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Abstract—This paper presents a differential evolution al-
gorithm with a new encoding mechanism for efficiently
solving the optimal layout of the wind farm, with the aim of
maximizing the power output. In the modeling of the wind
farm, the wake effects among different wind turbines are
considered and the Weibull distribution is employed to es-
timate the wind speed distribution. In the process of evolu-
tion, a new encoding mechanism for the locations of wind
turbines is designed based on the characteristics of the
wind farm layout. This encoding mechanism is the first at-
tempt to treat the location of each wind turbine as an individ-
ual. As a result, the whole population represents a layout.
Compared with the traditional encoding, the advantages of
this encoding mechanism are twofold: 1) the dimension of
the search space is reduced to two, and 2) a crucial pa-
rameter (i.e., the population size) is eliminated. In addition,
differential evolution serves as the search engine and the
caching technique is adopted to enhance the computational
efficiency. The comparative analysis between the proposed
method and seven other state-of-the-art methods is con-
ducted based on two wind scenarios. The experimental re-
sults indicate that the proposed method is able to obtain
the best overall performance, in terms of the power output
and execution time.

Index Terms—Differential evolution (DE), encoding
mechanism, optimization, wake effect, wind farm layout.
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I. INTRODUCTION

W IND energy plays an important role in the field of renew-
able energy worldwide [1], [2]. The wind farm layout

is a key factor which determines the power output of a wind
farm during its life cycle. A general target of wind farm layout
is to maximize the total power output through optimizing the
locations of wind turbines. Note that there exist wake effects
among wind turbines in the process of wind energy generation.
The wakes produced by the upstream wind turbines will impact
the downstream ones, causing discount of energy generation of
the wind farm. Consequently, it is vital to investigate the wind
farm layout to reduce and even avoid the wake effect.

The existing wind farm layout models can be classified into
two categories: the grid-based model and the coordinate-based
model. In the grid-based model, the wind farm is divided into
a set of square cells and each cell center is a potential loca-
tion for placing a wind turbine. With respect to the coordinate-
based model, a wind turbine is flexibly located in the wind farm
and characterized by a two-dimensional (2-D) coordinate. Since
both the grid-based and coordinate-based models cannot be an-
alytically solved, different kinds of heuristic methods have been
proposed for optimizing the wind farm layout.

Evolutionary algorithms (EAs), which are a kind of
population-based heuristic methods, have been broadly applied
to the wind farm layout. For instance, Mosetti et al. [3] formu-
lated the wind farm layout problem as the grid-based model and
introduced genetic algorithm to optimize wind turbine locations.
Based on the same model, Grady et al. [4] achieved better results
through increasing population size as well as generations of ge-
netic algorithm. In [5], a genetic algorithm with an improved
crossover operation is presented to optimize the profits of a
wind farm without considering the wake effect. Pookpunt and
Ongsakul [6] investigated a binary particle swarm optimization
with time-varying acceleration coefficients to solve the grid-
based model. In addition, Jiang et al. [7] tackled the grid-based
model by designing a binary differential evolution (DE) based
on smoothing operator. In [8], Kusiak and Song developed the
coordinate-based model and solved it by the SPEA algorithm.
In subsequent studies, the coordinate-based model has been
solved by particle swarm optimization [9], seeding EA [10], ant
colony optimization [11], covariance matrix adaptation evolu-
tion strategy (CMA-ES) [12], and DE [13], showing promising
results. The aforementioned methods have a common feature:
each individual in the population represents an entire wind farm
layout. Because of this feature, evolutionary operators (such
as mutation and crossover) can be easily implemented on the
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individuals in the population. However, this kind of methods
exhibits low efficiency and needs tremendous computational
workload to find the optimal layout. Moreover, since the di-
mension of the search space is relevant to the number of wind
turbines, it may suffer from the curse of dimensionality with the
drastic increase of the number of wind turbines.

Greedy methods, as another kind of heuristic methods, have
also attracted a lot of attention in the wind farm layout. In
the greedy methods, a single initial layout is produced and
subsequently optimized by moving one wind turbine in each
iteration. To speed up the evaluation of power output, the
caching technique is widely employed in the greedy methods
[14]–[16]. Ozturk and Norman [17] developed a greedy im-
provement methodology and designed the adding, removing,
and moving operators. Saavedra-Moreno et al. [10] exploited a
greedy algorithm to produce local optimal solutions and consid-
ered them as the initial population of genetic algorithm. Zhang
et al. [18] revealed the submodular property of the wind turbine
locating problem and suggested a lazy greedy algorithm to ac-
celerate the process of searching for a local optimal solution.
Markus et al. [14] incorporated domain-specific characteristics
into a local search to produce a new layout. The method in
[14] obtains better results while costing less computational time
than an EA, i.e., CMA-ES. In [19], a bionic algorithm is pro-
posed, in which a wind turbine is located and relocated where
its own power output can be increased. Yang et al. [20] pro-
posed a random search algorithm and improved it by adding
some adaptive mechanisms in their later work [15]. In [16], a
greedy algorithm with repeated adjustment is applied to opti-
mize wind turbine locations. In contrast to EAs, which maintain
a population of layouts, the greedy methods only optimize one
layout. As a consequence, this kind of method is more effi-
cient in searching for the optimal layout. However, its global
search ability is limited due to the fact that it usually uses ran-
dom search or local search to relocate one wind turbine in each
iteration.

Recognizing that both EAs and greedy methods have their
advantages and shortcomings, a question which arises natu-
rally is whether we can integrate the advantages of these two
kinds of methods, achieving the balance between effectiveness
and efficiency. Motivated by the above consideration, this paper
presents a new encoding mechanism and exploits DE, a very
population EA paradigm, as the search engine. By combining
this new encoding mechanism with DE, a simple yet generic
method called DEEM is presented to solve the coordinate-based
model. Herein, the coordinate-based model is employed because
it allows more flexible distribution of wind turbines compared
with the grid-based model. To the best of our knowledge, the
encoding mechanism in DEEM is the first attempt to treat the
location of each wind turbine as an individual. Based on this
encoding mechanism, the whole population just represents a
layout. Afterward, the mutation and crossover operators of DE
are implemented on each individual in the parent population to
produce an offspring population. At each generation, each off-
spring is used to randomly replace an individual in the parent
population to form a new layout. If the new layout has a better
power output, this update is successful and acceptable. Fur-
thermore, the caching technique is used to accelerate the wind
power evaluation process. It is shown empirically that DEEM

outperforms seven other state-of-the-art methods in terms of the
power output and computational time.

The rest of this paper is organized as follows. Section II
formulates the wind farm layout model. Section III gives a
brief introduction of DE. Section IV elaborates the proposed
DEEM. Comparative studies and discussions are conducted in
Sections V and VI, respectively. Finally, Section VII concludes
this paper.

II. PROBLEM FORMULATION

In this section, the power curve model aims to compute the
power output of a wind turbine according to a given wind speed
and the wake effect model is used to quantify the wake effect.
Then, these models are combined by performing numerical in-
tegration. Finally, the wind farm layout model is formulated by
considering some constraints.

A. Assumptions

Let the number of wind turbines be equal to N . To formu-
late a general wind farm layout model, several assumptions are
considered below.

A1. All the wind turbines and their power curve functions
are identical.

A2. The layout of a wind farm is based on a 2-D coordinate
system (i.e., x-axis and y-axis), and the search space
is S = [x, x] × [y, y], where x and x are the lower and
upper bounds of x, respectively, and y and y are the
lower and upper bounds of y, respectively.

A3. For wind turbine i and wind direction θ, wind speed v
follows the Weibull distribution, expressed as

p(v, ci(θ), ki(θ)) =
ki(θ)
ci(θ)

(
v

ci(θ)

)ki (θ)−1

× e
−
(

v
c i ( θ )

)k i ( θ )

, 0◦ ≤ θ < 360◦ (1)

where ki(θ) and ci(θ) are the shape parameter and the
scale parameter, respectively, and they are continuous
functions of wind direction θ.

A4. There exists a minimum distance between any two wind
turbines to ensure safety, which is set to five times of
the rotor radius, i.e., 5R.

A5. A wind turbine turns its nacelle to keep the rotor plane
perpendicular to wind direction θ.

B. Power Curve Model

A power curve function (denoted as f(v)) can be used to
describe the relationship between the power output of wind
turbine i and wind speed v [21]:

Pi = f(v) =

⎧⎪⎪⎨
⎪⎪⎩

0, v ≥ vco , v < vci

ev

α + βev
, vci ≤ v < vr

Pr , vr ≤ v < vco

(2)

where Pi is the power output of wind turbine i, and α and β
are constants. As shown in (2), when v is smaller than the cut-
in speed vci , no power is extracted. When v is larger than the
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cut-out speed vco , the wind turbine shuts down to protect itself.
If v ranges from the rated speed vr to vco , the wind turbine
control system will keep the rated power output Pr .

