
296 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 22, NO. 2, APRIL 2018

Scalarizing Functions in Decomposition-Based
Multiobjective Evolutionary Algorithms

Shouyong Jiang, Shengxiang Yang, Senior Member, IEEE, Yong Wang, Member, IEEE, and Xiaobin Liu

Abstract—Decomposition-based multiobjective evolutionary
algorithms (MOEAs) have received increasing research interests
due to their high performance for solving multiobjective opti-
mization problems. However, scalarizing functions (SFs), which
play a crucial role in balancing diversity and convergence in these
kinds of algorithms, have not been fully investigated. This paper
is mainly devoted to presenting two new SFs and analyzing their
effect in decomposition-based MOEAs. Additionally, we come up
with an efficient framework for decomposition-based MOEAs
based on the proposed SFs and some new strategies. Extensive
experimental studies have demonstrated the effectiveness of the
proposed SFs and algorithm.

Index Terms—Decomposition, evolutionary algorithm,
multiobjective optimization, scalarizing function (SF).

I. INTRODUCTION

MULTIOBJECTIVE evolutionary algorithms (MOEAs)
[6] have been shown to be well-suited for

multiobjective optimization problems (MOPs) as they
can approximate the Pareto-optimal front (PF) with a pop-
ulation in a single run. After decades of development, a
number of MOEAs have emerged in the field of evolutionary
multiobjective optimization (EMO). According to their
selection techniques, these MOEAs can be generally grouped
into three different classes.

1) Pareto dominance-based methods, such as the nondomi-
nated sorting genetic algorithm II [5] and strength Pareto
evolutionary algorithm 2 [51].
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2) Indicator-based methods, such as the indicator-based
evolutionary algorithm [50].

3) Decomposition-based methods, such as the multiple
single-objective Pareto sampling [13], cellular
multiobjective genetic algorithm [30], and MOEA
based on decomposition (MOEA/D) [46].

Decomposition-based MOEAs are a popular class of meta-
heuristics for EMO. They decompose an MOP into a number
of subproblems1 and simultaneously solve them in a collabora-
tive manner. MOEA/D [46] is a representative of this class of
metaheuristics. MOEA/D decomposes an MOP by scalarizing
functions (SF) (or termed decomposition approaches in some
studies [46]) into a set of subproblems, each of which is asso-
ciated with a search direction (or weight vector) and assigned
a candidate solution. In every generation, parents from a mat-
ing pool are selected to generate an offspring solution for
each subproblem. Then, the offspring replaces certain existing
solutions if it achieves better scalarizing values. So far, there
have been a number of contributions to the improvement of
MOEA/D, with regard to the following aspects.

1) Weight Vectors: The quality (particularly uniformity and
coverage) of approximations depends largely on the
chosen weight vectors. In the original MOEA/D, the
simplex lattice design [4] was used to construct weight
vectors. However, it was later found that this method
cannot ensure the uniformity of the obtained solutions
on the PF [32], and other methods, such as uniform
design [38], weight transformation [32], and two-layered
design [8], [25], were therefore introduced to reduce
this drawback. It is noteworthy that the specification of
weight vectors depends largely on PF shapes, and inap-
propriate weight vectors can lead to poor performance
of decomposition-based approaches [17], [19].

2) Scalarizing Functions: SFs play a fundamental role
in MOEA/D and its variants. They can significantly
affect the search ability of the evolving popula-
tion and the quality of the resulting approximations.
It has been suggested that adaptive SFs are bene-
ficial to balance diversity and convergence at dif-
ferent search stages [16], [39]. Some existing SFs
have been adapted to improve the quality of solu-
tions [9], [20], [34], [35], [40].

3) Mating Selection: In MOEA/D, each subproblem
requires a mating range where parents are selected

1Note that subproblems can be not only single-objective optimization
problems [46] but also multiobjective ones [28].
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to mate. As a result, mating selection has an impor-
tant impact on population diversity and convergence.
Originally, MOEA/D used subproblems’ neighborhood
as the mating range [46]. Later, Li and Zhang [26] stud-
ied the influence of the mating range and showed the
benefit of using the whole population with a low prob-
ability. In [20], niching techniques were employed to
determine the mating range. The size of the mating range
or neighborhood has been investigated in a number of
studies [14], [48].

4) Genetic Operators: MOEA/D needs appropriate genetic
operators to generate promising offspring, depending on
the difficulty of the problem to be optimized. In [26], two
different genetic operators were investigated on compli-
cated problems. In [10], cross entropy was successfully
integrated into MOEA/D for continuous optimization.
An adaptive variation operator [28] is used to solve hard-
to-converge problems. Recently, Li et al. [27] combined
covariance matrix adaptation evolution strategy [12] and
differential evolution (DE) [7] for biased multiobjective
optimization. Additionally, adaptive strategies [23] have
been developed to automate the selection of proper
operators for MOEA/D.

5) Replacement Selection: When an offspring solution is
generated, MOEA/D needs to decide what kinds of old
solutions to be replaced by the new solution and how to
do the replacement. The original MOEA/D [46] defines
a replacement range/neighborhood for each subproblem,
and old solutions in this range will be replaced if they
are no longer promising. However, it has been found
that it is more efficient to induce replacement within the
neighborhood of the offspring’s most suitable subprob-
lem [41]. Other promising methods include the adoption
of effective replacement range [45] and the use of con-
strained replacement range [40].2 Instead of considering
a proper replacement range, some studies focus on the
match between subproblems and solutions, and thus
stable matching [25] and inter-relationship [24] based
selection strategies are proposed to facilitate replace-
ment. In addition, chain-reaction replacement strate-
gies [36] also help to enhance replacement selection in
some sense.

6) Resource Allocation: In MOEA/D, different subprob-
lems may have different optimization difficulties. Thus,
for efficiency, it is desirable to allocate computational
resources to subproblems according to their difficul-
ties. Much effort has been made along this direction,
resulting in a number of effective resource allocation
strategies [2], [47], [49].

Despite plenty of advances, MOEA/D still receives
increasing research interests. A particular research direc-
tion is concerning SFs, which have not been fully
explored yet. In MOEA/D, the weighted sum (WS),
weighted Tchebycheff (TCH) and penalty-based boundary

2Note that adding constraints to subproblems in [40] is actually equivalent
to restricting replacement range.

intersection (PBI) are the top three commonly used SFs.
These SFs respectively, have their own strengths and draw-
backs [39], [43], [45]. In view of the advantages and disad-
vantages of each SF, Ishibuchi et al. [16], [18] proposed to use
different SFs adaptively or simultaneously during the search.
In [10], a generalized form of SFs was developed to cope with
various PF geometries. Sato [35] proposed an inverted PBI
method to overcome the poor spread performance of exist-
ing SFs in some problems. Modified or advanced SFs have
also been developed to facilitate the environmental selection
in other algorithms [3], [22], [34], [44].

