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ABSTRACT 

SUPPORTING LARGE SCALE COLLABORATION AND 

CROWD-BASED INVESTIGATION IN ECONOMICS: A 

COMPUTATIONAL REPRESENTATION FOR DESCRIPTION 

AND SIMULATION OF FINANCIAL MODELS 
 

Jorge Martins Faleiro Junior, PhD 

University of Essex, 2018 

 

Supervisors:  Edward Tsang 

Carmine Ventre 

 

Finance should be studied as a hard science, where scientific methods apply. 

When a trading strategy is proposed, the underlying model should be transparent and 

defined robustly to allow other researchers to understand and examine it thoroughly. 

Any reports on experimental results must allow other researchers to trace back to the 

original data and models that produced them.   

Like any hard sciences, results must be repeatable to allow researchers to 

collaborate and build upon each other’s results. Large-scale collaboration, when 

applying the steps of scientific investigation, is an efficient way to leverage crowd 

science to accelerate research in finance. 
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Unfortunately, the current reality is far from that. Evidence shows that current 

methods of investigation in finance in most cases do not allow for reproducible and 

falsifiable procedures of scientific investigation. As a consequence, the majority of 

financial decisions at all levels, from personal investment choices to overreaching 

global economic policies, rely on some variation of try-and-error and are mostly non-

scientific by definition. We lack transparency for procedures and evidence, proper 

explanation of market events, predictability on effects, or identification of causes. 

There is no clear demarcation of what is inherently scientific, and as a consequence, 

the line between fake and genuine is blurred. 

In this research, we advocate the use of a next-generation investigative 

approach leveraging forces of human diversity, micro-specialized crowds, and proper 

computer-assisted control methods associated with accessibility, reproducibility, 

communication, and collaboration.  

This thesis defines a set of very specific cognitive and non-cognitive enablers 

for crowd-based scientific investigation: methods of proof, large-scale collaboration, 

and a domain-specific computational representation for the field of economics. These 

enablers allow the application of procedures of structured scientific investigation 

powered by crowds, a collective brain in which neurons are human collaborators. 
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CHAPTER 1. INTRODUCTION 

“The duty of a man who investigates the writings of scientists, if learning the 
truth is his goal, is to make himself an enemy of all he reads… attack it from 
every side. He should suspect himself as he performs his critical examination 

so to avoid falling into either prejudice or leniency”- Ibn al-
Haytham (Abdelhamid 2003) 

1.1. MOTIVATION AND BACKGROUND 

The long path of this research started just a few years after the great recession 

of 2008. At that time the consequences of harmful economic policies that led to the 

crisis were still fresh, and pieces and bits of the global havoc were still ricocheting in 

distant corners. Regardless of where you looked, the apocalyptical chaos, the 

confusion, the financial and emotional losses served as clear signs that wrong 

incentives and bad economic policies carry the same destruction potential of war 

arsenals. 

Individuals, municipalities, and sovereign states will forever carry the losses 

and scars of destruction. History will record the consequences for posterity in the 

hopes that we can avoid the same mistakes in the future, but only if we can clearly 

understand the causes, and the complex process that led to the disaster. 

 Over the next several years the financial community took to the board, 

looking for causes and answers, trying to explain why and how we had fallen into 

such a trap. Especially at a time when we had access to latest and greatest 

technologies, and we were going over the peak of our intellectual enlightenment, 

amassed over centuries of the application of the scientific method. The same 

scientific method we chose to ignore. 



 

 

16 

The majority of the answers, in essence, pointed to a justification along the 

lines of “we didn’t know better”. This research, however, points to a slightly different 

answer: we thought, and pretended, we knew better. And that’s when the inquiry that 

led to the idea of this research started.  

There is extensive evidence (Freedman 2011) (Cassidy 2013) (Reinhart and 

Rogoff 2010) (Olsen and Cookson 2009) (Lehrer 2011), unlike other subjects we 

commonly associate to hard sciences1, that the discipline of economics2 has been 

distancing itself from the guidelines of the scientific method3. This research was born 

out of this observation and can be condensed into one simple question: 

Why don’t scientific procedures carry in economics the 
same weight they carry in other hard sciences, like 
engineering, physics or biomedicine? 

This is indeed a simple question, and this research will show that, as it is 

usually the case with most simple questions, the answer is multifaceted and of 

relative complexity.  

The search for an answer requires practitioners to approach the problem and 

the complex issues surrounding it with candor, ingenuity, and transparency. In the 

words of Ibn al-Haythan, in the opening quote of this chapter, “we should suspect 

ourselves, and attack our pre-conceptions and biases from every side, and avoid 

falling into prejudice or leniency”. We shall seek the truth.  

