
IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS 1

Autonomous Optimization of Swimming Gait in a
Fish Robot With Multiple Onboard Sensors

Wei Wang, Dongbing Gu, and Guangming Xie

Abstract—Autonomous gait optimization is an essential
survival ability for mobile robots. However, it remains a chal-
lenging task for underwater robots. This paper addresses this
problem for the locomotion of a bio-inspired robotic fish and
aims at identifying fast swimming gait autonomously by the
robot. Our approach for learning locomotion controllers mainly
uses three components: 1) a biological concept of central pat-
tern generator to obtain specific gaits; 2) an onboard sensory
processing center to discover the environment and to evaluate
the swimming gait; and 3) an evolutionary algorithm referred to
as particle swarm optimization. A key aspect of our approach
is the swimming gait of the robot is optimized autonomously,
equivalent to that the robot is able to navigate and evaluate its
swimming gait in the environment by the onboard sensors, and
simultaneously run a built-in evolutionary algorithm to optimize
its locomotion all by itself. Forward speed optimization experi-
ments conducted on the robotic fish demonstrate the effectiveness
of the developed autonomous optimization system. The latest
results show that our robotic fish attained a maximum swim-
ming speed of 1.011 BL/s (40.42 cm/s) through autonomous gait
optimization, faster than any of the robot’s previously recorded
speeds.

Index Terms—Autonomous optimization, central pattern gen-
erators (CPGs), gait evaluation, robotic fish, underwater naviga-
tion, underwater robots.

I. INTRODUCTION

OVER millions of years of evolution and natural selection,
animals have possessed astonishing locomotion skills

and fast gait-learning abilities to survive in the natural envi-
ronment, thereby providing a great variety of sources of
inspiration for robotics [1]–[3]. Similar to animals, an ideal
biomimetic robot should interact with its surroundings, learn
from the environments, and evolve locomotion controllers to
adapt to its circumstances. As one of the most fundamental
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research issues of biomimetic robots, locomotion control
has been extensively investigated in the literature. Previous
studies have significantly advanced the locomotion control
of biomimetic robots, and comparatively stable and flexible
dynamic gaits have been generated in various biomimetic
robots, such as fish robot [4]–[10], salamander robot [11], and
dolphin robot [12].

Gait optimization, as one of the essential survival abili-
ties for biomimetic robots, has been drawing more and more
attentions in the field of robotics in recent decades [13]. The
majority of the studies on gait optimization have focused
on terrestrial robots at present, such as biped robots [14],
quadruped robots [15], and modular robots [16]–[18]. By con-
trast, only a few studies are centered on the gait optimization
of swimming robots in the literature.

Previous work for swimming gait optimization can be
broadly divided into simulation-based and experiment-based.
Simulation-based optimization uses a simulator or a model to
optimize the swimming gait of robots. When an optimal gait is
acquired in the simulation, it is later transferred to the phys-
ical robot. For example, particle swarm optimization (PSO)
was adopted to search preferable parameters of the controller
for the speed of the robotic fish in simulations [19], [20],
which illustrates that PSO is a viable evolutionary algorithm.
Learning in the simulation, however, is not always feasible
because it is still difficult to precisely simulate the dynamics of
water environment at present. On the other hand, experiment-
based optimization employs the real robot to optimize the
swimming gait. Based on a gradient-free optimization algo-
rithm and a central pattern generator (CPG) model, an online
optimization framework was presented to search for the opti-
mal swimming and crawling gaits of an amphibious snake
robot [21]. Moreover, an online genetic algorithm (GA) opti-
mization approach was proposed to improve the capabilities of
the undulatory locomotion governed by a CPG controller [22].
These experimental studies have validated that the CPGs have
no problem dealing with the abrupt parameter changes during
the optimization process. However, existing experiment-based
optimization studies on swimming robots typically require
sources external to the robot, such as an external measurement
system, an auxiliary data processing center, or the assistance
from experimenters [21]–[24]. To the best of our knowledge,
autonomous gait optimization which is significant for the sur-
vival of swimming robots in complex aquatic environments
was not tackled in the literature. Therefore, autonomous gait
optimization is in urgent need of being developed and applied
to swimming robots.
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Motivated by the aforementioned discussion and based on
our previous work on the control [25] and localization of
robotic fish [10], [26], this paper proposes an autonomous
locomotion learning framework for underwater robots based
on three components: 1) a CPG model; 2) a sensory pro-
cessing center; and 3) an evolutionary algorithm referred to
as PSO. In particular, the locomotion of the robotic fish is
controlled by an artificial CPG model. It is inspired by the
biological CPGs that consist of coupled neural networks capa-
ble of producing rhythmic oscillatory patterns while receiving
simple adjustment signals from higher control centers [27].
Moreover, autonomous gait optimization requires the robot
to be able to navigate and evaluate its gait quality all
by itself. We develop an onboard sensory processing cen-
ter to solve the underwater perception and gait evaluation
problems.

Current underwater missions always require robots possess
a variety of capabilities, such as high speed, high effi-
ciency, excellent maneuverability, silent operation, and long
endurance. Some of these demands are mutually exclusive
and developing a versatile underwater robotic platform suit-
able for a multitude of missions is practically impossible.
The optimization objective of this paper is to maximize the
speed of the fish robot which is always required in real world
exploration, probe and survey missions. We demonstrate how
a swimming robot autonomously runs a built-in evolutionary
algorithm (PSO) to search for the “optimal” CPG parameters
that can produce the maximum speed for a given environment.

