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Abstract

We examine a higher-order spatial autoregressive model with stochastic, but exogenous, spa-

tial weight matrices. Allowing a general spatial linear process form for the disturbances that

permits many common types of error specifications as well as potential ‘long memory’, we pro-

vide sufficient conditions for consistency and asymptotic normality of instrumental variables,

ordinary least squares and pseudo maximum likelihood estimates. The implications of popular

weight matrix normalizations and structures for our theoretical conditions are discussed. A set

of Monte Carlo simulations examines the behaviour of the estimates in a variety of situations.

Our results are especially pertinent in situations where spatial weights are functions of stochastic

economic variables, and this type of setting is also studied in our simulations.
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1 Introduction

Spatial autoregressive (SAR) models, due to Cliff and Ord (1973), have recently become very popular

in applied and theoretical research. Their main feature is the modelling of spatial dependence by

allowing a form of direct interaction between units through spatial weight matrices Wj , j = 1, . . . , p.

The elements of Wj measure distance between units, which may be geographic but in general can be

(inverse) economic distances.

While the majority of the literature on estimation and inference for SAR models, e.g. Kelejian

and Prucha (1998, 1999, 2001), Lee (2002, 2003, 2004), Robinson (2010), Lee and Liu (2010), Su and

Jin (2010), Lee and Yu (2013), Gupta and Robinson (2015), has assumed the Wj to be deterministic,

examples abound that imply stochastically generated Wj . Most commonly a typical element of Wj is

determined by economic variables that may themselves be stochastic. Conley and Ligon (2002) study

cross-country spillovers in long-run growth rates using several distance measures. While one of them,

geographic distance, is evidently fixed, the other two measures, United Parcel Service shipping costs

and airfare, are more difficult to justify to be fixed in repeated sampling. Both, at the very least, are

subject to random shocks in the economic conditions of each pair of countries, among many other

factors. Conley and Dupor (2003) take input-output relations as a measure of economic distance,

and it is reasonable to imagine that these relations are stochastic and not fixed. In Yuzefovich (2003)

spatial weight matrices are constructed using a variety of economic distances, e.g. trade between

two countries and competition in borrowing from a common lender. These variables would generally

be considered stochastic in econometric analyses that use such data. Another example is Baltagi,

Fingleton, and Pirotte (2014), who construct a weight matrix using commuting frequencies between

districts in the UK. Commuting frequencies between two districts depend heavily on macro and

microeconomic factors that are stochastic, and therefore may be anticipated to be stochastic too.

Souza (2015) considers a SAR model in which networks may form stochastically, captured by nonzero

spatial weight matrix elements. However he treats these elements as unobserved heterogeneity, and

hence unknown, whereas in our treatment they are known. Robinson (2008) discusses a SAR with

stochastic weights in the context of correlation testing. In a recent survey, Boucher and Fortin (2016)

discuss the concept of stochastic spatial weight matrices from the perspective of impact caused by a

policy shock. They stress that social interaction models based on a stochastic network structure, such

as the SAR model considered in this paper, should include a description of the network formation

process, and that researchers should discuss the impact of proposed policy shocks on the assumed

network.

In this paper we will justify instrumental variables (IV), ordinary least squares (OLS) and pseudo

maximum likelihood estimates (PMLE) with stochastic but exogenous Wj . Asymptotic theory for

IV estimates of SAR model parameters was introduced first in Kelejian and Prucha (1998), and

subsequently also studied by Lee (2003). IV is employed because of endogeneity problems, but Lee

(2002) demonstrated that OLS can deliver consistent and asymptotically normal estimates of SAR

model parameters under certain circumstances, thus correcting a tendency to casually discard OLS

as a suitable method for SAR estimation and inference. A more general treatment by Gupta and

Robinson (2015) examined IV and OLS estimates for an increasing order version of the SAR model,

but with iid disturbances. For PMLE, Lee (2004) developed asymptotic theory for SAR models with

a single weight matrix, while Gupta and Robinson (2018) consider SAR models in which both the

number of weight matrices and regressors can diverge with sample size. Both papers take independent
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disturbances that are also identically distributed in the case of Lee (2004) but need not be in Gupta

and Robinson (2018). On the other hand, Delgado and Robinson (2015) provide asymptotic theory for

estimation of spatial models of a rather general type, including SAR, spatial moving average (SMA)

and spatial ARMA, allowing a linear process type disturbance structure for their distributional results.

Theory has been developed for estimation with endogenous Wj . Kelejian and Piras (2014) consider

such a model and develop IV type estimates. Qu and Lee (2015) were critical of their restrictive

assumptions, and instead use the near epoch dependence (NED) theory of Jenish and Prucha (2012) to

establish consistency and asymptotic normality of estimates in a more general setting. Building on the

spatial martingale limit theory in Kuersteiner and Prucha (2013), endogenous weight matrices are also

permitted in a generalized method of moments framework in Kuersteiner and Prucha (2015). However

the intermediate case, with stochastic but exogenous Wj has received little theoretical attention.

This case can cover situations of economic interest where spatial weights are generated by exogenous

regressors, and can be examined in a very general framework that does not require NED process

theory. For observations recorded at locations r and s the latter essentially requires the locations to

be geographic (in the sense that they are in Euclidean space) due to a notion of dependence reducing

as the distance between r and s increases. Thus it is not generally applicable to data whose locations

do not have a geographic interpretation. On the other hand, the SAR model has been considered

to be particularly appealing because of its ability to handle data in general economic spaces, such

as income space, where geographical interpretations may not be natural and, indeed, locations may

be unknown. If the locations indeed have a geographical interpretation, NED based theory provides

powerful results and a greater ability to handle nonlinear models, see e.g. Xu and Lee (2015). Thus

neither approach dominates the other. The results in this paper justify the use of methods developed

for fixed Wj when the Wj are stochastic and, as a result, should provide reassurance to practitioners

faced with such Wj , although the theory requires additional conditions to account for the stochastic

nature of the Wj .

An additional innovation is that we allow for a general ‘spatial linear process’ structure in the

disturbances, cf. Robinson and Thawornkaiwong (2012) and Delgado and Robinson (2015). The

former do not consider models with spatial lags in the dependent variables explicitly, nor do they

provide theory for OLS or PMLE, while the latter do not consider models with regressors. The spatial

weights are deterministic in both papers. In this sense we make a novel contribution to the literature

also in the deterministic Wj case that we formally cover.

The paper is organized as follows: Section 2 contains asymptotic theory for IV estimates, Section

3 for OLS and Section 4 for PMLE. We discuss implications of common weight matrix normalizations

and structures in Section 5, while Section 6 contains a Monte Carlo simulation study that includes

two different regimes for generating the spatial weight matrices, with an additional regime discussed

in an online appendix associated with this article, available at Cambridge Journals Online (jour-

nals.cambridge.org/ect). Section 7 concludes the paper. Two appendices contain theorem proofs and

technical lemmas.

2 IV estimation

Assume that, for an n × 1 vector of observations yn, an n × k matrix of regressors Xn and n × n

weight matrices Wjn, j = 1, . . . , p, there exist unknown vectors λ = (λ1, λ2, . . . , λp)
′ and β 6= 0 such
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that

yn =
p∑

j=1

λjWjnyn +Xnβ + un, (2.1)

where un is an n× 1 vector of unobserved disturbances. The Wjn in (2.1) are sometimes normalized

in ways that make their elements dependent on n, e.g. row-normalization, and Xn may contain

spatial lags of basic explanatory variables. Both points imply triangular arrays and justify the n

subscripting in (2.1), but the linear process type structure we permit for the disturbances also entails

n subscripting on these. Subsequently we will drop n subscripts for brevity, but will occasionally

remind the reader of the n-dependence of certain quantities.

Let Z = Zn be a matrix of instruments with dimension n × p1, p1 ≥ p. Denoting θ = (λ′, β′)′,

define the IV estimate of θ as

θ̂ = n−1 ¯̄Q−1 ¯̄K ′J̄−1 [Z,X ]′ y = θ + ¯̄Q−1 ¯̄K ′J̄−1q, (2.2)

where ¯̄Q = ¯̄Qn = ¯̄K ′J̄−1 ¯̄K (dimension p+k) and ¯̄K = ¯̄Kn = n−1 [Z,X ]′ [R,X ] (dimension (p1 + k)×

(p+ k)), with R = [W1y, . . . ,Wpy], J̄ = J̄n = n−1 [Z,X ]′ [Z,X ] (dimension p1 +k), q = n−1 [Z,X ]′ u.

Throughout the paper C denotes a generic positive constant, arbitrarily large but bounded and

independent of n.

Assumption 1. (2.1) holds with u = un = (u1n, . . . , unn)′, and

urn = ur =
∞∑

l=1

crlεl, r = 1, . . . , n, n ≥ 1, (2.3)

where εl are scalar independent random variables with zero mean and variance σ2, crl = crln, and

satisfy
∞∑

l=1

c2rl < C, r = 1, . . . , n, n ≥ 1. (2.4)

Assumption 2. The elements of Wj , j = 1, . . . , p, are random variables that are uniformly Op(h−1
Wn

),

as n → ∞, with hWn = hW a bounded or divergent sequence that is bounded away from zero and

satisfies hW = o(n) if it is divergent.

Assumption 1 permits a wide variety of disturbance processes including SAR and SMA, and implies

that each ur forms a triangular array. The square summability of linear process coefficients in

(2.4) allows spatial ‘long-memory’, while identity of distribution of the εl is avoided. Robinson

and Thawornkaiwong (2012), who introduced this assumption, discuss it in detail. The time series

literature commonly allows for martingale εl, but this is avoided in spatial settings as there may

be no natural ordering available. Assumption 2 is an extension to stochastic weights of a commonly

employed assumption that controls spatial weights, cf. Lee (2002, 2004), Gupta and Robinson (2015).

Allowing hW to be bounded can imply a fixed number of neighbours as n → ∞. Write S = In −
∑p
j=1 λjWj , In denoting the n-dimensional identity matrix, and introduce:

Assumption 3. P (S is non-singular) = 1, for all sufficiently large n, at the true parameter value

λ = λ0.

For a generic matrix M , define ‖M‖ as the square root of the largest eigenvalue of MM ′ (the

spectral norm), ‖M‖R as the largest absolute row-sum of M (the maximum row-sum norm) and
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‖M‖F = (tr (M ′M))
1
2 (the Frobenius norm). Assumption 3 ensures that a reduced form exists

almost everywhere (a.e.) for y, and is satisfied if P
(∥∥
∥
∑p

j=1 λjWj

∥
∥
∥ < 1

)
= 1. Indeed, we can write

(2.1) as

Sy = Xβ + u, (2.5)

or, equivalently, y = Rλ+Xβ + u. Assumption 3 implies that

y = S−1Xβ + S−1u, a.e., (2.6)

so R = A+B where A = [G1Xβ, . . . , GpXβ], B = [G1u, . . . , Gpu] and Gj = WjS
−1 for j = 1, . . . , p.

Also define K̄ = K̄n = n−1 [Z,X ]′ [A,X], Q̄ = Q̄n = K̄ ′J̄−1K̄ and introduce user chosen real

numbers ζi, i = 1, . . . , 12, (because twelve such numbers will be needed in the subsequent results)

such that 1 < ζi < C for each i and ζ−1
j +ζ−1

j+1 = 1 for odd j. The ζi will be used in Hölder inequalities

in the proofs.

Assumption 4. X, Wj and zr are independent of εl, r = 1, . . . , n, l = 1, . . . , j = 1, . . . , p, where zr
is the r-th column of Z ′. Let arjn = arj denote the (r, j)-th element of [Z,X ]. Then

max
1≤r≤n, 1≤j≤p1+k

E |arj |
2ζ1 < C, (2.7)

and, as n→∞,

K̄
p
−→ K, J̄

p
−→ J, (2.8)

where K and J are full-rank constant matrices, with J symmetric.

A consequence of Assumption 4 is that Q̄ − Q = op(1), with Q = K ′J−1K. Condition (2.7) implies

finite 2ζ1-th moments for instruments and regressors. The requirement of the whole regressor matrix

X being independent of the εl stems from the fact the instruments are typically constructed using

linearly independent columns of W s
jX, j = 1, . . . , p, s ≥ 1, cf. Kelejian and Prucha (1998). Evidently

a given instrument vector then contains elements from different rows of X, as was noted by Gupta

and Robinson (2015).

Denote

χn = n−
1
2 max

1≤j≤p

(
E ‖Wj‖

2ζ2ζ3
) 1

2ζ2ζ3
(
E
∥
∥S−1

∥
∥2ζ2ζ4

) 1
2ζ2ζ4

. (2.9)

Theorem 2.1. Let Assumptions 1-4 hold and

χn → 0, as n→∞. (2.10)

Then θ̂ − θ
p
−→ 0, as n→∞.

The condition (2.10) limits the extent of spatial correlation. Note that (2.10) does not impose that

‖Wj‖ or
∥
∥S−1

∥
∥ have finite 2ζ2ζ3-th or 2ζ2ζ4-th moments, but allows these to grow with n. In this

sense it is not as strong as may be imagined at first glance. We will look at a specific example with

potentially unbounded moments in Section 5. There is an implication of being able to ‘trade-off’ the

magnitude of moments of ‖Wj‖ and
∥
∥S−1

∥
∥ in χn and arj by choices of ζi, i = 1, 2, 3, 4. Some of

the existing literature on SAR models with fixed weights imposes restrictions on ‖Wj‖R or
∥
∥S−1

∥
∥
R

,

but these are evidently stronger than those based on the spectral norm. Indeed, taking ζi = 2,
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i = 1, 2, 3, 4, for simplicity, the inequality ‖F‖2 ≤ ‖F‖R ‖F
′‖R immediately implies χn = O (χn,R)

with

χn,R = n−
1
2 max

1≤j≤p

(
E ‖Wj‖

8
R E

∥
∥W ′j

∥
∥8

R
E
∥
∥S−1

∥
∥8

R
E
∥
∥S′−1

∥
∥8

R

) 1
16
.

Let 1(·) denote indicator function.

Assumption 5. supl≥1 E
(
ε2l 1 (|εl| > δ)

)
→ 0, as δ →∞.

Assumption 6. With a′r denoting the r-th row of [Z,X ] and Φ a positive definite (p.d.) constant

matrix,

n−1
n∑

r,s=1

∞∑

l=1

crlcslara
′
s

p
−→ Φ, as n→∞, (2.11)

n−1 sup
l≥1

∥
∥
∥
∥
∥

n∑

r=1

arcrl

∥
∥
∥
∥
∥

2

p
−→ 0, as n→∞. (2.12)

Assumption 5 avoids identity of distribution for the εl, (2.11) simply asserts convergence of the

covariance matrix of n−
1
2 [Z,X ]′u while (2.12) is the form of the Lindeberg condition required for the

central limit theorem.

Theorem 2.2. Let Assumptions 1-6 and (2.10) hold. Then

n
1
2

(
θ̂ − θ

)
d
−→ N

(
0, σ2Q−1K ′J−1ΦJ−1KQ−1

)
, as n→∞.

3 OLS estimation

Define the OLS estimate

θ̃ = n−1 ¯̄L−1 [R,X ]′ y = θ + ¯̄L−1w, (3.1)

where ¯̄L = ¯̄Ln = n−1 [R,X ]′ [R,X ] (dimension p+ k), ` = `n = n−1 [R,X ]′ u. Also define L̄ = L̄n =

n−1[A,X]′[A,X]. Assumption 2 needs to be strengthened to the following sufficient condition:

Assumption 7. The ζi are chosen such that ζ5ζ7 = 2ζ11 and

max
1≤j≤p

E

({

max
1≤r,s≤n

|wrs,j |

}2ζ11
)

= O
(
h−2ζ11
W

)
,

where wrs,j is the (r, s)-th element of Wj, j = 1, . . . , p.

This assumption implies max1≤r,s≤n, 1≤j≤p |wrs,j | = Op
(
h−1
W

)
. Various bounds depending on the

distribution of wrs,j exist in the extreme value literature for the expectation, but Assumption 7

ensures also that the familiar case with fixed wrs,j = O
(
h−1
W

)
, uniformly in r, s, is formally covered.

The restriction ζ5ζ7 = 2ζ11 is satisfied in the case where the Cauchy Schwarz inequality is used in

place of the Hölder inequality, implying that ζi = 2 for all i.

Assumption 8. X and Wj are independent of εl, l = 1, . . . , j = 1, . . . , p. Let trjn = trj denote the

(r, j)-th element of [A,X]. Then

max
1≤r≤n, 1≤j≤p+k

E |trj |
2ζ1 < C, (3.2)
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and, as n→∞,

L̄
p
−→ L, (3.3)

where L is a constant, symmetric and non-singular matrix.

Define

πn = h
− 1

2
W

(

max
1≤j≤p

E
∥
∥W ′j

∥
∥ζ6ζ9
R

) 1
2ζ6ζ9

(
E
∥
∥S′−1

∥
∥ζ5ζ8
R

) 1
2ζ5ζ8

(
E
∥
∥S′−1

∥
∥ζ6ζ10

R

) 1
2ζ6ζ10

. (3.4)

Theorem 3.1. Let Assumptions 1-3, 7, 8 hold and

h−1
W + χn + πn −→ 0 as n→∞. (3.5)

Then θ̃ − θ
p
−→ 0, as n→∞.

For consistency of OLS estimates hW →∞ is necessary even with deterministic Wj (cf. Lee (2002),

Gupta and Robinson (2015)), and (3.5) strengthens the restrictions on spatial correlation relative to

hW . Our conditions match those in the aforementioned literature except the additional requirements

on moments of ‖Wj‖ and
∥
∥S−1

∥
∥ which arise because these are stochastic.

Taking p = 1 for simplicity (and writing W1 = W ), an example of non-stochastic W for which

hW → ∞ can be constructed as in Case (1991), where each of d districts contains m farmers, so

n = md. Interdistrict independence is assumed, as is equal reaction within districts, implying

W = Id ⊗Bm, with Bm = (m− 1)−1 (lml
′
m − Im) , (3.6)

where lm is the m-dimensional vector of ones and ⊗ denotes Kronecker product. Here hW = m− 1,

which diverges as m → ∞, and thus satisfies (3.5). More general versions of such specifications are

also studied recently in Hillier and Martellosio (2018).