One could argue that our inability to accurately answer this scientific question 

is indeed the enabler of all our economic maladies. Several of the policies that lead to 
                                                
1 What we call on this paragraph “science” could be more accurately referred to as a “scientific 

method of investigation”, described in details in Section 3.3.3 
2 In the context of this document the terms “financial sciences” and “economics” have interchangeable 

connotations. 
3 This observation discounts the harmful consequences of the rebirth of the anti-science movement 

(Holton 1993) so fashionable at the time of this writing. 
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the great recession of 2008 were born out of inexistent or defective experimentation, 

grew organically for many years, feeding on our collective and individual biases, and 

ultimately were left unattended, compounding themselves to catastrophic end results.  

Fast-forwarding to the time of the writing of this thesis, when we are closing 

this phase of this research, several years after the crisis started, many of the 

consequences are still lingering around. 

By now it is clear that decisions that affected billions of lives were made with 

no scientific insight into hard evidence and away from proven investigative 

procedures. The same procedures we use for the definition of what we call hard 

science45. The broad consensus at this time is that the cost of driving economic 

policies by loose investigation procedures in economics is just too high. Society can 

no longer afford such a cost. 

So, referring back to our original question: if we know the tools and 

understand the harsh consequences of treating economics differently than other hard 

sciences, why do we insist in repeating the same mistakes over and over again? If we 

can safely fly in vehicles made of metal, perform unmanned pinpoint landings in 

dashing meteorites, and quickly continue to solve the mysteries of life hiding deep 

into our chromosomes, why can’t we achieve similar results from our explorations in 

economics? 

                                                
4 We use the term “hard sciences” as it was coined by Nobel Prize winner in Economics in 1978 

Herbert Simon, “for his pioneering research into the decision-making process within economic 
organizations", on his words: “The social sciences, I thought, needed the same kind of rigor and the 
same mathematical underpinnings that had made the ‘hard’ sciences so brilliantly successful” 
(Simon 1978) 

5 We incorporate the colloquial definition of “hard” and “soft” sciences to respectively discern 
between natural sciences (e.g., biology, chemistry, and physics) and social sciences (e.g., 
economics, psychology, sociology) based on “evidence of a hierarchy of sciences” (Fanelli and 
Glanzel 2013). 
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Searching for answers, this research had to look at different sides of the 

problem, but before all, we had to recognize that, despite the simple initial 

observation, we are indeed dealing with systems of extreme complexity. To model 

this level of complexity, we6 advocate leveraging a powerful machine. A machine we 

just now start to understand and tap into its full potential: the “collective brain” of 

human crowds (Muthukrishna and Henrich 2016).  

Over the following chapters, we define a conceptual framework to research 

finance and economics as strictly scientific disciplines, uncovering what we call 

enablers for crowd-based investigation procedures, powered by a collective brain in 

which neurons are human collaborators (Nielsen 2012, 18). 

                                                
6 This thesis is the product of an individual work, strongly influenced by intellectual mentors, literally 

thousands of different references and supporting ideas. Therefore, throughout this thesis “we” is 
used instead of “I” for fairness, accounting for all those contributions.  
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1.2. OBJECTIVES 

Objective 1 Identify what is required for the adequate use of crowds in structured, 

scientific investigation 

 

Economics and finance are particular domains of knowledge in which 

related systems and agents – markets, humans and their relationships – 

are tough, if not impossible, to model. Adequate financial models must 

deal with the intrinsic complexity of economic agents (Foster 2004) 

(Arthur 2013) (Freedman 2011). On this research, we advocate the use 

of crowds for the resolution of complex problems in general and in 

economics in particular, an approach we are calling crowd-based 

investigation. There is empirical evidence for the suitability of crowds 

for investigation and the resolution of complex problems, but the 

mechanisms that should be in place to allow that to happen are not 

clear.  Hence, the first objective of this research is to identify what 

properties are required for the adequate use of crowds in structured, 

scientific investigation. 

 

Criteria for Success: Identify a set of specific cognitive and non-

cognitive (computational) requirements for the adequate use of crowds 

in structured, scientific investigation. We are calling these 

requirements enablers of crowd-based investigation. Enablers for 

crowd-based scientific investigation are described in Chapter 3. 
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Objective 2 Define a specialized computational representation to allow proper 

controls and collaboration in large scale in the field of economics. 