Because of the particularity of the water medium, under-
water robots are confronted with considerable difficulties
(for instance, many sensors and techniques are not available
underwater) in motion control [28], environment identifica-
tion, and gait quality evaluation, especially for those small
robots with limited computational capacities and low-cost
sensing devices. It is still challenging for underwater robots
to achieve autonomous gait optimization. This paper aims
at exploring the possibilities of autonomous gait optimiza-
tion for swimming robots. We propose an autonomous gait
optimization framework for underwater robots and primarily
address the problems of underwater perception and gait eval-
uation. Compared with previous online gait optimization for
swimming robots [21], [22], [24], the novelty here is the learn-
ing/optimizing with autonomy. The developed optimization
system does not require the assistance of any external pro-
cessing center or the experimenter, i.e., the robot is capable of
evaluating its speed and assessing its environment all by itself.
Thus, the gait optimization is conducted with minimal human
attention. Being able to optimize the gaits autonomously is of
great significance for underwater robots. Indeed, it might be
one of the solutions for underwater robots to adapt their gaits
to the real aquatic environments.

The remainder of this paper is organized as follows. The
robot prototype is briefly introduced in Section II. The frame-
work of the autonomous gait optimization is proposed in
Section III. Section IV presents the CPG controller of the
robot. Environment perception and gait evaluation for under-
water robots are tackled in Section V. The optimization
algorithm is described in Section VI. Section VII shows the

Fig. 1. Mechanical and hardware configurations of the fish robot. (a) Concept
design. (b) Robot prototype.

process of speed optimization of the robot. Gait optimiza-
tion experiments and the related discussion are provided in
Section VIII. Section IX concludes this paper with an outline
of future work.

II. ROBOTIC FISH PROTOTYPE

The optimization experiments are carried out with a robotic
fish capable of multiple swimming modes, such as swim-
ming forwards/backwards, turning, and pitching. This section
describes the mechanics, electronics, sensors, and the CPG
controller of the robot. The present robot is an improved ver-
sion and holds the following improvements compared with
the old version [25]: 1) high-fidelity shape; 2) good water-
tight design; 3) high-performance processor; 4) large-torque
servomotor; and 5) multiple sensors.

A. Mechanical Design

As shown in Fig. 1, the robot consists of a well-streamlined
shape, a pair of pectoral fins, and one caudal fin. It is inspired
by the yellow-spotted boxfish in nature. The upper hull is made
of acrylonitrile butadiene styrene resin leaving a transparent
window for the view of the camera. The bottom uses 6061
aluminum alloy. A transparent window is left on the lower
hull for the view of the infrared sensor. Static and dynamic
sealing are designed to ensure longstanding waterproofness.
A sealing ring is entangled on each driving shaft to keep out
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Fig. 2. Circuit control system of the robot. (a) Hierarchical electrical block diagram of the system which contains five parts: power circuit, Raspberry Pi,
IMU, sensor board, and servo board. (b) Photograph of the printed circuits.

TABLE I
TECHNICAL SPECIFICATIONS OF THE ROBOT PROTOTYPE

the water when the shaft is rotating. An O-ring is attached to
the outer sleeve of the shaft to block the chink between the
driving device and the hull.

B. Electronics and Sensors

Diversified sensors including camera, inertial measurement
unit (IMU), pressure sensor array, and infrared sensor are
installed on the robot, as shown in Figs. 1 and 2. The Logitech
Webcam C110 is adopted to acquire high-resolution surround-
ings. The developed IMU is arranged in parallel with the robot
body principal axes to monitor the yaw, pitch, and roll of
the robot with a sampling rate of 50 Hz. Pressure sensors
are employed to evaluate the speed of the robot. The pres-
sure sensor CP131 from Consensic, Inc. is adopted. It has
been fully calibrated and provides a 0.1 Pa resolution and a
30–120 kPa scale range. The infrared sensor GP2D12 is used
to measure the distance between the robot and the border of
the tank. Raspberry Pi is adopted as the main controller to ful-
fill the real-time requirements of the optimization. Moreover,
three 32-bit auxiliary processors, STM32F103, are used for
multisensor data preprocessing, locomotion control, and atti-
tude calculation, respectively. A hierarchical hardware system
is therefore generated as presented in Fig. 2. The robot is oper-
ated by a Linux system (Debian), and the specifications are
listed in Table I.

Fig. 3. Proposed gait optimization framework. The arrow direction indicates
the information flow, such as the commands and robot states.

III. FRAMEWORK OF AUTONOMOUS

GAIT OPTIMIZATION

The primary purpose of gait optimization is to obtain the
optimal parameters of the locomotion controller regarding the
speed, efficiency, or flexibility. Then, the robot will generate
the highest qualities of gait in a given environment. In general,
the robot should be provided with several critical func-
tional modules to achieve autonomous gait optimization. As
shown in Fig. 3, an autonomous gait optimization framework
is proposed for underwater robots. The framework contains
six essential elements: 1) mechanical system; 2) locomo-
tion controller; 3) sensory processing system; 4) optimization
algorithm; 5) pose regulation system; and 6) the environ-
ment. In this paper, we stress on the locomotion controller
and the sensory processing system for identifying the robot’s
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nearby aquatic environment and for assessing the speed
of the robot.

The mechanical system refers to the actuators, motors, fins,
and legs of the robot. It receives the motor commands from the
locomotion controller and produces a corresponding motion
(named as the gait) acting on the external environment. The
sensory processing system includes onboard sensors and the
related navigation and gait assessment algorithms. It monitors
the internal physical states (e.g., the gait quality, the robot
position, and orientation) and the external environmental states
(e.g., the obstacles and boundaries), thereby providing critical
information for the optimization algorithm and pose regulation
system. The locomotion controller is responsible for producing
various motion commands according to the control parameters.
It can receive both candidate parameters from the optimization
algorithm and preparatory parameters for pose regulation from
the pose regulation system. By acquiring the feedback from
the sensory processing system, the pose regulation system can
always adjust the robot pose to prepare for the execution of the
candidate gait. The pose regulation system orders the start and
the stop of the execution of candidate gait in each trial. The
gait optimization algorithm can be an evolutionary algorithm,
such as PSO and GA [15], [22], [23], or a gradient-free opti-
mization method, such as Powell’s method [17], [21]. After
each trial, the optimization algorithm receives the evaluation
of the candidate gait from the sensory processing center and
creates new candidate gait.

