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Discrete numerical approach to the Fredholm
Integral Method for evaluating scattering by

irregular dielectric particles
Felix Ngobigha, David Bebbington, and Laura Carrea

Abstract—A new approach to the implementation of the
Fredholm Integral Method (FIM) was developed to evaluate
scattering by irregular dielectric particles. In this study, particles
are modelled discretizing their volume with cells according to
their weighted contents. The approach to FIM presented in
this paper represents a departure from earlier work where the
numerical integration is no longer based on expansion in a set
of polynomials but on direct spatial integration. This approach
which still involves contour integration method uses quandrantal
contour in combination with a conditioning weighting function
to control the magnitude of the integrand due to the power of
the radial variable in the integrand being odd. The strength of
our approach lies on the fact that computations are performed in
the spatial frequency domain. As a result, the angular scattering
pattern is strongly connected to the Spatial Fourier Transform of
the scatterer; hence, for electrically small particles the angular
spectrum is relatively smooth and the number of pivots required
for integration is relatively low. This technique is well suited to the
treatment of scattering from irregular inhomogeneous dielectric
particles since only the distribution in space of the dielectric
constants needs to be defined. Numerical results also confirm the
inadequacy of effective medium theories in evaluating scattering
characteristics of inhomogeneous particles.

Index Terms—Born terms, inhomogeneous medium, effective
medium thoeries, discretization.

I. INTRODUCTION

The melting layer is a region where the transition from
ice crystals to rain drops happens. At this layer, particles

are mainly melting ice crystals, a mixture of ice, air and
water. This region has been widely studied since it produces
high values in radar reflectivity imaging causing potentially an
overestimation of precipitation [1], [2] and [3]. Simulations
of radar signature at the melting layer includes a particle
scattering model of melting snow [4], [5].

Evaluating the scattering characteristics of these particles is
quite difficult due to change in their geometrical and electrical
properties [5]. The complex nature of the melting process
and the lack of accurate experimental/measured data of the
effective dielectric constant of the melting snow flakes lead to
relying mainly on two particle melting models as discussed
in [1]. Mixing theories [6], [7] offer methods to estimate the
effective dielectric constant of mixed phase hydrometeors. It
has been suggested that in this case, the estimation of their
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scattering characteristics could be done by computing the
effective dielectric constant, averaging the optical properties
of an equivalent materials (two-part effective medium mixing
formula) [6] and subsequently evaluating the scattering charac-
teristics of homogeneous particle. However, it has been shown
in [8], [9], [10], [11], [12] that this approach is not fully consis-
tent with the complex nature of the inhomogeneous scatterer.
Moreover, there is no known unique effective medium mixing
theory for three or more dielectric components. Although our
approach has been developed to compute microwave scattering
from mixed phase irregular hydrometeors in the melting layer,
its formulation is quite general and can be applied to other
areas such as for biological blood cells [13] or for small
chemical particles [14]. To address this problem fully, we
propose to model a generally discretised particle. This address
the irregular shape of the scatterer and ultimately can cope
with inhomogeneities of the dielectric particle.

Several techniques are available for the evaluation of mi-
crowave scattering by irregular dielectric particles. Among
them, there are the Mie theory [15], [16], the Discrete Dipole
Approximation (DDA) [17], [18], and Fredholm Integral
Method [19], [20], [21]. The DDA is based on replacing the
scattering particle with interacting dipoles. This approach has
shortcomings associated with the size of matrix equations to
be solved if the particle is electrically large (defined as a
particle of refractive index far greater than 1 or the particle
size is relatively large compared with the wavelength. In the

text we use parameter x = ka where k is
2π

λ
and a is the

equivalent volume radius of the particle) and the problem
becomes computationally difficult.

The FIM approach of Holt [19] was formulated in terms of
a volume integral equation. Generally it can be solved with an
expansion in a set of polynomials and then applying a series of
iterative approximations known as the Born approximations.
In general, there is a problem with this since it is well
known [22], [23] that for large dielectric constant the Born
series do not converge. It is noteworthy to mention that
the method is not a Born-series which does not necessarily
converge. The method is exact if the second order term can be
exactly computed. In [19], an exact integral equation approach
involving only the first and second Born terms was proposed.
However, as also stated by the authors, the main limitation
is the evaluation of the second Born term which for large
particles requires too large machine storage and/or compu-
tation time. Moreover, their approach has not been tested
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for inhomogeneous scatterers but they envisage difficulties in
the evaluation of the second Born term. Consequently, these
techniques are not fully satisfactory to evaluate the scattering
properties of irregular hydrometeors.

