

400.

121

6.4.4 Comments on the Experiments and Results

In this section of the results, a cloud-based many-objective type-2 fuzzy logic based mobile

field workforce area optimisation system has been presented. The cloud in this context was

secure on-site hardware with more CPU capacity and more multi-threading capabilities. Due

to high-levels of security, the data had to remain on BT premises and thus BT’s own internal

‘Cloud’ systems were used. These results have demonstrated the need to optimise any fuzzy

logic system used in the optimisation process. The optimisation of our type-2 fuzzy logic

system improved the results by 10.00%. Additionally, the potential practical benefits have been

explained.

Potential improvements in results can be gained from moving the system from personal

hardware to the cloud. This allows the optimisation process to run much faster, by as much as

83.33%, allowing the population size of the genetic algorithm to be increased by 300%. This

increase in population resulted in better results. These results improved, on average, in all

objectives when compared to the smaller population tests by as much as 18.18%.

These improvements allow the system to be effectively used on a daily basis. The users of the

system will still run it for the same amount of time but are presented with better results. In

addition to this, their CPU’s are freed up, and they can run the optimisation as long as they

want, without having to worry about shutting off their laptops for travel purposes. One of the

key benefits of cloud computing.

122

6.5 Discussion

This chapter presented a many-objective fuzzy logic system for the optimal design of patches.

This system includes a distance metric for analysing the solutions that are generated by a multi-

objective optimisation algorithm, and ultimately resulting in a single recommended solution

that can be given to the user. I tested this metric on a system where we changed the type of

fuzzy logic used and compared the effect tuning of these systems had on the results.

The chapter demonstrated that a genetically optimised type-2 fuzzy logic system would

produce better results than an un-optimised type-1 system. The results I obtained showed that

the optimised type-2 system improved over the un-optimised type-1 system by 15.27% and

also improved on the standard deviation of the results by almost 35%. Additionally, our results

also showed the optimised type-2 system improved over the optimised type-1 systems by

6.34% and reduced the standard deviation by 24.88%.

The next chapter will discuss the proposed genetic algorithm-based approach for the

simultaneous optimisation of workforce skill sets and team allocation. This next chapter

focuses on the resource optimisation problem.

123

Chapter 7. A Genetic Algorithm Based

Approach for the Optimisation of

Workforce Skill Sets and Team Allocation

This chapter describes the work around skill optimisation, team optimisation and the approach

for optimising both objectives together. This chapter aims at addressing the weaknesses in

organisational design related to individuals and resource, as opposed to the geographical or

management hierarchy addressed in previous chapters.

7.1 Initial Workforce Skill Set Optimisation System

Initially, the system created to optimise the workforce skill sets is primarily a real-valued

genetic algorithm (RVGA). The genes in each of the solutions represent an engineer ID. The

solution length (number of genes) is related to the number of upskills, where an upskill in the

next logical skill set for any given engineer.

The next logical skill set is an important aspect that should have already been decided based

on the type of engineers an organisation has. These next logical skill sets are designed to build

upon the skill set the engineer already has. So, for example, if an engineer already has the skills

of server installation the next logical skill to give this engineer might be server repair rather

than air conditioning installation. The next logical skill set may also be tailored by technical

managers who see engineers have an aptitude (or ineptitude) for a particular type of task.

As with the previous chapters’ method for evaluating good organisational design decisions,

this system also uses a daily simulation. This simulation is able to estimate the coverage, travel

and utilisation values for any given solution, i.e. the team and their proposed skills including

any new skills. This is extremely important as the values given from this simulation are fed

into the fitness function.

124

The crucial variable for this problem, with respect to the simulation’s task assignment, is the

skill compatibility of an engineer to a task. From the GA we get the ID’s of engineers to be

upskilled, so if the simulation comes to one of these engineers, their skill set will be different

and will contain more skills than if they were not in their upskilled state.

As a result, the engineer has more tasks to choose from, and their route may be different as a

result. The way this simulation system is designed means that utilisation and coverage should

always increase regardless of the skill configurations from solution to solution. This is because

once the N number of upskilled engineers have been chosen, the order in which engineers are

selected from the list to simulated will change. The list will choose the engineers with the least

amount of skills first and leave the engineers with the most amount of skills last. This means

that there won’t be a situation where an engineer is chosen to be upskilled and are then given

some of the tasks that a lower skilled engineer could have done.

In this situation utilisation is likely to be reduced as the low-skilled engineer has fewer tasks to

choose from, meaning either travelling more to find work (reducing utilisation) or not matching

with enough compatible tasks to fill all their available hours.

However, because the upskilled engineer will be further down the list, the minimum the

engineer will do is exactly the same as if he/she were not upskilled. This ultimately means that

this engineer is a poor choice to spend time and money on training. This solution is then more

likely to be lost as the GA evolves.

125

7.2 Simultaneous Optimisation of Skill Sets and Teams

As described, the proposed optimisation system is a real-valued genetic algorithm based

solution. The genes in each of the solutions represent an engineer ID. The solution length

(number of genes) is related to the number of upskills, where an upskill is the next logical skill

set for any given engineer. Once a team has more skills available, the team dynamic will

change, and the members of the team may need changing to for the most optimal resource set-

up. This would require team members moving across to neighbouring teams. However, just

moving engineers may be sufficient. The benefit of this option is that it has no cost attached.

Choosing the right people is crucial because there is a knock-on effect as to how this will the

distribution of tasks to the remaining engineers.

Figure 7.1 shows an example of the real-valued chromosome, where an ID of an engineer is

stored within each gene. This then tells the simulation that this set of engineers needs to use

their upskilled skill set. It can also be used to decide which engineers to move to a different

team.

Figure 7.1: Upskilling Chromosome

The reason why we do not use a binary valued GA here is that each gene would have to

represent an engineer that could be upskilled. The GA would then switch on/off engineers to

be trained, but this would be uncontrolled. The GA could select any number of engineers to

train and not optimise for the number we have specified. In most situations, the binary GA will

switch on all engineers to be trained as this gives the most benefit. However, this is not practical

from a business point of view for several reasons, not least the cost of training all engineers, as

well as the opportunity cost of the lost time while the engineers are on training courses.

126

One problem with the RVGA that we have controlled for is the chromosome containing

duplicates of the same engineer ID. As if there is a duplicate the GA will then give a result of

one engineer less than we wanted. This solution will be penalised and given a zero-fitness

value, as the solution does not meet the optimisation criteria.

To simplify the optimisation, not all engineers are eligible to be upkilled. Either they are at the

maximum level of their skill path, or they do not yet have enough experience to be given

another higher-level skill. These engineers will be filtered out to avoid redundant selections by

the GA.

Figure 7.2: Solution creation and evaluation

127

During the solution evaluation section of the GA, shown in Figure 7.2, each solution will take

the workforce to be optimised and give engineers (that have been selected by the genes) their

next set of skills. This is the upskill candidates step. The daily simulation will run at the end of

this step, and the effect of the upskills will be measured. After the upskilling, we have two

options for moving engineers. We either set a fixed number of engineers to move (N) or try to

evaluate how many would be the best to move.

If we have a fixed number, we move onto the next step and move N number of engineers. If

we want the system to decide how many engineers to move, we start at 0 moves and evaluate

the effect of increasing the number of moves up to the maximum number we want to test for.

As a result, N number of moves will be equal to the number of moves that gave the best result.

Once we have determined N, we select N number of engineers to move to their closest

alternative team. The alternative team is the one that is geographically closest to them. We do

not want engineers to travel too far to their first task. The engineers selected here are those

deemed least utilised, based on the simulation.

The system then runs the simulation again, once the teams have been altered, and the results of

this second simulation are put into the fitness function to score the solution. This way the

selection of the engineers to be upskilled will affect the engineers that will move teams, with

the hope that both aspects will be considered during the optimisation process, Thus, producing

better results than upskilling or moving engineers in two separate optimisation systems.

7.3 Real-World Background

The developed system has been deployed as part of BT’s iPatch software. Initially, a business

problem with resource management was highlighted, so I looked at how we could develop the

iPatch tool to help solve this problem using similar techniques we have had success with before,

with regards to the geographic optimisation techniques described in Chapters 6 and 7. The

128

resource optimisation problem was originally proposed by BT’s Field Engineering Division

where they wanted to know which engineers would give the greatest benefit, after they were

trained in more skills. Although they were the primary stakeholder, one of the focuses was to

keep the solution to the problem generic, so that it could be applied to other areas of the

business. We then developed the GA to select any given number of engineers, then simulated

the effect they would have with new skills.

We had to model the problem well to give a realistic view of the effect of training the selected

engineers. The model to evaluate any of the proposed solutions involved simulating an average

day’s work. This began with setting up the engineers to be as close to reality as possible. The

engineers were grouped into their current teams, placed at their known starting location, given

the skills they currently have listed. BT provided this data.

The simulation then involved allocating the closest tasks to the engineers based on the skills

they have (and how much time they had left for the day). Further feedback from the

stakeholders led us to reorder the task allocation so those with few skills would be allocated

tasks first. A greedy logic was then implemented here so that the list will choose the engineers

with the least amount of skills first and leave the engineers with the most amount of skill last.

This meant that highly skilled engineers were not taking jobs from the lower skilled engineers.

If this happened, those engineers would be poorly utilised, and the higher skilled tasks would

not be completed because the relevant engineers would be doing something else.

The simulation was then run on areas and teams where the objective values were roughly

known so that the simulation results could compare against these. The comparison of the real

coverage, travel and utilisation were close enough that the stakeholders were happy with the

simulation as a means of testing solutions to the resource problem.

129

The focus between the stakeholders and us after this point was to discuss how the optimisation

of upskilling was performing and if the suggestions were logical. After the upskills were seen

to be logical another problem was highlighted, with under-resourced areas and underutilised

resources in neighbouring areas. The solution here would be to move engineers between teams,

but the most optimal solution to this problem was not known. Thus, we set out the discussed

experiments to investigate this issue. The results presented gave the stakeholders confidence in

the best methods presented for getting the most out of each engineer.

7.4 Experiments and Results

7.4.1 Workforce Skill Optimisation

In the data there is a list of engineers and their current skill sets and the task data that would be

presented to them on an average day. This enables us to simulate the overall utilisation of the

engineers. This initial utilisation value gives us a base value to compare our optimisation

results. This is important because this initial utilisation value has been created from the current

system of choosing engineers to upskill, i.e. by managers picking who they think is suitable for

more training. The original results for the area being tested shown in Table 7-1.

Coverage

(%)

Travel per Engineer

(km)

Average Utilisation

(%)

90.20 24.84 77.03

Table 7-1 Benchmark Results for Resource Optimisation

Our first set of experiments aim to tune the GA. These experiments test whether Tournament

Selection or Roulette Selection is better for the problem. It also tests if a crossover value of 0.4

or 0.2 is better for this problem. Tables Table 7-2 to Table 7-5 outline these results. The

following results are for five upskills. This means the system will try to pick the five best

possible candidates to be trained to their next logical skill set.

130

 Coverage

(%)

Travel

 (km)

Utilisation

(%)
94.12 25.61 80.38

94.01 26.02 80.29

94.06 25.48 80.33

93.94 25.23 80.23

94.12 25.10 80.38

Average 94.05 25.49 80.32

 Table 7-2 Tournament Selection with Crossover of 0.4

 Coverage

(%)

Travel

(km)

Utilisation

 (%)
94.01 25.61 80.29

94.01 25.88 80.29

94.12 25.48 80.38

93.94 25.23 80.23

94.05 25.57 80.32

Average 94.03 25.55 80.30

 Table 7-3 Tournament Selection with Crossover of 0.2

 Coverage

 (%)

Travel

(km)

Utilisation

(%)
93.90 26.07 80.20

93.90 25.75 80.20

93.63 25.70 79.97

94.01 25.63 80.29

93.73 25.64 80.05

Average 93.83 25.76 80.14

 Table 7-4 Roulette Selection with Crossover of 0.4

131

Coverage

(%)

Travel

(km)

Utilisation

(%)
93.44 25.43 79.80

93.42 25.62 79.79

93.96 25.53 80.25

93.90 26.16 80.20

93.76 25.40 80.08

Average 93.70 25.63 80.02

 Table 7-5 Roulette Selection with Crossover of 0.2

From the results in Table 7-2 to Table 7-5 there is no statistical significance between a

crossover rate of 0.2 and 0.4 for either method. However, for the coverage and utilisation

objectives, Tournament selection performed statistically significantly better. Taking the 0.4

crossover rates results as an example (Table 7-2 and Table 7-4), the one-way ANOVA P-

Values are 0.022, 0.171 and 0.023 for Coverage, Travel and Utilisation respectively. The travel

value is difficult to assess from a P-Value perspective because travel should increase the better

the result, so a P-Value comparison would not be able to tell if the values weren’t significantly

different because of a bad result, or a good result that required a bit higher travelling. On this

point, Tournament Selection also produced a lower average travel rate than Roulette Selection.

As mentioned it is typical for travel to increase the more tasks that are covered. This increase

in coverage and reduced increase in travel explains the overall increase in utilisation. Based on

these results Tournament Selection is the selection method we will proceed with. The crossover

rate will be 0.4, based on this being our default value and 0.2 makes no difference.

Our second set of results focus on the number of engineers to be upskilled vs the benefit from

the upskill. Table 7-6 and Table 7-7 add to the results we already have from Table 7-2 as the

following results used Tournament selection with a crossover rate of 0.4.

132

Table 8-2 gives us the results for 5 upskill, Table 8-6 gives the results for 10 upskills and table

8-7 gives the results for 15 upskills.

 Coverage

 (%)

Travel

(km)

Utilisation

(%)
95.19 26.33 81.30

95.02 25.72 81.16

95.19 26.21 81.30

95.00 25.62 81.13

94.94 26.64 81.09

Average 95.07 26.10 81.20

Table 7-6 Optimisation with 10 Upskills

 Coverage

(%)

Travel

(km)

Utilisation

(%)
95.33 25.86 81.42

95.28 26.47 81.37

95.09 25.52 81.21

95.33 25.92 81.42

95.27 26.39 81.36

Average 95.26 26.03 81.35

Table 7-7 Optimisation with 15 upskills

The maximum number of engineers who can be upskilled, for the area the experiments are

being run on, is 107 out of 141. The remaining 34 engineers already hold the maximum amount

of skills available to them. The results for the maximum number of possible upskills are shown

in Table 7-8.

133

Coverage

(%)

Travel per Engineer

(km)

Average Utilisation

(%)

95.36 24.75 81.45

Table 7-8 Maximum Number of Upskills for Test Area

Given that we now have the original results, results for 5, 10, 15 and maximum upskills we can

plot them to see the level of diminishing returns for each upskill. This is important as the

number of upskills directly correlates to training costs. Figure 7.3, Figure 7.4 and Figure 7.5

show the graphs for the number of engineer upskilling vs the coverage benefit, utilisation

benefit and travel cost respectively.

Figure 7.3: Coverage Benefit

Figure 7.4: Utilisation Benefit

87

88

89

90

91

92

93

94

95

96

Original 5 10 15 Maximum

Coverage Benefit

74

75

76

77

78

79

80

81

82

Original 5 10 15 Maximum

Utilisation Benefit

134

Figure 7.5: Travel Cost

Figure 7.3 and Figure 7.4 show that the most benefit per upskill is gained within the first five.

After this, the benefit of both coverage and utilisation is greatly reduced. The benefit to

coverage and utilisation becomes almost negligible after 15 upskills.

Figure 7.5 shows the average travel per engineer, which for the first 10 upskills increases

linearly. However, after this point travel starts to be reduced with a significant drop at

maximum upskills. This is likely because engineers have many more tasks to choose from that

are closer to their current location, allowing them to always choose the closest task.

From this, we can say the only significant benefit gained after ten upskills comes from the

reduction in travel.

If we compare the genetic algorithm based system with the current manual system, (where

managers choose engineers they think are suitable for more training, results shown in Table 8-

1), the results show that using this system to select employees for training has a 4.27% increase

in overall employee utilisation, with only 3.52% of the workforce being trained (5 out of 141

engineers in the workforce). It also shows that there is a 5.41% increase in overall engineer

utilisation when 7.04% is selected to be trained (10 out of 141 engineers in the workforce).

This shows that the first few employees to be selected for training can produce the most benefit

so selecting the right people is crucial and hence the proposed use of genetic algorithms for

24

24.5

25

25.5

26

26.5

Original 5 10 15 Maximum

Travel Cost

135

this problem should be used. At this point, there is a potentially an exponential level of

diminishing returns on employee utilisation

7.4.2 Simulaneous Optimisation of Skills and Teams

In the following experiments, which investigate the impact moving engineers has on the

optimisation of the teams, we selected a region to optimise. This region contained eight sub-

regions. Each sub-region contains patches. The teams are allocated to the patches, and any team

reorganisation at the sub-region level involves moving engineers between the patches. These

experiments build on from the experiments in the previous section and used the system laid out

in Figure 7-2 of section 7.2.

Table 7-9 to Table 7-16 shows the optimisation results for each sub-region. The tables show

the original results from the current teams with their current skill sets. Then each column shows

the results from a different experiment with the aim of improving in the three objectives. The

results shown from these experiments are the average of five runs of each of the experiments.

The full results for the simultaneous optimisation methods can be found in our hypervolume

analysis, section 7.5.