IV. CENTRAL PATTERN GENERATOR MODEL

CPG models benefit rhythmic motion control of bio-inspired
robots, such as bipedal robots [29], robotic fish [25], [30],
and salamander robot [11]. Many artificial CPG models have
been proposed in the literature, such as Matsuoka’s [31]
CPG model, Ijspeert et al.’s [11] CPG model, and
Zhou and Low’s [7] CPG model. We simplify the CPG model
in [11] by linearizing the phase oscillator and strictly prove its
stability in this paper. As shown in Fig. 4, the CPG controller
consists of three coupled oscillators and takes the form

ȧi = αi(Ai − ai) (1a)

ẋi = βi(Xi − xi) (1b)

φ̇i = 2π fi +
∑

j∈Ti

μij
(
φj − φi − ϕij

)
(1c)

θi = xi + ai cos(φi) (1d)

where ai, xi, and φi are the state variables and denote the
amplitude, offset, and phase of the ith oscillator, respectively.
θi is the output of the ith oscillator. fi, Ai, and Xi are the
control parameters for the desired frequency, amplitude, and
offset of the ith oscillator. ϕij is the control parameter for the
desired phase difference between the ith oscillator and the jth
oscillator. μij is a constant coefficient denoting the coupling
strength between the ith oscillator and the jth oscillator. αi and
βi are constant coefficients affecting the convergence rate of
the CPG controller. Ti is the set of the neighbors of the ith
oscillator. Subscripts i = 1, 2, and 3, respectively, represent
the left pectoral fin, right pectoral fin, and tail of the robot.

Fig. 4. CPG network of robotic fish.

We first put forward three assumptions as follows for the
stability proof of the CPG model: 1) αi = α, βi = β, and
μij = μ, where α ∈ R

+, β ∈ R
+, and μ ∈ R

+; 2) ϕij =
ϕj − ϕi, where ϕi ∈ R and ϕj ∈ R; and 3) fi = f , where
f ∈ R. Equations (1a) and (1b) define the dynamics of the
amplitude and offset of oscillator i, and the solutions is derived
as follows:

ai(t) = Ai + (Ai0 − Ai)e
−α(t−t0) (2)

xi(t) = Xi + (Xi0 − Xi)e
−β(t−t0). (3)

It is clear that ai(t) and xi(t) will converge exponentially to
Ai and Xi from any initial states, respectively.

By setting zi = φi − ϕi, (1c) will convert to

żi = 2π f +
∑

j∈Ti

μ
(
zj − zi

)
. (4)

According to the algebraic graph theory, (4) can be trans-
lated to the matrix form

ż = −Lz + 2π f 1 (5)

where z = [z1 z2 . . . zN]T , 1 donates an N × 1 column vector
of all ones, and L = (lij)N×N donates the Laplacian matrix of
the CPG network and takes the form [32]

lij =
{
(N − 1)μ, i = j
−μ, i �= j.

(6)

Since, μ is real, L will be a real, symmetric, and semidefi-
nite positive matrix. It has N non-negative eigenvalues: λ1 ≤
λ2 ≤ . . . ≤ λN . L can be further diagonalized as

TTLT =

⎡

⎢⎢⎣

λ1
λ2

. . .

λN

⎤

⎥⎥⎦ (7)

where T is an orthogonal matrix satisfying TTT = I, and I
is the identity matrix. By setting z = Ty, (5) is rewritten as
follows:

ẏ = −T−1LTy + 2π fT−11. (8)

T can be further expressed as T = [η1 η2 . . . ηN] where ηi is
a column vector. Hence, (9) can be expressed as follows:

ẏi = −λiyi + 2π f ηT
i 1. (9)

Each oscillator is affected by the other N−1 oscillators, then
the graph is complete. From (6), the sum of every row of L will
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(a)

(b)

(c)

(d)

(e)

(f)

Fig. 5. Effects of changing the parameters of the CPG network. In this
simulation, we set A1 = A2 and Xi = 0. (a) Beating frequency. (b) Oscillation
amplitude. (c) Phase difference. (d)–(f) CPG outputs. At t = 4 s, the frequency
is changed abruptly to 2.0 Hz. At t = 8 s, A1 and A3 are changed to 20◦ and
ϕ12 and ϕ13 are changed to 90◦ and 45◦, respectively. At t = 12 s, A1 and
A3 are set, respectively, to 15◦ and 30◦, and ϕ12 and ϕ13 are set, respectively,
to 180◦ and 90◦.

be zero, which indicates that L always has a zero eigenvalue,
λ1 = 0. According to the properties of orthogonal matrix, two
results will be achieved: 1) 1 = √

Nη1 and 2) ηT
i η1 = 0 where

i �= 1. Then, (9) is solved as follows:

yi =
{

2π f
√

Nt + yi(0), i = 1
e−λityi(0), i = 2, 3, . . . ,N

(10)

where yi(0) is the initial state of yi. yi(i ≥ 2) will attenuate
exponentially to zero as t → ∞. Then, zi converges to 2π ft +
z1(0) where z1(0) = (1/

√
N)y1(0) and

φi = zi + ϕi → 2π ft + z1(0)+ ϕi (11)

φj = zj + ϕj → 2π ft + z1(0)+ ϕj. (12)

Therefore, φj − φi → ϕij as t → ∞ and (1c) is stable.
The above derivation proves that the CPG can exert limit

cycle behavior. It adapts to any rapid parameter change and
converges to the modified oscillation after a short transient
period. An illustrative example of how the CPG reacts to
the parameter changes is shown in Fig. 5. it is evident
that when the parameters abruptly changed the oscillator
can still converge smoothly to the new limit cycle without
discontinuities.

