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Abstract—A quadrotor unmanned aerial vehicle (UAV) should
have the ability to perform real-time target tracking and path
planning simultaneously even when the target enters unstruc-
tured scenes, such as groves or forests. To accomplish this task,
a novel system framework is designed and proposed to accom-
plish simultaneous moving target tracking and path planning by
a quadrotor UAV with an onboard embedded computer, vision
sensors, and a two-dimensional laser scanner. A support vector
machine-based target screening algorithm is deployed to select
the correct target from multiple candidates detected by sin-
gle shot multibox detector. Furthermore, a new tracker named
TLD-KCF is presented in this paper, in which a conditional
scale adaptive algorithm is adopted to improve the tracking
performance for a quadrotor UAV in cluttered outdoor envi-
ronments. According to distance and position estimation for
a moving target, our quadrotor UAV can acquire a control point
to guide its fight. To reduce the computational burden, a fast
path planning algorithm is proposed based on elliptical tangent
model. A series of experiments are conducted on our quadrotor
UAV platform DJI M100. Experimental video and compari-
son results among four kinds of target tracking algorithms are
given to show the validity and practicality of the proposed
approach.

Index Terms—Path planning, quadrotor unmanned aerial
vehicle (UAV), real-time target tracking, unstructured outdoor
scenes.

I. INTRODUCTION

TRACKING and path planning are essential tasks for intel-
ligent robot systems working in complex indoor/outdoor

environments, from biped walking robots [1], wheeled
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robots [2] to aerial robots [3], [4]. In the last decades, fast-
growing unmanned aerial vehicles (UAVs) have been utilized
in wide range of military and nonmilitary tasks to perform
searching, patrolling, target tracking, and surveillance in com-
plex outdoor environments [5]–[8]. There have been a variety
of studies on UAVs or other mobile robots to carry out
these missions, but most of these applications focus on mov-
ing target tracking in general outdoor environments without
cluttered obstacles. However, when a human target enters
in unstructured outdoor scenes, such as groves or forests,
UAVs should perform real-time target tracking, obstacle avoid-
ing, and path planning simultaneously. This in turn imposes
great challenges for small UAVs with limited computer
power.

In recent years, a new method for automatic detection
of cars in UAV images acquired over urban contexts was
presented in [7], in which only car detection was investigated.
Chen et al. [8] studied the problem of quadrotor tracking
a moving target in cluttered indoor environments. They put
Apriltag on the target (a mobile robot) to make detection and
tracking easy-to-implement, which is however impossible for
real-world applications. In [9], a vision-based quadrotor plat-
form was built and tested flying through an unknown indoor
scene with high accuracy. In our previous work [10], a novel
object detection system using three-dimensional (3-D) laser
scanning data was proposed to deal with cluttered indoor
scenes, but 3-D laser scanner is too heavy for our UAV
platform. In [11], a small UAV equipped with a gimbaled cam-
era accomplished the task of tracking an unpredictable moving
ground vehicle that was running on structured roads without
obstruction from trees. This greatly reduced the difficulty of
tracking and path planning.

Giusti et al. [12] introduced a real-world flying demonstra-
tion in which a quadrotor UAV was autonomously working in
forest scenes. The problem of perceiving forest or mountain
trails from a single monocular image acquired was inves-
tigated. A deep neural network for visually perceiving the
direction of a forest trail from a single image was trained
to guarantee that a quadrotor can perform forest trial track-
ing robustly. Compared with the work in [8], [9], and [11],
the work in [12] is a more challenging task since the forest
scenes are much more cluttered. However, apart from trail
tracking, autonomous obstacle avoidance was not investigated
in [12] since the forest trail is wide enough for a quadrotor to
navigate around.
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Fig. 1. System framework for quadrotor to conduct moving target detection, tracking, and path planning simultaneously in unknown cluttered outdoor scenes.