Objective Original Moves

Only

Upskill

Only

Upskill

then

Move

Upskills

& Move

Upskills

Dynamic

Moves

Coverage 89.47 89.47 91.92 91.95 92.24 92.34

Travel 9.15 9.15 8.07 8.29 8.12 8.09

Utilisation 80.69 80.69 82.90 82.93 83.20 83.29

Table 7-9 Resource Optimisation Results for Sub-Region 1

Objective Original Moves

Only

Upskill

Only

Upskill

then

Move

Upskills

& Move

Upskills

Dynamic

Moves

Coverage 94.18 94.96 94.18 94.18 94.82 94.18

Travel 7.28 7.32 5.87 5.92 5.93 5.88

Utilisation 84.30 84.99 84.30 84.30 84.87 84.30

Table 7-10 Resource Optimisation Results for Sub-Region 2

136

Objective Original Moves

Only

Upskill

Only

Upskill

then

Move

Upskills

& Move

Upskills

Dynamic

Moves

Coverage 86.10 86.89 88.24 87.80 89.70 88.34

Travel 5.81 6.24 4.96 5.59 6.32 5.33

Utilisation 68.80 69.43 70.51 70.16 71.68 70.59

Table 7-11 Resource Optimisation Results for Sub-Region 3

Objective Original Moves

Only

Upskill

Only

Upskill

then

Move

Moves &

Upskills

Upskills

Dynamic

Moves

Coverage 95.52 95.52 95.57 95.57 95.59 95.59

Travel 8.15 8.15 6.85 7.07 6.83 6.84

Utilisation 81.39 81.39 81.44 81.44 81.46 81.46

Table 7-12 Resource Optimisation Results for Sub-Region 4

Objective Original Moves

Only

Upskill

Only

Upskill

then

Move

Upskills

& Move

Upskills

Dynamic

Moves

Coverage 89.84 89.84 90.06 90.06 89.79 90.06

Travel 6.66 6.66 6.52 6.61 6.90 6.54

Utilisation 80.57 80.57 80.76 80.76 80.51 80.76

Table 7-13 Resource Optimisation Results for Sub-Region 5

Objective Original Moves

Only

Upskill

Only

Upskill

then

Move

Upskills

& Move

Upskills

Dynamic

Moves

Coverage 89.36 89.36 89.20 89.14 89.17 89.11

Travel 9.06 9.06 7.73 7.78 7.68 7.69

Utilisation 88.87 88.87 88.71 88.65 88.68 88.62

Table 7-14 Resource Optimisation Results for Sub-Region 6

Objective Original Moves

Only

Upskill

Only

Upskill

then

Move

Upskills

& Move

Upskills

Dynamic

Moves

Coverage 81.56 82.30 81.87 82.08 84.47 82.06

Travel 6.27 6.29 5.54 5.59 5.66 5.47

Utilisation 75.86 76.55 76.15 76.35 78.57 76.30

Table 7-15 Resource Optimisation Results for Sub-Region 7

Objective Original Moves

Only

Upskill

Only

Upskill

then

Move

Upskills

& Move

Upskills

Dynamic

Moves

Coverage 93.32 93.32 93.33 93.33 93.16 93.34

Travel 11.65 12.00 10.54 10.67 10.71 10.53

Utilisation 81.57 81.57 81.58 81.58 81.43 81.59

Table 7-16 Resource Optimisation Results for Sub-Region 8

137

For the purpose of our experiments, we keep the number of upskills at 10; this is based on our

previous results from Section 7.4.1. The number of fixed moves we set at five. Our GA settings

are 0.4 for crossover, 0.05 for mutation, a population of 100 and max generations is set at 30

(Convergence of results with these settings is easily obtained by 30 generations).

Fixed moves without any upskilling is our first experiment. We want to know the effect of just

moving the five least utilised workers in each sub-region.

From Table 7-9 to Table 7-16 we can see that just by moving the least utilised we will increase

the coverage in three of the eight sub-regions with the remaining five having no effect. Also,

travel increases as a result of moving engineers in four of the eight sub-regions.

This is most likely for two reasons. Firstly, the move only process is not part of the GA system,

so it does not use the fitness function and is not constrained by travel. Secondly, it simply looks

at the least utilised engineers and assigns them to a different team. Thus, the engineer will then

have to travel further to their new patch, as they will now be assigned to one that is further

away.

Our second set of experiments look at just running the upskilling optimisation (the same

process completed in section 7.4.1). With ten engineers throughout the sub-region being

selected for training. This has the effect of increasing coverage in six of the eight areas. Of

these six areas, four of them performed better in coverage than just moving engineers. In sub-

region 7 (Table 7-15), moving only performed better than upskill only. However, both improved

on the original.

Our third set of experiments looked at a step process in which we first upskill ten engineers via

the GA process; then once the GA process is complete, we move the five least utilised workers

based on the new upskills. The method produces suboptimal results as the GA has attempted

138

to find the best solution for upskilling engineers, then the solution is impacted (usually made

worse) by moving engineers between teams.

Although this method produced coverage result that were better than just moving the engineers

(sub-regions 1, 3, 4, 5 and 8) in the majority of cases, 75%, this method performed worse than

upskill only when travel was also taken into account (sub-regions 2, 3, 4, 5, 6 and 8). This led

us to the last two experiments.

The fourth set of experiments looked at combining the upskilling optimisation with moving the

least utilised engineers within the GA process. This experiment now has the advantage of

applying the fitness function to new team configurations. This process improves in coverage

in five of the eight sub-regions and six of the eight in travel.

The final set of experiments looks at allowing the system to run simulation tests to alter the

number of moves to find the best number of engineers to move within each sub-region. The

system could choose up to 10 engineers to move. This resulted in six of the sub-regions being

improved in coverage, with only sub-region 6 (Table 7-14) performing worse. All sub-regions

have improved travel distances when compared to upskill then move. The reason for sub-region

6 performing worse in coverage could be because of the fitness function. The reduction in travel

of 15.12% may be why the solutions produced for sub-region 6 has a small 0.28% reduction in

coverage, given the equal weighting of these objectives.

In all cases for the combined optimisation methods, either fixed moves or dynamic moves

outperformed the step process of upskilling then moving engineers. With a fixed number of

moves being the process that outperforms the step process most often, in 75% of cases (Sub-

Regions: 1, 2, 3, 4, 6 and 7). This shows us that combining these methods produces better

results.

139

Table 7-17 gives an overview of the coverage improvements with the different experiments.

On average for the eight sub-regions, we can see that only moving engineers gives a 0.29%

improvement. Only upskilling gives a 0.63% improvement. Upskilling then moving give a

0.58% improvement (smaller than just upskilling). Moving and upskilling simultaneously

produces the best improvement, with the dynamic number of moves giving a 0.71%

improvement and the fixed number of moves giving a 1.20% improvement. When this is

applied to the 7571 hours’ worth of work across the region, this 1.20% improvement is equal

to 90.85 hours work per day.

Sub-Region Moves

Only

Upskill Only Upskill then

Move

Upskills

& Move

Upskills &

Dynamic

Moves

1 0.00% 2.45% 2.48% 2.77% 2.87%

2 0.78% 0.00% 0.00% 0.64% 0.00%

3 0.79% 2.14% 1.70% 3.60% 2.24%

4 0.00% 0.05% 0.05% 0.07% 0.07%

5 0.00% 0.22% 0.22% -0.05% 0.22%

6 0.00% -0.16% -0.25% -0.19% -0.25%

7 0.74% 0.31% 0.52% 2.91% 0.50%

8 0.00% 0.01% 0.01% -0.16% 0.02%

AVG. 0.29% 0.63% 0.59% 1.20% 0.71%

Table 7-17 Coverage Results Evaluation from Resource Optimisation Sub-Regions

Table 7-18 gives an overview of the travel improvements. If coverage increases, we expect

travel to increase also. Because the engineers are travelling and completing more tasks. So,

these are directly conflicting objectives. If the travel is also being reduced at the same time as

increased coverage, then the task allocation for the engineers has become much more efficient.

140

Table 7-18 also shows the extra kilometres travelled per engineer as a result of the optimisation

attempts. Moving only will increase travel on average for the sub-regions, this is expected

given we are forcing the engineers to travel to a patch further away. Upskilling only produces

the most travel benefit. This is logical as the same teams are given a wider selection of jobs to

choose from, meaning they are more likely to choose jobs that are closer to them. Upskill then

move produces a good reduction in travel, but again not as good as upskilling only. A fixed

number of moves and upskills, simultaneously, increases travel the most on average. This

makes sense as it is also the optimisation technique that increases coverage the most.

Sub-

Region

Moves

Only

Upskill Only Upskill then

Move

Upskills &

Move

Upskills &

Dynamic

Moves

1 0.00km -1.08km -0.86km 0.05km -0.03km

2 0.04km -1.45km -1.36km 0.06km -0.05km

3 0.43km -1.28km -0.22km 1.36km -0.99km

4 0.00km -1.30km -1.08km -0.01km 0.00km

5 0.00km -0.14km -0.05km 0.38km -0.36km

6 0.00km -1.33km -1.37km -0.05km 0.01km

7 0.02km -0.75km -0.68km 0.12km -0.18km

8 0.35km -1.46km -0.98km 0.17km -0.18km

AVG. 0.11km -1.10km -0.82km 0.26km -0.22km

Table 7-18 Travel Results Evaluation from Resource Optimisation Sub-Regions

Upskilling with a dynamic number of moves reduces travel despite having the second highest

coverage increase. The difference between fixed moves and dynamic moves is 0.48km per

engineer. Which is significant as in this region there are 1481 engineers. Resulting in a

difference of about 710km per day.

141

Given this, for the simultaneous optimisation techniques, fixed moves increase travel 385km

per day, while dynamic moves give a reduction of 325km per day. If the regional manager is

looking to reduce fuel consumption cost and CO2 emissions, using the dynamic system looks

far more attractive, because not only will fuel costs be reduced, more work will be completed.

Alternatively, if the regional manager has the goal of completing more tasks, which results in

increased customer satisfaction and a reduced reliance on contractor work, then the fixed option

looks better, just from a maximise job completion perspective.

Whichever of these options is chosen, it will be with the simultaneous optimisation, as these

combined optimisation techniques outperform either move only, upskill only and upskill then

move methods in coverage. If travel is of concern, the dynamic moves option may be the best,

given that it is the second best at increasing coverage but also has the benefit of reducing travel.

7.4.3 Hypervolume Analysis

In section 7.4.2 we established that the simultaneous optimisation methods, either a fixed

number of moves or a dynamic number of moves, were the strongest options depending on the

goals of the managers. This was based on our simple analysis of the average improvement in

the objective values for each area. To definitively prove if these methods are better, we will

compare the hypervolumes created by the five runs of these methods in each area. Then

statistical analysis is performed on these hypervolumes.

Table 7-19 to Table 7-26 show the results of the hypervolumes. In many cases, the GA

produced the same results in either method. This helps to prove the GA is producing strong and

consistent results. This also helps the real-world users to have more confidence in the results.

The Root Mean Square (RMS) of all hypervolumes against their respective original solutions

is 0.025. Thus we present the hypervolumes to two digits of precision.

142

Sub-Region 1 Coverage Travel Utilisation Hypervolume

Original Solution 89.47 9.15 80.69 0.39

Upskills & Fixed Move 91.79 8.08 82.78

0.47

92.63 8.12 83.54
92.45 8.00 83.39
91.97 8.11 82.95
92.38 8.30 83.32

Upskills & Dynamic

Moves

92.83 8.17 83.72

0.46

92.80 8.06 83.70

91.80 8.07 82.80

91.98 8.06 82.96

92.30 8.08 83.25

Table 7-19 Resource Optimisation Hypervolume Analysis for Sub-Region 1

Sub-Region 2 Coverage Travel Utilisation Hypervolume

Original Solution 94.18 7.28 84.30 0.52

Upskills & Fixed Move 94.96 5.90 84.99

0.61

94.69 6.00 84.75
94.62 6.01 84.69
94.96 5.92 84.99
94.96 5.91 84.99

Upskills & Dynamic

Moves

94.18 5.91 84.30

0.61

94.18 5.88 84.30

94.18 5.90 84.30

94.18 5.84 84.30
94.18 5.86 84.30

Table 7-20 Resource Optimisation Hypervolume Analysis for Sub-Region 2

Sub-Region 3 Coverage Travel Utilisation Hypervolume

Original Solution 86.10 5.81 68.80 0.61

Upskills & Fixed Move 90.38 6.30 72.22

0.62

90.47 6.36 72.29
86.10 5.75 68.80
90.79 6.28 72.55
90.78 6.90 72.54

Upskills & Dynamic

Moves

87.70 5.24 70.07

0.65

88.58 5.39 70.78

88.26 5.27 70.52

88.58 5.43 70.78

88.58 5.32 70.78

Table 7-21 Resource Optimisation Hypervolume Analysis for Sub-Region 3

143

Sub-Region 4 Coverage Travel Utilisation Hypervolume

Original Solution 95.52 8.15 81.39 0.46

Upskills & Fixed Move 95.10 7.03 81.03

0.53

95.07 6.99 81.01
95.12 7.02 81.05
95.07 7.16 81.01
95.42 7.03 81.31

Upskills & Dynamic

Moves

95.59 6.84 81.46

0.55

95.59 6.83 81.46

95.59 6.84 81.46

95.59 6.85 81.46
95.59 6.82 81.46

Table 7-22 Resource Optimisation Hypervolume Analysis for Sub-Region 4

Sub-Region 5 Coverage Travel Utilisation Hypervolume

Original Solution 89.84 6.66 80.57 0.56

Upskills & Fixed Move 89.84 6.66 80.57

0.56

89.93 7.26 80.64
89.71 7.27 80.44
89.84 6.88 80.57
90.10 6.81 80.79

Upskills & Dynamic

Moves

90.06 6.50 80.76

0.56

89.94 6.51 80.65

90.10 6.57 80.79
90.10 6.57 80.79
90.10 6.57 80.79

Table 7-23 Resource Optimisation Hypervolume Analysis for Sub-Region 5

Sub-Region 6 Coverage Travel Utilisation Hypervolume

Original Solution 89.36 9.06 88.87 0.40

Upskills & Fixed Move 89.27 7.65 88.78

0.49

89.12 7.71 88.63
89.27 7.76 88.78
89.27 7.73 88.78
89.27 7.65 88.78

Upskills & Dynamic

Moves

89.12 7.63 88.63

0.49

89.12 7.63 88.63

89.12 7.69 88.63

89.12 7.69 88.63
89.08 7.82 88.59

Table 7-24 Resource Optimisation Hypervolume Analysis for Sub-Region 6

144

Sub-Region 7 Coverage Travel Utilisation Hypervolume

Original Solution 81.56 6.27 75.86 0.58

Upskills & Fixed Move 84.37 5.66 78.47

0.62

84.37 5.73 78.47
84.49 5.69 78.59
83.75 5.71 77.90
84.37 5.75 78.47

Upskills & Dynamic

Moves

82.27 5.45 76.52

0.64

82.07 5.48 76.34

81.95 5.46 76.22
81.95 5.47 76.22
82.07 5.51 76.22

Table 7-25 Resource Optimisation Hypervolume Analysis for Sub-Region 7

Sub-Region 8 Coverage Travel Utilisation Hypervolume

Original Solution 93.32 11.65 81.57 0.22

Upskills & Fixed Move 84.37 5.66 78.47

0.62

84.37 5.73 78.47
84.49 5.69 78.59
83.75 5.71 77.90
84.37 5.75 78.47

Upskills & Dynamic

Moves

82.27 5.45 76.52

0.64

82.07 5.48 76.34

81.95 5.46 76.22

81.95 5.47 76.22

82.07 5.51 76.22

Table 7-26 Resource Optimisation Hypervolume Analysis for Sub-Region 8

What we can see from tables Table 7-19 to Table 7-26 is that in all cases, except sub-region 5,

the hypervolume of the simultaneous optimisation methods are greater than the original

solution’s hypervolume. When comparing the fixed upskill & move method with the dynamic

move method, the dynamic version usually outperforms the static method.

If we create three hypervolume sets for the original, fixed methods and dynamic methods, we

can perform statistical analysis (specifically the Kruskal–Wallis test) and attain p-values for

the comparisons.

If we compare the original hypervolume set and to the fixed moves hypervolume set we get a

p-value of 0.074, which is good, but not below the 0.05 threshold to show significance. If we

145

compare the original hypervolume set with the dynamic moves hypervolume set, we get a p-

value of 0.046, which is below the 0.05 thresholds and indicates that the results from this

method are a statistically significant improvement over the original results.

7.5 Discussion

This chapter presented a real value GA system for engineer upskilling recommendations. The

results showed that for this particular problem Tournament selection with a crossover

probability of 0.4 performed better.

Once the system was tuned, the optimisation for the area found that the most benefits gained

from the system were in the first five engineers who were upskilled. However, it also found

that upskilling all possible engineers is the best way to reduce travel costs.

After this initial investigation, a real-value GA system for engineer upskilling and move

recommendations was presented. The first experiment was to only move the least utilised

engineers; the second was to only upskill ten engineers across the sub-region. The third was to

combine both moves and upskilling sequentially. The final two experiments were to combine

both the moves and the upskills in a simultaneous optimisation method, with either a fixed

number of moves or a dynamic number of moves.

The results showed that combining team moves and engineer upskilling in the same

optimisation process lead to an overall 1.20% increase in coverage across the region with the

fixed moves option and a 0.71% increase with a dynamic number of moves. Both of these

results produced better coverage than only moving engineers between teams, just upskilling

the engineers or upskilling then moving the engineers in a sequential process.

Finally, the hypervolumes created by the results of the simultaneous optimisation methods were

evaluated. From this it was seen that these algorithms outperformed the original solutions.

146

When performing the Kruskal–Wallis test to calculate a p-value we saw that the dynamic

moves simultaneous optimisation method gave us a p-value of 0.046, below the threshold to

show statistical significance. This test indicated that this method is clearly better than the

method to create the original solutions (which was primarily manual).

The next chapter will discuss fuzzy dominance in real-world many-objective optimisation

problems.

147

Chapter 8. Fuzzy Dominance Rules in Real-

World Many-Objective Optimisation

Problems.

In the previous chapters the proposed cloud-based type-2 fuzzy logic many-objective

optimisation system has been developed and enhanced; additional workforce optimisation

functionality has been introduced to the tool in the form of optimisation methods for workforce

skill sets and team allocation.

However, at its core, the system is a multi-objective optimisation algorithm. A distance metric

was introduced in Section 6.2 to help with the problem of solutions saturating the Pareto front.

This method, while providing some benefit, doesn’t address the main reason why Pareto based

algorithms fail to effectively navigate a many-objective search space.

In this chapter, the problem with dominance and the Pareto front will be described. Then a

solution to this problem will be introduced in the form of Fuzzy Dominance Rules.

8.1 Dominance in Many-Objective Problems

As mentioned in Section 3.5, Many-objective problems are described as those with four or

more objectives [69] [70]. The more objectives there are, the more likely that the mentioned

dominance rules will not be sufficient to distinguish between good solutions. Thus, the Pareto

front will become saturated with solutions (potentially containing all solutions in the

population) making it very difficult to choose parents in the selection stage of the GA.

The problem stems from the first rule; that no objective can be worse. Consider the results in

Table 8-1. Table 8-1 shows five solutions to a problem that has five objectives, where each of

the five objectives should be minimised.

148

Solution

No.

Objective

1 (min)

Objective

2 (min)

Objective

3 (min)

Objective

4 (min)

Objective

5 (min)

Solutions

Dominated

1 3.0 6.0 8.0 4.0 7.0 0

2 2.0 5.0 5.0 4.0 8.0 0

3 2.0 6.0 1.0 5.0 1.0 0

4 1.0 1.0 1.0 5.0 2.0 0

5 8.0 1.0 1.0 1.0 1.0 0

Table 8-1 Dominance in Many-Objective Problems: Example I

In Table 8-1, solution ‘4’ does a very good job of minimising all objective, except objective 4.