The specification given in (3.6) consists of a block-diagonal W with very dense blocks. On the

other hand, specifications of W can be of the more sparse variety, in which case hW will be bounded

and (3.5) will fail. As an example consider the case of circulant W , where each unit has only one

neighbour on ‘either side’. Mathematically, define W ∗ as the symmetric circulant matrix with first

row elements given by

w∗1r =

{
0 if r = 1 or r = 3, . . . , n − 1;

ω if r = 2 or r = n,
(3.7)

with ω some known real number, see e.g. Das, Kelejian, and Prucha (2003). A binary neighbourhood

criterion would take ω = 1. Now define

W = W ∗/‖W ∗‖, (3.8)

where ‖W ∗‖ = 2ω, because W ∗ is a symmetric, circulant matrix (see e.g. Davis (1979) p. 73).

Then W is also a symmetric circulant matrix with first row elements given by w∗1r/2ω. In this case

hW = 2ω, which does not diverge with n in general.

Assumption 9. supl≥1 E
(
ε4l 1 (|εl| > δ)

)
→ 0, as δ →∞.

This assumption seems hard to relax for a CLT. Indeed, even for (2.1) with p = 1, Wj fixed and no
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linear process structure, Lee (2002) required E |ur|
4+η

< C, for some η > 0. Gupta and Robinson

(2015) relaxed this slightly to Eu4
r < C, with increasing p, k but restricted themselves to iid ur. Here

we avoid identity of distribution of εl, and ur, but require the uniform integrability of the ε4l that

Assumption 9 entails.

Assumption 10. With t′r denoting the r-th row of [A,X] and Ψ a p.d. constant matrix,

n−1
n∑

r,s=1

∞∑

l=1

crlcsltrt
′
s

p
−→ Ψ, as n→∞, (3.9)

n−1 sup
l≥1

∥
∥
∥
∥
∥

n∑

r=1

trcrl

∥
∥
∥
∥
∥

2

p
−→ 0, as n→∞. (3.10)

Theorem 3.2. Let Assumptions 1-3, 7-9 and (3.5) hold and

h−1
W n

1
2

(
E
∥
∥S′−1

∥
∥2ζ12

R

) 1
2ζ12 −→ 0, as n→∞. (3.11)

Then

n
1
2

(
θ̃ − θ

)
d
−→ N

(
0, σ2L−1ΨL−1

)
, as n→∞.

The proof requires some care to ensure that (2.4) does not need strengthening. Lee (2002) established

that asymptotic normality of OLS relies not just on divergence of hW , but sufficiently fast divergence,

viz. n
1
2 = o(hW ). Condition (3.11) indicates the additional requirement that arises when the Wj are

stochastic and reduces to the condition in Lee (2002) for non-stochastic Wj . In the W described in

(3.6) we have hW = m − 1 and n = md, so (3.11) is satisfied if d
1
2 /m

1
2 → 0 as d,m → ∞. On the

other hand, the W of (3.8) will not satisfy (3.11) in general.

With all ζi = 2, we obtain

χn = n−
1
2

(

max
1≤j≤p

E ‖Wj‖
8 E
∥
∥S−1

∥
∥8
) 1

8

, (3.12)

πn = h
− 1

2
W

(

max
1≤j≤p

E
∥
∥W ′j

∥
∥4

R

) 1
8 (
E
∥
∥S′−1

∥
∥4

R

) 1
4
, (3.13)

(3.11) becomes h−1
W n

1
2

(
E
∥
∥S′−1

∥
∥4

R

) 1
4
→ 0, as n→∞, and (2.7), (3.2) require finite fourth moments

for the arj and trj respectively.

In both Theorems 2.2 and 3.2, if the Wj are taken to be deterministic and the ur are iid, the

limit distributions are identical to those obtained by Gupta and Robinson (2015), taking p and k to

be fixed in their results.

4 Pseudo maximum likelihood estimation

In this section, we parameterize the coefficients in the linear process given in Assumption 1. In

particular, suppose there is an unknown q×1 vector τ0 ∈ T such that crl = crl (τ0), all r = 1, . . . , n and

l ≥ 1. Writing σ−2
0 E (unu′n) = Ξn(τ0) ≡ Ξ(τ0), the pseudo likelihood function based on Gaussianity
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and conditional on Wj , j = 1, . . . , p, X, is

log (2πσ2)−
2
n

log |S (λ)|+
1
n

log |Ξ (τ)|+
1
σ2n

(S (λ) y −Xβ)′ Ξ(τ)−1 (S (λ) y −Xβ) , (4.1)

at any admissible point
(
%′, σ2

)′
with % = (θ′, τ ′)′, for nonsingular S(λ) and Ξ(τ), although Gaus-

sianity is nowhere assumed. True parameter values are identified by a zero subscript and for any

parameter α and any quantity x(α) we adopt the convention x (α0) ≡ x.

For given γ = (λ′, τ ′)′, (4.1) is minimised with respect to β and σ2 by

β̄ (γ) =
(
X ′Ξ(τ)−1X

)−1
X ′Ξ(τ)−1S (λ) y, (4.2)

σ̄2 (γ) = n−1y′S′ (λ) Ξ(τ)′−
1
2M(τ)Ξ(τ)−

1
2S (λ) y, (4.3)

where M(τ) = In − Ξ(τ)−
1
2X

(
X ′Ξ(τ)′−

1
2 Ξ(τ)−

1
2X
)−1

X ′Ξ(τ)′−
1
2 and Ξ(τ)−

1
2 ≡ Ξn(τ)−

1
2 is the

n× n matrix such that Ξ(τ)′−
1
2 Ξ(τ)−

1
2 = Ξ(τ)−1 . This is a slight abuse of notation but makes the

proofs easier to read. The PMLE of γ0 is γ̌ = arg minγ∈Γ L (γ), where

L (γ) = log σ̄2 (γ) + n−1 log
∣
∣S′−1 (λ) Ξ(τ)S−1 (λ)

∣
∣ , (4.4)

and Γ = Λ × T is taken to be a compact subset of Rp+q. The PMLEs of β0 and σ2
0 are defined as

β̄ (γ̌) ≡ β̌ and σ̄2 (γ̌) ≡ σ̌2 respectively.

Assumption 11. For all sufficiently large n, the ur have uniformly bounded fourth moment, r =

1, . . . , n.

Assumption 12. maxj=1,...,p ‖Wj‖+
∥
∥S−1

∥
∥ = Op(1).

Assumption 13. limn→∞ supτ∈T
(
‖Ξ(τ)‖+

∥
∥Ξ(τ)−1

∥
∥) <∞.

Assumption 14. For any τ † ∈ T and any η > 0, there exists ε > 0 such that

lim
n→∞

sup
τ∈{τ :‖τ−τ†‖<ε}∩T

∥
∥Ξ(τ)− Ξ

(
τ †
)∥∥ < η. (4.5)

Assumption 12 implies that maxj=1,...,p ‖Gj‖ = Op(1). The approach to conditions on the Wj and S−1

differ somewhat in this section as compared to the previous two. There we focused on more primitive

conditions based on moments of ‖Wj‖ and
∥
∥S−1

∥
∥, and also allowed a great amount of flexibility both

in the way the Hölder inequality is applied (exemplified by the twelve different ζi) and the fact that

the moments may diverge at a certain rate. The PMLE considered in this section is inherently harder

to derive asymptotic properties for because it is only implicitly defined, and matters are complicated

further also by the presence of Ξ(τ) in the objective function (4.1). Thus to maintain tractability

we prefer conditions of the type given in Assumption 12. Assumption 13 is a standard type of regu-

larity condition that may be regarded as guaranteeing asymptotic boundedness and non-singularity.

Assumption 14 also holds with Ξ(τ)− Ξ
(
τ †
)

replaced by Ξ(τ)−1 − Ξ
(
τ †
)−1

due to Assumption 13,

and is useful in an equicontinuity argument in the consistency proof. Further discussion of it may be

found in Delgado and Robinson (2015), who also discuss sufficient conditions for it to hold. Write

T (λ) = S(λ)S−1 and define σ2 (γ) = n−1σ2
0tr
(
T ′(λ)Ξ(τ)−1T (λ)Ξ

)
= n−1σ2

0

∥
∥
∥Ξ(τ)−

1
2T (λ)Ξ

1
2

∥
∥
∥

2

F
,

which is nonnegative by definition and bounded in probability by Assumptions 12 and 13.
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Assumption 15. There exist positive and finite constants c and C such that c ≤ σ2 (γ) ≤ C with

probability one, for all γ ∈ Γ.

Assumption 16. γ0 ∈ Γ and, for any η > 0,

P

(

lim
n→∞

inf
γ∈N

γ
(η)

n−1tr
(
T ′(λ)Ξ(τ)−1T (λ)Ξ

)

|T ′(λ)Ξ(τ)−1T (λ)Ξ|1/n
> 1

)

= 1, (4.6)

where N
γ
(η) = Γ \ N γ(η) and N γ(η) = {γ : ‖γ − γ0‖ < η} ∩ Γ.

The trace in the numerator inside the probability in (4.6) equals
∥
∥
∥Ξ(τ)−

1
2T (λ)Ξ

1
2

∥
∥
∥

2

F
, while the de-

terminant in the denominator is similarly
∣
∣
∣Ξ(τ)−

1
2T (λ)Ξ

1
2

∣
∣
∣
2

. Thus the inequality between arithmetic

and geometric means implies that the ratio inside the probability is at least one. On the other hand,

when γ = γ0 the ratio equals one, so (4.6) essentially requires that this situation not arise outside an

arbitrarily small neighbourhood of γ0. Therefore it is an identification condition which can be com-

pared to those already in the literature. The closest conditions may be found in Gupta and Robinson

(2018) and Delgado and Robinson (2015), the latter showing the equivalence of their condition to that

of Lee (2004) in the case of SAR models. With deterministic weight matrices, the latter interprets the

condition as related to the uniqueness of the covariance matrix of y. Our setup is rather different, with

a SAR model coupled with linear process disturbances and stochastic weight matrices, for which our

condition accounts. A Lee (2004)-like interpretation is possible in terms of the uniqueness of the co-

variance matrix of y conditional on the Wj and X, j = 1, . . . , p, viz. S−1ΞS′−1, because the logarithm

of the ratio inside the probability equals n−1 log
∣
∣σ2(γ)S(λ)−1Ξ(τ)S′(λ)−1

∣
∣ − n−1 log

∣
∣σ2

0S
−1ΞS′−1

∣
∣,

cf. also equation (37) and the discussion thereafter in Delgado and Robinson (2015).

Assumption 17. β0 6= 0 and, for any η > 0,

P

(

lim
n→∞

inf
(λ′,τ ′)′∈Λ×N

τ
(η)
n−1β′0X

′T ′(λ)Ξ(τ)′−
1
2M (τ) Ξ(τ)−

1
2T (λ)Xβ0/ ‖β0‖

2
> 0

)

= 1. (4.7)

Because the event inside the probability is equivalent (by straightforward minimization) to

lim
n→∞

min
β∈Rk

inf
(λ′,τ ′)′∈Λ×N

τ
(η)
n−1 (Xβ − T (λ)Xβ0)′ Ξ(τ)−1 (Xβ − T (λ)Xβ0) / ‖β0‖

2
> 0,

Assumption 17 is in fact an identification condition similar to one used for nonlinear regression

in a SAR model by Gupta and Robinson (2018). Let ϕ(A) (respectively ϕ(A)) denote the largest

(respectively smallest) eigenvalue of a generic square nonnegative definite matrix A. Then a necessary

condition for the event in (4.7) is that

lim
n→∞

inf
(λ′,τ ′)′∈Λ×N

τ
(η)
ϕ
(
n−1X ′T ′(λ)Ξ(τ)′−

1
2M (τ) Ξ(τ)−

1
2T (λ)X

)
> 0.

The final identification condition is a familiar asymptotic full-rank condition

Assumption 18.
{
ϕ
(
n−1X ′X

)}−1
= Op(1).

This assumption implies
{

supτ∈T ϕ
(
n−1X ′Ξ(τ)−1X

)}−1
= Op(1) in view of Assumption 13.
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Theorem 4.1. Let Assumptions 1-3, 8 and 11-17 hold. Then
(
%̌′, σ̌2

)′
−
(
%′0, σ0

2
)′ p
−→ 0 as n→∞.

Assumption 19. γ0 is an interior point of Γ.

Assumption 20. The εj in Assumption 1 have finite third and fourth moments µ3 and µ4 respec-

tively, finite eighth moment and, denoting by ξrs(τ) the (r, s)-th element of Ξ(τ) and defining

c∗rj = crj/ξ
1
2
rr, r = 1, . . . , n, n ≥ 1, l ≥ 1,

we have

lim
n→∞

sup
r=1,...,n

∞∑

l=1

|c∗rl|+ sup
l≥1

lim
n→∞

n∑

r=1

|c∗rl| <∞. (4.8)

Assumption 19 is standard for a central limit theorem for implicitly defined estimates. Assumption 20

is introduced by Delgado and Robinson (2015), and is discussed therein. It implies that Assumption

11 holds.

Assumption 21. maxj=1,...,p ‖Wj‖R + maxj=1,...,p

∥
∥W ′j

∥
∥
R

+
∥
∥S−1

∥
∥
R

+
∥
∥S′−1

∥
∥
R

+ ‖X‖R = Op(1) ,

as n→∞.

Assumption 21 is quite standard even in the literature with non-stochastic Wj and X, where the

Op(1) requirement is replaced by simply O(1). Note that ‖X‖R = O(1) would then be satisfied if X

has uniformly bounded, constant elements. Let Ξi1(τ) = ∂Ξ(τ)/∂τi1 , Ξi1i2(τ) = ∂Ξi1(τ)/∂τi2 and

Ξi1i2i3(τ) = ∂Ξi1i2(τ)/∂τi3 , i1, i2, i3 = 1, . . . , q, where the matrices are differentiated element-wise

and the existence of the derivatives is guaranteed by Assumption 22 below, with typical elements

ξrsi1 , ξrsi1i2 and ξrsi1i2i3 respectively.

Assumption 22. For i1, i2, i3 = 1, . . . , q and all sufficiently large n, the elements of Ξ are thrice

continuously differentiable, for any η > 0

lim
n→∞

sup
τ∈N τ (η)

(∥∥Ξ(τ)−1
∥
∥
R

+ ‖Ξi1(τ)‖R + ‖Ξi1i2(τ)‖R + ‖Ξi1i2i3(τ)‖R
)
<∞, (4.9)

and for a positive sequence hΞ ≡ hΞn that is either bounded or divergent and satisfies hΞ/n → 0 as

n→∞, we have

lim
n→∞

sup
τ∈N τ (η)

sup
r,s=1,...,n

hΞ (|ξrs(τ)|+ |ξrsi1(τ)|+ |ξrsi1i2(τ)|+ |ξrsi1i2i3(τ)|) <∞. (4.10)

Assumptions 21 and 22 serve to control the extent of spatial correlation to a greater degree than

Assumptions 12 and 13 in view of the inequalities ‖A‖2 ≤ ‖A‖R ‖A
′‖R and ‖A‖ ≤ ‖A‖F for a generic

matrix A. Assumption 22 also imposes local smoothness conditions on Ξ(τ).

The second derivative matrix of (4.1) at
(
%, σ2

)
is denoted H

(
%, σ2

)
. Let PG1(λ) and PG2(λ)

denote the p×p matrices with (i, j)-th elements tr (Gj(λ)Gi(λ)), tr
(
G′j(λ)Gi(λ)

)
, respectively, PΞ(τ)

the q × q matrix with (i, j)-th element tr
(
Ξ(τ)−1Ξi(τ)Ξ(τ)−1Ξj(τ)

)
and Υ(τ) the q × q matrix with

(i, j)-th element tr
(
GiΞ(τ)−1Ξj(τ)

)
. Then

Σ = E (H) = 2σ−2
0 n−1






σ2
0 (PG1 + PG2) + A′Ξ−1A A′Ξ−1X σ2

0Υ

∗ X ′Ξ−1X 0

∗ ∗ 2−1σ2
0PΞ




 , (4.11)
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where the expectation is taken conditional on Wj and X, j = 1, . . . , p. We also need the conditional

covariance matrix of the first derivative of (4.1) at the true parameter values, which we write as

n−1 (2Σ + Ω). The next paragraph is devoted to defining Ω, for which purpose let cl(τ) be the n× 1

vector with r-th element crl(τ).

Introduce the following matrices: the n× p and p× p (respectively) matrices F1 and F2 with j-th

column
∑∞
l=1 Ξ−1clc

′
lGjΞ

−1cl and (i, j)-th element
∑∞
l=1 c

′
lGiΞ

−1clc
′
lGjΞ

−1cl, respectively, the n× p

matrix F3 with j-th column
∑∞
l=1 Ξ−1clc

′
lΞ
−1G′jcl, the n× q and p× q (respectively) matrices F4 and

F5 with j-th column
∑∞
l=1 Ξ−1clc

′
lΞ
−1ΞjΞ−1cl and (i, j)-th element

∑∞
l=1 c

′
lGiΞ

−1clc
′
lΞ
−1ΞjΞ−1cl,

respectively, the n× q matrix F6 with j-th column
∑∞

l=1 Ξ−1clc
′
lΞ
−1ΞiΞ−1cl and the q× q matrix F7

with (i, j)-th element given by
∑∞

l=1 c
′
lΞ
−1ΞiΞ−1clc

′
lΞ
−1ΞjΞ−1cl. Then

Ω = σ−4
0 n−1






4µ3 (A′F1 + F ′1A) + 4
(
µ4 − 3σ4

0

)
F2 4µ3F

′
3X 2µ3A

′F4 + 2
(
µ4 − 3σ4

0

)
F5

∗ 0 2µ3X
′F6

∗ ∗
(
µ4 − 3σ4

0

)
F7




 .

(4.12)

Let N = diag
[
Ip, Ik, Iqh

1
2
Ξ

]
.

Assumption 23. The matrices ∆ = plimn→∞N (2Σ + Ω)N and Π = plimn→∞NΣN exist and are

positive definite.

Theorem 4.2. Let Assumptions 1-3, 8 and 12-23 hold. Then

n
1
2N−1 (%̌− %0)

d
→ N

(
0,Π−1∆Π−1

)
, as n→∞.

