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Abstract: The start of the cue is often used to initiate the feature window used to control motor 

imagery (MI)-based brain-computer interface (BCI) systems. However, the time latency during an 

MI period varies between trials for each participant. Fixing the starting time point of MI features 

can lead to decreased system performance in MI-based BCI systems. To address this issue, we 

propose a novel correlation-based time window selection (CTWS) algorithm for MI-based BCIs. 

Specifically, the optimized reference signals for each class were selected based on correlation 

analysis and performance evaluation. Furthermore, the starting points of time windows for both 

training and testing samples were adjusted using correlation analysis. Finally, the feature 

extraction and classification algorithms were used to calculate the classification accuracy. With 

two datasets, the results demonstrate that the CTWS algorithm significantly improved the system 

performance when compared to directly using feature extraction approaches. Importantly, the 

average improvement in accuracy of the CTWS algorithm on the datasets of healthy participants 

and stroke patients was 16.72% and 5.24%, respectively when compared to traditional common 

spatial pattern (CSP) algorithm. In addition, the average accuracy increased 7.36% and 9.29%, 

respectively when the CTWS was used in conjunction with Sub-Alpha-Beta Log-Det Divergences 

(Sub-ABLD) algorithm. These findings suggest that the proposed CTWS algorithm holds promise 

as a general feature extraction approach for MI-based BCIs. 

Keywords: Brain-computer interface; Correlation; Feature extraction; Time window selection; 

Common spatial pattern 

 

1. Introduction 

 

The aim of a brain-computer interface (BCI) is to provide a communication channel for 

patients who have lost normal communication abilities due to severe motor impairments (Wolpaw, 



McFarland, Neat, & Forneris, 1991). A BCI system can transform brain activities into control 

commands (Daly, Nasuto, & Warwick, 2011; Wolpaw, & Wolpaw, 2012, Jin, Zhang, Daly, Wang, 

&Cichock, 2017) and has gained interest in neuroscience and rehabilitation engineering (Wolpaw, 

& Wolpaw, 2012; Dornhege, 2007; Jin, Sellers, Zhou, Zhang, Wang, Cichocki, 2015). Among BCI 

systems, the motor imagery (MI)-based BCI stands out for its advanced approach without the need 

for body movement and with only minimal requirements for auxiliary equipment (Yuan, & He, 

2014). MI-based BCI systems utilize the brain activity associated with imagined motor 

movements as control commands for external devices (He, Baxter, Edelman, Cline, & Ye, 2015; 

Onose, Grozea, et al., 2012). These systems operate without external stimulus and thus are more 

easily used than stimuli-based BCIs (Wolpaw, & Wolpaw, 2012; Pan, Li, Gu, & Yu, 2013). Upon 

imagining movement, the rhythmic activities of the brain observed in the mu and beta rhythms are 

suppressed contralaterally. These phenomena are termed event-related desynchronization (ERD) 

and event-related synchronization (ERS), respectively (Pfurtscheller, & Da Sliva, 1999). 

EEG data is characterized by its high-dimensionality, low signal to noise ratio, and 

susceptibility to outliers (Pfurtscheller, & Da Sliva, 1999; Thiyam, Cruces, & Olias, 2017; Jin, 

Allison, Sellers, Brunner, Horki, Wang &Neuper.). The dimensionality can be reduced by 

extracting those subspaces where features have highest discriminative power (Pfurtscheller, & Da 

Sliva, 1999; Thiyam, Cruces, & Olias, 2017). Common spatial pattern (CSP) (Fukunaga, 2013) is 

a method for extracting features to reduce the dimensionality, and is one of the most efficient 

algorithms applied to MI-based BCIs (Ramoser, Müller-Gerking, & Pfurtscheller, 2000). The CSP 

algorithm was first used to detect abnormalities in the EEG data (Koles, 1991) and introduced into 

