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Abstract

Nowadays visual and inertial information is readily available from small mobile plat-

forms, such as quadcopters. However, due to the limitation of onboard resource and

capability, it is still a challenge to developing localisation and mapping estimation

algorithms for small size mobile platforms.

Visual-based techniques for tracking or motion estimation related tasks have been

developed abundantly, especially using interest points as features. However, such

sparse feature based methods are quickly getting divergence, due to noise, partial

occlusion or light condition variation in views. Only in recent years, direct visual

based approaches, which densely, semi-densely or statistically use pixel information

reveal significant improvement in algorithm robustness and stability.

On the other hand, inertial sensors measure the changes in angular velocity and

linear acceleration, which can be further integrated to predict relative velocity, posi-

tion and orientation for mobile platforms. In practical usage, the accumulated error

from inertial sensors is often compensated by cameras, while the loss of agile egomo-

tion from visual sensors can be compensated by inertial-based motion estimation.

Based on the complementary nature of visual and inertial information, in this

research, we focus on how to use the direct visual based approaches to providing

location information through a monocular camera, while fusing with the inertial

information to enhance the robustness and accuracy. The proposed algorithms can

be applied to practical datasets which are collected from mobile platforms.

Particularly, direct-based and mutual information based methods are explored in

details. Two visual-inertial odometry algorithms are proposed in the framework of

multi-state constraint Kalman filter. They are also tested with the real data from a

flying robot in complex indoor and outdoor environments. The results show that the

direct-based methods have the merits of robustness in image processing and accuracy

in the case of moving along straight lines with a slight rotation. Furthermore, the

visual and inertial fusion strategies are investigated to build their intrinsic links,

then the improvement done by iterative steps in filtering propagation is proposed.

As an addition, for experimental implementation, a self-made flying robot for data

collection is also developed.
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Chapter 1

Introduction

1.1 Overview of Research Problem

In recent years, the massive expansion of robots has ushered a new trend in both

industrial and academic research. Smart devices, intelligent systems and enormous

amounts of data have gradually become indivisible parts of our daily life. Even small

mobile platforms nowadays can handle volume information and perform multiple

tasks. Micro Aerial Vehicles (MAVs) among them are the prominent representation,

which are ideal platforms for a broad range of applications in indoor and outdoor

environments.

We have seen various successful commercialised products of autonomous MAVs

in outdoor applications such as aerial photography. This experience could pro-

vide us a different view towards our world and life. Due to the superior nature in

size, mobility and rapid response, such mobile platforms are also popularly adopted

in missions including resource monitoring, information gathering, mapping, search

and rescue, especially in the dangerous and inaccessible environment for human or

ground vehicles.

However, building an intelligent mobile platform is still a challenging task when

considering all the size, weight and power constraints as well as minimising human

interaction. To achieve the ability of full autonomy, mobile platforms should inte-

grate the capability of perception, motion estimation, planning, control, situational

awareness and decision making. Among these, motion estimation is the foremost

critical component. Actually, for all mobile robots, knowing “where am I ” is always

the prerequisite condition. Here, the “where” is not just limited to the location of

mobile platform itself but includes the motion state, relative position and translation

state to previous states, the world or other objects.
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In this thesis, we look into motion estimation methodologies using monocular

camera and IMU, both of which are fused in a modified filter. Specifically, two

direct Visual and Inertial Odometry (VIO) methods are proposed. They will be

applied and tested in practical datasets containing complex outdoor and indoor

environments with the goal of achieving higher accuracy in trajectory estimation

and more robustness in visual perception. Additionally, as our research is tightly

related to practical applications, a quadcopter mobile platform will also be built for

data collection and algorithms testing.

1.2 Research Motivation

1.2.1 GPS-denied application

A commonly used method for motion estimation is through using the Global Posi-

tioning System (GPS), which consists of three major segments (space, control, and

user). In space, the GPS satellites have nearly circular orbits with an altitude of

about 20200km above the earth. The present nominal constellation consists of 24

operational satellites deployed in six evenly spaced planes with an inclination of 55◦

and with four satellites in each plane [1]. The control segment is responsible for

monitoring the status of the space segment, which consists of six monitor stations

and a master station around the world. The user segment includes antennas and

receivers that is commonly used in localisation application. Each satellite contin-

ually broadcasts its position, velocity, clock error and health status. By capturing

this data from three or more satellites simultaneously, the traditional receiver can

estimate the position, velocity and time for the user, while for some advanced re-

ceiver may use additional navigation solution to aid in tracking weak satellite signals

[2]. An traditional GPS receiver commonly used in mobile platforms can be seen in

figure 1.1(h).

In normal civilian applications, only the limited accuracy provided by GPS stan-

dard positioning service is available by standalone users. Its positional accuracy is

about 10 to 20m at 95% probability level [1]. Precise positioning service is avail-

able only to users authorized by the U.S government [2]. On the other hand, al-

though GPS receivers operate passively, the GPS application is limited due to the

obstructed signal path between the receiver and a satellite. For many applications

of small mobile platforms, the tasks could be performed in the environments such

as indoors, forests, underground, underwater, the vicinity of tall buildings, which
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will lead to unstable GPS signal receiving and biased position estimation. In past

decades, GPS-based navigation is mostly well-developed by the aerospace commu-

nity [1, 3], motion estimation and autonomous navigation for small mobile platforms

in GPS-denied environments have only gained popularity recently [4–7].

1.2.2 Defective robotic perception

Our human beings and other animals can sense the world through our embodied

visual, tactile and auditory modalities, and then interact with the environment ef-

fortlessly, although this process includes a lot of environmental noise and incomplete

measurements [8]. Similarly, robots can perceive the environment through various

sensors, including the types of contact, contact-less, active or passive. Active sen-

sors function with emitting some forms of radiation or energy, which then can be

reflected by scene structures, and detected by the sensor afterwards. A majority of

active sensors are used for measuring the distance to an object. This can be achieved

either through measuring the time-of-flight [9] or through triangulation technique

in geometry [10]. Such sensors include ultrasonic range finder, infrared range finder,

and LiDAR. Passive sensors function through purely observing the environment

but do not emit any form of radiation or energy, which include cameras, Inertial

Measurement Unit (IMU), pressure, radiation and contact sensors. Sensor examples

are shown in figure 1.1.

Usually, one robot strives to use multiple sensors to minimise accumulated errors,

increase response time or compensate with each other for hidden information which is

limited in an individual sensor. However, in mobile platforms, due to the restrictions

of low payload capacity, small physical size and complex application environments,

large compromises over the number and type of sensors must be carefully considered.

1.2.2.1 Inertial sensing drift

As a proprioceptive sensor in mobile platforms, IMUs are very commonly used to

measure the changes in angular velocity and linear acceleration [11–14]. An common

IMU example (myAHRS+ [15]) for small mobile platform is shown in figure 1.1(g).

Traditionally, IMUs utilise mechanical gyroscopes, while modern units use fibre

optic technologies enabling a higher accuracy [16]. These units, however, weigh

several kilogrammes and are expensive, which limits their applications in weight

restricted mobile platforms. The recent breakthrough in Micro Electro Mechanical

Systems (MEMS) technology has allowed accelerometers to be fabricated on the
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(a) Ultrasonic
range finder

(b) Infrared
range finder

(c) LiDAR (d) Kinect

(e) Stereo camera (f) Monocular
camera

(g) IMU (h) GPS reciever

Figure 1.1: Examples of active and passive sensors. 1.1(a) to 1.1(d) in the first row
are active sensors, and 1.1(e) to 1.1(h) in the second row are passive sensors.

chip at a fraction of the cost and weight, with only a small compromise in accuracy

[17, 18].

Nevertheless, the core issue limiting IMU applications in motion estimation is its

essential mechanism of drift. It is easy to compute the velocity and position of mo-

bile platforms through integrating or double integrating the detected accelerations.

However, if such calculations are corrupted by noise or bias, the estimation results

will be divergent rapidly over time [14, 18]. In order to bound the drift, in practical

usage, an IMU is usually combined with other exteroceptive sensors, like cameras.

1.2.2.2 Visual sensing blur

Traditionally, commercial board cameras are physically small, inexpensive and low

power consuming. Therefore they are the ideal components in embedded appli-

cations for mobile platforms, such as smart phones and MAVs. Within a cam-

era, Charge Coupled Device (CCD) or Complementary Metal Oxide Semiconduc-

tor (CMOS) is used as the photosensitive sensor, which works as an optical-electric

transducer, receiving light ray then converting it as digit intensity value. This

mechanism is equivalent to animal visual processing system between eyes and brain,

where cameras can be regarded as an interface between the world and supported
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computation system. The appearance of a scene is recorded as an intensity matrix,

then further analysed to get motion or location information.

However, for a single camera (monocular) device, like the one in figure 1.1(f),

which consists of only one lens and one image sensor, the depth information of a

scene or objects not can be detected directly from a single frame. In contrast to some

bearing sensors such as time-of-flight cameras, which measure the distance using the

time-of-flight principle [19], the depth of a pixel for monocular camera needs to be

inferred from inter-frame motions. In some research, the depth estimation might

be somewhat mitigated with a stereo (figure 1.1(e)) or structure light rig (figure

1.1(d)), but then the advantages of low power and compactness are lost.

On the other hand, the quality of images is not always satisfying for compacted

hardware systems. Noise, occlusion and light condition would change in a series of

agile manoeuvres. Low quality in images further leads to a rough estimation result

in motion or location, then such algorithm is divergent rapidly. In most algorithms,

low quality images are often tagged as outliers and dropped [20–22]. Then irregular

gaps will exist in continuous image sequences. In practice, for a standard onboard

camera, its sample rate is in 20 ∼ 30Hz; well-manufactured one may achieve higher

performance but cost more in price as well [23, 24].

In order to improve the accuracy of estimation, the loss of motion dynamics

between image samplings should be compensated by other fast-rate sensors, such

as IMUs. Actually, the properties of visual and inertial sensors are complementary

in terms of frequency response (see figure 1.3). The MEMS IMU can reach aston-

ishing sampling rate with high accuracies [18]. Even for a common IMU product

(figure 1.1(g)), the sampling rate can reach 100Hz [15], which can be adopted to pro-

vide more measurements of angular velocity and linear acceleration for a monocular

mobile platform.

1.2.3 Limited motion estimation techniques

The combination of camera and IMU can help mobile platforms to learn the world

through gathering raw visual and inertial information. However, without efficient

and accurate estimation techniques, it is still impossible to achieve reasonable locali-

sation estimates. Only in recent years, motion estimation, localisation and mapping

methodologies are rapidly developed, especially based on visual techniques. These

methods include Simultaneously Localisation and Mapping (SLAM) [25, 26], Visual

Odometry (VO) [27–29], Structure from Motion (SfM) [30, 31], etc. From them,
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the motion and pose of mobile platforms can be estimated, and the environmental

structure can also be built in various appearance levels.

However, due to the limitation of small physical size, light weight and onboard

computational resources, such estimation algorithms not can be applied in most

mobile platforms directly. Some issues still need to be carefully considered, including

how to trade off efficiency and accuracy in computation, how to use the raw visual

information, and how to fuse inertial data with visual data.

1.2.3.1 Visual simultaneously localisation and mapping

In early robotics research, localisation and mapping were tackled independently,

due to the fact of mutual dependency for both tasks [25]. A map can only be

created when the robot’s pose is known, while localisation needs to be confirmed

with an accurate map representation. The research of SLAM tackles both tasks

simultaneously.

SLAM algorithms based on various sensors have been developed for decades in

the robotic community. Traditional SLAM approaches usually track the pose of a

robot on the ground plane, and then the 2D maps are created by either representing

a slice of the world or projecting 3D landmarks onto the ground [26]. The visual

sensors applied in visual SLAM free the movement in height. Thus a full 3D repre-

sentation of the environment can be built. On the other hand, in SLAM approaches,

a loop detection process [32] is required to guarantee the platform is aware it has

revisited a known location. The loop closure problem is commonly perceived as a

core topic in SLAM, and it is often regarded as an important test when evaluating

particular SLAM approaches. As mentioned in previous sections, the inherent noise

in sensor measurements makes the estimated pose prone to drift over time during ex-

ploration. There will be a significant difference between the estimation and ground

truth as time goes by. Once the platform returns to a previously visited location,

the key of loop closure detection is to ensure a consistent map representation with

the existence of such drift.

SLAM approaches seem quite excellent in providing both localisation and map

at the same time. However, it not can ignore the extensive mapping information

and the frequently retrieving operation while such algorithm is running. Especially

when the map grows largely along time with the existence of accumulated error, the

computational burden becomes significant. For resource limited mobile platforms,

building and using a global map under strict time constraints is still a challenge

with the commercial available sensors and computational power.
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Figure 1.2: Scale ambiguity in monocular motion estimation. Only the proportion
of a1 and b1 are kept during motion. It is impossible to distinguish whether the
camera is moved from O1 to O2 or O1 to O3, since a1

b1
= a2

b2
.

1.2.3.2 Visual odometry

Incremental motion estimation with cameras, commonly known as visual odome-

try, is a fundamental component for almost all mobile platforms. Pairwise sensor

measurements, such as consecutive images in monocular case, are usually the only

information sources which are used to estimate the motion of the platform. Sim-

ilar to wheel odometry, which incrementally calculates the movement of a vehicle

by integrating the angles of wheel-turns over time, visual odometry incrementally

estimates the pose of the vehicle by computing the motion from sequential image

frames. Compared to wheel odometry [33], the advantage of VO is that the expected

results will not be affected by wheel slip in uneven terrain or other adverse condi-

tions. However, all visual only estimation techniques using monocular camera have

the classical issue of scale ambiguity. Given that a space point is co-observed in two

distinct camera frames, one can estimate the unknown depth using the triangulation

technique. But it is impossible to measure absolute scale based on the monocular

visual measurements only. A simple example is shown in figure 1.2. The real scale

needs to be confirmed by another reference, since only the proportion of travelling

distance and scene depth can be kept.

For another point of view, VO can be regarded as visual SLAM without cumber-

some mapping and loop detection. Odometry techniques only aim to guarantee the

local consistency of the estimated trajectory, unlike SLAM approaches which seek to

get the global consistency of predicted trajectory and map. VO techniques remove
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the loop detection for computing efficiency. Most historical data is marginalised or

dropped out from lively tracking. In practice, the current state only maintains a

few recent poses.

Although visual odometry methods try to enhance computational efficiency by

means of sacrificing the integrity of global map, avoiding the revisit of previous map

and performing the pose estimation locally, they are still facing the significant scale

ambiguity problem. Visual only odometry, estimating the poses from the geometry

relationship between frames, is also prone to drift over time. In this thesis, we will

use the inertial-based estimation to ease the drift and also provide a scale reference

for visual-based odometry.

1.3 Research Focuses

1.3.1 Visual and inertial fusion

Visual and inertial sensors are available for almost all mobile platforms. The prop-

erties of simple detection with rich information, make this combination popularly

applied in motion estimation approaches. As mentioned above, the inertial sensor

can compensate for the motion dynamics between visual samplings. Beyond this,

they are also complementary in estimation. On the one hand, the fast drift issue in

inertial-based estimation can be bounded by the visual-based method. On the other

hand, the rich inertial dynamics can provide more prior information for visual-based

estimation.

For the fusion methods of visual and inertial data, there are two categories, i.e.

loosely and tightly coupled. Tightly coupled methods can jointly estimate robotic

poses with the visual and inertial information [34–37]. The correlation between

two sensors will be considered in calculation at every time step. However, due

to the resource limitation of mobile platforms, it needs to trade off computational

cost with algorithm efficiency. The loosely coupled approaches are more efficient

than tightly coupled methods in general [11, 38–40]. They tackle the inertial and

visual measurements separately. For example, in a motion estimation algorithm, the

inertial measurement may first be processed to get an initial pose guess, then such

estimate is used as a priori knowledge for visual-based computation. Visual and

inertial parts run independently but correct latest results in turns. In the thesis,

we will use the idea of loosely couple methods. Particularly, a filtering framework

is used to tackle inertial and visual information in propagation and updating steps
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× ×

IMU in
(∼100 Hz)

Camera in
(∼30 Hz)

Odometry out

SLAM out
time

Figure 1.3: Conceptual rate comparison for IMU inputs, camera inputs, Odometry
outputs and SLAM outputs. If the pose estimation task of odometry and other tasks
of SLAM were done within the camera rate, the SLAM outputs can catch up the
inputs of image frames. However, SLAM tasks often require more computational
time for loop detection, mapping building or global optimisation. In order to achieve
a real-time performance of the whole algorithm, tasks should be carefully tailored
or arranged in multi-threads.

respectively. As inspired by iterative techniques from tightly coupled methods, the

iterative solution is also studied.

1.3.2 Direct based methods

In sensory information processing, the methods of how to use raw data have a

tremendous impact on the efficiency and robustness for algorithms. For inertial

information, it is commonly adopted in an inertial-driven dynamic model instantly.

While for visual information, methods are various due to the fast developing in

computer vision community. Among them, some feature-based methods using SIFT,

SURF and ORB features are the most popular [21, 23, 41, 42]. With the helping

of sophisticated techniques in feature extraction, expression and matching, visual-

based pose estimation can leverage such feature correspondents to build geometry

relations between frames. However, it not can be neglected that the procedures of

feature processing may consume vast computational resources, especially for large

volume image data. Even for some particular cases using binary features, a previous

training and loading procedure for feature vocabulary are still needed. Additionally,

due to the presence of noise, occlusion and illumination variation in image quality,

feature matching results will be largely affected.

Among the research on computer vision, there exists another category of the

visual-based method, which directly uses the photometric information to build ge-

ometry constraints between frames [43–48]. In such methods, by removing the fea-

ture processing procedures, the computational time seems to be saved theoretically.
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But tackling every pixel in a whole image range then finding a match is still a mas-

sive project. Take an image in VGA format for instance. It contains 640×480 pixels.

Even if every pixel is perfectly matched without any outlier and location change,

it still needs at least 307, 200 times search and matching steps for every pixel in a

pair of images. But in practice, even a slight illumination variation may lead to a

significant change in pixel intensity value. Direct-based methods are not processed

the same as feature-based extracting and matching for sparse points. They are of-

ten using regional pixels. For instance, semi-dense methods [43] usually focus on

prominent pixel regions with large gradient, which largely cut down the number of

pixels in visual processing while keeping the significant information in an image.

Additionally, among direct-based methods, some methods are using mutual infor-

mation theory [47, 49] to express the visual data. This idea of representing discrete

images as random variables can use the statistic information from the whole image

rather than sparse points. Therefore, due to the information for a large area is kept,

the more robustness to the variation in full image can be expected. In this thesis, we

will develop the visual measurement model using the ideas from direct-based meth-

ods. The measurement model will then be fused with the inertial-driven prediction

in a filtering framework. Such novel measurement models and the corresponding

VIO methods are novel in this research research area.

1.4 Summary

The research of robotic perception and motion estimation are the fundamental of

application and further high-level tasks for mobile platforms. In practice, such plat-

forms can sense the world through various sensors, but monocular visual and inertial

combination is the most economic and efficient way. But due to the limitation of

physical size, payload capacity and onboard computational resources, most of the

current estimation methods not can be applied in small mobile platforms, such as

quadcopters. Additionally, the essential accumulated error and image quality are

easily affected by sensor noise, scene occlusion and illumination variations, which

makes the motion estimates prone to divergent over time. In order to get a consistent

motion estimation with acceptable performance in the complex indoor and outdoor

environments for mobile platforms, we perform our research from the following three

aspects: visual and inertial information fusion method in a loosely couple filtering

framework, direct-based visual measurement models and practical mobile platform

with sufficient sensory capacity and computing resources.
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1.5 Contribution Overview

In this thesis, two novel visual-inertial odometry methods are proposed, and one

mobile platform is built. The VIO algorithms can estimate the motion from inertial

and visual data streams from practical indoor and outdoor environments. The

quadcopter can manoeuvre freely and record the visual and inertial data at the

same time. Specifically, the contributions can be depicted as follows:

First of all, we review the state-of-the-art research from the perspective of

feature-based, direct-based, and visual-inertial fusion methods. The feature-based

methods are commonly used in computer vision and robotic communities. They

measure the world through visual geometrical constraints, and the visual measure-

ment model is often expressed as the re-projection error of sparse points. The

direct-based methods only become popular as the increasing of computing capabil-

ity in recent years. The way to use the photometric information can make the visual

measurement more robust to the environmental variation. There are two branches

of visual-inertial fusion methods, i.e. tightly and loosely coupled methods. As the

names indicate, they are different by whether using covariance terms between visual

and inertial measurements. The loosely coupled filtering based methods has the

merits of less computation, while the tightly coupled are more accuracy in results.

Secondly, a novel direct-based VIO algorithm using a multi-state constraint

Kalman filter framework is proposed. In this approach, an inertial-driven dynamic

model is applied in the propagation step of the filter, and the direct-based visual

measurement model is used to update the state. The salient aspect of multi-state

constraint Kalman filter is the state augmentation and removal scheme, where the

length of the state vector can be modified. In the direct-based measurement model,

scattered pixel patches are extracted and matched from image regions with the large

gradient. Different from feature-based methods, the patch location and pattern are

irregular. Thus more significant visual information can be adopted. Additionally, we

analyse the intrinsic links between various estimation methods. Specifically, the fact

is presented that adding an iterative process in the filtering framework is equivalent

to the optimisation based estimation under the view of likelihood maximisation.

Thirdly, a novel visual measurement model for filtering based method is proposed

using the theory of probability and information entropy. The values of mutual infor-

mation between consecutive images can reflect their similarity. The most significant

character of applying MI in visual data is increasing algorithm robustness to the case

of noise, occlusion, and illumination variation. We present the details of derivation
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process of the MI-based visual measurement model, where the pose is concisely for-

mulated as the minimal expression using the knowledge of Lie algebra. Additionally,

following the analysis of the iterative process in a filtering framework, we propose an

iterative equation based on the Levenberg-Marquardt solution, where the Hessian

matrix of MI with respect to the pose is also presented.

Finally, we compare some commercial products of visual and inertial sensors

according to our system requirement, then build a quadcopter as a data collection

platform. The major components and practical experience are introduced. Our self-

made quadcopter has high compatibility with both software and hardware. On the

one hand, the platform can enjoy various supportive resources from the developing

community by using an elite Ubuntu system. Additionally, other sensors can connect

to the system through universal USB ports. The visual and inertial data stream can

be stored lively in memory with a unified time line. The simulations in ROS and

Matlab can provide us helpful guidance in practical operations.
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1.6 Thesis Outline

The whole thesis has been structured in seven chapters. After a general introduction

to the research problems and major contributions in chapter 1, a detailed background

review concerning visual-inertial odometry and related work will be given in chapter

2. The technical preliminary regarding visual geometry, rigid body kinematics and

computing frameworks of filtering and optimisation are introduced and discussed

in chapter 3. In chapter 4, a novel direct visual measurement model fused with

inertial information in a multi-state constraint Kalman filter will be presented. Fur-

thermore, the intrinsic link between two major fusion method, i.e. filtering based

and optimisation based approaches, will be analysed in an iterative filtering process.

Our second VIO algorithm will be presented in chapter 5, where the mutual infor-

mation based direct visual measurement model is applied. Additionally, an iterative

solution will also be proposed in this chapter. As this study is tightly related to

practice, in chapter 6 a hardware implementation for quadrotor system with a set of

monocular camera and IMU will be illustrated, and the simulation for this platform

will also be introduced. Finally, all the research work and future research directions

will be concluded in chapter 7.



Chapter 2

Background and Literature

Review

In the previous chapter, we introduced the characters of visual-inertial sensing meth-

ods and the research problem of motion estimation. In this chapter, we will firstly

review the processing of traditional feature-based techniques. Then starting from

the topic of structure from motion, the feature-based SLAM approaches will be

categorised by their calculation frameworks, i.e. filtering, optimisation and graph-

based. The visual odometry methods as a tailored method from SLAM will also be

reviewed individually. Some representative works in direct-based visual estimation

approaches will be discussed to showcase a different methodology in dealing with

visual information. Furthermore, the state-of-the-art research on visual and inertial

fusion will also be shown. In our study, the visual-inertial odometry will be pro-

posed by adopting the merit of combining visual with the inertial information in a

modified filtering framework and using the direct-based measurement models.

2.1 Feature based Visual SLAM and Odometry

The fundamental SLAM problem has been the hotspot of robotic research for

decades. Its basic tasks comprise two problems: localisation and mapping. To

solve a localisation problem using only onboard sensors, the referenced map must

be available, while to construct a map, the current relative location should be known.

By using advanced research, like feature matching techniques and loop closure de-

tection, it seems possible to estimate a reconstructed scene together with series of

camera poses from only a sequence of images.

The aim for visual SLAM is to estimate the pose for camera motion while building
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Figure 2.1: A sparse feature-based visual SLAM adapted from the work of [50]. Joint
estimation of the camera poses xj, xj+1 and point cloud structure yi, is performed
using global optimisation, minimising the distance between predicted image points
uij and observations ui(j+1) across two frames.

up a map to represent the scene. For an intuitive understanding, here we give an

example using sparse features, as shown in figure 2.1. In this visual SLAM case,

a scene consisting of N 3D points can be observed by M input images which are

taken from a single camera but different locations. In this section, we will start

from looking at most used methods in traditional feature-based processing, then

sequentially review and discuss Structure from Motion (SfM), visual SLAM and

Visual Odometry (VO).

2.1.1 Feature based visual measurements

How to use the visual information efficiently is always a supreme question in the

research related to visual sensing. As a sophisticated image processing technique,

geometrical features are commonly used in SfM, visual SLAM or VO approaches.

These features can represent different types of information, e.g. points of interest

[51], straight lines [52], segments [53, 54], ellipses [55] or contours [56, 57]. But they

all need to extract such information individually for each new image in data stream.

Traditionally, in order to be available in algorithms, a feature must go through the

process of detection, description and matching.
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2.1.1.1 Feature detection

Usually, without specific indication, geometrical features refer to local ones, where

the image is represented by more than one multi-dimensional feature vectors (feature

descriptors). They are created on local structures and textures from a set of salient

regions within the images. Some of them are invariant to a small viewpoint and

illumination variation. In the literature, various types of point features have been

proposed to detect salient points (keypoints, or interest points) in images. Some of

them permit matching even in the presence of large scale and orientation changes.

Here we only present some representations which are popular used. The most

primary detector is Harris corner detector [51], which uses the idea that corners can

be regarded as the intersection of two edges. Thus a corner is located at the point

where the directions of these two edges change. FAST corner detector [58] uses a

circle of 16 pixels to classify whether a candidate point p is actually a corner. Each

pixel in the circle is labelled with integer number from 1 to 16 clockwise as shown in

figure 2.2. If a set of nearby pixels in the circle are all brighter than the intensity of

candidate pixel over a threshold value or all darker than the intensity of candidate

pixel under threshold value, then p is classified as a corner. The main advantage

of this corner detector is its computational efficiency regarding time and resources.

However, it is not invariant to scale changes and not robust to noise.

Figure 2.2: FAST corner detection (Taken from Edward Rosten’s website).

To achieve scale invariance, Laplacian of Gaussian (LoG) [59] represents the

scale space of the image by convolving the image with a variable scale Gaussian

kernel. The point is obtained by searching for the location and scale extreme of the

LoG function. LoG owns the merit of rotational invariance. However, it costs much

in computation. To overcome the expensive computation problem, Scale-Invariant

Feature Transform (SIFT) algorithm [60] approximate to the LoG with Difference

of Gaussian (DoG), achieving more efficient performance.