The CPG model typically acts as a type of motion gen-
erator shaped by a set of control parameters {f ,Ai,Xi, ϕij}.
At present, the parameter tuning of the CPG controller is
not solved satisfactorily. CPG parameters are usually adjusted
by hand, which is difficult, time-consuming and inefficient.
This paper attempts to optimize the CPG parameters in an
autonomous manner. Indeed, autonomous gait optimization
requires the robot to perceive its near environment and evalu-
ate its swimming gait all by itself. These problems are tackled
in this paper and presented in the following section.

V. AUTONOMOUS PERCEPTION AND GAIT EVALUATION

Since, the robot optimizes its gaits in the confined space, the
robot should first be able to know where it is and where the

Fig. 6. Flow diagram of the proposed underwater image processing algorithm.

boundaries are. Moreover, the robot should assess the qual-
ity of its gaits by itself. Compared with terrestrial robots,
underwater robots are confronted with more difficulties in
identifying their near environments and evaluating their swim-
ming gait qualities, especially for the small robots with limited
computational capacities and low-cost sensing devices. The
reason why we use low-cost sensors is twofold. First, these
cheap devices are affordable for most of the current robots.
The developed system can be then transferred to applications
more smooth. Second, low-cost devices usually have worse
performance than the expensive sensors. Hence, the developed
algorithms with low-cost devices will have better adaptability.
Note that the environment perception and speed evaluation
algorithms constitute the sensory processing system of the
proposed gait optimization framework.

A. Aquatic Environment Perception

The robot speed is estimated by the pressure sensors, and
the precision is affected by the duration of the evaluation.
Considering the limitation of the water tank in the labora-
tory, we have to order the robot activities to ensure that
the robot can execute the trial as long as possible. Vision
is always served as one of the primary sources to assist
robot control [33], [34]. Therefore, the robot roughly esti-
mates its position by the onboard camera and two landmarks
are employed to improve the identification. In particular, we
proposed an online image processing algorithm to help the
robot assess its position. Moreover, we developed a tiny IMU
to monitor the robot orientation and adopted an infrared sensor
to detect the boundaries of the environment.

1) Underwater Image Processing: The proposed online
image processing algorithm is shown in Fig. 6. Here, we
address the distance and relative angle calculation. More
details can be referred to our related work [10], [35]. Based on
the estimated distance d and the relative angle γ , the robot’s
position can be roughly achieved [35].
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Fig. 7. Schematic of the distance and angle calculation.

As shown in Fig. 7, the distance d and the angle γ can be
calculated with the following forms:

d =
√

dc
2 + m2 =

√(
df h

ho

)2

+
(

moh

ho

)2

(13)

γ = arctan
m

dc
(14)

where dc the distance between the optical center of the cam-
era and the center of the field, m the distance between the
center of the field and the center of the landmark, mo the
distance between the center of field and the center of the land-
mark in the image plane, h the height of the landmark, and
ho the height of the landmark on the image plane. df denotes
the focal length of the camera obtained by df = dminL0/h
where L0 denotes the height of the image plane in pixels. dmin
denotes the distance between the camera and the landmark
when the landmark fully fills in the image plane in the lon-
gitudinal direction. h is the height of the landmark. The unit
of ho, mo, df , and L0 is pixel and the unit of m, h, and dmin
is meter. Fig. 8 shows the estimated distance and angle when
the robot is swimming. The real distance between the robot
and the landmark is obtained by the tracking platform devel-
oped by our laboratory [36]. The experiment is performed as
follows. First, the robot catches the sight of a valid landmark
at a distance of 140 cm. Then it swims toward the landmark
with an approximate speed of 8 cm/s at t = 12 s. Five exper-
iments are conducted to determine the accuracy of d and φ.
The accuracy of d is 3.52 cm ± 1.2 cm, and the accuracy of
φ is 2.36◦ ±0.96◦ while the robot is moving.

In summary, the robot can assess the distance d and relative
angle γ through the proposed image processing. Because the
position of the landmark is predefined, the robot can localize
itself accurately by the use of onboard camera and IMU [10].

2) Robot Orientation Perception: The robot can adjust
itself to a correct direction range by the use of IMU and
swim as long as possible in the narrow water space. The
direction-cosine-matrix (DCM) algorithm is used to calculate
the attitudes including yaw, pitch, and roll [37]. According to
the DCM algorithm, the accuracy of the yaw angle primarily
depends on the compass. However, the compass is suscep-
tible to the magnetic disturbances from the robot, such as
the servomotor, battery, and the other circuits. The orientation

(a) (b)

Fig. 8. Evaluated (a) distance and (b) angle.

Fig. 9. Calibrating setup for the IMU.