The differential norming entailed by N−1 is due to the fact that the elements of PΞ are O
(
h−1

Ξ

)

and will thus all converge to zero when hΞ is divergent, causing singularity of the limiting covariance

matrix. The implication is that when hΞ diverges τ̌ is n
1
2 /h

1
2
Ξ -consistent, whereas n

1
2 -consistency is

achieved when hΞ is bounded.

Some simplifications are possible in Π and ∆ when hW is divergent. The reason is as follows:

asymptotic normality of %̌−%0 is established via the asymptotic normality of the first derivative of (4.1)

with respect to %. This derivative, given by (A.36) in Appendix A, involves the quadratic in u terms

n−1u′GjΞ−1u−n−1σ2
0trGj , j = 1, . . . , p, which are readily shown to be negligible when hW diverges.

We omit the proof of this negligibility to conserve space, and also because it is straightforward

given the techniques used in the proof of Theorem 4.2. Thus these quadratic entries can be ignored

while establishing asymptotic normality and do not contribute to the asymptotic covariance matrix,

eliminating PG2 in Σ and all blocks of Ω involving F1, F2 and F3. Also, because n−1PG1 has elements

that are uniformly Op
(
h−1
W

)
by Lemma B.6, this part of Σ is negligible if hW diverges. In sum, we

can replace Σ and Ω by

2σ−2
0 n−1






A′Ξ−1A A′Ξ−1X σ2
0Υ

∗ X ′Ξ−1X 0

∗ ∗ 2−1σ2
0PΞ





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and

σ−4
0 n−1






0 0 2µ3A
′F4 + 2

(
µ4 − 3σ4

0

)
F5

∗ 0 2µ3X
′F6

∗ ∗
(
µ4 − 3σ4

0

)
F7




 ,

respectively.

Furthermore, suppose that p = 1, the ui in (2.1) are uncorrelated and identically distributed

normal random variables. Thus there is no parameterization by τ , Ω = 0 and we can replace Σ by

2σ−2
0 n−1

[
(GXβ0)′ (GXβ0) (GXβ0)′X

∗ X ′X

]

,

which matches the distribution obtained in this setting by Lee (2004) in his Theorem 3.2.

5 Normalizations of weight matrices

In this section we discuss the effect of various normalizations of the Wj on (2.10) and (3.5). For

simplicity of exposition we will focus on the case when ζi = 2, all i, given in (3.12) and (3.13). Due

to the n−
1
2 factor it is not necessary that the elements of Wj and S−1 have finite eighth moments

for (2.10) to hold, but for given n it is not sufficient either. Similarly due to the h
− 1

2
W factor and

hW → ∞ finite fourth moments for elements of W ′j or S′−1 are neither necessary nor sufficient, for

given n, for (3.5) to hold. Both (2.10) and (3.5) can be compared to conditions imposed in Gupta and

Robinson (2015) for deterministic Wj elements, where max1≤j≤p ‖Wj‖ +
∥
∥S−1

∥
∥ ≤ C was assumed,

for which a necessary condition was boundedness of the elements of Wj , S−1. Thus (2.10) and (3.5)

may be viewed as controlling the spatial correlation asymptotically, and in particular controlling the

magnitudes of the moments of the Wj and S−1.

Various sufficient conditions may be found for (2.10) and (3.5) to hold. For example, suppose that

Wj = W ∗j /
∥
∥W ∗j

∥
∥ , (5.1)

for some matrices W ∗j . Then ‖Wj‖
s ≤ 1, for any s > 0, while

∥
∥S−1

∥
∥ ≤

∞∑

l=0




p∑

j=1

‖λjWj‖





l

≤ C, (5.2)

if
p∑

j=1

|λj | < 1. (5.3)

The Wj can have a special ‘single nonzero diagonal block’ structure in some applications. Here there

are mj×mj matrices Vj , j = 1, . . . , p and
∑p

j=1 mj = n, such that each Wj has Vj as its j-th diagonal

block and zeroes elsewhere. In this case Gupta and Robinson (2015) prove that

max
1≤j≤p

|λj | < 1 (5.4)

can replace the more general condition given in (5.3). Thus under (5.1), condition (2.10) is satisfied
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always if (5.3) holds for general Wj and (5.4) holds for Wj with ‘single nonzero diagonal block’

structure. Another popular normalization when the weight matrix has nonnegative elements is row-

normalization, where each row of Wj sums to 1, thus implying ‖Wj‖R = 1 so negligibility of χn,R
follows if (5.3) holds in the general case and (5.4) holds in the ‘single nonzero diagonal block’ case,

as illustrated for the spectral norm. More generally, if ‖Wj‖M ≤ C, where ‖·‖M denotes a generic

matrix norm, then E ‖Wj‖
s
M ≤ C, any s > 0. A sufficient condition for E

∥
∥S−1

∥
∥
M
≤ C is that∥

∥
∥
∑p

j=1 λjWj

∥
∥
∥
M

has a moment generating function.

On the other hand, all types of normalizations are not economically justified. For instance Bell

and Bockstael (2000) point out that row-normalization is not justified in certain models with real

estate data while Lee and Yu (2014) discuss problems in estimation that occur with row-normalized

weight matrices and present some simulation evidence using non-normalized matrices. Thus the

moment conditions implied by (2.10) and (3.5) will be different under various normalizations of Wj .

The choice of normalization ultimately lies with the practitioner, but we believe (5.1) is the most

attractive option. Unlike row-normalization it does not change the economic content of the spatial

weight matrices because it preserves relative distances, and performs the task of stabilizing moments.

Kelejian and Prucha (2010) provide an excellent discussion of normalizations and their implications,

particularly for parameter spaces.

For another sufficient condition we focus on (3.6) with generic blocks Bm, where we have p = 1

and write W1 = W and λ1 = λ. This is sometimes referred to as a Balanced Group Interaction (BGI)

setting, see e.g. Hillier and Martellosio (2013). It implies inter group independence for clustered

data. Note that it does not have a ‘single nonzero diagonal block’ structure. We take d,m → ∞,

which is a combination of ‘increasing domain’ and ‘infill’ asymptotics. Suppose that the elements of

Bm are such that E ‖Bm‖
8 = O

(
mψ1

)
and E

∥
∥
∥(Im − λBm)−1

∥
∥
∥

8

= O
(
mψ2

)
, for some ψ1, ψ2 ≥ 0.

Then E ‖W‖8 = O
(
mψ1

)
and E

∥
∥S−1

∥
∥8

= O(mψ2) due to their block diagonality with equal blocks,

implying χn = O
(
d−

1
2m

ψ1+ψ2
8 − 1

2

)
= o(1) always if ψ1 + ψ2 ≤ 4 and if m = o

(
d

4
ψ1+ψ2−4

)
when

ψ1 + ψ2 > 4.

6 Monte Carlo

Finite sample performance of IV, OLS and PML estimates with fixed Wj has been examined before,

see e.g. Lee (2004), Gupta and Robinson (2015), Gupta and Robinson (2018). Our aim in this

section is twofold: we wish to compare performance of estimates when Wj are stochastic as opposed

to fixed, and we seek information on how estimates behave according to different spatial weight matrix

structures.

6.1 Spatial weights generated by iid random variables

Our first design takes p = 1, k = 2 with λ = 0.5, β1 = 1, β2 = 0.7, X generated as independent

draws from U(0, 1) and ur independent draws from a standard normal distribution in each of the

1000 replications. In this setup we examine what happens when the spatial matrices are very dense.

We define W ∗1 = diag
[
V1(m×m), 0(m×m)

]
,W ∗2 = diag

[
0(m×m), V2(m×m)

]
, so n = 2m, and generate

Vj (both of which have zeros on the diagonals) as iid replications using |tv| distributions with v =

1, 10, 20, 100, and m = 48, 72, 144. For the fixed design we generate such matrices once and keep them
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fixed for all 1000 replications, while for the stochastic design these are generated anew in each trial.

The dependent variable is generated as y = λ (W1 +W2) y +Xβ + u where, for j = 1, 2, the Wj are

obtained by normalizing W ∗j with the spectral norm as in (5.1). For ease of exposition we refer to

the latter procedure as ‘spectral-normalization’. We choose to use this block-diagonal specification

to address the fact that very dense spatial weight matrices entail hW = O(n), a situation that leads

to inconsistent estimates, as noted by Lee (2004). Using a block-diagonal weight matrix with very

dense blocks mitigates this problem, because now we have hW = m− 1. Instruments are selected to

be Z = [X, (W1 +W2)X], while for the MLE we take Λ = [−0.99, 0.99].

We analyze absolute Monte Carlo bias, mean squared error (MSE) and size for the autoregression

parameter and absolute average Monte Carlo bias, MSE and size for the regression parameters. By

‘average’ statistics we mean that in the rows corresponding to θ̂ the columns labelled β contain entries

equal to (∣∣
∣bias

(
β̂1

)∣∣
∣+
∣
∣
∣bias

(
β̂2

)∣∣
∣
)
/2, (6.1)

for instance, with similar definitions for the rows corresponding to θ̃ and θ̌. Throughout the section

all Monte Carlo statistics for β reported are averages defined like (6.1). Sizes are based on t-ratios,

defined again as in (6.1) for β, to be compared against a nominal value of 5%, computed using a

critical value of 1.96.

TABLES 6.1 AND 6.2 ABOUT HERE

Tables 6.1 and 6.2 summarize the results for stochastic and fixed Wj respectively. The biases

are quite similar for the fixed and stochastic designs for all three estimates. Out of the 72 possible

comparisons, bias is greater in the fixed design for 38 cases. A similar conclusion holds for the

MSE, which is higher for the fixed design in 34 cases. However, θ̂ seems to perform better in terms

of MSE in the fixed design. Out of 24 cases, the stochastic setting yields a lower MSE on only 7

occasions, although the differences are rather small. One aspect that merits attention is the behaviour

of estimates of λ when weights are generated by |t1|, a distribution with no defined moments. Also

of interest is the behaviour more generally as v increases. The bias and MSE of all estimates of

λ are high when v = 1, indeed for the IV estimate the magnitude of the MSE is alarming when

m = 72. Increasing m can sometimes help matters, possibly due to smoothing out the effect of

extreme draws from a distribution with no finite moments. The theory indicates an important role

played by conditions on the moments of Wj , such as Assumptions 7 and 12. Evidently the moment

stabilizing transformation (5.1) that we carry out does not sufficiently improve matters when v = 1,

but increasing v does so and broadly speaking helps even in improving the bias of the estimates of β,

although not monotonically. The MSE improves dramatically from v = 1 to v > 1 but subsequently

stays quite stable across the board. The findings suggest that, in practice, normalization is not enough

to stabilize moments of weight matrices when the raw weights are generated by a distribution with

no finite moments.

In both Tables 6.1 and 6.2, it is notable that θ̃ is less biased than θ̌ in general, even for large m,

while the MSE is quite similar. Large m means large hW , and because the objective function for MLE

differs from OLS only in a Jacobian term that is Op
(
h−1
W

)
, this implies that there is little to choose

between the two when hW is large. The difference in bias possibly stems from the fact that the MLE

is only implicitly defined, and such estimates can sometimes have worse finite sample bias properties
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than closed form estimates. On the other hand the closeness in MSE implies that θ̌ has much smaller

variance than θ̃. Empirical sizes follow the same pattern as the bias and MSE discussed above, in the

sense that there is no clear dominance between the fixed and stochastic designs. The MLE tends to

undersize for λ, but the problem is worse when v = 1 and more acute in the fixed design.

The next setup considers more sparse spatial weight matrices, whereby the need for a block-

diagonal specification to mitigate denseness is dispensed with. Now we take n = 96, 144, 288 (to

match the sample sizes in the dense case) and generate the n × n matrix W ∗ once again with iid

|tv| elements, v = 1, 10, 20, 100. Next, we generate an n × n matrix with elements given by 0.75 ×

U(0, 1) and round all its elements that are less than 0.5 down to zero. Finally all elements of W ∗

corresponding to zeros in this matrix are set to zero. This produces a sparse W ∗, in fact replacing

0.75 with a smaller (larger) factor would produce a more (less) sparse W ∗. The fixed and stochastic

designs differ as for the dense case. We then take W = W ∗/ ‖W ∗‖ and generate the dependent

variable as y = λWy +Xβ + u, with the other aspects of the experiment identical to the dense case

above.

TABLES 6.3 AND 6.4 ABOUT HERE

The results are in Tables 6.3 and 6.4 for stochastic and fixed designs respectively. Biases are

generally higher for θ̃ than in the dense case, this being the case because sparser W implies smaller

hW , cf. (3.5). Once again the case with v = 1 produces odd results. For n = 96 in the stochastic

design, λ̃ has less bias in the sparse case than the dense one (cf. Tables 6.1 and 6.3) but this

counterintuitive feature is reversed as n grows, with a similar smoothing of extreme draws as discussed

before. However it persists for all n in the fixed design (cf. Tables 6.2 and 6.4), undoubtedly because

a fresh draw of W is not made in each trial and this inhibits the smoothing effect.

The biases in the stochastic design are higher in 45 cases out of 72, as opposed to the 34 cases of

Tables 6.1 and 6.2. On the other hand, the MSE is higher in the stochastic design in only 30 cases.

Thus the estimates are more precise in the stochastic design, but also more biased. Sizes follow the

same pattern as in Tables 6.1 and 6.2, and the undersizing for λ with the MLE noted there is present.

The final iid setup considers extremely sparse W . We choose the circulant W defined in (3.7) and

(3.8). Once again ω is generated from iid |tv|, v = 1, 10, 20, 100, with the fixed and stochastic designs

differing because in the latter this generation happens anew in each trial. The rest of the design is

as in the sparse and dense cases discussed above.

TABLES 6.5 AND 6.6 ABOUT HERE

Tables 6.5 and 6.6 contain the results for stochastic and fixed designs respectively. Theorems 3.1

and 3.2 in this paper and the results of Lee (2002) indicate that the performance of OLS estimates

is poor in this situation. This is confirmed in the tables, with θ̃ exhibiting unacceptably poor per-

formance in terms of bias and size. The MSE seems more acceptable, but is much higher than that

for θ̌ and θ̂. Given the highly biased nature of the estimates, a low variance provides scant comfort.

On the other hand, both θ̂ and θ̌ perform well for both the fixed and stochastic designs. Within each

table, θ̌ is much more efficient, as is well-known to be the case for the MLE. Comparing the biases of

θ̂ and θ̌ between Tables 6.5 and 6.6, we find that bias is bigger in the stochastic design for 31 out of 48

comparisons. A similar MSE comparison returns an equal verdict of 24 each. Thus we may conclude

that there is no substantial difference between the fixed and stochastic designs. The MLE still tends
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to undersize for λ, while sizes for the IV estimate are perfectly acceptable with one exception: the

v = 10 and n = 96 entry in Table 6.5. The online appendix contains a simulation study when the

spatial weights are possibly dependent, as opposed to the iid weights considered in this section.

6.2 Spatial weights generated by explanatory variables

We mentioned that an important motivation of stochastic spatial weights is the fact that these are

frequently generated using economic variables that are themselves stochastic. In this subsection we

wish to analyse the performance of estimates when the spatial weights are generated by elements

of X. The rank conditions for our asymptotic theorems rule out any identification problems arising

from this, but we wish to study the finite sample implications of this type of feature.

We generate the spatial weight matrices as

w∗rs,1 =
‖xr − xs‖

1 + ‖xr − xs‖
21(r 6= s), (6.2)

w∗rs,2 = exp (−‖xr − xs‖)1(r 6= s), (6.3)

for r, s = 1, . . . , n with w∗rs,j a typical element of W ∗j , x′r the r-th row of X and n = 48, 96, 144.

Robinson (2008) originally suggested the formula given in (6.2), though no finite-sample implications

were studied in that paper. Now we generate y = λ1W1y+λ2W2y+Xβ+u with λ1 = 0.2 and λ2 = 0.3,

with Wj denoting the spectral-normalized W ∗j , and search over Λ = [−0.99, 0.99] × [−0.99, 0.99] in

each of the 1000 replications. Table 6.7 reports the results, reporting average statistics as in (6.1)

for the two-dimensional λ also. These paint a positive picture, in the sense that estimates exhibit

bias and MSE that declines with sample size to quite acceptable levels. The bias reaches zero to

two decimal places for IV for instance, and the MSE likewise reaches zero to one decimal place quite

comfortably. Sizes are perfectly acceptable except for oversizing of OLS and PMLE when n = 48,

which is alleviated when n = 96.

TABLE 6.7 ABOUT HERE

6.3 Summary of Monte Carlo findings

To conclude, in our design we find that there is no clear pattern of dominance between stochastic

and fixed designs when spatial weight matrices are dense. On the other hand, in the sparse case

the stochastic design can yield more precise estimates but with larger absolute bias than the fixed

design. We also find that finite sample performance of estimates is satisfactory even when spatial

weight matrices are functions of the explanatory variables that form the regression component of the

model, which is anticipated from our theoretical results when multicollinearity is ruled out. However,

a caveat applies to the interpretation of these findings, which are dependent on the particular way of

comparing fixed and stochastic designs that we have chosen.

Finally, we note that weight matrix normalization may not stabilize moments sufficiently when

raw weights come from distributions with no finite moments. Due to normalization, the theoretical

conditions, such as (2.10) and (3.5), do hold in this case but finite sample performance is not up to

the mark, especially so in the fixed Wj case. A possible reason for this difference is the smoothing

out of extreme draws in the stochastic design.
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7 Conclusion and extensions

We examined IV, OLS and PML estimates for the parameters of SAR models with stochastic weight

matrices and spatial linear process dependence in disturbances. We also discussed the implications of

popular weight matrix normalizations on our conditions. In the dependent disturbances setup that

we consider, heteroskedasticity and autocorrelation consistent (HAC) covariance matrix estimation

is an important problem. With deterministic Wj this has been considered in the literature, see e.g.

Kelejian and Prucha (2007, 2010) and Robinson and Thawornkaiwong (2012) for HAC estimation with

SAR/SMA disturbances and disturbances satisfying Assumption 1 respectively. These approaches are

straightforward to extend to the case with stochastic Wj and using them in practice requires no change

in earlier techniques.
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Appendices

A Proofs of theorems

For any matrices F̄ and ¯̄F of equal dimension, we will write ¯̄∆F = F̄ − ¯̄F .