BCI applications in 2000 (Ramoser, Müller-Gerking, & Pfurtscheller, 2000). Currently, the 

majority of state-of-the-art MI-BCIs use a fixed time window of EEG data to extract the MI 

features. However, the time latency during an MI period varies between trials for each participant, 

and it cannot be known with certainly when participants start to perform the MI task (Ang, Chin, 

Zhang, & Guan, 2012; Rodriguez-Bermudez, Garcia-Laencina, & Roca-Dorda,2013). Some 

studies have extracted original EEG data 4-7s and 0-3.5s after the trial begins (Qiu, Jin, Lam, 

Zhang, Wang, & Cichocki, 2016) or 2.5-4.5s after the cue appears (He, Wei, Wang, & Zou, 2012). 

Some other studies did not extract the original EEG data after the cue appeared (Solis-Escalante, 

Müller-Putz, Brunner, Kaiser, & Pfurtscheller, 2010; Reinhold, Faller, et al., 2015). This approach 

commonly leads to low classification accuracy because of interference from invalid data.  

In this study, we propose a novel correlation-based time window selection (CTWS) algorithm 

for MI-based BCIs. First, all the training MI samples of each class were averaged as a reference 

signal and updated based on correlation analysis and performance evaluation until the optimized 

reference signals for each class were found. Second, the optimized reference signals were 

employed to adjust the starting points of MI time windows for both training and testing samples, 

based on correlation analysis. Third, the feature extraction and classification algorithms were used 

for target detection, and the cross-validation method was performed to evaluate the average 

classification accuracy. 

The remainder of this paper is organized as follows: Section 2 describes applied datasets and 

proposed methods; Section 3 shows the result of classification accuracy and distribution of 

features extracted; Section 4 presents the discussion; and Section 5 concludes the study. 

 

2. Methods 



 

2.1 Description of the datasets 

 

Dataset 1 (BCI Computation IV Dataset I): The dataset contains 59 EEG channels with a 

sampling rate of 100 Hz, recorded from seven participants, including four healthy individuals and 

three artificially generated „participants‟ (Blankertz, Dornhege, et al., 2007). For the purpose of 

the present study, only the calibration data (consisting of two runs totaling 200 trials) for each 

participant were used. In the experiment, the participants performed two-class motor imagery 

selected from the three classes left hand, right hand, and feet. As shown in Fig. 1 (a), each trial 

started from a visual cue pointing left, right, or down. The cue was displayed for a period of 4s, 

during which the participant was instructed to perform the cued motor imagery task. These periods 

were interleaved with 2s of blank screen and 2s with a fixation cross shown in the center of the 

screen. The fixation cross was superimposed on the cues, i.e. it was shown for 6s. The entire time 

length of the single trial was 8 s. More details about the dataset can be found on the following 

website: http://www.bbci.de/competition/iv/desc_1.html. The best window length for classification 

of the BCI Computation IV dataset 1 were found to be among 1s, 1.5 or 2s (Gouy-Pailler, Mattout, 

Congedo, & Jutten). In this study, we set the window length to 2s. 

 

Dataset 2: This dataset was collected by ourselves from seven stroke patients. We acquired 

the EEG signals via the g.USBamp (Guger Technologies, Graz, Austria), and sampled at 256 Hz. 

Sixteen electrodes over the motor cortex (FC3, FCZ, FC4, C5, C3, C1, CZ, C2, C4, C6, CP3, CP1, 

CPZ, CP2, CP4, and PZ) were placed according to the international 10–20 system standard, and 

referenced to FCz and grounded to TP10. During the experiments, the patients were instructed to 

imagine moving either their left or right hand for 60 trials in total. As shown in Fig. 1 (b), each 

trial lasted eight seconds and started with a warning “beep” sound used to prompt the patient to be 

prepared. Two seconds later, a cue of MI task was displayed during which the patient was 

instructed to perform the cued motor imagery task. Six second later, a “relax” command was 

played, informing patients that he or she could rest for 2s. Thus, the time length of a single trial 

was 10s. 