C. Wake Effect Model

Wake effect is the main factor physically impacting the power
output of a wind farm. When the free stream wind passes through
a wind turbine, the kinetic energy of wind is reduced and a wake
behind the wind turbine occurs. As a result, the energy extracted
by the downstream wind turbine in the wake will diminish.
Considering simplicity and rationality, the Jensen’s wake model
[22] is adopted to describe this phenomenon.

Suppose that wind turbines i and j are located at (xi, yi)
and (xj , yj ) in the wind farm, respectively. If wind turbine i is
affected by the wake of wind turbine j, the velocity deficit of
wind turbine i caused by the wake of wind turbine j is denoted
as V Dj,i and calculated by the following equations:

a = 0.5(1 −
√

1 − CT ), κ = 0.5/ ln(z/z0) (3)

dj,i = |(xj − xi) cos θ + (yj − yi) sin θ| (4)

V Dj,i = 1 − vdn/vup = 2a/(1 + κdj,i /R)2 (5)

where a is the axial induction factor, CT is the fixed thrust
coefficient [23], z is the tower height of a wind turbine, z0 is the
ground surface roughness, vdn is the wind speed at downstream
wind turbine i, and vup is the wind speed at upstream wind
turbine j.

Afterward, the total velocity deficit V Di of wind turbine
i caused by the wakes of all the other wind turbines can be
derived as follows:

V Di =
√∑N

j=1,j �=i
(V Dj,i)

2, i = 1, 2, . . . , N. (6)

It is worth noting that the scale parameter ci(θ) of the Weibull
distribution is influenced by the wake effect [8] and the updated
ci(θ) (denoted as c′i(θ)) is computed by the following equation:

c′i(θ) = ci(θ) × (1 − V Di), i = 1, 2, . . . , N (7)

D. Numerical Integration of Expected Power Output

After calculating the integral of the product of (1) and (2)
with respect to wind speed v and wind direction θ, the expected
power output of wind turbine i is calculated by the following
equation:

E(Pi) =
∫ 360◦

0◦
p(θ)

∫ ∞

0
f(v)

ki(θ)
c′i(θ)

(
v

c′i(θ)

)ki (θ)−1

× e
−
(

v
c ′
i
( θ )

)k i ( θ )

dvdθ (8)

where p(θ) is the probability density function of θ.
Due to the fact that f(v) is a piecewise function, the in-

tegral over v in (8) can be divided into four parts according
to the intervals [0, vci), [vci , vr ), [vr , vco), and [vco ,+∞). In
the case of [0, vci) and [vco ,+∞), (8) is equal to 0 because
f(v) = 0. Regarding [vr , vco), the integral over v is equal to

Pr × (e−(vr /c ′i (θ))k i ( θ ) − e−(vc o /c ′i (θ))k i ( θ )
). Since it is challeng-

ing to analytically obtain the integral in [vci , vr ), a numerical

integration technique, i.e., Riemann sum [24], is adopted. Under
this condition, wind speed v is quantized into s intervals with the
same width: [v0, v1), [v1, v2), . . . , [vs−1, vs), where v0 = vci

and vs = vr . Similarly, wind direction θ is quantized into h in-
tervals with the same width: [θ0, θ1), [θ1, θ2), . . . , [θh−1, θh),
where θ0 = 0◦ and θh = 360◦. After these processes, the ex-
pected power output of wind turbine i can be obtained in the
following discrete form [8]:

E(Pi) =
h∑

n=1

ξn

{
Pr ×

(
e−(vr /c ′i ((θn −1+θn )/2))k i ((θ n −1+ θ n )/2)

− e−(vc o /c ′i ((θn −1+θn )/2))k i ((θ n −1+ θ n )/2)
)

+
s∑

j=1

(
e−(vj −1/c ′i ((θn −1+θn )/2))k i ((θ n −1+ θ n )/2)

− e−(vj /c ′i ((θn −1+θn )/2))k i ((θ n −1+ θ n )/2)
)

× e(vj −1+vj )/2

α + βe(vj −1+vj )/2

}
(9)

where ξn is the frequency of the interval [θn−1, θn ).

E. Wind Farm Layout Model

In this paper, the objective is to find the optimal layout of all
the wind turbines to maximize the power output of a wind farm,
which is expressed by (10). Since the coordinate-based model
is used, each wind turbine can be located anywhere in the wind
farm as long as the constraints are satisfied. In (10), we mainly
take three constraints into account. The first two constraints
enable a wind turbine to lie within the wind farm. Additionally,
the third constraint guarantees the distance between wind turbine
i and any other wind turbine not shorter than 5R.⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

maximize: P =
∑N

i=1 E(Pi)
subject to: x + R ≤ xi ≤ x − R,

y + R ≤ yi ≤ y − R,√
(xi − xj )

2 + (yi − yj )
2 ≥ 5R,

j = 1, 2, . . . , N and j �= i.

(10)

III. DIFFERENTIAL EVOLUTION (DE)

DE is a population-based optimizer [25]. As a very popular
paradigm of EAs, DE has been widely applied to solve a variety
of optimization problems. At the beginning of evolution, DE
randomly samples NP individuals from the search space, each
of which is also called a target vector:

�xi = (xi,1, xi,2, . . . , xi,D ), i = 1, 2, . . . , NP (11)

where D is the dimension of the target vector. Afterward, DE
implements three main operators, i.e., mutation, crossover, and
selection to evolve the population.

Mutation: The mutation operator generates a mutant vector
�vi = (vi,1, vi,2, . . . , vi,D ) for each target vector �xi via the fol-
lowing equation:

�vi = �xr1 + F × (�xr2 − �xr3), i = 1, 2, . . . , NP (12)
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Fig. 1. Difference between the traditional encoding mechanism in EAs and the proposed encoding mechanism in this paper. (a) A wind farm.
(b) Traditional encoding mechanism in EAs. (c) Proposed encoding mechanism in this paper.

where r1, r2, and r3 are three mutually distinct integers ran-
domly chosen from [1, NP ] and also different from i, F is the
scaling factor, and (�xr2 − �xr3) is the difference vector.

Crossover: The binomial crossover operator is implemented
on each pair of �xi and �vi to produce a trial vector �ui =
(ui,1, ui,2, . . . , ui,D ) via the following equation:

ui,j =
{

vi,j , if randj < CR or j = jrand

xi,j , otherwise
(13)

where i = 1, 2, ..., NP , j = 1, 2, ...,D, randj is a uniformly
distributed random number on the interval [0, 1], jrand is a
randomly chosen integer between 1 and D, and CR ∈ [0, 1] is
the so-called crossover control parameter.

Selection: Considering a maximization problem, the target
vector �xi is compared with its trial vector �ui based on the objec-
tive function f(·), and the better one will survive into the next
generation:

�xi =
{

�ui, if f(�ui) ≥ f(�xi)
�xi, otherwise

, i = 1, 2, . . . , NP . (14)

IV. DE WITH A NEW ENCODING MECHANISM FOR

OPTIMIZING WIND FARM LAYOUT

A. Motivation

When optimizing the wind farm layout, the main feature of
greedy methods is that only one layout is considered and only
one wind turbine in the layout is moved by some strategies
similar to random search or local search in each iteration. As a
result, the evaluation of the layout can be sped up by utilizing the
caching technique. Nevertheless, the above feature also results
in the poor global search ability of greedy methods.

In contrast, EAs work with a population of candidate solu-
tions and are well suited for global search. When EAs are ap-
plied to optimize the wind farm layout, each individual usually
represents an entire layout and each dimension of an individ-
ual denotes a coordinate of a wind turbine. After implementing

evolutionary operators on the individuals, maybe many wind tur-
bines rather than just one wind turbine are updated. Therefore, it
is hard to use the caching technique to accelerate the evaluation
of a layout under this condition, which leads to consuming a
great deal of computational time.

In the wind farm layout, it is clear that the location of a wind
turbine is determined by a 2-D coordinate system (i.e., x-axis
and y-axis) and each dimension of all the wind turbines has the
same search region (i.e., [x, x̄] or [y, ȳ]). This property motivates
us to design a new encoding mechanism, in which each wind
turbine is considered to be an individual and all the wind tur-
bines form a population. Fig. 1 depicts the difference between
the traditional encoding mechanism in EAs and the proposed
encoding mechanism in this paper. As shown in Fig. 1, for the
proposed encoding mechanism, each individual contains two
dimensions and the population is an N × 2 matrix. However,
for the traditional encoding mechanism in EAs, each individual
contains 2N dimensions and the population is an NP × 2N
matrix, where NP is the user-defined population size.

The proposed encoding mechanism has the following char-
acteristics:

1) A population represents a layout. Under this condition, if
only one wind turbine (i.e., one individual) is moved in
each iteration, the caching technique can be applied.