In the present work, a new perspective is proposed. It is
still based on the central equations of the FIM introduced in
[19] for scattering by dielectric homogeneous particles but in
contrast with their approach, in case of using an expansion in a
set of polynomials we apply a direct spatial integration. In this
way, our approach retains the property of having second order
accuracy owing to the variational properties of the integral.
The scatterer is modelled within a finite regular lattice field
of cubic or spherical cells. The first and second Born terms
are evaluated for a cell at the origin, while the contributions
of all other cells are evaluated efficiently using the Fourier
Shift Theorem. We have named our numerical approach to
the Fredholm Integral Method as the Discrete Method (DM)
and it was pioneered in [24]. The DM allows to explicitly
evaluate scattering amplitude functions of irregular hydrome-
teors avoiding any of the established effective medium theories
or empirical methods. The approach is computational efficient
and the complexity of implementation is low. In particular, in
terms of the RAM resources the storage goes as the square
of discretization scale compared to the DDA. Regarding the
computational complexity, the second Born term is dominant
and its complexity is O(N2) where N is number of elements,
while for the DDA matrix inversion is O(N3). There is some
evidence that iterative methods in DDA can converge much
faster than full matrix inversion, but this is not formally
guaranteed. In case of thousands of hydrometeors, variation
of the scatterers orientation is trivial and previous work [19]
established that it is feasible to select a relatively small number
of size over a certain range, and to implicitly interpolate when
computing integrals.

The organization of the paper is as follows. In section II the
derivation of the Discrete Method is presented. In section III
we validate our approach comparing the results for spherical
homogeneous particles with the Mie theory. Finally, in section
IV we evaluate scattering properties of spherical mixed phase
hydrometeors using the Discrete Method with and without
mixing theories. Important conclusions on the validity and
limitations of effective mixing theories are drawn.

II. DISCRETE METHOD FORMULATION

The derivation of the Discrete Method equations for eval-
uating the electromagnetic waves scattering by homogeneous
particles is presented. The extension to inhomogeneous parti-
cles such as melting irregular hydrometeors is straightforward.
The notation of [19] is used for the formulation.

The Maxwell’s differential equation valid inside and outside
of the volume containing a dielectric medium can be written
as [25]:

∇× (∇× E)− k2
0 E = k2

0(n2 − 1)E, (1)

where E is the electric field, k0 the free space wavenumber
and n the refraction index of the dielectric medium. In (1)
we assume a e−iωt time dependence at angular frequency ω

and for simplicity we suppress the time factor in all the fields
throughout the paper.

The general solution of the inhomogeneous linear differen-
tial equation (1) is the sum of the complementary solution of
the correspondent homogeneous equation and the particular
solution of the inhomogeneous equation. Thus, the homoge-
neous equation is

∇×∇× E− k2
0 E = 0, (2)

which describes the field in the absence of the scatterer. The
appropriate physical particular solution of equation (1) must
satisfy the scattered field generated by the forcing function.
Using the Green’s function method to evaluate the scattered
field E, the free space dyadic Green’s function Ḡ(r, r′) as-
sociated with the inhomogeneous equation (1) satisfies the
differential equation [26]

∇×∇× Ḡ(r, r′)− k2
0 Ḡ(r, r′) = −Ī δ(r, r′), (3)

where Ī is the unit dyadic. The solution of equation (3) can
be expressed as in [27] and [28]:

Ḡ(r, r′) = (Ī + k−2
0 ∇∇)G(r, r′), (4)

where G(r, r′) = exp(i k0 |r− r′|)/4π |r− r′| is the three di-
mensional scalar free space Green’s function for the Helmholtz
equation.

Hence, the general solution of (1) for the case of the electric
field E(r) in integral form can be summarized as

E(r) = Ei(r) +

∫
V

Ḡ(r, r′){
k2

0(n2 − 1)E(r′) +∇×
[
(1− µ−1)∇′ × E(r′)

]}
d3r′,

(5)
where γ(r) = k2

0(n2 − 1) is the polarizability of the medium
assumed dispersion-free and the integral extends over the
volume of the scatterer and Ei(r) is the incident electric
filed. In case of dielectric particles (i.e. non-magnetic particles
µ ≈ 1), the integral equation reduces to the form

E(r) = Ei(r) +

∫
V

Ḡ(r, r′)k2
0(n2 − 1)E(r′)d3r′. (6)

The incident plane wave Ei(r) can be defined in dyadic
notation as:

Ei(r) = J̄i exp (i ki · r), (7)

where J̄i = Ī − k̂ik̂i is the projection dyadic relative to the
incident field direction, k̂i is a unit vector along the incident
wavevector ki.

Using the asymptotic behaviour of Ḡ(r, r′), the electric field
E(r) in the far field is given as

E(r) ≈ J̄i exp (i ki · r) +
exp(ik0r)

r
F̄(ks, ki) +O

(
1

r2

)
,

(8)
where ks is the scattered wave vector, and F̄(ks,ki) is the
dyadic scattering amplitude defined as

F̄(ks, ki) = J̄s
∫
V

exp(−i ks · r)γ(r)E(r)d3r. (9)

Importantly, the dyadic scattering amplitude is dependent only
on the electric field within the volume of the scatterer. The
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field equation (6) is an integral equation with a singular kernel.
In order to find an analytical solution, the FIM method is
proposed in [29] to deal with the singularity.