 

fixation cross motor imagery black screen

Cue: left/right/foot

0 2 6 8
t/s

motor imagery

0 2 8

Cue: left/rightbeep

t/s(a) (b)

relax

10

Fig. 1. Illustration of the experimental protocol for a trial in dataset 1 (a) and dataset 2 (b). 

 

2.2 Common spatial pattern 

 

The CSP algorithm is an efficient method used to extract discriminative features from the 

EEG that is commonly used in MI-based BCI systems (Nicolas-Alonso, Corralejo, Gomez-Pilar, 

Álvarez, & Hornero, 2015; Nasihatkon, Boostani, & Jahromi, 2009; Alvarez-Meza, 

Velasquez-Martinez, & Castellanos-Dominguez, 2015; Aghaei, Mahanta, & Plataniotis, 2016). 

The CSP algorithm learns a projection vector to maximize the variance of one class and minimize 



the variance of the other class at the same time (Dornhege, Blankertz, Curio, & Müller, 2004; 

Lemm, Blankertz, Curio, & Müller, 2005). The CSP operation is as follows: 
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where w represents the projection vector, 1 and 2 represent the spatial covariance matrices of 

the two classes, respectively. It can be regarded as the problem of finding generalized eigenvalues: 

1 1 2( ) .w wD                                       (2) 

D is the diagonal matrix which contains the eigenvalues of 
1  .                               

Selecting feature vectors corresponding to the maximum and minimum characteristic values 

from w as the projection matrix 
2 2N mw R m ， . Then, original EEG samples are projected 

as follows: 
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where N is the number of channels, M is the number of sample points for each channel, 
T

 

denotes the transpose operator. 

 pf can be obtained from 1...2pZ p m（ ）as features of the original EEG data, expressed as 

follows: 
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2.3 Support vector machine 

 

Support vector machines (SVMs) find a discrimination hyperplane by maximizing margins 

between two classes to identify classes (Burges, 1998; Bennett, & Campbell, 2000; Wang, Zhang, 

Zhong, & Zhang, 2013). The hyperplane can be represented as 0 bXW T , 
dRw is called the 

weight vector and b is a scalar (Qiu, Jin, Lam, Zhang, Wang, & Cichocki, 2016). The margins are 

the distance between the two separated hyperplanes, the training samples nearest the hyperplane 

are called support vectors. The aim of SVM is to find the optimal hyperplane, as follows: 
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where iA denotes a feature vector of the ith training sample, y denotes the class label, and ζ 

denotes a slack variable. A linear kernel was used in this study. (Qiu, Jin, lam, Zhang, Wang, & 

Cichocki, 2016). 

 

2.4 Correlation-based time window selection algorithm 

 

The aim of the correlation-based time window selection (CTWS) algorithm is to extract the 

discriminative MI features in the time domain. To illustrate the proposed algorithm, we 

incorporated CSP and SVM into the structure of the CTWS algorithm for feature extraction and 



classification, respectively. Note that, the feature extraction and classification algorithms (i.e., CSP 

and SVM) are substitutable.  

As shown in Fig. 2, the main principle of CTWS algorithm is to constantly adjust the time 

window of the training data to find the optimized reference signals. The flow of the CTWS 

algorithm is listed as follows: 

Algorithm Correlation-based time window selection algorithm (CTWS) 

1 Initialize Divide the dataset of each participant into 10 blocks. Nine blocks of one dataset 

(RT-S) were used to obtain the optimized reference signal (OR n, n=1or 2) and classifier mode, 

and the remaining one block was used as test data. Set the two classes in each dataset as class 1 

and class 2. Set the original start point of the feature time window. Set the classification accuracy 

(CA) to zero. 

2 For Current h in10-fold cross-validation 

3   For Current k in K-Run 

4      Calculate reference signal 1 (R1) and reference signal 2 (R2) by averaging the samples of 

class 1 (C1) and class 2 (C2) over trials, respectively. 

5      Generate 2n +1 new time windows by sliding the starting time point forward and 

backward n time sampling points, respectively. 