Fig. 10. Calibrated orientation results of the robot. Error bars are shown but
may be obscured by data symbols.

error sometimes can reach 30◦ on the robot. Such a signifi-
cant error largely affects the robot navigation. Assuming the
magnetic fields around the robot are constant, we propose an
efficient calibration method. The calibration scene is illustrated
in Fig. 9, where the robot is placed at the center of an azimuth
disc. The measured yaw angle and the real value are recorded
each 10◦ in the experiment. The tests are conducted at four
positions of the robot’s active region to eliminate the envi-
ronmental impact. The experiments are repeated five times at
each position. The calibrated orientation is acquired by the
piecewise data fitting method. As shown in Fig. 10, the maxi-
mum error decreases approximately to 2◦ after the calibration.
The calibrated direction is regarded as the true direction of the
robot.
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Fig. 11. Measured distance by the infrared sensor. Error bars are shown but
may be obscured by data symbols.

3) Boundary Detection: The robot should stop the candi-
date gait correctly to avoid possible damages and disturbances
to the gait evaluation. An infrared sensor is used to monitor the
distance between the robot and the tank boundary. The detect-
ing range becomes smaller when the infrared sensor works
underwater. We need to calibrate the infrared sensor under
the water. The experiment is conducted as follows. First, the
sensor is fixed underwater and faces to the wall of the tank.
Then every 2.5 cm, the output voltage of the infrared sensor is
recorded. The experiments are repeated ten times. As depicted
in Fig. 11, the relationship between the measured distance and
the output voltage can be derived by using a linear regression
model

dinf = −22.26Uinf + 79.94 (15)

where dinf denotes the evaluated distance and Uinf denotes the
output voltage.

B. Swimming Gait Quality Evaluation

Swimming speed is optimized to show the effectiveness
of the proposed autonomous gait optimization approach. At
present, few small underwater robots can accurately evalu-
ate their speeds online. We use pressure sensors to tackle the
problem of speed evaluation for small underwater robots.

If the robot is towed horizontally in the still water, the pres-
sure sensor at the tip of the nose measures the stagnation
pressure ps according to Bernoulli equation. The stagnation
pressure is equal to the sum of the static pressure psw and the
dynamic pressure

ps = psw + 1

2
ρvf (16)

where ρ is the density of water and vf is the towed velocity.
vf can be derived from (16) by the use of pressure sensor at
the tip of the nose when the robot is towed. However, we find
that this relation does not hold for freely swimming robotic
fish because rotary and lateral movements also exist [38]. We
therefore use the data-driven method to derive the relationship
between the pressure readings and the robot speed.

Fig. 12. Distribution of nine pressure sensors around the body of the robot
(from top view).

Fig. 13. Pressure readings when the robot was freely swimming forwards
at different speeds.

The depth of the robot largely affects the pressure accord-
ing to the pressure formula in a liquid. Hence, the depth of
the pressure sensor (namely the depth of the robot) should
be constant change while the robot is swimming. We set
Xi = 0 (i = 1, 2, 3) to preclude any forces in the vertical
plane and set A1 = A2 to produce forward swimming [38].
Moreover, the buoyancy of the robot is trimmed to be greater
than the gravity of the robot. These configurations guarantee
that the robot always swims in the horizontal plane during
experiments. Furthermore, IMU data shows that pitch and roll
oscillatory motions do exist but have very small amplitudes
(typically less than 1◦). The oscillation center is nearly zero.
Therefore, we can ignore the pressure changes caused by the
effects of pitch and roll motions in the average sense.

Fig. 12 shows the distribution of the pressure sensors on
the robot. We recorded the pressure readings of these nine
sensors when the robot was swimming forwards at differ-
ent speeds in the tank. The experiment was conducted as
follows. The robot is started to swim from one side of the
reservoir and its speed was precisely estimated by the devel-
oped vision tracking platform [36]. The robot was stopped
when it approached the opposite side of the tank. The speed
derived by the tracking software is regarded as the real speed
of the robot. The pressure data in the accelerating phase was
removed. The experiments were repeated five times for each
speed. five times. The measurements in still water were taken
as a reference (0 Pa). Fig. 13 shows that the pressure dif-
ferences increased with the swimming speed. The foremost
sensor (p0) always measured the highest pressure. The pres-
sure decreased gradually toward the sides. We employed the
average (p̄) of p0, pL1, and pR1 as an indicator of the robot
speed.

Assuming the quadratic relationship between the speed and
the pressure still holds, the identified model is expressed as
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Fig. 14. Relationship between the swimming speed of the robot and the
sensor readings.

vf = ap
√

p̄ + bpp̄ + cp. Fig. 14 shows the average pressure
p̄ at different speeds. According to the data in the figure, the
relationship between the speed and the pressure is derived

vf = 10.585
√

p̄ − 0.367p̄ − 36.786 (17)

where vf denotes the freely swimming speed of the robot.
The unit of vf is centimeter per second while the unit of p̄
is Pa. The pressure sensor readings are online recorded when
the robot is carrying out the candidate gait and the speed of
the robot for relevant CPG parameters was online evaluated
by (17).

VI. OPTIMIZATION ALGORITHM

The function we want to optimize is the speed vf (�s) of the
robot, where �s is the parameter vector containing the CPG
parameters to be optimized, i.e., the frequency f , the ampli-
tude Ai, the phase difference ϕij, and the oscillation offset Xi.
Since, we do not have any gradient information for vf (�s), the
gradient-based methods are avoided. Moreover, as we want
to find a global optimum for the speed, Powell’s methods are
probably inappropriate because these methods have a high risk
of convergence to a locally optimal solution. Furthermore, the
convergence time is critical in the context since the robot has
a limited battery life. The algorithm we chose is the PSO
method. PSO a population-based evolutionary algorithm and
can always converge rapidly in developing the better locomo-
tive gaits of many kinds of robots, such as biped robots [39],
swimming robots [19], [20], and modular robots [18].