It is noteworthy that one important property of an SF is
the shape or positioning of its contour lines [9], [43]. The
contour lines are a set of equal SF values and play a crucial
role in guiding the search in scalarizing search algorithms [9].
Derbel et al. [9] argued that the dynamics of the search
process is rather independent of the SF under consideration
and instead mainly influenced by the induced contour lines.
Another study [40] showed that imposing proper constraints to
the contours of an SF can improve search efficiency. Recently,
Wang et al. [39] systematically studied the search ability of
a family of widely used SFs with different contours, called
the Lp SFs, and have argued that different contours should be
used at different search stages.

Generally, desired contours in scalarizing search algorithms
can be obtained by: 1) using traditional SFs and modifying
their contours by adding constraints [40] or specifying differ-
ent parameters [39] or 2) designing new and effective SFs. The
former method looks intuitive and easy but may not always
generate the exact contours one wants. For example, the modi-
fied SFs (excluding PBI) in both [39] and [40] cannot produce
contour lines that have opening angles [9] smaller than π/2,
which may not balance diversity and convergence well during
the search. In this paper, the focus is on the latter, and new
SFs that can induce adjustable contour lines are presented.
The main contributions of this paper are summarized
as follows.

1) Two new SFs with adjustable contours are proposed and
their properties are analyzed.

2) On the basis of the new SFs and other new techniques,
an efficient MOEA/D framework, called eMOEA/D, is
introduced. eMOEA/D uses adaptive SFs to guide the
search and a new replacement strategy to efficiently
update the population.

3) The effectiveness of the new SFs is verified. Extensive
algorithm comparisons and discussions are conducted,
and experimental studies show that eMOEA/D obtains
better performance than the other compared algorithms.

The rest of this paper is organized as follows. Section II
describes some background knowledge. Section III presents
the proposed SFs and corresponding theoretical analysis,
followed by preliminary experiments with regard to their
influence in Section IV. Section V presents the efficient
MOEA/D framework based on the SFs and some new tech-
niques. Algorithm comparisons are provided in Section VI,
followed by extensive discussions in Section VII. Section VIII
concludes this paper.
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(a) (b) (c)

Fig. 1. Illustration of three SFs on weight vector w, where dashed lines are contour lines.

II. RELATED WORK

A. Basic Concepts

An MOP can be mathematically described as follows:

min f (x) =
(

f1(x), f2(x), . . . , fm(x)
)T

s.t. x ∈ �x (1)

where �x ⊆ R
n is the decision space and x = (x1, . . . , xn)

T is
a candidate solution. f : �x �→ �f ⊆ R

m contains m objective
functions, and �f is the attainable objective space.

Definition 1: A solution x is said to dominate another solu-
tion y if x is not worse than y in all objectives and is better
than y in at least one objective. This is denoted as x ≺ y.

Definition 2: A solution x∗ is said to be Pareto optimal if
no another solution x in the decision space satisfies x ≺ x∗.

Definition 3: The Pareto-optimal set (PS) is a set of Pareto-
optimal solutions, i.e., PS = {x ∈ �x|x is Pareto optimal}.
Correspondingly, the image of PS in the objective space is
called the PF, i.e., PF = {f (x) ∈ �f |x ∈ PS}.

Definition 4: For a given SF, a solution x is said to be better
than another solution y if x obtains a better SF value than y.
This is denoted as x ≺SF y.

Definition 5: For a given SF, the improvement region (in
the objective space) of a solution x is denoted as �(x) =
{f (x̄) ∈ �f |x̄ ≺SF x}.

B. Scalarizing Methods in MOEA/D

1) WS Method: Assume that w = (w1, . . . , wm)T is a
weight vector where all components are non-negative and
should satisfy

∑m
i=1 wi = 1. The WS method defines the

following single-objective problem:

min gws(x|w, z∗
) =

m∑
i=1

(
wi
∣∣ fi(x)− z∗i

∣∣)

s.t. x ∈ �x. (2)

If necessary, throughout the paper, fi(x)−z∗i should be replaced
by ( fi(x)−z∗i )/(znadir

i −z∗i ) where z∗i and znadir
i are the ith objec-

tive values of ideal point and nadir point found so far [46],
respectively. The WS method is illustrated in Fig. 1(a), and it
can obtain a set of PF points by different weight vectors. The
method can approximate the PF if it is convex, but will miss
some PF points if the PF is nonconvex [46].

2) TCH Method: The TCH method transforms an MOP
into a scalar problem in the following form:

min gte(x|w, z∗
) = max

1≤i≤m

(
1

wi
| fi(x)− z∗i |

)

s.t. x ∈ �x (3)

where wi = 10−4 is used in this method if wi = 0. In (3),
1/wi instead of wi is adopted in order to obtain a set of uni-
formly distributed solutions from a set of uniformly distributed
weight vectors [25]. The TCH method has the advantage in
approximating nonconvex PFs compared with the WS method.
It has been widely employed as a decomposition approach in
MOEA/D variants [20], [25], [26], [40]. This method is shown
in Fig. 1(b).

3) PBI Method: The PBI method transforms an MOP into
a scalar problem as follows:

min gpbi(x|w, z∗
) = d1 + θd2

s.t. x ∈ �x (4)

where

d1 =
∥∥( f (x)− z∗)Tw

∥∥
‖w‖ (5)

d2 =
∥∥∥∥f (x)−

(
z∗ + d1

w

‖w‖
)∥∥∥∥. (6)

In PBI, θ is a user-defined penalty factor. d1 and d2 are
the length of the projection of vector (f (x) − z∗) on the
weight vector w and the perpendicular distance from f (x) to w,
respectively. Fig. 1(c) provides a brief illustration of the PBI
approach. It is clear that θ is a key parameter for balancing
convergence (measured by d1) and diversity (measured by d2).
Recent studies [15], [35] have shown that, when PBI approxi-
mates convex PFs, large diversity is likely to be obtained from
minute and large θ values, and small θ values are beneficial
to convergence.

C. Motivation

SFs (or decomposition approaches) play a fundamental
role in the performance of decomposition-based MOEAs. SFs
and decomposition-based MOEAs work closely as follows.
First, SFs transform an MOP into a number of single-
objective optimization problems. Then, decomposition-based
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Fig. 2. Illustration of solution distribution in the bi-objective space. Dashed
lines are contours of L∞ SFs.

MOEAs optimize each subproblem in a collaborative man-
ner. If an inappropriate SF is chosen or the used SF cannot
transform MOPs well to subproblems, then decomposition-
based MOEAs may fail to approximate the PF.

The three SFs mentioned previously, i.e., WS, TCH, and
PBI, have been widely used in decomposition-based MOEAs.
Despite their great success in solving a variety of MOPs, these
SFs have their own limitations. For example, PBI is very sen-
sitive to the search landscape of the objective space and may
miss some PF points if the underlying penalty factor is not
well-tuned [35], [43].