 

There is evidence describing the widespread increase over time in the 

misuse of procedures and computational resources in science, 

intentionally or not (Nuzzo 2014) in which the primary symptom is the 

lack of reproducibility and falsifiability. Such increase can be 

correlated to the exponential increase over time in available 

computational power (Goecks, Nekrutenko and Taylor 2010) (Amdahl 

1967). In such correlation, causality cannot be inferred, but a natural 

relationship can. Computational power can be seen as the “glue” for 

collaboration and interaction in large scale, but with the condition that 

it has to be leveraged carefully. Computational power without proper 

control breads chaotic data and methods, therefore impeding 

reproducibility. This research advocates that (a) proper control and 

collaboration in large scale can only be achieved if an adequate 

computation representation is used; and (b) computational 

representation is bound to the specific domain of knowledge it tries to 

model. Hence, the second objective of this research is a specialized 

computational representation that allows proper controls and 

collaboration in large scale in the field of economics.  

 

Criteria for Success: Given enablers outlined as a result of Objective 

1, define a computational representation to support collaboration in 

large-scale for the field of economics. This computational 

representation is described in Chapter 4. 
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Objective 3 Select a non-trivial problem to demonstrate how a real inquiry in 

economics can be studied using the scientific method, tools, and 

procedures defined as a result of Objective 1 and Objective 2. 

 

The third and last objective of this research is to select a non-trivial 

problem to demonstrate how a real inquiry in economics can be 

studied using the scientific methods, tools, and procedures described 

in Chapter 3 and Chapter 4. The problem should demonstrate a 

relevant inquiry in economics, be widely known as to encourage 

specialist involvement and argumentation, and yet still allow limited 

complexity to a level in which it facilitates discussions amongst a 

broader range of economic participants in diverse roles.  

 

Criteria for Success: Define an end-to-end investigation exercise in 

which we measure the actual efficiency of technical analysis using 

formal methods and historical trading data, conducted step by step. 

The complete investigation exercise is demonstrated in Chapter 5. 
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1.3. DOCUMENT ORGANIZATION 

This thesis is organized into four major parts: an introduction in Chapter 1; a 

literature survey in Chapter 2; research topics in Chapters 3 to 5; and a conclusion in 

Chapter 6.  

The introduction in this chapter describes the motivation and background for 

this research in addition to objectives listed in Section 1.2. Each objective highlights 

a number of criteria for success and a reference to a research chapter in which that 

objective was attained. 

In Chapter 2 is listed the main pieces of literature and previous knowledge 

relevant to this research across specific topics of research: philosophy of science, 

scientific learning, scientific support systems, large-scale collaboration, and 

computational representation. 

The research is described in chapters 3 to 5. In Chapter 3 is described the 

cognitive and non-cognitive requirements, or enablers, for crowd-based investigation: 

methods of quantitative proof; large-scale collaboration; and computational 

representation. In Chapter 4 is described the computational representation for the 

field of economics through a representation system and cases of use. Chapter 5 

describes a non-trivial problem to demonstrate how a real inquiry in economics can 

be studied using the scientific methods, tools, and procedures defined in previous 

chapters 3 and 4. The end of each of the research chapters brings a synopsis section, 

describing a relationship between the content of that chapter and the specific 

objective listed in the introduction 

In Chapter 6 is listed a summary of this work, assumptions, contributions, 

known limitations, and a list of suggestions for future work. 
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CHAPTER 2. LITERATURE SURVEY 

“If history is any indication, all truths will eventually turn out to be false” – 
Dean Kamen (Kamen 2014). 

2.1. TOPICS OF RESEARCH 

The scientific question stated in Section 1.1 and the assumptions for crowd-

based investigation stated in Section 3.1 drove our study into five different topics of 

literature: scientific learning and economics; scientific support systems; large-scale 

collaboration; computational models; and a non-trivial study in economics.  

Over the following sections we will synthesize the main references on current 

and established literature on each of these topics, highlight equivalencies between this 

research and other related studies, as well as differences in approach and points of 

view. 

2.2. SCIENTIFIC LEARNING AND ECONOMICS 

The scientific question stated in Section 1.1 requires a fresh look into why we 

learn and prove things in economics differently than other hard sciences. This 

question is not asked for the first time on this present research. A limited number of 

previous works have been inquiring the same and getting to different answers (Chen 

2005) (Tsang 2010) (Simon 1978). 

In order to get to a specific answer relevant to this research we had to find a 

commonly accepted definition for a modern scientific method (Munir 2010) and 

apply these same general concepts to crowds (Franzoni and Sauermann 2014). The 

explanation of how humans form ideas and understand knowledge, an integral and 

hidden part of the scientific method, uses abstract concepts that are explained by a 
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subject usually called philosophy of science (Oberdan 2016) (Godfrey-Smith 2003) 

(Mulder and van de Velde-Schlick 1978a).  