For completeness, a brief review of the PSO algorithm is
described here. PSO is inspired by the social behavior of
bird flocking and fish schooling. It is initially proposed by
Kennedy and Eberhart [40]. It is a kind of population-based
evolutionary algorithm, exploring optimal solutions through a
population of particles. The position xi and velocity vi, respec-
tively, represent the parameter values and the search direction
of particle i. The iteration equation takes the form

vt+1
i = wvt

i + c1Ut
1

(
pi − xt

i

) + c2Ut
2

(
pg − xt

i

)
(18)

xt+1
i = xt

i + vt+1
i (19)

where pi is the personal best-known position of particle i and
pg is the global best-known position of all particles, t is the
current generation of particles and t+1 is the next generation.

Fig. 15. Sketch map of the experimental scene.

Fig. 16. Flow chart of one evaluation trial during optimization experiment.

c1 and c2 are the cognitive factor and the social factor, respec-
tively. U1 and U2 are two pseudo-random numbers from 0–1.
w denotes the inertia weight and it is introduced to improve
the convergence speed of PSO.

VII. AUTONOMOUS SPEED OPTIMIZATION PROCESS

This section describes how an underwater robot searches
the parameters of CPG controller for the maximum speed
autonomously in a confined water environment.

A sketch map of the optimization process is shown in
Fig. 15. It should be noted that a trial in this paper is referred
to that a candidate gait with a set of control parameters is cor-
rectly started, carried out, stopped, and evaluated by the robot.
As the space limitation of the laboratory, the experiment is
conducted in a 300 cm × 200 cm tank. Two landmarks are
placed at the diagonal corners to improve the environmental
identification. Once the gait optimization task is initialized, the
procedure of each trial is the same until a stop condition is
met. A flowchart of the procedure for each trial is depicted in
Fig. 16, and detailed description of the procedure is presented
below.

A. Search for the Landmark

Either the optimization task is started or a trial is finished,
the robot will search for the landmark in the tank. If the robot
finds the landmark through the aforementioned image process-
ing, it will go to the pose regulation area (PRA) with the
help of the landmark. Otherwise, the robot turns itself until
it catches sight of the landmark. Turning motion is achieved
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by oscillating all the fins to reduce the turning radius. More
specifically, the robot oscillates its tail with a nonzero offset
and simultaneously oscillates its paired pectoral fins with an
180◦ offset difference to achieve turning motion.

B. Swim to Pose Regulation Area

If the robot detects the landmark, it swims to the landmark
slowly. The tracking strategy is keeping the landmark in the
middle of the robot’s view, meaning that the angle γ defined
in Section V-A1 should be zero. This angle can be minimized
by adjusting the tail offset of the robot. We use a potential
difference controller to minimize the angle

X3 = −kpγ − kdγ̇ (20)

where X3 stands for the tail offset of the CPG model in
Section IV. At the same time, the distance d between the robot
and landmark defined in Section V-A1 is also monitored by
the robot. If the distance is smaller than the threshold distance
dr

th, the robot reaches the PRA.

C. Regulate to Proper Orientation Range

After the robot arrives at the PRA, it will search for the right
direction range by spinning in place to ensure that the robot
can execute the candidate gait as long as possible. Spinning
motion is achieved by oscillating the paired pectoral fins with
an 180◦ offset difference. Specifically, if the robot is in PRA
A, it will spin slowly until the orientation ψ satisfies ψA

min ≤
ψ ≤ ψA

max; if the robot is in PRA B, it will spin until ψ
satisfies ψB

min ≤ ψ ≤ ψB
max.

D. Load the Candidate Parameters Generated by PSO

If the robot orientation reaches the correct direction range,
it will load a set of candidate parameters (produced by PSO)
into the CPG controller.

E. Execute the Candidate Gait

Next, the robot conducts the candidate gait in the gait
optimization area until a stop signal is satisfied. Pressure sen-
sor readings are recorded while swimming. These pressure
readings will be used to assess the gait quality.

F. Stop the Candidate Gait

In the confined environment, each trial is arrested felic-
itously to avoid the wall effects on the gait evaluation as
well as the damages to the robot. The distance dinf measured
by the infrared sensor is adopted as a stop signal for each
trial. Concretely, the candidate gait is stopped if dinf satisfies
dinf ≤ dw

th, where dw
th is a threshold distance. Stopping the

candidate gait means that the robot stops moving as well as
recording the pressure data.

G. Evaluate the Gait Quality

After the candidate gait is stopped, the robot speed is
assessed online by the pressure sensor readings according
to (17). Typically, the robot can reach steady state in 3 s.
Hence, we remove the pressure data in the first 3 s for ensur-
ing the accuracy of the evaluation. In the end, the evaluated
swimming speed serves as the fitness/value of the function for
the candidate CPG parameters in the PSO algorithm.

Fig. 17. Swimming tank with two landmarks in the experiment.

VIII. RESULTS AND DISCUSSION

In this section, the speed optimization experiments with the
robotic fish were carried out to validate the feasibility of the
developed autonomous gait optimization system.

A. Experimental Description

The experiments are conducted in a tank with the size of
300 cm × 200 cm × 30 cm, as shown in Fig. 17. According to
the force analysis of the robot [38], forward swimming can be
achieved by equating the amplitude of pectoral fins (A1 = A2)
and zeroing the offsets of all the fins (X1 = X2 = X3 = 0).
After that, the parameters to be optimized change to red�s =
{A1,A3, ϕ12, ϕ13, f }. Typically, the frequency f does not need
to be optimized [21] since previous studies indicate that the
robot speed increases linearly with the frequency approxi-
mately for a wide range of the frequency [25], [41]. Moreover,
multiple optimal speeds may satisfy various demands in prac-
tical applications. Therefore, the parameters to be optimized
simplify to �s = {A1,A3, ϕ12, ϕ13}. The optimization experi-
ments were conducted at f = 1 Hz, f = 1.5 Hz, f = 2 Hz,
and f = 2.5 Hz in this paper. Considering of the convergence
speed and the battery life, the number of the particle is selected
as Np = 10 and the number of the iteration is Ng = 10.