Multiplying (6) by exp(−i k1 · r)γ(r) and integrating over
the volume of the scatterer we obtain a new equation that
we omit for brevity. This equation does not have a unique
solution E(r). This is because the equation contains only the
field inside the scatterer so that fields differing in behaviours
outside the scatterer are all solutions [19]. However, since the
scattering amplitude (9) is computed as an integral over only
the volume of the scatterer, any solution E(r) of the new
equation substituted in (9) will produce a unique scattering
amplitude. Assuming a square-integrable solution of the new
equation, it can be expressed as a Fourier transform

E(r) =

∫
C̄(k2) exp(−i k2 · r)d3k2. (10)

Substituting this solution in the new equation we obtain∫
K̄(k1, k2) C̄(k2) d3k2 = J̄i U(k1, ki), (11)

where

U(k1, ki) =

∫
γ(r) exp [−i(k1 − ki) · r] d3r, (12)

U(k1, ki) is the first Born term which in effect is the spatial
Fourier transform of the polarizability γ(r) of the scatterer.
The K̄ term in (11) is the kernel of the integral equation and
found to be remarkably stable in [19]. It can be expressed as

K̄(k1, k2) = ĪU(k1, k2)−
∫ ∫

γ(r) γ(r′) (13)

exp(−i k1 · r)Ḡ(r, r′) ei k2·r′d3r d3r′,

or alternatively

K̄(k1, k2) = ĪW (k1, k2)− Z̄(k1, k2), (14)

where W (k1, k2), in the case of homogeneous scatterers, is
the integral of a pointwise multiplication of the first Born term
U(k1,k2) with the dielectric constant [30]:

W (k1, k2) =

∫
exp [−i(k1 − k2) · r] γ(r)ε(r)d3r, (15)

and Z̄(k1,k2) is the the second Born term:

Z̄(k1, k2) =
1

8π3k2
0

lim
ξ→0

∫
p2 d3p

p2 − k2
0 − iξ

(16)[
Ī− p̂p̂

]
U(k1,p)U(p,k2).

In (16) the vector p is a pivot vector and the parameter ξ
has been introduced to mitigate the singularity of the function
to integrate. Substituting the assumed solution (10) in the
expression of the scattering amplitude (9) we obtain the dyadic
scattering amplitude

F̄(ks, ki) =
1

4π
J̄s
∫
U(ks,k2)C̄(k2)d3k2. (17)

Equations (11) and (17) are the coupled Fredholm integral
equations for the problem. Equation (11) is used to compute
C̄(k2) and (17) is then used to computed the scattering
amplitude.

They have the important property that now the kernel K̄
in (11) is non-singular and (13) can be computed with the
numerical quadrature method. Hence, the integral equation
(11) can be reduced to a matrix equation which is easily solved
using any of the established factorization methods.

The evaluation of the first Born term (12) is straight forward.
Instead, the second Born term (16) is more complex to evalu-
ate. In [19] and [20] the Z-term (16) is calculated by expanding
the two first Born terms into series and then carrying out
the contour integration of the infinite radial integral as in
[31] and [32]. The FIM is an accurate method to evaluate
the scattering of an electromagnetic wave by homogeneous
dielectric spheroids or ellipsoids. However, especially in the
case of large particles the evaluation of the second Born
term by expansion of the first Born term may require too
large machine storage [19]. Moreover, the evaluation of the
scattering amplitude for inhomogeneous particles has not been
carried out with this method and inaccuracies may arise due to
the necessity of using mixing theories to estimate the effective
dielectric constant.

A. The Discrete Method

The DM was pioneered in [24] and [33] with the aim to
tackle the computation of the scattering amplitude for the
inhomogeneous particle by discretizing the inhomogeneous
scatterer into homogeneous cells . The process of discretization
enables the computation of the scattering amplitude for inho-
mogeneous particles without using mixing theories. Moreover,
with the discretization the computation of the total field is
carried out calculating the field only for one homogeneous
cell at the origin for each dielectric constant present within
the particle. The contribution to the total field of all the other
cells is simply obtained with the Fourier shift theorem.

Let us consider a finite domain of three-dimensional regular
lattice field discretized into cubic cells or grid points as shown
in Fig. 1 where the cubic cell has been replaced by a spherical
cell. This approximation will be very relevant in the calculation
of the second Born term and it has been used in DDA method
[18].

Fig. 1. The discretized regular lattice field for a spherical particle.

The discretization applies correspondingly in the Fourier
domain and it is shown in Fig. 2
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𝑘1,3 

𝑘1,1 

𝑘1,4 

𝑘1,5 𝑘1,6 

𝑘1,7 

Fig. 2. Cross-sectional view of the discretized regular lattice field in the
Fourier domain for 8 internal wavevector where ∆kl,m is the distance
between kl and km for l = 1 and m = 1, ...8.