The subject of philosophy of science is complex, multidisciplinary (Camerer, 

Lowenstein and Prelec 2005) (Camerer and Loewenstein 2002) (Madhavan 2000), 

mostly abstract, and under constant review and debate (Nola and Irzik 2006) 

(Hawthorne 2017). To avoid extending the scope of this research beyond what would 

be practical for a doctoral dissertation, our investigation of this subject was indeed the 

delineation of a thin line we had to walk very carefully. As a consequence we had to 

take a pragmatic approach to pinpoint specific literature related to our two very 

specific concerns:  

• Delineate a “pipeline of proof” that could be leveraged in crowd-based 

investigation (Popper 2005) (Peirce 1883) (Hawthorne 2017) (Kapitan 1992) 

(Rodrigues 2011). 

• Identify a quantitative method to infer conclusions - “quantitative inference” - 

that could be used as a gold standard for validation of evidence and 

exchanged across crowds of participants (Kass 2011) (Lenhard 2006). 

The first concern, a “pipeline of proof”, is an original idea proposed in this 

research, adjusted from similar pre-existing insights. It defines an algorithmic 

sequence of steps of investigation, played by a crowd and orchestrated by computers, 

in which each step of the pipeline is expected to generate a byproduct useful for the 

process of investigation. These products must be commonly understood and accepted 

by the crowd of participants (Gauch 2003) (Horgan, (b) 1993) (Horgan, (a) 2016). 

The more general idea of a method of investigation is as old as the “method of 

hypotheses” of Plato (Nola and Irzik 2006). Later Francis Bacon proposed a more 
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specific step-by-step, methodical approach for investigation, and a general “record of 

observations” in Novum Organum in 1620 (Alkhateeb 2017) (Jürgen 2016) (Cintas 

2003). More recently similar ideas are used for automation of experimentation 

(Soldatova, et al. 2016). Similarly still, the approach of arranging a step-by-step 

process as a pipeline is proposed for biomedical research and is referred to as a 

“statistical pipeline” (Frazee, et al. 2014) (Ochs 2010). Although similar in an 

overreaching purpose, the standardization of the understanding of what should be 

considered true or false, and the scope of what the pipeline would entail is different 

than what this research proposes. Their scope is limited to software patterns and a 

computational platform. Their metrics and records are concentrated on specific 

quantitative metrics.  

Our second concern comes as a requirement for the proper definition of a 

proof pipeline: the need of standard quantitative metrics to get to conclusions that are 

commonly agreeable by all participants in a crowd (Fetzer 2017). For the scope of 

this research conclusions are attained based on quantifiable metrics by looking at 

statistical characteristics of data, and using probability alone (Lindley 2000) 

(Apolloni, Malchiodi and Gaito 2006). This process is by definition called statistical 

or quantitative inference. Once more, as it was the case previously while researching 

literature related to the philosophy of science, the foundations for the process of 

quantitative inference are abstract and subject to multiple interpretations and debate 

(R. A. Fisher 1922) (Jeffreys 1933) (Neyman 1934) (Savage 1954) (Efron 1978). In 

the scope of this research we acknowledge that all those differences are important, 

and instead of concentrating on the contentiousness of the debate, we emphasize how 

these differences are complementary. This approach is called statistical pragmatism 

(Kass 2011). 
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The final part of the literature review of scientific learning applied to 

economics concentrates in collecting evidences pointing to the misuse of scientific 

procedures (Ioannidis, Allison, et al. 2009) (Camerer, Dreber, et al. 2016) (Open 

Science Collaboration 2015) and the main causes for this deviation (Colquhoun 2016) 

(Jha 2012) (Cokol, et al. 2007) (Ioannidis 2005) (Martinson, Anderson and De Vries 

2005). We were especially interested when the case under study was related to 

economics or financial sciences (Reinhart and Rogoff 2010) (Herndon, Ash and 

Pollin 2013) (Cassidy 2013) (Olsen and Cookson 2009) (Lehrer 2011) (Tsang 2014) 

(Nuzzo 2014). 

Literature related to scientific learning and economics, expressing their 

respective limitations, can be compared mainly over the following topics: 

•  The underlying subject of philosophy of science is complex and far from a 

commonly understood consensus (Camerer, Lowenstein and Prelec 2005) 

(Camerer and Loewenstein 2002) (Madhavan 2000) (Nola and Irzik 2006) 

(Hawthorne 2017). To avoid extending the scope of this research beyond what 

would be practical for a doctoral dissertation, we had to investigate a 

pragmatic approach applicable to crowds (Kass 2011) (Lenhard 2006). 