6      Select the time window (TW) by finding the maximum correction with R1 and R2, 

respectively, and acquire the new C1 (NC1) and C2 (NC2). Thus, we have new dataset 

(NT-S). 

7      Use 10-fold cross-validation to obtain CA based on CSP and SVM. 

8      If The new CA was higher than the previous CA. 

9        Replace T-S with NT-S, and go to 3. 

10     Else 

11       Go to 3. 

12   Obtain optimized reference signal OR1 and OR2 based on current NT-S. 

13   Calculate the correlation between RT-S and (OR n, n=1or 2), respectively, to select the TW, 

thus obtain new R1 T-S (NR1 T-S) and new R2 T-S (NR2 T-S). This step is similar with 

steps 4 and 5. 

14   Employ CSP algorithm to extract the features f1 from NR1 T-S and f2 from NR2 T-S, 

respectively.  

15   Train the SVM classifier. 

16   Use the remaining one block of the dataset (Test-S) to calculate testing features f1 and f2. 

This step is similar with steps 12 and 13. 

17   Calculate the CA of current Test-S using the SVM classifier.  

18 Calculate the average CA after 10-fold cross-validation. 

19 End 

 

To further explain the CTWS algorithm, we employed dataset 1 and dataset 2 as examples to 

describe the process of the algorithm. In this study, 10-fold cross-validation was used to evaluate 

the performance of the presented method from each participant. The dataset of each participant 

was divided into 10 blocks. There were 200 samples for two classes (100 samples for each class) 

in dataset 1, which was divided into 10 blocks. Therefore, each block contains 20 samples (10 

samples for each class). Moreover, there were 60 samples for two classes (30 samples for each 



class) in dataset 2, which was also divided into 10 blocks. Therefore, each block contains 6 

samples (3 samples for each class). Nine blocks were used as training data and the remaining one 

block was used as test data. 

The original start point of the feature time window (2s) was 2 seconds after cue time in dataset 

1 and was 1 second after cue time in dataset 2. To reduce the computation time of the algorithm, 

only channels C3 and C4 were used to calculate the reference signals in this study. For each 

participant, the reference signals (R1 and R2) at channels C3 and C4 were acquired by averaging 

corresponding channel signals over trials of each class. Because there were two classes, four 

reference signals were obtained, and resulting in two reference signals for each class. Ten data 

points before and after the start points for each sample were selected as start points of 21 new slide 

time windows (only containing channels C3 and C4). The correlation between the time windows 

and the reference signals of the corresponding class were calculated, respectively. After that, the 

correlation value were calculated for each slide time window, which can be represented as 

1

1
cov( , ) ( ( ) ( ))( ( ) ( )), 1,2, 3,4, 1,2...,2 1,

1
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              (6) 

where i is the index of class, j is the index of channel, t is the index of current point in the time 

window with the length of Nt, R is the reference signal, and C is the signal of current sample,R(t) 

and C(t) are the average value of R and C over t, respectively. For example, Ri3 and Ri4 represent 

the reference signals at channels C3 and C4 of class i, respectively. Ci3k and Ci4k represent the 

signal of channels C3 and C4 of class i at kth time window, respectively. In this way, the adjusted 

time window for the sample, which obtained the highest averaged correlation value, was selected 

  arg max cov( 3, 3 ) cov 4, 4 , 1,2...,2 1,k k
k

V Ri Ci Ri Ci k n                               (7) 

where V represents the time window with maximum average correlation value, n is the number of 

generated new time windows (n was set to 10 in this study). The selected time window was used 

to update the start point of the sample at all channels. The updated training samples NT-S 

consisted of new training samples NC1 and NC2, belonging to class1 and class2 respectively, 

were obtained by shifting the time window of T-S to V. After that, we replace T-S with NT-S, thus 

obtain the updated samples (the new T-S). As shown in Fig. 2, by doing this for several repetitions, 

the optimized reference signals (OR1 and OR2) at C3 and C4 for each class were obtained.  