Proof of Theorem 2.1. By (2.2) θ̂ − θ = Q̄−1 ¯̄∆Q
(
θ̂ − θ

)
− Q̄−1 ¯̄∆K′ J̄−1q + Q̄−1K̄ ′J̄−1q, so

(
Ip+k − Q̄

−1 ¯̄∆Q
)(

θ̂ − θ
)

= −Q̄−1 ¯̄∆K′ J̄−1q + Q̄−1K̄ ′J̄−1q. (A.1)

We first show ¯̄∆K = op(1). Write er for the n × 1 vector with unity in the r-th position and zeroes

elsewhere and bi for the i-th column of [Z,X ]. By the law of iterated expectations, the expectation

of the square of a typical (i, j)-th element, i, j = 1, . . . , p1 + k, of ¯̄∆K = n−1[Z,X ]′[B, 0] is

n−2E
(
b′iGjuu

′G′jbi
)

= n−2E

(
n∑

r,s=1

b′iGjerE (urnusn) e′sG
′
jbi

)

. (A.2)

Now E (urnusn) =
∑∞

k,l=1 crkcslE (εkεl) = σ2
∑∞

k=1 crkcsk ≤ σ2
(∑∞

k=1 c
2
rk

) 1
2
(∑∞

k=1 c
2
sk

) 1
2 ≤ C, by

Assumption 5 and Cauchy-Schwarz inequality, so (A.2) is bounded by Cn−2 times

E

(

b′iGj

n∑

r,s=1

ere
′
sG
′
jbi

)

= E

(

b′iGj

n∑

r=1

ere
′
rG
′
jbi

)

= E
(
b′iGjG

′
jbi
)
. (A.3)

The term inside the expectation on the far right is bounded by ‖bi‖
2 ‖Gj‖

2 so, by the Hölder inequality
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(for expectations), (A.3) is bounded by

(
E ‖bi‖

2ζ1
) 1
ζ1
(
E ‖Gj‖

2ζ2
) 1
ζ2
. (A.4)

The expectation inside parentheses in the first factor in (A.4) equals E
(∑n

r=1 a
2
ri

)ζ1 , which, by the

Hölder inequality (for sums of real numbers) is bounded by

n
ζ1
(

1− 1
ζ1

) n∑

r=1

E |ari|
2ζ1 = O

(
nζ1
)
, (A.5)

by (2.7). The second factor in (A.4) is bounded by

{
E
(
‖Wj‖

2ζ2
∥
∥S−1

∥
∥2ζ2

)} 1
ζ2 ≤

{(
E ‖Wj‖

2ζ2ζ3
) 1
ζ3
(
E
∥
∥S−1

∥
∥2ζ2ζ4

) 1
ζ4

} 1
ζ2

= O
(
nχ2

n

)
, (A.6)

once again using Hölder’s inequality. Combining (A.5) and (A.6) yields

(
E ‖bi‖

2ζ1
) 1
ζ1
(
E ‖Gj‖

2ζ2
) 1
ζ2 = O

(
n2χ2

n

)
, (A.7)

whence Markov’s inequality implies that

∥
∥
∥ ¯̄∆K

∥
∥
∥ = Op (χn) = op(1), (A.8)

by (2.10). By (2.8) and (A.8),

∥
∥
∥ ¯̄∆Q

∥
∥
∥ ≤

∥
∥
∥ ¯̄∆K

∥
∥
∥
∥
∥J̄−1

∥
∥
(∥∥
∥ ¯̄∆K

∥
∥
∥+ 2

∥
∥K̄
∥
∥
)

= Op

(∥∥
∥ ¯̄∆K

∥
∥
∥
)

= op(1). (A.9)

Finally, the expectation of the square of a typical element of q is

n−2E (b′iuu
′bi) = n−2E

(
n∑

r,s=1

b′ierE (urnusn) e′sbi

)

≤ Cn−2E ‖bi‖
2 ≤ Cn−1,

so

q = Op

(
n−

1
2

)
. (A.10)

Using (A.8), (A.9), (A.10) and (2.8) in (A.1) we obtain the desired result.

Proof of Theorem 2.2. In view of (A.1), (A.8), (A.9) and (A.10) it suffices to show n
1
2 q

d
−→ N (0, σ2Φ).

The proof now follows Robinson and Thawornkaiwong (2012), who modified a proof of Robinson and

Hidalgo (1997). Write d = dn = n−
1
2
∑n

r=1 arur = n−
1
2
∑∞

l=1 flεl, where fl = fln =
∑n

r=1 arcrl.

By Lemma A1 of Robinson and Thawornkaiwong (2012), there exists a sequence N = Nn, in-

creasing in n without bound, such that d − dN = op(1), where dN = n−
1
2
∑N

l=1 flεl. Writing

E = En = n−1
∑N

l=1 flf
′
l , again Lemma A1 of Robinson and Thawornkaiwong (2012) implies

that E
p
−→ σ2Φ, by Assumption 6. Let α ∈ Rp+k such that ‖α‖2 = 1 and cN = α′E−

1
2 dN ,

vl = vln = n−
1
2α′E−

1
2 fl. Then cN =

∑N
l=1 vlεl, and Assumption 6 implies that {flεl, 1 ≤ l ≤ N} is

a martingale difference sequence for each N ≥ 1. We show cN
d
−→ N (0, 1), conditional on X, zr

and Wj , j = 1, . . . , p, which follows by Theorem 2 of Scott (1973) if, conditional on X, zr and Wj ,
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j = 1, . . . , p, as n→∞,

E

(
N∑

l=1

v2
l ε

2
l |εj , j < l

)
p
→ 1, (A.11)

and for all ξ > 0,

E

(
N∑

l=1

v2
l E
(
ε2l 1 (|vlεl| > ξ) |zr, X,W1, . . . ,Wp

)
)

→ 0. (A.12)

The LHS of (A.11) equals 1, while the LHS of (A.12) is bounded by

max
1≤l≤N

E





ε2l 1



ε2l >
ξ2

max
1≤l≤N

v2
l









E

(
N∑

l=1

v2
l

)

.

By Assumption 5, it suffices to show that max1≤l≤N v
2
l = op(1) as n → ∞, as the rightmost factor

equals 1. Now, max1≤l≤N v
2
l ≤ n−1

∥
∥
∥E−

1
2

∥
∥
∥

2

supl≥1 ‖
∑n

r=1 arcrl‖
2 = op(1) by Assumptions 4, 5 and

6.

Proof of Theorem 3.1. By (3.1) θ̃ − θ = L̄−1 ¯̄∆L
(
θ̃ − θ

)
+ L̄−1w, so

(
Ip+k − L̄

−1 ¯̄∆L
)(

θ̃ − θ
)

= L̄−1w. (A.13)

Note that ‖`‖ ≤
∥
∥n−1[A,X]′u

∥
∥+

∥
∥n−1[B, 0]′u

∥
∥, where the first term on the RHS is readily shown to

be negligible, as we deduced (A.10), but using (3.2) in Assumption 8 instead of (2.7) in Assumption 4

because here Z is replaced by A. Next n−1[B, 0]′u = op(1) by (3.5) and Lemma B.3, so that ` = op(1).

It remains to prove that ¯̄∆L = op(1), for which first note that

∥
∥
∥ ¯̄∆L

∥
∥
∥ ≤ n−1 ‖B‖2 + 2n−1

∥
∥[A,X]′ [B, 0]

∥
∥ . (A.14)

The first term on the RHS is Op (πn), by the proof of Lemma B.3, and is negligible by (3.5). The

second term on the RHS is bounded exactly like
∥
∥
∥ ¯̄∆K

∥
∥
∥ = n−1[Z,X ]′[B, 0] in the proof of Theorem

2.1, but again using (3.2) in Assumption 8 instead of (2.7) in Assumption 4 because here Z is replaced

by A, see also the proof of Theorem 4.1 in Gupta and Robinson (2015). Therefore

∥
∥
∥ ¯̄∆L

∥
∥
∥ = Op (max {πn, χn}) = op(1), (A.15)

and the theorem is proved.

Proof of Theorem 3.2. We claim that it is sufficient to prove

n−
1
2 [A,X]′u

d
→ N (0,Ψ), (A.16)

for which, in view of (A.13), (A.15) and ` = n−1[A,X]′u+ n−1[B, 0]′u it is enough to show that

n−
1
2 [B, 0]′u = op(1). (A.17)

To show (A.17), we can exploit Assumption 9 to obtain a sharper bound for [B, 0]′u than the one used
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in the proof of Theorem 3.1, where Assumption 5 sufficed. Indeed, by Lemma B.4, n−
1
2 [B, 0]′u =

Op

(

n
1
2

(
E
∥
∥S′−1

∥
∥2ζ12

R

) 1
2ζ12

h−1
W

)

= op(1), by (3.11). The proof of (A.16) follows exactly as the proof

of asymptotic normality of n
1
2 q in Theorem 2.2, and we omit the details, noting only that here A

replaces Z, and Assumption 10 replaces Assumption 6.

Proof of Theorem 4.1. We show γ̌
p
→ γ0, whence β̌

p
→ β0 and σ̌2 p

→ σ2
0 follow from (4.2) and (4.3)

respectively. First note that

L (γ)− L = log σ2 (γ) /σ2 − n−1 log
∣
∣T ′(λ)Ξ(τ)−1T (λ)Ξ

∣
∣ = log σ2 (γ) /σ2 (γ)− log σ2/σ2

0 + log r(γ),

(A.18)

where recall that σ2 (γ) = n−1σ2
0tr
(
T ′(λ)Ξ(τ)−1T (λ)Ξ

)
, σ2 = σ2 (γ0) = n−1u′Ξ′−

1
2MΞ−

1
2u, using

(4.3) and also r(γ) = n−1tr
(
T ′(λ)Ξ(τ)−1T (λ)Ξ

)
/
∣
∣T ′(λ)Ξ(τ)−1T (λ)Ξ

∣
∣1/n. From (2.6), σ2 (γ) =

n−1
{
S−1′ (Xβ0 + u)

}′
S′(λ)Ξ(τ)′−

1
2M (τ) Ξ(τ)−

1
2S(λ)S−1 (Xβ0 + u) = c1 (γ)+c2 (γ)+c3 (γ), where

c1 (γ) = n−1β′0X
′T ′(λ)Ξ(τ)′−

1
2M (τ) Ξ(τ)−

1
2T (λ)Xβ0,

c2 (γ) = n−1σ2
0tr
(
T ′(λ)Ξ(τ)′−

1
2M (τ) Ξ(τ)−

1
2T (λ)Ξ

)
,

c3 (γ) = n−1tr
(
T ′(λ)Ξ(τ)′−

1
2M (τ) Ξ(τ)−

1
2T (λ)

(
uu′ − σ2

0Ξ
))

+ 2n−1β′0X
′T ′(λ)Ξ(τ)′−

1
2M (τ) Ξ(τ)−

1
2T (λ)u.

Then

log
σ2 (γ)
σ2 (γ)

= log
σ2 (γ)

(c1 (γ) + c2 (γ))
+ log

c1 (γ) + c2 (γ)
σ2 (γ)

= log

(

1 +
c3 (γ)

c1 (γ) + c2 (γ)

)

+ log

(

1 +
c1 (γ)− f (γ)

σ2 (γ)

)

,

where f (γ) = n−1σ2
0tr
(

Ξ′
1
2T ′(λ)Ξ(τ)′−

1
2 (In −M (τ)) Ξ(τ)−

1
2T (λ)Ξ

1
2

)
. Then (A.18) implies

P
(
‖γ̂ − γ0‖ ∈ N

γ
(η)
)

= P

(

inf
γ∈ N

γ
(η)
L (γ)− L ≤ 0

)

≤ P

(

log

(

1 + sup
γ∈ N

γ
(η)

∣
∣
∣
∣

c3 (γ)
c1 (γ) + c2 (γ)

∣
∣
∣
∣

)

+
∣
∣log

(
σ2/σ2

0

)∣∣

≥ inf
γ∈ N

γ
(η)

(

log

(

1 +
c1 (γ)− f (γ)

σ2 (γ)

)

+ log r(γ)

))

,

where recall that N
γ

(η) = Γ\N γ (η) , N γ (η) = {γ : ‖γ − γ0‖ < η} ∩ Γ. Because σ2/σ2
0

p
→ 1, the

property log (1 + x) = x+ o (x) as x→ 0 implies that it is sufficient to show that

sup
γ∈ N

γ
(η)

∣
∣
∣
∣

c3 (γ)
c1 (γ) + c2 (γ)

∣
∣
∣
∣

p
−→ 0, (A.19)

sup
γ∈ N

γ
(η)

∣
∣
∣
∣
f (γ)
σ2 (γ)

∣
∣
∣
∣

p
−→ 0, (A.20)
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P

(

inf
γ∈ N

γ
(η)

{
c1 (γ)
σ2 (γ)

+ log r(γ)

}

> 0

)

−→ 1. (A.21)

Because N
γ

(η) ⊆
{

Λ×N
τ

(η/2)
}
∪
{
N

λ
(η/2)× T

}
, we have

P

(

inf
γ∈ N

γ
(η)

{
c1 (γ)
σ2 (γ)

+ log r(γ)

}

> 0

)

≥ P

(

min

{

inf
Λ×N

τ
(η/2)

c1 (γ)
σ2 (γ)

, inf
N

λ
(η/2)

log r(γ)

}

> 0

)

≥ P

(

min

{

inf
Λ×N

τ
(η/2)

c1 (γ)
C

, inf
N
λ

(η/2)

log r(γ)

}

> 0

)

,

from Assumption 15, whence Assumptions 16 and 17 imply (A.21). Again using Assumption 15,

uniformly in γ,
∣
∣f (γ) /σ2 (γ)

∣
∣ = Op (|f (γ)|) and

|f (γ)| = Op

(
tr
(

Ξ′
1
2T ′(λ)Ξ(τ)−1X

(
X ′Ξ(τ)−1X

)−1
X ′Ξ(τ)−1T (λ)Ξ

1
2

)
/n
)

= Op

(
tr
(

Ξ′
1
2T ′(λ)Ξ(τ)−1XX ′Ξ(τ)−1T (λ)Ξ

1
2

)
/n2
)

= Op

(∥
∥
∥X ′Ξ(τ)−1T (λ)Ξ

1
2 /n

∥
∥
∥

2

F

)

= Op

(

‖X/n‖2F ϕ
2
(
Ξ(τ)−1

)
‖T (λ)‖2

∥
∥
∥Ξ

1
2

∥
∥
∥

2
)

= Op

(
‖X/n‖2F ‖T (λ)‖2 ϕ (Ξ) /ϕ2 (Ξ(τ))

)

= Op

(
‖T (λ)‖2 /n

)
, (A.22)

where we have twice made use of the inequality

‖AB‖F ≤ ‖A‖F ‖B‖ (A.23)

for generic multiplication compatible matrices A and B. (A.20) now follows by Assumption 12 and

compactness of Λ because T (λ) = In +
∑p

j=1 (λ0j − λj)Gj . Finally consider (A.19). We first prove

pointwise convergence. For any fixed γ ∈ N
γ

(η) and large enough n, Assumptions 15 and 17 imply

{c1 (γ)}−1 = Op

(
‖β0‖

−2
)

= Op(1) (A.24)

{c2 (γ)}−1 = Op(1), (A.25)

because
{
n−1σ2

0tr
(

Ξ′
1
2T ′(λ)Ξ(τ)−1T (λ)Ξ

1
2

)}−1

= Op(1) and, proceeding like in the bound for

|f(γ)|, tr
(

Ξ′
1
2T ′(λ)Ξ(τ)′−

1
2 (I −M (τ)) Ξ(τ)−

1
2T (λ)Ξ

1
2

)
= Op

(
‖T (λ)‖2 /n

)
= Op (1/n). In fact

it is worth noting for the equicontinuity argument presented later that Assumptions 15 and 17 ac-

tually imply that (A.24) and (A.25) hold uniformly over N
γ
(η), a property not needed for the

present pointwise arguments. Thus c3 (γ) / (c1 (γ) + c2 (γ)) = Op (|c3 (γ)|) where, writing B(γ) =

T ′(λ)Ξ(τ)′−
1
2M (τ) Ξ(τ)−

1
2T (λ) with typical element brs(γ), r, s = 1, . . . , n, c3 (γ) has mean 0 and

variance

Op





‖B(γ)Ξ‖2F

n2
+

∑n
r,s,t,v=1 brs(γ)btv(γ)κrstv

n2
+

∥
∥
∥β′0X

′B(γ)Ξ
1
2

∥
∥
∥

2

n2




 , (A.26)

with κrstv denoting the fourth cumulant of ur, us, ut, uv, r, s, t, v = 1, . . . , n. Under the linear process
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assumed in Assumption 1 it is known that

n∑

r,s,t,v=1

κ2
rstv = O(n). (A.27)

Using (A.23) and Assumptions 12 and 13, the first term in parentheses in (A.26) is

Op

(
‖B(γ)‖2F ϕ

2 (Ξ) /n2
)

= Op

(

‖T (λ)‖2F

∥
∥
∥Ξ(τ)−

1
2

∥
∥
∥

4

‖M(τ)‖2 ‖T (λ)‖2 /n2

)

= Op

(
‖T (λ)‖4 /nϕ2 (Ξ(τ))

)
= Op

(
‖T (λ)‖4 /n

)
, (A.28)

while the second is similarly

Op






(
‖B(γ)‖2F /n

)
(

n∑

r,s,t,v=1

κ2
rstv/n

2

) 1
2





= op

(
‖T (λ)‖4

)
, (A.29)

using (A.27). Finally, using (3.2), the third term in parentheses in (A.26) is

Op

(
‖B(γ)‖2 /n

)
= Op

(
‖T (λ)‖4 /n

)
. (A.30)

By compactness of Λ and Assumption 12, (A.28), (A.29) and (A.30) are negligible, thus pointwise

convergence is established.

Uniform convergence will follow from an equicontinuity argument. First, for arbitrary ε > 0 we

can find points γ∗ = (λ′∗, τ
′
∗)
′, possibly infinitely many, such that the neighbourhoods ‖γ − γ∗‖ < ε

form an open cover of N
γ
(η). Since Γ is compact any open cover has a finite subcover and thus we

may in fact choose finitely many γ∗ = (λ′∗, τ
′
∗)
′, whence it suffices to prove

sup
‖γ−γ∗‖<ε

∣
∣
∣
∣

c3 (γ)
c1 (γ) + c2 (γ)

−
c3 (γ∗)

c1 (γ∗) + c2 (γ∗)

∣
∣
∣
∣

p
−→ 0.