• A “pipeline of proof” is an original idea proposed in this research, adjusted 

from similar pre-existing insights investigation (Popper 2005) (Peirce 1883) 

(Hawthorne 2017) (Kapitan 1992) (Rodrigues 2011). The approach of 

arranging a step-by-step process as a pipeline is proposed for biomedical 

research and is referred to as a “statistical pipeline” (Frazee, et al. 2014) 

(Ochs 2010). Although similar in an overreaching purpose, the 

standardization of the understanding of what should be considered true or 
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false, and the scope of what the pipeline would entail is different than what 

this research proposes 

• The foundations for the process of quantitative inference are abstract and 

subject to multiple interpretations and debate (R. A. Fisher 1922) (Jeffreys 

1933) (Neyman 1934) (Savage 1954) (Efron 1978). In the scope of this 

research we acknowledge that all those differences are important, and instead 

of concentrating on the contentiousness of the debate, we emphasize how 

these differences are complementary. This approach is called statistical 

pragmatism (Kass 2011). 

• There is widespread evidence in the literature pointing to the misuse of 

scientific procedures (Ioannidis, Allison, et al. 2009) (Camerer, Dreber, et al. 

2016) (Open Science Collaboration 2015) and the main causes for this 

deviation (Colquhoun 2016) (Jha 2012) (Cokol, et al. 2007) (Ioannidis 2005) 

(Martinson, Anderson and De Vries 2005). We were especially interested 

when the case under study was related to economics or financial sciences 

(Reinhart and Rogoff 2010) (Herndon, Ash and Pollin 2013) (Cassidy 2013) 

(Olsen and Cookson 2009) (Lehrer 2011) (Tsang 2014) (Nuzzo 2014).  

2.3. SCIENTIFIC SUPPORT SYSTEMS 

Scientific support systems are computer systems utilized to control and 

automate procedures and workflow related to scientific investigation. There are 

examples in the literature of the use of computers specifically in data and workflow 

systems in scientific procedures (Goecks, Nekrutenko and Taylor 2010) and in some 

cases the function is conflated with typical workflow management systems (Curcin 

and Ghanem 2008). 
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Our research relies on a pre-existing open source project (J. M. Faleiro Jr 

2008) that provides a dialect for a scientific support system. This dialect has been 

providing important insights to this research, and on the other way, the research also 

fed back to the dialect several ideas that were materialized as concrete extensions. 

This dialect relies on many underlying computational resources (Pérez and Granger 

2007) (Jones, Oliphant and Peterson 2001) (McKinney 2010) (Hunter 2007) and we 

should expect more to come, as the chain of direct and indirect dependencies is fluid 

and is always changing.  

Literature related to scientific support systems, expressing their respective 

limitations, can be compared mainly over the following topics: 

• There are examples in the literature of the use of computers for the function of 

scientific support system, specifically limited as data and workflow systems 

(Goecks, Nekrutenko and Taylor 2010). 

• The function of a scientific support system is conflated with typical workflow 

management systems (Curcin and Ghanem 2008) 

2.4. LARGE-SCALE COLLABORATION 

The implicit assumption of the use of crowds in scientific research calls for 

collaboration in large-scale. The research of the topic of collaboration in large-scale 

was done in terms of requirements (Nielsen 2012) (Udell 2002), complexity (Gowers 

and Nielsen 2009) (Gowers 2009a) (Gowers 2009b) (Polymath 2012) (Nielsen 2011) 

(Beall 2008) (Shen and Björk 2015), and an original perspective that offers a 

justification for large-scale collaboration as a consequence of the historical evolution 

of scientific participants and society (Krauss 2012). 
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2.5. COMPUTATIONAL MODELS 

Some of the novelties of this research are related to the introduction of 

computational representations, the assumption that computational representations are 

closely tied to a domain of knowledge, and the assumption that a proper 

computational representation is a requirement for an effective crowd-based 

investigation, where machines orchestrate the interaction of participants in a crowd. 

The introduction of a computational representation as a domain-specific 

representation requires a number of references in terms of visualization and 

understanding of computer models in general (Tufte 2006) (Schwab, Karrenbach and 

Claerbout 2000) (Gentleman 2005). 