On the other hand, WS and TCH belong to the family of
the Lp (p ≥ 1) SFs [39], and they are two extreme cases of
this family (WS and TCH correspond to L1 and L∞, respec-
tively). As pointed out by Wang et al. [39], TCH is the best
in the Lp family in terms of diversity maintenance because
its contour lines have the smallest opening angle, i.e., π/2,
as shown in Fig. 1(b). However, we argue here that a con-
tour with π/2 opening angle is still insufficient to maintain
diversity in some cases. Fig. 2 illustrates a situation where the
L∞ SF fails to maintain diversity. In the figure, three individ-
uals (B, C, and D) are of great importance to diversity, but
they will be replaced by two boundary individuals (A and E)
because their improvement regions contain A and/or E, i.e.,
{A} ⊂ �(B), {A, E} ⊂ �(C), and {E} ⊂ �(D). This implies
that L∞ along with its family members lacks the property of
maintaining/promoting diversity. It may be of little use and
even fails if search environments are very complex and little
information is available in advance.

Generally, the above-mentioned drawback with regard to
Lp SFs can be alleviated by the following possible ways.
First, constraints can be added to the contour lines of Lp SFs
to reduce opening angles or Lp SFs work with appropriate
replacement strategies to stop abandoning diverse individu-
als. Second, a new and effective SF with adjustable contours
or improvement regions that well control diversity would
help MOEA/D yield good performance. Obviously, the sec-
ond approach is more straightforward and easier to implement
because it does not require any modification of the basic
framework of MOEA/D. For this reason, it is desirable to
devise new SFs for MOEA/D.

(a)

(b)

Fig. 3. Contour lines of MSF with different α values. (a) α ≥ 0. (b) α ≤ 0.

III. PROPOSED SCALARIZING FUNCTIONS

In the following, we propose two SFs for MOEA/D.

A. Multiplicative Scalarizing Function

The multiplicative SF (MSF) method is defined as follows:

gmsf(x|w, z∗
) =

[
max

1≤i≤m

(
1
wi
| fi(x)− z∗i |

)]1+α

[
min

1≤i≤m

(
1
wi
| fi(x)− z∗i |

)]α (7)

where wi is set to 10−4 if wi equals zero, and α is a control
parameter. If the denominator is zero, it is replaced with a
minute positive value (e.g., 10−5) to keep the division legal.
When α = 0, gmsf(x|w, z∗) degenerates to (3). That is, the
TCH method is a special case of MSF. MSF is technically
able to find all Pareto optimal solutions and this is presented
in the supplementary material.

For the convenience of denotion, let f̃i = fi − z∗i . We also
assume u and v (1 ≤ u, v ≤ m) are the indices that maxi-
mize and minimize f̃i/wi (1 ≤ i ≤ m), respectively. Fig. 3
presents contour lines of MSF with different α values on the
( f̃u/wu)( f̃v/wv)-plane. As can be seen from the figure, the
size of the improvement region decreases with the increase of
α. Obviously, α ≥ 0 is more desired compared with α < 0
because just like the WS method, MSF with α < 0 is unable to
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Fig. 4. Improvement region (shaded area) of MSF.

approximate nonconvex PFs and is very likely to lose diversity
as mentioned earlier.3 For this reason, we only consider α ≥ 0
in this paper.

Theorem 1: On the f̃uf̃v-plane, the maximum size of the
improvement region enclosed by gmsf(x|w, z∗) = c (c ≥ 0),
denoted Δ(c), is equal to wuwvc2/(2α + 1).

Proof: The improvement region is enclosed by the curve
gmsf(x|w, z∗) = c, as shown in Fig. 4. It is easy to see that
gmsf(x|w, z∗) = c and f̃u/wu = f̃v/wv have two common points
of intersection, i.e., (0, 0) and (cwu, cwv). Next, we calculate
the two parts of gmsf(x|w, z∗) = c below and above f̃u/wu =
f̃v/wv, respectively.

If f̃u/wu > f̃v/wv, then gmsf(x|w, z∗) = ( f̃u/wu)
1+α/

( f̃v/wv)
α = c. Thus, fv = wv

(1+α)

√
c(f̃u/wu)α .

If f̃u/wu < f̃v/wv, then gmsf(x|w, z∗) = ( f̃v/wv)
1+α/

( f̃u/wu)
α = c. Thus, fv = wv

α

√
1
c ( f̃u/wu)(1+α).

Therefore, Δ(c) is equal to the area bounded by the above
two function curves. That is

Δ(c) =
∫ cwu

0

⎛
⎜⎝wv

α

√√√√1

c

(
f̃u
wu

)(1+α)

− wv
(1+α)

√√√√c

(
f̃u
wu

)α
⎞
⎟⎠df̃u

= wuwvc2

2α + 1
. (8)

Theorem 2: For m (m ≥ 2) objectives, the maximum size of
the improvement region enclosed by gmsf(x|w, z∗) = c (c ≥ 0),
denoted Δm(c), is equal to

Δm(c) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

w1w2c2

2α+1 if m = 2
(

c2π(m−1)
m

)m−1
2
(

m∏
i=1

wi

)
(m−1)!

�
(

m−1
2 +1

)
(m(mα+1)···(mα+(m−1)))

otherwise

(9)

where �(·) is the gamma function [31].
The proof of Theorem 2 is provided in the supplementary

material. It is clear from the theorem that, the size of the
improvement region for a predefined weight vector is con-
trolled by α. When α is fixed, the improvement region is

3However, α ≤ 0 may provide fast convergence in the early stage of the
search and solve concave MOPs efficiently.

affected by the weight vector values, as shown in Fig. 5.
Generally, intermediate weight vectors tend to have larger
Δm(c) values than boundary ones. This is because the product
of the elements of an intermediate weight vector is larger than
that of a boundary weight vector. This means that subprob-
lems associated with intermediate weight vectors have more
opportunities to be updated than those with boundary weight
vectors. Thus, to be fair for all the subproblems, it is plausible
to penalize intermediate subproblems or compensate boundary
subproblems so that all subproblems can have improvement
regions with relatively equal sizes.

According to Theorem 2, a straightforward way of balancing
subproblems is to vary α for different subproblems. In this
paper, we adjust α as follows:

α = β

{
m min

1≤i≤m
(wi)

}
(10)

where wi is the ith element of weight vector w, and m is
the number of objectives. 0 ≤ m min1≤i≤m(wi) ≤ 1 always
holds under the assumption

∑m
i=1 wi = 1. β is the underlying

control parameter. It is worth mentioning that the improvement
region in TCH is nonadjustable as it is constant (i.e., Δ2(c) =
w1w2c2) if both contour line value c and weight vector w are
predetermined. However, MSF can control each subproblem’s
improvement region through the adjustment of α [or β in (10)].

B. Penalty-Based Scalarizing Function

Inspired by the idea of PBI that controls diversity by penal-
izing solutions far from a weight vector, we modify the
weighted TCH function in the following way:

gpsf (x|w, z∗
) = max

1≤i≤m

(
1

wi

∣∣ fi(x)− z∗i
∣∣
)
+ αd (11)

d =
√
‖ f (x)− z∗‖2‖w‖2 − ∥∥( f (x)− z∗)Tw

∥∥2

‖w‖
(12)

where d is the perpendicular distance of a solution to the
weight vector w, i.e., d is the same as d2 defined in (6). α

is a penalty value used to control diversity. Fig. 6 illustrates
the contour lines of penalty-based SF (PSF) with different α

values. Similar to MSF, the improvement region of PSF varies
dramatically with α, and α ≥ 0 is preferable in this paper as
diversity is the focus of this paper. Fig. 7 presents the contour
lines of PSF for different weight vectors. PSF is technically
able to find all Pareto optimal solutions and this is presented
in the supplementary material.