Proceeding as in Gupta and Robinson (2018), we denote the two components of c3 (γ) by c31 (γ) ,

c32 (γ) , and are left with establishing the negligibility of

|c31 (γ)− c31 (γ∗)|
c2 (γ)

+
|c32 (γ)− c32 (γ∗)|

c1 (γ)
+
|c3 (γ∗)|

c1 (γ) c1 (γ∗)
|c1 (γ∗)− c1 (γ)|+

|c3 (γ∗)|
c2 (γ) c2 (γ∗)

|c2 (γ∗)− c2 (γ)| ,

(A.31)

uniformly on ‖γ − γ∗‖ < ε. By the fact that (A.24) and (A.25) hold uniformly over Γ, we first

consider only the numerators in the first two terms in (A.31). As in the proof of Theorem 1 of Del-

gado and Robinson (2015), (A.23) implies that E
(

sup‖γ−γ∗‖<ε |c31 (γ)− c31 (γ∗)|
)

is bounded by

n−1
(
E ‖u‖2 + σ2

0trΞ
)

sup‖γ−γ∗‖<ε ‖B(γ)−B(γ∗)‖ = Op

(
sup‖γ−γ∗‖<ε ‖B(γ)−B(γ∗)‖

)
, because

E ‖u‖2 = O(n) and trΞ = O(n). B(γ)−B(γ∗) can be written as

(T (λ)− T (λ∗))
′ Ξ(τ)′−

1
2M(τ)Ξ(τ)−

1
2T (λ) + T (λ∗)

′Ξ′(τ∗)M(τ∗)Ξ(τ∗)
− 1

2 (T (λ)− T (λ∗))

+ T ′(λ∗)
(

Ξ(τ)′−
1
2M(τ)Ξ(τ)−

1
2 − Ξ(τ∗)

′− 1
2M(τ∗)Ξ(τ∗)

− 1
2

)
T (λ), (A.32)
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which, by the triangle inequality, has spectral norm bounded by

‖T (λ)− T (λ∗)‖

(∥
∥
∥Ξ(τ)−

1
2

∥
∥
∥

2

‖T (λ)‖+
∥
∥
∥Ξ(τ∗)−

1
2

∥
∥
∥

2

‖T (λ∗)‖

)

+ ‖T (λ∗)‖
∥
∥
∥Ξ(τ)′−

1
2M(τ)Ξ(τ)−

1
2 − Ξ(τ∗)

′− 1
2M(τ∗)Ξ(τ∗)

− 1
2

∥
∥
∥ ‖T (λ)‖

= Op

(
‖T (λ)− T (λ∗)‖+

∥
∥
∥Ξ(τ)′−

1
2M(τ)Ξ(τ)−

1
2 − Ξ(τ∗)

′− 1
2M(τ∗)Ξ(τ∗)

− 1
2

∥
∥
∥
)
. (A.33)

By Assumption 12 the first term in parentheses on the right side of (A.33) is bounded uniformly on

‖γ − γ∗‖ < ε by
p∑

j=1

|λj − λ∗j | ‖Gj‖ ≤ max
j=1,...,p

‖Gj‖ ‖λ− λ∗‖ = Op(ε), (A.34)

while because Ξ(τ)′−
1
2M(τ)Ξ(τ)−

1
2 = n−1Ξ(τ)−1X

(
n−1X ′Ξ(τ)−1X

)−1
X ′Ξ(τ)−1 for any τ ∈ T , the

second one can be decomposed into terms with bounds typified by

n−1
∥
∥Ξ(τ)−1 − Ξ(τ∗)

−1
∥
∥ ‖X‖2

∥
∥
∥
(
n−1X ′Ξ(τ)−1X

)−1
∥
∥
∥
∥
∥Ξ(τ)−1

∥
∥2

≤ n−1 ‖Ξ(τ)− Ξ(τ∗)‖ ‖X‖
2
∥
∥
∥
(
n−1X ′Ξ(τ)−1X

)−1
∥
∥
∥
∥
∥Ξ(τ)−1

∥
∥3 ∥∥Ξ(τ∗)

−1
∥
∥

= Op (‖Ξ(τ)− Ξ(τ∗)‖) = Op(ε),

uniformly on ‖γ − γ∗‖ < ε, by Assumptions 13, 14, 18, (3.2) and the inequality ‖A‖ ≤ ‖A‖F for a

generic matrix A, so that

sup
‖γ−γ∗‖<ε

‖B(γ)−B(γ∗)‖ = Op(ε). (A.35)

Thus equicontinuity of the first term in (A.31) follows because ε is arbitrary. The equicontinuity of

the second term in (A.31) follows in much the same way. Indeed sup‖γ−γ∗‖<ε c32 (γ) − c32 (γ∗) =

2n−1β′0X
′ sup‖γ−γ∗‖<ε (B(γ)−B(γ∗))u = Op

(
sup‖γ−γ∗‖<ε ‖B(γ)−B(γ∗)‖

)
= Op(ε), using earlier

arguments and (A.35). Because c1(γ) is bounded and bounded away from zero in probability (see

A.24) for sufficiently large n and all γ ∈ N
γ
(η), the third term in (A.31) may be bounded by

|c3(γ∗)|/c1(γ∗) (1 + c1(γ∗)/c1(γ))
p
−→ 0, convergence being uniform on ‖γ − γ∗‖ < ε by pointwise

convergence of c3(γ)/ (c1(γ) + c2(γ)), cf. Gupta and Robinson (2018). The uniform convergence to

zero of the fourth term in (A.31) follows in identical fashion, because c2(γ) is bounded and bounded

away from zero (see (A.25)) in probability for sufficiently large n and all γ ∈ N
γ
(η). This concludes

the proof.

Proof of Theorem 4.2. We first introduce the derivative of (4.1) evaluated at
(
%′0, σ

2
0

)′
:

d = −n−1σ−2
0

[
2
(
u′G′1Ξ−1u− σ2

0trG1, . . . , u
′G′pΞ

−1u− σ2
0trGp, 0

′, 0′
)′

+
(
0′, 0′, u′Ξ−1Ξ1Ξ−1u− σ2

0tr
(
Ξ−1Ξ1

)
, . . . , u′Ξ−1ΞqΞ

−1u− σ2
0tr
(
Ξ−1Ξq

))′

+ 2
(
u′Ξ−1A, u′Ξ−1X, 0′

)′]
. (A.36)

The first part of the proof consists of proving that

n
1
2N d

d
−→ N (0,∆). (A.37)
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Proving (A.37) requires the establishment of asymptotic normality for normalized linear combina-

tions of the LHS whence the required multivariate normality follows via the Cramer-Wold device,

as usual. From (A.36) we observe that such a linear combination will have terms that are linear in

u and quadratic in u, and our aim of establishing asymptotic normality will be achieved by writ-

ing these terms as sums of martingale differences in the εl. First, notice that d =
∑∞

l=1 wl with

wl = w1l + w2l + w3l and w1l = −2n−1σ−2
0

(
ν′λll
(
ε2l − σ

2
0

)
+ 21(l ≥ 2)εl

∑l−1
k=1 ν

′λ
lk εk, 0

′, 0′
)′
, w2l =

−2n−1σ−2
0

(
c′lΞ
−1Aεl, c

′
lΞ
−1Xεl, 0′

)′
, w3l = −n−1σ−2

0

(
0′, 0′, ν′τll

(
ε2l − σ

2
0

)
+ 21(l ≥ 2)εl

∑l−1
k=1 ν

′τ
lkεk

)′
,

where νλlk is a p × 1 vector with j-th element c′lGjΞ
−1ck and ντlk is a q × 1 vector with j-th element

c′lΞ
−1ΞjΞ−1ck l, k ≥ 1. Notice that here k is used as an index, without risk of confusion with the

dimension of β. We first show that

n
1
2Nd∗

p
−→ 0, (A.38)

where d∗ = d − dL, dL =
∑L

l=1 wl and L = Ln is a positive integer sequence that is increasing in n.

All expectations in the sequel are taken conditional on Wj and X, j = 1, . . . , p.

By Chebyshev’s inequality proving

E
∥
∥
∥n

1
2Nd∗

∥
∥
∥

2 p
−→ 0 (A.39)

is sufficient to establish (A.38). The LHS of (A.39) is bounded by a constant times

n

∞∑

l=L+1

E ‖Nwl‖
2 ≤ Cn

∞∑

l=L+1

(
E ‖Nw1l‖

2 + E ‖Nw2l‖
2 + E ‖Nw3l‖

2
)
, (A.40)

by uncorrelatedness of wl due to Assumption 1, and the triangle and cr inequalities. The negligibility

of n
∑∞

l=L+1 E ‖Nw3l‖
2 follows by the proof of (57) in Delgado and Robinson (2015), while the

linearity in εl of w2l implies that n
∑∞

l=L+1 E ‖Nw2l‖
2 is easily shown to be negligible as in Lemma A1

of Robinson and Thawornkaiwong (2012). It remains to prove that n
∑∞

l=L+1 E ‖Nw1l‖
2 is negligible.

Notice that E ‖Nw1l‖
2 ≤ Cn−2

∥
∥νλll

∥
∥2

+ Cn−21(l ≥ 2)
∑l−1

k=1

∥
∥νλlk

∥
∥2
≤ Cn−2

∑l
k=1

∥
∥νλlk

∥
∥2
, so that

n

∞∑

l=L+1

E ‖Nw1l‖
2 ≤ Cn−1

∞∑

l=L+1

l∑

k=1

∥
∥νλlk

∥
∥2
≤ Cn−1

p∑

j=1

∞∑

l=L+1

c′lGjΞ
−1

l∑

k=1

ckc
′
kΞ−1G′jcl

≤ C ‖Ξ‖n−1

p∑

j=1

∞∑

l=L+1

c′lGjΞ
−1Ξ−1G′jcl ≤ Cn

−1

p∑

j=1

∞∑

l=L+1

n∑

r,s,t=1

crlctlpjrspjts

≤ Cn−1
∞∑

l=L+1

n∑

r,t=1




 sup
j=1,...,p
s=1,...,n

|pjrs|




 |c∗rl| |c

∗
tl|

(

max
j=1,...,p

n∑

s=1

|pjts|

)

, (A.41)

where pjrs is the (r, s)-th element of GjΞ−1. Note that

|pjrs| ≤
n∑

s=1

|pjrs| ≤
∥
∥GjΞ

−1
∥
∥
R

= Op(1), (A.42)
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uniformly in r, s, j, by Assumptions 21 and 22. Thus (A.41) is

Op

(

n−1
n∑

r=1

∞∑

l=L+1

|c∗rl|
n∑

t=1

|c∗tl|

)

= Op

(

sup
r=1,...,n

∞∑

l=L+1

|c∗rl|

)

, (A.43)

by Assumption 20. By the same assumption, there exists Lrn such that
∑∞
l=Lrn+1 |c

∗
rl| ≤ εn for any

decreasing sequence εn → 0 as n→∞. Choosing L = maxr=1,...,n Lrn in dL, we deduce that (A.43)

is Op (εn) = op(1), proving (A.39). Thus we need only focus on dL.

Define D = nE (NdLd′LN) = n
∑L

l=1 NE (wlw′l)N . In view of our subsequent calculations it is

straightforward to show that D
p
→ ∆, implying that D is positive definite for sufficiently large n and

assuring the existence of a square matrix, denoted D
1
2 , such that D′

1
2D

1
2 = D. For a (p+ k + q)× 1

constant vector α such that ‖α‖ = 1 define s = n
1
2α′D−

1
2NdL = n

1
2
∑L

l=1 α
′D−

1
2Nwl, which has

zero mean and unit variance, and we seek to establish that

s
d
−→ N (0, 1), as n→∞. (A.44)

From Scott (1973), (A.44) follows if

L∑

l=1

E
∥
∥
∥n

1
2D−

1
2Nwl

∥
∥
∥

4 p
−→ 0, as n→∞, (A.45)

and

n

L∑

l=1

[E (Nwlw
′
lN | εk, k < l)− E (Nwlw

′
lN)]

p
−→ 0, as n→∞. (A.46)

To prove (A.45) it is sufficient to show

L∑

l=1

E
∥
∥
∥n

1
2D−

1
2Nwil

∥
∥
∥

4 p
−→ 0, as n→∞, i = 1, 2, 3, (A.47)

by the triangle and cr inequalities.

For i = 3 the proof of (A.47) is identical to the proof of claim (60) in Delgado and Robinson

(2015). Writing zλl = A′Ξ−1cl and zβl = X ′Ξ−1cl, for i = 2 the left side of (A.47) is equal to

a constant times n−2
∑L
l=1

((
z′λl εl, z

′β
l εl, 0

′
)
D
(
z′λl εl, z

′β
l εl, 0

′
)′)2

, which is bounded by a constant

times n−2
∑L

l=1

(∥
∥zλl

∥
∥4

+
∥
∥
∥zβl

∥
∥
∥

4
)

‖D‖2 . The last factor in the latter is Op(1) because ‖D‖2 converges

in probability to ‖∆‖2, while

L∑

l=1

∥
∥zλl

∥
∥4

=
L∑

l=1

(
z′λl z

λ
l

)2
≤
∞∑

l=1

(
z′λl z

λ
l

)2
=

p∑

j=1

e′jΞ
−1A

∞∑

l=1

clc
′
lA
′Ξ−1ej

=
p∑

j=1

e′jΞ
−1AΞ′A′Ξ−1ej = Op

(
‖A‖2

∥
∥Ξ−1

∥
∥2
‖Ξ‖

)

= Op

(
‖A‖2

)
= Op

(

max
j=1,...,p

‖Gj‖
2 ‖X‖2

)

= Op(n),
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by Assumption 21 and (3.2). Similarly
∑L

l=1

∥
∥
∥zβl

∥
∥
∥

4

= Op(n), so
∑L
l=1 E

∥
∥
∥n

1
2D−

1
2Nw2l

∥
∥
∥

4

= Op(n−1)

and (A.47) is proved for i = 2. Finally consider (A.47) for i = 1. Evaluating the expectation, using

an `p norm inequality and employing techniques used earlier, it follows that

E
∥
∥
∥D−

1
2Nw1l

∥
∥
∥

4

≤ Cn−4
∥
∥νλll

∥
∥4

+ Cn−4E

∥
∥
∥
∥
∥

l−1∑

k=1

νλlkεk

∥
∥
∥
∥
∥

4

≤ Cn−4
∥
∥νλll

∥
∥4

+ Cn−4

(
l−1∑

k=1

∥
∥νλlk

∥
∥2

)2

≤ Cn−4

(
l∑

k=1

∥
∥νλlk

∥
∥2

)2

≤ Cn−4




p∑

j=1

c′lGjΞ
−1

l∑

k=1

ckc
′
kΞ−1G′jcl





2

= Op

(
n−4 ‖cl‖

4
)
,

whence

L∑

l=1

E
∥
∥
∥n

1
2D−

1
2Nw2l

∥
∥
∥

4

= Op

(

n−2
L∑

l=1

‖cl‖
4

)

= Op



n−2
L∑

l=1

(
n∑

r=1

c∗2rl

)2




= Op



n−2
L∑

l=1

(
n∑

r=1

|c∗rl|

)4


 = Op

(

n−2
n∑

r=1

(
L∑

l=1

|c∗rl|

))

= Op
(
n−1

)
,

by Assumption 20 and the `p norm inequality. Thus (A.47), and hence (A.45), is established.

To prove (A.46) it is sufficient to show

n

L∑

l=1

[
E
(
Nwilw

′
jlN

∣
∣ εk, k < l

)
− E

(
Nwilw

′
jlN

)] p
−→ 0, as n→∞, i, j = 1, 2, 3, j ≥ i. (A.48)

Once again, for i = j = 3 the proof is identical to that of (61) in Delgado and Robinson (2015) and

for i = j = 2 it follows easily as in the proof of a similar assertion in Theorem 2.2. Of the remaining

cases the most complex to handle is i = j = 1 in view of both its quadraticity in u and involvement

of the Gi, so we prove this first.

Notice that the only nonzero block of E (w1lw
′
1l| εk, k < l) equals

4n−2σ−4
0

{
(
µ4 − σ

4
0

)
νλllν

′λ
ll + µ31(l ≥ 2)

l−1∑

k=1

(
νλlkν

′λ
ll + νλllν

′λ
lk

)
εk

}

+ 4n−2σ−2
0 1(l ≥ 2)

(
l−1∑

k=1

νλlkεk

)(
l−1∑

k=1

νλlkεk

)′

,

with expectation E (w1lw
′
1l) (we only consider the non-zero block) equal to 4n−2σ−4

0

(
µ4 − σ4

0

)
νλllν

′λ
ll +

4n−21(l ≥ 2)
∑l−1

k=1 ν
λ
lkν
′λ
lk , so that the Frobenius norm of (A.48) for i = j = 1 is bounded by a constant

times

n−1

∥
∥
∥
∥
∥

L∑

l=2

l−1∑

k=1

(
νλlkν

′λ
ll + νλllν

′λ
lk

)
εk

∥
∥
∥
∥
∥
F

+ n−1

∥
∥
∥
∥
∥
∥

L∑

l=2





(
l−1∑

k=1

νλlkεk

)(
l−1∑

k=1

νλlkεk

)′

− σ2
0

l−1∑

k=1

νλlkν
′λ
lk





∥
∥
∥
∥
∥
∥
F

.