Recently, Oriented FAST and Rotated BRIEF (ORB) feature detector [61] and

Binary Robust Invariant Scalable Keypoints (BRISK) [62] become popular due to

https://www.edwardrosten.com/work/fast.html
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Figure 2.3: SIFT descriptor [60] (left) and SURF descriptor [64] (right).

its robust performance in applications, as shown in the works of [21, 63]. In ORB

feature detector, FAST-9 (circular radius of 9) with a scale pyramid of the image

is used. FAST features at each level in the pyramid are filtered by using Harris

corner at each level. Finally, using the moment of image patch, the orientation of

the feature point is calculated to obtain Oriented FAST.

2.1.1.2 Feature description

Once a set of interest regions has been extracted from an image, their location, scale,

orientation, and their content information need to be expressed as a descriptor,

which is later used for discriminative matching. There are various descriptors in the

literature. Here we only present the widely used ones in practice.

SIFT descriptor [60] is a vector of histograms of image gradients. The region

around the feature point is divided into a 4×4 grid at a particular scale and orienta-

tion. Each cell yields a histogram with eight orientation bins that are arranged in a

128-dimensional vector. This vector is then normalised to a unit length to enhance

the invariance to affine changes in illumination. A threshold of 0.2 is applied to re-

duce the effects of nonlinear illumination, and the vector is again normalised. SIFT

feature descriptor is invariant to translation, rotation, uniform scale, orientation,

and partially invariant to affine distortion and illumination changes.

SURF descriptor [64] uses Haar wavelet. A neighborhood of size 20s × 20s

is taken around the key points, where s is the scale. It is then divided into 4 ×
4 sub regions. For each subregion, horizontal and vertical wavelet responses are

taken, and a four element vector is formed. Therefore, the SURF descriptor is a 64-

dimensional vector. The main advantage of the SURF descriptor is the processing

speed outperforming that of SIFT. SURF is good at handling images with blurring

and rotation, but not good at handling viewpoint change and illumination change.

To overcome this issue, it can be easily extended to a 128-dimension version without
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Figure 2.4: Examples for feature detection and matching. Features are salient points
on images. The successful matchings are marked in green, mismatch pairs are in
red, and blue marked points not can find their correspondences.

adding much computation complexity.

Binary Descriptors have even lower computational complexity, thus faster than

SURF. Binary Robust Independent Elementary Feature (BRIEF) [65] is a general

purpose feature point descriptor which relies on a relatively small number of in-

tensity difference tests to represent an image patch as a binary string. It provides

a shortcut and fastest way to find the binary strings directly without finding de-

scriptors. The main advantage of it is the low requirement on memory. To obtain

very good matching results, 128 or 256 bits are normally enough [65]. The standard

BRIEF descriptor is a 32-dimensional vector. However, the BRIEF is not rotation-

ally invariant. In ORB [61], the orientation of key point has been applied to BRIEF

along the key point direction to enhance the ability of rotational invariance and

resistant to noise.

2.1.1.3 Feature matching

Feature matching aims to tell which features of one image correspond to which fea-

tures of another image. There are two main approaches to finding features and

their correspondences. The first is to find features in one image that can be ac-

curately tracked using a local search technique such as correlation [66] or optical

flow [67]. The state-of-the-art methods in optical flow are available in Middlebury

website [68], where most of the optical flow methods available in the literature can

be found, including improved version of pioneer works of [69] and [70]. The second

is to independently detect features in the whole image region and then match fea-

tures based on their local appearance [71]. The former approach is more suitable

for image pairs taken from image sequences, while the latter is more appropriate for

those with significant motion or appearance variations.
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The similarity comparison between two feature vectors is commonly measured by

Euclidean distance (L2 norm) [72], Mahalanobis distance [73], Minkowski distance

for non-binary features. But for binary features, Hamming distance is often used

[10].

2.1.2 Structure from motion

Feature based Visual SLAM research is closely related to the scientific discipline of

structure from motion in the computer vision community. The research on SfM has

been developing along with the progress of film cameras. It was often named as

pencigraphy due to the analogy of pencils of rays projecting into a camera, but later

methods adopted the more descriptive term projective geometry [10].

Most of the work in computer vision deal with the projection of the 3D world

into a 2D plane with the consequent loss of a depth dimension. Specifically, many

theoretical techniques deal with purely projective geometry, avoiding the estimation

of camera motion or structure in a 3D world. SfM is the combination of both tracked

3D points and camera motion in a consistent coordinate frame.

A critical component of SfM is to estimate the fundamental matrix [10]. By

matching sets of eight or five points [74, 75] between two overlapping images, the

rotation and translation between two cameras can be found, then a 3D scene struc-

ture can be triangulated. This is the basic procedure that drives the majority of

monocular SfM techniques. Among the process, if salient feature points are adopted

as the visual measurements, series of issues should be carefully studied, which in-

cludes accurate feature detection, matching and triangulation, relative pose esti-

mation through the fundamental and essential matrices, camera recovery from the

observed structure, and outlier rejection. A comprehensive summation of such work

in SfM can be found in work of [10].

Although SfM is the dominating method in structure recovery and motion from

images, there are many techniques which parametrize the solution in different ways.

As the work in [76, 77], the authors demonstrate that it is possible to recover struc-

ture without explicitly computing the motion or intrinsic properties of the cameras

observing them.

However, SfM usually runs off-line with its focus on recovering the structure in a

potentially high precision. Thus more computation is necessary for a huge number

of visual measurements.
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2.1.3 SLAM approaches

Visual SLAM [78] can be seen as a particular case of SfM. It refers to the process of

constructing or updating a map of an unknown environment while simultaneously

keeping track of a location within the map using vision. Adopting the example of

feature-based visual SLAM in figure 2.1 again, we can generalise the feature-based

visual SLAM formulation as a maximum posterior problem.

The projection of a scene point yi ∈ R3 into a camera with 6DoF pose xj ∈
SE(3) results in an image point u′ij ∈ R2 that could be observed in that camera. If

a measurement of the predicted point is observed as uij, the error induced between

the predicted and observed point is ∆uij = u′ij − uij. In probabilistic terms, the

PDF over this error is often assumed to be a multi-variate Gaussian distribution

with diagonal covariance matrix σij ∈ R3×3,

p
(
u′ij|xj,yi

)
∝ exp

(
1

2
∆uTijσ

−1
ij ∆uij

)
. (2.1)

Assuming that observing multiple scene points across different locations is an inde-

pendent process, then the PDF over all observations can be expressed as

p (u′|x,y) ∝
N∏
i=1

M∏
j=1

p
(
u′ij|xj,yi

)
, (2.2)

where the structure and motion parameters, x = {x1,x2,xi, · · · ,xM},
y = {y1,y2,yi, · · · ,yN}, valid observations u = {uij|cij = 1}, and cij = 1 indicates

that camera j did observe point i.

Based on the equation (2.2), the unknown structure and motion can be further

jointly estimated if enough observations are available. According to Bayes rule

p (x,y|u′) ∝ p (u′|x,y) p (x,y), where p (x,y) is prior, the most likely structure and

motion can be estimated by maximising the posterior distribution. By using the

monocular visual measurements, particularly local feature measurements as scene

landmarks, the maximum posterior can be acquired in various frameworks to achieve

better performance in efficiency, accuracy and robustness. These frameworks include

filtering based, optimisation based, and graph based methods.

2.1.3.1 Filtering based SLAM

Early attempts of SLAM in robotics research are unreliable because they represent

the poses and the scene map as independent states, ignoring their correlations, like
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σij in equation (2.1). This faulty assumption with inherent noisy sensor measure-

ments will lead rapidly to over-confident state estimates. The robot becomes very

certain about a wrong pose estimate, which will lead to fatal inconsistencies sooner

or later [79].

The idea of representing all states, the poses as well as all landmark locations

by a joint probability distribution is first proposed in the work of [80]. In this work,

the authors consider a robot in 2D world, which is equipped with a laser range

scanner and other egomotion odometry sensors. The basic EKF is used to fuse the

information from multiple sensors. Since then, the EKF formulations have been

widely adopted as a standard approach for SLAM in practical applications [81–85].

In the EKF framework, the posterior density is approximated by a Gaussian

density with mean (̂·) and covariance matrix in the form as

x̂ =

[
X̂

Ŷ

]
P =

[
PXX PXY

PYX PYY

]
,

where the random state x contains the robot pose vector X and the mapped land-

mark positions Y.

However, the essential problems of EKF-SLAM include the linearization for non-

linear sensor and motion models in filtering, as well as the quadratic complexity of

the algorithm with respect to the number of landmarks on the map. There are

an impressive amount of research well studied on such issues and various improved

algorithms to achieve constant time complexity [86–90].

In the work of [87], the Extended Information Filter (EIF) makes use of the natu-

ral quasi-sparsity of the information matrix to achieve a constant time performance.

Its sparsity is only affected by the cross-correlations between the robot pose and the

set of landmarks, which are generated when performing an uncertain robot motion.

Sparse EIF-SLAM approximates the affected terms with the null value and then

considers only a constant size subset of the problem to perform the updates. This

permits the calculation of filtering loops in constant time. Further improvements to

this algorithm, e.g. the work of [91], achieves exactly sparse formulations and hence

the null value approximations are no longer necessary.

The drawback of this technique is that the world representation is enclosed inside

the information matrix. The geometrically expression of translation requires the

operation of matrix inversion, and this process is time-consuming. However, this

translation is not an essential step for filtering loops, thus can be performed at a

much lower rate in a different thread.
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FastSLAM [41] and its improved version FastSLAM2.0 [92] tackle the com-

plexity problem from a different perspective. The particle filter is used in a Rao-

Blackwellized form to dividing the SLAM state vector into two differentiated parts,

i.e. robot state and landmarks positions. On the one hand, the robot state vec-

tor shows a set of particles to approximate the main nonlinearity problems and the

PDF. On the other hand, the landmark positions are as modelled as Gaussian distri-

bution to allow variation. With a particular and accurate treatment of the different

operations inside the filtering loop, all time steps and measurement steps for the

whole SLAM system can be computed in constant time if we just limit the number

of particles and simultaneous observations.

However, even for the simplest 2D problem and with very accurate sensor mea-

surements, particle filter based approaches still cannot guarantee completeness with

a limited number of particles.

2.1.3.2 Bundle adjustment

Both visual SfM and SLAM research can be abstracted as the problem of given a set

of corresponding points among the images, then creating a 3D scene map. Following

the definition in equation (2.1), the problem can be generally formulated as:

x̂j, ŷi = arg min
xj ,yi

N∑
i=1

M∑
j=1

∆uTijσ
−1
ij ∆uij

It is actually an optimisation technique widely used in the computer vision commu-

nity for 3D reconstruction, named as Bundle Adjustment (BA) [93]. The core of BA

aims to minimize the error between re-projections of the three dimensional model

and the associated points in the image. Optimisation over the parameters is per-

formed using a nonlinear iterative minimisation scheme, where the initial estimates

of the point positions and camera poses are required.

Actually, most visual SLAM methods using recursive calculation have a lot of

common aspects to SfM methods using BA. Both of them minimise the sum of

squares of re-projection errors, estimate motion and structure in the full 3D space

and do not incorporate any additional priors besides the image data.

The core difference lies in the demands of algorithms. SLAM is usually perceived

as an online method. Representative SLAM applications, such as autonomous nav-

igation, require the pose and map estimation performed in real time. Frames arrive

consecutively, and once a new frame arrives, the joint state must be updated in-
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Figure 2.5: Visualized result of MonoSLAM[42] (left), keyframe-based tracking and
mapping with PTAM (middle), and demo of PTAM[95] (right)

stantly. In contrast, SfM is usually a batch based approach. Firstly, all data is

collected from a set of images. Then, a 3D representation is estimated using an

extensive offline optimisation. In online SLAM methods such as filtering, the focus

is on estimating a probability distribution over the current pose and the map which

are statistically valid. On the other hand, batch based approaches solve the problem

from random initialization and focus on global accuracy [94].

However, a representative work of Parallel Tracking And Mapping (PTAM) [23],

using the concept of keyframes in BA shows computational advantages without com-

promising the accuracy. In particular, PTAM splits the simultaneous localisation

and mapping task into two separate threads: the tracking thread and the mapping

thread.

The tracking thread is responsible for the tracking of salient features in the

camera image, i.e., it compares the extracted point features with the stored map

and thereby attempts to determine the pose of the camera. This is done with the

following steps: first, a simple motion model is applied to predict the new pose

of the camera. Then the stored map points are projected into the camera frame,

and corresponding features are searched. This step is often referred to as data

association. Next, the algorithm refines the orientation and position of the camera,

so that the total error between the observed point features and the projection of the

map points into the current frame is minimised. Thereby the mapping thread uses

only a set of keyframes to build a 3D point map of the surroundings. The keyframes

are selected using some heuristic criteria which are based on a distance measure

and the visibility, i.e. overlapping rate with the last keyframe. After adding a new

keyframe, a batch optimisation is applied to refine both the map points and the

keyframe poses. This attempts to minimise the total error between the re-projected

map points and the corresponding observations in the keyframes.



24

Figure 2.6: A pose-graph representation of a SLAM process from [98]. Every node
in the graph corresponds to a robot pose. Nearby poses are connected by edges that
model spatial constraints between robot poses arising from measurements.

However, when compared with filtering based SLAM methods, the lack of mod-

elling uncertainties in PTAM must be compensated by the use of a lot of features

and keyframes to guarantee the convergence in data association, thus limiting the

algorithm only suitable in a small area of operation. Additionally, long time running

will still consume large storage and computational resources.

Generally, batch SLAM can become unacceptably slow as the size of the envi-

ronment grows. There are also some techniques to ease this situation. Incremental

update methods iSAM [96] have been proposed to speed up the computation. The

sliding window formulation that only keeps a limited amount of robot states and

features is also a popular way to bound the computation complexity. Condition-

ing [95] and marginalization [97] are two methods to propagate information from

removed states into the current estimate.

2.1.3.3 Graph based SLAM

Only recent years, graph-based optimization techniques have emerged and become

popular [21, 98–100], an example of pose graph is shown in figure 2.6. In such setting,

both robot states and environment features are considered as vertices in the graph,

where observations between vertices are considered as the factor nodes in a factor

graph formulation [99], or as the edges in a Markov random field formulation [100].

These are generic formulations that allow modelling the observations from multiple

sources, such as those in the problems of visual odometry, feature observations,
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and loop closures. Although with a large data size, the graphs resulting from all

observations are typically sparse, which makes the fast solution with sparse matrix

solvers become possible.

A remarkable work in graph based SLAM using features is ORB-SLAM [21] and

its improved version [101] for extensive application in stereo and RGBD cameras.

An example result can be found in figure 2.8, ORB-SLAM is the traditional feature-

based system, and quite similar to PTAM in some way, but attains much more im-

pressive performance in practice. This algorithm implements three parallel threads,

namely tracking, mapping, and loop closing to achieve consistent localisation and

mapping, while PTAM does not have loop closing thread. There is an automatic

map initialization process with a model selection on two paralleling threads where

either Homography or Fundamental matrix for motion estimation will be calculated

with a RANSAC process. However, PTAM requires a manual operation to finish

initialization. The usage of ORB feature detector with binary words searching can

improve the robustness and efficiency of feature tracking and matching under the

scale and orientation variation. In mapping process, the multi-scale graph main-

tains a common map for all parts of the algorithm, including local graph for pose

estimation, the co-visibility graph for a local map, and essential graph for global BA

after loop closure detection.

2.1.3.4 LiDAR based SLAM

After more than a decade of development, Light Detection and Ranging (LiDAR)

sensors have already become another kind of dominant sensor in the applications

of mobile platforms. Different than visual sensing method, LiDARs can detect

environmental structure regardless of background illumination. This active nature

makes them become an attractive sensor applied in either indoor or outdoor unknown

scenes. Since this sensor type is not the focus of our thesis, here we just give a general

review of related matching methods, which are important in building point cloud

maps in SLAM algorithms.

Whether LiDAR based or visual based, their algorithm structures applied in

SLAM problem are very similar. However, due to the different ways of environ-

mental perception, the key of LiDAR is to perform scan and match among multiple

points at the front end of the SLAM algorithm. There are two general categories

of matching approaches, i.e., probabilistic approach and scan-matching approach

[102]. Examples of the former adopt maximum likelihood with posterior estimation

[103], Kalman filter [104, 105] or maximum entropy-based energy function [106] to
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enhance the robustness with respect to outliers. On the other side, scan-matching

approaches are more classical, where Iterative Closest Point (ICP) is the most popu-

lar used [102]. The core idea of ICP is to solve a point to point least-square problem

with the initial guess under closet point rule, then the solution as a relative pose

is processed iteratively until satisfying a predefined criterion [107]. Since the basic

ICP introduced, its variations have been proposed abundantly [108, 109]. Other

than the classical ICP, the approaches of Iterative Matching Range Point (IMRP)

[110], Iterative Dual Correspondence (IDC) [110] and Polar Scan Matching (PSM)

[111] are also popular adopted in the scan matching.

Apart from SLAM research [112, 113], mobile robots equipped with LiDAR sen-

sors have been also widely explored in the problem of obstacle detection and avoid-

ance [114], 3D reconstruction [115, 116], place/scene classification [117] and as-built

floor plans [118]. However, due to the restricts of manufacture size, exploration

range and power supplement, the LiDAR sensor is still rarely applied in small mo-

bile platforms such as mobile phones or the quadrotor developed in this thesis.

2.1.3.5 Semantic SLAM

All above SLAM approaches can provide a geometrical map for localization and nav-

igation tasks of mobile platforms, but such map information is not straightforward

for human understanding. In recent years, to extend the applications of SLAM and

bridge the gap between human and machine interaction, semantic SLAM approaches

have been burgeoning. In addition to spatial information about the environment,

a semantic SLAM augments the typical contents with the information associated

with the entities located in space, i.e., functionalities, properties or connections.

This information is available for reasoning in some knowledge base with an associ-

ated reasoning engine [119]. Based on traditional SLAM techniques, visual-based

semantic SLAM includes three key processes, that is visual detection, object/place

recognition and semantic representation [120].

The prior advancements made in traditional SLAM pave the way for develop-

ments of semantic SLAM. Their basis of the front-end visual processing is similar,

while the research in semantic SLAM more focuses on semantic mapping, specifi-

cally, semantic annotation and representation. The first system that can represent

the map from both spatial and semantic perspective is presented by the work of

[121, 122]. In their system, two hierarchies (a spatial hierarchy and a conceptual

hierarchy) are maintained with the interrelation of anchoring [123]. The spatial

hierarchy contains raw visual data from a camera, geometric information such as
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grid maps as well as the connection of the environmental structure. The conceptual

hierarchy represents semantic knowledge and their relations which are modelled by

employing standard AI languages. This also enables the mobile platforms with infer-

ence ability. However, the conceptual knowledge must be manually annotated into

the system, while the environmental entities are not with estimation uncertainties in

their representation. Later work [124] adopts a Bayesian classifier to enable proba-

bilistic inference in place and object classification. Researchers [125, 126] also focus

on place classification with probabilistic representation but with different sensory

methods. Their augmented conceptual map in either laser or visual-based platforms

can effectively extend the application in realistic human-robot interaction.

The research of Semantic SLAM can enhance the accuracy of localisation and

navigation tasks for mobile platforms in a high-level way. The conceptual infor-

mation is human-friendly and can be shared easily in a mutual workspace [127].

However, it is obvious that the interpreting steps require more computational time

and resources, which does not meet our focus of research as increasing the localisa-

tion accuracy as an earlier stage of information processing as possible. Hence the

semantically related topics will not be further extended in this thesis.

2.1.4 Odometry approaches

Sparse features are also widely used in Visual Odometry (VO) approaches [128].

When compared to visual SLAM, VO methods remove the loop closure detection

in live motion estimation. The VO approaches are usually fast to compute, which

is beneficial for mobile platforms with limited onboard computation, such as multi-

rotors [6] and smart phones [95]. However, the VO approaches have the disadvantage

of larger error accumulation over time than SLAM methods. In order to bound the

rapid growing drift, extra constraints from either internal or extra sources are usually

adopted.

In some monocular VO works like [129–131], the authors compute and optimise

the motion with structure at the same time. In these methods, the constraints

as tracking and triangulating structures over multiple frames are used to achieve a

consistent pose estimation. However, these additional mapping with extra correction

steps are complicated and more computational demanded. While for some works

like [132, 133], motion models are used to constraint the motion between consecutive

frames. Such model constraints can also be in the form of a known assumed motion

model on a plane as presented in the works of [133, 134]. However, the absolute
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scale reference to the world still not can be achieved within own algorithms.

In the literature, a number of techniques exist to get a real scale recovery or

bound the drift in scale by using the reference form other sensors. The work of

[135] use a height estimation over ground to infer the scale, while the work of [136]

estimates scale by fusing inertial and monocular visual data in an EKF framework.

Multiple rigidly fixed cameras with overlapping views, time-synchronized to cap-

ture the image at the same instant are also commonly used [134, 137, 138]. In most

cases, a stereo pair is applied since it is the minimum number of cameras need to

resolve scale ambiguity. Such additional camera can significantly increase the visual

information available to the VO algorithm, which means that there are more obser-

vations of individual features are available. By using stereo vision, the triangulation

calculation for the motion estimation can be reduced [129].

As stated in previous section 2.1.3.4, for the laser based methods, the ICP al-

gorithm [107] and its variations [108, 109] are popular used for incremental motion

estimation. However, ICP is an iterative optimisation approach without a explicit

process of data association. It has poor convergence property when the sensor data

is unstable and discontinuous. A work using multi-resolution correlative scan match-

ing [139] reports a surprising robust result even with large scan displacement. In

ICP methods, expect for spatial points, corner or line features can also be extracted

for data association between scans, as shown in the works of [5, 140]. With such

successful data association, scans can be directly matched to obtain the relative

transformations.

2.2 Direct Visual SLAM and Odometry

In contrary to local geometric features, there is another branch of utilising image

information in the robotic and computer vision communities, i.e. direct-based meth-

ods. Such methods extract dense image data from the moving camera, and eliminate

the processing of feature detection, description and matching. An institutive com-

parison is illustrated in figure 2.7. The direct-based methods can achieve better

robustness than traditional feature-based methods in the situation of noise pollu-

tion, partial occlusion, light condition variation. In some research, the direct-based

image information is also called photometric or global features.
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Figure 2.7: Comparison of feature-based and direct-based process .

2.2.1 Photometric measurements

The core of direct-based methods is to build a photometric error formulation in-

cluding the motion and structure parameters. Here we define a wrap function w(·)
which takes a pixel u ∈ Ω ⊂ R2 in the reference frame in image Ia and transforms

it into a pixel in image Ib using pose transform ξ and scene depth d parameters.

Given M ≥ 1 pixel correspondences, the inter frames motion trajectory T(·) ∈SE(3)

and scene structure as depth map D(·) : Ω → R+, the estimation problem can be

formulated as

ˆT(ξ), D̂(u) = arg min
ξ,d∈R+

M∑
u∈Ω,j=1

φ ((Ib(w(ua, d, ξja)))− Ia(ua)) , (2.3)

where an image interpolation function φ(·) enables subpixel intensity values to be

computed. Actually, the warp function together with image interpolation constitute

a generative model, and they can be expressed as any form that predicts an im-

age measurement from a set of parameters. This flexibility makes the direct-based

methods abundant. In practice, the wrap function can be expressed as simple as a

projective relationship [44, 141] or as complex as an appearance model [142, 143].

Compared to feature-based methods, the direct-based methods recover the struc-

ture or motion directly from intensity and gradient values in the image. The mag-

nitude, direction, or statistic information of intensity can be used in estimation,

except for distance discriminant in the feature matching process [28]. And from an-

other point of view, the feature-based methods come with the limitation that only
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Figure 2.8: Result of LSD-SLAM[43] (left) and result of ORB-SLAM [21] (right).

the scene with a particular feature pattern could be expressed and used. However,

with the successful rotation and scale invariant character of some feature detec-

tors and descriptors, some classical methods in visual related SLAM or odometry

methods like PTAM [95], ORB-SLAM [101] have been developed and commonly

accepted. But to use such algorithms to provide a real-time onboard guidance for

mobile platforms, it still not can neglect the computational burden when mapping

feature points into a high-dimension description and conducting outlier estimation.

In the research of direct-based methods, the advantage of removing tedious feature-

based processing is naturally available, so that considering how to use the direct

pixel information becomes the primary focus.

The most prominent character of direct-based methods is that all pixel informa-

tion in one image could be exploited, even from environments where have a little

texture, few key points or tremendous impact of camera defocus and blur. Only

recently, some direct-based visual SLAM approaches have been proposed. In RE-

MODE [142], DTAM [143], the whole dense depth maps are built, depending on

the computational ability of state-of-the-art GPU. But they are tough to launch on

small size mobile platforms. Thus, researchers in work of [141] consider to cut down

dense region for reducing the computational complexity and propose a semi-dense

depth mapping method. The method of SVO [44] combines direct information with

key points repetitively to enhance the accuracy of tracking results.

Among these above-mentioned methods, LSD-SLAM [43] is a representative work

of direct-based SLAM, which is entirely different from PTAM or ORB-SLAM. An

example result can be found in figure 2.8. Rather than relying on image features, this

method is based on image pixels directly, particularly the salient edges in images.

The tracking is performed by image alignment using a coarse-to-fine algorithm with

a robust Huber loss. Depth estimation is just like many other SLAM systems, using
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an inverse depth parametrization with a bundle of relatively small baseline image

pairs. Map optimisation is also executed in commonly used graph optimisation,

with existing keyframe poses expressed just as that of ORB-SLAM. However, LSD-

SLAM recovers only a semi-dense map since it only estimates depth at pixels solely

in salient boundaries, which makes it to be the first direct visual SLAM system that

can run in real-time on a CPU. In practice, processing every pixel over all image

sequences is a computationally consuming task. This is also the reason why many

dense visual SLAM systems, like DTAM [143] require a GPU to attain real-time

performance.

Direct sparse odometry (DSO) [48] is also a recent work using a direct and

sparse formulation for Visual Odometry. It combines a fully direct probabilistic

model with a photometric error. Joint optimisation is performed over inverse depth

and camera motion parameters. Moreover, by omitting the smoothness prior used in

other direct methods and sampling pixels evenly throughout the images, this method

can achieve real time performance. DSO also does not depend on feature detectors

or descriptors. Thus it can naturally sample pixels from across all image regions

that have intensity gradient, including edges or smooth intensity variations on the

white walls. Furthermore, this method integrates a full photometric calibration,

accounting for exposure time and nonlinear response functions, making it more

accurate and robust in using image intensity.

There are also some works based on image intensity in different mathematical

space but avoid directly using the intensity value. In the works of [144] and [145],

the authors consider using the full image by reducing the dimensionality of image

data. They apply an eigenspace decomposition to the images. Their target con-

troller is then performed directly in the eigenspace, which requires both an offline

computation of such eigenspace using a Principal Component Analysis (PCA) and

the projection of each acquired image on this subspace. Differently, the work in

[146] proposes to regulate directly the Sum of Squared Differences (SSD) between

the current and reference images. However, this approach is quite sensitive to illu-

mination variations although using a more sophisticated illumination model in some

particular cases is possible. The authors in [147] consider the pixel intensities with

a kernel-based method, but this approach is very limited in the case of appearance

variations, and has bad performance in a 6 DoF pose estimation.
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Figure 2.9: Illustration of multi iterations using MI to find the best patch corre-
spondence from the work of [150].

2.2.2 Mutual information

Direct-based methods using photometric error have already shown their advantage of

robustness in visual processing in localisation and mapping applications [43, 48, 143].

However, the fact remains that pixel intensities are quite sensitive to environmen-

tal variation [146]. There is another branch in direct methods that avoiding the

calculation of pixel intensity itself but exploiting the maximum statistic value for

image pairs, i.e. Mutual Information (MI) [148]. Based on the information theory

of Shannon in [149], the MI-based methods are built from the joint entropy of image

pairs to measure their mutual dependency. In particular, this type of direct methods

does not directly use the individual or modelled photometric error to build the cost

function. Instead, the images are regarded as random variables and the distribution

of pixel information will be considered in an alignment processing.