Our research also opted for models in which the knowledge representation 

system in use is role-based (Davis, Shrobe and Szolovits 1993) (Rayo 2007) what 

brings as a consequence the irrelevancy of comparison between different models 

(Hayes 1978) and other important assumptions and consequences, described in 

Section 3.4.5. 

For the definition of the computational representation for the field of 

economics were used a number of relevant empirical exercises (Faleiro Jr and Tsang 

2016) (J. M. Faleiro Jr 2015) (J. M. Faleiro Jr 2014) (J. M. Faleiro Jr 2014) (J. M. 

Faleiro Jr 2008) (J. M. Faleiro Jr 2013), exemplifying very characteristic cases of use 

in finance. This research used a number of references to define properties for each of 

the facets: streaming (Stephens 1997) (McIlroy 1964), reactive (Bainomugisha, et al. 

2013) (Harel and Pnueli 1985), distribution (Dean and Ghemawat 2004) (Hohpe and 

Woolf 2012), and simulation (Von Ronne 2012) (Robinson 2004). 
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2.6. INVESTIGATION EXERCISE 

For the investigation exercise we selected an exploration of profitability of a 

momentum trading strategy based on a moving average cross over model (Schoeffel 

2011) (Chestnutt 1955). To mitigate biases and provide a balanced analysis the 

investigation, the exercise checked for comparable literature and previous research 

testifying in favor (Patterson 2007) (Brown, Goetzmann and Kumar 1998) or against 

(Marshall, Cahan and Cahan 2010) the efficiency of technical analysis. 

On final notes and evidences of profitability there are a number of surveys 

pointing for an explanation of our results based on biases (Park and Irwin 2007) 

(Young and Karr 2011) (Shermer 2014) (Marshall, Cahan and Cahan 2010), noise 

(Black 1986), past memory or private information (Fama 1965), and market 

inefficiencies (Marshall, Cahan and Cahan 2010) (Chaudhuri and Wu 2003). We 

consider each of these possibilities for an explanation of the final results in Section 

5.5. 
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CHAPTER 3. ENABLERS OF CROWD-BASED INVESTIGATION 

“The fundamental ideas of science are essentially simple, and may, as a rule, 
be expressed in a language comprehensible to everyone”- Albert Einstein 

(Einstein and Infeld 1938) 

This research advocates the use of crowds for the investigation and resolution 

of complex problems in general and in economics in particular. In this chapter, we 

identify what is required for the adequate use of crowds for scientific investigation, 

an approach we are calling crowd-based investigation. These requirements are called 

enablers for crowd-based investigation and are classified as either cognitive or non-

cognitive.  

Cognitive enablers relate to non-computational features related to 

mechanisms of human understanding, and as the name implies, related to cognition. 

Cognition is defined as “the mental action or process of acquiring knowledge and 

understanding through thought, experience, and the senses” (Oxford English 

Dictionary 2011), and refer precisely to the subjective human process by which we 

build knowledge, and the underlying social fabrics of large-scale collaboration. 

Regardless of how evolved and subjective they are, cognition mechanisms are the 

same, regardless of the domain of knowledge in which they are applied. As a 

consequence, cognitive enablers are not domain specific, and should be the same 

regardless of the domain of knowledge under consideration.  

Non-cognitive enablers, on the other hand, relate to features that can be 

directly and purely mapped to a computational description. Unlike cognitive enablers, 

non-cognitive enablers are domain specific. Different domains of knowledge require 

a different, specially tailored, computational description. This specifically tailored 
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computational description is called in the context of this research a computational 

representation. 

Over the next sections, we describe assumptions and the rationale for the 

definition of enablers, and their importance on the definition of the subject of this 

research: a crowd-based framework for investigation in economics. 

3.1. ASSUMPTIONS 

Economics and finance are particular domains of knowledge in which related 

systems and agents – markets, humans and their relationships – are hard, if not 

impossible, to model. For the appropriate investigation, adequate financial models 

must be able to deal with this intrinsic complexity of economic systems and agents 

(Foster 2004) (Arthur 2013) (Freedman 2011).  

This research advocates the use of crowds for the investigation and resolution 

of complex problems in general and in economics in particular, an approach we are 

calling crowd-based investigation.  

At this point, available literature suggests that the suitability of crowds for the 

resolution of complex problems can only be confirmed by empirical evidence, as 

explained in the upcoming Section 3.3.2. In this research, we consider that the 

definition of mechanisms that should be in place to allow the use of crowds for the 

resolution of complex problems to be mostly axiomatic, based on three specific 

assumptions: 

• The process by which we acquire objective knowledge must follow the rules 

dictated by the modern scientific method. As a consequence, the proof of 

observations as being real or false must be driven by a widely known set of 

quantifiable standards, as explained in Section 3.2.1. 