2) Each individual can be updated by evolutionary oper-
ators. In this manner, the global search ability can be
strengthened.

3) The population size does not need to be predefined since
it is equal to the number of wind turbines, i.e., N .

Therefore, the advantages of greedy methods and EAs can be
combined effectively by this encoding mechanism.

B. DEEM

Due to its simple structure and ease to implement, DE serves
as the search engine in this paper. By combining DE with this
new encoding mechanism, we propose a simple yet generic
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Algorithm 1: Initialization.
1: k = 0;
2: Put a wind turbine into the wind farm randomly;
3: for i = 2 to N do
4: If k > 200, delete all the wind turbines in the wind

farm and go to Step 1; otherwise, put wind turbine i
into the wind farm randomly;

5: If wind turbine i cannot satisfy the third constraint
in (10), then k = k + 1 and go to Step 4;

6: k = 0;
7: end for
8: Output the initial layout

method, called DEEM, to solve the wind farm layout model
in (10). In DEEM, each individual (i.e., the location of a wind
turbine) is denoted as (xi, yi) (i ∈ {1, 2, . . . , N}) and the pop-
ulation is denoted as P = {(x1, y1), (x2, y2), . . . , (xN , yN )}.

In the initialization, a wind turbine is first put into the wind
farm randomly. Next, the second wind turbine is also put into the
wind farm randomly and the third constraint in (10) is checked.
If the second wind turbine satisfies this constraint, then the
allocation is successful; otherwise, the location of the second
turbine will be regenerated. Afterward, the above process will
be executed on the third wind turbine and so forth. At last, all
the wind turbines are located at the wind farm and an initial
layout (i.e., an initial population P ) is produced. Note that if
the number of relocation for a wind turbine is more than 200,
the initialization will restart. Algorithm 1 shows the implemen-
tation of the initialization. It is necessary to emphasize that this
initialization process is used in all the compared algorithms in
this paper.

During the evolution, an offspring population Q is first gen-
erated by implementing the mutation and crossover operators
of DE in (12) and (13) on P . Afterward, the first individual in
Q is used to replace a randomly selected individual in P . As
a result, we obtain an updated P , denoted as S. Obviously, S
represents a new layout. If S satisfies the constraints in (10)
and the wind power output of S is higher than that of P , P is
replaced with S; otherwise, P is kept unchanged. Subsequently,
the above process is implemented on the remaining individuals
in Q one by one. When the maximum number of fitness evalu-
ations (denoted as MaxFEs) is reached, DEEM will stop. The
framework of DEEM is given in Algorithm 2.

As mentioned previously, the main feature of greedy meth-
ods is that only one layout is considered and only one wind
turbine is moved in each iteration. As a result, the evaluation
of the layout can be sped up by the caching technique. For
DEEM, in each updating of P , only one offspring in Q is used
to randomly replace an individual in P . Thus, similar to greedy
methods, the evaluation of the wind power output in DEEM is
also efficient. On the other hand, DEEM can benefit from the
global search ability of DE by taking advantages of the muta-
tion and crossover of DE to yield the offspring population Q.
Therefore, DEEM is capable of achieving the balance between
effectiveness and efficiency. It is evident from Algorithm 2 that
the implementation of DEEM is quite simple. Moreover, DEEM
eliminates a user-specified parameter (i.e., the population size)

Algorithm 2: The Framework of DEEM.
1: Generate an initial population P and evaluate the

wind power output of P based on (10);
2: FEs = 0; // FEs denotes the number of fitness

evaluations of the wind power output
3: while FEs < MaxFEs do
4: Implement the mutation and crossover of DE in (12)

and (13) on P to generate an offspring population Q;
5: for i = 1 to N do
6: Utilize the ith offspring in Q to replace a randomly

selected individual in P and denote the updated
P as S;

7: if S satisfies the constraints in (10) then
8: Evaluate the wind power output of S based

on (10);
9: FEs = FEs + 1;

10: if S offers higher wind power output than P then
11: P = S;
12: end if
13: end if
14: end for
15: end while
16: Output P

Fig. 2. Explanation of how parents produce bad offspring in the tradi-
tional encoding of EAs.

and only contains two control parameters: F in (12) and CR
in (13).

C. Principle Analysis

In the following, we will analyze the principles of EAs, greedy
methods, and DEEM.

1) In current EAs, an individual usually represents an en-
tire wind farm layout. With respect to such traditional
encoding mechanism, the probability that the offspring
created by the evolutionary operator are better than the
parents might be very low. Fig. 2 gives an example. Sup-
pose that: a) a layout contains six wind turbines; b) there
are two parents A and B; and c) the crossover site splits
both A and B into two segments (i.e., A1 and A2, and
B1 and B2). As shown in Fig. 2, after implementing the
one-point crossover on A and B, the offspring has lower
power output since the wind turbines in the offspring
cluster in a small part of the search space. The above
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phenomenon can be attributed to the random selection of
the crossover site in the one-point crossover, which results
in the information exchange between two parents being
quite random. In contrast, in DEEM, only one wind tur-
bine is moved to produce a new layout so DEEM updates
the layout in a more stable manner.

2) In the previous work, when applying EAs to optimize the
wind farm layout, the dimension of the search space is
dependent mainly on the number of wind turbines and
equal to 2N . Consequently, EAs will suffer from the
curse of dimensionality with the drastic increase of the
number of wind turbines. However, in DEEM, each indi-
vidual contains two decision variables and the dimension
of the search space is thus equal to two, regardless of
the number of wind turbines. Clearly, it is much easier
for DEEM to search for the optimal layout, owing to the
low-dimensional search space.

3) Existing greedy methods usually move a wind turbine
randomly or merely according to the locations of neigh-
bor wind turbines in each updating, which is similar to
random search or local search, respectively. Thus, the
global search ability of existing greedy methods is lim-
ited. Similar to greedy methods, DEEM also moves one
wind turbine to a new location in each updating. Never-
theless, in DEEM, the new location is generated based
on the mutation and crossover operators of DE. Under
this condition, DEEM has the potential to utilize the in-
formation of all the other wind turbines when moving a
specific wind turbine. As a consequence, DEEM exhibits
better global search ability.

D. Evaluation Acceleration

Evaluating the power output of a layout is an important step
in the optimization of the wind farm layout. It is noteworthy
that this step is time-consuming and occupies most of the com-
putational time of the whole procedure. Fortunately, we can
exploit the caching technique [14] to reduce the computational
time, thanks to the encoding mechanism of DEEM. The caching
technique accelerates the evaluation by simplifying the compu-
tation of the velocity deficit. When wind turbine j is moved,
its velocity deficit is calculated as (6). For each unmoved wind
turbine, we only need to reconsider its velocity deficit induced
by wind turbine j.

As far as the commonly used evaluation method is concerned,
the velocity deficit needs to be computed between any two wind
turbines. The computational time complexity is thus O(N 2).
However, the caching technique only requires 2(N − 1) checks
of the velocity deficit and the computational time complexity is
O(N).

Remark 1: There are two major differences between DEEM
and the general DE introduced in Section III.

1) The encoding mechanism as explained in Fig. 1.
2) The selection operator: After evaluating the trial vector

and its target vector by (10), the general DE adopts a
one-to-one selection between them and the better one
will survive into the next generation. However, in DEEM,
each trial vector will first randomly replace a target vector.
Afterward, the updated population is evaluated by (10).

If the updated population is better than the previous one,
then the replacement will occur.

V. COMPUTATIONAL STUDIES

In order to verify the effectiveness of DEEM, it was com-
pared with an outstanding greedy method (i.e., turbine distri-
bution algorithm (TDA) [14]) and five state-of-the-art EAs:
CMA-ES [12], two variants of particle swarm optimization
(i.e., MSO [26] and CLPSO [27]), and two variants of DE (i.e.,
JADE [28] and SHADE [29]). In TDA, a wind turbine is moved
by a displacement vector. The length and direction of the dis-
placement vector are computed according to the locations of
two nearest wind turbines. CMA-ES is a well-known evolution
strategy proposed by Hansen and Ostermeier [30]. It searches
for the optimal solution by making use of covariance matrix
adaptation and has been applied to wind farm layout in [12]. In
MSO, the population is divided into a number of sub-swarms
and these sub-swarms are regrouped frequently to achieve better
diversity of the population. CLPSO is a comprehensive learning
particle swarm optimizer, in which all other particles’ historical
best information is used to update a particle’s velocity. JADE
implements a new mutation strategy “DE/current-to-pbest” with
optional external archive and updates control parameters in an
adaptive manner. SHADE is an enhanced JADE, which uses a
history-based parameter adaptation scheme.