Similar to the definition of equation (2.3), assuming a wrap function can model

a transformation ξ from patch x ∈ Ω (the size is flexible, which can be as large as

the image or as small as only several pixels) in reference image Ia to another image

Ib. The best alignment is to find the most-like corresponding patch in image Ib.

If mutual information is used to measure the similarity between two patches, the

problem can be rewritten generally as

ξ̂ = arg max
ξ

∑
x∈Ω

MI ((Ib(w(x, ξ)))− Ia(x)) . (2.4)

An example of such best patch matching can be found in figure 2.9. More details

about the knowledge of MI will be introduced in chapter 5.

There are some works in the literature using MI as the core of visual tracking and

visual servoing problems. The work of [150] builds up an MI cost function used for
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augmented reality applications. They refine the computation of the Hessian matrix

and condition the optimisation to deal with the quasi-concave shape of MI cost

function, enhancing the robustness and accuracy of the MI-based tracker. However,

the algorithm is limited to planar object tracking. Later, the improvement work of

[47] expands the tracking into 3D space using object models. A synthetic view of the

target, together with a buffer of known depth information from a model generator,

the calculation process strives to find the best matching iteratively within a searching

range of position and angle. However, the major drawback of this method is that

it is not real time. It takes approximate four seconds for the processing of each

image. It should be noticed that such MI-based methods rely on a known target

view or model. However, in practice, acquiring environment information beforehand

is not an easy and effective way in most visual tracking and pose estimation tasks.

In a limited working environment, the work of [49] build a control law based on

MI for visual servoing. The inherited merit shows huge accuracy and robustness

improvement in a positioning task.

From another point of view, MI is a classic similarity measure commonly adopted

as multi-modal registration techniques in medical imaging [151, 152] and remote

sensing [148]. The images in such disciplines are often taken from different sources.

Take the earth map for instance, traditional feature-based methods not can dis-

tinguish whether satellite view and normal colour map are the same places, but

MI-based methods can find the best match although the map modality is different

[153].

However, we notice that the function (2.4) does not rely on any parameters

related to scene structure, if the wrap function is just modelled as simple similarity

transformation, like affine. Without extra scale reference, the MI-based methods also

inherit the scale drift problem from visual-based estimation. In the thesis, we will

hand over the scale recovery to an inertial-driven estimation process. Additionally,

although MI has been widely used for multimodal medical image registration [154]

and in tracking [155], visual servoing [49], to the best of our knowledge, none have

been considered to be applied in visual odometry mission and fused with an inertial

sensor.

2.3 Visual Inertial Fusion

As shown in previous sections, visual-based methods, particularly in the monocular

case, inherently suffer from the lack of scale reference, thus causing drift over time.



34

Instead of applying other additional visual setting like stereo vision [46], we can

think of a variety of sensors to retrieve the scale. But most of the sensors have

drawbacks including the aspects of range restriction, physical size or power supple-

ment, thus limiting their applications in light weighted mobile platforms. Apart

from a motion model as used in the works of [156–158], the IMU is always an ideal

choice when used as a complementary measurement method for the monocular cam-

era. Actually, the research on SLAM and odometry approaches based on visual and

inertial sensors never stopped. The focus is on different detailed aspects regarding

visual and inertial fusion, including inter sensor calibration [159, 160], scale recovery

[161], fusion algorithm framework [11, 36] and techniques for efficiency performance

[36, 37, 40].

The early work of [162] demonstrates accurate motion and structure estimation

by combining IMU measurements and camera observations of features. The works

in [14, 163] fuse IMU and camera data in an EKF framework for motion estimation

and they also use an additional EKF process to estimate the positions of land-

marks. Along with the improvements of onboard computing power, the realisation

of visual-inertial navigation becomes possible [13]. However, although all of these al-

gorithms predict motion and structure, they do not incorporate calibration between

two sensors.

For visual-inertial calibration techniques, there are some representative works

in the literature. The work of [159] uses a constrained nonlinear optimisation al-

gorithm to solve the fixed rotation between a camera and an IMU. By comparing

camera measurements of the relative angles to several external markers with in-

tegrated gyroscope outputs, such optimisation algorithm determines the rotation

which best aligns the sensor frames. While in the work of [160], the authors de-

scribe a visual-inertial calibration procedure in which the relative orientation and

the relative translation of the sensors are estimated separately. Firstly, the relative

orientation is found by rotating the camera-IMU platform while the camera captures

images of a vertical planar target. The relative translations are then determined by

spinning the camera and the IMU on a turntable, making the measured horizontal

acceleration of IMU is zero. A drawback of the method is that separate calibra-

tion of orientation and translation ignores any correlations that exists between the

parameters, and hence do not adequately account for further error propagation.

From the perspective for visual and inertial fusion, there are two main cate-

gories. To achieve higher precision, tightly coupled methods are more favourable

in the literature, which jointly estimate robotic pose and camera information, thus
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Figure 2.10: Visual and inertial measurements and its factor graph from the work of
[37], in which several IMU measurements are summarized in a single preintegrated
IMU factor, together with a structureless vision factor constrained by keyframes
observing the same landmark.

involving calibration between two sensors. Like the work of [164], the authors use all

information from the two sensors under the tightly coupled structure to statistically

optimise the 6 DoF IMU pose, the inter sensor calibration, the visual scale factor

and the gravity vector in the vision frame. Although it not can ignore the fact that

tightly coupled methods essentially own the disadvantage of more computational

complexity, strategies like dynamic marginalising out oldest state and keeping a

moving window [165] or select keyframes among consecutive images can still bound

algorithm in an acceptable level [22, 141]. On contrary, the loosely coupled methods

are more computationally efficient. They process inertial data and image measure-

ments separately. For instance, in the works of [166, 167], the authors firstly process

the consecutive images for computing relative motion estimate then fuse with the

inertial measurement. Alternatively, like the work of [168], the inertial measurement

could be used to conduct rotational estimation, then combined with the image-based

algorithm. Or in the work of [12], the authors view the visual framework as a black

box, which could be replaced by any other pose estimation from different sensors

then fusing with inertial data. The strategy of separating these two measurement

sources leads to a reduction in computational cost. It is more suitable for mobile

platforms with limited onboard resources.

Among various fusion methods, optimal values are acquired from either itera-

tive minimization or EKF formulations. Although they can be converted to each

other theoretically [169], different state expressions and resolving methods still make

them have dramatically different performance in practical computation. Previously-

mentioned methods, like [22, 44, 95, 143], essentially transform the problems into

nonlinear least square problems, solved by classical algorithms like iterative Lucas-
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Kanade [170] or just basic Gauss-Newton method. The need of multiple iterations

during minimization inevitably results in increasing computational cost. However,

this is not to imply that filtering based outperform optimisation methods all-around.

In the typical EKF-based SLAM method [164], the authors keep the features in state

vector, thus causing its runtime reaches an unacceptable high status as O (n2) for

n features. To address this problem, the MSCKF algorithm was proposed as an

alternative filter based visual-inertial odometry method [13]. In contrast to tradi-

tional filtering based SLAM methods, the MSCKF can actively augment and remove

the state vector, and uses the feature measurements to impose constraints on these

poses. This strategy makes the computational complexity dramatically reduce to be

linear with the number of features as O (n). In this thesis, we will use the MSCKF

framework for localisation and mapping, but improve the visual measurement mod-

els from direct-based methods.

2.4 Summary

Although methods in feature-based visual SLAM or odometry problems have tended

to be mature in recent years, the demand of algorithms with high accuracy, robust-

ness and less complexity is still in tension. Recent development in direct-based

visual measurements seems open another window for related research communities.

No matter dense, semi-dense or mutual information based methods, pixel intensity

being exploited directly or statistically in motion estimation has enhanced the ro-

bustness for the image processing in SLAM or odometry approaches. Furthermore,

with the help of abundant fusion strategies in algorithm frameworks, there seems

a clue to compensate for the scale ambiguity for monocular visual measurements,

i.e., combined with inertial-based estimation. While on the other hand, the novel

techniques adopted in computation (like sparse techniques, actively adjusting the

length of state or separating tasks into multiple threads) can reduce the compu-

tational burden, further paving the way for such algorithms applied in small size

mobile platforms. In our work, we aim at developing the odometry methods by

adopting direct-based visual measurements and inertial estimates. The target VIO

approaches are expected with acceptable performance in accuracy and efficiency with

significant advantages in robustness when applied in complex indoor and outdoor

environment.



Chapter 3

Technical Preliminaries

This chapter introduces the spatial relationship and mathematical notations of a

visual-inertial system, building up the theoretical basis for later chapters. Starting

from the basic perspective model of a monocular camera, the geometrical and mathe-

matical transformation between different reference frames will be illustrated to show

how a 3D point in the world can link to the images taken from different views. In

the kinematics section, three expressions of rotation will be introduced, i.e., rotation

matrix, Euler angle and quaternion. Together with the transition expression, the

minimal representation of pose for a visual-inertial system will also be described.

Furthermore, the two basic computational frameworks which are popularly used in

most estimation algorithms are presented from simple linear to nonlinear cases.

3.1 Visual Geometry

To gather the visual data from the world, a digital camera needs to receive light rays

and convert them into images through photosensitive sensors. A single image is often

divided into an enormous number of elements as pixels in the form of a rectangular

matrix, which contains the information of colour or luminosity as integer values. The

pixel sampling is a diffusion process gathering the rays from direct light sources or

reflection of various surfaces in a short time interval. This is actually the Lambertian

reflectance model [171], building up the bridge between the position of objects in

the scene and their projection on the image plane in Euclidean geometry. In this

section, we will recall the visual geometry and their mathematical expressions.
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Figure 3.1: Left and right handed Cartesian coordinate frames.

3.1.1 Reference frames for monocular camera

Our world is usually to be modelled as 3D Euclidean E3 space using triplets of real

numbers as the expression. The origin of such coordinates is the joining point from

three perpendiculars directed lines as x, y and z-axis. Although the origin location

and axis orientation can be defined arbitrarily, the directions are often following the

convention of sensory methods.

Traditionally, the 3D coordinate frames can be defined following the rule of left-

handed or right-handed as shown in figure 3.1, where the thumb, fore finger and

middle finger defines the x, y and z-axes respectively. These two possible frames

not can be transformed to each other through only rigid movements, thus here in

this thesis, we only follow the right-handed rule to define a coordinate.

In a visual geometry model, all the points in 3D space will be projected onto

the image plane which is firmly attached with a camera. There are three reference

frames (world frame W, camera frame C and pixel frame P) need to be taken into

account to express a 3D point p in the scene and its projected point u in image

plane, as shown in figure 3.2.

The world frame W or global frame, is a reference frame external to the camera

used for expressing the global position, thus it should be an unique, static and

absolute frame. For convenience, we align the z-axis pointing upward with the

vertical direction, the other two are defined following the right handed rule. If a

particular direction on this horizontal plane needs to be defined, the x-axis will be

aligned with the rightward (see figure 3.2 or 3.9). The 3D coordinates of a point p

are xp
W = (xp, yp, zp)T in this frame.

The origin of the camera frame C is located on the centre of camera’s perspective
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Figure 3.2: Reference frames for monocular camera. x, y, z-axis in red, green and
blue receptively of world and camera frames, while u, v-axis is in red and green of
pixel frame.

projection, thus often named as camera centre O. This origin is essential to express

the position of a camera. The z-axis for camera is usually defined pointing through

the image centre thus making the xy plane parallel to the image plane. Further

followed the right handed rule, the x-axis is defined as horizontal while y-axis is ver-

tical for convenience as shown in figure 3.2. In the camera frame, the 3D coordinates

of point p is noted as xp
C = (xpC , y

p
C , z

p
C )T .

The pixel frame P is to represent the image plane with the origin located on the

upper-left corner. Any point in the plane is measured in pixel units and expressed as

integer values u = (u, v)T . The horizontal left to right coordinate u and the vertical

top to bottom coordinate v also indicate the pixel location in an image matrix.

As shown in figure 3.2, starting from camera centre, the optical axis goes through

image plane perpendicularly, then intersect with the image plane in principal point

c, which is located at the centre of image plane (u0, v0)T . The principal point is often

referred as the origin of image frame, which is also an expression of the image plane

but in pixel units. Here, we only adopt pixel frame and make a unity expression

for image plane in pixel cells. Moreover, the distance between the camera centre

and the principal point is measured by the focal length f , which also represents the



40

depth of any projected point in an image plane. It must be noted that the pixel

frame is a 2D expression for image plane, while the position of any spatial point

is expressed in 3D Euclidean space. In order to further explore the location and

motion of visual-based problems, the relationship between different frames should

be built up.

3.1.2 Perspective projection

The geometrical operation named projection is viewed as an injective process which

maps points from the 3D space into points of the 2D plane (R3 → R2). There exist

different models in the computer vision community used for building such projective

relations according to the type of camera. For a monocular case, the pinhole model

is applied widely in the perspective projection. Within the projection process, the

intrinsic and extrinsic parameters are critical factors for this mathematical model.

The intrinsic parameters consist of the focal length, image centre as principal

point and other lens parameters, taking care of the inner relationship from normal-

ized image plane to pixel frame. Following figure 3.2, by similar triangulation, the

projection of point p in camera frame xp
C = (xpC , y

p
C , z

p
C )T onto the image plane can

be written as

x =
xpC · f
zpC

, and y =
ypC · f
zpC

, (3.1)

where f denotes the focal length. By using the homogeneous expression, equation

(3.1) can be converted into a linear matrix form as

 x

y

1

 = λ

 xpC · f
ypC · f
zpC

 =

 f 0 0 0

0 f 0 0

0 0 1 0



xpC
ypC
zpC
1

 , (3.2)

where λ = 1/zpC is the scale factor. Since the origin of pixel frame is located as

the top-left corner of the image, in order to express the projected point in pixel

frame, the transformation from metric to pixel distance is required as the unit of

mm/pixel:

sx =
x

u− u0

, sy =
y

v − v0

, (3.3)

where u0, v0 are the coordinate of principal points in pixel frame. Following the
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equation of (3.3), we can obtain:

u =
1

sx
x+ u0, v =

1

sy
x+ v0. (3.4)

Combining with equation (3.4), the linear matrix expression of equation (3.2)

can be further written as

 u

v

1

 = λ


1
sx

sθ u0

0 1
sy

v0

0 0 1


 f 0 0 0

0 f 0 0

0 0 1 0



xpC
ypC
zpC
1



= λ


f
sx

sθ u0

0 f
sy

v0

0 0 1


 1 0 0 0

0 1 0 0

0 0 1 0



xpC
ypC
zpC
1

 ,
(3.5)

where sθ is the skew of pixel closing to zero. By abusively using the point expres-

sion in non-homogeneous form, the 3 × 3 intrinsic matrix K can be shown in the

projection process:

u = λK [I 0]3×4 xp
C . (3.6)

The extrinsic parameters express the location and orientation of a camera in

the 3D scene, indicating the spatial relationship between world frame and camera

frame. As shown in figure 3.3, every camera defines the same 3D point in their

coordinate frame. In order to get a unified expression of the scene structure and

camera motion trajectory, a common frame is necessary. By using a fixed world

frame, every observation expressed in local camera frame can be further aligned

to a consistent reference. Actually, this method is commonly adopted in many

visual-based systems, where the first pose of the camera is initialized as the basic

fixed frame, then the incremental motion is computed relative to this initial given

position and orientation. In this process, rotation and translation are the key factors

in finding the twisted angle and travelled distance.

In general, the motion of a monocular camera system can be defined by a homo-

geneous matrix T ∈ SE(3), which belongs to the special Euclidean group as

T =

[
R t

0 1

]
, (3.7)
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Figure 3.3: Transformations between the world frame and camera frames.

where R ∈ SO(3) is a rotation matrix of the special orthogonal group and t ∈ R3

denotes the translation vector. The expression of TCW means the transformation

from camera frame W to world frame C, which is also named as extrinsic matrix for

the camera.

xp
C = TCWxp

W (3.8)

Therefore, the full projection equation maps a 3D point in the world to a 2D

image point as a pixel, which can be obtained by jointly applying the intrinsic and

extrinsic matrix as

 u

v

1

 = λ


f
sx

sθ u0

0 f
sy

v0

0 0 1

 [R t]3×4


xpW
ypW
zpW
1

 (3.9)

We can write equation (3.9) into a compact form as

u = λMxp
W (3.10)

where M is a projection matrix with the dimension of 3× 4 combining all intrinsic

and extrinsic parameters together. Usually, the intrinsic matrix can be obtained be-

forehand by exploiting calibration techniques. More details about camera calibration

can be found in computer vision tutorials [10, 172] and resource of OpenCV.

http://docs.opencv.org/3.1.0/dc/dbb/tutorial_py_calibration.html
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3.1.3 Back projection

The process of a back projection maps a 2D point in the image plane to 3D space

(R2 → R3). It is the reverse process of forward projection. But for a single image

case, the projection is not an invertible process with the lost dimension in scene

depth. It is easy to derive the inversion of intrinsic parameters from equation (3.2)

to (3.5) which maps the pixel from pixel frame to camera frame: xC

yC

zC

 =
1

λ


sx
f
−sxsysθ sxsysθv0 − sxu0

0 sy
f

−syv0

0 0 1


 u

v

1

 ,
i.e. xp

C =
1

λ
K−1u.

(3.11)

After camera calibration, all elements in the intrinsic matrix can be obtained,

but the scale parameter is still unknown. Actually, if we rewrite above equation

(3.11) as follows,

λxpC =
sx
f
u− sxsysθ

f
v +

sxsysθv0 − sxu0

f

λypC =
sy
f
v − syv0

f

λzpC = 1

. (3.12)

This can be actually described as the line function, starting from camera centre O,

then passing through the pixel point u with a scale parameter λ, which is tightly

related to the point coordinate in z-axis, as shown in figure 3.4. Usually, when

a single image from a monocular camera is taken, the depth observation is not

preserved. In order to recover the scene depth, additional information from other

sensors or more images from a different angle of view towards the same scene are

required.

3.1.4 Geometric relations between frames

In above section, the forward and back projection processes showcase the mapping

between 2D and 3D by using a single point from a monocular camera case. It is clear

that the lack of depth value in back projection will lead to multiple corresponding

spatial points and further confuse visual-based tracking or mapping tasks. In order

to recover relative motion of a monocular based mobile platform in a consistent
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Figure 3.4: The scale parameter s of a certain point p in space is required in a 2D
to 3D back projection. All points along the ray starting from optical centre O then
passing the pixel point u satisfy equation (3.12).

trajectory, the inter camera relations between different view and scene need to be

carefully studied. In this section, the frame relations from geometrical and analytical

views will be studied, including the simple triangulation, epipolar geometry and

homography matrix.

3.1.4.1 Triangulation

Without loss of generality, the spatial relationship of two images from a two single

camera view can be built from the horizontal binocular disparity. As shown in figure

3.5(a), a pair of images with known baseline b (distance between two camera centre

O1 and O2) are used to find the correspondence point sets.

This basic model is a simplified case for stereo cameras. However, due to a fixed

physical limitation of the stereo case, the baseline of two cameras is small, and the

two optical axis are approximate to parallel, as shown in figure 3.5(a). In stereo

cameras, the majority information from the first image will appear in the second

image, except for extreme occlusion cases. Thus for an ideal case, the left and right

images are perfectly aligned, the depth of spatial can be estimated from the baseline
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Figure 3.5: (a) Depth estimation from triangulation of stereo camera case, (b) Depth
ambiguity in the estimation of a pair of images.

b and horizontal disparity along x-axis of the correspondences d(u, u′) :

zpC1
= zpC2

=
b · f

d(u, u′)
=

b · f
xpC1
− xpC2

, (3.13)

where the focal length f , the spatial point p and its projection points u, u′ are

defined the same as above section.

Similar to stereo settings, the triangulation of monocular camera case consists of

a pair of close images but without a fixed known baseline and angle of views. This

definitely increases the difficulty in motion and structure estimation in monocular

case. If relying on visual information totally, sufficient correspondence points are

required to solve the triangulation equations, thus bringing in more computational

burden and more accumulated errors in calculation. However, the relative position

between different camera views can also be acquired from other prior knowledge,

such as the estimates of an inertial-based motion sensor.

On the other aspect, the depth estimates are dramatically affected by the spatial

distance between the points and the baseline of image pairs. As can be seen in

figure 3.5(b), all the points contained in the marked area, which includes a wide

range of depth values, can be referred to the same pair of pixel units. Moreover,

image blurs which mostly happen when using mobile platforms can cause even worse

results. Thus, more techniques for accurate correspondence matching, such as outlier

rejections, are required for later motion estimation.
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Figure 3.6: Point correspondence in epipolar geometry.

3.1.4.2 Epipolar geometry

To study the geometrical relationship of two views, the epipolar geometry is an es-

sential theory applied in correspondence search in most visual-based tracking tasks.

As shown in figure 3.6, the image points u, u′, space point p, and camera centres

O are coplanar. Denote this plane as π. From the theory of back projection from

above section, it is clear that the rays back projected from u and u′ should intersect

at p, and these two rays are also coplanar in plane π. The relationship can be ex-

pressed as a unique 3× 3 homogeneous matrix, which is called fundamental matrix

F, and the image points satisfy the relationship as follows,

u′TFu = 0, (3.14)

where F has seven degrees of freedom with the rank of two, and does not include

the scale parameter. Actually, fundamental matrix maps point to line between two

views. As shown in figure 3.6, a point in the first image u defines a line in the second

l′ = Fu, which is the epipolar line of u. If l and l′ are the corresponding epipolar

lines, then any point u on l is projected on the same line l′. The epipole e defines

the intersection of the line joining the optical centres with the image plane. The

epipole is also the projection of the optical centre of the other camera view. On

the other hand, from equation (3.11), we know that a normalized back projection
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(f = 1, sθ = 0) maps the points in pixel frame to a normalized image frame as

û = K−1u, û′ = K−1u′. (3.15)

The essential matrix E is a special case of the fundamental matrix, and they are

related by the intrinsic matrix:

E = K′
T
FK, (3.16)

which actually defines the geometric relationship between normalized pixel points

as û′
T
Eû = 0. The essential matrix E is in the dimension of 3 × 3 having five

degrees of freedom, i.e. three for rotation and two for the direction of translation.

However, the translation is defined only up-to-scale, i.e. a scale parameter makes

the estimated translation proportion to the real one.

For visual-based pose recovery tasks, assume R and t are relative rotation and

translation between two views, O1 and O2. The projection matrices M and M′,

which map the pixel points in each image plane to the same 3D point in the first

camera frame C1, can be written as

M = K[I 0]3×4 and M′ = K[R t]3×4. (3.17)

Thus combining above with the equations of (3.10), (3.12) and (3.15), the essential

matrix can also be written as

E = [t×]R = R[RT t×], (3.18)

where the b·×c is the skew symmetric operation.

If the intrinsic parameters are known, the essential or fundamental matrices

are solved via a least squares solution. For the simplest case, where no additional

information other than the correspondence point sets are known, a minimum of

eight correspondences is required to determine the essential or fundamental matrix

uniquely, as the matrix is determined up to scale. More details about such method

can be referred to the tutorial of [10]. The theory of epipolar geometry is used later

in the thesis as geometric constraints to remove outliers.
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3.1.4.3 Homography matrix

Similar to the fundamental and essential matrices, there exists homography matrix

H that defines a linear transformation relation between any two images, which only

holds exactly when the imaged scene is planar or almost planar, as shown in figure

3.7.

The direct mapping correspondences u and u′ by homography is written as

u′ ' Hu. (3.19)

If n is a unit vector normal to the plane π in camera frame C1, d is the perpendicular

distance of the plane from first camera centre and every point in the plane satisfies

d = xp
C1
· n and

nTxp
C1

d
= 1, then the 3 × 3 homography matrix H can be expressed

as

H = K(R− tnT

d
)K−1 (3.20)

where R and t are the rotation and translation between two views with defined K

as camera intrinsic matrix.

If rewrite the homography matrix in equation (3.19) with a scale parameter λ,

we can have the equation as

λ

 u′

v′

1

 =

 h11 h12 h13

h21 h22 h23

h31 h32 h33


 u

v

1

 (3.21)
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This expression can generate two linear equations with a unit vector constraints to

omit the scale factor,

u′(h31u+ h32v + h33)− h11u− h12v − h13 = 0

v′(h31u+ h32v + h33)− h21u− h22v − h23 = 0

h2
11 + h2

12 + h2
13 + h2

21 + h2
22 + h2

23 + h2
31 + h2

32 + h2
33 = 1

(3.22)

As we can see from above equations, the planar homography matrix has 8 DoF. If n

points generate 2n linear equations, the solution for H needs at least four correspon-

dences. Actually, it can be regarded as finding the solution for least square problem

as AH = 0, where a solution can be found through Singular Value Decomposition

(SVD) method.

The homography matrix is commonly applied to the spatial point sets lying in

a common plane. It can be regarded as an additional constraint for pose estimation

problems especially when the fundamental matrix based estimation fails. Addition-

ally, it is useful in building a planar mosaic map.

3.1.5 Subpixel technique

In the projection model of the above sections, the value of a pixel is often defined as

a positive number in an integer position, which is exactly matched with an image

matrix. From another point of view, the image can also be expressed as a function

reflecting the photometric properties of an image:

I : R2 → R+; (u, v)→ I(u, v). (3.23)

In practice, the projective calculation often results in a non-integer value, meaning

the position of projected point does not exactly fit the image matrix unit. The most

simple approach to get the intensity of this projected point is to adopt the value

from the closest neighbouring pixels. However, it will bring in accumulated error in

alignment when the calculation goes on. In order to get a more accurate intensity

value, the image interpolation in subpixel is required. It can be shown in figure 3.8,

the resulting projected point at (u′, v′) will adopt the value of pixel nearby, because

it is located within the region of (u1, v1). But the intensity value of this neighbour

pixel not can full represent that of the resulting position. For a more reasonable

value, the information from other nearby pixels also should be considered.

Among all interpolation techniques, the bilinear approach is most commonly
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Figure 3.8: Interpolation for intensity estimation in subpixel region. The estimated
point is located at the position u′ with four close neighbours u1,u2,u3,u4.

used (see figure 3.8), which computes the intensity of a resulting pixel u′ = (u′, v′)

at a non-integer position by combing its four nearest neighbours u1 = (u1, v1),u2 =

(u2, v2),u3 = (u3, v3),u4 = (u4, v4). If the position of u′ is expressed with respect to

the positions of four neighbours as

u′ = u1 + αu(u2 − u1) + αv(u3 − u1), (3.24)

then the intensity is computed as a linear form first along u then v axis:

I(u′, v′) = αv ((1− αu)I(u1, v1) + αuI(u2, v2))

+(1− αv) ((1− αu)I(u3, v3) + αuI(u4, v4)) .
(3.25)

By applying the interpolation approach, the estimated intensity value of pro-

jected point with higher accuracy can be achieved by gathering several neighbouring

pixels instead of just one. This technique is important for almost all the methods

which highly depend on photometric information.

3.2 Kinematics for Mobile Platforms

In this section, the pose expressions and frame notations for a visual and inertial

combined system will be introduced, which builds up the basic motion model and

spatial relationship for later chapters. Here we will go over from basic pose expres-

sions to minimal expression with their properties. Notably, different expressions
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Figure 3.9: Frames definition for visual and inertial combined system.

for the rigid body rotation and transformation will be illustrated as a reference for

algorithms development.

3.2.1 Frame conventions

Following the frame definition in section 3.1.1, we can further add an inertial frame

I to the visual system, which is rigidly attached to an IMU sensor and regarded as

a local motion reference, as shown in figure 3.9.