B. Evaluation of the first Born term

For the evaluation of first Born term in (12) the dis-
cretization of the lattice field simplifies the computation of
U as a summation over the cells according to their dielectric
properties γ(rj) (weighted contents). The first Born term with
respect to the internal wavevectors kl and km

U(kl,km) =
∑
j

Uj(kl,km), (18)

where the sum is over all the cells and
Uj(kl,km) = exp [−i(kl − km) · rj ] γ(rj)∫

r⊂Vj

exp [−i(kl − km) · (r− rj)] d3r

= exp [−i(kl − km) · rj ] γ(rj) U0(kl,km).
(19)

where Vj is the volume of the jth cell, rj is the centre of the
jth cell, and U0 is

U0(kl,km) =

∫
r⊂Vj

exp [−i(kl − km) · (r− rj)] d3r. (20)

The U0(kl,km) in (20) is the Fourier transform of the
weighted cell, and it is a spatially invariant function of
kl − km. For small size parameter where |kl| = |km| ≈ |k0|,
U0(kl,km) is well approximated by the cell volume ∆v and
(19) becomes

Uj(kl,km) = exp(−i∆kl,m · rj) γ(rj) ∆v, (21)

where ∆kl,m = kl − km is the distance between the internal
wavevectors and exp(−i∆kl,m · rj) is the phase shift for
each grid point in the 3-dimensional regular lattice field. The
calculation of the term (21) for any other cell in the lattice
field can be easily done reusing the numerical values of ∆v
and ∆kl,m computed for the first cell.

The W (kl,km) term (15) follows the same procedure of the
U-term. In fact, W can be obtained with a simple pointwise
multiplication of the dielectric constant ε(r) at the grid points
within the scatterer by the first Born term in (18):

W (kl,km) =
∑
j

exp(−i∆kl,m · rj) γ(rj) ε(rj) ∆v,

(22)

or, alternatively as

W (kl,km) =
∑
j

Uj(kl,km)ε(rj). (23)

C. Evaluation of the second Born term

Regarding the second Born term (16), we apply the same
assumption of uniform discretization of the regular lattice field
as for the U-term. The discretization applies to the two U-
terms that appear under the integral:

Z̄(kl, km) =
1

8π3k2
0

lim
ξ→0

∑
j,i

∫
Ω

∫ ∞
0

p4 dΩ dp
p2 − k2

0 − iξ
(24)

[̄I− p̂p̂]Uj (kl,p)Ui (p,km).

where the U-terms are as in (19)

Uj(kl,p) = γ(rj) exp (−i(kl − p) · rj)U0(kl,p), (25)

and

Ui(p,km) = γ(ri) exp (−i(p− km) · ri)U0(p,km). (26)

Substituting (25) and (26) into (24) leads to expressing the
Z-term as

Z̄(kl, km) =
1

8π3k2
0

lim
ξ→0

∑
j,i

γ(rj)γ(ri)∫
Ω

∫ ∞
0

e[−i(kl−p)·rj ] e[−i(p−km)·ri]

U0(kl,p)U0(p,km)
p4 dΩ dp

p2 − k2
0 − iξ

[̄I− p̂p̂],

(27)

where Ī− p̂p̂ can be expressed as

Ī− p̂p̂ =

 1− y2 cos2 φ −y2 cosφ sinφ −xy cosφ
−y2 cosφ sinφ 1− y2 sin2 φ −xy sinφ
−xy cosφ −xy sinφ y2

 ,

(28)
and we have used the following: cos θ = x, sin θ = y.
Rearranging the terms in (27), the Z-term is expressed as

Z̄(kl, km) =
1

8π3k2
0

lim
ξ→0

∑
j,i

γ(rj)γ(ri) exp (−ikl · rj)

exp (ikm · ri)
∫

Ω

∫ ∞
0

exp [i(p̂ · (rj − ri)p]

U0(kl,p)U0(p,km)
p4 dΩ dp

p2 − k2
0 − iξ

[̄I− p̂p̂],

(29)
where γ(rj) and γ(ri) are the polarizabilities given as

γ(ri) = k2
0(ε(ri)− 1) (30)

with respect to distinct cells in the regular 3-dimensional
lattice field. In order to calculate the Z-term, we need to
evaluate the integral over p by contour integration:∫

Ω

∫ ∞
0

U0(kl,p)U0(p,km) exp(iβp)
p4 dΩ dp

p2 − k2
0 − iξ

, (31)

where β = p̂ · (ri − rj) is the relative phase of the cells
measured in the direction of the pivot vector. The largest
contribution to this integral occurs close to the pole p = k0
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where U0 is well approximated by the elementary volume.
However, a problem arises along the imaginary axis where the
integrand exhibits singularities. For a cubic cell, U0 takes the
form of a three dimensional sinc function which is difficult
to integrate analytically since it does not converge, as also
discussed in [34].