In this paper, a new system framework is proposed to per-
form moving target tracking and path planning in groves or
forests simultaneously. Since 3-D laser scanner is too heavy
for our UAV platform, we have to use light vision sensors and
two-dimensional (2-D) laser scanner in our research here. It
should be noted that the human target in the groves or forests is
not walking along the trails but moving randomly in our exper-
iments. Our quadrotor UAV platform should not only avoid the
trees in real time but also perform robust tracking when the
target may be blocked by the trees frequently. Considering
the diversity of targets and their mobility, single shot multibox
detector (SSD) algorithm is adopted to provide multiple candi-
date targets, and then a support vector machine (SVM)-based
target screening is used to find the correct one.

According to our comparison tests between four tracking
algorithms tracking learning detection (TLD), kernelized cor-
relation filter (KCF), TLD-KCF, and generic object tracking
using regression networks (GOTURNs), the newly proposed
TLD-KCF tracker has a superior tracking performance and
the reduced computation costs suitable to limited onboard
computing power. Moreover, a low-cost and novel path plan-
ning algorithm is proposed based on an elliptical tangent
model and environmental constraints generated from mul-
tisensor data. This novel system framework has been suc-
cessfully tested in a series of flight experiments, thereby
demonstrating its validity and practicality in a real-world
implementation. An experimental video can be viewed at the
website.1

The rest of this paper is organized as follows. Section II
briefly introduces our proposed system framework and the
small UAV platform. Section III presents visual target detec-
tion and tracking with a small UAV in cluttered outdoor
environments. In Section IV, a novel path planning algorithm
is proposed based on elliptical tangent model, including track-
ing constraints generation and a path tracker design approach.
Experiments are conducted by using a DJI M100 quadrotor,
and results are presented in Section V to show the feasibility

1http://v.youku.com/v_show/id_XMjc5NDY1NjU2NA==.html?spm=
a2hzp.8244740.0.0

Fig. 2. Quadrotor UAV is simultaneously exploring and tracking in a grove,
a typical cluttered unknown scene in this paper.

and effectiveness of the proposed approach. Finally, a brief
conclusion and future work are presented in Section VI.

II. SYSTEM FRAMEWORK

Moving target detection and tracking are common tasks for
UAVs working in structured environments, and a variety of
practical cases have been introduced in real-world outdoor
applications. However, most of these cases are only tested in
open outdoor space, such as square, field, road, and trail. In
this paper, we investigate how a quadrotor UAV is able to
simultaneously track a moving target and plan a reliable path
in cluttered and unstructured outdoor scenes, such as groves
or forests. Fig. 1 shows a system framework that is proposed
to carry out simultaneous moving target detection, tracking,
and path planning by a quadrotor UAV in unknown grove
scenes.

Fig. 2 shows that a small quadrotor UAV is accomplish-
ing autonomous exploring and human target tracking tasks
in unknown cluttered outdoor environments simultaneously.
Monocular color images are obtained by the onboard cam-
era at a frequency of 25 Hz, and SSD algorithm is utilized to
detect the candidate human targets in input images. In order
to select the correct target from these candidates, histogram
of oriented gradients (HOG) and color histogram features are
extracted from the subimage of each candidate target, and then
an SVM-based classifier is adopted to determine the target.
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After tracking object initialization, a TLD-KCF approach is
presented to perform moving object tracking. Moreover, a tar-
get position estimation algorithm is used to roughly estimate
the relative position relationship between the selected target
in the image and the camera. In our proposed framework, the
core part is how to achieve both visual tracking and safe flight
path planning in an unstructured environment cluttered with
obstacles. Richer local environmental information is perceived
by a laser range finder and DJI Guidance so that the reliable
constraints for the quadrotor’s flight can be generated. Based
on the flight constraints and target position estimation results,
a novel path planning algorithm using elliptical tangent model
is proposed and used in the quadrotor UAV path planner and
tracker design.

It should be noticed that we aim to provide a practical UAV
visual tracking system which is easy-to-carry and can work in
unknown and unstructured scenes autonomously. Since DJI
Matrice 100 platform includes a commercial flight controller,
our research is focused on how to implement and seam-
lessly integrate the UAV’s various tasks, e.g., visual tracking,
obstacle avoidance, and path planning, in complex outdoor
scenes.