 

 

33 

• Human collaboration in large scale is an adequate method to investigate and 

resolve complex problems. Collaboration in large scale is enabled by 

providing the correct set of incentives to crowd participants, as explained in 

Section 3.3.1. 

• Computers should fulfill the role of a tool to support discovery and should not 

serve as a replacement for the application of reproducible and falsifiable 

procedures of the scientific method. 

Additional assumptions related to the overall research are listed in Section 

6.3. The applications of these assumptions bring two immediate consequences 

concerning a method for resolution of complex problems in general: 

• The need for an investigation method that applies to large groups of 

individuals, or crowds, for the resolution of complex problems, or problems of 

difficult representation through models. We are calling methods of 

investigation that apply to collaborative investigation methods of crowd-based 

investigation. 

• The scientific effectiveness of an investigation based on crowds is related to 

the existence of specific environmental requisites that must be in place to 

allow, but not necessarily guarantee, the application of a proper scientific 

method by crowds of individuals7. We are calling these enabling requisites 

enablers of a crowd-based investigation.  

The association between a crowd-based method of investigation and its 

cognitive and non-cognitive enablers is shown in Figure 1. Those enablers are 

classified as either cognitive or non-cognitive. 
                                                
7 The implicational relationship of the statement is that the existence of enablers in an environment is a 

necessary but not sufficient condition for the proper support of crowd-based investigation. 
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Figure 1. Enablers of Crowd-Based Methods of Scientific Investigation 

Cognitive and non-cognitive requisites, or enablers, of the next wave of investigation methods based 
on crowds: methods of proof; large-scale collaboration; and a computational representation. 

Cognitive enablers relate to non-computational features associated with the 

subjective mechanisms of human understanding of what to consider knowledge and 

the underlying fabrics of large-scale collaboration. Cognitive enablers are not domain 

specific, and as a consequence should be the same regardless of the domain of 

knowledge under consideration. Cognitive enablers are methods of proof and large-

scale collaboration and are described respectively in the upcoming Sections 3.2 and 

3.3. 

Non-cognitive enablers, on the other hand, relate to features that can be 

directly and purely mapped to a computational description. This research refers to 

this description as a computational representation, explained in details in the 
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upcoming Section 3.4. Unlike cognitive enablers, non-cognitive enablers are domain 

specific, and as a consequence, each domain of knowledge must be supported by a 

different, specially tailored, computational representation. The generic process for a 

definition of computational representations for any domain of knowledge is called a 

representational process and is described in the upcoming Section 3.4.1. 

3.2. METHODS OF PROOF 

Humans learn new things through investigation. Careful investigation is what 

establishes if an observed phenomenon is real, or it should be deemed just a result of 

random forces of nature at play. The primary target of any investigation is to establish 

facts, as accurately as possible, by proving observations to be either true or false. 

That is how humankind has been accumulating objective knowledge for as long as we 

walk this earth, and this is why defining precise methods of proof is crucial. 

The mental process we follow as individuals to investigate and learn about 

things is not straightforward. Even at this present date, science is still not able to 

unequivocally explain the process by which we learn and assess things. If this is true 

when we produce our thoughts on our own, we should expect an even more elaborate 

process to be at play when we introduce procedures of investigation that are 

performed by multiple individuals, organized in seemingly chaotic crowds. These 

adequate procedures of investigation are indeed the very nature of this research: the 

proposition of a conceptual platform in which objective knowledge is produced by 

collaboration and interaction of crowds of individual participants.  

Given the number of participants and the nature of the interaction – formal 

scientific investigation - we can safely expect as a consequence a large number of 

hypotheses being generated and tested. On this scenario, ideas must be defined, 

exchanged, discussed, and tested in a sequence of steps, arranged like a pipeline. 
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Procedures in each step of the pipeline should potentially generate massive amounts 

of data, and each piece of data should be unquestionably tested as true or false. As a 

consequence, each of the steps must abide by standards and validation metrics that 

must be well understood and accepted by all participants. 

In this section, we define requisites and the composition of this process and 

steps involved, what we call a proof pipeline in Section 3.2.1. The foundation of a 

method of proof also involves a correlation of the scientific method to economics and 

the use of computers in automation of tasks in the scientific method, discussed later, 

respectively in Section 3.2.2 and 3.2.3. 

3.2.1. PROOF PIPELINE 

A proof pipeline for scientific investigation is proposed as a process, 

composed of individual tasks, each task producing standard outputs that can be used 

to prove or reject an observation.  