Now, we consider a more radical approach in which it is
argued that the contribution of the U-terms should not depend
critically on the shape of the cell, but mainly on its volume.
Accordingly, we consider instead spherical cells of the same
volume as the cubes. We compute Us which is the term
U0 for a sphere of equal volume to the one of basic cubic
cell verifying that this term does not produce singularities at
large imaginary p. Hence, U0 for a spherical cell of radius ρ
becomes

U0 ≈ Us = 4πρ3
J 3

2
(pρ)

(pρ)
3
2

, (32)

where J 3
2
(pρ) is the half-order Bessel function. ρ is the

equivalent volume radius of the cell which can be related to
the dimensions a, b, c of the cubic cell as

abc =
4πρ3

3
, if a = b = c, a3 =

4πρ3

3
, (33)

so that the equivalent volume radius ρ is expressed as

ρ = a

(
3

√
3

4π

)
. (34)

When the argument pρ in (32) is very small (i.e. zero of the
Fourier transform of the content of the sphere), Us ≈ 4πρ3 1

3
which is the spherical cell volume.

In the calculation of (32) we have neglected the offset
contribution of kl and km [31]. This can be justified by
considering an expansion in infinite series of higher order
cylinder functions of (20) where it can be assumed that pρ
is so small for the fundamental cell that the higher terms can
be neglected.

Substituting (32) into (31) gives the integral Ik0

Ik0 = lim
ξ−→0+

1

ρ3

∫ ∞
0

J2
ν (pρ)

p3

p4 exp(iβp)

p2 − k2
0 − iξ

dp, (35)

which is an integral of products of Bessel functions of half-
order ν = 3

2 . However, it is not possible to obtain a closed
form analytical solution of this integral. Let us see in details
the reasons. The integrand function shows a singularity for
p = k0 close to the real axis. Integrals of this type were
considered early in the history of the analysis of Bessel
functions, and solved using the Hankel integral method [31,
p.429]. In many cases, such integrals of products of Bessel
functions have a closed form solution which can be obtained
evaluating Bessel and Hankel functions at the pole. However,
this approach [31], [32] cannot be applied because of the
power of p in the integrand being odd. In this case, it is not
possible to use symmetry arguments to extend the integral to
the negative axis.

The alternative approach that we propose is based on a
truncation and still involves contour integration method. If the
cell sizes are small enough with respect to the wavelength, we

can expand the Bessel functions and truncate the expansion at
the first degree [31]. Let us consider the following integral

I1 = lim
ξ−→0+

1

ρ3

∫ ∞
0

J2
ν (ρ k0 p

′)
p′ exp(iβk0p

′)

p′2 − 1− iξ
dp′, (36)

where
p′ =

p

k0
. (37)

Hence, comparing (35) and (36), we can write Ik0 as

Ik0 =
1

k2
0

I1. (38)

Then, substituting the expression of Ik0 as in (38) into (29)
leads to expressing the Z-term as

Z(kl, km) =
1

8π3k2
0

4π

Nm

16π2 ρ6

ρ3

∑
j,i

γ(rj)γ(ri)∫
Ω

exp (−ikl · rj) exp (ikm · ri) [̄I− p̂p̂]∫ ∞
0

J2
ν (ρ k0 p

′)
p′ exp(iβk0p

′)

p′2 − 1
dΩ dp′,

(39)

where Nm is the number of angular integrals for all the cells.
Equation (39) contains the normalised form I1 of the integral
required in evaluating the Z-term.

An approach to solve I1 would be to integrate along a
quandrantal contour which goes from zero to real infinity, then
anticlockwise around a quarter circle and then returning along
the imaginary axis as shown in Fig. 3.

 

 

main pole

Fig. 3. Semi circle split into two equal half with the top half enclosing the
poles at near real axis.

The attractiveness of this scheme would be that the integral
along the imaginary axis has no poles and decreases monoton-
ically. However, on the imaginary axis the integral does not
converged.

A more workable solution was found by using a condition-
ing weighting function in the radial integral (35) which takes
the form,∫ ∞

0

J2
ν (k0 ρ p

′) w(p′)
p′ exp(iβk0p

′)

p′2 − 1
dp′. (40)

This function does not alter the result of the integral sig-
nificantly in the integration region and it contributes to the
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elimination of the singularities as explained below. The con-
ditioning weighting function w(p′) can be expressed as

w(p′) =
1

1 + exp(−(αp′)2)
, (41)

where p′ in (41) is complex and it is defined as

p′ =
1

α

√
(2n− 1)π i =

=
1

α

√
(2n− 1)π

(1 + i)√
2

n = 1, 2, 3, 4, · · · , N.
(42)

. The function w on the real axis, where p′ = x takes this
form

w(x) =
1

1 + exp (−α2 x2)
. (43)

It behaves well near the origin w(x) ≈ 1
2 , and rapidly increases

to 1 as shown in Fig. 4. Therefore, the weighting function
does not contribute significantly to the original integral and
(40) approximates well the desired integral in (39) for a large
range of values of α. Moreover, since the integral is small
anyway near the origin, the result is accurate even for very
modest values of α.
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Fig. 4. The weighting factor w as a function of <(p′) for α = 4.0.