Two wind scenarios with different number of wind turbines
were used to compare the performance of TDA, CMA-ES, MSO,
CLPSO, JADE, SHADE, and DEEM. In this paper, we consid-
ered the following number of wind turbines: N = 15, 20, 25, 30,
35, 40, 60, 80, and 100. For each compared algorithm, 30 inde-
pendent runs were executed on each wind scenario with a speci-
fied number of wind turbines. To test the statistical significance
between DEEM and each competitor, Wilcoxon’s rank sum test
at a 0.05 significance level was applied. In all the tables of this
section, “+,” “−,” and “≈” denotes the performance of DEEM
is better than, worse than, and similar to that of its competitor,
respectively. In addition, “Mean PO” and “Std Dev” indicate
the average and standard deviation of the power output (kW) in
30 runs, respectively, and percentages in parentheses denote the
improvement rates of DEEM against other algorithms.

A. Parameter Settings

For the wind farm layout model, GE1.5-77 wind turbine was
considered and its detailed parameters are shown in Table I. The
number of wind direction intervals h and wind speed intervals
s was set to 24 and 36, respectively. The shape of the wind farm
was set to a square area with varying side lengths, which are
relevant to the number of wind turbines as shown in Table II.

The parameter settings of the seven compared algorithms are
given in Table III. In TDA, the initial displacement distance stan-
dard deviation σdis and the initial direction standard deviation
σdir were set to 500 and π/6, respectively. In CMA-ES, the step
size σ is self-adaptively updated during the evolution. However,
we found that if σ is fixed, better performance can be obtained
for the wind farm layout. Therefore, in this paper, σ was set to
15. For MSO, there were ten sub-swarms and each sub-swarm
had three particles. With respect to CLPSO, the population size
NP was set to 60. The settings of the inertia weight and acceler-
ation constants in MSO and CLPSO were consistent with their
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TABLE I
PARAMETER SETTINGS OF WIND TURBINES

Parameter Explanation Value

z Hub height of wind turbine (m) 80

R Rotor radius of wind turbine (m) 40

CT Thrust coefficient of wind turbine 0.8

Pr Rated power output of wind turbine (kW) 1500

κ Environment constant 0.01

vci Cut-in wind speed of wind turbine (m/s) 3.5

vr Rated wind speed of wind turbine (m/s) 14

vco Cut-out wind speed of wind turbines (m/s) 25

α The parameter of power curve function 6.0268

β The parameter of power curve function 0.0007

TABLE II
SIDE LENGTHS OF A WIND FARM WITH DIFFERENT NUMBER OF WIND

TURBINES

N 15 20 25 30 35 40 60 80 100

Side Length (m) 2000 2000 2000 2200 2400 2600 3100 3600 4000

TABLE III
PARAMETER SETTINGS OF THE SEVEN COMPARED ALGORITHMS

Algorithm Parameter Settings

TDA σdis = 500, σdir = π/6

CMA-ES σ = 15, l = 4 + 
3ln(2N )�, μ = 
l/2�;

MSO s1 = 10, s2 = 3, ω: linear decreasing from 0.9 to 0.2, c1 = 2, c2 = 2

CLPSO NP = 60, ω: linear decreasing from 0.9 to 0.4, c = 1.49445

JADE NP = 100

SHADE NP = 100

DEEM F = 0.9, CR = 0.9

original papers. Regarding JADE and SHADE, NP was set to
100. Moreover, F and CR were adaptively tuned in JADE and
SHADE as in their original papers. As mentioned previously,
DEEM only contains two parameters, which were set as follows:
F = 0.9 and CR = 0.9. For each algorithm, MaxFEs was set
to 150 000.

B. Wind Scenario 1

The details of wind scenario 1 are summarized in Table IV,
where i is the index of wind turbine, n is the index of the wind
direction interval, and ξn is the frequency associated with the
wind direction interval [θn−1, θn ). The wind direction from west
to east is defined as 0◦ and the wind direction from south to north
is defined as 90◦. It can be observed from Table IV that the wind
directions are mainly distributed from 120◦ to 225◦. Therefore,
in order to maximize the wind power output in this scenario,
it is necessary to reduce the wake effect along a wide range of
wind directions (i.e., from 120◦ to 225◦), which poses a great
challenge for an algorithm to produce the optimal layout.

First, Table V shows the maximal power output of the seven
compared algorithms among 30 independent runs. As shown

TABLE IV
WIND SCENARIO 1

n θn−1 θn ki (θ) ci (θ) ξn n θn−1 θn ki (θ) ci (θ) ξn

1 0◦ 15◦ 2 7 0.0003 13 180◦ 195◦ 2 10 0.1909

2 15◦ 30◦ 2 5 0.0072 14 195◦ 210◦ 2 8.5 0.1162

3 30◦ 45◦ 2 5 0.0237 15 210◦ 225◦ 2 8.5 0.0793

4 45◦ 60◦ 2 5 0.0242 16 225◦ 240◦ 2 6.5 0.0082

5 60◦ 75◦ 2 5 0.0222 17 240◦ 255◦ 2 4.6 0.0041

6 75◦ 90◦ 2 4 0.0301 18 255◦ 270◦ 2 2.6 0.0008

7 90◦ 105◦ 2 5 0.0397 19 270◦ 285◦ 2 8 0.001

8 105◦ 120◦ 2 6 0.0268 20 285◦ 300◦ 2 5 0.0005

9 120◦ 135◦ 2 7 0.0626 21 300◦ 315◦ 2 6.4 0.0013

10 135◦ 150◦ 2 7 0.0801 22 315◦ 330◦ 2 5.2 0.0031

11 150◦ 165◦ 2 8 0.1025 23 330◦ 345◦ 2 4.5 0.0085

12 165◦ 180◦ 2 9.5 0.1445 24 345◦ 360◦ 2 3.9 0.0222

TABLE V
MAXIMAL POWER OUTPUT (kW) OF THE SEVEN COMPARED ALGORITHMS IN

WIND SCENARIO 1

N TDA CMA-ES MSO CLPSO JADE SHADE DEEM

15 6106.74 6023.09 6129.19 5961.60 5993.91 6082.06 6275.03

20 7585.92 7504.91 7303.67 7280.71 7328.88 7374.05 7763.10

25 8588.45 8859.97 8129.23 7991.80 8251.03 8253.73 8991.92

30 9719.08 10152.25 9233.02 9000.15 9102.20 9191.07 10280.63

35 11123.86 11051.74 10011.11 10104.07 10076.10 10300.94 11631.64

40 12160.36 12194.98 11022.51 11138.53 11028.41 11413.96 12966.75

60 15875.54 14862.37 13462.44 14233.88 13839.48 14356.68 16975.80

80 19485.85 17373.35 15597.53 17207.92 16424.15 17054.04 20334.99

100 22856.68 19163.00 16660.70 19438.94 18656.75 19566.80 23415.03

The highest power output among the seven compared algorithms is highlighted in boldface
for each case.

in Table V, DEEM consistently provides the best performance
in terms of the maximal power output. Subsequently, Table VI
summarizes the average and standard deviation of the power
output derived from the seven compared algorithms over 30
independent runs. Next, we will discuss the experimental results
from the following three aspects.

1) As shown in Table VI, DEEM performs significantly bet-
ter than the six competitors on all the cases, according to
the Wilcoxon’s rank sum test at a 0.05 significance level.
One may be interested in why DEEM with simple DE
operators even outperforms two well-established adap-
tive DE variants, i.e., JADE and SHADE. The reason is
the following. In JADE and SHADE, the successful pa-
rameter settings, which can generate better offspring in
previous generations, are used to create future parameter
values. However, for wind farm layout, very often the
offspring could not satisfy the constraints in (10). Under
this condition, the offspring is worse than the parents.
As a result, the amount of successful parameter settings
is limited at the end of each generation, which results
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TABLE VI
EXPERIMENTAL RESULTS OF THE SEVEN COMPARED ALGORITHMS IN WIND SCENARIO 1 (KW)

N TDA CMA-ES MSO CLPSO JADE SHADE DEEM
Mean PO ± Std Dev Mean PO ± Std Dev Mean PO ± Std Dev Mean PO ± Std Dev Mean PO ± Std Dev Mean PO ± Std Dev Mean PO ± Std Dev

15 5923.30 ± 105.26 + 5883.61 ± 111.15 + 5926.47 ± 136.49 + 5923.60 ± 35.84 + 5954.68 ± 24.70 + 6042.09 ± 30.65 + 6183.32 ± 49.90
(4.38%) (5.09%) (4.33%) (4.38%) (3.83%) (2.33%)

20 7308.67 ± 151.64 + 7278.84 ± 143.16 + 7106.34 ± 163.91 + 7125.12 ± 75.66 + 7178.90 ± 103.86 + 7281.92 ± 58.42 + 7674.78 ± 62.76
(5.00%) (5.43%) (7.99%) (7.71%) (6.90%) (5.39%)