   After obtaining the optimized reference signals, new time windows for each sample were 

generated by sliding the selected starting time point forward and backward one second, 

respectively. After that, the optimal time windows for each raw sample were selected based on the 

correlation with OR1 and OR2, respectively. Therefore, we acquired the new training samples 

(NR1 T-S and NR2 T-S) and testing samples (N1 Test-S and N2 Test-S). Then, CSP and SVM 

were employed for the model training and accuracy calculation. Finally, the process above was 

repeated ten times in a 10-fold cross validation scheme to evaluate the average classification 

accuracy.  
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Fig. 2. Structure diagram of the algorithm. T-S: training samples. C1: training samples of class 1. C2: training samples of class 2. AVG: 

The C3 and C4 channel signal samples are averaged. R1: reference signal of class 1. R2: reference signal of class 2. C: correlation. TW: 

adjust time window of samples. NC1: new samples of class 1. NC2: new samples of class 2. NT-S: new training samples. CA: 

classification accuracy. OR1: optimized reference signal of class 1. OR2: optimized reference signal of class2. RT-S: raw training samples. 

NR T-S: new raw training samples. f1, f2: features extracted by CSP. Test-S: test samples. N test-S: new test samples. 

 

3. Results 

 

To determine whether the starting time varied in motor imagery (MI) tasks, we calculated the 

starting time based on the correlation-based time window selection (CTWS) algorithm for dataset 

1 and dataset 2 (see Fig. 3). The results indicate that the starting time of any one individual varies 

from one trial to the next during motor imagery. 



 

       (a)        

       (b)                                       

Fig. 3. Boxplots and Scatter plot represents the starting time of selected time windows for each participant in dataset 1 (a) and dataset 2 

(b). (The time schedule can be found in Fig. 1, in which the cue time is 2 second). 

 

We also compared the CSP feature distribution between analysis attempts made with and 

without the CTWS algorithm to illustrate the effectiveness of the proposed method. Fig. 4 depicts 

the feature distribution of each class in dataset 1 and dataset 2. The blue and red circles represent 

the two different feature classes, respectively. For each participant, the subfigure at the top was 

acquired by CSP directly, the subfigure below was acquired by combing CTWS with CSP (see Fig. 

2). As shown in Fig. 4, the results demonstrate that the features extracted by CTWS+CSP were 

easier to classify compared to the CSP algorithm. 

 



 

Fig. 4. Feature distribution of each class extracted by CSP and combining CTWS with CSP in dataset 1 (a) and dataset 2 (b). 

 

To evaluate the effectiveness and universality of the proposed CTWS algorithm, we 

compared the classification accuracies of CSP with and without the CTWS algorithm using dataset 

1 (healthy individuals) and dataset 2 (stroke patients). Paired-sample t-tests were performed for 

further statistical comparisons of system performance across participants. As shown in Table 1, the 

results indicated that CTWS+CSP achieved better performance compared to using CSP directly. 

More specifically, the average classification accuracy of CTWS+CSP was significantly improved 

16.72% and 5.24% when compared to CSP alone (82.93% versus 66.21%, p < 0.005; 71.67% 

versus 66.43%, p < 0.05). Note that, the both accuracies of subjects G in dataset 2 did not exceed 

the chance level (50%). Therefore, we recalculated the performance of CTWS+CSP and CSP for 

dataset 2 by excluding subject G. The average classification accuracy of CTWS+CSP was 

improved 4.17% compared to that of CSP alone when subjects G was excluded (75.28% versus 

71.11%, p = 0.0813). 