III. AUTONOMOUS MOVING TARGET DETECTION AND

TRACKING FOR QUADROTOR UAV WITH

MONOCULAR VISION

A. Target Detection and Initialization

SSD is a fast single-shot object detector for multiple cat-
egories based on convolutional neural network [13]. This
algorithm was proposed by Liu et al. [13] in 2016. It is an
improved version of YOLO [14] and can ensure both the speed
and accuracy of the object detection compared with faster
R-CNN [15] and YOLO. A fixed-size collection of bounding
boxes is produced when images are input into SSN network,
and scores for the presence of object class instances in those
boxes are also given. After that, a nonmaximum suppression
algorithm is used to produce the final detection results [13].

Although SSD can provide the object position and its cat-
egory in the image, it cannot tell the difference between the
objects belonging to the same category. Therefore, if we want
to track a specific human target, an initialization approach for
this target has to be applied so that it can select the correct
target from multiple candidates in each image. In this paper,
we adopted the SVM [16] as the classifier with HOG [17]
and color histogram features to perform target screening. The
classifier is trained offline with images belonging to the target.

During the quadrotor UAV’s initial target searching stage,
SSD-based target detection algorithm will show multiple can-
didate human targets in series of subimages. In order to tell
which candidate is the correct one, the features extracted from
subimages will be input into SVM classifier. If a correct tar-
get is selected from these candidates, its position and size in
the image will be stored and used to accomplish the initializa-
tion of target tracking algorithm. Otherwise, the quadrotor will
continue to search until the target is found. Similarly, when
the target is lost during the target tracking process, the same
strategy is used to refind the target.

Fig. 3. Block diagram of the TLD-KCF algorithm framework.

B. Target Tracking by TLD-KCF

TLD is a robust framework for target tracking, which was
proposed by Kalal et al. [18] in 2012 to perform long-term
tracking of unknown objects in a video stream. It has three
components, namely tracking, learning, and detection, in the
TLD framework. Its tracking component is based on median-
flow tracker [19], but there may be tracking failure cases
especially in complex outdoor environments.

KCF was proposed by Henriques et al. [20] in 2014, which
is a high-speed tracker and running at hundreds of frames-
per-second. KCF can reduce both storage and computational
burden significantly by using circulant matrices. In our exper-
iments, we find that KCF may have a poor performance while
tracking a high-speed moving target or a target in low-frame-
rate video. This means that the target displacement between
adjacent frames cannot be too large; otherwise the tracker will
fail and cannot be recovered once the target is lost.

In this paper, we investigate the problem of autonomous
visual tracking of a moving target in cluttered outdoor scenes
with a quadrotor UAV. Since KCF can be implemented in
a few lines of code, it is very suitable for our quadrotor
platform with limited computing resources. However, trees
and other obstacles in the cluttered testing environments will
cause the occurrences of target shielding and KCF will have
poor tracking performance in these cases. Moreover, if the
target in the field of view is too close or too far from
the camera, it will result in significant changes of the tar-
get’s size in the image. Then the bounding box will easily
drift and eventually lead to target tracking failure. In order
to improve the tracking performance, a new tracker named
TLD-KCF is proposed which can perform fast and robust tar-
get tracking due to the conditional scale adaptive algorithm.
The block diagram of the TLD-KCF algorithm framework is
shown in Fig. 3.

In Fig. 3, the conditional scale adaptive KCF component is
a KCF-based tracker that estimates the motion of the target
between consecutive frames, and the tracker can adaptively
vary with changes of the target’s scale. The Detection com-
ponent is a detector that scans images at a regular interval,
which can relocalize the position of the target and reinitialize
the target of the tracker. The learning component supervises
the performance of tracker and detector, estimates the errors
of tracker, and provides training samples for the detector to
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reduce tracking errors and improve tracking accuracy in the
future.

As introduced in [20], the circulant matrix in KCF can be
expressed as follows:

X = C(x) = F • diag (̂x) • FH (1)

where F is a constant matrix that does not depend on x, and
x̂ denotes the discrete Fourier transform (DFT) of the gener-
ating vector. For sample set (xi, yi), we need to find a linear
regression equation f (z) = ωTz to minimize the squared error
over samples xi and their regression targets yi

arg min
ω

∑

(f (xi) − yi)
2 + λ‖ω‖2 (2)

where ω = (XTX + λI)−1XTy, X has one sample per row xi,
and each element of y is a regression target yi.