Along the imaginary axis, where p′ = iy, w takes the form

w(y) =
1

1 + exp (α2 y2)
. (44)

For small values of y, w ≈ 1
2 and it decreases very rapidly to

zero as shown in Fig. 5. Even though the integral in (40) might
increase exponentially along the imaginary axis, w decreases
much faster. In fact, along the imaginary axis the weighting
function very rapidly tends to zero, and apart from a similar
very small contribution near the origin, the weighted integral
on the imaginary axis becomes negligible.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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Fig. 5. The weighting factor w as a function of =(p′) for α = 4.0.

As a result, therefore, the desired integral can be expressed
accurately as a sum of residues. However, the weighting
function itself introduces new singularities, in fact an infinity
of them along the line x = y as shown in Fig. 6. Experimental
results show that the number of weighting function poles,
np′ ≥ 100 are sufficient to perform the integration.

 

 

main pole

weighting 
function 
poles

Fig. 6. Semi circle split into two equal half with the top half enclosing the
poles at near real axis and the weighting function poles at x = y for the
evaluation of the second Born term.

Although it is necessary to sum typically one hundred
residues to obtain convergence, the regularity of the spacing
of the poles makes the sum typically scalable in relation to
the cell size, and by considering the sum of the residues
as a function in its own right, it has been found that for
a wide range of parameters ρ and β, the residue sum can
be approximated piecewise as a function of ρ and β. An
exception to this finding, however, occurs when the phase
separation parameter β is small. In this regime it appears
that the summation of the residues fails to converge, and the
only viable alternative appears to directly model the function.
Numerical experimentation established that in this regime the
function has excellent scaling properties with respect to cell
size (when the cell is small) so that a universal function of one
parameter can effectively be established. Because the function
has a real symmetric peak and an antisymmetric imaginary part
that also decays rapidly, the primary model for the function
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was a Gaussian for the real part and the derivative of a
Gaussian for the imaginary part. In practice this was refined
by fitting quartic functions to the argument of the exponential
factors.

Finally, the Z-term including the conditioning weighting
function is summarised as

Z(kl, km) =
1

2π2k2
0 Nm

12π∆v
∑
j,i

γ(rj)γ(ri)∫
Ω

exp (−ikl · rj) exp (ikm · ri) [̄I− p̂p̂]∫ ∞
0

J2
ν (ρ k0 p

′)w(p′)
p′ exp(iβk0p

′)

p′2 − 1
dΩ dp′,

(45)

where ∆v =
4πρ3

3
.

D. Evaluation of the scattering amplitude

To evaluate the scattering amplitude, firstly the non-singular
kernel K̄ is computed as in (14) which for our Discrete Method
takes the form:

K̄(kl,km) = ĪW (kl,km)− Z̄(kl,km). (46)

Now, it is possible to evaluate the unknown vector C̄m in (11).
Using the Discrete Method, equation (11) can be simplified
and it reduces to a linear block matrix equation with dyadic
elements. The equation takes the form∑

l,m

K̄(kl,km) (wmC̄m) = J̄i U(kl,ki),∑
l,m

K̄(kl,km) Ȳm = J̄Ul,
(47)

where kl and km are the internal wavevectors, ki is the inci-
dent wave vector, J̄i = [̄I− k̂ik̂i] is the projection vector along
the incident field direction, U(kl,ki) is a first Born term with
respect to the internal wavevectors and incident wavevector,
wm = 4π

Nm
is the numerical integration weighting factor with

Nm the number of integral over p and Ȳm = wmC̄m.
After some mathematical manipulation, we can write (9) as

a summation over all the cells and multiply by scattered di-
rection projection vector J̄s to obtain the scattering amplitude
F̄ as

F̄(ks,ki) = J̄s
∑
m

Uj(ks,km)Ȳm, (48)

where ks is the scattered wavevector, and J̄s = [̄I − k̂sk̂s] is
the dyadic projection vector in the scattered field direction.

Equations (47) and (48) are the coupled Fredholm integral
equations in discrete form. Together they determine the scatter-
ing amplitude function which can be obtained solving only one
integral while all the other computations have been reduced to
simple matrix manipulations. This method is more attractive
than the previous in [19] since it is quicker to implement and
much faster to run despite the solution is approximated through
discretization unlike in [19]. The other scattering properties
can easily be obtained once the dyadic scattering amplitude
function is evaluated.

III. VALIDATION OF THE DICRETE METHOD

The validation of the Dicrete Method is carried out for
spherical particles firstly comparing the first Born term with
the one evaluated with the FIM by [19] and then comparing
the scattering cross section evaluated with the DM and the
Mie theory.

The homogeneous spherical particles are modelled as ellip-
soids

x2

a2
+
y2

b2
+
z2

c2
≤ 1. (49)

since ellipsoids are of particular interest in weather radar
applications where precipitation tends to be represented with
such a shape [35], [36]. Each ellipsoidal particle is filled with
spherical cells according to γ(ri) (30) which characterises the
medium of each cell. For homogeneous particles γ(ri) is the
same for all the cell.