The orientation of inertial frame follows the convention that x-axis pointing to

the forward of IMU sensor, the y-axis pointing to leftwards and the z-axis upwards.

3.2.2 Pose expression

When describing the state of a mobile platform, its position and orientation should

be given in a local or global frame. Particularly, a couple of rotation and transition

parameters {R, t}1, need to be expressed between local attached frames like camera

frame C or inertial frame I and global unify frames like initial camera frame C0 and

world frame W. In the previous section of 3.1.4, we have discussed a basic pose

transition process as projection. In this section, we will recall the details in pose

expressions to build the basis for the visual-inertial odometry.

1The pose notations here for the whole visual-inertial system is slightly different from those in
visual projection section in the aspect of font format. Here is in bold italic type for distinguishing
different application backgrounds.
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In general, the full transformation of a rigid body includes a 3 × 1 translation

vector t and a 3× 3 rotation matrix R. Between two different frames, the transfor-

mation of a spatial point p can be expressed as

xp
W = Rxp

C + t, (3.26)

To reverse the transformation, from frame W to C, the expression becomes

xp
C = RTxp

W −RT t. (3.27)

It is easy to rewrite above equations (3.26) and (3.27) as homogeneous form for

clear expression and calculation. The transformation from frame C to W can be

rewritten as [
xp
W

1

]
=

[
R t

0 1

][
xp
C

1

]
, (3.28)

and the reverse transformation becomes[
xp
C

1

]
=

[
RT −RT t

0 1

][
xp
W

1

]
. (3.29)

In compact form, this transformation can be expressed as TCW and the reverse

TWC as

TCW =

[
R t

0 1

]
∈ R4×4 and TWC = T−1

CW =

[
RT −RT t

0 1

]
∈ R4×4. (3.30)

Thus the spatial pose transformation of any mobile platform can be written as a

unified form with notation superscripts from right to left as indicating the transfor-

mation direction:

xp
C = TCWxp

W , xp
W = TWCx

p
C . (3.31)

Although the rotation matrix seems very natural to describe rotations in spatial

motion, the redundancy in matrix limits its efficiency in calculation. The rotation

matrix contains nine elements in the matrix, but any rotation in 3D can be specified

with just three parameters as minimal rotation representation.
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Figure 3.10: The Euler angles and rotation representation.

Euler angle axis axis positive
yaw (ψ) x vertical upwards
pitch (θ) y transversal leftward
roll (φ) z longitudinal forward

Table 3.1: Use Euler angles to describe the motion of mobile platforms.

3.2.3 Euler angle

Euler angles are the three rotated angles representing the orientation in 3D with

three consecutive rotations around three different axes. There exists several con-

ventions1 on the order of these rotations. Take the most popular zyx convention

as example (see figure 3.10), the first rotation is performed around z-axis as yaw

angle, followed by the second rotation around y-axis as pitch angle and ended with

the third one around x-axis as roll angle. In practice, with the x-axis pointing to

the forward direction, it usually defines the y-axes pointing to the right to maintain

the positive of pitch angle when aircraft raising. Thus making the z-axis points to

downward, which is opposite to the defined z-axis of inertial frame (figure 3.9) ap-

plied in this thesis. Here, we follow the directions of forward, leftward and upward

to represent the x, y, z-axes respectively of the inertial sensor and also the motion

of mobile platform, which can be summarised as table 3.1.

From the defined Euler angles e = [φ θ ψ]T corresponding to the roll, pitch and

yaw angles of a reference frame, the rotation matrix R can be obtained by perform-

ing the product of three rotation matrices corresponding to the three elementary

1For more information, please refer to Euler angles in wikipedia.

https://en.wikipedia.org/wiki/Euler_angles
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rotations as

R(e) = cos θ cosψ sinφ sin θ cosψ − cos θ sinψ cosφ sin θ cosψ + sin θ sinψ

cos θ sinψ sinφ sin θ sinψ + cos θ sinψ cosφ sin θ sinψ − sinφ cosψ

− sin θ sinφ cos θ cosφ cos θ


Although the vector of Euler angles describes a minimal representation for rota-

tions, the essential drawback of presenting discontinuities makes it applied in limited

ranges as φ ∈ [−π, π], θ ∈ [−π/2, π/2], and ψ ∈ [0, 2π]. Furthermore, for a target

pose, the process of rotation can follow different axis orders in Euler expression.

This will make the rotation solution not unique without knowing the rotational or-

der, which limits the Euler angle expressions applied in practical computation to

some extent.

3.2.4 Quaternion

The other way to express rotation is using the quaternion. Different from the defini-

tion of Euler angles, which needs to rotate around three different axes, the quater-

nion defines the rotation using only one axis u and the angle θ around it. It can be

written as

q = [cos θ, ux sin θ, uy sin θ, uz sin θ]T , (3.32)

where [ux, uy, uz]
T = u is a unit vector ||u|| = 1 and θ in radian is a real scalar.

Furthermore, applying temporal differential of equation (3.32), we can achieve an

equation as

2q∗ ⊗ q̇ = ω, (3.33)

where ω = [0, ωx, ωy, ωz]
T is the angular velocity along the rotation axis u, q∗ is

the conjugated quaternion, and the multiplication ⊗ adopt the rules in quaternion

algebra. With the normalization constraint as q ⊗ q∗ = 1, above equation (3.33)

can be re-written as

q̇ =
1

2
q ⊗ ω (3.34)

If we express the angular velocity in the form as skew symmetric matrix bω×c, the

derivation of quaternion can be expressed in a linear form as

q̇ =
1

2
bω×cq, (3.35)
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where

bω×c =


0 −ωx −ωy −ωz
ωx 0 ωz −ωy
ωy −ωz 0 ωx

ωz ωy −ωx 0

 .
It is useful in deriving the inertial-based dynamic model in visual and inertial odom-

etry algorithms.

In mathematics, the quaternions are a number system that extends the complex

numbers, which can be expressed as

q = a+ bi+ cj + dk, (3.36)

where i, j,k are the imaginary unit along three perpendicular direction with the

definition as i2 = −1, j2 = −1, k2 = −1, ij = −ji = k, jk = −kj = i and

ki = −ik = j.

The quaternion can be also expressed in the form of a vector as

q = [a, b, c, d]T ∈ R4, (3.37)

and the conjugation of such quaternion is defined by q∗ = [a,−b,−c,−d]T . The

norm of quaternion is defined as ||q|| = √q ⊗ q∗. If ||q|| = 1, the quaternion is said

to be normalized.

In the problem of pose estimation, a basic rotation can be abstracted as a vector

v = 0+vxi+vyj+vzk in spatial frame turning into another vector v′ by performing

a operation as

v′ = q ⊗ v ⊗ q∗. (3.38)

If we adopt the quaternion expressed in equation (3.36), then expand the equation

(3.38) linear to v. It will lead to a 3× 3 matrix, which is the same rotation matrix

as defined in early section. Here we note is as

Cq =

 a2 + b2 − c2 − d2 2 · (bc− ad) 2 · (bd+ ac)

2 · (bc+ ad) a2 − b2 + c2 − d2 2 · (cd− ab)
2 · (bd− ac) 2 · (cd+ ab) a2 − b2 − c2 + d2

 .
This is the equation links quaternion and rotation matrix in practical algorithm

computation. The reverse rotation is actually the conjugate quaternion as q∗, thus

Cq∗ is equivalent to CT
q . It should be noticed that the negative quaternion repre-
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sents exactly the same rotation as the original one, i.e. C−q = Cq. This ambiguity

in expression also indicates that the quaternion is not a minimal representation for

rotations. The results should be further filtrated to get a unique result.

Although there are three ways to express rotation here, i.e. rational matrix, Euler

angle and the quaternion, they perform different properties in practical computation.

The rotation matrix is the linear method to perform the rotation to the points

and vectors in spatial frames. It is straightforward and explicit. The Euler angle

owns merit of easy visualization and understanding, especially in the expression of

assumption small change in angles. On the other hand, the quaternion has the

ability of continuous and continuously derivable, which is useful in deriving the

system formulations and storing orientation information in the later section.

For more practical equations of mutual transformation between different rotation

expressions, please refer to appendix.

3.2.5 Lie group

Lie group is popularly applied in the robotic research as it brings in practical and

efficient characters in optimisation and filtering calculation. In Euclidean space, if

a small incremental value δ is added into the current estimated xk, it is simply

expressed as

xk+1 = xk + δ. (3.39)

However, if a minimal rotation represented by a vector w such as Euler angles,

the small updating value δ not can be added by directly using w + δ. While in

the research of mobile platforms, it is unavoidable to update rotation information

during incremental calculation. Fortunately, the expressions in Lie group break the

limitation in the computation for the group of rotation SO(3), making the error

form of a state vector can be written in a unified linear matrix for further algorithm

derivation and analysis. This method has been adopted in chapter 4.

In the expression of special Euclidean group SE(3), the rotation matrix R and

a translation vector t are adopted, as shown in previous section 3.2.2. If a rotation

in 3D space is parametrized using as a vector w = [wx, wy, wz]
T and translated

expressed as v = [vx, vy, vz]
T . The vector ξ = [w,v]T can minimally express the

pose with the exponential map. Among them, the rotation angle is defined as the

magnitude θ = ||w|| with rotation axis as u = w
θ

= [ux, uy, uz]
T . The transformation

R = exp (bw×c) rotates a point x the angle θ around the axis u.
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It has been proved that the minimal expression ξ in the tangent space se(3) can

be fully mapped into the elements in SE(3) [94]. Here, we only state the properties

of commutative and additivity for later usage. For more properties of Lie groups,

please refer to mathematical books or practical tutorials. With the exponent and

its reverse logarithm operation, the consecutive poses are addable through

ξWC2 = ξWC1 � ξC1C2 = log (exp (ξWC1) · exp (ξC1C2)) . (3.40)

For a small value for update in consecutive steps, it can be expressed simply as

ξk+1 = δξ � ξk. (3.41)

3.3 Optimisation and Filtering based Frameworks

After introducing and defining visual geometry and kinematics for mobile platforms,

in this section the optimisation and filtering based frameworks for motion estimation

will be discussed from the perspectives of optimisation and general filtering. This

will pave the way for further algorithm developing and analysis in following chapters.

3.3.1 Optimisation based framework

The goal of an optimisation problem is to achieve an optimised estimate after it-

erative calculation, which starts from approximate initializations and ends with a

convergent result of a cost function. As a quick example, we can find the optimal

value of a single real variable x determined by a cost function as f(x) = x2 + b at

the point x = 0, which minimises the cost function to the constant b ∈ R. Optimi-

sation problems can be categorised into linear or nonlinear types, according to the

complexity of an optimised function. In above case, the x2 term makes the problem

nonlinear. Generally, linear problem can be solved in a single optimisation step

through getting the solutions from a set of equations, while for nonlinear cases, the

optimal solution is often not directly observable and an additional linearisation step

at current optimal point is required. Only by getting the estimates from a linearised

point is it possible to perform a forward step in optimisation and determine whether

the cost function is decreasing. The localisation and motion estimation problems

of visual-inertial odometry is a highly nonlinear optimisation, thus numerous tech-

niques concerning finding the most accurate solutions efficiently are widely studied.

Here, we start from the basic least square problem towards a goal of building a
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motion estimation cost function under the concept of optimisation.

3.3.2 Least square minimisation

Given a set of measurements z as point locations in image plane as shown in figure

3.3, an observation function h(·) that maps a set of state parameters including the

spatial locations of corresponding points, as xp
W, and camera positions as ξ, which

can be written as

z = h(ξ,xp
W) + v (3.42)

The goal seeks to recover an estimation set of ξ̂ with known xp
W. The noise v not

can be observed directly but modelled as Gaussian distribution.

A cost function E that minimises the output to get the best estimates can be

formalised as

ξ∗ = arg minE (ξ,xp
W) , (3.43)

where ξ∗ indicates the local minimum of the optimisation. There are various meth-

ods to express the cost function E, but the most applicable is the sum of squares of

the residual error as

E =
∑
||z − ẑ||2 =

∑
||ε||2, (3.44)

where ε consists of the difference between the actual observation z and the estimated

ẑ with given parameters xp
W.

If the measurement function h(·) is linear without constraints, the solution can

be directly given via a method like SVD: for a linear system written asAx = b where

A ∈ Rm×n(m ≥ n), there exists a factorisation of system matrix A = UΣV ∗ and

its inverse matrix A−1 = V Σ−1U ∗ calculating the solution directly as x = A−1b.

The matrix Σ ∈ Rm×n is a non-negative diagonal matrix containing the singular

values of the matrix A.

3.3.3 Nonlinear least square minimisation

However, the function h(·) is often nonlinear, such as defining the forward and back-

ward projection process in above section. In order to achieve a satisfactory solution,

a local assumption for local linearity should be performed. Then the estimated

results proceed to a process of iterative refinement.

Following from above with partially known parameter xp
W, when given an initial

estimate of the parameters ξ0, we can assume that the function h(·) with a small
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perturbation δ can be approximated by a Taylor series at ξ̂0 as

h(ξ̂0 + δ,xp
W) = h(ξ̂0,x

p
W) + δh′(ξ̂0,x

p
W) + δ

h′′(ξ̂0,x
p
W)

2
+ · · · (3.45)

Usually, except for the first term, the remaining terms of equation (3.45) are high

order terms with little additional benefits if assuming the function is locally smooth.

To save the redundancy in computation, the function can be approximated as

h(ξ̂0 + δ,xp
W) = h(ξ̂0,x

p
W) + Jδ, (3.46)

where J is the Jacobian matrix defined as

J = ḣ =
∂h

∂ξ̂
(3.47)

From this approximation, the next estimation ξi+1 can be achieved through

ξ̂i+1 = ξ̂i ⊕ δi, (3.48)

which is subject to

E(ξ̂i+1) < E(ξ̂i) (3.49)

for acceptance of the update. The final solution will be achieved by finding each

incremental value making the cost function become a minimum within the searching

area. It should be noticed that here for simplifying expression, the additive symbol

⊕ means general add operation and it can be applied in a rotation as stated in

previous section 3.2.5.

By using Gauss-Newton method, the optimal solutions for cost function (3.43)

can be iteratively computed by calculating the incremental value from

JTJδ = −JTε (3.50)

3.3.4 Levenberg-Marquardt solution

In the above process, the nonlinear function has been transferred to a linear one

through the local use of the Taylor series of equation (3.45). The solution from the

most generic Gauss-Newton method is considered completely linear in the appropri-

ate region. This means that convergence will be quadratic near the solution, but if

given a poor initialization or the function has many local minima, the optimisation
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will often fail to converge appropriately. The step length, i.e. the incremental value

δ, in each iteration getting from equation (3.50), will tend to oscillate around the

solution.

By applying a damping factor β into equation (3.50), the increment δ becomes

adjustable

(JTJ + βI)δ = −JTε, (3.51)

where I is the identity matrix. If the reduction speed of cost function E(·) is rapid, a

smaller value will be adopted, making this method closer to generic Gauss-Newton

method. But if an iteration gives insufficient reduction in the residual, β can be

increased, giving a step closer to the gradient descent direction as (βI)δ = −JTε.
In the iterative calculation, if either the incremental value δ or the reduction of

sum of squares from the latest estimate ξi+1 falls below a predefined threshold, the

iteration stops and the last estimate is considered to be the solution.

However, if the value of damping factor β is large, inverting the matrix of (JTJ+

βI) becomes not suitable in iteration. The Levenberg-Marquardt solution scales each

component of the gradient according to the curvature, thus making larger movement

along the directions where the gradient is smaller. This avoids slow convergence in

the direction of a small gradient. Therefore, the final solution replaces the identity

matrix I with the diagonal matrix �(·) consisting of the diagonal elements of JTJ ,

expressed as

(JTJ + β�(JTJ))δ = −JTε. (3.52)

In practice, by carefully adjusting the damping factor β, an algorithm can be

generated that converges rapidly in linear regions and improves the convergence in

nonlinear regions. One possible strategy can be performed as the flowchart in figure

3.11 during iterations.

3.3.5 Motion estimation while mapping

Following the definition of above sections, we can further explicitly illustrate the

optimal process in the visual-based motion estimation here. In this case, the mea-

surement function h(·) is defined as the forward and backward process. Thus itera-

tive nonlinear optimization is formulated to find the camera pose changes and point

coordinates by minimising a re-projection error of observed regions in images.

ξ,xp
W = arg minE

(
ξ̂, x̂p

W

)
. (3.53)



61

Initial small λ
value, 1 × 103

Solution with
LM euqation

Cost
function

Accept update and
reduce damping
factor, λ = 0.1λ

Reject update and
increase damping
factor, λ = 10λ

Repeat

reduction

increase

Figure 3.11: An example strategy for damping factor in Levenberg-Marquardt so-
lution.

Different from the problem description in section 3.3.2, the reference map is unknown

and should be simultaneously estimated in iterative process,

ε = z − ẑ(ξ̂, x̂p
W). (3.54)

The cost function E(ξ̂, x̂p
W) can be written analytically as the sum of all squared

errors with weighting parameters

E
(
ξ̂, x̂p

W

)
=

n∑
i=1

m∑
j=1

εTi,jwi,jεi,j, (3.55)

where j from 1 to m is the index of points within a frame, and i is the number of

frames indexing a set with size n. Thus, in different iterative periods, when given

the pose tracking estimated ξ̂, the optimisation problem for mapping becomes

xp
W = arg minE

(
ξ̂,xp

W

)
, (3.56)
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and given the mapping results x̂p
W, the optimisation problem for pose estimation is

ξ = arg minE (ξ, x̂p
W) .

Further applying Levenberg-Marquardt method, the problem becomes to find

an increment δ in each iterative step, then update the variables. By adding the

weighting matrix W , the solution to δ is found by

(
JTWJ + βI

)
δ = −JTWε.

The above process is the most common case used in feature-based visual measure-

ment to jointly estimate the camera pose and scene structure, which will be used

for comparison with our methods in later chapters.

3.3.6 Filtering based framework

The filtering based methods are further defined following the concept of a general

Markov system. The belief state can be updated from time step k to time step k+1

using a system model and a measurement model. The former one describes the

distribution of the current state from given previous state, expressed as p(xk+1|xk),
while the latter model describes the probability of making a particular measurement

from a given system state, written as p(yk+1|xk+1). If we begin with a probability

over state at time step k, which is conditioned on all of the measurements up to this

time, then the state at time k + 1 can be expressed as

p(xk+1|yk+1) =

∫
p(xk+1|yk+1,xk)p(xk)dxk. (3.57)

By applying Bayes’ rule to the first probability in the above equation, we can get

p(xk+1|yk+1) ∝
∫
p(xk+1|yk+1,xk)p(xk+1|xk)p(xk)dxk. (3.58)

Given the current state, the current measurement yk+1 is assumed to be indepen-

dent of the previous state or previous measurements, so that p(yk+1|xk+1,xk) =

p(yk+1|xk+1) and equation (3.58) becomes

p(xk+1|yk+1) ∝
∫
p(xk+1|yk+1)p(xk+1|xk)p(xk)dxk. (3.59)
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The last probability term in above equation is the state at time step k, which

indicates a recursive process for updating at each time step.

3.3.7 Kalman filter

In Kalman filtering problem, all uncertainties are considered as Gaussian distribu-

tion. The additional constraint of linear evolution and measurement equations leads

to a finite dimension functional formulation of the whole recursive process, which is

closed and provably optimal.

Consider the linear Gaussian system as

xk+1 = Fxk +Gωk+1

yk+1 = Hxk+1 + υk+1

(3.60)

with

p(x0) = N(x0 − x̄0,P0)

p(ωk+1) = N(ωk+1 − 0,Q)

p(υk+1) = N(υk+1 − 0,R),

where

N(x− x̄,P ) =
1√

(2π)|P |
exp

(
−1

2
(x− x̄)TP−1(x− x̄)

)
(3.61)

is the PDF of an n-dimensional Gaussian variable x with the mean value as x̄ and

covariance matrix P , where the noise are independent to state variables.

The Kalmen filter is the set of equations to predict and update the mean and

covariances matrix of system states.

3.3.7.1 Prediction step of KF

From the definitions of the mean x̄ and the covariances matrix P of a multi-

dimensional variable x,

x̄ = E(x),

P̄ = E
(
(x− x̄)(x− x̄)T

)
,

(3.62)

and from the linear properties if the expectation operation E(·) and the zero vari-

ance of independent variables is defined as E ((x− x̄)(x′ − x̄′)) = 0, we have the
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equations

x̂k+1|k = F x̂k|k,

P̂k+1|k = FPk|kF
T +GQGT ,

(3.63)

where

x̂k+1|k = E(xk+1|yk0),

P̂k+1|k = E
(
(xk+1 − x̂k+1|k)(xk+1 − x̂k+1|k)

T
)
.

(3.64)

3.3.7.2 Update step of KF

If define the innovation as z = y −Hx, its covariance matrix can be derived as

S = HPHT + R, (3.65)

which is obviously a zero mean Gaussian as N(z−0, S). The Kalman gain is defined

as

K = PHTS−1. (3.66)

Then the Kalman update equations can be written as

x̂k+1|k+1 = x̂k+1|k +K(yk+1 −Hx̂k+1|k),

P̂k+1|k+1 = P̂k+1|k −KSKT .
(3.67)

3.3.8 Extended Kalman filter

If the linearity assumption is removed, then the local linearization around the most

recent estimates are used to construct the Extended Kalman filter as sub-optimal.

Consider the nonlinear Gaussian system as

xk+1 = f(xk,ωk+1),

yk+1 = h(xk) + υk+1,
(3.68)

with

p(x0) = N(x0 − x̄0,P0),

p(ωk+1) = N(ωk+1 − ω̄k+1,Q),

p(υk+1) = N(υk+1 − 0,R).
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It is different from the linear case here, the means of perturbations ω̄k+1 6= 0 is

taken into account. At each time step k, the equations (3.68) are linearised around

the most recent estimates, which is similar to the process (3.45) in optimisation.

Then the prediction and update processes constitute the Kalman filter.

3.3.8.1 Prediction step of EKF

The evolution equation is linearised around the latest estimate and the known input

with respect to the system state and the perturbation via Jacobian matrices,

Fx =
∂f

∂xT

∣∣∣∣
x̂,ω̄

and Fω =
∂f

∂ωT

∣∣∣∣
x̂,ω̄

. (3.69)

Thus the EKF prediction equations can be written as

x̂k+1|k = f(xk|k,ωk+1),

P̂k+1|k = Fxk|kPk|kF
T
xk|k

+ Fωk+1
Qk+1F

T
ωk+1

.
(3.70)

3.3.8.2 Update step of EKF

The measurement equation is linearised around the latest estimate with respect to

the system state via the Jacobian matrix, written as

Hx =
∂h

∂xT

∣∣∣∣
x̂

. (3.71)

If the innovation is defined as z = y − h(x̂) with the covariance matrix written

the same form as equation (3.65), which also follows the distribution as Gaussian

N(z,S), then the update equations can be written as

x̂k+1|k+1 = x̂k+1|k +Kk+1

(
yk+1 − h(x̂k+1|k)

)
,

P̂k+1|k+1 = P̂k+1|k −Kk+1Sk+1K
T
k+1.

(3.72)

with the Kalman gain as

Kk+1 = P̂k+1|kH
T
xk+1|k

(
Hxk+1|kP̂k+1|kH

T
xk+1|k

+Rk+1

)−1

. (3.73)
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3.4 Summary

In this chapter, we firstly recall the geometrical relations in visual measurement

and pose expression for visual and inertial systems. Starting from the basic forward

projection process, the geometry constraints between frames and correspondences

are discussed. Particularly, the cause of scale ambiguity is illustrated in the process

of back projection. For more accurate estimation of pixel intensity, the subpixel

interpolation technique is also introduced. Furthermore, starting from basic rota-

tion matrix, two popular expressions for rotation are also introduced and compared.

The minimal representation for the pose as a compact six element vector and its

properties are presented at last. Moreover, based on the visual based motion estima-

tion process and the definition of spatial transformation, the two most fundamental

frameworks are presented from linear to nonlinear cases. All the technical pre-

liminary discussed in this chapter forms the fundamental knowledge for a further

exploration of visual-inertial algorithms in the following chapters.



Chapter 4

Direct Visual-Inertial Fusion in

Multi-State Constraint Kalman

Filter

4.1 Overview

In our research, Visual Inertial Odometry (VIO) technique is used to estimate the

change of a mobile platform in position and orientation over time by using the mea-

surements from onboard cameras and IMU. The process of achieving pose estimates

is the strategy to use and manage both information resources. A filtering frame-

work consists of a prediction step and an updating step. For a filtering based VIO

approach, the inertial sensor can provide acceleration and rotational velocity mea-

surements in three axes, which serve as the data to drive a dynamic model or the

prior distribution for a 3D rigid body motion. This is motion prediction in propa-

gation step. A camera can provide the angular and ranging measurements between

spatial points and the mobile platform, which serve as the measurement model or

likelihood distribution. This model will update the prediction results.

Traditional filtering methods only keep a certain number of variables in the state

vector while the system is running. The multi-state constraint Kalman filter can

alter the length of state vector while running. In our research, we only maintain

recent inertial states, new poses of keyframes and successive frames in the current

state. Our analysis of intrinsic links between basic filtering and optimisation method

is performed through the derivation of an iterative filtering method, which provides

an underlying insight for algorithm developing.
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Figure 4.1: Coordinate frames for visual-inertial system. Each frame can be trans-
formed from other frame by a rotation q̄ and a translation p.

Different from the common feature-based error construction, we propose to use

the photometric error of small patches as visual measurements. These patches are

scattered at significant edges through the whole image. The results show that

our method performs smoothly and outperforms feature-based methods in accu-

racy when travelling along a straight line with a slight tolerance of altering the field

of view. The estimated trajectory for our collected data is capable to depict the

motion of our controlled movement under extreme illumination condition. However,

to ensure the direct-based method can be performed without failures, the overlap-

ping proportion of consecutive images should be within the maximum allowance.

Additionally, the building of small-scale scene structure also reveals the mapping

potential of our proposed method.

4.2 Inertial-driven Propagation Model

In this section, the inertial-driven propagation model together with the system state

will be introduced and derived.
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4.2.1 IMU dynamic model

An IMU state vector of 3D rigid body at any time instant can be defined by a 16×1

vector,

xI =
[
I
Wq̄

T WpTI
WvTI bTg bTa

]T
,

where I
Wq̄ is the unit quaternion describing the rotation from world frame W to IMU

frame I, WpI and WvI are the position and velocity with respect to W, bg and ba

are 3× 1 vectors that describe the biases affecting the gyroscope and accelerometer

measurements, respectively. The spatial relations between frames are shown in figure

4.1.

Assuming that the inertial measurements contain noises with zero-mean Gaus-

sian models, denoted as ng and na, the real angular velocity ω and the real acceler-

ation a are related with gyroscope and accelerometer measurements can be written

in the following form:

ωm = ω + bg + ng,

am = a+ ba + na.
(4.1)

The data driven dynamic model is a combination of 3D rigid body dynamics and

the above IMU measurements, which can be represented by the following equation

group:

I
W

˙̄q =
1

2
Ω (ω) I

Wq̄,
Wv̇I = CT

I
W
q̄a− g,

WṗI = WvI, ḃg = nwg, ḃa = nwa,
(4.2)

where CI
W
q̄ denotes a rotational matrix described by I

Wq̄, g is the gravity vector in

world frame W, ω = [ωx ωy ωz]
T is the angular velocity expressed in IMU frame

I, and Ω (ω) =

[
−bω×c ω

−ωT 0

]
is the quaternion kinematic matrix with bω×c

representing the skew-symmetric matrix. The IMU biases are modelled as random

walk process, driven by the Gaussian noise, nwg and nwa.