For frequently used kernel functions, we can solve ω by
solving the dual space coefficient α. α can be solved in Fourier
domain as

α̂ = ŷ
̂kxx + λ

(3)

where kxx is the first row of the kernel matrix K = C(kxx) and
a hat ˆ denotes the DFT of a vector. More generally,

kxx′ = exp

(

− 1

σ 2

(

‖x‖2
)

+ ∥

∥x′∥
∥

2
)

− 2F−1(x̂∗ � x̂′)
)

(4)

where � is the element-wise product, and the kernel correla-
tion of two arbitrary vectors, x and x′, is the vector kxx′

with
elements

kxx′
i = k

(

x′, Pi−1x
)

. (5)

Then in the next frame, we can calculate the response in
Fourier domain by

̂f (z) =
(

k̂x̂z
)∗ � α̂ (6)

where x̂ can be learned in the model. According to the response
peak, the position of the target can be estimated precisely.

In real-world applications, there exists a problem of the tar-
get’s size change in the image under some conditions. For
example, the acceleration and distance between the target and
the quadrotor is bigger than a given threshold. In order to
solve this problem, a conditional scale adaptive algorithm is
proposed in this paper to improve the performance of KCF. We
employ the bilinear interpolation to enlarge the image space
to enhance the robustness and the tracking accuracy. Here, we
define a fixed image template size as S0 = (sx, sy) and a scale
adjustment vector Ks = {k1, k2 . . . kn}, which are named scale
pooling in this paper. Then the response peak can be calculated
as follows:

arg max F−1̂f
(

zki
)

(7)

where zki is the scale sample patch, which is resized to S0.
On the basis of the response peak, the bounding box can be
adjusted and the target position can also be confirmed.

Fig. 4. Three coordinate systems and object imaging relationship.

C. Distance and Position Estimation for Moving Target

The relative distance between the target and the quadrotor
can be estimated approximately. As shown in Fig. 4, there are
three coordinate systems which are North-East-Down frame
{N}, UAV body frame {B}, and the gimbaled camera frame
{G}. The monocular camera is fixed in the center bottom of
the quadrotor and facing forward in order to keep the tracking
target in the center of the camera view.

In Fig. 4, f is the focal length of the camera and c is the opti-
cal center of the lens. The light emitted by the object passes
through the camera’s optical center and is then imaged on the
image plane. Suppose that the distance between a target with
a height of H and the optical center of the lens is d, and the
length of the object in the sensor is h. Then there is a pro-
portional relationship among these parameters: f /d = h/H. If
H can be given or obtained in advance, the distance between
the target and the camera can be estimated with d = Hf /h.
Otherwise, the UAV can use the data in the target initializa-
tion stage and the data in current observation to estimate the
distance d as follows:

d = len0

len
d0 (8)

where d0 is the laser range finder data between the target and
the camera and len0 is the size of the bounding box of the
target which are both obtained during the target initialization
stage, and len is the size of the bounding box of the target
detected currently. The units of len0 and len are pixels.

Suppose that the position of the bounding box of a target in
the image is shown in Fig. 5, in which �w and �h are offset
values of the center of the bounding box to the image center
in the horizontal and vertical directions. The relative position
between the camera and the target can be estimated with the
following equations:

α = �w

w
θw, β = �h

h
θh

�x = d tan α, �y = d, �z = d tan β (9)

where θw and θh represent the horizontal viewing angle and
vertical viewing angle of the camera, α and β represent the
relative angle between the target and the camera in horizontal
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Fig. 5. Position of a target’s bounding box in the image.

Fig. 6. DJI Guidance system.

and vertical directions, �x, �y, and �z represent the relative
distance between the target and the camera in three axes of
x, y, and z. The right-handed coordinate system is used in
this paper.

Based on the results of distance and position estimation for
a moving target, a control point can be given to guide the
autonomous fight of a UAV. In addition, the estimation values
provided in (9) can also be used to control the rotation angle
of the 3-axis gimbal of Zenmuse X3 camera, which can make
the target in the center of the image as much as possible.