Like MSF, the size of the improvement region of PSF also
depends largely on α and the considered weight vector w.
Thus, PSF uses the same adjustment strategy [see (10)] to
balance different subproblems.

C. Remarks

1) MSF and PSF Versus Lp: Let us revisit the problem
previously illustrated in Fig. 2, where L∞ and other Lp SFs
cannot induce proper contours or improvement regions to
avoid diversity loss. We wonder whether the proposed MSF
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(a) (b) (c)

Fig. 5. Contour lines of MSF with α = 0.5 for the contour values 0.4, 0.8, and 1.2. (a) w = (0.2, 0.8)T . (b) w = (0.5, 0.5)T . (c) w = (0.8, 0.2)T .

(a) (b)

Fig. 6. Contour lines of PSF with different α values. (a) α ≥ 0. (b) α ≤ 0.

(a) (b) (c)

Fig. 7. Contour lines of PSF with α = 1.0 for the contour values 0.4, 0.8, and 1.2. (a) w = (0.2, 0.8)T . (b) w = (0.5, 0.5)T . (c) w = (0.8, 0.2)T .

and PSF can overcome this drawback. Fig. 8 presents the con-
tours of MSF and PSF (both are with α = 1) passing through
three important points (B, C, and D). It is clear that when
MSF or PSF is used, all the five points from A to E can sur-
vive during the replacement because no point resides in the
improvement region of another point. Thus, MSF and PSF are
effective and promising for diversity maintenance.

2) MSF Versus PSF: The improvement region of both
methods varies with α, and both degenerates to TCH when

α = 0. For α ≥ 0, however, the geometries of MSF and PSF
are different. The contour lines of MSF are nonlinear whereas
those of PSF are polytopes. Thus, boundary points besides the
ideal point can be in an improvement region induced by PSF,
but this is not the case with MSF. Fig. 9 presents a situation
where a boundary point X will replace an intermediate point
Y associated with the search direction w if PSF with inap-
propriate opening angles is used. But, this will not happen
to MSF. For this reason, MSF may keep diversity better than
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(a) (b)

Fig. 8. Illustrations of (a) MSF and (b) PSF for maintaining diversity, where
dashed lines are contours.

Fig. 9. Illustration where MSF (red solid) and PSF (blue dashed) induce
different shapes of contours.

PSF whereas PSF may have advantage in locating boundary
solutions.

3) PSF Versus PBI: Since PSF borrows the idea of diver-
sity maintenance from PBI, PSF and PBI have similar contour
lines, i.e., their contour lines are polytopes. However, they
differ much in convergence promotion. Specifically, PBI mea-
sures convergence via d1 values [see Fig. 1(c)]. In complex
problems with irregular PF shapes [20], d1 values vary sig-
nificantly. In order to balance diversity and convergence,
PBI needs to carefully select the penalty factor. Otherwise,
PBI is likely to obtain an incomplete approximation of the
PF [35]. Unlike PBI, PSF measures convergence via TCH,
which can approximate both convex and nonconvex PF geome-
tries. Therefore, PSF may be less sensitive to different PF
scenarios compared with PBI.

IV. PRELIMINARY EXPERIMENTS

As a starting point, we investigate the effectiveness of the
proposed SFs in this section.

A. Experimental Settings

As our focus is mainly on the diversity aspect of SFs,
test problems used for experimental validation should be able
to challenge MOEAs’ diversity performance. For this rea-
son, the MOP [28] test suite is selected. This test suite has
seven instances, each of which has local attractors on bound-
ary regions of the PF. Thus, MOEAs are very easy to get
trapped into these attractors if their diversity is not well main-
tained. A detailed description of the MOP test suite can be

found in the supplementary material, where two more tri-
objective instances, i.e., MOP8 and MOP9, are proposed by
considering new characteristics. MOP8 places local attractors
in the intermediate regions of its linear PF, whereas MOP9
increases optimization difficulties by placing local attractors
only on corner regions (i.e., the intersection of the PF and
coordinate axes). These added features are expected to further
understanding of MOEAs’ search behavior.

The proposed MSF and PSF are integrated into the
MOEA/D-DE [26] framework, whose recombination operator
is replaced by the adaptive operator [29] due to its reported
success on MOP problems [28].

Parameters in MOEA/D-DE were set as follows. The pop-
ulation size N was 100 and 105 for bi- and tri-objective
problems, respectively. The neighborhood size T was T =
0.1N and the probability δ used to select mating neighborhood
was δ = 0.9. The maximal allowable number nr of solutions
to be replaced by a child solution was nr = 2. Due to the dif-
ficulty of the MOP test suite, the maximum number MaxGen
of generations was set to MaxGen = 5000. The total number
of independent runs was 31.

Since both MSF and PSF use (10) to assign α values, we
just need to test the influence of different β values in (10). In
the experimental study, β was chosen from {0, 0.05, 0.2, 1, 5,
10, 20} for MSF and {0, 1, 5, 10, 20, 100} for PSF. β = 0 is
a special case where both MSF and PSF degenerate to TCH.

B. Performance Indicators

In our experimental studies, we adopt the following widely
used performance indicators.

1) Inverted Generational Distance [28]: Inverted genera-
tional distance (IGD) can provide reliable information on both
diversity and convergence of obtained solutions. Let P be a set
of solutions uniformly sampled from the true PF, and P∗ be
the approximated solutions in the objective space, the indicator
measures the gap between P∗ and P, calculated as follows:

IGD
(
P∗, P

) =
∑

x∈P d(x, P∗)
|P| (13)

where d(x, P∗) is the distance between the member x of P
and the nearest member of P∗. For the calculation of IGD,
P is composed of 5000 scattered points which are uniformly
sampled from the true PF.

2) Averaged Hausdorff Distance (�p) [37]: �p is a
recently developed indicator that prefers evenly spread solu-
tions along the PF [33] and can somewhat handle the outlier
tradeoff [37]. The indicator is calculated as follows:

�p
(
P∗, P

) = max

⎧
⎪⎪⎨
⎪⎪⎩

⎛
⎝
∑
x∈P

dp(x, P∗)

|P|

⎞
⎠

1
p

,

⎛
⎝
∑

x∈P∗
dp(x, P)

|P∗|

⎞
⎠

1
p

⎫
⎪⎪⎬
⎪⎪⎭
(14)

where d(x, P) is the distance between the member x of P∗ and
the nearest member of P. In this paper, p = 2 is used.
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(a) (b) (c) (d) (e)

Fig. 10. Mean IGD values obtained by MSF with different β settings. (a) MOP1. (b) MOP2. (c) MOP5. (d) MOP7. (e) MOP8.