Let unit quaternion be q̄ :=
(
q0, q

T
)T

and its corresponding rotational matrix

be Cq̄. Two orientation representations can be linked via the equation below:

Cq̄ =
(
2q2

0 − 1
)
I3 − 2q0bq×c+ 2qqT .

Apart from the current IMU state xI mentioned above, the camera poses WχC =
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[
W
C q̄

T WpTC
]T

are also included in the state vector. We assume there are N camera

poses in current state vector. Thus a full state vector of our system can be written

as

x =
[
I
Wq̄

T WpTI
WvTI bTg bTa

W
C1
q̄T WpTC1

· · · W
CN
q̄T WpTCN

]T
. (4.3)

By applying the expectation operator in above equations, we obtain the prediction

results using the IMU data driven dynamic model with i ∈ [1, N ]:

I
W

˙̄̂q =
1

2
Ω
(
ωm − b̂g

)
I
W

ˆ̄q,

W ˙̂vI = CT
I
W

ˆ̄q

(
am − b̂a

)
− g,

W ˙̂pI = Wv̂I,
W ˙̂pCi

= 0,

˙̂
bg = 0,

˙̂
ba = 0,

W
Ci

˙̄̂q = 0.

(4.4)

It should be noticed that in inertial only propagation, the visual term is static, i.e.

W
Ci

˙̄q = 0, WṗCi
= 0, i ∈ [1, N ]. (4.5)

4.2.2 Error state representation

For the position, velocity, and bias state variables, the arithmetic difference can be

applied. That is the error in the estimate x̂ of a quantity x is defined as x̃ = x− x̂.

But the error quaternion should be defined under the assumption as local minimal

increment. If ˆ̄q is the estimated value of quaternion q̄, then the orientation error is

described by the error quaternion δq̄, which is defined by the relation q̄ = δq̄⊗ ˆ̄q ⇒
δq̄ = q̄⊗ ˆ̄q−1. In this expression, the symbol⊗ denotes the quaternion multiplication

as introduced in section 3.2.4.

Intuitively, the quaternion δq̄ describes a small rotation that causes the true and

estimated attitude to coincide. Since attitude corresponds to 3 DoF, δθ with three

elements can be a minimal representation to describe the attitude errors. With the

minimal approximation, the error quaternion δq̄ can be written as

δq̄ =

 1
2
δθ√

1− 1
4
δθT δθ

 ≈ [ 1
2
δθ

1

]
. (4.6)
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Thus, the error state vector with the length of 15 + 6N can be expressed as

x̃ =
[
δθIW

T Wp̃TI
WṽTI b̃Tg b̃Ta δθWC1

T Wp̃TC1
· · · δθWCN

T Wp̃TCN

]T
, (4.7)

or simply denoted with step index k as

x̃k =
[
x̃TIk χ̃TC1

· · · χ̃TCN

]T
. (4.8)

The differential equations for the continuous time error state are

δθ̇IW = −bω̂×cδθIW − b̃g − ng,
W ˙̃vI = −CT

I
W

ˆ̄q

(
bâ×c+ b̃a + na

)
,

W ˙̃pI = WṽI,

˙̃ba = nwa,
˙̃bg = nwg,

W
Ci

˙̄̃q = 0, W ˙̃pCi
= 0,

(4.9)

with ω̂ = ωm − b̂g, â = am − b̂a and i ∈ [1, N ].

By stacking the differential equations for error state, the linearised continuous-

time error state equation can be formed as

˙̃x = Fcx̃+Gcn, (4.10)

with the noise vector n =
[
nTa ,n

T
wa,n

T
g ,n

T
wg

]T
. And the covariance matrix of n

depends on the noise characteristics of IMU, Q = diag
(
σ2
na
,σ2

nwa
,σ2

ng
,σ2

nwg

)
.

4.2.3 State propagation

The covariance matrix is defined as

Pk|k =

[
PIIk|k PICk|k

PICk|k PCCk|k

]
(4.11)

where PIIk|k is the covariance matrix of the IMU state, PCCk|k is the 6N × 6N

covariance matrix of the camera pose estimates, and PICk|k is the correlation between

errors in IMU state and camera pose estimates. With this notation, the covariance

matrix can be propagated by

Pk+1|k = FdPk|kF
T
d +Qd, (4.12)
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where the state-transition matrix which can be calculated by assuming Fc and Gc

to be constant over the integration time interval between two consecutive steps,

Fd = exp(Fc∆t) = I + Fc∆t+
1

2
F 2
c ∆t2 + · · · (4.13)

and the discrete-time covariance matrix Qd can also be derived through numerical

integration:

Qd =

∫
∆t

Fd (τ)GcQcG
T
c Fd (τ)T dτ. (4.14)

In practice, the inertial measurements for state propagation are obtained from IMU

in discrete form, thus we assume the signals from gyroscopes and accelerometers are

sampled with time interval ∆t, and the state estimate is propagated using numerical

integration like Runge-Kutta methods. Thus, the mean and covariance propagation

process using the inertial feeding can be summarised as follows,

(1) When IMU data, ωm and am, in a certain sample frequency, is available to

the filter, the state vector is propagated by using numerical integration on

equation (4.4).

(2) Calculate Fd and Qd according to (4.13) and (4.14) respectively.

(3) The propagated state covariance matrix is computed from (4.12).

4.3 Direct Visual Measurement Model

Due to the biases and noises in IMU data, the prediction results from propagation

step become worse and worse over time. However, the measurements from visual

sensors are able to provide critical information to bound the increased errors. To do

so, in a filtering framework, key information extracted from images should be cast

into the measurement equations.

4.3.1 Keyframe selection

In the image processing, we adopt the concept of keyframe to maintain the scene

information for a period of movement. There is the only keyframe pose is kept in a

normal state vector when the algorithm is running. The key camera pose is located

at the first one in state vector of camera poses, defined as WχC1 in 4.3. A keyframe

maintains a probability depth map, which provides depth reference for consecutive
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images in direct visual tracking. This depth map is continuously propagated from

frame to frame by new feeding until a new keyframe is decided.

When a new image arrives, it will be decided whether it is suitable to be a

keyframe. If the camera has moved too far away from the existing map, a replace-

ment of current tracking reference becomes more important than other estimation

tasks. Here, we use a criterion that measures the distance between the oldest camera

pose state (keyframe pose) WχC1 and the latest estimate WχCN
. It can be expressed

as

distance
(
WχC1 ,

WχCN

)
:=
[
CW

C1
q̄ · CW

C1
q̄

WpTC1
− WpTCN

]T
. (4.15)

If such distance spans a certain threshold, the new frame will be adopted as a

keyframe. Additionally, taking into account the impact of significant rotation in

small translation, the matching rate of patch correspondences with a threshold also

should be set as a selection factor.

Once a new frame is chosen to be a keyframe after the camera pose has been

jointly estimated by past frames, the new depth map will be formed by projecting

all co-visible patches from previous frames, and then the latest frame will be treated

as a new reference. All the old frames with their pose before this new keyframe will

be marginalised out from the state vector (see section 4.4.2). In this situation, the

pose of new keyframe is the only camera pose that is available in the current state

vector.

If the new tracked image is not sufficient to be a keyframe, the new estimated

pose will be augmented and maintained in state vector (see section 4.4.1) and their

depth estimates will also temporally stored. The non-keyframes will be used to refine

the map of current keyframe through a process of patch correspondence searching

and triangulation geometry building, which has been introduced as the process in

previous section 3.1.4.1.

The full process of keyframe selection can be illustrated in flowchart 4.2.

4.3.2 Corresponding patches

In our research, we consider extracting dense small patches in the image region with

a large gradient. An intuitive example can be found in figure 4.13(b), where the

edges of walls and objects are often with large image gradient. The dense patches

can cover representative and significant regions in one image while removing large

redundancy areas. When compared to feature-based methods, this patches in the

area with large gradient are more flexibly deployed, which does not need to take
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New image arrives and basic processing

Initial pose from propagation

Current state augmented

Find patch correspondences

Jointly estimate avaiable frames and poses
state update

New
Keyframe?

Refine the depth of current keyframe Project all depth estimates to new keyframe

Maintain current state and update Marginalise pasr frames

Form new state vector and update

No

Yes

Figure 4.2: Flowchart for keyframe selection.

account the shape of constraints of particular feature types, especially for irregular

object edges.

In the searching process, we firstly find an estimated corresponding patch in

new image. For simplicity in expression, here we use the centre pixel expression u

to represent a 3n × 3n patch [u]3n×3n, (n ∈ Z+), showing the spatial relationship

between a current image Ii as frame Ci and reference keyframe Ik as frame Ck.

As is illustrated in figure 4.3, an image patch [u]3n×3n in image domain Φ ⊂ R2

contains the photometric information of intensity, I(·) : Φ → R3n×3n. The function

is nonlinear and unrelated to u, but we can extract the intensity value directly at

location u in the image matrix. Thus a corresponding patch u′ in another frame

can be found through a projective model, which is similar to the point projection in

section 3.1.2.

The patch u in keyframe Ik can be projected into 3D space under camera frame

Ck using back projective equation (3.11) as

xp
Ck

= Dk (u) K−1u (4.16)

where we define the depth function D(u) getting scale reference at image point u from

the latest estimated depth map. K representing the intrinsic parameters is known

from camera calibration beforehand, which is defined the same as in equation (3.6).
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Then, through spatial transformation, this point can be moved to world frame W

by

xp
W = CW

Ck
q̄ · xp

Ck
+ WpCk . (4.17)

Finally, the estimated corresponding û′ in image Ii is computed by a forward

projection (refer to equation (3.10)) as

û′ = λKCCi
W
q̄

(
xp
W − WpCi

)
, (4.18)

where λ is defined as the reciprocal of zpCk , making the spatial point fallen into image

plane Ii. By combining equation (4.16) to (4.18), we can define a wrap function w(·)
that maps a patch u in keyframe to an estimated patch as û′ in current frame as

û′ = w
(
WχCi

, WχCk , Dk(u),u
)

= λKCCi
W
q̄

(
CW

Ck
q̄Dk (u) K−1u + WpCk − WpCi

)
.

(4.19)

On the other aspect, another corresponding patch u′ as direct measurement

should be found to build the error function. Under the assumption that the same

image region makes a little movement between current and keyframe frame, this can

be achieved easily by controlling threshold in distance criterion (4.15) when selecting

a keyframe. By applying the epipolar constraints introduced in section 3.1.4.2, the

candidate patch of the highest similarity in intensity and gradient can be found

along the epipolar line. From above projective process, we can already get a radius

as search range on the epipolar line, thus avoiding simple infinite exhaustive search

and saving the computational time. To the worst situation, if a corresponding patch

is not found, the range can be extended further to explore other possible candidates

nearby. This little technique increases the ability of relaxation for alignment. Once

all available pairs of corresponding patches between two frames have been found,

the filtering update can be ignited.

4.3.3 State update

Different from the case only using features as the visual measurements, where the

measurement model leverages the re-projection error to build the measurement

model. In our method, we define the visual measurement as the photometric in-

formation at certain pixel patch including the 3n× 3n intensity vector and its gra-

dient. They can be noted as ẑ = I (û′) and z = I (u′), which are extracted from the
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Figure 4.3: A patch is projected from reference keyframe to current frame.

location of projective prediction and direct search respectively.

Based on these measurements, we can build the residual from photometric error

as

z̃ = z − ẑ =
∑
u∈Φ′

I (u′)− I (û′)

=
∑
u∈Φ′

I (u′)− I
(
w
(
WχCi

, WχCk , Dk(u),u
))
,

(4.20)

where Φ′ is the sub regions with large gradient of the whole image region Φ. This

is a nonlinear measurement function, which should be linearised to find Jacobian

matrix in the filtering update process (This can refer to previous section 3.3.8 of

filtering basis). The error measurement function can be approximated as

z̃ = Hx̃+ np (4.21)

where the processing noise np includes a zero-mean Gaussian white noise with co-

variance σp and all the other constant term. Then the covariance matrix can be

expressed as R = σ2
pIN with current N camera poses in state vector. The notation
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H defines the measurement matrix, which includes the Jacobian with respect to the

current state, which can be given the form by

H =

0 · · · Jqi Jpi︸ ︷︷ ︸
Jaccobian w.r.t.WχCi

· · ·

 , i ∈ [1, N ] (4.22)

Follow the chain rule of a differentiation process to get every component along

the chain as

Jqi =
∂I

∂u′
∂w

∂W
Ci
q̄
,

Jpi =
∂I

∂u′
∂w

∂WpCi

,

(4.23)

where the partial differential term ∂I
∂u′

represents the gradient of a patch, which can

be acquired directly through basic image processing. Other terms can be applied by

differentiating equation (4.19) and written as tidy forms as

∂w

∂WCi
q̄

=− λKb
(

CW
Ck
q̄Dk (u) K−1u + WpCk − Wp̂Ci

)
×c,

∂w

∂WpCi

=− λKCCi
W

ˆ̄q
.

(4.24)

By stacking all above calculations of the corresponding patches between all past

frames whose poses are still available in the current state vector, we can obtain the

measurement matrix H , and it is ready for updating the prediction results from the

inertial propagation step. Then the Kalman gain is calculated as

K = Pk+1|kH
T
(
HPk+1|kH

T +R
)−1

. (4.25)

The final correction is x̃k+1 = K · z̃. After the correction, we can get the updated

state estimate xk+1. Lastly, the error state covariance is updated as

Pk+1|k+1 = (I −KH)Pk+1|k. (4.26)

The full update process can be summarised as follows:

(1) Follow the process of keyframe selection in section 4.3.1.

(2) When getting into the step of state update, calculate the measurement matrix
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H from (4.23) to (4.24).

(3) Compute the Kalman gain as equation (4.25).

(4) Update the normal state by adding the correction and update the error state

covariance as equation (4.26).

4.4 State Augmentation and Removal

Over all the process of inertial propagation and visual update, we notice that if the

estimated camera poses join in or move out from the current state, the length of the

state vector will be altered. In this section, we will present the technical details of

augmentation and removal of the state vector and covariance matrix. This is also

the core for multi-state constraint filtering method.

4.4.1 State augmentation

The pose of new recording image can be obtained by transforming the latest pose

estimation from inertial driven propagation. Thus we have

C
W

ˆ̄q = C
I q̄ ⊗ I

W
ˆ̄q

Wp̂C = Wp̂I + CT
I
W

ˆ̄q
IpC,

(4.27)

where C
I q̄ is the quaternion indicating the rotation between the inertial frame I and

the camera frame C, and IpC is the relative position of the origin of camera in inertial

frame, both of which are known beforehand by setting up hardware parameters.

The estimated camera pose is appended at the end of state vector of (4.7) and

the covariance matrix is augmented accordingly as[
I15+6N

A

]
P15+6N

[
I15+6N

A

]T
→ P15+6(N+1), (4.28)

Where the augmented matrix A is the Jacobian related to current camera pose and

the inertial pose in state vector, which can be derived from equation (4.27):

A =

 CC
I
q̄ 03×3 03×3 03×6 03×6N

bCT
I
W

ˆ̄q
IpC×c︸ ︷︷ ︸

inertial rotation block

I3×3︸︷︷︸
inertial position block

03×3︸︷︷︸
velocity block

03×6︸︷︷︸
bias block

03×6N︸ ︷︷ ︸
visual pose block

 .
(4.29)
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4.4.2 State removal

If all the state variables and patch correspondences during operation are maintained,

the computational complexity becomes larger and larger with an increase of distance.

In our method, we keep the poses of one keyframe and several consecutive frames

in a live state vector. Once a new keyframe is found, the past camera poses will be

marginalised out.

At the moment when a new keyframe has been chosen and its pose has been

updated, the current state vector includes three parts of variables, i.e. inertial state

variables, old visual state variables, and pose of the newly chosen keyframe. Here for

an explicit explanation, we note them as states xI,xC,xk respectively. According

to the measurement model of (4.21), we can regard the equation as a least squares

problem. To marginalise out the old states from the state of new keyframe, we can

rewrite the visual block of the whole measurement model as[
HCC HCk

HT
Ck Hkk

][
xC

xk

]
=

[
bC

bk

]
. (4.30)

By applying the the Schur complement, the above equation (4.30) can be changed

into [
HCC HCk

0 Hkk −HT
CkH

−1
CCHCk

][
xC

xk

]
=

[
bC

bk −HT
CkH

−1
CC bC

]
. (4.31)

Thus, the marginalised visual block becomes

(
Hkk −HT

CkH
−1
CCHCk

)
xk = bk −HT

CkH
−1
CC bC. (4.32)

Marginalising out the state xC will induce dependencies between other states that

are dependent on xC like HCC and HCk. However, in our system, the inertial block is

defined as independent to visual block. Therefore, we can easily stack the matrices

and form the new H for the updated visual model:[
HII 0

0 Hkk −HT
CkH

−1
CCHCk

][
xI

xk

]
=

[
bI

bk −HT
CkH

−1
CC bC

]
. (4.33)

Additionally, since the covariance matrix is in diagonal form, the new matrix can

be achieved by simply permuting and pruning operation.
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4.4.3 Outlier rejection

During the process of finding patch correspondences in section 4.3.2, it is inevitable

to import gross outliers into visual measurements. Such mismatching pixel patches

can dramatically lead to divergence when calculating a solution. Therefore, we need

to remove as many outliers as possible.

There are various outlier rejection methods available in the literature. Among

them, RANdom SAmple Consensus (RANSAC) is the most basic and appealing one

in practical use. The core idea of RANSAC method is estimating the parameters of

a function with valid data and outliers but ensuring that the outliers do not affect

the result to a great extent. In the method, two prerequisites are needed: a model

of the potential function and criterion to classify outliers.

In the case of determining the depth and pose parameters in our visual model,

the projection process as equation (4.19) is adopted. Here in outlier rejection, we use

the residual error the same as in measurement model (4.20), where the photometric

error between the detected patches and the projected corresponding estimates allow

us to build a formula for distinguishing the outliers,

||z̃|| < δ ⊂ inlier

||z̃|| > δ ⊂ outlier.
(4.34)

With known camera intrinsic, estimates of camera poses and probability of depth

value, the outlier rejection process iteratively chooses a random set of eight corre-

spondences and checks the consensus with the criterion as (4.34). Only the inliers

will be adopted in measurement model calculation and further used to update the

depth as mentioned in section 4.3.1.

4.5 Analysis

4.5.1 Links between various estimation methods

As stated in the background review chapter, there are two basic approaches widely

used in pose estimation problems, i.e. filtering based and optimisation based. Our

visual-inertial odometry method is a filtering based one. However, we notice that

both of filtering based and optimisation based approaches can be formed under the

Bayesian inference. When the succession of approximation linearisation is available,

their link can be made explicitly via the iterated EKF. In our publication of [39],
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Figure 4.4: Links of filtering and optimisation methods.

we illustrate the process and relationship of EKF, IEKF and smoother as figure

4.4. When the approximation linearisation is just a single step, the smoother based

approaches which include a forward and a backward pass are equivalent to the

optimisation based approaches which are solved via the Cholesky decomposition

of information matrix of least square problems. Here, to break the gap and avoid

separately understanding between both methods, we give an insightful analysis of

the links between filtering and optimisation based methods.

The core of filtering based approaches is the Kalman filter and the core of op-

timisation based approaches is the Gauss-Newton method. The link between them

is the Iterated EKF (IEKF) [173]. An EKF has two steps: prediction and update.

Let the result of prediction step is x̂k ∼ N(x̄k,Pk) at current time k. The difference

between EKF and IEKF is that there is an iterative loop in the update step of IEKF

while only a single loop is executed in the update step of EKF. It is the iterative

loop of IEKF which can drive the error caused by model linearization as close as

possible to the counterpart in optimisation based approaches.

In the following, we will show the equivalence between the iterative loop in update

step of IEKF and the Gauss-Newton method of optimisation approaches from the

point view of likelihood maximisation.

At time k, the IEKF has xk, x̂k|k−1, zk as the current state, the current state
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estimate, and the measurement, respectively. The measurement model is the same

as equation (3.68) and x̂k|k−1 ∼ N(x̄k,Pk|k−1).

Define an error vector as in quadratic cost function with a free variable µ.

E(µ) = S

[
zk − h(µ)

x̂k|k−1 − µ

]
,

where STS =

[
R 0

0 Pk|k−1

]−1

.

The maximum likelihood optimisation problem is

µ = arg max
µ

exp

(
−1

2
E(µ)TE(µ)

)
or

µ = arg min
µ

(
1

2
E(µ)TE(µ)

)
.

Given the initial value µ(0) = x̂k|k−1, the Gauss-Newton method gives

µ(i+1) = µ(i) −
((
∇E(µ(i))

)T ∇E(µ(i))
)−1 (

∇E(µ(i))
)T
E(µ(i))

with

∇E(µ(i)) = −S
[
H(i)

I

]
and H(i) = ∇h(µ(i)). Using above gradient, the Gauss-Newton method becomes

µ(i+1) =
(
HT

(i)R
−1H(i) + P

(i)
k|k−1

)−1 (
HT

(i)R
−1
(
zk − h(µ(i)) +H(i)µ(i)

)
+ P

(i)
k|k−1x̂k|k−1

)
= x̂k|k−1 +K

(i)
k

(
zk − h(µ(i))−H(i)

(
x̂k|k−1 − µ(i)

))
(4.35)

with the gain

K
(i)
k = P

(i)
k|k−1H

T
(i)

(
H(i)P

(i)
k|k−1H

T
(i) +R

)−1

. (4.36)

And the covariance is

P
(i+1)
k|k−1 = E

[(
µ(i+1) − µ(i))T (µ(i+1) − µ(i)

)]
=
(
I−K(i)

k H
(i)
)
P

(i)
k|k−1. (4.37)

After the loop in i, it can be seen that the results from the update step are x̂k|k =

µ(i+1) and Pk|k = P
(i+1)
k|k−1.
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In summary, the above iterative loop of Gauss-Newton method is viewed as the

update step of IEKF, that is

(1) Initialization: i = 0, µ(0) = x̂k|k−1 and P
(0)
k|k−1 = Pk|k−1,

(2) Loop calculation from equation (4.35) to (4.37),

(3) Final updating: x̂k|k = µ(i+1) and Pk|k = P
(i+1)
k|k−1.

When only one iterative loop is executed, the above is the update step of EKF.

Their relationship can be viewed clearly in figure 4.4.

4.5.2 State observability and parameter identifiability

Observability is a fundamental property which reflects the possibility of estimating

states by input/output data. If states are distinguishable, they can be determined

from the outputs and the known measurements. If states are indistinguishable, they

are called unobservable and their corresponding variance will grow without bound.

Observability of a linear system is a global property that can be determined ei-

ther from the rank of the observability matrix or from the rank of Gramian matrix.

However, observability of a nonlinear system is determined locally to a given state

[174]. Given only the measurements from IMU and camera, the question whether

these states and parameters can be recovered is determined by the analysis of ob-

servability and identifiability.

The VIO problem is to recover the motion trajectory of a mobile platform in the

global frame with only the measurements from inertial and visual sensors. However,

this issue not can be solved in such a straightforward way. Apart from the complexity

of filtering or optimisation based approaches, some parameters play a crucial role in

the succession of state estimation. These parameters include

• Camera intrinsic parameters: focal length, principal points, lens distortion;

• IMU parameters: acceleration and gyroscope biases;

• Spatial parameters: the transform between IMU and camera;

• Temporal parameter: the time delay between IMU and camera measurements.

They are treated as time-invariant variables except for the IMU biases, called the

system parameters. On contrary, the motion trajectory of a mobile platform is

represented by time-variant variables as pose states.
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Pose estimation is the core task for VIO or other SLAM problems. Based on the

observability rank condition, some publications in robotics shown that the platform

pose in the global frame is unobservable and the rotation around gravity vector (yaw)

is unobservable. However, the analysis of observability rank condition shows that 6

DOF camera-IMU transformation, along with IMU biases, gravity vector, and the

metric scene structure are all observable. The intuitive interpretation is that the

visual camera is a bearing only sensor and the IMU is only a double integrator,

which is not able to provide the pose and yaw information in the global frame.

As for the other parameters, in most of the visual related localisation techniques,

the intrinsic camera parameters are known in advance. But they can also be cal-

ibrated online, such as the methods introduced in work of [175]. The IMU biases

vary with time and are modelled as time variant states in most cases. The spatial

parameters between IMU and camera are 6 DOF transformation, which must be

known precisely to stabilise the estimation results.

4.6 Experiments and Results

In this section, we first compare our direct-based method with the feature-based

MSCKF in public dataset of KITTI [176]. This dataset was built on an automo-

bile equipped with diverse sensors including camera, high precision IMU and laser

scanner, which is suitable for research on mobile robots and autonomous driving.

The data is well calibrated and synchronised, and the ground truth benchmarks are

also provided. Thus it is beneficial for algorithm testing, analysis and comparison.

Furthermore, we apply our algorithm to the data we collected from our self-made

mobile platform (described in chapter 6), which includes only data from a monocular

camera and a consumer-grade IMU. The experiments on our own recorded scenes

are targeted at analysing the process and merits of our algorithm in indoor and

outdoor applications on the mobile platform.

4.6.1 Translational and rotational accuracy

Our direct method is compared with a feature-based MSCKF method extracting

SURF features in scenes and tracking using KLT tracking approach [177]. The case

0051 and 0095 of city category and the case 0036 of residential category in the KITTI

dataset are chosen because they contain few moving objects. There are more stable

features or image regions with large gradient are available.
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(a) Statistic analysis of multiple trials using MSCKF-direct method. The error in both x and y
directions are accumulated over the mean trajectory, while the 0.95 confidence ellipse are expanded
as algorithm goes on.
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(b) The estimated mean trajectories of multiple trails and the IMU-only/GPS recorded trajectories.

Figure 4.5: Estimated trajectories of the case 0051 of city scenes.
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Figure 4.6: Some scene pictures and corresponding keyframes captured from the
case 0051 during algorithm running.

Figure 4.5 and 4.7 illustrate multiple trials and depict the statistics informa-

tion of the case 0051 and 0095 respectively. Some scene pictures and corresponding

keyframes in figure 4.6 and 4.8 show scattered significant regions adopted by the

direct-based method. The plotted mean trajectories, error and 0.95 confidence el-

lipses in figure 4.5(a) and 4.7(a) are the statistical results from ten trials in each

case. As we can see from such figures, the bias and error are accumulated along

with the running distance. Additionally, the estimated mean trajectories in figure

4.5(b) and 4.7(b) show more details than the one recorded from GPS signals, such

as the moment for rotations. In both cases, the estimated mean trajectories are

divergent from the ground truth as time goes on for both direct-based and feature-

based methods, which indicates the unavoidable trend of the essential bias and error

accumulated in odometry problem. Although we meet a lot of failure cases when

performing the experiments, in these chosen cases, the IMU-only estimation has an

acceptable performance, where its estimated trajectory is even better than using

the feature-based MSCKF in the case 0051. This is the merit of high-precision de-

vices with low processing noise and using a proper calibration algorithm. Both of

the cases are performed using MSCKF as the fusion approach. However, we can see
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(a) Statistic analysis of multiple trials using MSCKF-direct method. The error in both x and y
directions are accumulated over the mean trajectory, while the 0.95 confidence ellipse are expanded
as algorithm goes on.
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(b) The estimated mean trajectories of multiple trails and the IMU-only/GPS recorded trajectories.

Figure 4.7: Estimated trajectories for the case 0095 of city scenes.
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Figure 4.8: Some scene pictures and corresponding keyframes captured from the
case 0095 during algorithm running.

that the estimated trajectories of our direct-based method in both cases are closer to

the ground truth generally than the feature-based. To analyse the accuracy further,

we illustrate the Root Mean Squared Error (RMSE) for both cases.