This objective has been sacrificed for all others. This is an expected outcome with conflicting

objectives. The same could be said of solution 5. These are clearly two good solutions, however

because of the rule stating no objective can be worse, these solutions fail to dominate the clearly

weaker ones. Selection pressure (when selecting the parents for the next generation) does not

consider the stronger solutions because of this; it has to rely on weaker or secondary selection

pressures such as crowding distance, or the distance metric which has been proposed. The

problem is exaggerated in Table 8-2.

Solution

No.

Objective

1 (min)

Objective

2 (min)

Objective

3 (min)

Objective

4 (min)

Objective

5 (min)

Solutions

Dominated

1 3.0 100.0 800.0 4.0 70.0 0

2 2.0 100.0 50.0 4.0 80.0 0

3 2.0 410.0 1.0 50.0 1.0 0

4 1.0 1.0 1.0 4.1 1.1 0

5 3.1 1.0 1.0 1.0 1.0 0

Table 8-2 Dominance in Many-Objective Problems: Example II

Table 8-2 shows another situation where we have five solutions that do not dominate each

other. However, to any human solutions, 4 and 5 are clearly better. Solutions 1, 2 and 3 have

149

failed in the majority of the objectives, but under dominance, they are good candidates for

selection stage in the GA.

To address this problem, we will use the proposed Fuzzy Dominance Rules (FDRs). This is the

introduction of a fuzzy logic system in place of the standard dominance rule check. Each

objective value is fuzzified and then compared. The membership functions for this FLS are

proportional to the values being compared. For example, a 10% tolerance value on objective 4

when comparing solutions 2 and 4 from Table 8-2 would mean solution 4 could have a value

of 4.4 and the condition of ‘no objective worse’ would instead be satisfied.

 The need to make the dominance rule less strict by fuzzifying what it sees as ‘Worse’, ‘Equal’

or ‘Better’ can be illustrated in Table 8-3. In Table 4 we have allowed a tolerance of 10%,

meaning when comparing X to Y, Y can be up to 10% of Xs value larger and still not be

considered as worse. With this fuzzification of the rules, we can now see that solutions 4 and

5 dominate the 3 other solutions (solutions 1, 2 and 3).

Solution

No

Objective

1 (min)

Objective

2 (min)

Objective

3 (min)

Objective

4 (min)

Objective

5 (min)

Solutions

Dominated

1 3.0 100.0 800.0 4.0 70.0 0

2 2.9 100.0 50.0 4.0 80.0 0

3 2.9 410.0 1.0 50.0 1.0 0

4 1.0 1.0 1.0 4.1 1.1 3

5 3.1 1.0 1.0 1.0 1.0 3

Table 8-3 Dominance in Many-Objective Problems: Example III

The context of the objective values can determine the design of the membership functions. The

most critical membership function in our system is what values can be considered equal. For

example, most people would consider an outside temperature of 20 and 22 degrees Celsius ‘the

150

same’ i.e. they would not make any changes to their clothing or behaviour. However, people

may consider 20 and 25 degrees different enough to change their behaviour. Similarly, if the

price of coffee increases from £1.85 to £1.90 there may be little change in behaviour so that

most people would view that as the ‘same’ price. However, if the price increased to £2.00, this

could affect sales as the price change increase from 2.70% to 8.11%.

8.2 Proposed Fuzzy Dominance Rules

The proposed fuzzy dominance rules work like any traditional type-1 FLS where the inputs are

the objective values of the solutions being compared. The FLS will then decide if the relative

objective value is worse, equal or better for each objective for solution A and solution B.

Once the FLS has processed each objective, these outcomes will be used to work out dominance

using the standard dominance rules described in Section 4.4.1, except now these rules are not

comparing the raw crisp values for each objective. They will use the output of the FLS. Thus,

the dominance rules become Fuzzy Dominance Rules (FDR).

There are three fuzzy sets representing the inputs and outputs as shown in Figure 8.1, Figure

8.2 and Figure 8.3. Figure 8.1 shows the input fuzzy set of solution A’s objective values being

compared to solution B’s. In this example set, we allow a tolerance of 10%. So, if the objective

value for A is 10.5, then B can have an objective value of between 9.45 and 11.55 and be seen

as equal. In an example where B is 9.5, B still falls into the range of ‘Equal’ with a membership

value of 0.048.

The reverse comparison is then made between B and A, shown in Figure 8.2. In this case, if

the B value is 9.5 and the A value is 10.5. A will be seen as ‘Better’ to the degree of 1.0 and

won’t be seen as ‘Equal’ to any degree (as the maximum value for ‘Equal’ would be 10.45).

This two-way validation strengthens the dominance decision. This is reflected in the A to B

and B to A fuzzy sets.

151

Figure 8.1: Fuzzy Set comparing A objectives to B objectives

Figure 8.2: Fuzzy Set Comparing B Objectives to A Objectives

Figure 8.3: Output Fuzzy Set for Comparing Two Objective Values

The rules in this fuzzy system are given in Table 8-4. So, for the example where ‘Equal and

Better’ would fire B is ‘Worse’, this is also the case for ‘Worse and Better’. Meaning, of

the two rules, that fire we are certain that B is worse than A. The rules here are also designed

to accommodate non-uniform membership functions. The output set shown in Figure 8.3

will dictate the final outcome of the dominance. A crisp output will then be given using the

centre of sets defuzzification. The output value is then used to determine dominance. If a

crisp value of less than 10 is given, then B is worse. If the defuzzification gives a value of

M
em

b
er

sh
ip

M

em
b

er
sh

ip

M
em

b
er

sh
ip

152

between 10 and 20, then B and A are equal, and if the value if greater than 20, then B is

better. These values are determined by the output fuzzy set.

Compare A to B Compare B to A Final Output

Comparing A to B

Worse Worse Equal

Worse Equal Worse

Worse Better Worse

Equal Worse Better

Equal Equal Equal

Equal Better Worse

Better Worse Better

Better Equal Better

Better Better Equal

Table 8-4 Fuzzy Dominance Rule Base

8.3 Experiments and Results

8.3.1 Black Box Optimisation

Our experiments involve applying the NSGA-II algorithm to some many-objective problems

then comparing the difference in the Pareto fronts against an NSGA-II algorithm that utilised

the described FDR in place of the crisp domination evaluation described in section 3.4.1. To

compare the Pareto fronts of the two algorithms the hypervolume, mentioned in section 3.6,

will be used

The first set of experiments involves the Black Box Optimization Competition (BBComp) [90].

The BBComp allows competitors to test their optimisation algorithms on a number of black

box problems, with the winning algorithm being the one that optimises the best in the most

problems. There are single-objective and multi-objective tracks for this competition.

153

There are specific optimisation rules imposed, such as; competitors cannot run their algorithm

on a problem more than once, and there is a budget for each problem. Where the budget is

described as, the number of times the evaluation of a solution can be called. Meaning higher

populations would lead to a reduced number of generations.

The first rule is a problem if enough runs of the same problem are to be collected, for the

purpose of performing statistical analysis on the two algorithms. Fortunately, there is a ‘Test

Track’ within the competition which can be run any number of times, so that track will be used.

With regards to the budget, it will be divided equally between population and generations. For

example, if the budget is 100, the population size will be set to 10, and the number of

generations will be set to 10. This would lead to 100 solution evaluation calls. For multi or

many-objective problems in the competition, the value returned at the end of each problem will

be 1-hypervolume value. Smaller values are stronger Pareto fronts.

The system was run on 120 of the available problems in the multi-objective track; each problem

was run 30 times for both the NSGA-II and the NSGA-II with FDR (NSGAIIFDR), leading to

a total of 7,200 hypervolume values.

Within the first 50 problems, there wasn’t any significant improvement. However, given the

earlier problems have fewer problem dimensions (i.e. two dimensions for problems 0-49), this

falls in line with what is expected, this is because the FDRs are designed to tackle the issues

with many-objective optimisation, and two objectives do not fall within this. Instead, the

remaining 70 problems will be analysed.

Table 8-5 shows that problems where NSGAIIFDR gives a statistically significant smaller

average 1-hypervolume values. The Kruskal–Wallis test was performed on the two sets given

for each problem to obtain the P-Value in column five. These two sets are the 30 runs without

the FDR, and the 30 runs with the FDR for each problem, in columns three and four

154

respectively. Significance when comparing the hypervolume sets for the listed problems of the

two algorithms is <0.05 (the threshold for significance). The Root Mean Square (RMS) for the

P-Value is 0.038, thus these values are given to 3 decimal places.

Problem Problem

Dimensions

Average NSGA-II

1-Hypervolume

Average

NSGAIIFDR

1-Hypervolume

P Value

50 4 0.58 0.57 0.047

52 4 0.81 0.80 0.042

59 4 0.85 0.85 0.037

63 4 0.79 0.79 0.038

73 4 0.96 0.96 0.042

81 4 0.95 0.95 0.044

84 4 0.58 0.57 0.048

91 4 0.95 0.95 0.017

116 5 0.84 0.84 0.035

119 5 0.87 0.86 0.007

Table 8-5 Results from BBCOMP Problems

There is a trend towards more significant improvements as the number of objectives increase

in the problems, shown in Figure 8.4. The number in brackets in Figure 8.4 represents the

number of dimensions in each problem. Problem 119 has a P value of just 0.0068 (or <1%). In

total, there were ten statistically significant improvements from the remaining 70 problems.

Leading to at least 14.29% of problems being improved when using NSGAIIFDR. Importantly

this is just using a generic model, with no tuning on any of the problems. There has yet to be

specifically optimised aspects for each problem.

155

Figure 8.4: Value Plot and Trendline of BBComp Results

Some minor tuning of the algorithm for each test problem could also achieve greater

significance, rather than having a general setup for all problems. This could also help a greater

number of problems being improved to fall under the 0.05 significance threshold. As those

slightly above the threshold have not been listed.

As the optimisation is blind and restricted on the budget, we can say with a degree of confidence

that we can improve on the results given by NSGA-II by adding our proposed Fuzzy

Dominance Rules.

8.3.2 Real-World implementation

To further test the hypothesis of whether implementing FDR to multi-objective algorithms help

solve many-objective problems, and to validate its usefulness, the next step was to apply

NSGAIIFDR to the described real-world many-objective problem.

There are a number of experiments that aim to show improvements to the modified NSGA-II

(NSGAIIFDR) algorithm. The first experiment utilises the type-1 fuzzy versions of the PCFLS

and TAFLS as outlined in Sections 5.1 and 5.2. The second experiment replaces the fuzzy

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

P
-V

al
u

e

Problem Number (dimensions in problem)

BBComp P-Values Trendline

156

systems with type-2 FLSs. The third experiments utilise the type-2 FLSs but have a short

optimisation with a GA; this is the genetically optimised system from Chapter 6.

Coverage

(%)

Travel

(km)

Utilisation

(%)

Area Balance

(Hours)

Team Balance

(people)

76.12 26.50 68.15 354.65 71

Table 8-6 Benchmark Results for Fuzzy Dominance Rules

The experiments start by choosing a single geographical area to optimise. The current design

is evaluated to get our benchmark objective values for this area. These values can be found in

Table 8-6.

Our first aim is to show that the introduction of the FLSs improves our system, like the

experiments from Chapter 6. However, only three objectives will be chosen so the benefit of

these FLS can be separated from the many-objective environment. Thus, the optimisation is

not hindered by the problems associated with many-objective optimisation and shows the

distinct contribution the FLSs have on the ability to improve the results. Hence, the results from

Chapter 6 cannot be compared as they include five objectives.

For the first four sets of results only Coverage, Travel and Patch Balancing will be used as

objectives. Each experiment will run the optimisation 30 times and will be given 30 unique

seed values each time. Each experiment will use the same 30 unique seed values to reduce the

elements of randomness further. Each run will give a Pareto front where we will use the

discussed hypervolume metric, from Section 4.6, to evaluate the Pareto fronts. Each

hypervolume value will be given to two decimal places. The reference points for the three

objectives will be 0, 100 and 1000 for Coverage, Travel and Patch Balance respectively.

Maximisation objectives are multiplied by -1 to make sure the hypervolume forms a convex

shape. This is so that any improvement in any objective value will cause a point on the Pareto

front to trend in the same direction in the objective space. i.e. if travel reduces from 10 to 5,

157

this is an improvement, so if we multiply coverage by -1, an improvement of 5 to 10 will be

shown in the hypervolume shape as an improvement from -5 to -10.

All the hypervolumes from the experiments are shown in the Hypervolume Summary Table,

Table 8-7. Table 8-7 shows the hypervolume set for the NSGA-II algorithm as N, the

introduction of type-1 fuzzy systems gives the hypervolume set noted by T1. The upgrade to

type-2 systems gives the hypervolume set noted by T2. Finally, the hypervolume set given by

the NSGA-II algorithm with genetically optimised type-2 fuzzy logic systems is denoted by

OT2. We can plot a Pareto front result from each of the hypervolume sets for a visual

comparison. Figure 8.5 to Figure 8.7 show different perspectives of the same four Pareto fronts

 Avg.

N

0.63 0.73 0.69 0.62 0.65 0.65 0.68 0.71 0.68 0.63

0.67

0.68 0.67 0.69 0.67 0.74 0.70 0.71 0.64 0.63 0.64

0.67 0.65 0.64 0.70 0.71 0.69 0.62 0.70 0.71 0.72

T1

0.72 0.67 0.67 0.70 0.72 0.59 0.67 0.67 0.69 0.66

0.68

0.69 0.70 0.67 0.69 0.68 0.66 0.69 0.67 0.74 0.66

0.65 0.67 0.69 0.71 0.63 0.67 0.68 0.65 0.66 0.69

T2

0.62 0.66 0.70 0.71 0.71 0.71 0.69 0.70 0.71 0.71

0.68

0.64 0.66 0.66 0.67 0.65 0.75 0.70 0.68 0.68 0.66

0.65 0.65 0.67 0.69 0.70 0.65 0.64 0.69 0.69 0.70

OT2

0.65 0.72 0.67 0.68 0.66 0.72 0.73 0.75 0.72 0.68

0.70
0.67 0.71 0.74 0.70 0.73 0.74 0.72 0.73 0.74 0.69

0.67 0.66 0.75 0.70 0.69 0.68 0.74 0.70 0.67 0.70

Table 8-7 Hypervolume Summary Table for Integrated Fuzzy Logic Systems in iPatch

158

Figure 8.5: 3D plot of Pareto fronts (1)

Figure 8.6: 3D plot of Pareto fronts (2)

159

Figure 8.7: 3D plot of Pareto fronts (3)

These Pareto fronts were taken from each method’s final result from the same seed. These

graphs clearly show the conflicting relationship between coverage and travel. They also

highlight a positive correlation showing more balanced patch designs lead to higher levels of

task coverage.

If we look at the average (Avg.) of the 30 runs in Table 8-7 for each hypervolume set, we can

see that best average hypervolume was achieved by OT2, followed by T2 and T1 and finally

N. This is a similar pattern seen in Chapter 7 where the distance metric was used in place of

the hypervolume. This experiment helps to justify the use of the distance metric as an effective

measure to distinguish between solutions and to compare fronts generated by different

optimisation techniques. Also, we have shown that we can improve NSGA-II even further by

including the type-2 FLSs and pre-optimising the membership functions and footprints of

uncertainty before the primary patch optimisation takes place. To conclusively say this is the

case, we can perform statistical analysis on the two sets of hypervolume values given by

NSGA-II and the NSGA-II system with optimised type-2 FLSs.

160

The P-value given if we compare these two sets of hypervolume values is 0.0016, or 0.16%

significantly below the alpha value of 0.05 (or 5%) to show a statistically significant difference

between the sets.

8.3.3 Results for Fuzzy Dominance Rules in Real-World Many-

Objective Problems

The first set of experiments described in Section 9.3.2 builds upon the experiments of Chapter

7 and concludes with a strong degree of certainty that the use of optimised type-2 FLSs improve

the results for our multi-objective problem. However, we detailed that there are five total

objectives, making this a many-objective problem. We talked about the issues surrounding

parent selection for many-objective problems in 9.1. We discussed that it was believed to be a

problem with the crisp value comparison in the dominance rules. Hence, the results were

presented for our experiments using Fuzzy Dominance Rules (FDRs) described in Section 9.2

and tested on black-box problems in 9.3.1.

These results showed the that NSGAIIFDR could improve the optimisation of many-objective

problems. To take this to a real case the following experiments will take the area for this section

(benchmark results of this area were given in Table 9-6) and optimise it with all five objectives,

firstly with NSGA-II, to get the multi-objective algorithm results. Then with NSGAIIFDR to

measure any improvement of the implementation of the fuzzy dominance rules. Then the

optimised type-2 fuzzy logic systems will we be switched on for the final set of results to get a

complete view of how the full experimental system will improve over the standard NSGA-II.

We will use a 10% tolerance for the objective values when we calculate the dominance. As we

are using five objectives, we cannot compare the hypervolume values from Table 8-7.

Now there are more objectives, there are also more reference points for the hypervolume. Once

again, we multiply our maximisation objective by -1 when calculating the hypervolume. Our

161

reference points are now 0, 100, 0, 850 and 150 for coverage, travel, utilisation, patch balancing

and team balancing respectively.

 Avg.

N

0.41 0.41 0.42 0.43 0.44 0.44 0.45 0.45 0.46 0.46

0.48 0.46 0.47 0.47 0.47 0.47 0.47 0.47 0.48 0.49 0.49

0.49 0.49 0.51 0.52 0.53 0.53 0.54 0.56 0.57 0.60

FDR

0.42 0.43 0.43 0.44 0.45 0.45 0.47 0.47 0.47 0.47

0.51 0.48 0.48 0.49 0.50 0.51 0.51 0.51 0.52 0.52 0.52

0.54 0.54 0.55 0.56 0.57 0.57 0.57 0.57 0.59 0.63

OT2-

FDR

0.54 0.54 0.54 0.55 0.56 0.57 0.58 0.60 0.60 0.61

0.63 0.61 0.62 0.62 0.63 0.63 0.64 0.64 0.65 0.65 0.66

0.66 0.67 0.67 0.67 0.69 0.69 0.70 0.70 0.73 0.73

Table 8-8 Hypervolume Summary Table for Fuzzy Dominance Rules in iPatch

Table 8-8 shows the hypervolume values for NSGA-II using crisp dominance, given by N. The

average of these runs is 0.48. FDR gives the hypervolume values for NSGA-II with FDRs

implemented, with an average hypervolume of 0.51. If Kruskal–Wallis statistical analysis is

performed on these hypervolume sets, we get a P-value of 0.049, which is less than the required

alpha value of 0.05 to prove the difference in the results are statistically significant.