(A.49)

By transforming the range of summation, the square of the first term in (A.49) has expectation
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bounded by

Cn−2E

∥
∥
∥
∥
∥

L−1∑

k=1

(
L∑

l=k+1

(
νλlkν

′λ
ll + νλllν

′λ
lk

)
)

εk

∥
∥
∥
∥
∥

2

F

≤ Cn−2
L−1∑

k=1

∥
∥
∥
∥
∥

L∑

l=k+1

(
νλlkν

′λ
ll + νλllν

′λ
lk

)
∥
∥
∥
∥
∥

2

F

, (A.50)

where the factor in the norm on the RHS of (A.50) is

p∑

i,j=1

L∑

l,m=k+1

c′lGiΞ
−1clc

′
lGjΞ

−1ckc
′
mGiΞ

−1cmc
′
mGjΞ

−1ck

≤
L∑

l,m=k+1

∣
∣
∣
∣
∣

p∑

i=1

c′lGiΞ
−1clc

′
mGiΞ

−1cm

∣
∣
∣
∣
∣

p∑

j=1

∣
∣c′lGjΞ

−1ck
∣
∣
∣
∣c′mGjΞ

−1ck
∣
∣

≤ C

L∑

l,m=k+1

max
i=1,...,p

n∑

r,s,u,t=1

|crl| |pirs| |csm| |cul| |piut| |ctm| max
j=1,...,p

∣
∣c′lGjΞ

−1ck
∣
∣
∣
∣c′mGjΞ

−1ck
∣
∣

≤ C

(

sup
i,r,s
|pirs|

)2
(

sup
l≥1

n∑

r=1

|c∗rl|

)4 L∑

l,m=k+1

max
j=1,...,p

∣
∣c′lGjΞ

−1ck
∣
∣
∣
∣c′mGjΞ

−1ck
∣
∣

= Op



 max
j=1,...,p

(
L∑

l=k+1

∣
∣c′kGjΞ

−1cl
∣
∣

)2


 = Op



 max
j=1,...,p

(
L∑

l=k+1

n∑

r,s=1

|c∗rk| |pjrs| |c
∗
sl|

)2


 ,

where we used Assumptions 20 and (A.42). Now Assumptions 20, 21, 22 and (A.42) imply that, uni-

formly in j,
∑L

l=k+1

∑n
r,s=1 |c

∗
rk| |pjrs| |c

∗
sl| =

∑n
r=1 |c

∗
rk|
∑n

s=1 |pjrs|
∑L

l=k+1 |c
∗
sl| = Op (

∑n
r=1 |c

∗
rk|) ,

so (A.50) is Op

(
n−2 supk≥1 (

∑n
r=1 |c

∗
rk|)

(∑n
r=1

(∑L−1
k=1 |c

∗
rk|
)))

. By Assumption 20 the latter is

Op
(
n−1

)
and therefore the first term in (A.49) is Op

(
n−

1
2

)
.

Once again transforming the range of summation, we can rewrite the square of the second term

in (A.49) as

n−2

∥
∥
∥
∥
∥

L−1∑

k=1

L∑

l=k+1

νλlkν
′λ
lk

(
ε2k − σ

2
0

)
+
L−1∑

k=1

k−1∑

m=1

(
L∑

l=k+1

(
νλlkν

′λ
lm + νλlmν

′λ
lk

)
)

εkεm

∥
∥
∥
∥
∥

2

F

. (A.51)

A calculation along the lines of the proof of assertion (64) in Delgado and Robinson (2015) establishes

that (A.51) is Op (κ1 + κ2), where

κ1 = n−2
L−1∑

k=1




p∑

j=1

L∑

l=k+1

n∑

r,s=1

|c∗rl| |pjrs| |c
∗
sk|





2

, (A.52)

κ2 = n−2
L∑

j,k,l,m=1

p∑

i1,i2=1

n∑

r,s=1

|c∗rk| |pi1rs|
∣
∣c∗sj
∣
∣

n∑

r,s=1

|c∗rk| |pi2rs| |c
∗
sm|

×
n∑

r,s=1

|c∗rl| |pi1rs|
∣
∣c∗sj
∣
∣

n∑

r,s=1

|c∗rl| |pi1rs| |c
∗
sm| . (A.53)
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Now by (A.42), Assumptions 20, 21, 22 and elementary inequalities κ2 is

Op



n−2 max
i1,i2=1,...,p

L∑

j,k,l=1

(
n∑

r,s=1

|c∗rk| |pi1rs|
∣
∣c∗sj
∣
∣

)(
n∑

r,s=1

|c∗rk| |pi2rs|
L∑

m=1

|c∗sm|

)

×
n∑

r,s=1

|c∗rl| |pi1rs|
∣
∣c∗sj
∣
∣
n∑

r=1

|c∗rl|
n∑

s=1

|c∗sm|

)

= Op



n−2 max
i1=1,...,p

L∑

j,k=1

(
n∑

r,s=1

|c∗rk| |pi1rs|
∣
∣c∗sj
∣
∣

)
n∑

r=1

|c∗rk|

(
n∑

r,s=1

L∑

l=1

|c∗rl| |pi1rs|
∣
∣c∗sj
∣
∣

)



= Op



n−2 max
i1=1,...,p

n∑

r,s=1

(
L∑

k=1

|c∗rk|

)

|pi1rs|




L∑

j=1

∣
∣c∗sj
∣
∣




n∑

s=1

(
n∑

r=1

|pi1rs|

)
∣
∣c∗sj
∣
∣





= Op

(

n−1 max
i1=1,...,p

∥
∥Ξ−1G′i1

∥
∥
R

)

= Op
(
n−1

)
,

while a similar use of the conditions of the theorem implies that κ1 is

Op



n−2
L−1∑

k=1

(

max
j=1,...,p

n∑

r,s=1

|pjrs| |c
∗
sk|

)4


 = Op



n−2
L−1∑

k=1

(
n∑

s=1

|c∗sk|

)4




= Op



n−2
n∑

s=1

L−1∑

k=1

|c∗sk|

(
n∑

s=1

|c∗sk|

)3


 = Op

(

n−2
n∑

s=1

L−1∑

k=1

|c∗sk|

)

= Op
(
n−1

)
,

proving (A.48) for i = j = 1, as desired. For the remaining combinations of i and j we discuss the

proof briefly to avoid repetition.

When i = 1, j = 2, the only nonzero blocks of E (w1lw
′
2l| εk, k < l) equal 4n−2σ−4

0 µ3ν
λ
llc
′
lΞ
−1A +

8n−2σ−2
0 1(l ≥ 2)

∑l−1
k=1 ν

λ
lkc
′
lΞ
−1Aεk and 4n−2σ−4

0 µ3ν
λ
llc
′
lΞ
−1X+8n−2σ−2

0 1(l ≥ 2)
∑l−1

k=1 ν
λ
lkc
′
lΞ
−1Xεk

with expectations respectively equal to 4n−2σ−4
0 µ3ν

λ
llc
′
lΞ
−1A and 4n−2σ−4

0 µ3ν
λ
llc
′
lΞ
−1X. Thus the

Frobenius norm of (A.48) for i = 1, j = 2 is bounded by a constant times

n−1

∥
∥
∥
∥
∥

L∑

l=2

l−1∑

k=1

νλlkc
′
lΞ
−1Aεk

∥
∥
∥
∥
∥
F

+ n−1

∥
∥
∥
∥
∥

L∑

l=2

l−1∑

k=1

νλlkc
′
lΞ
−1Xεk

∥
∥
∥
∥
∥
F

. (A.54)

Writing Aj = GjXβ0, j = 1, . . . , p, and proceeding as in the earlier proof for i = j = 1 we deduce

that the expectation of the square of the first term in (A.54) is bounded by

Cn−2
L−1∑

k=1

∥
∥
∥
∥
∥

L∑

l=k+1

νλlkc
′
lΞ
−1A

∥
∥
∥
∥
∥

2

F

= Cn−2
L−1∑

k=1

p∑

i,j=1

{

c′kΞ−1G′i

(
L∑

l=k+1

clc
′
l

)

Ξ−1Ai

× A′jΞ
−1

(
L∑

m=k+1

cmc
′
m

)

GjΞ
−1ck

}

≤ Cn−2
L−1∑

k=1

p∑

i,j=1

{(
c′kΞ−1G′iGiΞ

−1ckc
′
kΞ−1G′jGjΞ

−1ck
) 1

2

×
(
A′iΞ

−1Ξ−1AiA
′
jΞ
−1Ξ−1Aj

) 1
2

}
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≤ Cn−2 max
j=1,...,p

(
A′jΞ

−2Aj
) L−1∑

k=1

(
c′kΞ−1G′jGjΞ

−1ck
)
, (A.55)

where we use the inequality x′Zy ≤ ‖x‖ ‖Z‖ ‖y‖ and the fact that
∥
∥
∥
∑L

l=k+1 clc
′
l

∥
∥
∥ ≤ ‖Ξ‖ = O(1). The

first factor in parentheses in (A.55) is Op

(
‖Aj‖

2
R

∥
∥Ξ−1

∥
∥2

R

)
= Op

(
‖Gj‖

2
R ‖X‖

2
R

)
= Op(1), uniformly

in j by Assumptions 21, 22 and (3.2). The sum in (A.55) is bounded by

∞∑

k=1

n∑

r,s=1

crkcsk

(
n∑

t=1

pjtrpjts

)

= tr
(
ΞΞ−1G′jGjΞ

−1
)

= tr
(

Ξ−
1
2G′jGjΞ

′− 1
2

)
=
∥
∥
∥Ξ−

1
2G′j

∥
∥
∥

2

F

= Op

(∥
∥
∥Ξ−

1
2

∥
∥
∥

2

F

)

= tr(Ξ−1) = Op(n),

uniformly in j by (A.23) and Assumption 12. The first term in (A.54) is thus established to be of

order Op

(
n−

1
2

)
, which is negligible. The second term in (A.54) is handled in an identical fashion.

When i = 1, j = 3, we consider the product of two zero mean blocks that are quadratic in εl, as

in the i = j = 1 case, and the desired conclusion follows on proceeding as for that case. Finally the

case i = 2, j = 3 involves a block that is the product of a linear and a quadratic term in ε, so it will

also yield a term like (A.54) except with νλlk replaced with ντlk, whence the details follow as above and

are omitted. Thus (A.37) is established.

For the next step of the proof we will introduce the second derivative matrix of (4.1) at any admis-

sible point
(
%′, σ2

)′
in the parameter space. Write Ry(θ) = y−Rλ−Xβ = S(λ)y−Xβ, and introduce

the following matrices: F8(%) of dimension p× q and j-th column R′Ξ(τ)−1Ξj(τ)Ξ(τ)−1Ry(θ), F9(%)

of dimension k×q with j-th column X ′Ξ(τ)−1Ξj(τ)Ξ(τ)−1Ry(θ), and finally F10(%) and PΞ2(τ) both

of dimension q × q with (i, j)-th elements R′y(θ)Ξ(τ)−1
{

2Ξi(τ)Ξ(τ)−1Ξj(τ)− Ξij(τ)
}

Ξ(τ)−1Ry(θ)

and tr
(
Ξ(τ)−1

{
Ξij(τ)− Ξi(τ)Ξ(τ)−1Ξj(τ)

})
, respectively. Then

H(%, σ2) = 2σ−2n−1






σ2PG1(λ) +R′Ξ(τ)−1R R′Ξ(τ)−1X F8(%)

∗ X ′Ξ(τ)−1X F9(%)

∗ ∗ 2−1
(
F10(%) + σ2PΞ2(τ)

)




 , (A.56)

so that

H = 2σ−2
0 n−1






σ2
0PG1 +R′Ξ−1R R′Ξ−1X F8

∗ X ′Ξ−1X F9

∗ ∗ 2−1
(
F10 + σ2PΞ2

)




 , (A.57)

whence, noting that Ry = u, the expression in (4.11) follows easily. By the mean value theo-

rem (MVT), we have 0 = d + H
(
%̄, σ̌2

)
(%̌− %0) , where H

(
%̄, σ̌2

)
is obtained from H

(
%, σ2

)
by

evaluating each row at possibly different %̄ satisfying ‖%̄− %0‖ ≤ ‖%̌− %0‖. Writing 0 = Nd +

NH
(
%̄, σ̌2

)
NN−1 (%̌− %0), we obtain n

1
2N−1 (%̌− %0) = −

(
NH

(
%̄, σ̌2

)
N
)−1

n
1
2Nd, indicating that

the theorem is proved if we also show that

N
(
H
(
%̄, σ̌2

)
−H

)
N

p
−→ 0, N (H − Σ)N

p
−→ 0, as n→∞, (A.58)

because we have shown (A.37). The first part above uses %̄−%0
p
→ 0 and σ̌2−σ2

0
p
→ 0 together with the

regularity conditions imposed on Ξ(τ) and Ξ(τ)−1, and the second follows using law of large numbers
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arguments. The calculations are handled in the same fashion as in the existing SAR literature, cf.

Lee (2004), Delgado and Robinson (2015) and Gupta and Robinson (2018), so we omit the details

except for the proof of

n−1
(
PG1

(
λ̄
)
− PG1

) p
−→ 0, (A.59)

which is the most relevant and novel in this paper given our focus on stochastic Wj . The proof of

(A.59) commences as in Lee (2004) and Gupta and Robinson (2018), by using the MVT to write the

(i, j)-th element of the left side as n−1tr
(
Gi
(
λ̄
)
Gj
(
λ̄
))
−n−1tr (GiGj) = n−1 ¯̄g′

(
λ̄− λ0

)
, where ¯̄g is

a p× 1 vector with k-th element tr
(
Gi

(
¯̄λ
)
Gk

(
¯̄λ
)
Gj

(
¯̄λ
)

+Gk

(
¯̄λ
)
Gi

(
¯̄λ
)
Gj

(
¯̄λ
))

and ¯̄λ satisfies
∥
∥
∥¯̄λ− λ0

∥
∥
∥ ≤

∥
∥λ̄− λ0

∥
∥ ≤

∥
∥λ̌− λ0

∥
∥. Because

∥
∥λ̄− λ0

∥
∥ p
→ 0, (A.59) is proved if n−1 ¯̄g = Op(1). Since

Lemma B.6 implies that each element of ¯̄g is Op (n/hW ), the latter claim is true. The proof of the

theorem is now completed.

B Lemmas

Lemma B.1. Under the conditions of Theorem 3.1, the expectation of an absolute typical element

of G′jGj is O
(
π2
n

)
, uniformly in j.

Proof. For r, s = 1, . . . , n, a typical absolute element of G′jGj is
∣
∣g′r,jGjes

∣
∣ =

∣
∣e′sG

′
jgr,j

∣
∣, where g′r,j is

the r-th row of G′j . Using Hölder’s inequality as before, this has expectation bounded by

(
E ‖gr,j‖

ζ5
R

) 1
ζ5
(
E
∥
∥G′j

∥
∥ζ6
R

) 1
ζ6 ≤

(
E ‖gr,j‖

ζ5
R

) 1
ζ5
(
E
(∥
∥W ′j

∥
∥ζ6
R

∥
∥S′−1

∥
∥ζ6
R

)) 1
ζ6
. (B.1)

Consider the first factor on the RHS of (B.1). gr,j has elements w′s,jS
−1er = e′rS

′−1ws,j , where w′s,j
is the s-th row of Wj , s = 1, . . . , n, so this factor is

(

E

(

max
1≤s≤n

∣
∣w′s,jS

−1er
∣
∣ζ5
)) 1

ζ5

≤

(

E

(

max
1≤s≤n

‖ws,j‖
ζ5
R

∥
∥S′−1

∥
∥ζ5
R

)) 1
ζ5

≤

(

E

(

max
1≤s≤n

‖ws,j‖
ζ5ζ7
R

)) 1
ζ5ζ7

(
E
(∥
∥S′−1

∥
∥ζ5ζ8
R

)) 1
ζ5ζ8

=

(

E

(

max
1≤r,s≤n

|wrs,j |
ζ5ζ7

)) 1
ζ5ζ7

(
E
(∥
∥S′−1

∥
∥ζ5ζ8
R

)) 1
ζ5ζ8

= O

(

h−1
(
E
(∥
∥S′−1

∥
∥ζ5ζ8
R

)) 1
ζ5ζ8

)

, (B.2)

by the Hölder inequality and Assumption 7. The second factor on the RHS of (B.1) is bounded by

(

max
1≤j≤p

E
∥
∥W ′j

∥
∥ζ6ζ9
R

) 1
ζ6ζ9

(
E
∥
∥S′−1

∥
∥ζ6ζ10

R

) 1
ζ6ζ10

, (B.3)

by another application of Hölder’s inequality, whence the claim follows from (B.1), (B.2), (B.3) and

the definition of πn.

Lemma B.2. Under the conditions of Theorem 3.2, the expectation of the absolute product of two

typical elements of Gj is O

((
E
∥
∥S′−1

∥
∥2ζ12

R

) 1
ζ12

h−2

)

, uniformly in j.
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Proof. For p, q, r, s = 1, . . . , n, the expectation of the absolute product of typical elements of Gj is

E
∣
∣w′r,jS

−1esw
′
p,jS

−1eq
∣
∣ ≤ E

(

max
1≤r≤n

‖wr,j‖
2
R

∥
∥S′−1

∥
∥2

R

)

, (B.4)

which is bounded by
(
E
(

max1≤r≤n ‖wr,j‖
2ζ11

R

)) 1
ζ11
(
E
∥
∥S′−1

∥
∥2ζ12

R

) 1
ζ12 , whence the result follows by

Assumption 7 because ‖wr,j‖R = max1≤s≤n |wrs,j |.

Lemma B.3. Under the conditions of Theorem 3.1, n−1[B, 0]′u = Op (πn) .

Proof. First note that E ‖u‖2 = σ2
∑n

r=1

∑∞
l=1 c

2
rl = O(n), by (2.4), so

∥
∥n−1[B, 0]′u

∥
∥ = Op

(
n−

1
2 ‖B‖

)

by Markov’s inequality. Next E ‖B‖2 ≤ E (trB′B) = O
(
max1≤j≤p E

(
u′G′jGju

))
, the RHS being

Op



π2
n

n∑

r,s=1

∞∑

j,l=1

crjcslE (εjεl)



 = Op

(

π2
n

n∑

r,s=1

∞∑

l=1

(
c2rl + c2sl

)
)

= Op

(

π2
n

n∑

r=1

∞∑

l=1

c2rl

)

= Op
(
nπ2

n

)
,

by Lemma B.1, the inequality |ab| ≤
(
a2 + b2

)
/2 for real numbers a, b and Assumption 1. The claim

follows by Markov’s inequality,

Lemma B.4. Under the conditions of Theorem 3.2, n−1[B, 0]′u = Op

((
E
∥
∥S′−1

∥
∥2ζ12

R

) 1
2ζ12

h−1

)

.