IV. PATH PLANNING FOR UAV IN CLUTTERED SCENES

A. Local Environment Perception and Constraints
Generation

In the process of target tracking, a UAV has to fly at a fixed
height and perform obstacle avoidance in cluttered outdoor
scenes simultaneously. In this paper, our Matrice 100 plat-
form uses ranging data acquired by DJI Guidance system and
HOKUYO laser scanner to estimate both its current flying
height and distances to surrounding obstacles.

DJI Guidance system includes a central processor with
vision algorithms on the chip and five sensor modules, each
of which is integrated with a visual camera and an ultrasonic
sensor (see Fig. 6). By reading the Guidance data, UAV can
estimate the distances of the obstacles in five directions (front,
rear, left, right, and bottom) in real time, and the data of
downward distance is used as the flight height of the UAV.

Since the ranging data acquired from DJI Guidance system
is not accurate enough, the obstacle distances in the front,
left, and right directions are estimated by combining ranging
data from Guidance and HOKUYO laser. HOKUYO UTM-
30LX is a 2-D laser scanner and the measuring distance ranges
from 0.06 m to 10.0 m. Its frequency is 40 Hz, the detection
angle is 270◦, and the angular resolution is 0.25◦.

Matrice 100 is about 1 m long, 1 m wide, and 0.2 m high.
In order to prevent the laser data from being affected by the

Fig. 7. Laser scanning data used for obstacle distance estimation.

Fig. 8. In the cost map, the size of obstacle should be expanded accordingly.

moving part of the quadrotor, the ranging data less than 0.71 m
will be eliminated. So the possible obstacle distances obtained
by the UAV’s laser scanner are from 0.71 m to 10 m. Based
on these laser data, a local map is built with a fixed-size grid
division algorithm (scale is 10 cm). As shown in Fig. 7, 60◦
laser data in the front direction are used to estimate the front
obstacles, and 75◦ laser data on both sides are used to estimate
the obstacles on the left and right.

B. Path Planning Algorithm Based on Elliptical
Tangent Model

In the field of mobile robot path planning, configuration
space is a very popular approach. In this approach, the geomet-
ric center of a mobile robot is used to replace the whole robot
to perform path planning. Considering the size of the robot
itself, the size of obstacles in the map should be expanded
accordingly. Fig. 8 shows such an example, where the black
part represents the actual size of the obstacle, while the region
labeled with dotted lines represents the expansion area. The
UAV’s path planning task is completed based on the cost map.

1) Basic Algorithm I (Elliptical Fitting for Obstacle
Region): In the cost map, a minimum external ellipse is gen-
erated for the obstacle region. Considering the efficiency and
precision, the algorithm of least squares fitting of ellipses [21]
is adopted to perform elliptical fitting of boundary points near
the obstacle’s contour edge. Sometimes there are still a few
points outside the ellipse [see Fig. 9(a)]. In order to enable
the ellipse to enclose all corresponding obstacle region [see
Fig. 9(b)], the following algorithm is designed.

1) Judge whether the ellipse contains all boundary points
of the current obstacle region. If all boundary points are
included, the algorithm ends; otherwise, go to step 2).

2) Increase a unit length of the long axis of the ellipse,
and then judge whether the current ellipse contains all



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS

(a) (b)

Fig. 9. (a) Example of a few points outside the ellipse. (b) Example of the
ellipse enclosing all points belonging to an obstacle.

Fig. 10. Line LM and LN are two tangents of the ellipse O.

boundary points of the obstacle region. If all bound-
ary points are included, the algorithm ends; otherwise,
increase a unit length of the short axis of the ellipse and
go to step 1).

2) Basic Algorithm II (Elliptical Tangent Generation From
Outside Point): To reduce the computational burden, we pro-
pose an algorithm using auxiliary circle to calculate the tangent
of the ellipse. Suppose that there is an ellipse with the focus
points F1 and F2, and L is a point outside the ellipse. Two
tangents from point L to ellipse O can be obtained by the
following steps.