Table 1 

Comparison of the classification accuracy between CSP and CTWS+CSP for dataset1 and dataset2. P-Value denotes the paired t-test of 

classification accuracy between CSP and CTWS+CSP. “L vs R” is left hand and right hand and “L vs F” is left hand and feet. 

dataset 1 (BCI Computation IV Dataset I) dataset 2 (stroke patients) 

Subject CSP CTWS+CSP Subject CSP CTWS+CSP 

S1(L vs R) 64.50 82.50 A (L vs R) 46.67 60.00 

S2(L vs R) 51.50 76.00 B (L vs R) 71.67 75.00 

S3(L vs F) 53.00 66.00 C (L vs R) 60.00 60.00 

S4(L vs R) 89.00 96.00 D (L vs R) 85.00 88.33 

S5(L vs R) 93.50 98.00 E (L vs R) 88.33 90.00 



S6(L vs F) 46.00 80.00 F (L vs R) 75.00 78.33 

S7(L vs R) 66.00 82.00 G (L vs R) 38.33 50.00 

Mean 66.21±18.56 82.93±11.12 Mean 66.43±18.92 71.67±15.33 

P-Value 0.0048 P-Value 0.0355 

As we mentioned in Subsection 2.4, the CSP algorithm is substitutable in the structure of the 

CTWS algorithm. Recently, the Sub-Alpha-Beta Log-Det Divergences (Sub-ABLD) algorithm, a 

modified version of CSP algorithm, was reported to outperform the other existing algorithms for 

MI feature extraction (Thiyam, Cruces, & Olias, 2017). In this study, we further incorporate the 

Sub-ABLD algorithm into the proposed CTWS algorithm to verify its universality. The feature 

distribution comparison was shown in Fig. 5. We could observe the features extracted by 

CTWS+Sub-ABLD were easier to classify compared to the Sub-ABLD algorithm using both 

dataset 1 and dataset 2. As shown in Table 2, the incorporation CTWS algorithm into Sub-ABLD 

(CTWS+Sub-ABLD) achieved significantly higher classification accuracy than that of Sub-ABLD. 

In particular, the average accuracy increased from 77.50% to 84.86% (improved 7.36%, p < 0.01) 

and 59.52% to 68.81% (improved 9.29%, p < 0.05). 

 

 

Fig. 5. Feature distribution of each class extracted by Sub-ABLD and combining CTWS with Sub-ABLD in dataset 1 (a) and dataset 2 

(b). 

 

Table 2 

Comparison of the classification accuracy between Sub-ABLD and CTWS+Sub-ABLD for dataset1and dataset2. P-Value denotes the 

paired t-test of classification accuracy between Sub-ABLD and CTWS+Sub-ABLD. “L vs R” is left hand and right hand and “L vs F” is 

left hand and feet. 

dataset 1(BCI Computation IV Dataset I)) dataset 2(stroke patients) 



Subject Sub-ABLD CTWS+Sub-ABLD Subject Sub-ABLD CTWS+Sub-ABLD 

S1(L vs R) 69.50 83.00 A(L vs R) 41.67 53.33 

S2(L vs R) 65.00 67.00 B(L vs R) 65.00 61.67 

S3(L vs F) 78.00 85.50 C(L vs R) 41.67 63.33 

S4(L vs R) 84.00 93.00 D(L vs R) 66.67 85.00 

S5(L vs R) 95.50 99.00 E(L vs R) 86.67 86.67 

S6(L vs F) 72.00 85.50 F(L vs R) 65.00 76.67 

S7(L vs R) 78.50 81.00 G(L vs R) 50.00 55.00 

Mean 77.50±10.15 84.86±10.04 Mean 59.52±16.28 68.81±12.04 

P-Value 0.0075 P-Value 0.0373 

 

4. Discussion 

Feature extraction is one of the most important steps in motor imagery (MI)-based BCI 

systems (Park, Hwang, et al., 2013; Boostani, Graimann, Moradi, & Ptfurtscheller, 2007; Kevric, 

& Subasi, 2017). In particular, CSP, a spatial feature extraction algorithm, has become the most 

commonly used algorithm in the MI-based BCI research field. In recent years, several studies have 

extended the CSP algorithm to the frequency domain, proposing spatial-spectral feature extraction 

algorithms, such as RCSP (Lotte, & Guan, 2011), SSCSP (Shin, Lee, Lee, & Lee, 2012), FERCSP 

(Su, Li, & Wang, 2015), FBCSP (Ang, Chin, Zhang, & Guan, 2008), and Wavelet-CSP (Robinson, 