Figure 8.8 illustrates these results and shows a standard boxplot where all values (lower

acceptance limit, interquartile ranges, median and upper acceptance limit) are stronger in the

NSGAIIFDR results than they are in the NSGA-II results. When the hypervolume sets of

NSGA-II and NSGAIIFDR are compared, this gives an average improvement of 5.46%.

162

Figure 8.8: Box plot of NSGA-II vs NSGAIIFDR for our real world many objective

problem

So far it has been proven that using genetically optimised type-2 systems or the introduction

of FDRs statistically improves the Pareto front results independently. The final step is to

measure the impact combining these two methods of improvement together. The results for

this are shown in Table 8-8 as the OT2FDR hypervolume set. From the average hypervolume

values, it can be seen that OT2FDR has improved the average hypervolume by 24.29% if this

set is compared to the FDR results set. The Kruskal–Wallis test is performed, and this results

in a P-value of 4.47-9 when comparing FDR to OT2FDR, for completeness, we also get a P

value of 1.86-10 if we compare the N with OT2FDR.

These results make a strong case for both types of fuzzy system to be introduced in our

optimisation algorithm. As part of solution generation and evaluation (with the optimised type-

2 systems) and identifying dominant solutions (as with the Fuzzy Dominance Rules). Indeed,

there is a significantly stronger case for these fuzzy methods to be implemented together.

8.4 Discussion

This chapter presented a solution to the help improve the weaknesses associated with many-

objective optimisation, specifically the saturation of the Pareto front. The chapter described the

0.4

0.45

0.5

0.55

0.6

0.65

NSGA-II NSGAIIFDR

H
yp

e
rv

o
lu

m
e

163

need to fuzzify the objective values in the dominance comparison of the NSGA-II algorithm.

Fuzzy dominance rules were applied to a set of budget restricted black-box optimisation

problems. The results showed that some problems were statistically significantly improved,

achieving a P-value of <1%.

The chapter went on to discuss the emerging trend of the more dimensions the problem

contained, the more effective NSGAIIFDR was able to improve over the standard NSGA-II.

Because of the black-box nature of the competition, it is difficult to determine the particular

strengths of the fuzzy dominance rules, in relation to the black-box problems.

The NSGAIIFDR algorithm was applied to the problem of organisational structure

optimisation. For this, it was presented that the results were statistically significant in their

improvement in the solutions created, with a P-value of 0.048. The hypervolumes were on

average 5.46% better for the real-world problem when Fuzzy Dominance Rules were applied.

It was shown that genetically optimising the type-2 FLSs gave us a real improvement when

comparing the hypervolumes of the NSGA-II and the genetically optimised type-2 FLSs. The

P-value here was 0.0016 significantly below the required 0.05 to prove statistical significance.

The work was extended by looking at how we could solve the many-objective issues given by

standard crisp dominance rules. This showed that by including FDRs to the implemented

NSGA-II algorithm improved on the hypervolumes given by the Pareto fronts. The P-value

attained here was 0.048, again lower than the required 0.05. Combining the fuzzy systems and

FDRs resulted in a significant improvement to the many-objective algorithm, with a P-value

of 1.86-10 when compared to the standard MOGA we previously used.

The next chapter will present the conclusions of this thesis, the real-world impact and the future

work.

164

Chapter 9. Conclusions and Future Work

In this thesis, a novel many-objective type-2 fuzzy logic system for the optimisation of large-

scale organisational design problems has been present. Further discussions about how the

system can be improved through cloud resources have also been discussing. Additionally, a

method for handling the saturation of the Pareto front in many-objective problems using a

multi-objective algorithm has been presented. This method uses a simple fuzzy logic system in

place of the crisp dominance rules to allow tolerance and flexibility between solutions.

9.1 Conclusions

The aims of the thesis were as follows:

 To investigate the most suitable optimisation methods for organisational design.

This was achieved by investigating meta-heuristic methods used to find near-optimal solutions

in a vast search space. These methods were simulated annealing, genetic algorithms (GAs) and

particle swarm optimisation (PSO). A GA and PSO algorithm was implemented while

simulated annealing was not because of its slower traversal of the search space and potentially

weaker overall results (as discussed in section 5.3). In the experiments, it was found that in

both single-objective and multi-objective variations the GA outperformed the PSO. Thus, the

recommended meta-heuristic for large-scale organisational design is a GA, with the NSGA-II

algorithm being a suitable base for multi-objective optimisation. The NSGA-II algorithm was

then adapted to handle many-objective problems by fuzzifying the dominance comparison.

 To examine the potential benefits of implementing fuzzy logic to handle the

uncertainties in the data.

This was achieved by implementing fuzzy logic systems in the simulation to improve the

results generated by the GA. The implemented fuzzy systems aimed to handle the uncertainties

165

in the task completion time and the travel time. When the type-1 systems were implemented

and showed potential improvement, an interval type-2 variants of the fuzzy logic systems were

implemented and this showed how changing to type-2 fuzzy systems can improve the

optimisation further for this problem. The fuzzy systems’ performance was then improved by

tuning the membership functions and footprints of uncertainty with a genetic algorithm. So not

only is the conclusion here to fuzzify measures, that are widely known to be uncertain, but the

fuzzy system should be tuned using an optimisation algorithm. For large-scale organisational

design optimisation problems, optimised type-2 fuzzy systems can give the most benefit when

handling uncertainties in the data used to measure performance.

 To develop a system in which each proposed organisational design should take into

account the wide range of complex real-world constraints, to give results that can easily

be implemented into the real-world environment on which it is based.

To take into account the wide range of complex constraints a neighbourhood-based clustering

algorithm was implemented, that avoided generating geographical regions that would break the

required constraints (such as not crossing rivers). This clustering algorithm was one part of the

system that benefited from the fuzzy logic that handled the uncertainties in travel times and

task times. This meant the proposed designs could be acceptable to area managers in the

organisation. For highly constrained construction of geographies in large-scale organisational

design problems, bespoke clustering algorithms are necessary to avoid key business constraints

being broken.

 To develop a system which should produce near-optimal geography and team designs,

to reduce the amount the mobile workforce travels and increase the number of tasks the

workforce completes.

166

This near-optimality was achieved through the many separate parts of this work that were

effectively brought together into one system. The underlying meta-heuristic is a GA because it

outperformed PSO. Uncertainties were well handled due to the GA tuned type-2 fuzzy logic

systems. Finally, all objectives were able to be included into the optimisation due to the fuzzy

dominance improvements developed for the NSGA-II algorithm. The fuzzification of the

dominance comparison is a key improvement to the systems optimisation process. The near-

optimality of the system can be measured due to the real-world implementation of this tool.

The organisation's productivity increased 0.5% and their travel reduced by 7.7 million miles.

A more in-depth discussion on the real-world benefits of the implemented system see section

10.3.

One key aspect of the success of the system is the incremental process of development. Starting

with a discussion with the users and stakeholders in the organisation, understanding the

business problem, researching how the problem can be tackled with state of the art techniques

and develop novel methods where appropriate. Then developing prototype functionality,

testing this new functionality and building up the confidence of the newly implemented

methods and features, to allow the system to tackle the real-world problems.

Working with industry meant there was a constant flow of problems to solve and a feedback

process that helped to tune the implemented methods. As a result, the final version of the

system, which has been produced as a result of my work, is now a comprehensive tool

developed to produce optimal, large-scale, organisational designs for geographical, skill and

team design questions. As such this tool has been recognised as a cutting-edge, industry-leading

tool by a number of external organisations, such as the British Computer Society, Institute of

Engineering and Technology and the Global Telecoms Business Awards.

167

9.2 Real-World Impact of iPatch

As mentioned in the developed iPatch tool (shown in Figure 9.1) was implemented with the

goal of improving the organisational design of a large mobile workforce. Specifically, this was

British Telecoms’ (BT’s) mobile engineering workforce. The work presented looks at the

geographical optimisation and the resource optimisation functionality.

Figure 9.1: Final Version of BT’s iPatch Tool

The application was developed with a strong communication and relationships with our users.

This, in turn, allowed detailed feedback on problems that came to light throughout

development, which allowed the results produced by iPatch to translate into the real-world

effectively.

iPatch has generated an increase in productivity of 0.5% saving an estimated £1million a year

over the first two years. iPatch has also cut fuel consumption by 2.9%, leading to an additional

saving of over £200k a year. In addition to the financial benefits, customer commitments are

now more effectively met, improving the service quality, and due to less fuel consumption, the

168

company can promote sustainability targets with less CO2 emitted. Over the period of

deployment, iPatch has reduced CO2 emissions by more than 2,500 metric tonnes.

Furthermore, a report by the UK’s Department of Transport found that for every billion vehicle

miles travelled there were 15,409 serious injuries or deaths, or 1 per 64,900 miles [91].

As iPatch has saved an estimated 7.7 million miles of travelling, this equates to preventing 118

casualties and fatalities. The system won the 2015 Global Telecommunications Business award

for best business innovation of the year in its first year of use [92], was highly commended at

the IET Innovation Awards 2016 [93] and won A BCS Best Application paper award at the

36th International Conference of the BCS SGAI International Conference on Artificial

Intelligence.

These outcomes show the real world impact these AI technologies, including advanced fuzzy

logic systems, are having on a large, nationwide, mobile engineering workforce.

9.3 Future Work

The future work will explore the tuning of the FDR along with the exploring different

membership functions for the sets used in the FDR FLS. There is also the prospect of expanding

this work into the type-2 fuzzy logic domain. Where a type-2 fuzzy dominance rules could

improve the performance due to type-2’s ability to more effectively handle uncertainty.

Uncertainty in this context would stem from the solution's strengths and weaknesses. In our

real-world problem, there are high levels of uncertainty when evaluating each objective.

Improving on the system’s ability to distinguish between stronger solutions would improve the

transfer of results from the simulation to the real world.

Additionally, addressing some of the potentially weaknesses of the optimisation which have

thus far not been addressed due to scope will be looked at. This includes seeding the population

169

of the GA with SDPs considered as idea candidates to be centre points. The list of ideal SDPs

will first come from the human patch optimisation team. Then, a neural network will take all

the data available on each SDP and try to learn the most optimal exchanges for this seeding

task. This will create a human vs machine comparison to benchmark the results against.

Lastly, building on the deep neural network work will be looked at by implementing an iPatch

assistant to tell the human patch optimisation team which patches are underperforming and

how this can be addressed with the functionality available within the iPatch tool.

170

 References

[1] M. Cimitile, M. Gaeta and V. Loia, “An ontological multi-criteria optimization system

for Workforce Management,” in FUZZIEEE 2012, Brisbane, 2012 pp. 1-7

[2] B. Guido, G. Roberto, P. D. Tria and R. Bisio, “Workforce management (WFM)

issues,” in Network Operations and Management Symposium, New Orleans, 1998 pp.

473-482

[3] C. H. Papadimitriou and K. Steiglitz, Combinatorial Optimization – Algorithms and

Complexity, New York: Dover Publications, 1982.

[4] W. Fan, Z. Gurmu and E. Haile, “A Bi-Level Metaheuristic Approach to designing

Optimal Bus Transit Route Network,” in IEEE International Conference on Cyber

Technology in Automation, Control and Intelligent Systems, Nanjing, 2013 pp. 208-

313

[5] R. Domberger, L. Frey and T. Hanne, “Single and multiobjective optimization of the

train staff planning problem using genetic algorithms,” in IEEE Congress on

Evolutionary Computation, Hong Kong, 2008 pp. 970-977

[6] Y. Liu, S.-l. Zhao, X.-k. Du and S.-q. Li, “Optimization of resource allocation in

construction using genetic algorithms,” in International Conference on Machine

Learning and Cybernetics, Guangzhou, 2005 pp. 3428-3432.

[7] J. Tanomaru, “Staff scheduling by a genetic algorithm with heuristic operators,” in

IEEE International Conference on Evolutionary Computation, Perth, 1995 pp. 456-

461

171

[8] N. K. Sharma, D. S. Babu and S. C. Choube, “Application of Particle Swarm

optimization Technique for Reactive Power Optimization,” in IEEE International

Conference on Advances in Engineering, Science and Management, Nagapattinam,

2012 pp. 88-93

[9] K.-B. Lee and J.-H. Kim, “Multi-Objective Particle Swarm Optimization with

Preference Based Sort and its Application to Path Following Footstep Optimization for

Humanoid Robots,” IEEE Transactions on Evolutionary Computation, vol. 17, no. 6,

pp. 755 - 766, 2013.

[10] B. Qi and F. Shen, “Performance Comparison of Particle Swarm Optimization Variant

Models,” in International Conference on Information Technology: New Generations,

Las Vegas, NV, 2014 pp. 575-580

[11] D. L. Applegate, R. E. Bixby, V. Chvátal and W. J. Cook, The Traveling Salesman

Problem, Princeton University Press, 2007.

[12] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory

of NP-Completeness, New York: W. H. Freeman and Company, 1979.

[13] E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan and D. B. Shmoys, The Traveling

Salesman Problem: A guided Tour of Combinatorial Optimization, Chichester: John

Wiley & Sons, 1985.

[14] “Rules for the Millennium Prizes,” Clay Mathematics Institute, 25 September 2012.

[Online]. Available: http://www.claymath.org/millennium-problems/rules-

millennium-prizes. [Accessed 12 February 2018].

172

[15] L. V. Snyder and M. S. Daskinb, “A random-key genetic algorithm for the generalized

traveling salesman problem,” European Journal of Operational Research, vol. 174,

no. 1, pp. 38-53, 2006.

[16] T. P. Bagchi, J. N. Gupta and C. Sriskandarajah, “A review of TSP based approaches

for flowshop scheduling,” European Journal of Operational Research, vol. 169, no. 3,

p. 816–854, 2006.

[17] C. E. Noon and J. C. Bean, “An Efficient Transformation Of The Generalized

Traveling Salesman Problem,” INFOR: Information Systems and Operational

Research, vol. 31, no. 1, pp. 39-44, 1993.

[18] G. Laporte and U. Palekar, “Some applications of the clustered travelling salesman

problem,” Journal of the Operational Research Society, vol. 53, no. 9, p. 972–976,

2002.

[19] C. Ding, Y. Cheng and M. He, “Two-Level Genetic Algorithm for Clustered Traveling

Salesman Problem with Application in Large-Scale TSPs,” Tsinghua Science &

Technology, vol. 12, no. 4, pp. 459-465, 2007.

[20] S. Shakya, S. Kassem, A. Mohamed, H. Hagras and G. Owusu, “Enhancing Field

Service Operations via Fuzzy Automation of Tactical Supply Plan,” in Transforming

Field and Service Operations, Berlin, Springer, 2013, pp. 101-114.

[21] A. Mohamed, H. Hagras, S. Shakya and G. Owusu, “Tactical Resource Planner for

Workforce Allocation in Telecommunications,” in International Conference on

Autonomous and Intelligent Systems, Aviero, 2012 pp. 98-105

173

[22] D. Applegate and W. Cook, “A computational study of the job-shop scheduling

problem,” ORSA Journal on computing, vol. 3, no. 2, pp. 149-156, 1991.

[23] D. S. Mankowska, F. Meisel and C. Bierwirth, “The home health care routing and

scheduling problem with interdependent services,” Health care management science,

vol. 17, no. 1, pp. 15-30, 2014.

[24] D. Lesaint, C. Voudouris and N. Azarmi, “Dynamic Workforce Scheduling for British

Telecommunications plc,” Interfaces, vol. 30, no. 1, pp. 45-56, 2000.

[25] H. Algethami, R. Lankaites-Pinheiro and D. Landa-Silva, “A Genetic Algorithm for a

Workforce Scheduling and Routing Problem,” in 2016 IEEE Congress on

Evolutionary Computation (CEC), Vancouver, 2016 pp. 927-934

[26] J. A. Castillo-Salazar, D. Landa-Silva and R. Qu, “Workforce scheduling and routing

problems: literature survey and computational study,” Annals of Operations Research,

vol. 239, no. 1, pp. 39-67, 2016.

[27] P. Toth and D. Vigo, The Vehicle Routing Problem, Philadelphia: SIAM: Society for

Industrial and Applied Mathmatics, 2002.

[28] M. Widmer, A. Hertz and D. Costa, Production Scheduling, Wiley, 2008.

[29] J. E. Gomar, C. T. Haas and D. P. Morton, “Assignment and Allocation Optimization

of Partially Multiskilled Workforce,” Journal of Construction Engineering and

Management, vol. 128, no. 2, pp. 103-109, 2002.

[30] K. Deb, Multi-Objective Optimization using Evolutionary Algorithms, Chichester:

John Wiley & Sons, 2001.

174

[31] M. Affenzeller, S. Wagner, S. Winkler and A. Beham, Genetic Algorithms and Genetic

Programming: Modern Concepts and Practical Applications, Boca Raton: Chapman &

Hall / CRC, 2009.

[32] C. R. Darwin, The Origin of Species: By Means of Natural Selection or the

Preservation of Favoured Races in the Struggle for Life, London: John Murray, 1859.

[33] T. Back, “Selective pressure in evolutionary algorithms: a characterization of selection

mechanisms,” in IEEE Conference on Evolutionary Computation, Orlando, FL, 1994,

pp. 57-62

[34] K. Y. Lee and P. S. Mohamed, “A real-coded genetic algorithm involving a hybrid

crossover method for power plant control system design,” in IEEE Congress on

Evolutionary Computation, Honolulu, HI, 2002, pp. 1069-1074

[35] L. Wang, H. J. Siegel, V. P. Roychowdhury and A. A. Maciejewski, “Task Matching

and Scheduling in Heterogeneous Computing Environments Using a Genetic-

Algorithm-Based Approach,” Journal of Parallel and Distributed Computing, vol. 47,

no. 1, pp. 8-22, 1997.

[36] U. Mehboob, J. Qadir, S. Ali and A. Vasilakos, “Genetic algorithms in wireless

networking: techniques, applications, and issues,” Soft Computing, vol. 20, no. 6, pp.

2467-2501, 2016.

[37] C. Reeves, Modern Heuristic Techniques for Combinatorial Optimization, McGraw-

Hill International Ltd, 1995.

175

[38] R. Hongliang, W. Guo, S. S. Ge and W. Lim, “Coverage planning in computer-assisted

ablation based on genetic algorithm,” Computers in biology and medicine, vol. 49, no.

1, pp. 36-45, 2014.

[39] Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution Programs,

Springer, 1992.

[40] D. Dumitrescu, B. Lazzerini, L. C. Jain and A. Dumitrescu, Evolutionary Computation,

CRC Press, 2000.