25 8257.07 ± 178.85 + 8565.16 ± 175.58 + 7759.28 ± 212.48 + 7892.72 ± 71.44 + 7886.95 ± 155.52 + 8039.07 ± 85.18 + 8828.37 ± 156.98
(6.91%) (3.07%) (13.77%) (11.85%) (11.93%) (9.81%)

30 9487.57 ± 129.37 + 9778.64 ± 160.79 + 8740.24 ± 270.88 + 8902.46 ± 73.32 + 8996.17 ± 56.71 + 9123.25 ± 60.71 + 10085.18 ± 112.36
(6.29%) (3.13%) (15.38%) (13.28%) (12.10%) (10.54%)

35 10764.48 ± 220.19 + 10882.14 ± 127.82 + 9727.18 ± 222.82 + 9977.47 ± 67.45 + 9936.61 ± 85.80 + 10184.13 ± 68.88 + 11413.48 ± 151.55
(6.02%) (4.88%) (17.33%) (14.39%) (14.86%) (12.07%)

40 11954.19 ± 133.80 + 11992.08 ± 141.93 + 10657.96 ± 242.13 + 11001.07 ± 77.25 + 10857.41 ± 81.75 + 11197.96 ± 106.42 + 12640.05 ± 225.18
(5.73%) (5.40%) (18.59%) (14.89%) (16.41%) (12.87%)

60 15512.11 ± 235.16 + 14662.88 ± 121.89 + 12915.52 ± 532.44 + 14024.53 ± 145.60 + 13647.24 ± 117.31 + 14179.61 ± 134.04 + 16538.61 ± 209.79
(6.61%) (12.79%) (28.05%) (17.92%) (21.18%) (16.63%)

80 19171.57 ± 169.58 + 17017.62 ± 267.48 + 14646.77 ± 539.44 + 16935.41 ± 138.92 + 16235.83 ± 177.18 + 16783.04 ± 283.50 + 20006.09 ± 150.02
(4.35%) (17.56%) (36.59%) (18.13%) (23.22%) (19.20%)

100 22340.84 ± 309.75 + 18968.05 ± 168.45 + 16007.52 ± 300.91 + 19206.77 ± 126.08 + 18256.93 ± 246.90 + 19158.66 ± 413.39 + 23142.42 ± 204.74
(3.58%) (22.00%) (44.57%) (20.49%) (26.75%) (20.79%)

+ 9 9 9 9 9 9 /

TABLE VII
RANKINGS OBTAINED BY THE FRIEDMAN’S TEST FOR THE SEVEN

COMPARED ALGORITHMS IN WIND SCENARIO 1

Algorithm Ranking

TDA 2.8889

CMA-ES 3.3333

MSO 6.6667

CLPSO 4.8889

JADE 5.4444

SHADE 3.7778

DEEM 1

The best and the second best results are highlighted in bold-
face and italic, respectively.

in insufficient information collected for updating the pa-
rameter settings.

2) We also calculated the improvement rate of DEEM
against the other six algorithms based on the average
power output. It can be seen that, overall, DEEM has the
increasing advantage over all the competitors except TDA
as the number of wind turbines increases. For example, in
the case of N = 15, the average power output of DEEM
is 5.09%, 4.33%, 4.38%, 3.83%, and 2.33% higher than
that of CMA-ES, MSO, CLPSO, JADE, and SHADE, re-
spectively. When N = 100, DEEM can achieve 22.00%,
44.57%, 20.49%, 26.75%, and 20.79% performance im-
provement compared with CMA-ES, MSO, CLPSO,
JADE, and SHADE, respectively. It is because when the
number of wind turbines is small, the wind turbines can
be placed sparsely in the wind farm easily. As a result, the

Fig. 3. Evolution of the average power output provided by the seven
compared algorithms for wind scenario 1. (a) N = 25. (b) N = 40.

wake effect can be reduced and the performance differ-
ence among the compared algorithms is not significant.
However, when the number of wind turbines increases,
the dimension of the search space increases drastically
for CMA-ES, MSO, CLPSO, JADE, and SHADE. Since
DEEM searches for the optimal layout in a 2-D search
space, it has more potential to obtain better results. In
addition, DEEM has good global search ability, hence it
is also consistently better than TDA which adopts local
search.

3) Furthermore, based on the average power output,
the Friedman’s test was carried out by making use of
KEEL software [31], in which the Bonferroni–Dunn
method was chosen for the post hoc test. Table VII sum-
marizes the statistical test results. It can be observed from
Table VII that DEEM ranks the first, followed by TDA.

Fig. 3 presents the evolution of the average power output
achieved by the seven compared algorithms on N = 25 and
N = 40. From Fig. 3, at the initial stage (i.e., less than 10 000
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Fig. 4. Best layouts of the seven compared algorithms with N = 25 in wind scenario 1. (a) TDA. (b) CMA-ES. (c) MSO. (d) CLPSO. (e) JADE.
(f) SHADE. (g) DEEM.

Fig. 5. Best layouts of the seven compared algorithms with N = 40 in wind scenario 1. (a) TDA. (b) CMA-ES. (c) MSO. (d) CLPSO. (e) JADE.
(f) SHADE. (g) DEEM.

Fig. 6. Runtime of the seven compared algorithms for wind scenario 1.

FEs), the average power output of DEEM reaches a large im-
provement rapidly. Moreover, DEEM maintains the highest av-
erage power output among the seven compared algorithms in
the whole evolutionary process. The above phenomenon im-
plies that DEEM converges faster than the six competitors.

The best layouts of the seven compared algorithms on N = 25
and N = 40 are shown in Figs. 4 and 5, respectively. When N =
25 in Fig. 4, CMA-ES, JADE, and DEEM enlarge the distances
among the wind turbines along the predominant wind directions
(i.e., from 120◦ to 225◦) and prefer to place the wind turbines
close to the left and right boundaries of the wind farm. With
the increase of the number of wind turbines, such as N = 40
in Fig. 5, the layouts of all the algorithms except DEEM are
relatively disordered. Overall, DEEM can generate more regular
and symmetric layouts than other algorithms.

Fig. 6 summarizes the runtime of the seven compared algo-
rithms versus the number of wind turbines. The first observation
from Fig. 6 is that the seven compared algorithms can be divided
into three groups: DEEM and TDA, MSO and CMA-ES, and
CLPSO, JADE, and SHADE. The algorithms in each group
have the similar runtime. DEEM and TDA need the least run-
time due to the usage of the caching technique. Although all the
algorithms in the second and third groups make use of the tra-
ditional encoding shown in Fig. 1(b), the runtime of the second
group is less than that of the third group. It is probably because

TABLE VIII
WIND SCENARIO 2

n θn−1 θn ki (θ) ci (θ) ξn n θn−1 θn ki (θ) ci (θ) ξn

1 0◦ 15◦ 2 13 0 13 180◦ 195◦ 2 13 0.01
2 15◦ 30◦ 2 13 0.01 14 195◦ 210◦ 2 13 0.01
3 30◦ 45◦ 2 13 0.01 15 210◦ 225◦ 2 13 0.01
4 45◦ 60◦ 2 13 0.01 16 225◦ 240◦ 2 13 0.01
5 60◦ 75◦ 2 13 0.01 17 240◦ 255◦ 2 13 0.01
6 75◦ 90◦ 2 13 0.2 18 255◦ 270◦ 2 13 0.01
7 90◦ 105◦ 2 13 0.6 19 270◦ 285◦ 2 13 0.01
8 105◦ 120◦ 2 13 0.01 20 285◦ 300◦ 2 13 0.01
9 120◦ 135◦ 2 13 0.01 21 300◦ 315◦ 2 13 0.01
10 135◦ 150◦ 2 13 0.01 22 315◦ 330◦ 2 13 0.01
11 150◦ 165◦ 2 13 0.01 23 330◦ 345◦ 2 13 0.01
12 165◦ 180◦ 2 13 0.01 24 345◦ 360◦ 2 13 0

the implementation of CLPSO, JADE, and SHADE is more
complicated than that of MSO and CMA-ES. Additionally, the
runtime of the second and third groups is considerably higher
than that of the first group with the increase of the number of
wind turbines. Specifically, in the case of N = 100, CLPSO,
JADE, and SHADE are nearly three times slower than DEEM
and TDA.

C. Wind Scenario 2

The details of wind scenario 2 are presented in Table VIII, in
which the prevailing wind directions are between 75◦ to 105◦.
The wind distribution is relatively simple and the wind speed is
higher than wind scenario 1.

The maximal power output of the seven compared algorithms
is provided in Table IX, which again indicates that DEEM shows
the best performance. It seems that the maximal power output of
each algorithm in wind scenario 2 is higher than wind scenario 1
on each case. This phenomenon can be explained as follows: the
wind distribution focuses on a small scale such that it is easier
to avoid the wake effect.