Vinod, Ang, Tee, & Guan, 2013). Although these modified CSP algorithms compensate for the 

shortcomings of conventional CSP, none of them consider the variation in the time latency during 

the MI task. As shown in Fig. 3, the starting times significantly varied across trials for each 

participant. Therefore, fixing the start of the time window used for MI feature extraction would 

likely reduce the classification accuracies. Although a few studies have examined the effect of 

time window selection and selected time windows via a manual approach, this method requires 

extensive time for paradigm design and could not achieve consistent satisfactory performance 

(Dornhege, Blankertz, Curio, & Müller, 2004; Qiu, Jin, Lam, Zhang, Wang, & Cichocki, 2016).  

In this study, the proposed CTWS algorithm considers the time variations among trials during 

an MI task, and uses the correlation analysis to automatically adjust the time window for each 

sample. The experimental results demonstrate that the classification accuracy with CTWS 

significantly increased compared to that of other more traditional approaches (see Tables 1 and 2). 

The superior results achieved by the CTWS algorithm may be mimicked by extending current 

feature extraction approaches to the time domain. We note that the feature extraction algorithm in 

the structure of the CTWS algorithm is substitutable. The non-stationary nature of EEG data is 

also a challenge for EEG signal analysis (Thiyam, Gruces, & Olias, 2017). Sub-ABLD exhibited a 

certain robustness to the presence of outlier trials in the dataset. This study combined CTWS with 

Sub-ABLD and achieved significantly improved classification accuracies, which further verified 

the universality of the CTWS algorithm. Moreover, we employed the CTWS on the MI dataset of 

stroke patients (dataset 2), which also lead to significant improvements of classification accuracy. 

However, we notice that the benefit of the CTWS algorithm on the stroke patient datasets (dataset 

2) was reduced compared to the dataset of healthy individuals (dataset 1) (see the P-Value in Table 

1 and 2). These results may be due to the relatively large disturbance of the stroke patients‟ MI 

features, which could not provide enough information for classification (see Fig. 4 and 5).  

As shown in Fig. 2, the reference signal selection is the key aspect of the CTWS algorithm 



and can severely affect the classification accuracy. It is impractical, due to the heavy load of 

computation, to employ all collected EEG channels in optimization of the reference signal. 

Therefore, in this study channels C3 and C4 were chosen to calculate the reference signal because 

they carry important characteristics of MI (Pfurtscheller, Brunner, Schlögl, & Da Sliva, 2006; 

Pregenzer, & Pfurtscheller, 1999). However, the spatial distribution of MI features varies among 

individuals (Qiu, Jin, Lam, Zhang, Wang, & Cichocki, 2016), thus channels C3 and C4 may not be 

the optimal channel set for some cases. In future work, to further improve the performance of the 

CTWS algorithm, we will choose the channel set for the reference signal optimization based on 

channel selection approaches. 

 

5. Conclusion 

 

In this study, we proposed a novel correlation-based time window selection (CTWS) 

algorithm for motor imagery (MI)-based BCIs. In our approach, the optimized reference signals 

for each class were selected based on correlation analysis and performance evaluation. After that, 

the starting points of the time windows for both training and testing samples were adjusted using 

correlation analysis again. Finally, the feature extraction and classification algorithms were 

employed to calculate the classification accuracy. Experimental results suggest that the CTWS 

algorithm can provide improved performance compared to directly using feature extraction 

approaches. More specifically, the average classification accuracy improved 16.72% (p < 0.005) 

on the dataset of healthy participants (BCI Computation IV Datasets 1), and 5.24% on the dataset 

of stroke patients, when using the proposed approach compared to using CSP directly. Moreover, 

we evaluate the performance of CTWS used with Sub-ABLD (a recent proposed algorithm for MI 

feature extraction), and the average accuracy increased significantly by 7.36% (p < 0.01) and 

9.29% (p < 0.05). The proposed CTWS algorithm paves the way for further MI feature extraction 

research. 
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