[41] H. Cartwright, “Getting the timing right - the use of genetic algorithms in scheduling,”

in Adaptive Computing and Information Processing Conference, 1994 pp. 393-411

[42] J. H. Holland, Adaptation in Natural and Artificial Systems: An Introductory Analysis

with Applications to Biology, Control, and Artificial Intelligence, London: The MIT

Press, 1975.

[43] R. Ghanea-Hercock, Applied Evolutionary Algorithms in Java, New York: Springer-

Verlag, 2003.

[44] M. Mitchell, An Introduction to Genetic Algorithms, London: MIT Press, 1998.

[45] K.-F. Man, K.-S. Tang and S. Kwong, “Genetic algorithms: concepts and

applications,” IEEE transactions on Industrial Electronics, vol. 43, no. 5, pp. 519-534,

1996.

[46] J. Kennedy and R. C. Eberhart, Swarm Intelligence, Morgan Kaufmann Publishers,

2001.

176

[47] Y. Shi and R. Eberhart, “A modified particle swarm optimizer,” in IEEE World

Congress on Computational Intelligence, Anchorage, AL, 1998 pp. 69-73

[48] J. Kennedy and R. Eberhart, “Particle Swarm Optimization,” in IEEE International

Conference on Neural Networks, Perth, 1995 pp. 1942-1948

[49] S. Kirkpatrick, C. D. Gelatt and M. P. Vecchi, “Optimization by Simulated

Annealing,” Science, vol. 220, no. 4598, pp. 671-680, 1983.

[50] R. A. Rutenbar, “Simulated Annealing Algorithms: An Overview,” IEEE Circuits and

Devices Magazine, vol. 5, no. 1, pp. 19-26, 1989.

[51] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller and E. Teller,

“Equation of State Calculations by Fast Computing Machines,” The Journal of

Chemical Physics, vol. 21, no. 6, pp. 1087-1092, 1953.

[52] A. Abraham, L. Jain and R. Goldberg, Evolutionary Multiobjective Optimization:

Theoretical Advances and Applications, London: Springer-Verlag, 2005.

[53] A. Kurapati and S. Azarm, “Immune Network Simulation with Multiobjective Genetic

Algorithms for Multidisciplinary Design Optimization,” Engineering Optimization,

vol. 33, no. 1, pp. 245-260, 2000.

[54] C. A. Coello Coello and A. D. Christiansan, “Multiobjective Optimization of Trusses

using Genetic Algorithms,” Computers and Structures, vol. 75, no. 6, pp. 647-660,

2000.

177

[55] A. Osyczka, S. Krenich and K. Karas, “Optimum design of robot grippers using genetic

algorithms,” in Congress of Structural and Multidisciplinary Optimization, Buffalo,

NY, 1999 pp. 139-146

[56] J. Teo and H. A. Abbass, “Is a Self-Adaptive Pareto Approach Beneficial for

Controlling Embodied Virtual Robots,” in Genetic and Evolutionary Computation

(GECCO), Chicago, 2003 pp. 1612-1613

[57] R. Kumar and N. Banerjee, “Multicriteria Network Design Using Evolutionary

Algorithm,” in Genetic and Evolutionary Computation (GECCO), Chicago, 2003 pp.

2179-2190

[58] W. Pullan, “Optimising Multiple Aspects of Network Survivability,” in Congress on

Evolutionary Computation, Piscataway, NJ, 2002 pp. 115-120

[59] H. Ishibuchi, T. Yoshida and T. Murata, “Balance Between Genetic Search and Local

Search in Memetic Algorithms for Multiobjective Permutation Flowshop Scheduling,”

IEEE Transactions on Evolutionary Computation, vol. 7, no. 2, pp. 204-223, 2003.

[60] C. Brizuela, N. Sannomiya and Y. Zhao, “Multi-Objective Flow-Shop: Preliminary

Results,” in First International Conference in Evolutionary Multi-Criterion

Optimization, London, Springer-Verlag, 2001, pp. 443-457.

[61] R. M. Ramos, R. R. Saldanha, R. H. Takahashi and F. J. Moreira, “The Real-Biased

Multiobjective Genetic Algorithm and its Application to the Design of Wire

Antennas,” IEEE Transactions on Magnetics, vol. 39, no. 3, pp. 1329-1332, 2003.

178

[62] M. Krause and V. Nissen, “On using penalty functions and multicriteria optimisation

techniques in facility layout,” in Evolutionary Algorithms in Management

Applications, Berlin, Springer-Verlag, 1995 pp. 153-166

[63] A. Ekart and S. Z. Nemeth, “Selection Based on the Pareto Nondomination Criterion

for Controlling Code Growth in Genetic Programming,” Genetic Programming and

Evolvable Machines, vol. 2, no. 1, pp. 61-73, 2001.

[64] X. Llora and D. E. Goldberg, “Bounding the Effect of Noise in Multiobjective

Learning Classifier Systems,” Evolutionary Computation, vol. 11, no. 3, pp. 279-298,

2003.

[65] A. Cunha, P. Oliveira and J. A. Covas, “Genetic Algorithms in multiobjective

optimization problems: An application to polymer extrusion,” in Genetic and

Evolutionary Computation Conference, Orlando, FL, 1999 pp. 129-130

[66] G. T. Parks, “Multiobjective Pressurized Water Reactor Reload Core Design by

Nondominated Genetic Algorithm Search,” Nuclear Science and Engineering, vol.

124, no. 1, pp. 178-187, 1996.

[67] F. de Torro, E. Ros, S. Mota and J. Ortega, “Non-invasive Atrial Disease Diagnosis

Using Detection Rules: A Multi-objective Optimization Approach,” in International

Confrence on Evolutionary Multi-Criterion Optimization, Faro, 2003 pp.638-647

[68] K. Deb, A. Pratap, S. Agarwal and T. Meyarivan, “A fast and elitist multiobjective

genetic algorithm: NSGA-II,” IEEE Transactions on Evolutionary Computation, vol.

6, no. 2, pp. 182-197, 2002.

179

[69] H. Ishibuchi, N. Tsukamoto and Y. Nojima, “Evolutionary many-objective

optimization: A short review,” in IEEE Congress on Evolutionary Computation, Hong

Kong, 2008 pp.2419-2426

[70] J. Y. Liu, D. Gong, J. Sun and Y. Jin, “A Many-Objective Evolutionary Algorithm

Using A One-by-One Selection Strategy,” IEEE Transactions on Cybernetics, vol. 47,

no. 9, pp. 2689 - 2702, 2017.

[71] M. Farina and P. Amato, “On the optimal solution definition for many-criteria

optimization problems,” in Annual Meeting of the North American Fuzzy Information

Processing Society NAFIPS, New Orleans, LA, 2002 pp.233-238

[72] E. Zitzler, L. Thiele, M. Laumanns and C. M. Fonseca, , “Performance assessment of

multiobjective optimizers: an analysis and review,” IEEE Transactions on

Evolutionary Computation, vol. 7, no. 2, pp. 117-132, 2003.

[73] A. L. Custódio, M. Emmerich and J. F. A. Madeira, “Recent Developments in

Derivative-Free Multiobjective Optimisation,” Computational Technology Reviews,

vol. 5, no. 1, pp. 1-31, 2012.

[74] R. D. White, “Organizational design and ethics: The effects of rigid hierarchy on moral

reasoning,” International Journal of Organization Theory and Behavior 2 (1999): 431-

456., vol. 2, no. 3, pp. 431-456, 1999.

[75] P. Thannimalai, M. M. Kadhum, C. J. Feng and S. Ramadass, “A glimpse of cross

training models and workforce scheduling optimization,” in IEEE Symposium on

Computers & Informatics, Langkawi, 2013 pp. 98-103

180

[76] G. Koole, A. Pot and J. Talim, “Routing Heuristics for Multi-Skill Call Centers,” in

Winter Simulation Conference, New Orleans, LA, 2003 pp. 1813-1816

[77] F. F. Easton, “Staffing, cross-training, and scheduling with cross-trained workers in

extended-hour service operations,” Robert H. Brethen Operations Management

Institute, 2011 pp. 1-33

[78] A. Lin and A. Ahmad, “SilTerra's experience in developing multi-skills technician,” in

IEEE International Conference on Semiconductor Electronics, Kuala Lumpur, 2004

pp. 508 - 511

[79] C. T. Haas, J. D. Borcherding, R. W. Glover, R. L. Tucker, A. Rodriguez and J. Gomar,

“Planning and scheduling a multiskilled workforce,” 1999, Center for Construction

Industry Studies pp. 1-32

[80] H. Hu, Zhengbing, R. Moh'd and A. Shboul, “The application of ant colony

optimization technique (acot) for employees selection and training,” in IEEE Database

Technology and Applications, Wuhan, 2009 pp. 497-502

[81] T. W. Manikas and J. T. Cain, “Genetic Algorithms vs. Simulated Annealing: A

Comparison of Approaches for Solving the Circuit Partitioning Problem,” Computer

Science and Engineering Research, Dallas, 1996 pp. 1-14

[82] T. Nair and K. Sooda, “Comparison of Genetic Algorithm and Simulated Annealing

Technique for Optimal Path Selection In Network Routing,” in National Conference

on VLSI and Networks, Chennai, 2009 pp. 36-41

[83] V. Poorjafari, W. L. Yue and N. Holyoak, “A Comparison between Genetic

Algorithms and Simulated Annealing for Minimizing Transfer Waiting Time in Transit

181

Systems,” IACSIT International Journal of Engineering and Technology, vol. 8, no. 3,

pp. 216-221, 2016.

[84] A. Sadegheih, “Scheduling problem using genetic algorithm, simulated annealing and

the effects of parameter values on GA performance,” Applied Mathematical

Modelling, vol. 30, no. 1, pp. 147-154, 2006.

[85] J. Wan, D. Zhang, Y. Sun, K. Lin, C. Zou and H. Cai, “A Novel Architecture for

Integrating Vehicular Cyber-Physical Systems and Mobile Cloud Computing,” Mobile

Networks and Applications, vol. 19, no. 2, p. 153–160, 2014.

[86] H. Hagras, “A Hierarchical Type-2 Fuzzy Logic Control Architecture for Autonomous

Mobile Robots,” IEEE Transactions on Fuzzy Systems, vol. 12, no. 4, pp. 524-539,

2004.

[87] H. Hagras and C. Wagner, “Towards the Widespread Use of Type-2 Fuzzy Logic

Systems in Real World Applications,” IEEE Computational Intellgence Magazine, vol.

7, no. 3, pp. 14-24, 2012.

[88] C. Lynch, H. Hagras and V. Callaghan, “Embedded interval type-2 neuro-fuzzy speed

controller for marine diesel engines,” in International Conference on Information

Processing and Management of Uncertainty in Knowledge-Based Systems, Paris, 2006

pp. 1446-1453

[89] C. Wagner and H. Hagras, “A Genetic Algorithm Based Architecture for Evolving

Type-2 Fuzzy Logic Controllers for Real World Autonomous Mobile Robots,” in IEEE

International Conference on Fuzzy Systems, London, 2007 pp. 1-6

182

[90] I. Loshchilov and T. Glasmachers, “Black Box Optimization Competition - BBComp,”

[Online]. Available: https://bbcomp.ini.rub.de/. [Accessed 12 February 2018].

[91] D. Lloyd, “Reported Road Casualties in Great Britain: Main Results 2014,”

Department of Transport, 25 June 2015. [Online]. Available:

www.gov.uk/government/uploads/system/uploads/attachment_data/file/463045/rrcgb

2014-01.pdf. [Accessed 12 February 2018].

[92] “School of Computer Science and Electronic Engineering: News,” University of

Essex, 18 May 2015. [Online]. Available:

https://www1.essex.ac.uk/news/event.aspx?e_id=7695. [Accessed 12 February 2018].

[93] “School of Computer Science and Electronic Engineering: News,” University of

Essex, 10 February 2017. [Online]. Available:

https://www1.essex.ac.uk/news/event.aspx?e_id=11882. [Accessed 12 February

2018].

[94] L. A. Zadeh, “Fuzzy Sets,” Information and Control, vol. 8, no. 3, pp. 338-353, 1965.

[95] C. Lynch, H. Hagras and V. Callaghan, “Embedded Type-2 FLC for the Speed Control

of Marine and Traction Diesel Engines,” in International Conference on Fuzzy

Systems, Reno NV, 2005 pp. 347-352

[96] J. Maiers and Y. S. Sherif, “Applications of fuzzy set theory,” IEEE Transactions on

Systems, Man, and Cybernetics, vol. 15, no. 1, pp. 175 - 189, 1985.

[97] C. C. Lee, “Fuzzy Logic in Control Systems: Fuzzy Logic Controller, Part II,” IEEE

Transactions on Systems, Man, and Cybernetics, vol. 20, no. 2, pp. 419 - 435, 1990.

183

[98] M. Antonelli, D. Bernardo, H. Hagras and F. Marcelloni , “Multiobjective

Evolutionary Optimization of Type-2 Fuzzy Rule-Based Systems for Financial Data

Classification,” IEEE Transactions on Fuzzy Systems, vol. 25, no. 2, pp. 249 - 264,

2017.

[99] G. J. Klir and M. J. Wierman, Uncertainty-Based Information, Heidelberg: Physica-

Verlag, 1998.

[100] J. M. Mendel, Uncertain Rule-based Fuzzy Logic Systems: Introduction and New

Directions, Prentice Hall, 2001.

[101] H. R. Berenji, “Treatment of Uncertainty in Artificial Intelligence,” in Machine

Intelligence and Autonomy for Aerospace Systems, Washington DC, AIAA, 1988, pp.

233-247.

[102] J. M. Mendel, “Fuzzy logic systems for engineering: a tutorial,” Proceedings of the

IEEE , vol. 83, no. 3, pp. 345-377, 1995.

[103] L. A. Zadeh, “The concept of a linguistic variable and its application to approximate

reasoning - I,” Information Sciences, vol. 8, no. 3, pp. 199-249, 1975.

[104] E. Cox, “Fuzzy Fundamentals,” IEEE Spectrum, vol. 29, no. 10, pp. 58-61, 1992.

[105] S. Horikawa, T. Furuhashi and Y. Uchikawa, “On fuzzy modeling using fuzzy neural

networks with the back-propagation algorithm,” IEEE transactions on Neural

Networks, vol. 3, no. 5, pp. 801-806, 1992.

[106] J. Jang, “Self-learning fuzzy controllers based on temporal backpropagation,” IEEE

Transactions on Neural Networks, vol. 3, no. 5, pp. 714-723, 1992.

184

[107] L.-X. Wang and J. M. Mendel, Generating fuzzy rules from numerical data, with

Applications, Signal and Image Processing Institute, University of Southern California,

Department of Electrical Engineering-Systems, 1991.

[108] L.-X. Wang and J. M. Mendel, “Back-propagation fuzzy system as nonlinear dynamic

system identifiers,” in IEEE International Conference on Fuzzy Systems, San Diego,

1992 pp. 1409-1418

[109] A. Kaufman and M. M. Gupta, Introduction to Fuzzy Arithmetic: Theory and

Applications, New York: Van Nostrand Reinhold, 1991.

[110] C. Fu, A. Sarabakha , E. Kayacan , C. Wagner, R. John and J. M. Garibaldi, “A

comparative study on the control of quadcopter UAVs by using singleton and non-

singleton fuzzy logic controllers,” in IEEE International Conference on Fuzzy Systems,

Vancouver, 2016 pp. 1023-1030

[111] L.-X. Wang, Adaptive fuzzy systems and control: design and stability analysis,

Englewood Cliffs, NJ: Prentice-Hall, 1994.

[112] N. Vadiee and M. Jamshidi, “A Tutorial on Fuzzy Rule-Based Expert Systems

(FRBES) Models 1: Mathmatical Foundations,” Journal of Intelligent and Fuzzy

Systems, vol. 1, no. 1, pp. 171-188, 1993.

[113] E. H. Mamdani, “Applications of Fuzzy Algorithms for Simple Dynamic Plant,”

Proceedings of the IEEE, vol. 121, no. 12, pp. 1585-1588, 1974.

[114] D. Driankov, H. Hellendoorn and M. Reinfrank, An Introduction to Fuzzy Control

(2nd ed.), Springer-Verlag, 1996.

185

[115] L.-X. Wang, A course in Fuzzy Systems and Control, Upper Saddle River, NJ:

Prentice-Hall, 1997.

[116] M. Sugeno and T. Yasukawa, “A Fuzzy-Logic-Based Approach to Qualitative

Modeling,” IEEE Transactions on Fuzzy Systems, vol. 1, no. 1, pp. 7-31, 1993.

[117] J. M. Mendel, “Type-2 Fuzzy Sets and Systems: An Overview,” IEEE Computational

Intelligence Magazine, vol. 2, no. 1, pp. 20-29, 2007.

[118] H. Hagras, “Type-2 FLCs: A New Generation of Fuzzy Controllers,” IEEE

Computational Intelligence Magazine, vol. 2, no. 1, pp. 30-43, 2007.

[119] J. M. Mendel, R. I. John and F. Liu, “Interval Type-2 Fuzzy Logic Systems Made

Simple,” IEEE Transactions on Fuzzy Systems, vol. 14, no. 6, pp. 808-821, 2006.

[120] N. N. Karnik and J. M. Mendel, “An introduction to type-2 fuzzy logic systems,” in

IEEE World Congress on Computational Intelligence, Anchorage, AK, 1998 pp. 915-

920

[121] D. Wu and W.-W. Tan, “Type-2 FLS modeling capability analysis,” in IEEE

International Conference on Fuzzy Systems, Reno, NV, 2005. pp. 241-247

[122] Q. Liang and J. M. Mendel, “Interval Type-2 Fuzzy Logic Systems: Theory and

Design,” IEEE Transactions on Fuzzy Systems, vol. 8, no. 5, pp. 535-549, 2000.

[123] D. Dubois and H. Prade, Fundementals of Fuzzy Sets, Springer Science & Business

Media, 2000.

186

[124] H. Hersh and A. Carmazza , “A Fuzzy Set Approach to Modifiers and Vagueness in

Natural Language,” Journal of Experimental Psychology: General, vol. 105, no. 3, pp.

254-276, 1976.

[125] J. L. Chameau and J. C. Santamarina , “Membership Functions Part I: Comparing

Method of Measurement,” International Journal of Approximate Reasoning , vol. 1,

no. 3, pp. 287-301, 1987.

[126] W. Pedrycz, A. Skowron and V. Kreinovich, Handbook of Granular Computing,

Wiley-Blackwell, 2008.

[127] L.-X. Wang and J. M. Mendel, “Generating Fuzzy Rules by Learning from Examples,”

IEEE Transactions on Systems, Man and Cybernetics, vol. 22, no. 6, pp. 1414-1427,

1992.