The first generation is created by random selection of the
CPG parameters. The ranges of the parameters are determined
by the mechanical restriction and the power limitation of the
servomotor. Table II presents the ranges of the CPG parameters
in the experiments. The maximum searching speed for each
CPG parameter is determined by a large number of tentative
experiments. The maximum searching speeds for A1, A3, ϕ12,
and ϕ13 are, respectively, Vmax

A1
= (Amax

1 − Amin
1 )/2, Vmax

A3
=

(Amax
3 −Amin

3 )/2, Vmax
ϕ12

= (ϕmax
12 −ϕmin

12 )/3, and Vmax
ϕ13

= (ϕmax
13 −

ϕmin
13 )/3.
At the earlier stage, we manually searched for the opti-

mal CPG parameters in an exhaustive way. The sketch map
of the experiments is shown in Fig. 18 and the experiment
process is described as follows. Through wireless control,
we modulated the robot to the corner of the tank and then
commanded the robot to perform forward swimming. The
speed was precisely evaluated by the vision tracking plat-
form [36]. Finally, the robot was stopped to avoid possible
wall effects when it approached the edge of the tank. Each
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Fig. 18. Sketch map of the manual experiments for best CPG parameter.

TABLE II
RANGES OF THE CPG PARAMETERS

set of CPG parameters was evaluated in five trials, and its
final speed was the average of the five scores. We fixed the
frequency and phase difference of the CPG parameters in the
experiments to reduce the number of the trials. In particu-
lar, we searched for the maximum speed for two groups of
CPG parameters: 1) f = 1 Hz, Xi = 0◦, ϕ12 = 0◦, ϕ13 =
0◦, A1(

◦) ∈ {0, 5, 20, 25, 20, 25, 30, 35, 40}, and A3(
◦) ∈

{30, 35, 40, 45, 50, 55, 60} and 2) f = 1 Hz, Xi = 0◦, ϕ12 =
180◦, ϕ13 = 90◦, A1(

◦) ∈ {0, 5, 20, 25, 20, 25, 30, 35, 40},
and A3(

◦) ∈ {30, 35, 40, 45, 50, 55, 60}. It took 630 trials
to complete these experiments and took more than 10 h.
Fig. 19 shows the obtained speeds with the relevant control
parameters. The maximum speed for the first group of CPG
parameters is 27.34 cm/s with the parameters {A1 = 0◦, A3 =
60◦} and the maximum speed for the second group is 27.85
cm/s with the parameters {A1 = 5◦, A3 = 60◦}. Assuming
the maximum speed is sought from the following integral
parameter spacing 10◦ {A1 ∈ [0◦, 30◦], A3 ∈ [30◦, 60◦],
ϕ12 ∈ [−180◦, 180◦], and ϕ13 ∈ [−180◦, 180◦]}, the eval-
uations would totally take about 72 days for a particular
beating frequency. It is obvious that an efficient autonomous
gait optimization system is extremely required.

B. Autonomous Gait Optimization Results

As mentioned above, the autonomous optimization exper-
iments were conducted for four frequencies: 1) f = 1 Hz;
2) f = 1.5 Hz; 3) f = 2 Hz; and 4) f = 2.5 Hz. The robot nav-
igated in the small tank, evaluated its gaits and optimized its
speeds all by itself. The results were recorded online in an SD
card by the onboard Linux operating system. The optimization
took 100 (Np × Ng) evaluations for each frequency.

Fig. 20 shows the individual, best and average fitness scores
(i.e., the speed) for the population of particles. For each gen-
eration, the best score represents the highest speed of the

(a)

(b)

Fig. 19. Manually evaluated speeds at f = 1 Hz for phase differences
(a) ϕ12 = 0◦, ϕ13 = 0◦ and (b) ϕ12 = 180◦, ϕ13 = 90◦, respectively.

ten particles, and the average score stands for the average
speed of the ten particles. Both best and average fitness scores
increase gradually. At f = 1 Hz, the algorithm sought out the
highest speed of 31.21 cm/s (0.7803 BL/s) with the corre-
sponding parameters {A1 = 5.3◦, A3 = 60.0◦, ϕ12 = 134.7◦,
ϕ13 = −115.3◦}. The “best” speed here is higher than that of
the speed (27.85 cm/s) found by an exhaustive way. One pos-
sible reason is that the phase differences contribute the speed,
but they are fixed in the manual experiments. Similarly, the
algorithm developed the best speeds of 37.40 cm/s (0.9350
BL/s), 40.42 cm/s (1.011 BL/s), and 34.37 cm/s (0.8593 BL/s),
respectively, for f = 1.5 Hz, f = 2.0 Hz, and f = 2.5 Hz with
the corresponding optimal parameters {A1 = 8.9◦, A3 = 48.9◦,
ϕ12 = 146.2◦, ϕ13 = −70.4◦}, {A1 = 8.1◦, A3 = 39.8◦,
ϕ12 = 139.7◦, ϕ13 = −98.0◦}, and {A1 = 9.6◦, A3 = 29.9◦,
ϕ12 = 35.0◦, ϕ13 = 131.3◦}. It can be seen that the best and
average scores have approached to the optimal speeds from
the sixth generation/iteration. It indicates that the algorithm is
searching in the right direction and would discover the best
value ultimately. These results demonstrate the effectiveness of
the developed autonomous gait optimization system for under-
water robots. It is interesting that the optimal speed increases
along with the beating frequency from 1 to 2 Hz, which is
consistent with the previous experimental and theoretical stud-
ies [25], [38], [41]. However, the optimal speed decreases from
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(a)

(b)

(c)

(d)

Fig. 20. Individual, best and average fitness scores in the optimization
experiments. (a) f = 1 Hz. (b) f = 1.5 Hz. (c) f = 2 Hz. (d) f = 2.5 Hz.