A. Validation of the first Born term

The initial validation was carried out by comparing the
first Born term computed using our method (18) and the
method (12) by Holt et.al [19]. Numerical results with different
number of pivots are shown in Fig. 7 - 8 and they show a good
agreement independently on the number of pivot.
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Fig. 7. Comparison of first Born term using the Holt and the Discrete (with
24 internal wavectors) methods.
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Fig. 8. Comparison of first Born term using the Holt and the Discrete (with
48 internal wavectors) methods.
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Moreover, an analysis of the consequence of the discretiza-
tion of the volume has been carried out. The stair-casing
error has been computer for different number of cells used
to discretize the scattering particle volume. Fig. 9 shows that
as the goemetrical discretization is refined further and further,
the star-casing error tends to zero.
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Fig. 9. The plot of root mean square error of U-terms agaianst number of
cells.

B. Scattering by spherical particles

Spheres have been used more extensively in scattering
problems than any other particle shape. This is partly because
it is the only three dimensional particle for which an analytical
closed form solution is available and therefore can be easily
used to validate new methods.

To validate the scattering amplitude, we consider an incident
plane wave linearly polarized propagating in the +z direction.
We compare our method with the established Mie theory as
implemented in [37]. The C frequency band (5.8 GHz) is
selected to suit the operating frequency of European weather
radar, giving a wavenumber k0 ≈ 1 cm−1. For comparison
with the Mie theory, the refractive index n = 1.33 has been
selected as in [38, p.153].

We perform the comparison between the scattering cross
section evaluated with the Discrete Method and with the Mie
theory for different size parameter values.

The normalised differential scattering cross section for a size
parameter x = 0.1 is shown in Fig. 10. For the selected fre-
quency, x = 0.1 corresponds to a particle of diameter d ≈ 0.15
cm. The forward and backward ratio for both calculation by
the Mie theory (Rayleigh regime) and the Discrete Method are
virtually identical for the horizontal polarization and similar
for the vertical polarization. The forward to backward ratio is
approximately 1 as expected.
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Fig. 10. Normalised differential scattering cross section computed with the
Discrete Method and with the Rayleigh theory from a non-absorbing dielectric
sphere of size parameter x = 0.1 and n = 1.33 for an input wave of f = 5.8
GHz.

The normalised differential scattering cross section for the
size parameter x = 0.5 is shown in Fig. 11. In this case, the
particle diameter is d ≈ 0.8 cm. From the figure it is clear
that the curves follow a similar pattern as expected but the
forward and backward scattering ratio have increased to more
than 1. This is due to the phase shift as the particle size tends
towards the Mie regime.
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Fig. 11. Normalised differential scattering cross section computed with the
Discrete Method and with the Mie theory (Rayleigh regime) from a non-
absorbing dielectric sphere of size parameter x = 0.5 and n = 1.33 for an
input wave of f = 5.8 GHz.

The normalised differential scattering cross section for the
size parameter x = 1 is shown in Fig. 12. In this case, the
particle diameter is d ≈ 2.0 cm which is approximately the
characteristic length of a large ice aggregate [39], [40]. The
numerical results show good agreement.
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Fig. 12. Normalised differential scattering cross section computed with the
Discrete Method and with the Rayleigh theory from a non-absorbing dielectric
sphere of size parameter x = 1 and n = 1.33 for an input wave of f = 5.8
GHz.

In the Mie regime for spherical particles both polarizations
must have the same magnitude at the forward scattering
function based on the symmetry [38]. As the size parameter
x increases, it is expected that more complex interactions will
occur between the scatterer and the plane wave. This will result
in a change of the curves for both polarizations with more
peaks and valleys along the scattering angle. Further tests have
been made including compliance with the law of reciprocity
and the angular dependency were satisfactory.

IV. SCATTERING BY MIXED PHASE HYDROMETEORS

After satisfactory results have been obtained for homoge-
neous particles in the Mie regime, we attempt to evaluate
the scattering amplitude function from hybrid hydrometeors
modelled as inhomogeneous dielectric particles using the
Discrete Method. In particular, melting snowflake aggregates
containing air, ice and liquid water are good representation of
such scatterers with mixed dielectric constants. However, in
this paper dry snowflakes which are a mixture of air and ice
are considered. The scattering cross section of dry snowflakes
is evaluated firstly using mixing theories comparing the results
of the DM with the Mie theory. Additionally, we compare
the scattering cross section computed with the DM for a dry
snowflake modelled as a discretised inhomogeneous particle
and modelled as a inhomogeneous particle with effective
dielectric constant evaluated with the Maxwell Garnett rule.

Firstly, we start by applying Maxwell Garnett two-part
mixing formula discussed in [6] to dry snowflakes that we
model as spherical particles. When using effective medium
theories with separated topology like the Maxwell Garnett
to estimate effective dielectric constant, considerations must
be made as to which component will be the inclusion and
which the matrix. Significant differences appear in the ef-
fective dielectric constant if the two materials are simply
interchanged. For this reason, we decide to use a volume of
50% for both components. In [41] to represent non-absorbing
ice crystals, a refractive index nice = 1.78 is chosen to be the
host or background material and nair = 1.0 to be the inclusion
or guest. The effective dielectric constant is obtained to be
approximately εmix ≈ 1.839 corresponding to nmix ≈ 1.356.