[128] E. E. Omizegba and G. E. Adebayo, “Optimizing Fuzzy Membership Functions Using

particle swarm algorithm,” in IEEE International Conference on Systems, Man, and

Cybernetics, San Antonio, 2009 pp. 3866-3870

[129] A. A. Esmin, A. R. Aoki and G. Lambert-Torres, “Particle swarm optimization for

fuzzy membership functions optimization,” in IEEE International Conference on

Systems, Man, and Cybernetics, Yasmine Hammamet, 2002 pp. 1-6

[130] E. Cox, “Adaptive Fuzzy Systems,” IEEE Spectrum, vol. 30, no. 2, pp. 27-31, 1993.

187

Appendix A

A.1 A Brief Introduction to Fuzzy Logic

Fuzzy Logic (FL) was first introduced by Lotfi Zadeh in his 1965 paper ‘Fuzzy Sets’ [94].

Zadeh describes the non-binary classification of elements to classes; that is, instead of

classifying if an element belongs to a class as either true or false, there is instead a degree of

membership to that class.

An example of these imprecisely defined classes might be height. If there are three classes,

short, average and tall how would people be classified? Certainly, there are many contextual

factors that should be considered in such a classification like gender and age, but there would

certainly be consensus that anyone over 1.9 metres (6 foot 3 inches) could only be classified as

tall, however someone who is 1.7 meters (5 foot 7 inches) is more difficult to classify and may

belong to both the average and tall classes, but with less certainty about both classifications.

This is when fuzziness is introduced as the degree of membership to each class may be less

than 1 (100% true) but greater than 0 (100% false).

Zadeh goes on to state that such imprecisely defined classes exist throughout the real world

and play an important part in human reasoning and decision-making. Particularly when it

comes to pattern recognition, communication and abstraction.

Since its conception, the field of fuzzy logic has expanded and has been applied to numerous

real-world applications. [95] [86] [96] [97] [98]

There are now sub-fields within the discipline of fuzzy logic including type-1 fuzzy logic

systems (using the originally proposed fuzzy logic methods) and type-2 fuzzy logic.

188

A.2 Uncertainty

Fuzzy logic has been designed to handle uncertainty in many forms. In general, uncertainty

comes in many guises and is independent of what kind of fuzzy logic, or any kind of

methodology, one uses to handle it. One of the best sources for general discussions about

uncertainty is by Professor Klir [99] [100].

Klir and his students have focused on uncertainty since the 1980s. Regarding the occurrence

of uncertainty, they state [100]:

When dealing with real-world problems, we can rarely avoid uncertainty. At the empirical

level, uncertainty is an inseparable companion of almost any measurement, resulting from a

combination of inevitable measurement errors and resolution limits of measuring instruments.

At the cognitive level, it emerges from the vagueness and ambiguity inherent in natural

language. At the social level, uncertainty has even strategic uses, and it is often created and

maintained by people for different purposes (privacy, secrecy, propriety) [99]

Regarding the causes of uncertainty, they state:

The uncertainty involved in any problem-solving situation is a result of some information

deficiency. Information (pertaining to the model within which the situation is conceptualised)

may be incomplete, fragmented, not fully reliable, vague, contradictory, or deficient in some

other way. In general, these various information deficiencies may result in different types of

uncertainty [99].

Regarding the nature of uncertainty, they state:

Three types of uncertainty are now recognised…fuzziness (or vagueness), which results from

imprecise boundaries of fuzzy sets; nonspecificity (or imprecision), which is concerned with

189

sizes (cardinalities) of relevant sets of alternatives; and strife (or discord) which expresses

conflict among the various sets of alternatives [99].

The types of uncertainty stated above are divided into two major classes, fuzziness and

ambiguity, where ambiguity (one to many relationships) include non-specificity and strife.

Another source for some general discussion of uncertainty is Berenji [101]. Who state, in

agreement with Klir, that “uncertainty stems from the lack of complete information”. He also

states that “uncertainty may also reflect incompleteness, imprecision, missing information, or

randomness in data and a process”.

A.3 Type-1 Fuzzy Logic Systems

A fuzzy logic system (FLS) can be defined as a nonlinear mapping of an input data (feature)

vector into a scalar output (the vector output case decomposes into a collection of independent

multi-input/single-output systems). The richness of FL is that there are enormous numbers of

possibilities that lead to lots of different mappings. This richness does require a careful

understanding of FL and the elements that comprise FLS [102].

A fuzzy logic system has multiple components to it, the fuzzifier, the inference engine, the rule

base and the defuzzifier. Figure A.1 illustrates these components and shows the process of

taking in crisp input values and giving out crisp output values. Crisp values are real numbers

and the uncertainty associated with the value is not represented. However real values are

necessary for control and decision-making systems. For example, height in metres, the

temperature in Celsius and speed in km/h are all examples of crisp values needed as either

inputs or outputs to the fuzzy logic system.

190

Figure A.1: Type-1 Fuzzy Logic System [102]

A.3.1 Linguistic Variables

Zadeh describes linguistic variables as “variables whose values are not numbers but words or

sentences in natural or artificial language”. This is because in general linguistic

characterisations are less specific than numerical ones [103].

This means that numerical values can be classified under certain linguistic variables and still

retain its contextual meaning. Given that fuzzy logic allows classification [0, 1] rather than true

or false, a numerical value may fall into two or more linguistic labels, but to varying degrees

of membership.

For fuzzy logic systems, linguistic variables are used to name the classes attributed to any input

within the system. In turn, these linguistic variables can be classified or grouped, into sets,

where the set also has a label. Let u denote the name of the set (e.g. temperature). Numerical

values of a linguistic variable u are denoted x, where x ∈ U. Sometimes x and u are used

interchangeably, especially when a linguistic variable is a letter, as in sometimes the case in

engineering applications. A linguistic variable is usually decomposed into a set of terms, T(u),

191

which cover its universe of discourse [102]. The universe of discourse is defined as the

complete range of values to be expressed within the discussion

We can use an example to illustrate: Let temperature (u) be interpreted as a linguistic variable.

It can be decomposed into the following terms: T(temperature) = {cold, cool, okay, warm, hot}

each term in T(temperature) is characterised by a set in the universe of discourse X = [0°C,

50°C]. We might interpret cold as a temperature below 10°C, cool to a temperature close to

15°C, okay as a temperature close to 23°C, warm as a temperature close to 28°C and hot as a

temperature above 32°C [104].

Figure A.2 Membership Functions for T(temperature)

These terms can be characterised as fuzzy sets whose membership functions are shown in

Figure A.2. Measured values of temperature (x) lie along the temperature axis. In this example,

a vertical line from any measured value intersects at most, two linguistic classes, also known

as membership functions (see Membership Functions). For example, let x = 18°C and resides

in the linguistic classes cool and okay, but to different degrees of similarity [100].

192

A.3.2 Membership Functions

In fuzzy logic systems membership functions (MFs) are associated with the linguistic labels

and help to define the range of values that can be associated with that linguistic label and the

degree in which it should be associated. Membership functions has the mathematical notation

𝜇𝐹(𝑥) [100].

The most common geometric shapes used for membership functions are triangular, trapezoidal,

Gaussian and singleton, shown in Figure A.3. Membership functions are sometimes chosen by

the user arbitrarily, based on the user's experience; hence, the membership functions for two

users could be quite different depending on their experiences, perspectives, cultures, etc.

Membership functions can be designed using optimisation procedures (for example, [105]

[106] [107] and [108].

One common method for designing the membership functions for a fuzzy set is to have an

expert design them, where the term expert is loosely used here. The expert could be the person

developing the system. Other methods of designing fuzzy systems can be found in Section 3.4.

Figure A.3: Types of Membership Function a) Triangular

b) Trapezoidal c) Gaussian d) Singleton [100]

193

The definition of the triangular membership function is [100]

𝑥 − 𝑎

𝑏 − 𝑎
 𝑎 ≤ 𝑥 ≤ 𝑏

𝑐−𝑥

𝑐−𝑏
 𝑏 < 𝑥 ≤ 𝑐 (A-1)

0 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

The definition of the trapezoid membership function is [100]

𝑥 − 𝑎

𝑏 − 𝑎
 𝑎 ≤ 𝑥 ≤ 𝑏

1 𝑏 < 𝑥 ≤ 𝑐 (A-2)

𝑑 − 𝑥

𝑑 − 𝑐
 𝑐 < 𝑥 ≤ 𝑑

0 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

The definition of the Gaussian membership function is [100]

 𝑒(−0.5((𝑥 − 𝑎)/𝜃)2) (A-3)

The definition of the singleton membership function is [100]

𝜇𝐹(𝑥) = 𝑚 (A-4)

Greater resolution is achieved by using more membership functions at the price of greater

computational complexity. Membership functions must overlap. This expresses the fact that

“The glass can be partially full and partially empty at the same time." In this way, we are able

to distribute our decisions over more than one input class, which helps to make FL systems

robust. Although membership functions do not have to be scaled between zero and unity, most

people do this so that variables are normalised [102].

194

A.3.3 Fuzzy Set Theoretic Operations

Now that we have defined fuzzy sets, what can we do with them? Let us describe the set

operations of union, intersection and complement [100].

Let A and B be two subsets of X. The union of A and B, denoted by 𝐴 ∪ 𝐵, contains all the

elements in either A or B, i.e [100].

𝜇𝐴∪𝐵(𝑥) = {
1 𝑖𝑓 𝑥 ∈ 𝐴 𝑜𝑟 𝑥 ∈ 𝐵

 0 𝑖𝑓 𝑥 ∉ 𝐴 𝑎𝑛𝑑 𝑥 ∉ 𝐵
 (A-5)

The intersection of A and B denoted 𝐴 ∩ 𝐵, contains all the elements that are simultaneously

in A and B, i.e [100].

𝜇𝐴∩𝐵(𝑥) = {
 1 𝑖𝑓 𝑥 ∈ 𝐴 𝑎𝑛𝑑 𝑥 ∈ 𝐵

0 𝑖𝑓 𝑥 ∉ 𝐴 𝑜𝑟 𝑥 ∉ 𝐵
 (A-6)

Let �̅� denote the complement of A; it contains all the elements not in A, i.e. [100],

𝜇�̅�(𝑥) = {
 1 𝑖𝑓 𝑥 ∉ 𝐴
0 𝑖𝑓 𝑥 ∈ 𝐴

 (A-7)

From these facts, it is easy to show that [100]:

𝐴 ∪ 𝐵 ⇒ 𝜇𝐴∪𝐵(𝑥) = max [𝜇𝐴(𝑥), 𝜇𝐵(𝑥)] (A-8)

𝐴 ∩ 𝐵 ⇒ 𝜇𝐴∩𝐵(𝑥) = min[𝜇𝐴(𝑥), 𝜇𝐵(𝑥)] (A-9)

𝜇�̅�(𝑥) = 1 − 𝜇𝐴(𝑥) (A-10)

In fuzzy logic, union, intersection and complement are defined in terms of their membership

functions. Let fuzzy sets A and B be described by their membership functions 𝜇𝐴(𝑥) and 𝜇𝐵(𝑥).

One definition of fuzzy union leads to the membership function [100]:

𝜇𝐴∪𝐵(𝑥) = max [𝜇𝐴(𝑥), 𝜇𝐵(𝑥)] (A-11)

195

Moreover, one definition of the fuzzy intersection leads to the membership function [100]:

𝜇𝐴∩𝐵(𝑥) = min[𝜇𝐴(𝑥), 𝜇𝐵(𝑥)] (A-12)

Additionally, the membership function of fuzzy compliment is [100]:

𝜇�̅�(𝑥) = 1 − 𝜇𝐴(𝑥) (A-13)

Although equations (A-8)-(A-10) and (A-11)-(A13) look exactly alike, we must remember

that:

1. Sets A and B in (3-8)-(3-10) are fuzzy, whereas in (3-11)-(313) they are crisp.

2. Fuzzy sets can only be characterised by their membership functions, whereas crisp

users can be characterised by either their membership functions, a description of

their elements, or a listing of their elements. [100]

A.3.4 Fuzzifier

The fuzzier maps a crisp point x = col(𝑥1, … , 𝑥𝑛) ∈ 𝑈 into a fuzzy set A* in U. The most

widely used fuzzier is the singleton fuzzier which is nothing more than a fuzzy singleton [102].

Singleton fuzzification may not always be adequate, especially when data is corrupted by

measurement noise. Nonsingleton fuzzification provides a means for handling such

uncertainties totally within the framework of FLS's [102].

In non-singleton fuzzification, measurement 𝑥𝑖 = 𝑥𝑖
′ is mapped into a fuzzy number [109]. i.e.

a membership function is associated with it. More specifically:

A non-singleton fuzzifier is one for which 𝜇𝑥𝑖
(𝑥𝑖

′) = 1 (𝑖 = 1, … , 𝑝)𝑎𝑛𝑑 𝜇𝑥𝑖
(𝑥𝑖) decrases from

unity as 𝑥𝑖 moves away from 𝑥𝑖
′.

Conceptually, the non-singleton fuzzifier implies that the given input value 𝑥𝑖
′ is the most likely

value to be the correct one from all the values in its immediate neighbourhood; however,

196

because the input is corrupted by noise, neighbouring points are also likely to be the correct

value, but to a lesser degree. Figure A.4 illustrates singleton and non-singleton fuzzification.

Figure A.4 a) Singleton Fuzzification b) Non-singleton Fuzzification [110]

A.3.5 Rules

Rules are at the heart of any fuzzy logic system. Rules can be provided by experts or can be

extracted from numerical data. In either case, the rules that we are interested in can be expressed

as a collection of IF-THEN statements. The IF-part of the rule is its antecedent, and the THEN-

part of a rule is its consequent [100]

Consider a fuzzy logic system having 𝑝 inputs 𝑥1 ∈ 𝑋1, … , 𝑥𝑝 ∈ 𝑋𝑝 and one output 𝑦 ∈ 𝑌. Let

us suppose it has 𝑀 rules, where the 𝑙th rule has the form [100]:

𝑅1: 𝐼𝐹 𝑥1 𝑖𝑠 𝐹1
𝑙 𝑎𝑛𝑑 … 𝑎𝑛𝑑 𝑥𝑝 𝑖𝑠 𝐹𝑝

𝑙 , 𝑇𝐻𝐸𝑁 𝑦 𝑖𝑠 𝐺𝑙 𝑙 = 1, … , 𝑀 (A-14)

This rule represents a fuzzy relation between the input space 𝑋1 × … × 𝑋𝑝 and the output

space, Y of the fuzzy logic system [100].

Multi-antecedent multi-consequent rules can be expressed as a group of multi-input single-

output rules. Six such rules are summarised next, with the first five being adapted from [111].

Of course, in practical applications, it is possible to have rules that combine non-obvious IF-

THEN rules in all sorts of interesting ways.

197

A.3.5.1 Incomplete IF Rules

Suppose we have created a rule base where there are 𝑝 inputs, e.g [100].

𝐼𝐹 𝑥1𝑖𝑠 𝐹1𝑎𝑛𝑑 … 𝑎𝑛𝑑 𝑥𝑚 𝑖𝑠 𝐹𝑚, 𝑇𝐻𝐸𝑁 𝑦 𝑖𝑠 𝐺 (A-15)

Such rules are called incomplete IF rules and apply regardless of 𝑥𝑚+1, … , 𝑥𝑝. They can be put

into the format of the complete IF rule by treating the unnamed antecedents (e.g., 𝑥𝑚+1, … , 𝑥𝑝)

as elements of the fuzzy set IN-COMPLETE (IN for short) where, by definition 𝜇𝐼𝑁 (𝑥)=1 for

all 𝑥 ∈ 𝑋, i.e [100].

(𝐼𝐹 𝑥1𝑖𝑠 𝐹1𝑎𝑛𝑑 … 𝑎𝑛𝑑 𝑥𝑚 𝑖𝑓 𝐹𝑚, 𝑇𝐻𝐸𝑁 𝑦 𝑖𝑠 𝐺) (A-16)

⇔ (𝐼𝐹 𝑥1𝑖𝑠 𝐹1𝑎𝑛𝑑 … 𝑎𝑛𝑑 𝑥𝑚 𝑖𝑓 𝐹𝑚 𝑎𝑛𝑑 𝑥𝑚+1 𝑖𝑠 𝐼𝑁 … 𝑎𝑛𝑑 𝑥𝑝 𝑖𝑠 𝐼𝑁, 𝑇𝐻𝐸𝑁 𝑦 𝑖𝑠 𝐺)

A.3.5.2 Mixed Rules

Not all rules use the “and” connective; some use the “or” connective, and some use a mixture

of both. The latter rules are called mixed rules. These rules can be decomposed into a collection

of equivalent rules, using standard techniques from crisp logic. Suppose, for example; we have

the rule [100]:

𝐼𝐹(𝑥1𝑖𝑠 𝐹1 𝑎𝑛𝑑 … 𝑎𝑛𝑑 𝑥𝑚 𝑖𝑠 𝐹𝑚)𝑜𝑟(𝑥𝑚+1𝑖𝑠 𝐹𝑚+1 𝑎𝑛𝑑 … 𝑎𝑛𝑑 𝑥𝑝 𝑖𝑠 𝐹𝑝) THEN y is G (A-17)

This rule can be expressed as the following two rules [100]:

𝑅1: 𝐼𝐹𝑥1𝑖𝑠 𝐹1 𝑎𝑛𝑑 … 𝑎𝑛𝑑 𝑥𝑚 𝑖𝑠 𝐹𝑚 𝑇𝐻𝐸𝑁 𝑦 𝑖𝑠 𝐺 (A-18)

𝑅2: 𝑥𝑚+1𝑖𝑠 𝐹𝑚+1 𝑎𝑛𝑑 … 𝑎𝑛𝑑 … 𝑥𝑝 𝑖𝑠 𝐹𝑝 𝑇𝐻𝐸𝑁 𝑦 𝑖𝑠 𝐺

Observe that both of these rules are Incomplete IF rules. See [112] for a related discussion on

nesting of rules.

198

A.3.5.3 Fuzzy Statement Rules

Some rules do not appear to have antecedents; they are statements involving fuzzy sets. Hence,

they are called fuzzy statement rules. For example, 𝑦 𝑖𝑠 𝐺 is such a rule. Clearly this is an

extreme case of an incomplete IF rule, and can therefore be formulated as [100]:

𝐼𝐹 𝑥1𝑖𝑠 𝐼𝑁 𝑎𝑛𝑑 … 𝑎𝑛𝑑 𝑥𝑝 𝑖𝑠 𝐼𝑁, 𝑇𝐻𝐸𝑁 𝑦 𝑖𝑠 𝐺 (A-19)

A.3.5.4 Comparative Rules

Some rules are comparative, e.g. 𝑇ℎ𝑒 𝑆𝑚𝑎𝑙𝑙𝑒𝑟 𝑡ℎ𝑒 𝑥 𝑡ℎ𝑒 𝑏𝑖𝑔𝑔𝑒𝑟 𝑡ℎ𝑒 𝑦. Such rules must first

be reformulated as IF-THEN rules. This rule should then be expressed as

𝐼𝐹 𝑥 𝑖𝑠 𝑆, 𝑇𝐻𝐸𝑁 𝑦 𝑖𝑠 𝐵. Where S is a fuzzy set representing smaller and B is a fuzzy set

representing bigger [100].