Figure 4.9 shows the RMSE of IMU-only pose estimation in blue dashed line,

feature-based MSCKF in red dot-dashed line and our direct-based MSCKF in solid

magenta line. In both translation RMSE figures, since the feature-based method

[177] using the ground truth to initialize the algorithm, our direct-based method

seems more unreliable at the beginning. However, it outperforms the feature-based

method after several travel distances, i.e. at 20 timesteps of the case 0051 and at 75

timesteps of the case 0095. The translation errors of the direct-based method tend

to more stable than the feature-based method except for the situation of outliers

interference and the mismatch happened after 82 timesteps of translation RMSE

in the case 0051. This situation also causes a huge error and a suddenly large
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Figure 4.9: Comparison of RMSE of the cases 0051 and 0095. Poses have already
been estimated by IMU-only, feature-based and direct-based MSCKF methods.

KITTI 0095
KITTI 0051

(before polluted at timestep 82)
IMU-only 1.1079 0.5980

Feature-based MSCKF
(initialised with ground truth)

0.8651 0.6538

Direct-based MSCKF 1.0262 0.3752

Table 4.1: Mean RMSE of the translation cases of 0051 and 0095. Direct-based
method keeps less or average value in both cases.

divergent in trajectory estimation. However, the estimated trajectory from high-

quality inertial data always shows a stable incremental error along the travel. Table

4.1 summarizes the mean RMSE of the three estimates.

As for the rotational error, the direct-based method seems to outperform the

feature-based method to a large extent at first glance. However, we notice that

it actually contains few sharp and rapid rotational scenario in both chosen cases.

Thus we further perform experiments in a case with more turning to compare both

methods, one of the cases (0036) in the KITTI dataset is shown on figure 4.10.

Unfortunately, through multiple trials and cases, our method does not show signif-

icant advantages in sharp and rapid rotational situations. The good performance

in our method only happens when more scenes are covered between consecutive

image frames, which means that the travelling is near a straight line and the field

of view not can be altered too much. The reason for this stems from the essential

mechanism of the direct-based method, where the photometric error heavily relies
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(b) The estimated and recorded trajectories.

Figure 4.10: Sharp and rapid rotation situation in the residential case 0036 of the
KITTI dataset. There exists huge error after the right turn for the direct-based
method.

on the pixels positions. Large movements in consecutive frames no matter rotation

or not will lead to a large transition of similar pixel regions, thus further making

the corresponding patch jump outside from any setting threshold of the searching

boundary.

To quantify the overlapping boundary of consecutive images for the direct-based

method, we perform more trails in pure rotation situation in the case 0036 and our

outdoor experiments (figure 4.17). The right turn scenes and the algorithm propa-

gation can be clearly revealed from figure 4.11, 4.12 and 4.17. As the turning goes

on, there firstly exist large new regions in the right part of the whole images, then

these regions are soon measured and matched in the algorithm by new incoming

images. Other than increasing the rotation speed or image rates to enlarge the

novel regions, we manually choose and form the sequences with the proportion of

new regions in the whole image as 1/2, 1/3 and 1/4 while keeping the image rate as

10Hz to ensure sufficient calculation with fewer outliers. The results show that the

maximum proportion for a new region is 1/3 in our direct-based method, i.e., mini-

mal overlapping for consecutive images is 2/3. When the overlapping rate is under

2/3, tracking failure will mostly happen in operation. The case 0036 illustrated here

(figure 4.11) is with 3/4 overlapping proportion and the outdoor case (figure 4.17)

is with 2/3 overlapping proportion. Both of them can have stable estimated results.

However, if we increase the image rates or motion speed for both cases, in order to

catch up the motion and have a true/near real-time estimation, more consecutive
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bC right turn

Figure 4.11: The right turn situation in the case 0036. The overlapping proportion
of consecutive images is set to 3/4.

images will be discarded. In this situation, the less overlapping proportion leads

to rough estimation or even failure in the direct-based method. Therefore, when

applying the direct-based method to grantee stable results in the case of large ro-

tation, the motion speed and overlapping proportion in consecutive images need to

be carefully considered.

4.6.2 Availability of visual information

In addition to using public dataset, we also collect the data from our lab and an

outdoor farm scene by using our self-made mobile platform. The merit of our direct-

based method will be further analysed based on the collected data. Since the physical

restriction of our mobile platform, only the sensory source as consumer-grade IMU

and monocular camera are available on our platform. The essential noise will defi-

nitely increase the accumulated error. However, it does not shadow the advantages

of the direct-based method.

Figure 4.13 and 4.14 are the scenes snapped from our dataset, where the sub-

figure 4.13(a) illustrates the feature matching using SURF [64]. As is shown, there

are abundant feature points available in the lab scene including some points which

we do not even notice. However, most of the good feature points are only limited
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Figure 4.12: Algorithm propagation during turning.

in the region of a distant desk, as shown in figure 4.13(a). The large pillars in

front of the scene and their significant edges are ignored. As we can see from the

third column of figure 4.13(b), all the prominent edges are adopted to build up

depth estimates, and the full visual formation is spanned over the whole image in

our direct-based method. This direct-based solution does provide more information

than feature-based methods in the aspects of spatial constraints.

This situation becomes apparent when the estimation is applied in an outdoor

environment. As shown in figure 4.14(a), the matched features are only available in

the woods while large earth scene which occupies a large percentage of the whole

image is ignored. From the right column of sub-figure 4.14(b), we can find the



93

(a) Feature matching in lab scene.

(b) Direct patches region in lab scene.

Figure 4.13: Available visual information in the indoor environment. (a) is the
matched feature points, and (b), from left to right, includes the original scenes,
significant edges and marked patches in our direct-based method.
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texture on the floor is also useful in visual processing, where the significant edge

information can be directly extracted. Moreover, even if we can acquire feature

matches on the floor through lowering feature searching parameters, it will still

cause a multiple corresponding issue in the matching process. But in our method,

through adjusting the searching radius with geometry constraints as described in

previous section 4.3.2, we still can find the corresponding patches rapidly.

4.6.3 Trajectory estimation

One of the goals of VIO is to estimate the trajectory and let the mobile platform

know where it is. In the beginning, we try to estimate the trajectory merely from

the inertial data, but no matter what kinds of filtering methods we being used,

the estimates will blow up in a few seconds. The online IMU integration with a

consumer-grade bias will definitely lead to divergent results. An intuitive exam-

ple can be found in figure 4.15. Although the raw reading can respond to small

movement, the estimates of velocity and position through first and second order

integration will be incremental even when the movement stops. While in our direct-

based fusion method, the inertial estimates are bounded by visual measurement.

More precisely, it is limited by the pose of image frames in the current state. Only

the increments between frames will be adopted for pose initial estimation of a new

frame. This solution largely reduces the accumulated error in inertial calculation.

Figure 4.16 show the pose estimates in our lab scene, where the self-made quadro-

tor is controlled travelling around circles at a different altitude. The estimated pose

and trajectory can clearly reflect the movement and altitude turning points. In

this indoor case, we turn off the lights of the ceiling to check the availability of the

direct-based method. As we can see from the frames captured from algorithm run-

ning, even under little illumination condition, the direct-based matching can track

the significant edges in the scenes. However, it will be failed when applying for

feature-based approaches.

For outdoor experiments, due to the limited capacity of the electric circuit, the

GPS sensor is just for controlling but recording, therefore no reliable recorded tra-

jectory can be shown. In figure 4.17, we illustrate the estimated trajectory on a

google map where the experiment took place. The estimated trajectory implies that

the mobile platform starts from the green point and ends at the blue one. We use

a remote panel to control the manoeuvres. The initial and final landing spot was

measured by a metre ruler. while the true final position expressed with respect to
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(a) Feature matching in outdoor scene.

(b) Direct patches region in outdoor scene.

Figure 4.14: Available visual information in outdoor environment. (a) is the matched
feature points, and (b), from left to right, includes the original scenes, significant
edges and marked patches in our direct-based method.



96

0 10 20 30 40 50 60 70 80

Time (s)

-100

-50

0

50

100

A
n

g
u

la
r 

v
el

o
ci

ty
 (

  
° /s

)

0 10 20 30 40 50 60 70 80

Time (s)

-10

-5

0

5

10

15

A
cc

el
er

a
ti

o
n

 (
g
)

X

Y

Z

(a) Raw reading of comsumer-grade IMU. The noise is together with valid signals.

0 10 20 30 40 50 60 70 80

Time (s)

-400

-200

0

200

400

600

800

P
o

si
ti

o
n

 (
m

)

0 10 20 30 40 50 60 70 80

Time (s)

-10

-5

0

5

10

15

20

V
el

o
ci

ty
 (

m
/s

)

(b) Velocity and position estimation from raw IMU reading. The estimation error is accumulated
rapidly as time goes on.

Figure 4.15: Raw reading and further velocity and position estimation of a
comsumer-grade IMU.
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Figure 4.16: Trajectory estimation for the indoor lab scenes. Our direct-based
method is evaluated under a low illumination condition, while this estimation will
be failed when applying feature-based approaches.
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100m

b

Figure 4.17: Trajectory estimation for the outdoor scenes. The data is collected
from a self-made mobile platform. The selected frames in the bottom rows depict
the algorithm propagation with the overlapping proportion as 2/3. This is the
boundary for our direct-based method.

the original pose is approximately (−3,−2,−0.5)T m, the estimated final position is

(−8.1352,−9.8206,−3.7473)Tm. Thus the final position error is approximate 10m

in 1.5km travelled distance. This is remarkable that the algorithm does not detect

the loop closure or depend on prior information about this area. Additionally, in

a rotational situation, we downsample the video stream to 2/3 overlapping regions

between consecutive frames. This is the boundary for producing an effective esti-

mation. The algorithm propagation between frame also can be seen in the bottom

rows of figure 4.17.
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Figure 4.18: Keyframe patches and the merged maps. The top row is the depth
estimation from certain keyframes and the bottom row includes two merged maps.

4.6.4 Potentials in mapping

Although the primary task in VIO is not to form a consistent map, the direct-based

methods naturally involve more depth estimates in 3D, which builds the basis for

a mapping task. The top row of figure 4.18 shows some examples of the depth

estimates from keyframes. These patches located at significant edges can construct

the basic structure of the scene if we stack the depth estimate from certain keyframes.

Ideally, the full structure of the scene can be depicted from all keyframes. However,

to achieve a consistent map, more tasks regarding globally consistency or fusion of

multiple estimates should be taken into account. As we can see from the bottom

row of figure 4.18, we merge several depth estimates from consecutive keyframes in

our indoor trials. A blur scene structure can be built but with large overlaps. If

this redundancy not can be further removed, the full depth estimates will eventually

become chaos. In our direct-based method, to guarantee the algorithm is running

efficiently, the states of frames will be altered lively without reuse the marginalised

ones. Therefore, we not can build a consistent map while the algorithm is operating,

but with further developing, it still owns the potentials.
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4.7 Summary

In this section, we present the method of direct-based visual-inertial odometry.

Starting from the IMU dynamic model, we illustrate the normal system state and

its error form. Then the inertial-driven propagation model is built. The measure-

ment model is constructed on the basic projective model but using photometric

information, where corresponding patches instead of features are taken into account

in building up the spatial relationship while the algorithm is running. The role of

keyframe is important in our approach. It needs to be regarded as a reference for

consecutive frames with ongoing refinement. The system states are altered while a

new frame is imported. The argumentation and removal of camera pose states are

the core for an MSCKF.

The analysis of IEKF bridges the gap and illustrates the intrinsic links between

filtering based and optimisation based method, thus providing potential guidance in

further developing both methods. The observability analysis clarifies the character

of global unobservable and the definition of some time-invariant parameters in our

method.

Through the comparison in the experiments, it has been illustrated that our

direct-based method outperforms the feature-based one while travelling along straight

lines with a slight tolerance of rotation. The direct-based method can make the full

use of visual information in a single image, which allows the effective estimation un-

der extreme illumination condition. However, we should carefully control the moving

speed of mobile platforms to ensure that the overlapping proportion is within the

2/3 boundary between consecutive images. As long as within this boundary, the

trajectories of collected data from our self-made platform can be estimated. Addi-

tionally, the stacking depth estimates from keyframes can potentially produce the

structure of scene if being further developed.



Chapter 5

Direct Visual-Inertial Odometry

based on Mutual Information

5.1 Overview

Mutual information (MI) based measurement method has high robustness in visual-

based tasks, especially in the situation of illumination variation, noise interference

and partial occlusion cases. In this chapter, we will start from fundamental basis of

information theory to the MI expression for digital images, where the reason why

MI rather than Joint entropy is suitable for measuring the similarity of two random

variables will be discussed. The novel MI-based measurement model, which can

replace that of our MSCKF-direct methods will be presented in details. Further

the derivation of visual measurement model, a promising iterative process is pro-

posed, which is suitable to build an iterative filtering framework as analysed in the

previous chapter. The experimental results show that the MI-based measurement

method outperforms other methods in the case of illumination variation, occlusion

and noise pollution cases. However, since our motion estimates are based on a known

scene model, the original estimation error from the model will lead to a worse er-

ror accumulation afterwards. This limits our method only available for short term

travelling along straight lines with only slight tolerance of rotation. Additionally,

a broad scene image of our experimental environment is built based on MI-based

image mosaicing techniques for showcasing its potential mapping ability.
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5.2 Probability and Information Entropy

In this section, we will provide some elements of the information theory which are

used in our mutual information based visual measurement. Then, the sequential

digital images will be regarded as discrete variables, and the derivation process of

mutual information on sequential images will be given.

5.2.1 Random variables and their probability

In probability and statistics, a random variable is a variable which is unknown but

can be assigned to a possible numerical value from a random phenomenon, such as a

primary physical experiment outcome. Through multiple trials, we can get the clue

of the most likely values of the outcomes, which is given as the form of probability

distribution.

Let us consider a discrete random variable X is defined as the resulting number

of dice game. The possible value x are fallen in the set of Ω = {1, 2, 3, 4, 5, 6}, then

the probability distribution p(x) = P (X = x) means the proportion of times in

all experiment trails, when the variable X is equivalent to the value x. As we can

expect, each value in the set Ω should have equal probability to occur at any random

trial, and the sum of probabilities over all elements in this set should be identical:∑
x∈Ω

p(x) = 1. (5.1)

Similarly, the pixel intensities of a digital image in a grey colour map can also

be viewed as a random variable, and its value falls into the set of Ω = {0, · · · , 255}
whenever the camera exposure happens.

When considering two random variables X and Y , the concept of joint probability

should be adopted to express the chance of a couple of values as (x, y) occur at the

same time,

p(x, y) = P (X = x ∩ Y = y). (5.2)

The properties of two random variables inherit the one from the single case. The

probability is not defined for any value couple outside from a particular set as ΩX ,

ΩY , and the sum of probabilities is also identical:∑
x∈ΩX

∑
y∈ΩY

p(x, y) = 1. (5.3)
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Actually, the joint probability measures the link between two random variables.

It can be depicted as the joint probability of (x, y) is the probability of Y equals to

y when X is known as x or vice versa, which is called as conditional probability and

noted as,

p(x, y) = P (Y = y|X = x)p(x) = P (X = x|Y = y)p(y). (5.4)

However, if the happening of X = x is irrelevant to Y , i.e. these two random

variables are independent, then the condition expressions are not necessary in above

equations because of P (Y = y|X = x) = P (Y = y) = p(y) or P (X = x|Y = y) =

P (X = x) = p(x). In this situation, the joint probability can be simply written as

p(x, y) = p(x)p(y). (5.5)

Although the concept of joint probability can express the links between two

different random variables in a way, they still not can give a quantitative comparison

between these two variables. Especially for the case when sequential images are

regarded as discrete random variables, and their similarity should be clear defined.

5.2.2 Information entropy and mutual information

From the perspective of information theory, Shannon uses the quantity of a variable’s

information [149], entropy H(·), to measure its variability. For an intuitive under-

standing, if a variable contains more possibilities as valuable information, then it

will be more variable. But if a variable is constant, then there is no information

included. The entropy of a discrete random variable X is written as

H(X) = −
∑
x∈Ω

p(x) logα p(x), (5.6)

with the definition of 0 ·∞ = 0. The α represents the logarithm basis, which defines

the entropy in a different unit. For instance, when α is set as 2, the entropy of a

signal is united in bit. The change of different logarithm basis is a matter of applying

a scale factor to an entropy value. In this thesis, we will keep using the traditional

α = 2 as logarithm basis and omit this parameter in the following expressions.

Here, we can understand the meaning of information entropy through an example

intuitively. The red and green curves in figure 5.1 illustrate the values for probability,

where the probability of a random variable is fallen into [0, 1]. The red curve shows

that a small probability achieves high value, which can be interpreted as a small
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Figure 5.1: Uncertainty added by a value with respect to its probability (a) and
entropy of a binary variable with respect to the probability of its first value x1 (b).

possibility reflects a large uncertainty thus a large amount of valuable information

is contained. On contrary, when the variable is near constant, its probability is high

up to one, and the uncertainty becomes low in value.

Furthermore, we consider a simple case of one variable with only two possible

value, which is restrained by equation (5.3). Then follow equation (5.6), the entropy

value of every possible pair can be given as the blue line in figure 5.1. It shows that

the maximal value occurs at the middle point, where both of the possible value of

X owns the probability of 0.5. This is a uniform distribution with the meaning of

every possible value happens in equal chance. When the variable is constant, which

means p(x1) = 1 or p(x2) = 1, the null value of entropy will occur.

Similar to the definition of information entropy, the joint entropy describe the

variability of the couple of random variables (X, Y ) based on joint probability, which

can be expressed as

H(X, Y ) = −
∑
x∈ΩX

∑
y∈ΩY

p(x, y) logα p(x, y). (5.7)

The joint entropy seems to provide a measurement about the correlation between

two variables. However, following the example in figure 5.1, we can see that, if the

probability of X and Y are equal, p(x, y) = p(x) = p(y), then the joint entropy be-

comes the same as individual single entropy, i.e. H(X, Y ) = H(X) = H(Y ). But when
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one of the variables is constant, its entropy becomes zero. X and Y are irrelevant,

so joint entropy becomes the individual entropy H(X, Y ) = H(X) or H(X, Y ) = H(Y ).

These two situations above not can be distinguished if only using joint entropy to

measure their similarity.

If taking the mutual dependency between variable entropies into account, the

conditional entropy is defined, which describes the system uncertainty when parts

of the information are known. The definition of the system of variables (X, Y ) with

known X is given by

H(Y |X) = H(X, Y )− H(X). (5.8)

However this expression still not can be used to measure the similarity of both

variables. When two variables are completely correlated with respect to each other,

the conditional entropy is zero because of H(X, Y ) = H(X) = H(Y ). And if the

two variables are independent, the conditional entropy becomes individual one as

H(Y |X) = H(Y ). There exists ambiguity if X is constant and H(Y ) = 0.

To overcome the ambiguity above, a solution must be considered to remove the

dependency of conditional entropy for individual one, which can be formulated as

the mutual information (MI),

MI(X, Y ) = H(Y )− H(Y |X) = H(X) + H(Y )− H(X, Y ). (5.9)

This expression defines the difference of variability between the variable Y and

the variable Y with known X as a condition. The more dependent this two variables

are, the larger value of MI will be. If these two variable are tightly correlated to each

other, i.e. H(X) = H(Y ), then H(X, Y ) = H(X) = H(Y ) and MI(X, Y ) = H(X) = H(Y )

reach the maximum. And if one of the variables is constant, say X is constant, then

H(Y |X) = H(Y ) and MI(X, Y ) becomes zero. Therefore, the concept of MI can be

used to measure the amount of information that is shared by the two variables.

5.2.3 Digital images as random variables

From another point of view, a digital image as a matrix can be regarded as a

discrete random variable about image intensities. The pixel units record intensity

values from a certain set, which is usually Ω = [0, 255] ⊂ N in gray-level images.

The probability p(i) of value i ∈ [0, 255] is the proportion of such value in one image

I, which is estimated using the image histogram and normalised by the total number
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of pixels,

pI(i) =
1

N

∑
x

δ(i− I(x)), (5.10)

where x is the location of pixel unit in total number of N and δ(·) defines the

Kronecker delta as

δ(x) =

{
1 if x = 0

0 otherwise
. (5.11)

The computation of image histogram is similar to a polling process. At the time of

I(x) = i, the ith histogram bin value is incremented.

By importing the concept of entropy and applying the probability of the pixel

values into equation (5.6), we can get

H(I) = −
∑
i∈Ω

pI(i) log pI(i). (5.12)

This expression measures the dispersion of image histogram, which reflecting the

variability of one image.

Furthermore, for the case of two images, the joint probability of a pair of pixels

(i, j) from two images reflects the proportion of their occurrence times at corre-

sponding locations. For two images having the same size of total N pixel units, this

probability can be expressed as

p(i, j) =
1

N

∑
x

δ(i− I(x))δ(j − Ik(x)) (5.13)

Substituting above equation into joint entropy (equation (5.7)) and yielding,

H(I, Ik) = −
∑
i,j∈Ω

pIIk(i, j) log pIIk(i, j). (5.14)

Following the definition of MI (equation (5.9)), we can derive the MI expression of
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a pair of images as

MI(I, Ik) = H(I) + H(Ik)− H(I, Ik)

= −
∑
i

pI(i) log pI(i)−
∑
j

pIk(j) log pIk(j) +
∑
i,j

pIIk(i, j) log pIIk(i, j)

=
∑
i,j

−pI(i) log pI(i)− pIIk(i, j) log pIk(j) + pIIk(i, j) log pIIk(i, j)

=
∑
i,j

pIIk(i, j) log

(
pIIk(i, j)

pI(i)pIk(j)

)
.

(5.15)

5.3 MI-based Measurement Model for Filtering

In this section, we will present the MI-based visual measurement model in detail.

We assume that a scene model with a certain amount of spatial points in world

frame W is known. Like our previous method, a semi-dense depth estimation for

a local scene can be acquired by saving the keyframes information. Here, in the

MI-based visual model, such keyframe and their scene estimation will be reused to

estimate a relative pose from keyframe to current frame. The framework as filtering

will be adopted again to fuse the inertial information. Therefore, the goal here is

simplified to build the MI-based visual measurement model and give its necessary

derivatives with respect to camera poses.

Firstly, we recall the state update formulation of our visual model as photometric

information in section 4.3.3. The measurement model targets to build a residual

formulation concerning an increment to current state:

z̃ = z − ẑ = Hx̃+ np, (5.16)

where the x̃ is the error state containing the camera state WχCi
and np is the

Gaussian noise during processing. The processing noise np includes a zero-mean

Gaussian white noise with covariance σp and all the other constant term. Then the

covariance matrix can be expressed as R = σ2
pIN with current N camera poses in

state vector. The notation H defines the observation matrix, which includes the
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Jacobian with respect to the current state, which can be given as

H =

0 · · · Jqi Jpi︸ ︷︷ ︸
Jaccobian w.r.t.WχCi

· · ·

 , i ∈ [1, N ]. (5.17)

Different from the previous chapter, here we use the mutual information between

nearest keyframe and image taken at pose Wχ̂Ci
as the observation, which can be

expressed as

ẑ = MI(Ik, Ikci(
Wχ̂Ci

)). (5.18)

It should be noticed that the camera pose WχCi
actually can be updated by the

incremental translation υ and rotation ω, as defined in section 3.2.5. Thus the pose

can be updated using the exponential map as the form of χk+1 = exp(ξ)χk. In

the following derivation, we only use the minimal representation of pose ξ and its

increment δξ for a concise notation.

Whenever a new image arrives, an initial estimation of its pose will be given from

the inertial propagation step. The other observed pose is acquired through finding

a relative pose from nearest keyframe to current image. This process is measured

by maximising the MI between the current image and a virtual image taken at

estimated pose from scene model. This step can be regarded as an optimisation

process to finding the maxima. Following the definition in section 3.3.3, it can be

expressed as

δξ∗ = arg max MI(Ici , Ikci(δξ̂)). (5.19)

For the requirement of efficiency, we can use a simple solution from Gauss-Newton

method, where only the Jacobian of MI function, J , is required during iterative

calculation. Once the relative pose is given, the current camera pose as observation

can be achieved by adding (⊕) the pose from the referred keyframe.

The mutual information essentially measures the similarity between two images.

In our measurement model, we reuse this fact that similar image pairs should have

the same MI value to the third one. Here, the third image is the nearest keyframe,

which is already known. Thus, the residual of measurement can be expressed as

z̃ = h(δξ̂) =
N∑
i=1

MI(Ik, Ici)− MI(IkIkci(δξ̂)). (5.20)
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To form the observation matrix H , the Jacobian of MI is required again. Thus,

the core problem here of building an MI-based measurement model is to get the

Jacobian of MI.

5.3.1 MI Jacobian

Applying the derivation chain rule to MI definition equation (5.15), we can get the

resulting mutual information derivative as,

J =
∑
i,j

∂pIIk

∂δξ
log

pIIk

pIpIk

+
∂pIIk

∂δξ
− ∂pI

∂δξ

pIIk

pI

, (5.21)

where the probabilities and joint probability which are actually depending on i, j

are simply denoted as pI, pIk and pIIk . With the fact that the summation of the

probability is constant to one,
∑
p = 1, its derivative is always equals to zero.

Thus, the last term of above equation (5.21) can be decomposed and simplified

as ∑
i,j

∂pI

∂δξ

pIIk

pI

=
∑
i

∑
j

∂pI

∂δξ

pIIk

pI

=
∑
i

∂pI

∂δξ

1

pI

∑
j

pIIk

=
∑
i

∂pI

∂δξ
= 0.

(5.22)

Then the MI Jacobian becomes

J =
∑
i,j

∂pIIk

∂δξ

(
1 + log

pIIk

pIpIk

)
=
∑
i,j

∂pIIk

∂δξ

(
1 + log

pIIk

pI

− log(pIk)

)
=
∑
i,j

∂pIIk

∂δξ

(
1 + log

pIIk

pI

)
−
∑
i,j

∂pIIk

∂δξ
log(pIk)

=
∑
i,j

∂pIIk

∂δξ

(
1 + log

pIIk

pI

)
−
∑
j

∂pIk

∂δξ
log(pIk).

(5.23)

Since the derivative of the probability is zero in the last term above, the final
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expression of the Jacobian of mutual information can be written as

J =
∑
i,j

∂pIIk

∂δξ

(
1 + log

pIIk

pI

)
. (5.24)

5.3.2 Joint probability

As we can see from the final Jacobian equation (5.24), the derivation process of joint

probability pIIk needs to be further expanded for computation. Here, we recall the

original definition of joint probability of equation (5.13) and apply a wrap function

w(·) into it. The form of wrap function is similar to the one used in section 4.3.2.

Thus, the joint probability expression becomes

pIIk(i, j, ξ � δξ) =
1

N

∑
u

φ (i− I (w (u, ξ � δξ)))φ (j − Ik (u)) , (5.25)

where u is the pixel location in the reference frame, N is the total number of pixels

taken into account and φ(·) is a B-spline function used to smooth the MI function.

The general definition of φn with order n can be expressed recursively as

φn(ε) = (φn−1 ∗ φ1)(ε) with φ1 =

{
1 if ε ∈ [0.5, 0.5]

0 otherwise
, (5.26)

where the notation ∗ denotes the convolution operation.

By applying the derivative to the joint probability of equation (5.25) we can get

the following expression:

∂pIIk

∂δξ
=

1

N

∑
u

∂φ (i− I (w (u, ξ � δξ)))

∂δξ
φ (j − Ik (u)) . (5.27)

The B-spline function derivative can be expressed by applying the chain rule, thus

yielding,
∂φ (i− I (w (u, ξ � δξ)))

∂δξ
=
∂φ

∂ε

∂I (w (u, ξ � δξ))

∂δξ
, (5.28)

where the derivative of B-spline function is computed by using difference of lower

order B-splines:
∂φn(ε)

∂ε
= φn+1

(
ε+

1

2

)
− φn+1

(
ε− 1

2

)
. (5.29)
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The second term of equation (5.28) is the partial derivative of the current image

intensity with respect to the updated pose. It can be further decomposed by

∂I (w (u, ξ � δξ))

∂δξ
= ∇I

∂w(w(u, δξ), ξ)

∂δξ

= ∇I
∂w(u′, ξ)

∂u′
∂w(u, δξ)

∂δξ

= ∇I(u′)
∂w(u, δξ)

∂δξ

(5.30)

where the ∇I = (∇uI,∇vI) is the gradient of image I with respect to the directions

of axes at one certain pixel point and the second term represents the link between

the wrap function and the pose update, which is related to a projection process.