The size parameter is chosen to be x = 1 and the frequency
5.8 GHz.
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Fig. 13. Normalised differential scattering cross section computed with the
Discrete Method and with the Rayleigh theory from a non-absorbing dielectric
sphere using Maxwell-Garnett formula for air inclusions in an ice matrix (ice-
air mixture) given x = 1.0 and nmix ≈ 1.356.

The normalized differential scattering cross section com-
puted with the Mie theory and the Discrete Method for dry
snowflakes using the effective dielectric constant are shown
in Fig. 13. Remarkably, the curves are in good agreement.
The forward and backward ratio in both cases converges
reasonably. The amplitude of the forward scattering falls off
gradually due to phase shift at the backward direction for the
case of the horizontal polarization. In order to investigate the
validity of effective medium theories to evaluate scattering
properties from inhomogeneous particles we use the DM for
dry snowflakes modelled as

• homogeneous particles of effective dielectric constant
evaluated with the Maxwell Garnett rule

• discretised inhomogeneous particles

assuming both air and ice with volume fractions of 50%. In the
discretised case the scatterer is modelled as a sphere of cells
where half of them has been assigned the dielectric constant
nice = 1.78 and the other half nair = 1 using a uniform
distribution spatially. Again, the size parameter is chosen to be
x = 1 and the frequency 5.8 GHz as previously. Fig. 14 shows
the normalized differential scattering cross section computed
using the Discrete Method for dry snowflakes modelled with
the Maxwell Garnett mixing formula and without effective
medium theory as a sphere of cells of different refractive
indices.
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Fig. 14. Normalised differential scattering cross section computed with the
Discrete Method from a non-absorbing dry snowflake of size parameter x = 1
using Maxwell-Garnett formula with an effective dielectric constant εmix ≈
1.839 and without mixing theories modelling the snowflake as a sphere of
cells of different refractive indices (nair = 1 and nice = 1.78).

Although the curves shown in Fig. 14 follow similar pattern,
they significantly deviate. The reason for this difference has
been identified in how the calculations of the Z-term and W-
term scale in the homogeneous and inhomogeneous case.

For dry snowflakes as a equal mixture of ice nice ≈ 1.78
and air nair ≈ 1, the effective refractive index computed using
Maxwell-Garnett formula is nmix ≈ 1.356. The correspondent
permittivities are then given as

εice
r ≈ 3.168 and εmix

r ≈ 1.839. (50)

Using the discretization approach for dry snowflakes, having
half of the cells filled with ice, their relative density is
1
2 so in the W-term (22) the contribution of γ(ri)ε(ri) =
k0ε(ri)(ε(ri)− 1) for all the cells reduces to

εice
r (εice

r − 1)

2
=

3.168× 2.168

2
= 3.434. (51)

Using the effective medium theory, we have 100% fill, so
the contribution amounts to

εmix
r (εmix

r − 1) = 1.839× 0.839 = 1.543. (52)

Similarly for the Z-term, the relative density of the cell pairs
for the U-terms amounts to 1/4, hence the Z-term is scaled
with

1

4
(εice
r − 1)

2
=

(2.168)2

4
= 1.175, (53)

and for the effective medium, all cell pairs count, but with
smaller polarizabilities γ, so Z is scaled with

(εmix
r − 1)

2
= 0.8392 = 0.704. (54)

The W-term, the Z-term and consequently the K-term are
relatively smaller for the effective medium theory approach
so the inversion of the equations will give rise to larger
amplitudes for the Fourier coefficients C̄m (47). The scaling
of the U-term is neutral because it is a factor on both sides
for the forward and substitution steps.

The approach of using effective medium theory such as two
parts Maxwell Garnett to estimate dielectric constant of the
inhomogeneous medium is shown to produce an inaccurate

result for mixed phase hydrometeors. This result shows that
mixing two media is not a linear process as it is assumed in
effective medium theories.

V. CONCLUSION

In this work we have introduced our new approach, the
Discrete Method which provides an efficient technique to
evaluate the scattering properties by irregular inhomogeneous
dielectric particles without using effective medium theories.
The key feature of this method is that the evaluation of the
scattering properties is computationally fast in both implemen-
tation and execution. For inhomogeneous particles composed
by two media such as dry snowflakes modelled with effective
medium theories, the DM compares well with Mie theory.
However, the DM shows that using mixing rules leads to an
overestimation of the scattering cross section. This is due to the
fact that mixing media is not a linear process as it is assumed.
Since in this work only the first degree of the expansion
of the Z-term is considered, the evaluation of the scattering
properties presented here is adequate for size parameter up
to 1. Our method also has the potential to be applied to an
ensemble collection of hydrometeors. In this case, the best way
to carry out the computation would be to evaluate K-term for
a suitably densely sampled set and carry out the inversion for
each scattering geometry as required.
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