A.3.5.5 Unless Rules

Rules are sometimes stated using the connective “unless”; such rules are called unless rules

and can be put into the required format by using logical operators. For example, the rule [100]:

𝑦 𝑖𝑠 𝐺 𝑢𝑛𝑙𝑒𝑠𝑠 𝑥1𝑖𝑠 𝐹1 𝑎𝑛𝑑 … 𝑎𝑛𝑑 𝑥𝑝𝑖𝑠 𝐹𝑝 (A-20)

can be expressed as [100]:

𝐼𝐹 𝑛𝑜𝑡 (𝑥1𝑖𝑠 𝐹1𝑎𝑛𝑑 … 𝑎𝑛𝑑 𝑥𝑝𝑖𝑠 𝐹𝑝), 𝑇𝐻𝐸𝑁 𝑦 𝑖𝑠 𝐺 (A-21)

A.3.5.6 Quantifier Rules

Rules sometimes include the quantifiers “some” or “all”; such rules are called quantifier rules.

Because of the duality between propositional logic and set theory, rules with the quantifier

“some” means that we have to apply the union operator to the antecedents or consequents to

which the “some” applies, whereas rules with the quantifier “all” means we have to apply the

intersection operator to the antecedents or consequents to which the “all” applies [100].

199

A.3.6 Inference Engine

In the fuzzy inference engine (which is labelled fuzzy inference engine in Figure A.1), fuzzy

logic principles are used to combine fuzzy IF-THEN rules from the fuzzy rule base into a

mapping from fuzzy input sets in 𝑋1 × … × 𝑋𝑝 to fuzzy output sets in Y. Each rule is interpreted

as a fuzzy implication. With reference to Figure A.1 [102]. Mamdani implications are the most

commonly used in engineering applications. We treat the fuzzy inference engine as a system,

one that maps fuzzy set into fuzzy sets by means of 𝜇𝐴→𝐵(𝑥, 𝑦) [100]

Mamdani [113] simplified the computations associated with calculating weights associated

with each rule. The weights of the rules are more commonly referred to as the firing strengths

of the rules.

There are three widely used implications to calculate firing strength. If all connectives in a rule

are “And” then the minimum membership degree can be used (A-22) or the product of the

membership degrees (A-23) (TNORMS) [100]:

𝜇𝐴→𝐵(𝑥, 𝑦) ≡ min[𝜇𝐴(𝑥), 𝜇𝐵(𝑦)] (A-22)

𝜇𝐴→𝐵(𝑥, 𝑦) ≡ 𝜇𝐴(𝑥) 𝜇𝐵(𝑦) (A-23)

If all the rule connectives are “Or” then the maximum membership degree can be used (A-22)

(TCONORMS) [100]:

𝜇𝐴→𝐵(𝑥, 𝑦) ≡ max[𝜇𝐴(𝑥), 𝜇𝐵(𝑦)] (A-24)

A.3.7 Defuzzifier

Defuzzification produces a crisp output for FLS from the fuzzy set that is the output of the

inference engine. Because we are interested in practical applications of FL, one criterion for

the choice of a defuzzifier is computational simplicity. The case for computational simplicity

is strengthened because we plan to use FLSs within population-based optimisation algorithms.

200

In this type of application, the calls to the FLS will be frequent and demanding. [100] Some

defuzzification methods are as follows:

A.3.7.1 Centroid Defuzzifier

The centroid defuzzifier combines the output fuzzy sets using union (i.e. a t-cornorm, e.g.

maximum) and then find the centroid of this set. If the composite fuzzy output set is B is [100]:

𝐵 = ∪𝑙=1
𝑀 𝐵𝑙 (A-25)

With associated membership function 𝜇𝐵(𝑦), and 𝜇𝐵𝑙(𝑦) is the membership function of the lth

rule, then the centroid defuzzification is [100]:

𝑦𝑐(𝑥) =
∑ 𝑦𝑖𝜇𝐵(𝑦𝑖)𝑁

𝑖=1

∑ 𝜇𝐵(𝑦𝑖)𝑁
𝑖=1

 (A-26)

Unfortunately, the centroid defuzzification is usually difficult to compute because of first

having to compute the union (in A-25). However, in practice we can get around this by pre-

computing the centroids of the output sets, assuming they are fixed for the FLS. This would

negate the performance impact of this defuzzification method [100].

A.3.7.2 Height Defuzzifier

The height defuzzifier [114] , also called the centre average defuzzifier [111] [115], replaces

each rule output fuzzy set with a singleton at the point of having maximum membership in the

output set, then calculating the centroid of the type-1 set comprised of these singletons. The

output of a height defuzzifier is given as [100]:

𝑦ℎ(𝑥) =
∑ �̅�𝑙𝜇

𝐵𝑙(�̅�𝑙)𝑀
𝑙=1

∑ 𝜇
𝐵𝑙(�̅�𝑙)𝑀

𝑙=1

 (A-27)

(A-27) is very easy to use because the centres of gravity of commonly used membership

functions are known ahead of time. For example, regardless of whether minimum or product

inference are used, the centre of gravity of 𝐵𝑙for:

201

1. A symmetric triangular consequent membership function is at the apex of the triangle.

2. A Gaussian consequent membership function is at the centre value of the Gaussian

function.

3. A symmetric trapezoidal membership function is at the midpoint of its support.

A.3.7.3 Modified Height Defuzzifier

The modified height defuzzifier, also called the modified centre average defuzzifier [102]

[111], is very similar to the height defuzzifier, the only difference being that the modified

height defuzzifier scales each 𝜇𝐵𝑙(�̅�𝑙) by the inverse of the square of the spread (or some

measure of the spread) of the lth consequent set. Its output can be expressed as [100]:

𝑦𝑚ℎ(𝑥) =
∑ �̅�𝑙𝜇

𝐵𝑙(�̅�𝑙)𝑀
𝑙=1 𝛿𝑙2

⁄

∑ 𝜇
𝐵𝑙(�̅�𝑙)𝑀

𝑙=1 𝛿𝑙2
⁄

 (A-28)

A.3.7.4 Centre-Of-Sets Defuzzifier

In centre-of-sets defuzzification [116], we replace each rule consequent set by a singleton

situated at its centroid, whose amplitude equals the firing level, and then the centroid of the

type-1 set comprised of these singletons. The expression the output is given as [100] :

𝑦𝑐𝑜𝑠(𝑥) =
∑ 𝑐𝑙𝑇𝑖=1

𝑝𝑀
𝑙=1 𝜇

𝐹𝑖
𝑙(𝑥𝑖)

∑ 𝑇𝑖=1
𝑝𝑀

𝑙=1 𝜇
𝐹𝑖

𝑙(𝑥𝑖)
 (A-29)

A.4 Type-2 Fuzzy Logic Systems

Type-1 fuzzy logic systems have limited capabilities to directly handle data uncertainties,

where handle means to model and minimise the effect of. As discussed, uncertainty comes in

many guises and is independent of the kind of fuzzy system or methodology one uses to handle

it. Two important aspects of uncertainties are linguistic and random. The former is associated

with words, and the fact that words can mean different things to different people, and the latter

202

is associated with unpredictability. Probability theory is used to handle random uncertainty,

and fuzzy systems are used to handle linguistic uncertainty, and sometimes FLSs can also be

used to handle both kinds of uncertainty, because a fuzzy system may use noisy measurements

or operate under random disturbances [117]

Adding uncertainty to the type-1 membership functions means that the membership grade is

no longer a crisp number, it is its own set in the range [0, 1]. Calculating all 𝑥 ∈ 𝑋 creates a

three-dimensional membership function, a type-2 membership function that characterises a

type-2 fuzzy set.

A.4.1 Interval Type-2 Fuzzy Logic Systems

The interval type-2 FLS uses interval type-2 fuzzy sets to represent the inputs and/or outputs.

The interval type-2 FLS is depicted in Figure A.5 and it consists of a Fuzzifier, Inference

Engine, Rule Base, Type-reducer and Defuzzifier.

Only interval type-2 FLS will be implemented in this thesis.

Figure A.5 Type-2 Fuzzy Logic System [100]

203

The interval type-2 FLS works as follows: the crisp inputs are first fuzzified into input type-2

fuzzy sets; singleton fuzzification is usually used in interval type-2 FLC applications due to its

simplicity and suitability for embedded processors and real-time applications. The input type-

2 fuzzy sets then activate the inference engine and the rule base to produce output type-2 fuzzy

sets. The type-2 FLC rules will remain the same as in type-1 FLC, but the antecedents and/or

the consequents will be represented by interval type-2 fuzzy sets. The inference engine

combines the fired rules and gives a mapping from input type-2 fuzzy sets to output type-2

fuzzy sets. The type-2 fuzzy outputs of the inference engine are then processed by the type-

reducer, which combines the output sets and performs a centroid calculation that leads to type-

1 fuzzy sets called the type reduced sets. After the type-reduction process, the type-reduced

sets (or approximate type-reduced sets) are then defuzzified (by taking the average of the type

reduced/approximated type-reduced set) to obtain crisp outputs [118].

A.4.2 Interval Type-2 Fuzzy Sets

Consider the transition from ordinary sets to fuzzy sets. When we cannot determine the

membership of an element in a set as 0 or 1, we use fuzzy sets of type-1. Similarly, When the

circumstances are so fuzzy, we have trouble determining the membership grade even as a crisp

number [0,1] we use fuzzy sets of type-2, a concept that was first introduced by Zadeh in 1975

[103].

A type-2 set can also be described as the blurring of a type-1. Figure A.6 a shows a type-1

membership function, we can ‘blur’ in by shifting the points on the triangle to the left or right,

but not necessarily by the same amount, this would generate Figure A.6 b. This means that at

a specific value of 𝑥 say 𝑥′, there no longer is a single value for the membership function;

instead, the membership function takes on values wherever the vertical line intersects the blurs.

204

Calculating all x ∈ X creates a three-dimensional membership function, a type-2 membership

function that characterises a type-2 fuzzy set [100].

Figure A.6 a) Type-1 Membership Function b) Blurred Type-1 Membership Function c)

Footprint of Uncertainty [100]

A type-2 fuzzy set denoted �̃�, is chracterised by a type-2 membership function 𝜇�̃�(𝑥, 𝑢) where

x ∈ X and 𝑢 ∈ 𝐽𝑥 ⊆ [0,1], i.e [100].

�̃� = {(𝑥, 𝑢), 𝜇�̃�(𝑥, 𝑢)} ∣ ∀𝑥 ∈ 𝑋, ∀𝑢 ∈ 𝐽𝑥 ⊆ [0,1] (A-30)

In which 𝑂 ≤ 𝜇�̃�(𝑥, 𝑢) ≤ 1. �̃� can also be expressed as [100]

�̃� = ∫ ∫ 𝜇�̃�(𝑥, 𝑢)/(𝑥, 𝑢) 𝐽𝑥 ⊆ [0,1]
𝑢∈ 𝐽𝑥𝑥∈𝑋

 (A-31)

Where ∫∫ denotes union over all admissible x and u [100].

For the discrete universe of discourse, ∫ is replaced by ∑.

In equation (A-30) the first restriction that ∀𝑢 ∈ 𝐽𝑥 ⊆ [0,1] is consistent with the type-1

constraint ≤ 𝜇𝐴(𝑥) ≤ 1 , i.e. when uncertainties disappear, a type-2 membership function

must reduce to a type-1 membership function. The second restriction that 𝑂 ≤ 𝜇�̃�(𝑥, 𝑢) ≤ 1

is consistent with the fact that the amplitudes of a membership function, should lie, or be equal

to 0 and 1. When all 𝜇�̃�(𝑥, 𝑢) = 1 then �̃� is an interval type-2 fuzzy set [119].

205

It has been argued that using interval type-2 fuzzy sets to represent the inputs and/or outputs

of FLS has many advantages when compared to the type-1 fuzzy sets; some of these advantages

are as follows [118]:

 As the type-2 fuzzy sets membership functions are fuzzy and contain a footprint of

uncertainty, then they can model and handle the linguistic and numerical uncertainties

associated with the inputs and outputs of the FLS. Therefore, FLSs that are based on

type-2 fuzzy sets will have the potential to produce a better performance than the type-

1 FLCs when dealing with uncertainties [86].

 Using type-2 fuzzy sets to represent the FLS inputs and outputs will result in the

reduction of the FLS rule base when compared to using type-1 fuzzy sets, as the

uncertainty represented in the footprint of uncertainty in type-2 fuzzy sets lets us cover

the same range as type-1 fuzzy sets with a smaller number of labels and the rule

reduction will be greater when the number of the FLS inputs increases [100].

 Each input and output will be represented by a large number of type-1 fuzzy sets, which

are embedded in the type-2 fuzzy sets [100] [119]. The use of such a large number of

type-1 fuzzy sets to describe the input and output variables allows for a detailed

description of the analytical control surface as the addition of the extra levels of

classification give a much smoother control surface and response. In addition,

according to Karnik and Mendel [120], the type-2 FLS can be thought of as a collection

of many different embedded type-1 FLSs.

 It has been shown in [121] that the extra degrees of freedom provided by the footprint

of uncertainty enables a type-2 FLS to produce outputs that cannot be achieved by type-

1 FLSs with the same number of membership functions. It has been shown that a type-

2 fuzzy set may give rise to an equivalent type-1 membership grade that is negative or

206

larger than unity. Thus, a type-2 FLS can model more complex input-output

relationships than its type-1 counterpart and, thus, can give better control response.

A.4.3 Type-Reduction

Many defuzzification methods have been described in section 3.2.7; they involve computing

the centroid of a type-1 fuzzy set. An important calculation for type-2 fuzzy logic systems is

type-reduction. Type-Reduction represents a mapping of a type-2 fuzzy set into a type-1 fuzzy

set [100].

There exist many types of type-reduction, such as centroid, centre-of-sets, height, modified

height. However, to illustrate the concept, and the type-reduction method used in later chapters,

Centre-of-Sets type reduction is described [122]. Regardless of which type-reduction method

is used, the type-reduced set is also an interval set and has the following structure [100]:

𝑌𝑇𝑅 = [𝑦𝑙 , 𝑦𝑟] (A-32)

Center-of Sets type reduction,𝑌𝑐𝑜𝑠, which can be expressed as [100]:

𝑌cos(𝑥) = [𝑦𝑙 , 𝑦𝑟] = ∫
𝑦1∈[𝑦𝑙,𝑦𝑟] … ∫

𝑦𝑚∈[𝑦𝑙
𝑚,𝑦𝑟

𝑚]
∫

𝑓1∈[𝑓1,𝑓
1

]
… ∫

𝑓1∈[𝑓𝑀,𝑓
𝑀

]
1

∑ 𝑓𝑖𝑦𝑖𝑀
𝑖=1

∑ 𝑓𝑖𝑀
𝑖=1

⁄ (A-33)

Where: 𝑌cos(𝑥) is an interval set determined by its two end-points, 𝑦𝑙 and 𝑦𝑟; and [𝑦𝑙
𝑖, 𝑦𝑟

𝑖]

corresponds to the centroid of the type-2 interval consequence set �̃�𝑖, which can be obtained

from [100]:

𝐶�̃�𝑖 = ∫
𝜃1∈𝐽𝑦1

… ∫
𝜃1∈ 𝐽𝑦𝑁

1
∑ 𝑦𝑖𝜃𝑖

𝑁
𝑖=1

∑ 𝜃𝑖
𝑁
𝑖=1

⁄ = [𝑦𝑙
𝑖 , 𝑦𝑟

𝑖] (A-34)

Note that [𝑦𝑙
𝑖, 𝑦𝑟

𝑖] (i = 1,… M) must be computed before the computation of 𝑌cos(𝑥) [100].

207

A.4.5 Deffuzzification

As 𝑌cos is an interval set, we defuzzify it using the average of 𝑦𝑙 and 𝑦𝑟; hence the defuzzified

output of an interval singleton type-2 fuzzy logic system is [100]:

𝑌(𝑥) = 𝑓s2(𝑥) =
𝑦𝑙+ 𝑦𝑟

2
 (A-35)

A.5 Design Methods for Fuzzy Logic Systems

As FLSs are expert systems (a system that uses expert knowledge to make decisions) one of

the more difficult tasks when designing FLSs is the injection of this knowledge into the fuzzy

sets and rules. To assist with this task there are a number of methods used to help produce the

most effective systems.

A.5.1 Surveys, Polls and Questionnaires

There are six methods of elicitation to extract the required expert knowledge from relevant

experts or groups of individuals [123] (if one is building a fuzzy system using the ‘Wisdom of

Crowds’ principle).

 Polling: Do you agree that John is ‘Tall’ (Yes/No)

 Direct Rating (Point Estimation): Classify colour A according to its darkness, classify

John according to his tallness, in general the question is; “How F is a?”

 Reverse Rating: Identify the person who is tall to the degree 0.6? In general, identify

a who is F to the degree 𝜇𝐹(𝑎)

 Interval Estimation (Set Value Statistics): Give an interval in which you think colour

A lies, give an interval in which you think the height of John lies.

 Membership Function Exemplification: What is the degree of belonging of the

colour A to the (fuzzy) set of dark colours? What is the degree of belonging of John to

the set of tall people? In general, to what degree a is F?

208

 Pairwise Comparison: Which colour, A or B, is darker (and by how much?).

A.5.1.1 Polling

In polling, one subscribes to the point of view that fuzziness arises from interpersonal

disagreements. The question “do you agree that a is F?” is asked to different individuals, the

answers are polled, and the average is taken to construct the fuzzy sets. Polling is one of the

natural ways of eliciting membership functions for the likelihood interpretation [123].

A.5.1.2 Direct Rating

Direct rating seems to be the most straightforward way to come up with a membership function;

this approach subscribes to the point of view that fuzziness arises from individual subjective

vagueness. The subject is required to classify a with respect to F over and over again in time.

The experiment has to be carefully designed so that it will be harder for the subject to remember

past answers [123].

A.5.1.3 Reverse Rating

In this method, the subject is given a membership degree and then asked to identify the object

for which the degree corresponds to the fuzzy term in question. This method can be used for

individuals repeating the same question for the same membership function as well as for a

group of individuals.