1) Generate an auxiliary circle for the ellipse O; the circle
center is O and the diameter is the long axis of the
ellipse.

2) Generate a circle with diameter of LF1, which intersects
with the auxiliary circle of the ellipse O at points M
and N.

3) Line LM and LN are the elliptical tangents (see Fig. 10)
and they are the candidate paths in the UAV’s path
planner.

3) Basic Algorithm III (Approximate Common Tangent
Generation): When a path is planned between two adjacent
ellipses, it is not feasible to generate elliptical tangents from
a point of an ellipse and use them as the candidate path. As
shown in Fig. 11, A and B are two adjacent ellipses and P
is a point of A. Line PD and PE are two elliptical tangents,
but these tangents pass through the inside region of ellipses
A, which means that the UAV may collide with the obstacles
in region A and it is absolutely unacceptable.

To meet the requirement of the UAV’s real-time path plan-
ning, we use an approximation algorithm to obtain the approx-
imate common tangents between two ellipses as follows.

1) Generate tangent DPD from point D to ellipse A (two
tangents are generated and the one near the point P is
selected). Similarly, tangent EPE will be generated from
point E to ellipse A.

Fig. 11. Line PD and PE are the elliptical tangents, but these two tangents
pass through the inside region of ellipses A.

(a) (b)

Fig. 12. (a) Generate tangent DPD and EPE from points D and E to ellipse
A. (b) Generate tangent PDD1 and PEE1 from points PD and PE to ellipse B.

2) Generate tangent PDD1 from point PD to ellipse B (select
the one near point D). Similarly, tangent PEE1 will be
generated from point PE to ellipse B.

Fig. 12(a) and (b) shows two examples to illustrate step 1)
and 2), respectively. According to the steps introduced above,
approximate common tangents can be generated which can be
used as safe paths connecting two adjacent ellipses.

4) Main Algorithm (Path Planning Based on Elliptical
Tangent Model): Set S and E as the start point and endpoint in
the UAV’s path planning. The detailed steps of path planning
are as follows.

1) Backtrack from E and get the line segment ES. If this
segment does not collide with any obstacle, it will be the
optimal path and the path planning task ends; otherwise,
go to step 2).

2) When backtracking from E and the line segment ES col-
lides with an obstacle, perform elliptical fitting for this
obstacle (using Basic Algorithm I) and obtain minimum
external ellipse O0 [see Fig. 13(a)].

3) Generate tangents ES1, ES2 from point E to ellipse O0
and SE1, SE2 from point S to ellipse O0, respectively
(using Basic Algorithm II) [see Fig. 13(b)].

4) There are four new subpaths generated, which are S1E,
S2E, SE1, and SE2. For each subpath, go back to step 1)
and perform path planning recursively. In the process
of path planning, Basic Algorithm III will be used to
generate the path connecting two ellipses. The recursive
process ends until all subpaths have no collisions with
any obstacle [see Fig. 13(c)].

5) Store all possible paths between points S and E. For any
two points of each path, if there is no obstacle between
two points, connect them. Then according to the rule
that the line segment is the shortest between two points,
optimize each path [see Fig. 13(d)].
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(a) (b) (c) (d) (e)

Fig. 13. Some detailed steps of path planning algorithm (a) step 2), (b) step 3), (c) step 4), (d) step 5), and (e) step 7).

6) Score every path from S to E with the following equation
which includes distance cost and rotating angle cost:

P(S, E) = D(S, E)+Y(S, E) (10)

where P(S, E) is the total cost, D(S, E) is distance cost in
this path, and Y(S, E) is rotating angle cost in this path.

7) Calculate the cost values of all possible paths and select
the one with least cost as the output of UAV’s path
planner. As an example shown in Fig. 13(e), the path
SABCDE is the final path planning result for this case,
where SA, BC, and DE are line segments while AB and
CD are the arcs of the corresponding ellipses.

Until now, the algorithm of UAV’s path planning based
on elliptical tangent model is completed. This algorithm can
select an optimal path with a least cost and also guarantee the
smoothness of local paths, which makes it easy for our small
UAV to implement autonomous flight in unknown cluttered
outdoor scenes.