In addition, Table X recodes the average and standard devi-
ation of the power output resulting from the seven compared
algorithms over 30 runs. As depicted in Table X, DEEM per-
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TABLE IX
MAXIMAL POWER OUTPUT (kW) OF THE SEVEN COMPARED ALGORITHMS IN

WIND SCENARIO 2

N TDA CMA-ES MSO CLPSO JADE SHADE DEEM

15 13007.32 12926.37 12922.7 12926.37 12925.13 12949.01 13065.80

20 16616.11 16499.97 16473.56 16499.97 16511.69 16614.43 17068.28

25 19896.88 18947.07 18938.67 18947.07 19062.41 19245.13 20181.91

30 23012.64 21965.25 21846.16 21965.25 21936.02 22351.84 23894.34

35 26541.68 24904.19 24569.87 24904.19 25088.55 25412.10 27058.16

40 29839.90 27931.65 27116.66 27931.65 27730.16 28398.42 30791.14

60 41489.54 37138.68 36156.21 37138.68 36656.46 37748.24 42110.22

80 51893.55 46319.76 43959.58 46319.76 44641.72 46884.31 53413.98

100 61332.58 53465.69 48959.17 53807.68 51559.90 53769.95 62830.18

The highest power output among the seven compared algorithms is highlighted in boldface
for each case.

forms significantly better than the six competitors on all the
cases, according to the Wilcoxon’s rank sum test at a 0.05 sig-
nificance level. In terms of the improvement rate, the superiority
of DEEM over all the competitors except TDA is more obvious
with the increase of the number of wind turbines. For example,
in the case of N = 15, the average power output of DEEM is
1.33%, 1.49%, 1.29%, 1.17%, and 0.90% higher than that of
CMA-ES, MSO, CLPSO, JADE, and SHADE, respectively. In
contrast, when N = 100, DEEM improves the performance by
18.93%, 38.60%, 16.65%, 23.62%, and 19.46% against CMA-
ES, MSO, CLPSO, JADE, and SHADE, respectively. Fig. 7
exhibits the convergence graphs of the average power output of
the seven compared algorithms on N = 25 and N = 40. Sim-
ilar to wind scenario 1, DEEM has the capability to converge
very fast. Table XI reports the statistical test results based on
the Friedman’s test. As shown in Table XI, DEEM has the best
ranking, followed by TDA. Owing to the fact that an algorithm
has the same computational time complexity in both wind sce-
nario 1 and wind scenario 2, the runtime of each algorithm in
wind scenario 2 is similar to that in wind scenario 1, and thus is
omitted.

The best layouts of the seven compared algorithms on N = 25
and N = 40 are shown in Figs. 8 and 9, respectively. As
shown in Figs. 8 and 9, many wind turbines in the layout
of DEEM are located at the up and down boundaries of the
wind farm. As a result, the distances among the wind tur-
bines along the predominant wind directions (i.e., from 75◦

to 105◦) are relatively larger, which suggests that the down-
stream wind turbines can reduce their wake effects caused by
the upstream ones. Consequently, the layout of DEEM is ex-
pected to generate higher power output. On the contrary, the
layouts provided by the six competitors do not show obvious
pattern.

Remark 2: The experimental results in Sections V-B and
V-C reveal that DEEM succeeds in achieving higher power out-
put as well as faster convergence speed than the six competitors,
i.e., TDA, CMA-ES, MSO, CLPSO, JADE, and SHADE. The
superior performance of DEEM could be due to two facts: 1)
with the proposed encoding mechanism, DEEM consistently
searches for the optimal layout in a 2-D search space, remark-

ably enhancing the search efficiency and 2) by utilizing DE as
the search engine, DEEM shows good global search ability.

D. Comparison With a Latest Greedy Algorithm

This section aims at comparing DEEM with a latest greedy
algorithm proposed by Chen et al. [32] in 2016. This greedy
algorithm first divides the wind farm into grids and then all
grid cells are numbered. Afterward, each wind turbine is in
turn located into an empty grid cell to achieve the minimum
evaluation value designed in [32]. If all the wind turbines have
been placed in the grid cells, the process of this greedy algorithm
is completed.

Due to the space limitation, wind scenario 1 was used to pro-
duce the experimental results. For this greedy algorithm, all the
parameter settings were kept the same with [32]. Note that this
greedy algorithm is a deterministic algorithm; thus, the experi-
mental result for each case is unchanged in different independent
runs. The experimental result of this greedy algorithm and the
maximal power output of DEEM are given in Table XII. As
shown in Table XII, DEEM provides higher power output on all
the cases with the exception of N = 60. In the case of N = 60,
the greedy algorithm performs slightly better than DEEM.

In addition, Fig. 10 plots the runtime of the greedy algorithm
and DEEM versus the number of wind turbines. From Fig. 10,
it is easy to see that when N is between 15 and 40, the two
compared algorithms show similar computational time. How-
ever, the runtime of the greedy algorithm drastically increases
from N = 40. For instance, in the case of N = 100, DEEM
is six times faster than the greedy algorithm. This can be at-
tributed to the fact that the number of FEs consumed by the
greedy algorithm exponentially increases from N = 40. Ac-
cording to our observation, the number of FEs in the greedy
algorithm is 24 000, 32 000, 40 000, 58 080, 80 640, 108 160,
230 640, 414 720, and 640 000 for N = 15, 20, 25, 30, 35, 40,
60, 80, and 100, respectively.

VI. DISCUSSIONS

Additional experiments were conducted in this section to
study the following five issues:

1) Can the performance of DEEM be improved via adaptive
parameter settings?

2) What is the effect of the mutation operators on the per-
formance of DEEM?

3) Is DEEM sensitive to its two control parameters F and
CR?

4) Is the performance of DEEM better than that of DE with
the traditional encoding?

5) Can DEEM be used for wind turbine layout optimization
with multiple hub height wind turbines?

Next, we will address these five issues one by one. Our ex-
periments focused on wind scenario 1. In all the experiments,
30 independent runs were implemented for each algorithm, and
the parameter settings were the same as those introduced in
Section V-A, unless we mentioned new settings. Wilcoxon’s
rank sum test at a 0.05 significance level was performed to
test the statistical significance between two algorithms. In all
the tables of this section, “+,” “−,” and “≈” denotes the per-
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TABLE X
EXPERIMENTAL RESULTS OF THE SEVEN COMPARED ALGORITHMS IN WIND SCENARIO 2 (kW)

N TDA CMA-ES MSO CLPSO JADE SHADE DEEM
Mean PO ± Std Dev Mean PO ± Std Dev Mean PO ± Std Dev Mean PO ± Std Dev Mean PO ± Std Dev Mean PO ± Std Dev Mean PO ± Std Dev

15 12860.78 ± 96.24 + 12869.62 ± 74.00 + 12849.88 ± 44.96 + 12874.64 ± 27.85 + 12890.42 ± 22.43 + 12924.43 ± 22.92 + 13041.60 ± 21.09
(1.40%) (1.33%) (1.49%) (1.29%) (1.17%) (0.90%)

20 16413.36 ± 172.64 + 16586.29 ± 284.96 + 16251.58 ± 118.87 + 16304.34 ± 105.90 + 16357.57 ± 89.68 + 16466.05 ± 67.35 + 16957.70 ± 66.12
(3.31%) (2.23%) (4.34%) (4.00%) (3.66%) (2.98%)

25 19639.62 ± 160.21 + 19637.62 ± 210.43 + 18681.85 ± 214.98 + 18824.44 ± 76.65 + 18916.37 ± 90.27 + 19135.22 ± 71.76 + 19981.99 ± 159.58
(1.74%) (1.75%) (6.95%) (6.14%) (5.63%) (4.42%)

30 22830.94 ± 157.07 + 22788.90 ± 137.94 + 21366.47 ± 235.61 + 21747.00 ± 138.87 + 21778.58 ± 114.99 + 22115.38 ± 108.30 + 23524.68 ± 219.16
(3.03%) (3.22%) (10.10%) (8.17%) (8.01%) (6.37%)

35 26088.91 ± 385.63 + 25929.40 ± 205.95 + 23928.27 ± 488.62 + 24737.83 ± 113.95 + 24610.20 ± 217.57 + 25133.57 ± 174.85 + 26814.60 ± 154.97
(2.78%) (3.41%) (12.06%) (8.39%) (8.95%) (6.68%)

40 29432.24 ± 299.83 + 28899.48 ± 182.20 + 26600.74 ± 478.82 + 27731.31 ± 203.63 + 27449.53 ± 112.49 + 28116.44 ± 171.70 + 30440.38 ± 191.49
(3.42%) (5.33%) (14.43%) (9.76%) (10.89%) (8.26%)

60 40618.21 ± 618.58 + 38036.21 ± 430.71 + 34205.70 ± 1572.50 + 36894.43 ± 171.90 + 36194.62 ± 281.48 + 37410.54 ± 194.25 + 41644.07 ± 425.66
(2.52%) (9.48%) (21.74%) (12.87%) (15.05%) (11.31%)

80 51563.61 ± 247.88 + 46384.36 ± 442.76 + 40711.39 ± 2243.20 + 45930.86 ± 238.22 + 44113.56 ± 389.51 + 45923.53 ± 650.48 + 52608.78 ± 380.53
(2.02%) (13.41%) (29.22%) (14.53%) (19.25%) (14.55%)

100 60755.42 ± 427.75 + 52407.19 ± 797.30 + 44972.44 ± 2522.27 + 53432.41 ± 310.76 + 50420.59 ± 1241.15 + 52174.49 ± 812.11 + 62332.23 ± 300.90
(2.59%) (18.93%) (38.60%) (16.65%) (23.62%) (19.46%)

+ 9 9 9 9 9 9 /

Fig. 7. Evolution of the average power output provided by the seven
compared algorithms for wind scenario 2. (a) N = 25. (b) N = 40.