(a) (b) (c) (d) (e)

Fig. 11. Mean �p values obtained by MSF with different β settings. (a) MOP1. (b) MOP2. (c) MOP5. (d) MOP7. (e) MOP8.

(a) (b) (c) (d) (e)

Fig. 12. Mean HVD values obtained by MSF with different β settings. (a) MOP1. (b) MOP2. (c) MOP5. (d) MOP7. (e) MOP8.

3) Hypervolume Difference: The hypervolume differ-
ence (HVD) [21] measures the gap between the hypervolume
of the obtained P∗ and that of the true PF

HVD = HV(PF)− HV
(
P∗
)

(15)

where HV(S) is the hypervolume of a set S. The reference
point for the computation of hypervolume is (z1 + 0.2, z2 +
0.2, . . . , zM + 0.2), where zj is the maximum value of the jth
objective of the true PF and M is the number of objectives.
HV(PF) can be estimated by HV(P), where P remains the
same in the IGD indicator.

C. Results

Figs. 10–12 show the mean values of three indicators
obtained by MSF with different β settings on some selected
test problems (the results for all the test problems are presented
in the supplementary material), where standard deviation is
shown around the mean values. Two observations can be
obtained from the figures. First, all the three indicators are
roughly consistent when they are used for performance assess-
ment. The only exception occurs on MOP7, where both
IGD and �p show the performance improves at first and
then degrades as β increases from 0 to 20. HVD, how-
ever, shows a conflicting performance trend on MOP7. This
may be because HVD prefers boundary solutions but does
not necessarily favor well-diversified distribution on this par-
ticular instance. Second, for the majority of the problems,

the performance is likely to be maximized when β approx-
imately equals one. Meanwhile, it seems that a smaller β

value is suitable for MOP8. This implies that, when local
attractors reside in the intermediate regions of the PF, restric-
tions on the diversity aspect of MSF can be relaxed and
MSF with a large improvement region is helpful in this
situation.

On the other hand, the mean values of the three indicators
obtained by PSF with different β settings on some selected test
problems are displayed in Figs. 13–15. Similar observations
can be obtained from these figures, and PSF works best on
most of the problems when β is around 10.

The above results clearly show that both MSF and PSF
can help improve decomposition-based MOEAs if the corre-
sponding control parameter is well configured. The experiment
indirectly reflects that the popular TCH method (correspond-
ing to the case of β = 0 in MSF and PSF) are not always
the best choice, and enhancing diversity by nicely control-
ling improvement regions can lead to a clear performance
improvement.

Besides, the mean HVD evolution curves obtained by MSF
versus the number of generations are shown in Fig. 16
(those obtained by PSF are included in the supplemen-
tary material due to page limit). We can observe that dif-
ferent β values result in distinct performances. β = 0
is not the best setting for MSF and PSF on the major-
ity of the test problems in terms of final HVD values.
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(a) (b) (c) (d) (e)

Fig. 13. Mean IGD values obtained by PSF with different β settings. (a) MOP2. (b) MOP5. (c) MOP6. (d) MOP7. (e) MOP8.

(a) (b) (c) (d) (e)

Fig. 14. Mean �p values obtained by PSF with different β settings. (a) MOP2. (b) MOP5. (c) MOP6. (d) MOP7. (e) MOP8.

(a) (b) (c) (d) (e)

Fig. 15. Mean HVD values obtained by PSF with different β settings. (a) MOP2. (b) MOP5. (c) MOP6. (d) MOP7. (e) MOP8.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 16. Evolution curves of the mean HVD indicator obtained by MSF with different β settings. (a) MOP1. (b) MOP3. (c) MOP4. (d) MOP5. (e) MOP6.
(f) MOP7. (g) MOP8. (h) MOP9.

β = 1 and β = 10 again help MSF and PSF yield
good results, respectively. However, it seems that smaller β

values are likely to enable faster convergence, owing to rela-
tively larger improvement regions. These observations suggest

decomposition-based MOEAs may need different β (or the
resulting α) values at different stages of the search. Therefore,
it is plausible to adaptively adjust the value of α during the
search.



JIANG et al.: SCALARIZING FUNCTIONS IN DECOMPOSITION-BASED MOEAs 305

Algorithm 1: eMOEA/D Framework
Input: stopping criterion (MaxGen), population size (N),

neighborhood size (T), replacement size (nr);
Output: approximated Pareto-optimal set P;

1 Generate a uniform spread of N weight vectors: {w1,
w2, . . . , wN} and then compute the T closest weight
vectors to each weight vector by the Euclidean distance.
For each wi, set B(i) = {i1, . . . , iT} where wi1 , . . . , wiT

are the T closest weight vectors to wi;
2 Generate an initial population P = {x1, . . . , xN} by

uniformly randomly sampling from the decision space;
3 Initialize ideal and nadir points, i.e., z∗ and znad;
4 Choose a scalarizing function SF for MOEA/D;
5 gen← 1;
6 while gen ≤ MaxGen do
7 Update α for the selected SF according to (16);
8 for i← 1 to N do
9 Randomly select indexes r1 and r2 from B(i);

10 Apply genetic operators on individuals xr1 , xr2 to
produce a new solution y;

11 Evaluate the objective vector of y, and update z∗;
12 Find the T most suitable subproblems for y:

S = {s1, s2, . . . , sT};
13 c← 0 ;
14 for j← 0 to T do
15 if y ≺SF xsj then
16 xsj ← y and c← c+ 1;
17 end
18 if c ≥ nr then
19 break;
20 end
21 end
22 end
23 Update znad using P, gen← gen+ 1;
24 end

V. EMOEA/D: EFFICIENT MOEA/D FRAMEWORK

The proposed MOEA/D variant remains almost the same as
its predecessors [26], [46] except a few modifications in scalar-
izing methods, offspring production and solution replacement.
The framework of the algorithm is depicted in Algorithm 1.
First, a set of uniformly distributed weight vectors is created,
and each weight vector is assigned a neighborhood containing
the T closest weight vectors. Meanwhile, the ideal point (z∗)
and nadir point (znad) are estimated by the minimum and maxi-
mum values of each objective in the population. z∗ and znad are
then used for objective normalization (( fi(x)−z∗i )/(znadir

i −z∗i )
is adopted in this paper to normalize each objective fi). After
that, either MSF or PSF is chosen as a SF beforehand. The
α value of the SF is generationally updated in line 7. For
each subproblem i, mating parents are selected only from B(i)
(see line 9), which is the same as the original MOEA/D [46]
but different from another popular variant MOEA/D-DE [26].
In line 10, genetic operators are applied on the selected par-
ents to produce offspring. The offspring is evaluated in terms
of the objective vector and is then used to update the ideal

point. From lines 12 to 21, a new solution replacement strategy
is introduced, and similar to MOEA/D-DE, we also place a
restriction on the number of replacements (see lines 18–20).
At the end of every generation, the approximated nadir point
is updated by the whole population.