V. EXPERIMENTAL RESULTS AND ANALYSIS

A. Platform

A quadrotor UAV platform, DJI Matrice 100 (see Fig. 14),
is used in our experiments, which is equipped with a monoc-
ular vision sensor DJI ZENMUSE X3 [see Fig. 15 (a)], an
embedded computer Manifold, a visual sensing system DJI
Guidance and GPS. Moreover, a 2-D laser scanner HOKUYO
UTM-30LX [see Fig. 15 (b)] is installed in the UAV plat-
form by us in order to improve its real-time obstacle detection
performance.

In our experiments, the onboard embedded computer named
DJI Manifold is installed on our quadrotor UAV platform and
the DJI SDK provided by DJI is used to support our program-
ming. The onboard HOKUYO laser, Zenmuse X3, Guidance,
GPS, and flight controller are connected to Manifold. In this
paper, robot operating system is running in Manifold.

B. Experimental Results

The test environments are the groves on the campus of
Dalian University of Technology, which are typical complex
outdoor scenes and have various unstructured environment
characteristics, such as cluttered trees, pedestrians, grass-
lands, and brick roads. In a series of experiments, different
people wearing different clothes are selected as tracking
targets who walk through the woods quickly. Many pedes-
trians are also walking in the woods randomly during our

Fig. 14. Matrice 100 UAV platform used in our experiments.

(a) (b)

Fig. 15. (a) Monocular vision sensor. (b) 2-D laser scanner.

experiments and they bring unpredictable interference to our
experiments.

Fig. 16 shows three groups of experimental results of mov-
ing target tracking. The tracking results for a human target in
the UAV’s vision images are shown in Fig. 17. A group of
experimental results of the UAV’s autonomous flight through
the cluttered woods are shown in Fig. 18. It should be noted
that all these experiments are implemented on our quadrotor
UAV’s onboard computer and perform in real time. Although
the computational resources of the embedded computer are
limited, our quadrotor UAV can accomplish real-time mov-
ing target tracking and path planning in cluttered outdoor
environment simultaneously.

More experimental videos can be viewed at the website.2

As shown in the video, the human targets are wearing differ-
ent clothes in different experiments, and there will be other
interference targets in the tracking process (some pedestrians
were walking through the experimental sites randomly). All
these can prove the validity of our approach.

2http://v.youku.com/v_show/id_XMjc5NDY1NjU2NA==.html?spm=a2hzp.
8244740.0.0
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TABLE I
MEAN ERROR AND PERCENTAGE OF ERROR OF TARGET DISTANCE ESTIMATION AT DIFFERENT DISTANCE BETWEEN TARGET AND CAMERA

Fig. 16. Three groups of experiment results: a quadrotor is tracking three different human targets walking through the woods in first, second, and third row.

Since the human target does not move at a fixed speed,
it is important for the UAV to estimate the relative distance
between the moving target and itself accurately. A testing
experiment is designed and carried out to verify the accuracy
of the relative distance estimation algorithm in this paper. Let
the UAV work in hovering flight mode at a fixed height of
1.7 m. A fixed-height target stops at different locations rang-
ing from 3 m to 14 m with an interval of 1 m. Based on the
algorithm proposed in Section III-C, ten groups of distance
estimation values are obtained at each location, which means
total 120 groups of data are obtained at 12 locations. The
mean error and percentage of error of target distance estima-
tion at different distance between target and camera are given
in Table I. Taking into account the system errors existing in the
experiment, the distance estimation algorithm proposed in this
paper is a valid one and can be used in real-world applications.

C. Comparison of Four Target Tracking Algorithms

In this section, four kinds of target tracking algorithms,
i.e., TLD, KCF, TLD-KCF, and GOTURN, are compared in
time-cost and lost track ratio. TLD, KCF, and TLD-KCF (our
tracking algorithm) have been introduced in Section III-B.

GOTURN was proposed by Held et al. [22] in 2016, and
this tracker uses a regression-based approach and is trained
offline to learn a generic relationship between appearance
and motion. Compared with previous trackers using networks,
GOTURN is a much faster tracker and can be used in real-time
applications.