TABLE XI
RANKINGS OBTAINED BY THE FRIEDMAN’S TEST FOR THE SEVEN

COMPARED ALGORITHMS IN WIND SCENARIO 2

Algorithm Ranking

TDA 2.6667

CMA-ES 3.2222

MSO 7

CLPSO 4.8889

JADE 5.3333

SHADE 3.8889

DEEM 1

The best and the second best results are highlighted in
boldface and italic, respectively.

formance of DEEM is better than, worse than, and similar to
that of another algorithm, respectively. In addition, “Mean PO”
and “Std Dev” indicate the average and standard deviation of
the power output (kW) in 30 runs, respectively, “Maximal PO”

denotes the maximal power output, and percentages in paren-
theses denote the improvement rates of DEEM against other
algorithms.

1) Adaptive DEEM Versus DEEM: By incorporating the
adaptive parameter settings of SHADE [29] into DEEM,
we obtained a variant of DEEM, called adaptive DEEM.
It can be seen from Table XIII that the adaptive
DEEM and DEEM show similar overall performance,
which implies that the direct use of the adaptive
mechanism from SHADE cannot significantly im-
prove the performance of DEEM. It is perhaps be-
cause the dimension of the search space is quite low
(i.e., 2), and under this condition DEEM can already
achieve competitive performance without any further
improvements.

2) Effect of the Mutation Operators: In order to study
the effect of the mutation operators on the perfor-
mance of DEEM, we replaced DE/rand/1 in the orig-
inal DEEM with two other commonly used mutation
operators (DE/rand/2 and DE/current-to-rand/1). The re-
sultant variants of DEEM are called DEEM/rand/2 and
DEEM/current-to-rand/1, respectively. Note that in the
DE community, there are several mutation operators,
which utilize the information of the best individual, such
as DE/best/1, DE/best/2, and DE/current-to-best/1. Since
in DEEM the population represents an entire layout, it
cannot define the best individual in the population. Thus,
such mutation operators were not applied to DEEM in
this paper. As shown in Table XIV, DEEM performs sim-
ilarly to DEEM/rand/2 and DEEM/current-to-rand/1 on
seven and eight out of nine cases, respectively. Therefore,
DEEM can still maintain its performance after combining
with DE/rand/2 or DE/current-to-rand/1.
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Fig. 8. Best layouts of the seven compared algorithms with N = 25 in wind scenario 2. (a) TDA. (b) CMA-ES. (c) MSO. (d) CLPSO. (e) JADE.
(f) SHADE. (g) DEEM.

Fig. 9. Best layouts of the seven compared algorithms with N = 40 in wind scenario 2. (a) TDA. (b) CMA-ES. (c) MSO. (d) CLPSO. (e) JADE.
(f) SHADE. (g) DEEM.

TABLE XII
EXPERIMENTAL RESULTS OF THE GREEDY ALGORITHM IN [32] AND DEEM IN

WIND SCENARIO 1

N The Greedy Algorithm in [32] DEEM

15 6080.83 6275.03

20 7511.22 7763.10

25 8588.47 8991.92

30 10190.07 10280.63

35 11394.42 11631.64

40 12717.68 12966.75

60 17025.11 16975.80

80 19757.00 20334.99

100 23173.74 23415.03

The higher power output (kW) between the two compared
algorithms is highlighted in boldface for each case.

TABLE XIII
EXPERIMENTAL RESULTS OF THE ADAPTIVE DEEM AND DEEM IN WIND

SCENARIO 1 (kW)

N Adaptive DEEM DEEM
Mean PO ± Std Dev Mean PO ± Std Dev

15 6182.08 ± 33.60 ≈ 6183.33 ± 49.90

20 7718.82 ± 86.51 ≈ 7674.79 ± 62.76

25 8801.48 ± 148.27 ≈ 8828.38 ± 156.98

30 10085.19 ± 104.53 ≈ 10085.18 ± 112.36

35 11291.30 ± 178.15 ≈ 11413.48 ± 151.55

40 12803.96 ± 207.90 ≈ 12640.05 ± 225.18

60 16465.62 ± 105.60 ≈ 16538.61 ± 209.79

80 20191.99 ± 417.33 ≈ 20006.09 ± 150.02

100 23258.62 ± 263.68 ≈ 23142.43 ± 204.74

≈ 9 /

Fig. 10. Runtime of the greedy algorithm in [32] and DEEM for wind
scenario 1.

TABLE XIV
EXPERIMENTAL RESULTS OF DEEM WITH DIFFEREN MUTATION OPERATORS

IN WIND SCENARIO 1 (kW)

N DEEM/rand/2 DEEM/current-to-rand/1 DEEM
Mean PO ± Std Dev Mean PO ± Std Dev Mean PO ± Std Dev

15 6185.68 ± 40.60 ≈ 6193.78 ± 28.32 ≈ 6183.33 ± 49.90

20 7762.31 ± 71.58 − 7673.73 ± 109.08 ≈ 7674.79 ± 62.76

25 8801.91 ± 139.93 ≈ 8829.04 ± 119.60 ≈ 8828.38 ± 156.98

30 10020.82 ± 89.27 ≈ 10094.05 ± 110.55 ≈ 10085.18 ± 112.36

35 11316.04 ± 184.31 ≈ 11361.88 ± 195.31 ≈ 11413.48 ± 151.55

40 12568.67 ± 233.63 ≈ 12703.84 ± 229.07 ≈ 12640.05 ± 225.18

60 16260.32 ± 121.13 + 16378.01 ± 103.84 + 16538.61 ± 209.79

80 19786.87 ± 202.87 ≈ 19975.75 ± 202.13 ≈ 20006.09 ± 150.02

100 23002.12 ± 212.61 ≈ 23087.34 ± 126.71 ≈ 23142.43 ± 204.74

+ 1 1 /

− 1 0 /

≈ 7 8 /
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Fig. 11. Average power output of DEEM with different combinations of
F and CR on wind scenario 1 with N = 25.

3) Sensitivity in Relation to F and CR: In order to inves-
tigate the sensitivity of F and CR, we tested DEEM
with different values of F and CR on wind scenario 1
with N = 25, shown in Fig. 11. From Fig. 11, DEEM
is not sensitive to F and CR, and they can be set into
values in a large range (for instance, F ∈ [0.2, 1.0] and
CR ∈ [0.0, 1.0]). Obviously, F = 0.1 causes clear per-
formance degradation. It is because F = 0.1 has a side
effect on the exploration ability of DEEM due to the small
perturbation. It is also interesting to note that DEEM
with CR = 0 performs well in the case of F > 0.1. The
reason is the following: even though CR = 0, the trial
vector can still inherit some information from the mutant
vector if the condition “j = jrand” is satisfied as shown
in (13).

4) DE With the Traditional Encoding Versus DEEM: The
experimental results of DE with the traditional encod-
ing in Fig. 1(b) and DEEM are presented in Table XV.
For DE with the traditional encoding, the population size
NP was set to 100, and the settings of F and CR were
the same with DEEM. From Table XV, DEEM is signif-
icantly superior to DE with the traditional encoding on
all the cases, which verifies the rationality of our main
motivation—the new encoding mechanism.

5) DEEM for Wind Farm Layout Design With Multiple Hub
Height Wind Turbines: In the above experiments, all wind
turbines have the identical height. However, wind tur-
bines may have different heights in the real-world wind
farm layout design. As pointed out in [32], wind turbines
with multiple hub heights can reduce the wake effect
and extract more wind power. To this end, we considered
wind turbines with two optional hub heights, i.e., 50 and
78 m. The experimental results of TDA, CMA-ES, MSO,
CLPSO, JADE, SHADE, the greedy algorithm in [32],
and DEEM are given in Table XVI for wind scenario 1
with N = 20. As shown in Table XVI, DEEM provides
the best maximal power output among the eight com-
pared algorithms. Moreover, DEEM is statistically better
than TDA, CMA-ES, MSO, CLPSO, JADE, and SHADE.
The above comparison reveals the potential of DEEM for
wind farm layout design with multiple hub height wind
turbines.