5.3.3 Wrap function

In previous section 3.1.2, we formulate the forward process that maps a spatial point

from camera frame to an image plane, which can be rewritten from equation (3.5)

with standard camera intrinsic parameters, as

u =
xpC
zpC

and v =
ypC
zpC
. (5.31)

The update pose incremental is tightly related to the variation of pixels, thus we

differentiate this expression and get

u̇ =
ẋpC
zpC
− xpC ż

p
C

(zpC )
2 =

(ẋpC − użpC )

zpC

v̇ =
ẏpC
zpC
− ypC ż

p
C

(zpC )
2 =

(ẏpC − vżpC )

zpC

. (5.32)

As we can see from above equations, the derivative of pxiel position is related to

the derivative of the spatial point. However, in world frame, these points are static,

we can only regard a relative motion of the camera as ξ = (ν,ω) to express this

differential

ẋp
C = −ν − bω×cxp

C , (5.33)
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Figure 5.2: Camera movement and spatial projection of a pixel.

which can be further expanded as

ẋpC = −νx − ωyzpC − ωzypC
ẏpC = −νy − ωzxpC − ωxzpC
żpC = −νz − ωxypC − ωyxpC

(5.34)

Substituting equation (5.34) into equation (5.32), we get

u̇ = −νx
zpC

+
uνz
zpC

+ uvωx − (1 + u2)ωy + vωz

v̇ = − νy
zpC

+
vνz
zpC

+ (1 + v2)ωx − uvωy − uωz
(5.35)

Rewriting above equations in matrix form, we can get the derivative of this projective

wrap with respect to the pose update as

∂w(u, δξ)

∂δξ
=

[
−λ 0 λu uv −(1 + u2) v

0 −λ λv 1 + v2 −uv −u

]
, (5.36)

where λ = 1
zp
C

reflects the depth value of a point u in the image plane. The depth

value is acquired from the scene model and can be updated while the system is

running. This process is the same as stated in previous section 4.3.2.

Till here, we get all details in the computation for the derivative of a mutual
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information function. The main expression is (5.24) with derivative components as

equation (5.27), (5.28), (5.30) and (5.36). This measurement model can replace the

one in previous chapter 4 and further fuse with inertial information in the framework

of multi-state constraint Kalman filter. A full process can be written as

1. Inertial-driven propagation

(1) Apply IMU data inputs as instant ωm and am into equation group (4.4).

(2) Calculate Fd and Qd according to (4.13) and (4.14) respectively.

(3) Get propagated state covariance matrix Pk+1|k from (4.12).

(4) Continue propagation until new image arrives or update triggers.

2. MI-based visual measurement model for update

(1) Whenever new image arrives, initialise the camera pose from inertial-

driven propagation and augment current state.

(2) Find the best relative pose through maximize the MI from nearest keyframe

to current image (equation 5.19) and get an observed camera pose for cur-

rent image.

(3) Calculate the individual Jacobian of MI for each pose estimation as equa-

tion (5.24), then stack all J to get the full measurement matrix H as

(5.17).

(4) Compute the Kalman gain as equation (4.25).

(5) Update the normal state by adding the correction, and update the error

state covariance as equation (4.26).

(6) If the length of current camera state is over N , remove the oldest camera

pose and perform update calculation again.

5.4 Analysis

5.4.1 A higher order iterative process for MI-based filtering

From the derivation of IEKF in previous chapter 4.5.1, we have already seen the in-

ner connections between an iterative loop of Gauss-Newton method and the update

step in the filtering process. When the estimate of a minimal update is calculated

recursively in the update process, the filtering based method is actually equivalent

to the optimisation based approach. Here, we derive an iterative process based on
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the Levenberg-Marquardt solution, which can be potentially applied into the filter-

ing update to increase the accuracy if being developed further.

Since the mutual information can define the similarity between two images in a

known scene, a camera at optimum pose can capture a most similar image to the

reference one. We also can directly estimate the full pose of the camera from an

optimisation problem as

ξ∗ = arg max
ξ

MI (Ik, I(ξ)) . (5.37)

It is a nonlinear optimisation, which can be solved through Levenberg-Marquardt

solution as stated in previous section 3.3.4. Here we directly give the incremental

update as

δξ = −(JTJ + β�(JTJ))−1JTε

= − (HJ + β�(HJ))−1 JTε,
(5.38)

where �(·) represents the diagonal matrix, β is the damping factor, ε is the residual

of measurement but being changed to MI value here and J is the Jaccobian of MI.

In order to perform this update, the Hessian matrix HJ = JTJ needs to be analysed

further.

By applying the chain rule again in the Jacobian of MI (equation (5.24)), we can

have the following expression:

HJ =
∑
i,j

(
∂pIIk

∂δξ

)T
∂pIIk

∂δξ

(
1

pIIk

− 1

pIk

)
+
∂2pIIk

∂δξ2

(
1 + log

pIIk

pIk

)
. (5.39)

The second-order derivative of the joint probability and its computation are similar

to those of first order one,

∂2pIIk

∂δξ2
=

1

N

∑
u

∂2φ(i− I(w(u, ξ � δξ)))

∂δξ2
φ(j − Ik(u)). (5.40)

The derivative of the B-spline function is given by

∂2φ(i− I(w(u, ξ � δξ)))

∂δξ2
=

∂

∂δξ

(
−∂φ
∂ε

∂I(w(u, ξ � δξ))

∂δξ

)
=
∂2φ

∂ε2

(
∂I

∂δξ

)T
∂I

∂δξ
− ∂φ

∂ε

∂2I

∂δξ2
.

(5.41)
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Among above equation,

∂2I

∂δξ2
=

∂

∂δξ

(
∇I(w(u, ξ))

∂w(u, δξ)

∂δξ

)
=

(
∂w

∂δξ

)T
∇2I (u′)

∂w

∂δξ
+∇uI(u′)

∂2wu
∂δξ2

+∇vI(u′)
∂2wv
∂δξ2

(5.42)

where the ∇2I(u′) is the Hessian of I(u′) with respect to u, v axes and ∂2w
∂δξ2

is the

Hessian of wrap function w(·). Further with the derivative of projective wrap in

section 5.3.3. The Hessian of the wrap in u and v direction can be expressed as

∂2wu
∂δξ2

=



0 0 −λ2 0 2λu −λv
0 0 0 −λ 0 −λu
−λ2 0 2λ2u λv −2λu2 2λuv

0 −λ λv −u −2uv v2 − u2

2λu 0 −2λu2 −2uv 2(1 + u2)u −(1 + 2u2)v

−λv −λu 2λuv v2 − u2 −(1 + 2u2)v (2v2 + 1)u


, (5.43)

and

∂2wu
∂δξ2

=



0 0 0 λ λv 0

0 0 −λ2 0 λu −2λv

0 −λ2 2λ2v −λu −2λuv 2λv2

λ 0 −λu −v u2 − v2 −2uv

λv λu −2λuv u2 − v2 (1 + 2u2)v −2uv2

0 −2λv 2λv2 −uv −uv2 2(1 + v2)v


. (5.44)

As we can see from above equations, the Hessian matrices of projective wrap

function depend on the position of the pixel and depth estimation. However, during

the iterative optimisation, the point and depth value will be altered, thus bringing

in huge computational burden. To improve the convergence and efficiency of the

optimisation, we can use the fact that the consecutive images only exist when trans-

lation is insignificant. Therefore, the initial pose estimation from the inertial-driven

dynamic model can be adopted as the optimum pose at the beginning. Then the

Jacobian and Hessian matrices are kept constant during the iteration thus saving

the computational resources. When the algorithm becomes converging, both of the

matrices will be updated again.
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5.4.2 Smoothing the MI funtion

From the definition and analysis of the entropy in the previous section we can see

that, if the probability of a random variable is small, the value of entropy becomes

large. This usually happens when an insignificant image translation occurs. For

an extreme example, when a region of interest is located near the boundary of an

image, even a small translation of this region will import new pixel intensity into

the original distribution. Then several bins of histograms will be increased from

null to a small value as well as decreasing other original bins, thus making such

insignificance become valuable information under the concept of entropy. However,

these new pixel intensities are not the actual camera transformation but noise. Thus

they need to be removed and the MI function needs to be smoothed.

A most simple smoothing method is to apply a Gaussian filter template in the

input images before further comparison. This filter model can refine the intensity

of a pixel using its neighbours. In the above example of noise interference, their

intensity values will be smoothed without affecting the shape of original entropy.

However, the operation will also weaken the large area of valuable information in

other image regions.

In our method, as shown in the derivation process, the B-spline function is

adopted. The merit of using B-splines interpolation comes from its simple expression

in the calculation, and its derivative is clearly defined. The B-spline solution is

actually an approximation to Gaussian function [148, 178]. The higher the order

used, the smoother the curve can be achieved. However, we not can be neglected

the fact that, the complexity and computational burden will increase when the high

order of B-spline is chosen.

5.5 Experiments and Results

5.5.1 Advantages in MI-based similarity function

As stated previously, the MI-based method enjoys the merits of better robustness in

the situation of noise pollution, illumination variation and partial occlusion. Here,

we compare the MI-based similarity measurement method with other two represen-

tative error measures, i.e. Sum of the Squared Difference (SSD) and Zero mean

Normalized Cross Correlation (ZNCC).

The SSD based on the Euclidean norm is the most classical error measurement

method popularly applied in alignment problems, such as KLT [53], PTAM [95].
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Here, we use it to measure the distance of pixel intensities directly, which can be

expressed as

SSD(I, Ik) =
∑
||I(u)− Ik(u

′)||, (5.45)

where u and u′ are the corresponding pixels in two images and I(·) extract the

photometric information as intensity value from the image matrix.

The ZNCC makes use of the correlation coefficients to quantify the similarity of

two images, which can be expressed as

ZNCC(I, Ik) =

∑(
I(u)− Ī

) (
Ik(u

′)− Īk
)

σIσIk

, (5.46)

where Ī and Īk are the average intensities of the images I and Ik respectively, while

σI and σIk are the standard deviations of these two images.

A patch in the size of 200× 200 is extracted from a particular pose facing to an

image of our lab scene, as shown in figure 5.3. Then the translation of ±50 along u

and v directions are performed from the original chosen position. At every position,

the three error measurement functions are calculated, then saved and plotted as a

3D mesh to illustrate their performance in various image conditions.

As a basis for comparison, we firstly evaluate the considered patch of the same as

the reference one, as shown in figure 5.4. The results reflect the variation of the error

measurement for camera translation. All of them showing the Optima at the centre

point of (u = 0, v = 0), which fits the desired outcome. The shapes of these error

measurement are smoothing without local minima or maxima, which indicates their

ability to measure the difference while the translation happens. However, in the raw

lab indoor scene, the minima point in SSD and ZNCC measurement methods seem

not as significant as the optimum point in the MI-based method.

5.5.1.1 Illumination variations

The light condition can be altered when a mobile platform travels in a scene. Even

for the same environment, different seasons of one year or different time of one day

for outdoor, and different rooms with various lights for indoor will lead to different

light conditions. As mentioned before, the light condition has an enormous impact

on the visual-based system. To evaluate the performance of MI-based method in

such situation, we set two illumination cases in our lab scene. In case one, we turn

off one of the four lights at the ceiling while turning off two in case two. Sample

patches in these two cases are shown in figure 5.5. With the same searching and
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u

v

C

Figure 5.3: Patches are selected in our lab scene. The translations with ±50 pixels
are performed along u and v, the green dashed line marks the boundary.

computing method, we get the resulting values as the meshes of three measurement

methods for two cases. As we can see in figure 5.6, it shows no minimum in SSD

method and the variation in ZNCC becomes week with a near flat region when the

scene is darker. However, the MI-based measurements can maintain the shape for a

significant optimum point, even when the light condition becomes worse.

5.5.1.2 Occlusions

It is ideal to have a static scene while operating the visual-based system, but this

is always hard to guarantee. Random obstacles may occur at any moment even

when a mobile platform travels along a known path. The size of obstacles has direct

impacts on the quality of sequential images, thus causing problems on the calculation

of visual measurements. To evaluate the variation of such measurement functions

concerning occlusion situation, we set two cases to block the scene. As the sample

patches are shown in figure 5.7, three circular areas in different grey levels block the

robot in the scene and the case two is worse than case one. Results on figure 5.8

show that three of the measurement functions are affected by the blocks, and such
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(d) ZNCC

Figure 5.4: Evaluation for MI, SSD and ZNCC based measurement functions when
translations performed in raw patches.

situation gets worse when the covered areas become larger. The SSD changes into

a slope gradually while the pit or peak in ZNCC and MI become slow with a large

flat area. However, from the contour curves, we still can find out that, the MI in

peak area is more prominent than the pit in ZNCC.
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(a) Illumination case 1 (b) Illumination case 2

Figure 5.5: Sample patches in illumination variation cases.
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(c) ZNCC-case 1
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(f) ZNCC-case 2

Figure 5.6: Evaluation for MI, SSD and ZNCC based measurement functions when
translations performed in illumination variation cases.
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(a) Occlusion case 1 (b) Occlusion case 2

Figure 5.7: Sample patches in occlusion environment.
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(b) SSD-case 1
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(c) ZNCC-case 1
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(e) SSD-case 2
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(f) ZNCC-case 2

Figure 5.8: Evaluation for MI, SSD and ZNCC based measurement functions when
translations performed in partial occlusion cases.
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(a) Gaussian noise (0, 0.01) (b) Gaussian noise (0, 0.05) (c) Salt & pepper noise

Figure 5.9: Sample patches with different noise.

5.5.1.3 Noise

Image noise commonly exists in any visual-based processing. It can be led in by the

quality of physical sensors or the error of software computing. When the noise is

accumulated, the estimation results tend to be divergent. This situation is apparent

in IMU only motion estimation, which has been shown in the previous chapter. For

the visual case, to evaluate the variation of visual measurement for the image noise,

we import three types of noise, including Gaussian noise with zero mean but different

variance and salt & pepper noise. The sample patches are shown in figure 5.9. As we

can see from the resulting figures 5.10, in general, the MI and ZNCC are robust to

all noise types with identical minima or maxima, but SSD has been largely impacted

by Gaussian noise. Particularly, the Gaussian noise with large variance brings in

more uncertainty thus leading a less pronounced result for measurement function.

The situation of salt & pepper noise can be regarded as small scattered point blocks.

Thus the shapes of measurement functions are similar to those with occlusion. In

practice, the Gaussian noise will not be as bad as the one with Gaussian parameters

as (0, 0.05) in figure 5.9(b). Therefore, MI is the preferred measurement function

for any mild noise pollution case.

5.5.2 Robustness compared with feature-based matching

To access the ability of MI-based method in finding correspondences when compared

to the feature-based method, we use two consecutive images from an outdoor driving

scene. The five most corresponding patch pairs from the first and second image are

firstly found based on the best matching feature points of the up-left corner of

interest patches, which are marked as red and blue, respectively, in figure 5.12.
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(h) ZNCC-Gs v0.05
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(i) ZNCC-S&P

Figure 5.10: Evaluation for MI, SSD and ZNCC based measurement functions when
translations performed in different noise type.
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Figure 5.11: SSD comparison for correspondence given by feature-based and MI-
based methods.

The patches from the first image are then used as references for the best similarity

searching with a maximum MI value. As we can see from the last row of figure 5.12,

the peaks occur while performing full image searching. The best corresponding

patches are marked as green. If we limit the searching range in ±20 pixels based

on the matched corner feature points as prior (marked as yellow), the local MI

values can be given as the third row of figure 5.12. It shows that all corresponding

patches can be found through maximum MI globally or locally and the maximum

is significant for most patches. However, there exists less significant situation if

the searching is performed in a textureless scene like the second patch. And the

ambiguity peaks in the fifth patch will also lead to a failure matching for maximum

MI if no further validation process is performed.

We use SSD to compare the corresponding patches from feature-based and MI-

based methods. The result is shown in figure 5.11. The patch correspondences

given from MI are more similar to the reference patches from the first images. It

indicates that the application of MI-based method outperforms feature-based in

finding corresponding patches in the outdoor environment. But it also should be

noticed that more validation steps are necessary if the MI measurements are applied

in a textureless scene or in the cases with multiple maximum situation.



125

80

60

40

u
20

00

20

v

40

60

1.8

0.8

1

1.2

1.4

1.6

80

M
I

80

60

40

u
20

00

20

v

40

60

0

0.2

0.4

0.6

0.8

1

1.2

80

M
I

80

60

40

u
20

00

20

v

40

60

1.4

1.3

1.2

1.1

1

0.9

0.8

0.7
80

M
I

80

60

40

u
20

00

20

v

40

60

1.6

0.6

0.8

1

1.2

1.4

80

M
I

80

60

40

u
20

00

20

v

40

60

1.4

0.8

0.9

1

1.1

1.2

1.3

1.5

80

M
I

Figure 5.12: Five patches are found through maximum MI value in global and local
image regions. In the scene picture, the red square indicates the patch from the
first of consecutive image pairs, the blue marks corresponding patches given from
feature-based matching, the green ones are the correspondence from maximum MI
and the yellow bound local searching range. The reference patches and their MI
values while searching locally or globally are shown in the second, third and fourth
rows, respectively.
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Figure 5.13: Mutual information for two different trials. (a) 10 frames are extracted
from original sequence in every two frames; (b) 10 frames are extracted in every
ten frames. The value is the mutual information between the corresponding frames
from A to J.

Furthermore, to give a quantitative understanding of MI, we form two image

sequences, each including ten frames (noted as A to J) from the above outdoor envi-

ronments. These image sequences are down-sampled from the original sequence at

1/2 and 1/10 of the original rate. In figure 5.13, we can obviously see that the values

of MI are around 2 between every other two frames (the adjacent diagonal starting

from B in figure 5.13(a)), while the values are around 1 between every ten frames

(the adjacent diagonal starting from F in figure 5.13(a) and B in Figure 5.13(b)).

Significantly, the values drop from average 5.8 to 2 dramatically between adjacent

frames but slightly between distant frames. Therefore, if MI-based measurements

are applied, the threshold for distinguishing similarity in consecutive frames should

be easily found.

5.5.3 Trajectory estimation

Following the experiments from the previous chapter using the public dataset of

KITTI, we choose the case 0009 with a straight line followed by a near perpendic-

ular turning, and the case 0113 with turning from slow to sharp, to evaluate the

performance of MI-based visual measurement model. As we can see the statistical

estimation results of case 0009 from figure 5.14 and 5.16(a), when travel along a

straight line, the MI-based method can tightly follow the trajectory given by the

method in chapter 4. But when a rotation is performed, massive error accumula-

tion occurs after a delay. Furthermore for the case 0113, if turning is performed
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gradually at the beginning, the accumulated error becomes significant for our pre-

vious MSCKF-direct method, as the results indicated in chapter 4. However, the

estimation from the MI-based method can follow the trend until a sharp turning is

performed. The RMSE curves for both cases are illustrated in figure 5.17.

The results seem not satisfying but can be predicted, because our MI-based

method is based on an estimated scene depth in scattered edge points from the

MSCKF-direct method. There already exists accumulated error in depth estima-

tion, and it will become worse when further adopted as the reference for pose esti-

mation. However, the MI-based pose estimation method shows an excellent tracking

behaviour in the straight trajectory and the one with a slight tolerance of rotation.

5.5.4 Potentials in mapping

Different from the concept of mapping in previous chapters, which indicates sparse

point cloud with depth value in world frame, the map here is a mosaicing image

stitched by a series of adjacent pictures. Similar to the way using maximum MI

values to find best matches, the consistent picture overlays the most similar parts

of consecutive images together through planar transformation. Although there are

various image mosaicing methods available in literature, such as feature-based [10,

179, 180] or direct [181, 182] methods, the core of them is similar including:

(1) Select the sequential images of a scene with at least a quarter (by empirical

trials) of the overlapping area.

(2) Find the corresponding patches and compute the homography matrix as illus-

trated in section 3.1.4.3.

(3) Perform the transformation to the current image and overlay it with previous

one.

(4) Repeat the process until all images are stitched.

As mapping is not the primary task for an odometry task, here we just illustrate

the potentials of using MI-based method for building a consistent scene image. A

resulting mosaicing image created from five images of our lab is shown in figure 5.18,

where the robots, cable case along the wall and the window can be depicted clearly.

But there exists ambiguity in similar texture regions like the window, which leads

to blurring fusion in the image. This also provide us an evidence that MI-based

method should be carefully processed when meeting repetitive texture scenarios.
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(a) Statistic analysis of multiple trials using the MSCKF-direct method. The error in both x and y
directions are accumulated over the mean trajectory, while the 0.95 confidence ellipse are expanded
as algorithm goes on.
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(b) The estimated mean trajectories of multiple trails and the IMU-only/GPS recorded trajectories.

Figure 5.14: Estimated trajectories for the case 0009 in the KITTI dataset.
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Figure 5.15: Some scene pictures and corresponding keyframes captured from the
case 0009 during algorithm running.
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(a) Estimated trajectory. (b) Selected keyframes.

Figure 5.16: Trials for the case 0113 in the KITTI dataset.
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Figure 5.17: RMSE of the case 0009 and 0113 of the KITTI dataset.

Figure 5.18: MI-based image mosaicing map for our lab scene.



131

5.6 Summary

In this chapter, we present the MI theory from the core concept of information theory

to the detail process of its partial derivative, where the ability of MI outperforming

joint entropy for image comparison is discussed. This theoretical basis provides

a basic guide to building an MI-based measurement model, which can be used in

the filtering framework. Furthermore, from the detailed derivation of the Jacobian

matrix of MI measurement function, the Hessian matrix of MI is also presented to

fit for an iterative process in the filtering framework. This is a promising method

if being further developed according to the IEKF analysed in the previous chapter.

The iterative process can be used to enhance the accuracy of estimation results.

For the experiments, we strive to showcase the advantages and limitation of MI-

based visual measurements. Firstly, two representative error measures are used to be

compared with the MI-based method in the case of illumination variation, occlusion

and noise interference in different levels. Results show that the MI-based method

outperforms other measures in all these situations and maintains a significant con-

vergent region for translation, but the MI-based method still can be impacted if

large occlusion or noise pollutes the images. When compared to the feature-based

method in patches searching, the MI-based method shows the advantage in find-

ing the best-fit patches in sequential images, but when applied in the case with

repetitive and less texture scene, it will show a less significant result. There also

exist multiple peaks when a patch is searching within the whole image. Thus the

additional process for evaluating the best fit is still necessary.

When applied to the trajectory estimation in the VIO framework, the MI-based

method needs the depth reference beforehand to find the best pose observation,

thus leading to an increasing accumulated error in estimation. The situation is

getting worse when applied in the rotational case. However, we still can see a good

trajectory following behaviour when the travelling is along straight lines and with a

slight tolerance of rotation.

Additionally, a mosaic image of our lab scene is built based on the MI-based

image mosaicing technique. Although it is not the focus of our research, this experi-

ment showcases the ability of MI-based measurement in mapping. And the situation

of regional mismatching reminds us to avoid less or repetitive texture scene when

applying the MI-based methods.



Chapter 6

Mobile Platform for Data

Collection

6.1 Overview

Mobile platforms with the powerful sensing and computing capacity have triggered

an overwhelming interest in not only the industrial market but also academic re-

search. Similar to a general concept of mobile robots, a mobile platform commonly

refers to a physically small device that can enjoy enough freedom in movement.

Quadcopters are a representation among them. Different from traditional flying

robots, such as the fixed wing aircraft or helicopters, a quadcopter has four rotors,

which are placed away from the centre of platform symmetrically. This arrangement

makes each propeller can be controlled by individual motor. A simple motion vari-

ation needs to coordinate the outputs from four motors. Even for a simple hovering

behaviour, the complex tasks of balancing the different outputs of each motor or

rapidly adjusting disturbance dynamically need to be taken into account. Quad-

copter flying platforms are inherently unstable, thus making them heavily rely on

electronics and sensor systems. Fortunately, its structure arrangement makes the

minimisation of a quadcopter platform becomes possible. There exists large empty

space for placing electronic systems at the middle, where the gravity centre of the

whole platform can be maintained.

In our lab, we have already conducted some excellent control tests of quadcopter.

Examples can be seen in figure 6.1, which includes the ability to fly through a window

with a freely hanging payloads and the case of autonomously balancing an inverted

pendulum on the top of quadcopter. However, due to the limits of weight capacity



133

(a) Balance an inverted pendulum on the top
of quadcopter.

(b) Fly through a gap with a freely hanging
payload.

Figure 6.1: Examples of quadcopter control demonstrated by our robotics lab.

and onboard computation resources, such tasks still need to rely on external devices,

such as the external infrared motion tracking camera system (VICON) in our lab.

Although there are various excellent SLAM algorithms which are claimed to have a

real-time performance when running in desktop computer, it is still challenging to let

such localisation or navigation algorithms run autonomously onboard. To lessen the

processing burden, some techniques have already been applied in practice, including

separating major calculation tasks to a ground-station or carefully setting the scene

structure and motion planning information in memory beforehand.

However, we not can achieve fully onboard autonomous for quadcopter just

through any single technique in hardware or software. It is a systematic project

that should combine both hard electronic devices and soft programs. The software

part is mainly focusing on the problem regarding control and communication. At

this stage, we focus only on building an integrated quadcopter system equipped

with the basic visual and inertial sensor set. The expected quadcopter can perform

manoeuvres through a remote control panel and store the visual-inertial data while

flying. Rather than using commercial products, we build the quadcopter by individ-

ual components. All parts, including the hard frame of the quadcopter, electronic

speed controller, flying control board, a power supplying system, high-level comput-

ing board and necessary sensors are carefully chosen according to the limitation of

payload and the requirements of data collection.

In this chapter, we will introduce the major parts of our quadcopter and related

development environment, which include the selection between the different monoc-

ular camera and inertial sensors, the properties of onboard systems and potential
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development tools in ROS and Matlab. Finally, the full integrated quadcopter will

be presented.

6.2 Major Components

A basic quadcopter system should include a body frame with four arms, four mo-

tors, two pairs of propellers, four electronic speed controllers, a flight control board,

a remote controller and a power supply. If more functions are expected, extra com-

ponents like high-level computing board or various sensors should also be included.

For our goal of building a quadcopter with the ability of recording visual and inertial

data, the separate visual and inertial sensors with a suitable computing board are

required.

Although there are a plenty of tutorials teaching hobbyists how to build a quad-

copter step by step, none of them give a full list that meets our requirement. In this

section, we present some principal components adopted in our quadcopter, includ-

ing visual and inertial sensors for data recording, flight control board and high-level

computing board. Other parts can be found according to some general developing

guides on the Internet1, but some empirical developing procedures can be concluded

firstly as follows:

1. Before buying any components, one can follow:

(1) Propose a target system with particular functions.

(2) Build a full requirement list regarding all parts with necessary accessories.

(3) Select every component available on the current market with a detail

specification.

(4) Recheck the compatibility of all parts including the interface in software

and hardware.

(5) Buy all the components.

2. Testing should be performed from the separate to the complete sets, and before

any power-on testing, one must consider:

(1) Whether the cable connection is correct as the requirement.

(2) What is expected to occur if power is on.

(3) Are the operation procedures clear after power on.