A. Adaptive Scalarizing Strategy

While the proposed SFs are helpful for maintaining popula-
tion diversity, it may decrease the convergence performance. A
small α value in both MSF and PSF are beneficial to conver-
gence, but it is very likely to cause the loss of diversity. This
is just the case with TCH, which struggles to recover from the
loss of diversity for hard problems. Without any information
about problem properties a priori, it is plausible to empha-
size diversity at the early stage of search and then gradually
emphasize convergence at the late stage. To this end, we pro-
pose an adaptive strategy to adjust the value of α (line 7 of
Algorithm 1). As a result, (10) is rewritten as follows:

α = β(1− gen

MaxGen
)

{
m min

1≤i≤m
(wi)

}
(16)

where gen is the current generation number, and MaxGen is
the maximum number of generations. It is clear that, for each
subproblem, α is decreased linearly as the evolution proceeds
and becomes zero at the end of search. This means that both
MSF and PSF gradually degenerate to TCH, and in this pro-
cess the improvement region for each subproblem is gradually
increased, resulting in steady-state de-emphasis of diversity
and speed-up of convergence simultaneously. Note that, any
adaptive decreasing strategy (no matter it is linear or nonlin-
ear) can be used as long as it can reduce α gradually. The
linear strategy is adopted here because it is very simple and
meets the requirement of reducing α well.

B. Reproduction Operation

Reproduction operation (lines 9 and 10 of Algorithm 1)
includes mating pool selection and genetic recombination. In
many MOEA/D variants [26], [41], a probability parameter δ is
adopted to select a mating pool from either the neighborhood
of solutions or the whole population. The main purpose for
this is to increase population diversity. However, this induces
the difficulty in tuning such an extra parameter. Since we have
introduced advanced SFs that can keep diversity well, we dis-
courage the use of the probability parameter and simply set
the mating pool as the neighborhood of solutions.

When mating parents are randomly selected from the mat-
ing pool, the next step is to perform genetic operators on the
mating parents to generate offspring. In this paper, we use
the adaptive DE [29] as our genetic operator. The adaptive
DE was also used in [28] and showed good performance for
hard problems. The details of this operator are presented in
the supplementary material.

C. Replacement Operation

Replacement operation (lines 12–21 of Algorithm 1) is a
key step in many MOEA/D variants. It is related to what and
how subproblems can be updated. If a new solution is not
suitable for subproblems that are chosen to be updated, then
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TABLE I
BEST, MEDIAN, AND WORST �p VALUES OBTAINED BY DIFFERENT ALGORITHMS ON MOP PROBLEMS

both population diversity and convergence can be negatively
affected. To this end, various replacement strategies have been
proposed [41], [49]. The main idea behind these strategies is
to find the most suitable subproblem for a newly generated
individual y and then conduct replacement within the neigh-
borhood of this subproblem. However, these strategies fail to
consider that the individual y may not be good for the neigh-
boring subproblems of the most suitable subproblem. If the
individual does not improve any solution of the neighborhood
of the most suitable subproblem but does improve solutions of
other subproblems outside the neighborhood, it should enter
the population. In other words, the replacement range should
be gingerly elaborated. In this paper, the replacement range
is composed of the most suitable T subproblems. It is cal-
culated as follows. First, gSF(y|wi, z∗) is computed for each
1 ≤ i ≤ N. Second, all the gSF(y|wi, z∗) values are sorted
in the ascending order. Then, the subproblems corresponding
to the first T smallest scalarizing values are regarded as the
replacement range S = {s1, s2, . . . , sT}, with s1 being the first
most suitable and sT being the Tth most suitable (line 12 of
Algorithm 1).

The replacement procedure (lines 14–21 of Algorithm 1)
is executed on the ordered replacement range S =
{s1, s2, . . . , sT} one by one. Like its predecessor [26], the
proposed eMOEA/D framework allows at most nr solutions
to be replaced by a newly generated solution.

VI. ALGORITHM COMPARISON AND RESULTS

The experiment in this section is designed for two pur-
poses. One is to verify the proposed eMOEA/D. The other

purpose is to deeply analyze the performance of other existing
decomposition-based MOEAs in multiobjective optimization.

A. Compared Algorithms and Parameter Settings

Algorithms for comparison consist of popular peer MOEAs.
The MOEAs are MOEA/D with TCH [26], ACD [40],
AGR [41], DU [45], STM [25], and M2M [28] schemes. For
notational convenience, MSF∗ and PSF∗ denote the proposed
eMOEA/D with MSF and PSF, respectively.

Key parameters in each compared algorithm remain the
same as in the referenced papers. The population size, stop-
ping criterion, and other important parameters are kept the
same as in Section IV. All the algorithms use the adaptive
operator [29] as the recombination operator. The key factor β

in MSF∗ and PSF∗ is set to 1 and 10, respectively, based on
the previous experimental study.

B. Results on MOP Problems

In this section, �p and HVD are used as performance indi-
cators since IGD and �p have shown consistent performance
assessment in the previous experiment. Tables I and II show
the best, median, and worst values of �p and HVD on
nice MOP problems over 31 independent runs, respectively.
The best values obtained by one of the ten algorithms are
highlighted in bold face. The differences between the approx-
imations are assessed by the Wilcoxon rank-sum test [42] at
the 0.05 significance level, with the standard Bonferroni cor-
rection [1] to deal with the problem of the higher probability of
Type I errors in multiple comparisons. Signs of †, �, and ‡ in
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TABLE II
BEST, MEDIAN, AND WORST HVD VALUES OBTAINED BY DIFFERENT ALGORITHMS ON MOP PROBLEMS

the superscript form on median values indicate the significance
of the proposed methods.

From the tables, we can obtain the following observations.
1) Compared with the predecessor TCH, all the other

MOEA/D variants show improvements on the MOP
problems in some sense. The improvements are obvious
on the five bi-objective problems, as indicated by the
�p and HVD values. However, on the four tri-objective
problems, ACD, AGR, STM, and M2M do not have any
advantage over TCH, as their �p and HVD values are
very similar to those of TCH.

2) MSF∗ and PSF∗ significantly outperform the other algo-
rithms on the majority of cases. On the bi-objective
cases, ACD also shows comparable performance in
terms of �p. However, ACD degrades dramatically and
performs worse than most of the algorithms on the
tri-objective cases.

3) DU, aimed to improve solution replacement by con-
sidering distance to weight vectors, works well on
most of the test problem, although it is not the best
among all the algorithms and degrades slightly for tri-
objective problems. Its good performance is probably
due to the emphasis on diversity. This indirectly shows
improvements on diversity management is beneficial for
solving the MOP test suite.

4) Apart from dimensionality, other characteristics of the
test problems also affect the compared algorithms’
performance. Taking MOP6 and MOP8 for example,
they have the same PF shape except that the former has
local attractors in boundary regions of the PF whereas

the latter has those in intermediate regions. Judging by
HVD, boundary attractors are easier than intermediate
ones for MSF∗, PSF∗, DU, and M2M, but seem more
difficult for STM.

5) Additionally, if we compare the algorithms’ performance
on MOP7 and MOP9, we can see that most of the
algorithms degrade when the number of local attractors
in boundary regions decreases. This is understandable
because the decrease in the number of local attractors
reduces the chance of finding boundary solutions on the
PF. However, it seems that such features do not influence
too much the performance of the proposed methods, as
the obtained HVD results vary little.