Once the subject’s (or subjects’) responses are recorded the conditional distribution can be

taken to be normally distributed, and the unknown parameters (mean and variance) can be

estimated as usual. This method also requires evaluations to be made on at least interval scales

[123].

209

A.5.1.4 Interval Estimation

Interval estimation subscribes to the random-set view of the membership function. The subject

is asked to give an interval that describes a. Let Ii be the set-valued observation (the interval)

and 𝓂i the frequency with which Ii is observed. The R = (Ii , 𝓂i) defines a random set. Notice

that this method is more appropriate to situations where there is a clear linear ordering in the

measurement of the fuzzy concept, like in tallness, heat, time, etc [123].

A.5.1.5 Membership Function Exemplification

Regarding membership function exemplification, Hersh & Carmazza [124]performed a test for

the direct elicitation of the membership function. In the test, they ordered 12 squares in

ascending order and indicated each square with an ordinal number. They asked the subjects

“Write the number(s) which is appropriate for ‘large’, ‘very large’, ‘small’ etc. The results are

at variance with direct rating and polling most likely because there is no repetition in this

elicitation method to normalise the effects of error or ‘noise’ [123].

The use of computer graphics to give an example membership function to be modified by the

subject greatly enhanced the procedure as is usually witnessed in commercial applications of

“fuzzy expert system shells” [123].

A.5.1.6 Pairwise Comparison

Chameau and Santamarina [125] use pairwise comparison technique and report it to be as

robust as polling and direct rating. They require the subjects to provide pairwise comparisons

and the strength of preference. This yields a non-symmetrical full matrix of relative weights.

The membership function is found by taking the components of the eigenvector (a vector which

when operated on by a given operator gives a scalar multiple of itself) corresponding to the

maximum eigenvalue (any number such that a given matrix minus that number times the

210

identity matrix has zero determinant). The values are also normalised. Chameau and

Santamarina also find the requirement that evaluations on a ratio scale to be unnatural.

However, they espouse a ‘comparison-based point estimation’ which determines the position

of a set of stimuli on the reference axis by pairwise comparison and the membership is

calculated by aggregating provided by several subjects. Although the subjects of Chameau and

Santamarina experiments ranked the method almost as good as the interval estimation method

(which was ranked as the best method) this method also needs the unfortunate assumption of a

ration scale. Furthermore, pairwise comparison requires many comparison experiments in a

relatively simple domain [126].

A.5.2 Fuzzy Systems from Examples

Wang and Mendel developed a well-known method for developing fuzzy systems from

examples, combining both expert knowledge and numerical data examples [127]. They

proposed a five-step generalised method for constructing these fuzzy systems, with emphasis

on generating fuzzy rules by learning from examples.

Suppose we are given a set of desired input-output data pairs [127]:

(𝑥1
(1)

, 𝑥2
(1)

; 𝑦(1)), (𝑥1
(2)

, 𝑥2
(2)

; 𝑦(2)), … (A-36)

Where 𝑥1and 𝑥2 are inputs and 𝑦 is an output. This simple two-input one-output case is chosen

in order to emphasize and to clarify the basic ideas of the Wang and Mendel approach;

extensions to general multi-input multi-output cases are straightforward. The task here is to

generate a set of fuzzy rules from the desired input-output pairs of (1), and use these fuzzy

rules to determine a mapping 𝑓 ∶ (𝑥1, 𝑥2) → 𝑦. The Wang and Mendel approach consists of the

five following steps [127]:

 Step 1 – Divide the input and output spaces into fuzzy regions.

211

Assume that the domain intervals 𝑥1, 𝑥2 and 𝑦 are [𝑥1
−, 𝑥1

+], [𝑥2
−, 𝑥2

+] and [𝑦−, 𝑦+], respectively,

where “domain interval” of a variable means that most probably this variable will lie in this

interval (the values of a variable are allowed to lie outside its domain interval). Divide each

domain interval into 2N + 1 regions (N can be different for different variables, and the lengths

of these regions can be equal or unequal), denoted by SN (Small N), …,S1 (Small 1), CE

(Centre), B1 (Big 1), …, BN (Big N), and assign each region a fuzzy membership function

[127].

Figure A.7 shows an example where the domain interval 𝑥1is divided into five regions (N = 2),

the domain region of 𝑥2is divided into seven regions (N = 3), and the domain interval of 𝑦 is

divided into five regions (N = 2). The shape of each membership function is triangular; one

vertex lies at the centre of the region and has membership value unity; the other two vertices

lie at the centres of the two neighbouring regions, respectively, and have membership value

equal to zero. Of course, other divisions of the domain regions and other shapes of membership

functions are possible [127].

212

Figure A.7: Division of Domain Intervals [127]

Step 2 – Generate fuzzy rules from given data pairs.

First, determine the degrees of given 𝑥1
(𝑖)

, 𝑥2
(𝑖)

 and 𝑦(𝑖) in different regions. For example, 𝑥1
(1)

in Figure A.7 has degree 0.8 in B1, degree 0.2 in B2 and zero degrees in all other regions.

Similarly, 𝑥2
(2)

 in Figure A.7 has degree 1 in CE, and zero degrees in all other regions [127].

Second, assign a given 𝑥1
(𝑖)

, 𝑥2
(𝑖)

 or 𝑦(𝑖) to the region with maximum degree. For example,

𝑥1
(1)

in Figure A.7 is considered to be B1, and 𝑥2
(2)

 is considered to be CE [127].

213

Finally, obtain one rule from one pair of desired input-output data, e.g [127].,

(𝑥1
(1)

, 𝑥2
(1)

; 𝑦(1)) ⇒ [
𝑥1

(1)(0.1 𝑖𝑛 𝐵1, 𝑚𝑎𝑥), 𝑥2
(1)(0.7 𝑖𝑛 𝑆1, max);

𝑦(1)(0.9 𝑖𝑛 𝐶𝐸, 𝑚𝑎𝑥)
] ⇒ 𝑅𝑢𝑙𝑒 1: (0-37)

IF 𝑥1 is B1 and 𝑥2 is S1, THEN 𝑦 is CE [127];

(𝑥1
(2)

, 𝑥2
(2)

; 𝑦(2)) ⇒ [
𝑥1

(2)(0.6 𝑖𝑛 𝐵1, 𝑚𝑎𝑥), 𝑥2
(2)(1 𝑖𝑛 𝐶𝐸, max);

𝑦(2)(0.7 𝑖𝑛 𝐵1, 𝑚𝑎𝑥)
] ⇒ 𝑅𝑢𝑙𝑒 2: (0-38)

IF 𝑥1 is B1 and 𝑥2 is CE, THEN 𝑦 is B1;

The rules generated in this way are “and” rules, i.e., rules in which conditions of the IF part

must be met simultaneously in order for the result of the THEN part to occur [127].

Step 3 – Assign a degree to each rule

Since there are usually lots of data pairs, and each data pair generates one rule, it is highly

probable that there will be some conflicting rules, i.e., rules that have the same IF part but a

different THEN part. One way to resolve this conflict is to assign a degree to each rule

generated from data pairs, and accept only the rule from a conflict group that has maximum

degree. In this way not only is the conflict problem resolved, but also the number of rules is

greatly reduced [127].

We use the following product strategy to assign a degree to each rule: for the rule: “IF 𝑥1 is A

and 𝑥2 is B, THEN 𝑦 is C” the degree of this rule, denoted by D(Rule), is defined as [127]:

𝐷(𝑅𝑢𝑙𝑒) = 𝑚𝐴(𝑥1)𝑚𝐵(𝑥2)𝑚𝐶(𝑦) (A-39)

As examples, Rule 1 has degree [127]

𝐷(𝑅𝑢𝑙𝑒 1) = 𝑚𝐵1(𝑥1)𝑚𝑆1(𝑥2)𝑚𝐶𝐸(𝑦) (A-40)

 = 0.8 × 0.7 × 0.9 = 0.504

(see Figure A.7) and Rule 2 has degree [127]

214

𝐷(𝑅𝑢𝑙𝑒 2) = 𝑚𝐵1(𝑥1)𝑚𝐶𝐸(𝑥2)𝑚𝐵1(𝑦) (A-41)

 = 0.6 × 1.0 × 0.7 = 0.42

In practice, we often have some prior information about the data pair. For example, if we let

an expert check given data pairs, the expert may suggest that some are very useful and crucial,

but others are very unlikely and may be caused just by measurement errors. Therefore, we can

assign a degree to each data pair that represents our belief of its usefulness. In this sense, the

data pairs constitute a fuzzy set, i.e. the fuzzy set is defined as the useful measurements; a data

pair belongs to this set to a degree assigned by a human expert [127].

Suppose the data pair (𝑥1
(1)

, 𝑥2
(1)

; 𝑦(1)) has degree 𝑚(1), then we redefine the degree of Rule 1

as [127].

𝐷(𝑅𝑢𝑙𝑒 1) = 𝑚𝐵1(𝑥1)𝑚𝑆1(𝑥2)𝑚𝐶𝐸(𝑦)𝑚(1) (A-42)

i.e., the degree of a rule is defined as the product of the degrees of its components and the

degree of the data pair that generates this rule. This is important in practical applications

because real numerical data have different reliabilities, e.g., some real data can be very bad

(“wild data”). For good data, we assign higher degrees, and for bad data, we assign lower

degrees. In this way, human experience about the data is used in a common base as other

information. If one emphasises objectivity and does not want a human to judge the numerical

data, our strategy still works by setting all the degrees of the data pairs equal to unity [127].

215

Step 4 – Create a combined fuzzy rule base

Figure A.8: Form of Fuzzy Rule Base [127]

The form of a fuzzy rule base is illustrated in Figure A.8. We will fill the boxes of the base

with fuzzy rules according to the following strategy: a combined fuzzy rule base is assigned

rules from either those generated from the numerical or linguistic rules (we assume that a

linguistic rule also has a degree that is assigned by the human expert and reflect the experts

belief of the importance of the rule); if there is more than one rule in one box of the fuzzy rule

base, use the rule that has maximum degree.

In this way, both numerical and linguistic information is codified into a common framework –

the combine fuzzy rule base. If a linguistic rule is an “and” rule, it fills only one box of the

fuzzy rule base; but, if a linguistic rule is an “or” rule (i.e., a rule for which the THEN part

follows if any condition of the IF part is satisfied), it fills all the boxes in the rows or columns

corresponding to the regions of the IF part. For example, suppose we have the linguistic rule:

“IF 𝑥1is S1 or 𝑥2 is CE, THEN 𝑦 is B2” for the fuzzy rule base of Figure A.8; then we fill

216

the seven boxes in the column of S1 and the five boxes in the row of CE with B2. The degree

of all the B2’s in these boxes equal the degree of this “or” rule [127].

Step 5 – Determine a mapping based on the combined fuzzy rule base.

We use the following defuzzification strategy to determine the output control 𝑦 for given inputs

(𝑥1, 𝑥2): first, for given inputs (𝑥1, 𝑥2), we combine the antecedents of the ith fuzzy rule using

product operation to determine the degree, 𝑚𝑂𝑖
𝑖 , of the output control corresponding to (𝑥1, 𝑥2),

i.e. [127],

𝑚𝑂𝑖
𝑖 = 𝑚𝐼1

𝑖 (𝑥1)𝑚𝐼2
𝑖 (𝑥2) (A-43)

Where 𝑂𝑖 denotes the output region of Rule i, and 𝐼𝑗
𝑖denotes the input region of Rule i for the

jth component, e.g., Rule 1 gives [127]

𝑚𝐶𝐸
1 = 𝑚𝐵!(𝑥1)𝑚𝑆1(𝑥2) (A-44)

Then we use the following centroid defuzzification formula to determine the output [127].

𝑦 =
∑ 𝑚

𝑂𝑖
𝑖 �̅�𝑖𝐾

𝑖=1

∑ 𝑚
𝑂𝑖
𝑖𝐾

𝑖=1

 (A-45)

Where �̅�𝑖 denotes the centre value of region 𝑂𝑖 (the centre of a fuzzy region is defined as the

point that has the smallest absolute value among all the points which the membership function

for this region has membership value equal to one), and K is the number of fuzzy rules in the

combined fuzzy rule base [127].

217

A.5.3 Genetic Algorithm Optimised Fuzzy Logic Systems

Wagner and Hagras developed an architecture for evolving the parameters of a fuzzy logic

system (both Type-1 and Type-2 FLSs) using a genetic algorithm [89]. The purpose of using a

genetic algorithm is because they do not require a priori knowledge such as a model or data but

perform a search through the solution space based on natural selection using a specified fitness

function. A more in-depth discussion of genetic algorithms and other evolutionary techniques

can be found in Chapter 4.

Wagner and Hagras demonstrate their technique on interval type-2 fuzzy sets, which use

Gaussian primary membership functions, with uncertain standard deviation. Their genetic

algorithm system uses real value encoding to encode each gene in the chromosome. The genetic

algorithm based system procedure can be summarised as follows [89]:

 Step 1: 30 chromosomes are generated randomly while taking into account the grammatical

correctness of the chromosome (for example the inner standard deviation 𝜎1 is less than the

outer standard deviation 𝜎2). The “Chromosome Counter” is set to 1 (the first chromosome).

The “Generation Counter” is set to 1 (the first generation) [89].

Step 2: A type-2 FLS is constructed using the chromosome identified by the “Chromosome

Counter”. The environment in which the FLS is tested is set up (which could be a simulation),

and the fitness of the current controller is evaluated, based on how the chromosome performed

in the environment. Any chromosome that fails any of the primary test conditions is

automatically given a disastrous fitness [89].

Step 3: If “Chromosome Counter” < 30, increment “Chromosome Counter” by 1 and go to Step

2, else proceed to Step 4 [89].

Step 4: The best individual-so-far’s performance is preserved separately [89].

218

Step 5: If “Generation Counter = 1 then store current population, copy it to a new population

P and proceed to Step 6. Else, select 30 best chromosomes from population “Generation

Counter” and population “Generation Counter”-1 and create a new population P [89].

Step 6: Use roulette wheel selection (See Section 3.1.2.1) on population P to populate the new

breeding pool [89].

Step 7: Crossover (See Section 3.1.2.2) is applied to chromosomes in the breeding pool and

“chromosome consistency” is checked (*) [89].

Step 8: “Generation Counter” is incremented. If “Generation Counter” < the number of

maximum generations, or if the desired performance is achieved, reset “Chromosome Counter”

to 1 and go to Step 2, else go to Step 9 [89].

Step 9: The chromosome which resulted in the best fitness is kept, and the solution has been

achieved; END [89].

(*) The crossover operator used here computes the arithmetic average between two genes. With

chromosome consistency, it is refereeing to the correctness of the genes of the chromosomes

in relation to their function in the FLS. Chromosomes are completely eliminated if they violate

this criterion or if the problem is restricted to the means of the MFs (for example the mean of

the membership function “Far” < mean of the membership function “near”) [89]. Figure A.9

shows an example of how a chromosome would look for a four input four output Gaussian

membership function based FLS.

Figure A.9: Chromosome Structure for Optimising Fuzzy Sets [89]

219

A.5.4 Particle Swarm Optimised Fuzzy Logic Systems

Another method of optimisation by Evolutionary Algorithms (EAs) is to use particle swarm

optimisation. A more in-depth discussion on PSO can be found in Chapter 4.2.

Several researchers have shown that PSO can also be used to tune the membership functions

of a fuzzy set [128] [129]. In [128] it is shown that by correlating the fitness of the PSO with

the Route Mean Squared Error (RMSE) of the fuzzy systems output, the performance of the

fuzzy systems can be improved. One important find from [128] is that the PSO search process

is given an advantage if the fuzzy system is first designed by an expert. This ensures that the

start of the PSO is not completely random. It was also found that optimising the output

membership functions had more influence on the performance of the fuzzy model.

The process of integrating the PSO algorithm with fuzzy control is as follows [129]:

1. The subpopulation is defined as a link of the membership functions adjustment values.

2. The parameters are the centers and widths of each fuzzy set. These parameters compose

the particle (agent)

3. To check the performance of the fuzzy system it is rolled up from an initial set of

possible parameters

4. This information is used to set up each sub-population adjustment (adaptability and the

making of the evolution of the population.

5. The cycle repetition is made up for completion of the defined PSO iteration number

made by the user. To each PSO iteration is found the best value set for the membership

function parameters.

220

A.5.6 Adaptive Fuzzy Logic Systems

As described by Cox [130] an adaptive fuzzy logic system adjusts to time and processed phased

conditions, and also changes the supporting system controls. This means that an adaptive

system modifies the characteristics of the rules, the topology of the fuzzy sets, and the method

of defuzzification based on predictive convergence metrics (or more simply, how quickly it is

approaching or leaving a goal state). In the way, they work adaptive fuzzy systems resemble

neural networks. Both systems are trained through a performance metric usually a set of cases

indicating an input and desired output; and both act as classifiers, where the classification space

is intensified by changes to weights that are adjusted according to how much the system is in

error [130].

An adaptive fuzzy system, however, is much more sophisticated and has a higher degree of

adaptive parameters. Such systems are able to deal with their human partners since they can,

in effect, explain their reasoning – a task that neural networks do rather poorly, or not at all

[130].

Adaptive systems usually work like back-propagation in neural networks, by examining a

solution with a target result. Like their neural network counterparts, fuzzy systems can run in

both supervised and unsupervised (or autoadaptive) mode. However, unlike neural systems,

fuzzy systems are more likely to run unsupervised by the very nature of their internal

organisation and a priori knowledge base [130].

Regardless of the adaptation method used, there are several interconnected means of allowing

fuzzy systems to adapt. These include the management of weights attached to the rules (a

concept spoken about in 0), the dynamic hedging of the fuzzy regions, the structural

modification of the fuzzy sets, the redefinition of truth in the fuzzy model and the selection of

alternative methods of defuzzification [130].

221

In contrast to neural networks, the weights in an adaptive fuzzy system are associated with the

rule nodes, not with the connecting edges of the network. Training, however, is conducted in a

manner analogous to neural backpropagation. The error discriminant is propagated back to the

rules. In general, the weight modification algorithm is fairly simple: it consists of multiplying

the various 𝑊𝑖s by an error factor. In supervised learning the error factor is the ratio of the

actual system output to the correct output. In an autoadaptive mode, it is the mean squared

distance from the centre of the optimal control region to the center of the system response. An

additional factor the fuzzy attenuation control, is sometimes included in the multiplication. If

included this parameter attenuates, or controls, the strength of the training applies to each rule’s

contribution weight. It is analogous to the training rate parameter that is to be found in certain

neural networks [130].