1For more details, please refer to myfisrtdrone.com or mydronelab.com etc.

https://myfirstdrone.com/build-your-first-quad/
http://mydronelab.com/blog/how-to-build-a-drone.html
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(a) Logitech (b) IDS UI-1221LE-C-HQ (c) Gopro Hero3+

Figure 6.2: Cameras

(4) What to do if an unexpected situation happens.

(5) When to exit the system if we have already seen what we expected.

6.2.1 Monocular camera

There are overwhelming amounts of camera types available on the market. Their

quality and price vary according to the different application background and perfor-

mance specifications. For our platform, since the physical limitation by the quad-

copter, the ones only with properties of small size and light weight are taken into

account. Additionally, it should be accessible for developing with high compatibility

for both software and hardware. We find three representative types here, i.e. web

camera, camera board, commercial motion capture camera, as shown in Figure 6.2.

The web cameras are widely used in the network applications and can be con-

nected by the USB port. To lessen the memory burden and communication latency,

the image resolution is usually limited up to HD (1280 × 720) with the frame rate

of 30Hz. However, due to highly integrated of the electronic components, the field

of view of web camera is often limited by the fixed focal length and the embedded

image sensor. In a web camera, image stream can be acquired by performing consec-

utively recording. But the capture method of rolling shutter1 limits the motion of

such camera. Figure 6.3 shows the impacts of rolling shutter when taking a picture

of a fan. For application in motion platforms which are usually under highly flexible

1Rolling shutter is a method of image capture in which a still picture is captured not by taking
a snapshot of the entire scene at the single instant time but by scanning across the scene rapidly,
either vertically or horizontally. In other words, not all parts of the image of the scene are recorded
at the same instant.
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Figure 6.3: A fan is captured by the rolling and global shutter.

movement, this effect can happen easily.

The motion capture camera is popularly used in recording sports and life footages.

There are various commercial products in the market, while the Gopro is the most

well-known one. Take the Gopro hero 3 plus silver edition as an example, its record-

ing mode varies from 848 × 480 with 60 fps to 1920 × 1080 with 60 fps, while the

medium setting at 1280× 720 with 120 fps is the highest resolution with the fastest

capture rate. However, due to this product being highly integrated, it is hard to

read and use the recording images live. Although we have tried to get a live image

stream through a set of radio transmission devices, as shown in figure 6.4, the huge

image noise, significant latency and limitation of radio bandwidth still make the re-

ceived images impossible for further processing. Additionally, to enlarge the field of

view, the fish eye lens are usually adopted for motion capture cameras, thus leading

to the distortion effect in resulting images. Therefore, it is not the best choice of

our mobile platform.

The camera boards are very suitable for developing due to their small size and

various supporting source. Here, we use the product of IDS UI-1221LE-C-HQ, the

resolution is 752 × 480 with 1/3′′ CMOS color and its frame rate is up to 87 fps.

The image stream can be delivered through the USB connection with low latency.

The key property of this camera type is using the global shutter mode to capture an

entire image at the same instant time, thus avoiding the case of motion distortion

as shown in figure 6.3. Additionally, this camera board is of 36 × 36 mm and only
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Figure 6.4: Live image stream transmission by a set of radio devices for Gopro
Hero3+.

16 g. The lens is not fixed and can be chosen according to different application

environments. In practice, we prefer the lens of 6mm focal length, which is with 43◦

angle of view and about 10 metre clear observation distance. The camera board is

installed facing to the positive flying direction of the quadcopter, as shown in figure

6.5, and the coordination frame is defined as section 3.1.1.

6.2.2 Inertial measurement unit

IMU consists of two different parts, i.e. linear accelerometer and rate gyroscope.

As the name suggests, they can sensitively detect the variation and measure the

instant linear acceleration and angular velocity directly. Traditionally, IMUs are

built on large mechanical systems with complex moving parts, such as aviation

inertial navigation system. When the fibre optic technologies are applied, accuracy

has been increased to a large extent. However, these types of IMU are usually

expensive and weigh several kilogrammes, which is impossible to install on a small

mobile platform. Fortunately, the development of MEMS makes an IMU miniaturise

in size and decrease in price. As a passive sensor, IMU does not need to rely on
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Figure 6.5: The camera board is installed facing to the front of quadcopter.

external support for other devices, and no antennas or receivers are required.

Theoretically, by knowing the acceleration and angular velocity of an object, its

pose variation can be calculated by integrating the raw sensor readings. However,

although IMU can detect every small variation in movement, we still get the error

accumulation of pose estimation while the double integration is performed over time.

This has been shown in section 4.6.3. Most MEMS IMUs belong to consumer-grade

products. The inner gyroscopes and accelerometer have common error sources such

as the temperature variation and the running variation as random walks. The former

can be compensated by calibration, while the latter should be estimated by a further

analysis, where the Allan variance method [17] is commonly used.

In our mobile platform, we adopt a consumer-grade product named as myAHRS+

from ITHROBOT. The IMU includes 16-bit 3-axis accelerometer with the measure-

ment limits as ±16g and 16-bit 3-axis gyroscope with the range as ±2000 dps. Its

maximum rate is 100 Hz. The way of power supplement and data connection are

the same as the camera board, through a USB interface.

The placement of IMU should be considered carefully, because of its sensitivity to

variation. The mechanical vibration will bring in more noise into data. Additionally,

to avoid the magnetic interference, the maximum distance should be kept from all the

motors and high current components like batteries and electronic speed controllers.

Overall the consideration, the centre of quadrotor is the best place for an IMU.
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Figure 6.6: An IMU product: myAHRS+ from ITHROBOT.

6.2.3 Flight control board

Flight control board is the core part of a quadcopter. Every manoeuvre from taking

off to landing should be processed through this part. It acts as a pilot in a manned

vehicle, receiving the commands from various high-level sources while controlling

the vehicle towards a target state by a series of motions as roll, pitch and yaw.

A primary flight control board mainly consists of a computing unit and several

sensors. For our quadcopter, we adopt the modern autopilot hardware, Pixhawk,

in MAV development community. It is an open-hardware released in the year of

2014, providing high availability with a low cost. The embedded real-time operating

system on an ARM-cortex-M4 allows different sensor modules working efficiently

together. This board also includes the double sets of MEMS IMUs, which can

compensate with each other in highly agile manoeuvres. It should be noticed that

we do not extract the inertial information from this control board since it needs to

keep in a high regular running frequency, and any irregular operation will bring in

extra unstable factors.

In our quadcopter, the Pixhawk module directly receives the commands from a

radio remote control panel. These commands combine the variations as roll, pitch

and yaw. Then based on the current state and the tuned parameters, the flight

control board interprets the commands out as the form of Pulse Width Modula-

tion (PWM), which can directly be used to drive the modules of electronic speed

controller or motors. Before all these processes, the tuned parameters, particularly

including the inner control method based on PID, should be obtained beforehand.

This can follow an automatic tuning process as AUTOTUNE mode1. A tuning

result can be found in figure 6.8.

1For more details, please refer to ardupilot.org.

http://ardupilot.org/plane/docs/automatic-tuning-with-autotune.html
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Figure 6.7: Flight control board: Pixhawk.

Figure 6.8: PID parameters through a process of automatic tuning.
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CPUs Samsung Exynos5422 CortexTM-A15 2.0Ghz quad
core CortexTM-A7 quad core

Graphics card Mali-T628 MP6
RAM 2Gbyte LPDDR3 at 933MHz PoP stacked
Flash storage eMMC5.0 HS400
USB ports 3.0 Host ×1, 3.0 OTG ×1, 2.0 Host ×4
Other ports HDMI 1.4a and DisplayPort1.1

Table 6.1: Specification of ODROID-XU3

6.2.4 High-level computing board

Other than the flight control board, the high-level computing board mainly takes

care of the tasks which do not strictly rely on a regular high frequency. This board

can mostly share the computing burden of the flight control board and guarantee the

efficiency of the whole quadcopter system. It can be regarded as a master in high-

level, monitoring the supplemental sensor feeding, making a decision, and forming

the commands to flight control board if necessary. All the tasks such as localisation

and navigation can usually be processed within this part.

After browsing various related commercial products in the robotic community,

we trade off significant factors regarding computing power, energy efficiency and

expandability, then choose the ODROID-XU3 as our high-level computing board,

as shown in figure 6.9. An custom Ubuntu system can be installed on this board

without compromising the booting and transfer speed. This is important because

most development modules in the robotic community are available under the Ubuntu

system, such as ROS. It will provide more possibility for the system developing. The

specification of ODROID-XU3 can be found on table 6.1.

According to our target on this stage, the mission on this board is to record the

data stream from visual and inertial sensors simultaneously. The monocular camera

and IMU we selected in the previous sections are all connected to this board, which

they get the power supply from and transfer the information to. Additionally, in

order to switch on and off the recording task at controllable opportunities, we adopt

the associated WIFI module. The onboard system thus can communicate with the

desktop operation system wirelessly. It should be noticed that, to make the full

use of the onboard resource, only the initial operation is performed through WIFI,

the rest recording and shutting down tasks are processed all automatically on the

high-level computing board. Some pictures of debugging the system can be found

in figure 6.10.
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Figure 6.9: High-level computing board: ODROID-XU3.

(a) System under debugging (b) Compatibility with IDS Camera

Figure 6.10: High-level computing board under debugging.
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6.3 Simulation

It is not an easy task to become a good operator for a quadcopter. It is necessary

to get familiar with the behaviour of the quadcopter, thus reducing the risk of fail-

ure operation in practice. We conduct two different simulations for our quadcopter,

where ROS and Matlab platforms are adopted. Both methods can build the simu-

lated environments and display the flying dynamics, thus providing us more clues

to design and plan the flying behaviour while performing data collection.

6.3.1 ROS-based method

Robot Operating System (ROS) is the most preferred robotic development envi-

ronment in the robotic community. Its modular framework and a unified message

processing strategy make the development of a required robot system become easy.

Different components of a system can be developed and maintained separately with-

out breaking the links between other parts. Various inputs from the same sensor

type with different specifications can also be recorded and processed as a unified

message format, thus making distributed computing becomes possible. Addition-

ally, the large development community provides abundant supporting tools, which

can be adopted as modules for a customised robotic system only with slight modifi-

cation. For our platform, we would like to simulate the process that commands are

sent from a remote controller, then instant responding can be found in the behaviour

of quadcopter. Based on the package of hector quadrotor 1, we only change the struc-

tural parameters in related files, which include the weight and size for major parts.

The remote controller can also be set as an individual node, which simulates the

operations of a real remote controller.

Figure 6.11 shows a virtual environment where we should control the quadcopter

fly stably without any conflict. The node and topic diagram (figure 6.12) shows the

remote controller as /joy in a circle, and the quadcopter system is contained in the

node of /gazebo. As we can see from the right part of this diagram, the outputs

show various simulated topics, including the visual information as a front camera

and the inertial information from IMU. Although these data not can be used to

drive an algorithm due to the existence of large impractical setting, the process of

controlling the quadcopter with an instant response through a remote controller can

still be successfully simulated.

1For more details, please refer to ros.org.

http://wiki.ros.org/hector_quadrotor
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Figure 6.11: Quadcopter simulation in Gazebo

6.3.2 Matlab-based method

Matlab is widely used in the numerical computing and analysis. It also provides

abundant additional toolboxes to perform a graphical multi-domain simulation. By

applying our system model and parameters to the quadcopter tool1 in Simulink,

the output signal can be displayed live, and the input signals can be graphically

designed as shown in figure 6.13. This is helpful to understand the instant response

behaviour as different operations in a remote controller.

However, all the experiments in simulation only provide us with a guidance to

operating a real quadcopter in the indoor and outdoor environment. The actual

visual and inertial datasets while flying are the goals of our quadcopter.

6.4 Quadcopter System

The core system of our integrated quadcopter can be found in figure 6.15(a), which

can be controlled to perform any manoeuvre as roll, pitch and yaw with a remote

controller. A hovering behaviour over the ground proves such basic quadcopter

system can work stably with suitable inner parameters. The full quadcopter system

with visual and inertial data collecting parts can be found in figure 6.15(b). The

high-level computing board is mounted in a case at the top centre of the quadcopter,

while the battery is moved to the bottom centre. The monocular camera is installed

1For more details, please refer to mathworks.com.

https://www.mathworks.com/matlabcentral/fileexchange/48052-simulate-quadrotor-in-simulink-with-simmechanics?
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Figure 6.12: Nodes and topics diagram of a quadcopter system in ROS. The quad-
copter system is contained in the node of /gazebo.
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(a) Quadcopter graphical model in Matlab. (b) Design input commands ghraphically.

(c) Simulation modules in Simulink.

Figure 6.13: Simulink modules and input signals design for quadcopter in Matlab.
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Figure 6.14: Visual and inertial data streams are recorded under different illumina-
tion conditions.

facing to the front. All payloads are carefully adjusted to maintain the gravity centre

at the middle of the quadcopter.

The visual and inertial data is stored live in the memory of the high-level com-

puting board. We use the tool of rosbag to save the data, which can guarantee both

of the data streams tracked in the same timeline. Figure 6.14 shows the case of our

quadcopter collecting the data under different illumination conditions. Such data

have been used to evaluate the robustness of MI-based method in previous section

5.5, while the data bags of outdoor environment have been used to estimate the

trajectory of our MSCKF-direct method in section 4.6.3.
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(a) Basic quadcopter system without extra high-level parts

(b) Full quadrotor system with visual-inertial data collecting system

Figure 6.15: Our resulting integrated quadcopter system.
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6.5 Summary

The goal of this chapter is to build a data collecting mobile platform for the test-

ing of visual-inertial odometry algorithms. Specifically, this mobile platform is a

quadrotor, developed by using commercial-off-the-shelf components to reduce de-

velopment time and to increase reliability. Even most of the components are well

supported in the robotic community, we still need to adjust both the hardware and

software interface to get a fully compatible system.

The key sensors in our platform include a monocular camera and an inertial

measurement unit, which can provide time-stamped data stream by using the rosbag

tool in ROS. As the major hardware parts for our platform, the flying control board

and high-level computing board are also presented. All the tasks tightly concerning

the motor control are implemented through the flying control board, while the data

receiving and storing are implemented by the high-level computing board.

To reduce the failure rate when performing practical operation, we use two sim-

ulation methods to observe the dynamics and instant response of our quadcopter

system when sending different signals by a remote controller. Results show that

the quadcopter can be controlled stably hovering and flying in the outdoor and in-

door environments. Several datasets have been applied in the algorithm testing for

previous chapters.

However, our quadcopter still has the drawback of weighty and significant power

consuming. To perform the fully autonomous tasks as localisation and navigation,

the high-level computing board needs to be developed further.



Chapter 7

Conclusions and Future Work

In this thesis, we present the contributions to the direct visual-inertial odometry

for monocular mobile platforms in the indoor and outdoor environments. Starting

from an introduction (chapter 1) of visual-inertial perception and motion estimation

problems, a background review of the state-of-the-art visual SLAM and odometry

methods of both feature-based and direct-based are presented in chapter 2. Given

necessary technical preliminaries regarding the visual geometry, motion kinematics

and computing frameworks in chapter 3, our first contribution as a direct visual-

inertial odometry method is presented in chapter 4, where a multi-state constraint

Kalmen filter is used to fuse inertial data and direct visual information. Another

novel measurement model based on mutual information theory is presented in chap-

ter 5, which is also a direct-based approach to enhancing the robustness in image

processing. In chapter 6, we introduce the experience and principal components

to build a quadcopter. This mobile platform can manoeuvre freely under a remote

controller in the indoor and outdoor environments while recording the dynamic data

from a set of IMU and monocular camera simultaneously. In the following, we will

conclude the contributions made in this thesis.

7.1 Contribution Summary

Visual inertial odometry is a motion estimation technique that provides the pose

increments for mobile platforms depending on consecutive images with the aid of

acceleration and angular measurements. The estimated locations and attitudes are

the key for performing any further tasks for mobile platforms. Take the quadcopter

as an example, such micro aerial vehicles are commonly found on the occasion of

military or civil applications, such as the resource exploring, mapping, search and
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rescue, especially in human inaccessible environments. However, without knowing

the instant pose information, such platforms not can manoeuvre autonomously.

In contrast to other methods that can also acquire the motion information for

mobile platforms, such as SLAM, the VIO method does not make the focus on map-

ping or loop closure detection, thus saving the valued computing resources for other

core tasks. The compensative nature of visual and inertial sensors can help each

other to largely bound the rapid rising tendency of accumulated errors. Specifically,

the fast drift issue from the inertial-driven model can be limited by visual-based

estimates, while the rich inertial dynamics can provide a sufficient prior information

between visual sampling intervals.

7.1.1 Insightful review

In the chapter of background and literature review, three main categories of methods

related to our thesis are reviewed, i.e. feature-based, direct-based and visual-inertial

fusion. We start from the most common feature-based image processing techniques.

The motion and structure recovery methods, including SLAM, SfM and VO are

presented. Such methods are the most representative in the robotic and computer

vision communities, which model the environment as spatial feature points and

measure the disparities as re-projection errors.

The direct visual measurement methods only become popular in recent years,

which eliminate the extracting and matching procedures of feature-based methods.

Some notable works in the literature include LSD-SLAM, DTAM, DSO and MI-

based methods. Although some of these works are computational demanding when

using dense pixels to form photometric errors, the advantages of making full use of

the visual information and enhancing the robustness of algorithms are also promi-

nent.

For the fusion of visual and inertial information, there are two major frameworks

in the literature, i.e. loosely and tightly coupled methods. The former takes the

filtering as representation and processes inertial and visual measurements separately.

In contrast, the tightly coupled methods jointly estimate robotic pose and visual

measurements in an iterative minimization process. Its accuracy can be increased

by trading off the computational efficiency, while the filtering methods have the

advantage of computational efficiency.
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7.1.2 MSCKF-direct VIO method

Our first VIO method is proposed in the chapter of direct visual-inertial fusion

in multi-state constraint Kalman filter (chapter 4). In this method, we apply an

inertial-driven dynamic model in the propagation step and develop a measurement

model that directly uses photometric information from pixel-centred patches in the

update step. This fusion approach leverages the benefits of state augmentation and

removal in the MSCKF, which keeps only recent camera poses in a state vector.

Therefore, a limited computational complexity can be kept even for a long time

running with volume pixel patches.

The novel visual measurement model is based on direct pixel information from

small patches. These patches are scattered at salient edges across the whole image.

Different from feature-based methods, their locations and patterns are irregular, and

all the prominent image area will be taken into account. Therefore, higher utilisation

of an image can be achieved. Especially for the image containing large repetitive

texture. However, this direct visual measurement model is vulnerable when the

illumination variation or a significant rotation appears since the assumption of a

small translation with a large common field of view have been broken.

Additionally, the intrinsic links between various estimation methods are analysed

and illustrated. It shows the fact that adding an iterative process in the filtering

framework is equivalent to the optimisation based estimation under the view of

likelihood maximisation.

7.1.3 MI-based VIO method

Our second VIO method is proposed in the chapter of direct visual-inertial odometry

based on mutual information (chapter 5). We firstly adopt the theories of probability

and information entropy to build the MI formulation for digital images. When

regarding consecutive images as discrete random variables, their similarity can be

valued through the MI measures, The value of MI can distinguish more extreme

situations than joint entropy. A simple case is that two tightly correlated variables

lead to the same value of joint entropy, but if one variable becomes constant, the

value of joint entropy remains the same while the value of MI will change to zero.

Further following the visual and inertial fusion framework in the MSCKF, a novel

MI-based visual measurement model is developed. The derivation process of this

model is presented in details, where the pose is concisely formulated as a minimal

expression using the knowledge of Lie algebra. Finally, we find that the Jacobian of
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MI is related to the derivatives of joint probability and projective wrap function for

the pose. The MI-based VIO method exists the drawback that a prior scene model is

required, and the estimation error will be amplified based on such model. However,

the robustness is still significant for the MI-based measurement when applied in the

cases of illumination variation, partial occlusion and noise pollution.

Additionally, following the analysis of the iterative process in a filtering frame-

work, we also propose an iterative equation based on the Levenberg-Marquardt

solution. In this process, the Hessian matrix of MI function to the camera pose is

presented. If continuously applying the inertial-driven pose as the initial optimum

point for linearisation, the computation burden of iterative steps can be expected

to reduce.

7.1.4 Data collection platform

As a data collection mobile platform, a quadcopter is built up. The practical ex-

perience and major components are introduced in the chapter of mobile platform

for data collection (chapter 6). Different from commercialised MAV platforms, our

quadcopter owns a great compatibility in both software and hardware. On the one

hand, there is volume supporting resources for flying control board and high-level

computing board, which makes the development of software becomes efficiency. Only

the software interfaces and hardware related parameters need to be further modi-

fied. In the high-level computing board, an elite version of Ubuntu system can be

installed for applying various robotic resource like ROS packages.

On the other hand, additional sensors including a specified monocular camera

and an IMU can run with an excellent performance in the platform. The data stream

can also be stored lively in onboard memory. The specification of the high-level

control board indicates that it can process the estimation algorithm in real-time

if being further developed. It is worth to notice that, in our quadcopter, if the

motors and propellers are carefully selected, the power can be increased further,

thus making more sensors or batteries as payloads available.

Additionally, although there exists inconsistency between simulated and real

system, the available simulation can provide us a helpful guidance in practical oper-

ations. The simulations performed in ROS and Matlab illustrate the system from a

different view point. The modular structure in ROS showcases the connections be-

tween various components while the numerical illustration in Matlab the relationship

between the manual commands and the instant response for our quadcopter.
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7.2 Future Works

We notice that in the situation of rotation or fast motion, our direct visual-inertial

odometry methods are easy to accumulate significant error over time and the al-

gorithm will be divergent eventually. Although it is unavoidable for the odometry

problem, we still can explore the ways to bound the error or slow down this trend.

Here, we get some ideas from the perspectives of software techniques and hardware

complements.

On the one hand, we could explore to maintain some past keyframes and key

poses instead of just removing them by marginalisation. Such critical information

can provide revisit references to the current estimates. It is similar to the loop closure

steps in SLAM techniques, but the frequency and function of such key information

are different. Firstly, the number of such key frames or pose can be altered actively

according to the motion status. More details will be recorded if a large change field

of view is observed even for a small movement. Secondly, the historical references

are only used to bound the accumulation error, and their poses will not be globally

updated as those did in SLAM methods.

Furthermore, direct-based methods bring in more available visual information

into an estimation algorithm, thus increasing the computational burden at the same

time. It is always an issue to trade off accuracy and efficiency in practical robotic

applications. In the earlier exploration, we find that the direct-based methods and

feature-based methods are not a black or white problem. Although the sparse fea-

tures not can express the image as productive as that of direct-based methods, the

FAST techniques in feature processing still have the advantage in efficiency. There

exists no substantial gap to leverage the merits of both approaches. We can use the

feature-based methods to get an initial estimation result and treat it as an approxi-

mated solution. Then, this initial guess is used in further direct-based optimisation.

Or both of the projective and photometric errors are jointly used to build a mea-

surement or cost function. This combination can reduce the number of direct pixels

in the calculation with the promising of improving the efficiency.

From the perspective of algorithm computation, the strategy of multi-threads can

be applied. We can try to distribute the visual related tasks to GPU and maintain

a fixed calculation rate in the main computing unit to guarantee a stable output in

practical usage.

Also, when applying the MI-based measurement in motion estimation, we should

precondition a scene model, which will provide the depth reference for the later



155

comparison. There are various methods which can build this initial model. While

in practical applications, such scene model is not always accessible instantly. It

takes time to rebuild a new scene structure when the scene is altered. To break

the limitation of such prerequisite and enhance the intelligence of mobile platforms,

we can try to build a semantic library for general objects, such as computers and

chairs in an office scene. Different from static points and pixels in any feature-based

or direct-based methods, semantic objects are meaningful. The common sense of

defined objects can also be adopted, like the size of a desktop monitor in an office can

be used to evaluate the real scale of motion. Such objects can be loaded in memory

beforehand with a functional information, then extracted lively as references for the

motion estimation and further navigation tasks. Furthermore, the scene expression

and recognition can be combined with the modern research of deep learning. The

reference objects can be learnt through a training and learning process.

Concerning mobile platforms, our current quadcopter owns the merits of high

compatibility and high payload capacity by combining multiple commercial compo-

nents together. However, it still has the issues in power distribution and consump-

tion. The redundancy of integrated hardware components adds unnecessary weights

on the platform. To achieve a minimised system with enough sensory and comput-

ing capability, some electronic circuit components should be redesigned accordingly.

The redundant modules in the electronic system such as extra communication ports

can be removed, and the cables can be fixed in circuits. Also, the fabric material

of the body frame can be used to lighten the weight without comprising a required

strength for flying.

Current research for VIO methods just provides the most basic estimation result

to get the motion of mobile platforms. To achieve a target platform as an individ-

ual system, which has the ability of fully autonomous, more tasks like navigation,

mission planning should be carefully studied accordingly.



Appendix

Converting rotation representations

We give the conversions between the three rotation representations presented in this

thesis: the rotation matrix, the Euler angles and the quaternion.

Euler angles to rotation matrix: Given the Euler angles as e = (φ θ ψ)T

corresponding to the roll, pitch and yaw orientations in the ZYX convention, the

corresponding rotation matrix is given by

R =

 cos θ cosψ sinφ sin θ cosψ − cos θ sinψ cosφ sin θ cosψ + sin θ sinψ

cos θ sinψ sinφ sin θ sinψ + cos θ sinψ cosφ sin θ sinψ − sinφ cosψ

− sin θ sinφ cos θ cosφ cos θ

 .

Quaternion to rotation matrix: Given the quaternion as q = (a b c d)T ,

the rotation matrix is accordingly given by

R(q) =

 a2 + b2 − c2 − d2 2 · (bc− ad) 2 · (bd+ ac)

2 · (bc+ ad) a2 − b2 + c2 − d2 2 · (cd− ab)
2 · (bd− ac) 2 · (cd+ ab) a2 − b2 − c2 + d2

 .



157

Rotation matrix to Euler angles: Given the rotation matrix as R =

 r11 r12 r13

r21 r22 r23

r31 r32 r33

,

the three Euler angles e = (φ θ ψ)T corresponding to the same rotation are given

by

θ = arcsin(−r31), φ = arctan(
r32

r33

), and ψ = arctan(
r21

r11

).

There is another solution in different quadrant if defining θ = π − arcsin(−r31).

Euler angles to quaternion: This conversion is best achieved by using quater-

nion algebra. We first define the three quaternions corresponding to the three ele-

mentary Euler rotations:

qφ =


cos(φ/2)

sin(φ/2)

0

0

 , qθ =


cos(θ/2)

0

sin(θ/2)

0

 , and qψ =


cos(ψ/2)

0

0

sin(ψ/2)

 .

The composed rotation is obtained by multiplying them up as

q = qψqθqφ =


cos(ψ/2) cos(θ/2) cos(φ/2) + sin(ψ/2) sin(θ/2) sin(φ/2)

cos(ψ/2) cos(θ/2) sin(φ/2)− sin(ψ/2) sin(θ/2) cos(φ/2)

cos(ψ/2) sin(θ/2) cos(φ/2) + sin(ψ/2) cos(θ/2) sin(φ/2)

− cos(ψ/2) sin(θ/2) sin(φ/2) + sin(ψ/2) cos(θ/2) cos(φ/2)

 .

Quaternion to Euler angles: Given the quaternion as q = (a b c d)T ,

the Euler angles e = (φ θ ψ)T corresponding to the same rotation are given by

φ = arctan( 2cd+2ab
a2−b2−c2+d2

),

θ = arcsin(−2bd+ 2ac),

ψ = arctan( 2bc+2ad
a2+b2−c2−d2 ).

We should notice that there exists multiple solutions in different quadrant.
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