We can conclude from the above observations that MSF∗
and PSF∗ are more likely to generate good performance than
the other algorithms on the MOP test suite with a wide vari-
ety of problem characteristics and optimization difficulties.
This might be mainly attributed to good diversity maintenance
induced by the new SFs.

Fig. 17 presents evolutionary curves of the mean IGD val-
ues obtained by some selected algorithms on two bi-objective
and two tri-objective problems. It is clear that MSF∗, PSF∗
and ACD are able to reduce the IGD value efficiently for the
bi-objective MOP1 and MOP2 as the evolution proceeds. In
the case of tri-objective problems like MOP6 and MOP7, only
MSF∗ and PSF∗ manage to decrease the IGD value constantly
during the evolution, while the other approaches seem to end
up in evolutionary stagnation after 1000 generations of search.

For an inspection of the real performance of these algo-
rithms, we also plot their PF approximations on several
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(a) (b)

(c) (d)

Fig. 17. Evolution curve of the mean IGD indicator obtained by six algorithms on four test problems. (a) MOP1. (b) MOP2. (c) MOP6. (d) MOP7.

selected test problems in the supplementary material. From the
plots, we can observe that some algorithms (e.g., ACD, AGR,
DU, and M2M) converge slowly and some (e.g., TCH) cannot
maintain diversity well. Also, most of them cannot work well
on tri-objective problems, particularly on MOP9. Nevertheless,
both MSF∗ and PSF∗ show better performance compared with
the other algorithms.

C. Results on UF and WFG Problems

More test problems are selected from the UF [47] and
WFG [11] test suites to verify the effectiveness of the proposed
algorithm. The number of variables was 30 and the maximum
number of generations was equivalently set to be 3000 in UF
problems, according to [25] and [47]. The selected WFG prob-
lems were set to have two position-related variables and ten
distance-related variables in the case of two objectives, the
maximum number of generations is 200.

Table III reports the HVD values obtained by ten algo-
rithms on the selected UF and WFG test problems. It is clear
to observe from the table that both MSF∗ and PSF∗ signif-
icantly outperform almost all the other compared algorithms
on the UF problems considered in both bi-objective and tri-
objective cases (UF4 and UF5 have two objectives whereas
UF8 and UF9 have three objectives). There exists little dif-
ference between the ten algorithms when solving the three
WFG problems as most of them obtain similar HVD values.

Nevertheless, MSF∗ and PSF∗ again manage to outperform
ACD, DU, and M2M on some of these WFG problems.

The experiment here also shows that the proposed
eMOEA/D has great advantages over the other algorithms
when solving hard-to-converge and diversity-resistant prob-
lems like the UF problems. The UF problems are hard
to handle because strong nonlinear linkages between deci-
sion variables in these problems challenge dramatically EAs’
diversity and convergence performance. In this situation, the
adaptive scalarizing strategy in eMOEA/D can make a dif-
ference and therefore help generate promising performance.
In contrast, the WFG problems are less challenging in diver-
sity maintenance compared with the UF problems, so any
algorithm with proper (not necessarily advanced) diversity
management is able to solve them. Therefore, the proposed
eMOEA/D has little advantage but performs comparably to
the other algorithms when solving the WFG problems.

VII. DISCUSSION

A. Influence of Mating Selection

Many MOEA/D variants are developed based on the pre-
decessor [26], and thus inevitably inherit a parameter δ

that is the probability of choosing mating parents from the
neighborhood of subproblems rather than the whole pop-
ulation. δ is of undisputed importance in the predecessor
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TABLE III
BEST, MEDIAN, AND WORST HVD VALUES OBTAINED BY DIFFERENT ALGORITHMS ON UF AND WFG PROBLEMS

(a) (b) (c) (d)

(f) (g) (h) (i)

(e)

Fig. 18. Mean HVD values obtained by MSF∗ with different δ settings. (a) MOP1. (b) MOP2. (c) MOP3. (d) MOP4. (e) MOP5. (f) MOP6. (g) MOP7.
(h) MOP8. (i) MOP9.

because it helps much to enhance diversity. However, most
MOEA/D variants take for granted that the use of δ is always
beneficial.

Here, δ from 0 to 1, with an increment of 0.2, was tested
in the framework of MSF∗. Fig. 18 shows the influence of δ

on the obtained HVD values. It is clear that a large value of
δ is roughly good for all the problems. This indicates that
the higher probability of choosing subproblems’ neighbor-
hood as mating range, the better the resulting performance.
This is probably because our methods have already soundly
considered diversity within SFs, and in this situation using
as much neighborhood mating as possible to enhance local
search helps the convergence of population. Thus, in our

eMOEA/D we discourage the use of δ and simply select only
the neighborhood as the mating range.

B. Influence of Replacement Strategies

It has been shown the performance of decomposition-based
MOEAs can be significantly affected by replacement strate-
gies [25], [41]. To achieve efficient population replacements,
MOEA/D needs to find an appropriate replacement range.
Most often, the replacement range is the neighborhood of the
best matched subproblem [25]. In AGR [41], the best matcher
is the one that has the minimal SF value, whereas in other
MOEA/D variants [49], the best matcher is the one that can
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(a) (b) (c) (d)

Fig. 19. Evolution curves of the mean RR obtained by different replacement strategies. (a) MOP1. (b) MOP2. (c) MOP6. (d) MOP7.

(a) (b) (c) (d)

Fig. 20. Whole PF approximations obtained by PSF∗ and PBI over 30 runs on two convex problems. (a) PSF∗ for F1. (b) PBI for F1. (c) PSF∗ for convex
DTLZ2. (d) PBI for convex DTLZ2.

be improved most among all the subproblems. However, in
our MOEA/D framework, the replacement range consists of
the top T best matchers. In this section, we investigate the
influence of different replacement strategies. We compare our
replacement strategy (called TMS) with that of AGR (called
NMS). To study the influence of the definition of matchers,
we also include an replacement strategy whose replacement
range is composed of the top T most improved subproblems,
and this strategy is called TIS. To assess the efficiency of
replacement strategies, we define the replacement rate (RR)
of the population in every generation as

RR = NT

Nnr
(17)

where NT is the total number of replacements that occur in the
considered generation, and as stated before, N and nr are the
population size and the maximal allowable number of replace-
ments, respectively. The larger RR, the better the replacement
efficiency.

The three above-mentioned strategies have been tested in
MSF∗ on four selected problems. Fig. 19 plots evolution
curves of the mean RR value of 100 independent runs. It
can be observed that replacements occur mainly at the early
stage of search and the occurrence drops to near zero as
the population moves close to the PF. Another observation
is that NMS performs worse than TMS and TIS in terms
of the RR value, and TMS is better than TIS on the two
bi-objective problems but is similar to TIS on the two tri-
objective problems. The high RR of TMS helps the population
evolve fast. This observation can be also used to partly explain

TABLE IV
BEST, MEDIAN, AND WORST VALUES OF �p AND

HVD OBTAINED BY PSF∗ AND PBI

why MSF∗ and PSF∗ perform better than AGR in the previous
experiments.