2 to 2.5 Hz. Strouhal number (St) is an important dimen-
sionless quantity observed in nature. Triantafyllou et al. [42]
argued that fishes exhibit maximum propulsive efficiency in
the interval 0.25 < St < 0.35. We calculate the Strouhal num-
ber of the tail for the four frequencies. They are 0.277, 0.302,

Fig. 21. Average values of the fin amplitude in the experiments. In the figure,
“T” represents tail and “PF” represents pectoral fin.

0.317, and 0.363, respectively, for 1, 1.5, 2, and 2.5 Hz. It indi-
cates that the swimming efficiency of the robotic fish should
be less inefficient at the frequency of 2.5 Hz.

The evolution of the fin amplitude is further analyzed. As
shown in Fig. 21, it is remarkable that the tail amplitude
gradually gets larger while the magnitude of the pectoral fins
gets smaller along with the evolution. This partly confirms the
biology-inspired concept that fish primarily rely on the cau-
dal fin for propulsion in fast swimming and employ the paired
fins for maneuvering and stabilization [43]–[45]. One possible
reason could be that the large-amplitude movements of pec-
toral fins disturb the mechanism of force generation of the tail.
This speculation is also supported by the experimental results
in Fig. 19 that the robot speed declines as the amplitude of the
pectoral fins get larger. Moreover, this phenomenon emerging
on our boxfish-like robot is consistent with the behavior of its
natural counterpart that boxfish always beats its tail fin while
adducting its pectoral fins in fast swimming [46]. The fact that
the tail is the main power in fish swimming has been well
recognized and demonstrated in previous studies [25], [47].
However, it is the first time to the best of our knowledge that
this swimming mechanism is explored from an evolutionary
perspective.

C. Discussion

We have developed an autonomous learning framework con-
taining a CPG, a sensory processing center and an evolutionary
algorithm for underwater robots. The main contributions are
as follows.

1) The autonomous optimization framework for fast learn-
ing in the water.

2) The algorithms of navigation and gait evaluation for
underwater robots.

3) The onboard implementation of a CPG controller that
offers an ideal substrate for gait generation and online
optimization.

We have strictly proved the stability of the presented CPG
model. As established in Section IV, the CPG model can
smoothly adapt to parameter changes and synchronize to the
desired phase difference between oscillators. This characteris-
tic makes the CPG controller an ideal building block that offers
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the robot to run the learning algorithm in parallel with the
CPG in real time. The experiments have demonstrated that the
robot is able to optimize its swimming speeds autonomously.
The approach is significantly faster than that of the system-
atic gait evaluations. For instance, a systematic exploration
of the 4-D parameter space with ten steps for each param-
eter requires 10 000 evaluations in our experiments, whereas
the learning method can achieve a very similar result with
only 100 evaluations. Moreover, the optimal gaits also con-
firm a concept that fish rely on the caudal fin for propulsion in
fast swimming, which indicates an alternative approach to the
study of swimming mechanism of aquatic animals. Multiple
onboard sensors and related algorithms are collectively formed
a sensory processing center helping the robot to navigate and
assess its gaits with great autonomy. The adopted sensors are
low-cost and consumes little energy. Therefore, the proposed
method is easy to be implemented on small underwater robots.
Moreover, pressure sensors are adopted to estimate the speed
of the underwater robot, which provides a new solution for the
speed evaluation of small underwater robots. The current data-
driven method for speed evaluation has limitations for general
application, and we are now investigating the model-based
approach.

The proposed approach is more practical for underwa-
ter robots in contrast with the simulation-based optimization
in [19] and [20] as mentioned in the introduction. We believe
that the empirical approach is the only reliable way for the gait
optimization of underwater robots because the unstructured
water environment cannot be modeled accurately at present.
Moreover, the proposed approach does not need the assis-
tance from the external processing centers or the experimenters
compared with the experiment-based optimization methods
in [21]–[23]. It can be performed with minimal human atten-
tion, and therefore, has the highest autonomy. The pair of the
landmarks is used to guide the robot to carry out the candi-
date gait as long as possible in the confined space. The two
landmarks could be removed if the robot is operated in a wide
water space. The robot can just perform the candidate gait for
a period while avoiding the boundaries of the water area.

IX. CONCLUSION

In this paper, we have developed an autonomous gait opti-
mization system for underwater robots for the first time. The
optimization system is mainly based on three components:
1) an artificial CPG controller; 2) a sensory processing cen-
ter; and 3) an evolutionary algorithm. The CPG controller
is responsible for generating locomotion gaits. Environment
perception and gait evaluation are first tackled by the sen-
sory processing center with the help of multiple onboard
sensors. In particular, the camera, IMU, and infrared sen-
sor are collectively adopted to help the robot navigate in the
environment. The pressure sensors are introduced to evaluate
the gait quality of the underwater robot. The forward speed
optimization experiments have demonstrated the effectiveness
of the proposed autonomous optimization approach. Through
the optimization experiments, the robot has achieved a max-
imum speed of 1.011 BL/s. Fast swimming ability is not

enough for underwater robots surviving in an unknown water
environment. Other survival skills, such as the swimming
efficiency and flexibility are equally crucial to underwater
robots. Therefore, we will improve our system to optimize
the swimming flexibility and efficiency of the robotic fish in
our future work.
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