Proof. Write grs,j for a typical element of Gj , r, s = 1, . . . , n. It is sufficient to evaluate

E
(
n−1u′Gju

)2
= n−2

n∑

r,s,t,v=1

E (urusutuv)E (grs,jgtv,j) , (B.5)

with j = 1, . . . , p, and then use Markov’s inequality. By Assumption 1 and Lemma B.2 the RHS of

(B.5) is

n−2
n∑

r,s,t,v=1

∞∑

j,k,l,m=1

crjcskctlcvmE (εjεkεlεm)E (grs,jgtv,j)

= O



n−2
(
E
∥
∥S′−1

∥
∥2ζ12

R

) 1
ζ12

h−2




n∑

r,s,t,v=1

∞∑

j=1

E
(
ε4j
)
crjcsjctjcvj+

+
n∑

r,s,t,v=1

∞∑

j,k=1

(crjcsjctkcvk + crjcskctjcvk + crjcskctkcvj)







 . (B.6)

By Assumption 9 and the `p norm inequality, the first sum inside square brackets in (B.6) is bounded

in absolute value by a constant times

n∑

r,s,t,v=1

∞∑

j=1

|crjcsjctjcvj | ≤ C
n∑

r,s,t,v=1

∞∑

j=1

(
c2rjc

2
sj + c2tjc

2
vj

)

≤ C

n∑

r,s,t,v=1

∞∑

j=1

(
c4rj + c4sj + c4tj + c4vj

)
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≤ C

n∑

r=1

∞∑

j=1

c4rj ≤ C
n∑

r=1




∞∑

j=1

c2rj





2

≤ Cn.

Now consider the first product inside parentheses in the second sum inside square brackets in (B.6).

By similar techniques this is bounded in absolute value by

n∑

r,s,t,v=1

∞∑

j,k=1

|crjcsj | |ctkcvk| =




n∑

r,s=1

∞∑

j=1

|crjcsj |





2

≤ C




n∑

r,s=1

∞∑

j=1

(
c2rj + c2sj

)




2

≤ C




n∑

r=1




∞∑

j=1

c2rj









2

≤ Cn2.

The remaining two products inside parentheses in the second sum inside square brackets in (B.6) are

similarly shown to be O
(
n2
)
. We have established that the term inside square brackets in (B.6) is

O
(
n2
)
, whence the claim follows.

Lemma B.5. Under the conditions of Theorem 4.2,
∥
∥S(λ)−1

∥
∥
R

= Op(1) and
∥
∥S(λ)′−1

∥
∥
R

= Op(1)

in a closed neighbourhood of λ0, denoted B (λ0).

Proof. We prove the claim for
∥
∥S(λ)−1

∥
∥
R

only, the proof for the transpose being similar. We first

show that, for given 0 < ε < 1,

lim
n→∞

P





∥
∥
∥
∥
∥
∥

p∑

j=1

(λj − λ0j)Gj

∥
∥
∥
∥
∥
∥
R

< 1− ε



 = 1. (B.7)

Because ‖Gi‖R = Op(1) (Assumption 21) uniformly in i,
(∑p

j=1 ‖Gj‖
2
R

) 1
2

= Op(1) also, implying

that there exists 0 < C1 <∞ such that

lim
n→∞

P









p∑

j=1

‖Gj‖
2
R





1
2

> C1




 = 0. (B.8)

The probability on the left side of (B.7) is bounded below by

P









p∑

j=1

(λj − λ0j)
2





1
2



p∑

j=1

‖Gj‖
2
R





1
2

< 1− ε




 = P




‖λ− λ0‖




p∑

j=1

‖Gj‖
2
R





1
2

< 1− ε




 ,

which in turn is bounded below by

1− P
(
‖λ− λ0‖ ≥ C

−1
1 (1− ε)

)
− P









p∑

j=1

‖Gj‖
2
R





1
2

≥ C1






= P
(
‖λ− λ0‖ < C−1

1 (1− ε)
)
− P









p∑

j=1

‖Gj‖
2
R





1
2

≥ C1




 , (B.9)
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where we used the fact that |cd| > ef implies |c| > e or |d| > f . Choosing B (λ0) to be a closed subset

of a neighbourhood of λ0 such that ‖λ− λ0‖ < C−1
1 (1− ε) implies that the first probability in (B.9)

equals 1, while the second probability in (B.9) converges to zero by (B.8). Thus (B.7) is established.

Because S(λ)−1 = S−1
(
In −

∑p
j=1 (λj − λ0j)Gj

)−1

, we have

∥
∥S(λ)−1

∥
∥
R
≤
∥
∥S−1

∥
∥
R

∥
∥
∥
∥
∥
∥
∥



In −
p∑

j=1

(λj − λ0j)Gj





−1
∥
∥
∥
∥
∥
∥
∥
R

, (B.10)

with the first factor on the RHS of (B.10) Op(1) by Assumption 21. By (B.7), the second factor

equals
∑∞

k=0

∥
∥
∥
∑p
j=1 (λj − λ0j)Gj

∥
∥
∥
k

R
≤
∑∞

k=0(1 − ε)k = ε−1 with probability one on B (λ0). Thus

the lemma is proved.

Lemma B.6. Under the conditions of Theorem 4.2, Gi(λ)Gj(λ) and Gi(λ)Gj(λ)Gk(λ) both have

elements that are Op(h−1
W ) uniformly in i, j, k = 1, . . . , p and λ ∈ B (λ0).

Proof. We prove the lemma for the triple product, the double product being similarly handled. Take

λ ∈ B (λ0). By Assumption 21 and Lemma B.5, ‖Gi(λ)‖R and ‖G′i(λ)‖R are uniformly Op(1) in

B (λ0). Let g′r,i(λ) and w′r,i be the r-th rows of Gi(λ) and Wi respectively and the (r, s)-th element

of Gi be written as grs,i. Then grs,i = w′r,iS(λ)−1es = Op
(
‖wr,i‖R

)
= Op

(
h−1
W

)
, uniformly in

r, s = 1, . . . , n, by Lemma B.5 and Assumption 2. Thus the (r, s)-th element of Gi(λ)Gj(λ)Gk(λ), viz.

g′r,i(λ)Gj(λ)Gk(λ)es, is Op
(
‖gr,i‖R

)
= Op (maxs=1,...,n |grs,i|) = Op(h−1

W ), uniformly in r = 1, . . . , n

and i, j, k = 1, . . . , p, as claimed.
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m 48 72 144

Bias v λ β λ β λ β

θ̂ 1 0.0369 0.0027 0.3397 0.0293 0.0055 0.0048
10 0.0118 0.0285 0.0037 0.0107 0.0052 0.0103
20 0.0175 0.0361 0.0029 0.0117 0.0037 0.0060
100 0.0119 0.0262 0.0083 0.0170 0.0019 0.0030

θ̃ 1 0.0446 0.0035 0.0313 0.0053 0.0258 0.0064
10 0.0055 0.0044 0.0084 0.0065 0.0009 0.0036
20 0.0048 0.0080 0.0077 0.0037 0.0014 0.0013
100 0.0063 0.0033 0.0032 0.0137 0.0045 0.0063

θ̌ 1 0.0710 0.0051 0.0642 0.0070 0.0601 0.0076
10 0.0443 0.0504 0.0362 0.0462 0.0163 0.0209
20 0.0444 0.0511 0.0357 0.0437 0.0168 0.0236
100 0.0454 0.0557 0.0316 0.0403 0.0198 0.0286

MSE v λ β λ β λ β

θ̂ 1 0.9217 0.0808 123.9720 0.7877 0.7418 0.0262
10 0.0254 0.1212 0.0164 0.0830 0.0087 0.0410
20 0.0264 0.1272 0.0169 0.0828 0.0081 0.0422
100 0.0259 0.1267 0.0158 0.0818 0.0085 0.0406

θ̃ 1 0.2254 0.0769 0.2195 0.0532 0.2509 0.0258
10 0.0240 0.1157 0.0163 0.0820 0.0086 0.0405
20 0.0250 0.1225 0.0162 0.0807 0.0079 0.0414
100 0.0248 0.1229 0.0152 0.0801 0.0084 0.0403

θ̌ 1 0.1598 0.0765 0.1638 0.0530 0.1731 0.0257
10 0.0210 0.1071 0.0149 0.0779 0.0080 0.0389
20 0.0216 0.1128 0.0148 0.0765 0.0074 0.0401
100 0.0217 0.1144 0.0137 0.0757 0.0080 0.0392

Size v λ β λ β λ β

θ̂ 1 0.0490 0.0550 0.0490 0.0625 0.0380 0.0625
10 0.0560 0.0465 0.0520 0.0535 0.0570 0.0475
20 0.0560 0.0640 0.0610 0.0610 0.0460 0.0565
100 0.0560 0.0595 0.0440 0.0460 0.0540 0.0485

θ̃ 1 0.0610 0.0530 0.0520 0.0645 0.0610 0.0620
10 0.0610 0.0485 0.0560 0.0560 0.0590 0.0475
20 0.0620 0.0640 0.0580 0.0610 0.0470 0.0570
100 0.0580 0.0585 0.0470 0.0495 0.0600 0.0495

θ̌ 1 0.0420 0.0580 0.0310 0.0685 0.0340 0.0640
10 0.0340 0.0445 0.0430 0.0510 0.0530 0.0460
20 0.0420 0.0560 0.0480 0.0550 0.0410 0.0580
100 0.0420 0.0525 0.0360 0.0495 0.0440 0.0470

Table 6.1: Monte Carlo absolute bias, mean squared error and size, nominal size 5%, dense stochastic
W1,W2, see section 6.1. n = 2m.
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m 48 72 144

Bias v λ β λ β λ β

θ̂ 1 0.0832 0.0103 0.0315 0.0061 0.0296 0.0065
10 0.0058 0.0135 0.0066 0.0126 0.0096 0.0166
20 0.0126 0.0262 0.0040 0.0170 0.0004 0.0063
100 0.0067 0.0153 0.0021 0.0090 0.0059 0.0137

θ̃ 1 0.0473 0.0100 0.0286 0.0052 0.0210 0.0067
10 0.0127 0.0127 0.0051 0.0041 0.0034 0.0077
20 0.0040 0.0030 0.0063 0.0021 0.0048 0.0016
100 0.0112 0.0104 0.0131 0.0107 0.0006 0.0044

θ̌ 1 0.1069 0.0099 0.0750 0.0053 0.0807 0.0067
10 0.0498 0.0656 0.0327 0.0437 0.0123 0.0150
20 0.0431 0.0524 0.0344 0.0379 0.0203 0.0237
100 0.0492 0.0644 0.0408 0.0505 0.0162 0.0181

MSE v λ β λ β λ β

θ̂ 1 1.9703 0.0770 3.6357 0.0482 1.3637 0.0240
10 0.0247 0.1198 0.0150 0.0795 0.0081 0.0427
20 0.0263 0.1264 0.0168 0.0820 0.0091 0.0401
100 0.0243 0.1213 0.0184 0.0839 0.0083 0.0412

θ̃ 1 0.3590 0.0756 0.3343 0.0447 0.4064 0.0232
10 0.0243 0.1172 0.0149 0.0787 0.0078 0.0417
20 0.0255 0.1225 0.0164 0.0808 0.0090 0.0399
100 0.0231 0.1181 0.0187 0.0838 0.0083 0.0409

θ̌ 1 0.2100 0.0749 0.2198 0.0446 0.2497 0.0231
10 0.0219 0.1107 0.0136 0.0750 0.0072 0.0400
20 0.0220 0.1130 0.0150 0.0763 0.0086 0.0384
100 0.0207 0.1115 0.0173 0.0797 0.0078 0.0393

Size v λ β λ β λ β

θ̂ 1 0.0590 0.0515 0.0550 0.0425 0.0500 0.0480
10 0.0470 0.0540 0.0400 0.0500 0.0480 0.0535
20 0.0600 0.0560 0.0550 0.0570 0.0540 0.0455
100 0.0540 0.0490 0.0590 0.0520 0.0480 0.0500

θ̃ 1 0.0750 0.0515 0.0540 0.0450 0.0540 0.0510
10 0.0610 0.0550 0.0460 0.0515 0.0490 0.0535
20 0.0640 0.0595 0.0530 0.0555 0.0540 0.0445
100 0.0540 0.0500 0.0700 0.0525 0.0460 0.0495

θ̌ 1 0.0290 0.0560 0.0270 0.0460 0.0200 0.0505
10 0.0510 0.0505 0.0320 0.0485 0.0380 0.0510
20 0.0480 0.0565 0.0420 0.0490 0.0470 0.0435
100 0.0440 0.0475 0.0600 0.0510 0.0430 0.0465

Table 6.2: Monte Carlo absolute bias, mean squared error and size, nominal size 5%, dense fixed
W1,W2, see section 6.1. n = 2m.
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n 96 144 288

Bias v λ β λ β λ β

θ̂ 1 0.0710 0.0074 0.0949 0.0077 0.0405 0.0034
10 0.0026 0.0153 0.0092 0.0063 0.0005 0.0020
20 0.0072 0.0154 0.0066 0.0051 0.0020 0.0033
100 0.0078 0.0055 0.0091 0.0079 0.0020 0.0025

θ̃ 1 0.0313 0.0063 0.0554 0.0061 0.0679 0.0037
10 0.0189 0.0128 0.0236 0.0250 0.0080 0.0101
20 0.0275 0.0238 0.0197 0.0233 0.0090 0.0113
100 0.0263 0.0284 0.0234 0.0262 0.0095 0.0108

θ̌ 1 0.1397 0.0064 0.1423 0.0059 0.1327 0.0044
10 0.0373 0.0373 0.0367 0.0430 0.0154 0.0207
20 0.0459 0.0481 0.0329 0.0416 0.0164 0.0219
100 0.0442 0.0525 0.0365 0.0443 0.0169 0.0213

MSE v λ β λ β λ β

θ̂ 1 3.6937 0.0816 7.0059 0.0513 3.5902 0.0238
10 0.0250 0.1116 0.0162 0.0765 0.0081 0.0407
20 0.0251 0.1153 0.0173 0.0774 0.0087 0.0425
100 0.0246 0.1170 0.0169 0.0768 0.0082 0.0413

θ̃ 1 2.0082 0.0777 5.0983 0.0495 2.7021 0.0231
10 0.0244 0.1084 0.0160 0.0757 0.0079 0.0402
20 0.0232 0.1117 0.0168 0.0757 0.0085 0.0420
100 0.0227 0.1136 0.0169 0.0760 0.0084 0.0415

θ̌ 1 0.3377 0.0771 0.3585 0.0492 0.3414 0.0230
10 0.0227 0.1043 0.0154 0.0739 0.0077 0.0396
20 0.0218 0.1080 0.0160 0.0739 0.0083 0.0413
100 0.0216 0.1106 0.0163 0.0744 0.0082 0.0408

Size v λ β λ β λ β

θ̂ 1 0.0550 0.0525 0.0460 0.0575 0.0390 0.0435
10 0.0480 0.0485 0.0470 0.0440 0.0490 0.0535
20 0.0410 0.0495 0.0520 0.0495 0.0570 0.0570
100 0.0470 0.0505 0.0520 0.0515 0.0580 0.0545

θ̃ 1 0.0460 0.0565 0.0470 0.0600 0.0450 0.0445
10 0.0550 0.0495 0.0500 0.0455 0.0540 0.0495
20 0.0470 0.0500 0.0580 0.0525 0.0610 0.0560
100 0.0470 0.0490 0.0630 0.0495 0.0550 0.0530

θ̌ 1 0.0200 0.0585 0.0190 0.0610 0.0130 0.0455
10 0.0540 0.0485 0.0430 0.0490 0.0510 0.0475
20 0.0420 0.0500 0.0570 0.0530 0.0570 0.0525
100 0.0460 0.0530 0.0530 0.0485 0.0490 0.0550

Table 6.3: Monte Carlo absolute bias, mean squared error and size, nominal size 5%, sparse stochastic
W , see Section 6.1.
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n 96 144 288

Bias v λ β λ β λ β

θ̂ 1 0.2813 0.0077 0.0213 0.0019 0.0354 0.0033
10 0.0000 0.0082 0.0033 0.0031 0.0073 0.0066
20 0.0011 0.0063 0.0045 0.0042 0.0025 0.0017
100 0.0066 0.0041 0.0016 0.0083 0.0040 0.0054

θ̃ 1 0.0021 0.0109 0.0106 0.0025 0.0115 0.0031
10 0.0231 0.0224 0.0186 0.0208 0.0149 0.0173
20 0.0180 0.0170 0.0183 0.0149 0.0101 0.0124
100 0.0271 0.0258 0.0174 0.0155 0.0116 0.0095

θ̌ 1 0.1725 0.0114 0.0391 0.0040 0.0518 0.0031
10 0.0415 0.0469 0.0316 0.0386 0.0222 0.0276
20 0.0371 0.0428 0.0320 0.0337 0.0174 0.0227
100 0.0462 0.0517 0.0311 0.0346 0.0191 0.0202

MSE v λ β λ β λ β

θ̂ 1 33.4155 0.0878 0.6563 0.0528 1.9369 0.0252
10 0.0254 0.1131 0.0153 0.0757 0.0084 0.0392
20 0.0252 0.1135 0.0177 0.0810 0.0081 0.0390
100 0.0250 0.1179 0.0168 0.0787 0.0093 0.0438

θ̃ 1 2.3193 0.0744 0.1910 0.0510 0.2607 0.0240
10 0.0245 0.1099 0.0150 0.0741 0.0084 0.0390
20 0.0238 0.1102 0.0173 0.0796 0.0081 0.0389
100 0.0244 0.1153 0.0159 0.0761 0.0090 0.0428

θ̌ 1 0.4626 0.0733 0.1493 0.0508 0.1846 0.0239
10 0.0229 0.1059 0.0144 0.0724 0.0083 0.0386
20 0.0219 0.1058 0.0165 0.0771 0.0079 0.0383
100 0.0228 0.1113 0.0152 0.0739 0.0088 0.0421

Size v λ β λ β λ β

θ̂ 1 0.0450 0.0480 0.0510 0.0570 0.0340 0.0485
10 0.0550 0.0460 0.0480 0.0505 0.0420 0.0475
20 0.0510 0.0485 0.0550 0.0595 0.0450 0.0535
100 0.0500 0.0490 0.0540 0.0525 0.0580 0.0575

θ̃ 1 0.0470 0.0490 0.0500 0.0585 0.0560 0.0510
10 0.0650 0.0535 0.0580 0.0490 0.0470 0.0530
20 0.0490 0.0465 0.0580 0.0600 0.0470 0.0545
100 0.0570 0.0495 0.0590 0.0520 0.0530 0.0560

θ̌ 1 0.0140 0.0500 0.0270 0.0620 0.0250 0.0520
10 0.0550 0.0465 0.0530 0.0500 0.0480 0.0505
20 0.0410 0.0475 0.0550 0.0575 0.0490 0.0530
100 0.0550 0.0495 0.0540 0.0490 0.0500 0.0590