C. Comparison of PSF and PBI

Since PSF and PBI have similar contour lines, it is
interesting to make a comparison between them. Both PSF and
PBI use our eMOEA/D framework, and accordingly the com-
parison objects are actually PSF∗ and the proposed eMOEA/D
with PBI. They are investigated in two convex problems
mentioned in [20]. The convex problems are chosen here
because it has been increasingly recognized that irregularly
shaped problems (particularly convex ones) influence much
the performance of SFs [20], [32], [35], [39]. The penalty
factor of PBI was set to 5, according to [46]. Other parame-
ter settings remained the same as in Section VI-B except the
maximal number of generations was changed to 500.

The whole approximations of 31 independent runs are plot-
ted in Fig. 20, and the corresponding �p and HVD values are
shown in Table IV. Both considered indicators and graphical
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TABLE V
BEST, MEDIAN, AND WORST VALUES OF HVD OBTAINED

BY DIFFERENT SCALARIZING APPROACHES

plots clearly illustrate that PSF helps yield better performance
than PBI. By inspecting closely the approximations in the fig-
ure, we can see that PBI favors intermediate regions of the PF
and is very likely to miss boundary solutions in convex prob-
lems. This can be explained by the contour lines of PBI where
boundary solutions likely need a very large penalty value in
the PBI SF [15]. On the other hand, PSF∗ has a better coverage
than PBI and has the potential to maintain extreme solutions
and boundary solutions.

D. Further Discussion

1) Comparison With Other Scalarizing Approaches: SFs
play a fundamental role in decomposition-based EAs. Here,
we would like to compare our scalarizing methods with other
widely used methods in literature. Specifically, MSF with
α = 1 and PSF with α = 10 are compared with the WS
approach and the TCH approach (PBI is excluded here because
it has shown to be interior to our methods in Section VII-C).
All the approaches are tested within the algorithm framework
mentioned in Section IV.

Table V presents the HVD values obtained by these
approaches on four MOP problems. It is clear from the table
that both MSF and PSF are likely to obtain better HVD values
than WS and TCH. The comparison demonstrates the promise
of our SFs in helping MOEA/D to achieve high performance,
which is a reason for the good performance of MSF∗ and PSF∗
in algorithm comparison shown in Section VI.

2) Investigation of Adaptive Strategies and Replacement
Strategies: The proposed eMOEA/D is a combination of
several strategies, i.e, new SFs, adaptive tuning of α, and
a new replacement strategy. Although previous experiments
have shown that the new SFs are effective and promising
in decomposition-based EAs, here we want to investigate
deeply the role that different strategies play in the proposed
eMOEA/D.

To study each component of the two eMOEA/D instances
(i.e., MSF∗ and PSF∗), we design the following experiment.
MSF with a fixed α value (i.e., α = 1 for MSF) is compared
against MSF with the proposed adaptive tuning of α (termed
as “MSF+AS”), which in turn is compared against MSF∗. This
experimental design is also applied to PSF (α = 1 is used).
Through these two steps of comparison, one can easily see

TABLE VI
BEST, MEDIAN, AND WORST VALUES OF HVD OBTAINED

BY MSF AND PSF WITH DIFFERENT STRATEGIES

the importance of each strategy in the proposed eMOEA/D
algorithm.

Table VI presents the HVD results obtained by MSF and
PSF with different strategies on several MOP problems. It can
be observed that MSF+AS and PSF+AS obtain better HVD
values than MSF and PSF, respectively, implying that the use
of adaptive α values generates better performance than a fixed
α value during the evolution. By comparing MSF+AS with
MSF∗, and PSF+AS with PSF∗, we can clearly see that the
incorporation of the new replacement strategy tends to reduce
the deviation of the HVD values (the difference between the
best and worst HVD values becomes smaller), which means
the replacement strategy can enhance the stability of our
eMOEA/D algorithm.

The experiment shows that the proposed SFs need to work
collaboratively with other strategies in order to perform to the
best of their ability. This is understandable because the SFs
are only a method of transforming a multiobjective problem
into scalar subproblems and are unable to generate multiple
solutions if there is a lack of effective collaboration when
solving different subproblems. The adaptive tuning of α can
control the balance between diversity and convergence by
changing improvement regions (it gradually increases the size
of improvement regions during the evolution in eMOEA/D)
induced by SFs, leading to a high level of diversity at early
stages of search and fast convergence at late stages. In con-
trast, fixed α values emphasize diversity all the time but may
affect convergence performance. Therefore, the use of adaptive
tuning of α is encouraged in our work. On the other hand, the
replacement strategy, as demonstrated in Section VII-B, can
increase the RR, which means the population evolves fast.
Thus, the use of the replacement strategy will further improve
the performance of eMOEA/D.

3) Potential Limitations: This paper has some potential lim-
itations of which practitioners or interested readers may need
to be aware. The first limitation is that a high number of gen-
erations, i.e., 5000, are used for the MOP test suite due to its
high optimization difficulties. This setting may not be applica-
ble in practice, particularly when limited resources like time
and computational investments are available. However, this
setting makes sense when good PF approximations are the
main focus. A possible way of obtaining good PF approxima-
tions with less computational resources when solving problems
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like the MOP ones is to use efficient reproduction opera-
tors, if any, to shorten the convergence process. Second, the
performance of the proposed SFs or eMOEA/D may degrade
with the scaling of the number of objectives, as this often
happens in decomposition-based methods, and therefore may
need other techniques to enhance it in the case of many-
objective optimization. Third, it should be acknowledged that
decomposition-based methods are less robust than dominance-
based ones using SFs, in particular for problems with complex
(nonuniform, discrete, degenerated) Pareto fronts.

VIII. CONCLUSION

Decomposition-based MOEAs are an important class of
methods for multiobjective optimization, and have been fre-
quently shown to work well when proper SFs are provided.
In this paper, we have proposed two new SFs which can
induce controllable contours. By adjusting the size of induced
improvement regions, the new SFs can easily manage pop-
ulation diversity. We have studied the influence of the new
SFs and have demonstrated that the proposed SFs with proper
improvement regions can significantly boost the performance
of decomposition-based MOEAs. Additionally, we have intro-
duced an efficient MOEA/D (i.e., eMOEA/D) framework
based on the proposed SFs and some new strategies. We
have compared eMOEA/D with other recently developed
approaches. The experimental results have clearly verified the
effectiveness of the eMOEA/D framework.

In this paper, the proposed eMOEA/D uses a very simple
adaptive strategy (i.e., linearly decreasing α in MSF and PSF)
to adjust the balance between diversity and convergence at dif-
ferent stages of search. Despite the appealing performance, the
adaptive strategy may not be the best choice because different
search stages have different (not necessarily linearly decreas-
ing) convergence or diversity requirements. Further investiga-
tions in this direction are beneficial. In our future research, it
will be also interesting to investigate the performance of the
proposed SFs in many-objective optimization.
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