TABLE XV
EXPERIMENTAL RESULTS OF DE WITH THE TRADITIONAL ENCODING AND

DEEM IN WIND SCENARIO 1 (kW)

N DE with the Traditional Encoding DEEM
Mean PO ± Std Dev Mean PO ± Std Dev

15 5448.62 ± 77.04 + 6183.33 ± 21.09
(13.48%)

20 6263.80 ± 116.14 + 7674.79 ± 66.12
(22.53%)

25 6543.73 ± 145.24 + 8828.38 ± 159.58
(34.91%)

30 7283.25 ± 153.29 + 10085.18 ± 219.16
(38.47%)

35 7990.41 ± 96.65 + 11413.48 ± 154.97
(42.84%)

40 8881.62 ± 101.87 + 12640.05 ± 191.49
(42.32%)

60 11370.47 ± 136.13 + 16538.61 ± 425.66
+(45.45%)

80 13743.65 ± 122.91 + 20006.09 ± 380.53
(45.57%)

100 15775.49 ± 156.33 + 23142.43 ± 300.90
(46.70%)

+ 9 /

TABLE XVI
EXPERIMENTAL RESULTS OF THE EIGHT COMPARED ALGORITHMS FOR
MULTIPLE HUB HEIGHT WIND TURBINES IN WIND SCENARIO 1 WITH

N = 20 (kW)

Algorithm Mean PO ± Std DeV Maximal PO

TDA 7343.74 ± 135.23 + 7579.10
(6.19%)

CMA-ES 7429.57 ± 133.49 + 7593.48
(4.96%)

MSO 7019.67 ± 191.14 + 7275.37
(11.09%)

CLPSO 7189.88 ± 46.21 + 7256.16
(8.46%)

JADE 7201.42 ± 68.04 + 7310.46
(8.29%)

SHADE 7341.60 ± 47.30 + 7419.87
(6.22%)

The Greedy Algorithm in [32] / 7572.77

DEEM 7798.11 ± 64.55 7931.71

The best maximal power output among the eight compared algorithms is highlighted in
boldface.

VII. CONCLUSION

In this paper, a DE algorithm with a new encoding mecha-
nism (called DEEM) was proposed for the layout optimization
of a wind farm. The coordinate-based model was employed and
maximizing the power output of the wind farm was regarded as
the optimization objective. The new encoding mechanism views
each wind turbine as an individual. Thus, the whole population
represents an entire layout and the search space only contains
two dimensions irrespective of the number of wind turbines.
DEEM also benefits from DE for the global search. Moreover,
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Fig. 12. Resource optimization in mobile cloud computing.

by only updating one wind turbine in one iteration, the caching
technique can be used to accelerate the evaluation. The im-
plementation of DEEM is simple and it includes few control
parameters.

Systematic experiments were conducted on DEEM and seven
other state-of-the-art algorithms. The experimental results con-
firmed that, overall, DEEM achieves the highest power output
with the fastest convergence speed. The robustness of DEEM
was also demonstrated by investigating two wind scenarios with
various number of wind turbines. Besides, a comprehensive set
of experiments were carried out to study the effect of the muta-
tion operators and the control parameters on the performance of
DEEM, the performance of adaptive DEEM, the performance
difference between DEEM and DE with the traditional encoding,
and the applicability of DEEM to wind turbines with multiple
hub heights.

In the future, we will built wind farm layout models with more
complicated properties and deal with them via DEEM. More-
over, we are considering the possibility of applying the proposed
encoding mechanism to optimization problems in other fields,
such as resource optimization in mobile cloud computing. As an
emerging technology, mobile cloud computing can bridge the
gap between limited capabilities of mobile devices and increas-
ing demand of resource-intensive applications, by offloading
the tasks to cloud infrastructures [33]. However, offloading will
incur extra overhead of energy and latency, and the amount
of extra overhead is determined by the resources allocated to
each task, such as computation and communication resources.
Therefore, in order to improve the offloading performance, it is
necessary to optimize the resource allocation in mobile cloud
computing, with the aim of reducing the energy and latency. As-
suming that the scenario contains N mobile devices as shown in
Fig. 12. Each mobile device has a task to be completed, and the
computation resource and communication resource allocated to
each task are denoted as fi and pi (i = 1, 2, . . . , N ), respec-
tively. Subsequently, through the base station, these tasks can
be offloaded to the cloud to be executed. During the resource
optimization, by making use of the proposed encoding mecha-
nism, each task can be considered as an individual containing
two dimensions (i.e., fi and pi), and all the tasks thus form a
population.

The Matlab source code of DEEM can be downloaded from Y.
Wang’s homepage: http://www.escience.cn/people/yongwang1/
index.html.
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[31] J. Alcalá-Fdez et al., “KEEL: A software tool to assess evolutionary algo-
rithms for data mining problems,” Soft Comput., vol. 13, no. 3, pp. 307–
318, 2009.

[32] K. Chen, M. Song, X. Zhang, and S. Wang, “Wind turbine layout opti-
mization with multiple hub height wind turbines using greedy algorithm,”
Renewable Energy, vol. 96, pt. A, pp. 676–686, 2016.

[33] X. Lyu, H. Tian, C. Sengul, and P. Zhang, “Multiuser joint task offload-
ing and resource optimization in proximate clouds,” IEEE Trans. Veh.
Technol., vol. 66, no. 4, pp. 3435–3447, Apr. 2017.

Yong Wang (M’08) received the B.S. degree in
automation from the Wuhan Institute of Technol-
ogy, Wuhan, China, in 2003, and the M.S. de-
gree in pattern recognition and intelligent sys-
tems and the Ph.D. degree in control science
and engineering both from the Central South
University (CSU), Changsha, China, in 2006 and
2011, respectively.

He is currently an Associate Professor in the
School of Information Science and Engineering,
CSU. His current research interests include the

theory, algorithm design, and applications of computational intelligence.
Dr. Wang was awarded the Hong Kong Scholar by the Mainland—

Hong Kong Joint Postdoctoral Fellows Program, China, in 2013, the
Excellent Doctoral Dissertation by Hunan Province, China, in 2013, the
New Century Excellent Talents in University by the Ministry of Educa-
tion, China, in 2013, the 2015 IEEE Computational Intelligence Society
Outstanding PhD Dissertation Award, the Hunan Provincial Natural Sci-
ence Fund for Distinguished Young Scholars, in 2016, the EU Horizon
2020 Marie Sklodowska-Curie Fellowship, in 2016, and a Highly Cited
Researcher in computer science by Clarivate Analytics, in 2017. He is
currently serving as an Associate Editor for the Swarm and Evolutionary
Computation.

Hao Liu received the B.S. degree in automation
in 2015 from Central South University, Chang-
sha, China, where he is currently working to-
ward the M.S. degree in control science and
engineering.

His research interests include real-world ap-
plications of computational intelligence and ma-
chine learning.

Huan Long (S’15) received the B.S. degree
from the Department of Automation, Huazhong
University of Science and Technology, Wuhan,
China, in 2013, and the Ph.D. degree from the
Department of Systems Engineering and Engi-
neering Management, City University of Hong
Kong, Hong Kong, in 2017.

Her research interests include data mining
and computational intelligence applied in the re-
newable energy optimization, such as wind farm
layout, hybrid renewable system configuration,

renewable energy prediction, and wind turbine monitoring.

Zijun Zhang (M’12) received the B.Eng. degree
in systems engineering and engineering man-
agement from the Chinese University of Hong
Kong, Hong Kong, in 2008, and the M.S. and
Ph.D. degrees in industrial engineering from the
University of Iowa, Iowa City, IA, USA, in 2009
and 2012, respectively.

He is currently an Assistant Professor in the
Department of Systems Engineering and Engi-
neering Management at the City University of
Hong Kong, Hong Kong, China. His research fo-

cuses on data mining and computational intelligence with applications in
wind energy, HVAC and wastewater processing domains.

Shengxiang Yang (M’00–SM’14) received the
B.Sc. and M.Sc. degrees in automatic control
and the Ph.D. degree in systems engineering
from Northeastern University, Shenyang, China,
in 1993, 1996, and 1999, respectively.

He is currently a Professor in Computational
Intelligence and the Director of the Centre for
Computational Intelligence, School of Computer
Science and Informatics, De Montfort University,
Leicester, U.K. He has more than 230 publica-
tions. His current research interests include evo-

lutionary computation, swarm intelligence, computational intelligence
in dynamic and uncertain environments, artificial neural networks for
scheduling, and relevant real-world applications.

Dr. Yang serves as an Associate Editor or Editorial Board Member of
eight international journals, such as the IEEE TRANSACTIONS ON CYBER-
NETICS, Information Sciences, Evolutionary Computation, Neurocomput-
ing, and Soft Computing.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