Table 6.4: Monte Carlo absolute bias, mean squared error and size, nominal size 5%, sparse fixed W ,
see Section 6.1.
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n 96 144 288

Bias v λ β λ β λ β

θ̂ 1 0.0197 0.0344 0.0099 0.0201 0.0066 0.0114
10 0.0165 0.0340 0.0076 0.0153 0.0053 0.0117
20 0.0217 0.0383 0.0053 0.0111 0.0029 0.0093
100 0.0220 0.0417 0.0132 0.0287 0.0028 0.0061

θ̃ 1 0.1065 0.1585 0.1088 0.1624 0.1137 0.1687
10 0.1396 0.2113 0.1365 0.2022 0.1444 0.2158
20 0.1328 0.1973 0.1352 0.2004 0.1460 0.2190
100 0.1400 0.2104 0.1402 0.2124 0.1481 0.2197

θ̌ 1 0.0115 0.0157 0.0080 0.0106 0.0057 0.0088
10 0.0091 0.0088 0.0120 0.0185 0.0034 0.0051
20 0.0156 0.0239 0.0109 0.0167 0.0053 0.0085
100 0.0117 0.0151 0.0088 0.0084 0.0048 0.0075

MSE v λ β λ β λ β

θ̂ 1 0.0265 0.1379 0.0167 0.0859 0.0084 0.0418
10 0.0239 0.1247 0.0175 0.0907 0.0086 0.0427
20 0.0288 0.1345 0.0169 0.0859 0.0086 0.0446
100 0.0277 0.1370 0.0190 0.0888 0.0083 0.0426

θ̃ 1 0.0244 0.1297 0.0227 0.0978 0.0214 0.0700
10 0.0312 0.1364 0.0282 0.1127 0.0285 0.0867
20 0.0308 0.1370 0.0289 0.1099 0.0292 0.0904
100 0.0324 0.1451 0.0306 0.1132 0.0297 0.0885

θ̌ 1 0.0054 0.0880 0.0035 0.0568 0.0019 0.0275
10 0.0052 0.0816 0.0037 0.0605 0.0017 0.0276
20 0.0055 0.0834 0.0038 0.0573 0.0020 0.0305
100 0.0055 0.0871 0.0037 0.0540 0.0018 0.0283

Size v λ β λ β λ β

θ̂ 1 0.0510 0.0550 0.0380 0.0515 0.0560 0.0490
10 0.0320 0.0465 0.0400 0.0590 0.0500 0.0510
20 0.0480 0.0535 0.0490 0.0595 0.0470 0.0550
100 0.0470 0.0565 0.0520 0.0570 0.0490 0.0435

θ̃ 1 0.3190 0.1150 0.4030 0.1470 0.5790 0.2260
10 0.4090 0.1295 0.5180 0.1730 0.6790 0.3045
20 0.4030 0.1250 0.5290 0.1645 0.7120 0.3050
100 0.4320 0.1410 0.5430 0.1840 0.7240 0.3135

θ̌ 1 0.0270 0.0575 0.0290 0.0495 0.0310 0.0445
10 0.0250 0.0390 0.0310 0.0585 0.0220 0.0480
20 0.0270 0.0515 0.0280 0.0510 0.0380 0.0585
100 0.0260 0.0555 0.0290 0.0420 0.0280 0.0445

Table 6.5: Monte Carlo absolute bias, mean squared error and size, nominal size 5%, circulant
stochastic W , see Section 6.1.
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n 96 144 288

Bias v λ β λ β λ β

θ̂ 1 0.0163 0.0341 0.0068 0.0163 0.0043 0.0074
10 0.0093 0.0171 0.0055 0.0129 0.0041 0.0073
20 0.0181 0.0338 0.0122 0.0305 0.0061 0.0150
100 0.0121 0.0268 0.0066 0.0198 0.0075 0.0153

θ̃ 1 0.1319 0.1984 0.1980 0.2958 0.1404 0.2072
10 0.0905 0.1320 0.1210 0.1798 0.0014 0.0066
20 0.1185 0.1771 0.2092 0.3162 0.0857 0.1299
100 0.0240 0.0399 0.1342 0.2028 0.2191 0.3284

θ̌ 1 0.0122 0.0144 0.0098 0.0130 0.0057 0.0096
10 0.0139 0.0228 0.0099 0.0137 0.0054 0.0078
20 0.0123 0.0164 0.0101 0.0085 0.0037 0.0053
100 0.0152 0.0174 0.0091 0.0078 0.0018 0.0016

MSE v λ β λ β λ β

θ̂ 1 0.0282 0.1380 0.0174 0.0851 0.0090 0.0450
10 0.0249 0.1247 0.0168 0.0841 0.0078 0.0436
20 0.0267 0.1352 0.0192 0.0904 0.0082 0.0426
100 0.0234 0.1178 0.0175 0.0840 0.0091 0.0418

θ̃ 1 0.0249 0.1270 0.0454 0.1451 0.0224 0.0727
10 0.0149 0.0987 0.0193 0.0887 0.0019 0.0307
20 0.0217 0.1220 0.0496 0.1586 0.0097 0.0464
100 0.0069 0.0805 0.0233 0.0986 0.0508 0.1348

θ̌ 1 0.0055 0.0848 0.0039 0.0546 0.0019 0.0290
10 0.0054 0.0803 0.0035 0.0550 0.0019 0.0307
20 0.0057 0.0877 0.0036 0.0569 0.0019 0.0292
100 0.0060 0.0779 0.0039 0.0554 0.0017 0.0257

Size v λ β λ β λ β

θ̂ 1 0.0560 0.0510 0.0410 0.0455 0.0580 0.0580
10 0.0400 0.0420 0.0440 0.0475 0.0450 0.0600
20 0.0410 0.0535 0.0420 0.0555 0.0440 0.0490
100 0.0400 0.0400 0.0470 0.0530 0.0460 0.0405

θ̃ 1 0.3960 0.1195 0.7600 0.2465 0.8050 0.2465
10 0.2300 0.0735 0.4330 0.1230 0.0550 0.0625
20 0.3430 0.0990 0.7960 0.2810 0.4840 0.1240
100 0.0790 0.0415 0.5220 0.1410 0.9780 0.5080

θ̌ 1 0.0230 0.0475 0.0210 0.0430 0.0360 0.0550
10 0.0270 0.0435 0.0240 0.0405 0.0540 0.0615
20 0.0270 0.0530 0.0150 0.0425 0.0410 0.0595
100 0.0510 0.0440 0.0320 0.0500 0.0170 0.0340

Table 6.6: Monte Carlo absolute bias, mean squared error and size, nominal size 5%, circulant fixed
W , see Section 6.1.
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n 48 96 144

Bias λ β λ β λ β

θ̂ 0.0244 0.0058 0.0025 0.0060 0.0098 0.0042
θ̃ 0.1792 0.0804 0.0754 0.0384 0.0399 0.0255
θ̌ 0.1747 0.1131 0.0832 0.0576 0.0463 0.0388

MSE λ β λ β λ β

θ̂ 0.1898 0.1487 0.0812 0.0696 0.0556 0.0464
θ̃ 0.2385 0.1706 0.0905 0.0741 0.0587 0.0486
θ̌ 0.1852 0.1598 0.0852 0.0727 0.0565 0.0479

Size λ β λ β λ β

θ̂ 0.0570 0.0590 0.0525 0.0480 0.0510 0.0500
θ̃ 0.0860 0.0710 0.0530 0.0560 0.0555 0.0505
θ̌ 0.0585 0.0670 0.0485 0.0545 0.0515 0.0550

Table 6.7: Monte Carlo absolute (average) bias, mean squared error and size, nominal size 5%, W1

and W2 generated as in Section 6.2 using (6.2) and (6.3) respectively.
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A simulation study when spatial weights are generated by de-

pendent random variables

Section 6.1 of ‘Estimation of spatial autoregressions with stochastic weight matrices’ took the spatial

weights to be iid but in some cases, especially for asymmetric spatial weight matrices, this may not

be reasonable. For instance, if the distance from unit r to s is small the distance from s to r may

also be expected to be small. To capture such behaviour we use the same designs as described in

Section 6.1, but with the following alteration: after generating the Vj , replace vrs,j =
(
v2
sr,j + 5

) 1
2

for each r = 1, . . . ,m and s ≤ r, where vrs,j denotes the (r, s)-th element of Vj . Thus we replace the

part of Vj below the diagonal with a transformation of the part above the diagonal. The choice of

transformation is uniformly continuous, in keeping with the idea of ‘preserving’ the distance between

units discussed earlier in the paragraph. Similar operations are carried out with the sparse and

circulant specifications of W . We then proceed with the experiment design as in the corresponding

parts of Section 6.1.

The results are in Tables 0.1(a)-(c), where we report the stochastic case. They indicate that the

procedure of generating dependent weights in this way does little to alter the character and behaviour

of the estimates. The same features that we saw in Tables 6.1, 6.3 and 6.5 are evident. We may

also compare the dense, sparse and circulant cases to see if stochastic dependent spatial weights yield

any difference in performance as opposed to stochastic iid ones. Out of 72 comparisons for each type

of weight matrix, the dependent setting exhibits a smaller bias in 54 (dense), 61 (sparse) and 41

(circulant) cases, while the MSE is smaller in all 72 (dense), 54 (sparse) and 32 (circulant) cases.

Thus in our experiment designs dependent spatial weights do not contaminate the performance of

estimates.

∗This appendix should be read in conjunction with Section 6 of ‘Estimation of spatial autoregressions with stochastic
weight matrices’.
†Email : a.gupta@essex.ac.uk.
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(a) Dense W1,W2 (b) Sparse W (c) Circulant W

m/n 48 72 144 96 144 288 96 144 288

Bias v λ β λ β λ β λ β λ β λ β λ β λ β λ β

θ̂ 1 0.0292 0.0025 0.0423 0.0046 0.0459 0.0009 0.0280 0.0061 0.0585 0.0059 0.0586 0.0038 0.0058 0.0309 0.0024 0.0151 0.0027 0.0152
10 0.0126 0.0143 0.0059 0.0069 0.0051 0.0046 0.0017 0.0063 0.0062 0.0062 0.0005 0.0009 0.0047 0.0367 0.0017 0.0139 0.0015 0.0128
20 0.0086 0.0104 0.0067 0.0104 0.0016 0.0050 0.0033 0.0151 0.0027 0.0046 0.0001 0.0031 0.0066 0.0422 0.0024 0.0099 0.0001 0.0074
100 0.0036 0.0030 0.0023 0.0084 0.0012 0.0013 0.0100 0.0109 0.0046 0.0076 0.0021 0.0027 0.0055 0.0369 0.0047 0.0346 0.0003 0.0044

θ̃ 1 0.0698 0.0151 0.0622 0.0084 0.0793 0.0066 0.0008 0.0063 0.0396 0.0055 0.0417 0.0039 0.0697 0.4591 0.0769 0.4970 0.0874 0.5451
10 0.0007 0.0021 0.0016 0.0020 0.0012 0.0009 0.0091 0.0052 0.0116 0.0107 0.0031 0.0049 0.0810 0.5066 0.0908 0.5429 0.1008 0.5947
20 0.0036 0.0038 0.0017 0.0032 0.0031 0.0005 0.0125 0.0154 0.0090 0.0116 0.0027 0.0044 0.0819 0.5032 0.0889 0.5336 0.1000 0.5902
100 0.0104 0.0131 0.0052 0.0084 0.0058 0.0050 0.0207 0.0226 0.0120 0.0117 0.0016 0.0026 0.0811 0.5006 0.0896 0.5452 0.0994 0.5836

θ̌ 1 0.0516 0.0073 0.0625 0.0078 0.0531 0.0029 0.1230 0.0081 0.1311 0.0076 0.1335 0.0063 0.0008 0.0102 0.0034 0.0204 0.0090 0.0548
10 0.0155 0.0187 0.0116 0.0137 0.0039 0.0062 0.0306 0.0280 0.0263 0.0265 0.0107 0.0132 0.0048 0.0315 0.0059 0.0339 0.0118 0.0715
20 0.0176 0.0202 0.0113 0.0106 0.0080 0.0063 0.0336 0.0292 0.0231 0.0268 0.0100 0.0124 0.0040 0.0222 0.0065 0.0363 0.0122 0.0749
100 0.0240 0.0287 0.0144 0.0177 0.0105 0.0104 0.0402 0.0430 0.0258 0.0264 0.0087 0.0094 0.0037 0.0225 0.0080 0.0505 0.0135 0.0823

MSE v λ β λ β λ β λ β λ β λ β λ β λ β λ β

θ̂ 1 0.1665 0.0398 0.1529 0.0245 0.3150 0.0131 1.9196 0.0822 0.9467 0.0518 1.3855 0.0242 0.0048 0.2282 0.0028 0.1434 0.0016 0.0746
10 0.0119 0.0530 0.0083 0.0350 0.0039 0.0171 0.0257 0.0998 0.0158 0.0665 0.0077 0.0339 0.0039 0.2033 0.0033 0.1548 0.0018 0.0797
20 0.0120 0.0530 0.0085 0.0358 0.0043 0.0174 0.0269 0.1028 0.0167 0.0650 0.0080 0.0346 0.0043 0.2106 0.0038 0.1583 0.0018 0.0782
100 0.0120 0.0534 0.0076 0.0335 0.0040 0.0177 0.0235 0.1031 0.0171 0.0646 0.0078 0.0335 0.0042 0.2075 0.0033 0.1530 0.0017 0.0783

θ̃ 1 0.0461 0.0395 0.0408 0.0241 0.0515 0.0130 0.5264 0.0784 0.6161 0.0502 0.5338 0.0233 0.0069 0.3462 0.0081 0.3464 0.0099 0.3710
10 0.0117 0.0525 0.0084 0.0350 0.0039 0.0171 0.0266 0.1002 0.0156 0.0662 0.0077 0.0338 0.0084 0.3664 0.0102 0.3831 0.0119 0.4084
20 0.0118 0.0525 0.0084 0.0356 0.0042 0.0172 0.0261 0.1024 0.0166 0.0649 0.0080 0.0346 0.0086 0.3675 0.0098 0.3736 0.0116 0.4051
100 0.0120 0.0532 0.0076 0.0336 0.0040 0.0177 0.0229 0.1024 0.0169 0.0643 0.0078 0.0335 0.0085 0.3699 0.0098 0.3818 0.0115 0.3975

θ̌ 1 0.0287 0.0387 0.0301 0.0240 0.0302 0.0128 0.1552 0.0769 0.1628 0.0495 0.1677 0.0231 0.0016 0.1481 0.0017 0.1136 0.0020 0.1014
10 0.0109 0.0512 0.0081 0.0344 0.0038 0.0169 0.0243 0.0970 0.0150 0.0651 0.0075 0.0335 0.0023 0.1610 0.0023 0.1392 0.0027 0.1235
20 0.0111 0.0514 0.0081 0.0349 0.0041 0.0170 0.0242 0.0996 0.0158 0.0639 0.0078 0.0343 0.0024 0.1635 0.0024 0.1372 0.0027 0.1279
100 0.0115 0.0524 0.0073 0.0331 0.0040 0.0176 0.0217 0.1008 0.0162 0.0634 0.0076 0.0332 0.0022 0.1606 0.0025 0.1415 0.0029 0.1312

Size v λ β λ β λ β λ β λ β λ β λ β λ β λ β

θ̂ 1 0.0430 0.0575 0.0330 0.0475 0.0480 0.0580 0.0540 0.0555 0.0530 0.0565 0.0500 0.0415 0.0530 0.0540 0.0380 0.0415 0.0560 0.0535
10 0.0610 0.0565 0.0640 0.0470 0.0440 0.0430 0.0490 0.0445 0.0410 0.0480 0.0420 0.0535 0.0520 0.0440 0.0470 0.0580 0.0490 0.0605
20 0.0510 0.0550 0.0500 0.0555 0.0660 0.0500 0.0560 0.0565 0.0500 0.0415 0.0460 0.0535 0.0470 0.0520 0.0460 0.0510 0.0430 0.0445
100 0.0510 0.0570 0.0450 0.0435 0.0490 0.0520 0.0470 0.0530 0.0550 0.0505 0.0490 0.0535 0.0470 0.0540 0.0450 0.0505 0.0450 0.0455

θ̃ 1 0.1040 0.0585 0.0760 0.0455 0.1070 0.0615 0.0640 0.0535 0.0740 0.0610 0.0710 0.0430 0.8110 0.4335 0.8890 0.6105 0.9390 0.8100
10 0.0560 0.0570 0.0640 0.0480 0.0440 0.0425 0.0580 0.0485 0.0390 0.0485 0.0490 0.0525 0.9070 0.4670 0.9460 0.6540 0.9840 0.8845
20 0.0560 0.0540 0.0550 0.0535 0.0590 0.0510 0.0620 0.0570 0.0500 0.0425 0.0530 0.0555 0.8930 0.4820 0.9380 0.6420 0.9760 0.8800
100 0.0590 0.0570 0.0490 0.0440 0.0480 0.0520 0.0440 0.0520 0.0550 0.0505 0.0520 0.0515 0.8920 0.4785 0.9430 0.6730 0.9790 0.8735

θ̌ 1 0.0210 0.0570 0.0150 0.0465 0.0160 0.0585 0.0240 0.0545 0.0130 0.0630 0.0120 0.0435 0.1120 0.1040 0.1260 0.1000 0.1510 0.1210
10 0.0430 0.0560 0.0600 0.0455 0.0390 0.0445 0.0520 0.0510 0.0360 0.0510 0.0420 0.0520 0.1310 0.1095 0.1560 0.1330 0.1730 0.1475
20 0.0510 0.0570 0.0520 0.0545 0.0540 0.0490 0.0610 0.0575 0.0520 0.0435 0.0470 0.0550 0.1440 0.1190 0.1470 0.1245 0.1800 0.1630
100 0.0530 0.0575 0.0470 0.0420 0.0490 0.0515 0.0430 0.0555 0.0580 0.0515 0.0480 0.0520 0.1290 0.1165 0.1550 0.1280 0.1730 0.1470

Table 0.1: Monte Carlo absolute bias, mean squared error and size, nominal size 5%, dependent weight matrices regenerated in each trial as in Section .
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