Considering the limited computational resources provided
by our UAV’s onboard computer, time-cost is a crucial eval-
uation criterion. Table II presents the comparison result of
time-costs for the four tracking algorithms running on our
UAV’s onboard computer. It can be seen that the average time-
cost of GOTURN is 122.8 ms/frame, which is about 3.5 times
that of TLD-KCF. In our UAV platform, the monocular cam-
era gets a video stream at a frame rate of 25 Hz. Since the
tracking frequency of GOTURN is only 8 Hz, it cannot meet
the requirements of the UAV’s real-time visual tracking for
a moving target in cluttered scenes. The tracking frequency of
TLD-KCF is about 29 Hz, and the tracking frequency of TLD
and KCF are much faster, so all of these algorithms are fast
enough in this paper.

The lost track ratio is an effective evaluation criterion to
measure the tracking results with reference to a ground truth.
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Fig. 17. Tracking results for a human target in the quadrotor’s vision images.

Fig. 18. Quadrotor’s autonomous flight through the cluttered woods.

TABLE II
TIME-COST FOR FOUR TRACKING ALGORITHMS

Fig. 19. Comparison results of lost track ratio using a group of human targets
in VOT 2014.

As introduced in [23], the lost track ratio defines a compre-
hensive measure of tracking performance. The smaller the
area under the lost-track ratio curve is, the better the tracking
result is. Here, we use VOT 2014 as the benchmark dataset to
compare the tracking performance of TLD, KCF, TLD-KCF,
and GOTURN. There are 25 sequences in VOT 2014 dataset
showing various target objects in challenging backgrounds.
Two groups of human targets and two groups of cars are

Fig. 20. Comparison results of lost track ratio using another group of human
targets in VOT 2014.

selected to test the performance of these four tracking algo-
rithms. Comparison results of lost track ratio using different
human targets and cars in VOT 2014 dataset are given in
Figs. 19–22, respectively.

According to the lost track ratio curves shown in above
figures, TLD-KCF shows a superior tracking performance than
that of TLD and KCF. As compared with GOTURN, TLD-
KCF shows a better performance than that of GOTURN when
the target does not have salient features. As shown in Figs. 19
and 20, the performance of TLD-KCF is better than that of
GOTURN when the tracking target is human. When a car is
tracked in complex outdoor scenes, the performance of TLD-
KCF is still better than that of GOTURN (see Fig. 21). When
the target is changed to a black car with the relatively clean
background, the performance of GOTURN is better than that
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Fig. 21. Comparison results of lost track ratio using a group of cars in VOT
2014.

Fig. 22. Comparison results of lost track ratio using another group of cars
in VOT 2014.

of TLD-KCF, but the performance of TLD-KCF is still better
than that of TLD and KCF significantly (see Fig. 22).

In this paper, we want to find a practical solution for
a quadrotor UAV to accomplish autonomous visual tracking
of moving targets in cluttered outdoor scenes. Considering
both the tracking accuracy and time-cost, TLD-KCF is our
first choice to accomplish the tracking task robustly with our
quadrotor platform.

VI. CONCLUSION

This paper has been focused on how to accomplish vision-
based moving target detection and tracking, as well as real-
time path planning with a small UAV flying in unstructured
and cluttered outdoor scenes. To accomplish real-time mov-
ing target tracking tasks, SSD algorithm has been adopted to
detect multiple candidate targets from an input image, and then
an SVM-based target screening algorithm has also been used
to eliminate the false targets and find the correct one. A new
tracking algorithm, TLD-KCF, has been proposed to improve
the tracking performance significantly, and its low computation
cost is suitable for the real-time tracking task. Then, a novel
path planning algorithm has been proposed based on an ellip-
tical tangent model, which can perform feasible path planning
without map building. Experimental results and videos have
shown that the proposed approach is a practical solution for
a UAV to accomplish autonomous moving target tracking in
cluttered outdoor environments.

In the future research, we plan to further improve the
performance of our moving target tracking algorithms when

the target is moving at a high speed (e.g., a human is run-
ning instead of walking). Moreover, other object detection
and tracking algorithms will be studied to further improve our
UAV’s robustness in real-world applications.
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