A simplistic description of such a pipeline would be a tube, where its input, 

taken on the head of the pipe, is a problem, or a set of ideas under investigation, and 

other intangible aspects such as the experience of the individual performing the 

inquiry or the investigation. On the tail of the tube, the result of the investigation, as 

either true or false. Over the extension of the tube, there are small holes, from where 

the process produces pre-defined, controlled evidence. For the sake of understanding, 

a diagram of a proof pipeline is shown later in this thesis, in Figure 2, on page 45. 

The idea of arranging a sequence of pre-defined steps to assert a result of an 

investigation as true or false is not new. There are references in the literature to a 

step-by-step process in biomedical research, specifically for statistical measurements, 

referred to as a “statistical pipeline” (Frazee, et al. 2014) (Ochs 2010). Although 
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similar in its overreaching purpose and the intended standardization of the 

understanding of what is true or false, the scope of what that pipeline would entail is 

different than what this research proposes. Their scope is also limited specifically to 

software patterns and a computational platform. In the field of economics, there are 

proposals in the literature with a minor overlapping with the idea of proof pipelines, 

arranging economic models as testable pieces of engineering, not necessarily as 

pipelines, referred to as “economic wind tunnels” (Chen 2005). 

As described earlier, a proof pipeline is a process, and as it is usually the case 

with processes, each step or part is composed of smaller mechanisms, smaller gears. 

Some gears are familiar and well understood, others not so much. One of those gears, 

required to establish a proof pipeline, is the underlying mechanism by which we get 

to conclusions based on premises taken from specific outcomes of an investigation. 

This process of getting to conclusions based on premises is called inference8. An 

inference is a mechanism we use to evaluate, learn, and create. This intricate 

mechanism is responsible for some of the most fundamental structures of the 

scientific thought. 

The mechanism of inference is a complex and abstract subject, difficult to 

explain. Human ingenuity is attracted to things that can’t be easily explained, so 

scientists have been looking at the general subject of inference for a long time, trying 

to understand and explain the specifics through studies in philosophy, biomedicine, 

and even religion. This lengthy inquiry is far from over. Formalizations of the exact 

                                                
8 In this thesis the term inference, used without qualifications, refers specifically to human inference 

and is defined as “the act of passing from one’s proposition, statement, or judgment, considered as 
true, to another whose truth is believed to follow from that of the former” (Merriam-Webster 2018). 
Inference performed by humans and machines are related to different mechanisms and should not be 
used interchangeably (Gellatly 1989). It also differs for the term statistical inference, or quantitative 
inference, also used in this thesis, defined as “the act of passing from statistical sample data to 
generalizations usually with calculated degrees of certainty” (Merriam-Webster 2018). 
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mechanisms at play are mostly abstract, and as it is usually the case with 

philosophical subjects, surrounded by controversy (Lindley 2000) (Wang 1993).  

For this reason, in this research, we want to carefully, and intentionally, stay 

away from the argument. While we understand the importance of the debate and 

study of general concepts around the topic called “philosophy of science” (Godfrey-

Smith 2003), each of the small topics under the subject could lend a lengthy separate 

doctorate dissertation in itself. Would be impractical and redundant to explore in this 

thesis all the open controversies, different viewpoints, intricate details, and 

differences between methods.  

Hence, it is essential at this point to carefully define our scope of interest 

when it comes to the general topic of inference, namely four specific topics, in line 

with the assumptions outlined in Section 3.1: 

• Support for falsifiable and testable inquiry: the demarcation of what should 

be considered scientific is given by investigation propositions formalized by 

statements that can be tested and falsified. A scientific statement should be 

capable of conflicting with possible or conceivable observations, in line with 

the principle of falsifiability, “statements or systems of statements, in order to 

be ranked as scientific, must be capable of conflicting with possible, or 

conceivable observations” (Popper 1962, 39) 

• Step-wise, algorithmic nature: methods of inference should fit a general 

algorithmic structure and a step-by-step, procedural description, mimicking 

the sequential arrangement of a pipeline. 

• Participation and collaboration in large-scale: investigation should 

incentivize collaboration and interaction of a large number of participants. 
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Features or metrics of inference should be well understood and serve as a 

quantifiable standard for what to be considered true or false.  

• Computer augmented: computers should serve as control points for 

collaboration and interaction of human participants, and not as agents of 

scientific inquiry themselves. 

The most commonly accepted model of inference describing the scientific 

inquiry based on testing and falsifiability is the Hypothetico-Deductive model, or H-D 

model (Nola and Irzik 2006). The H-D model is a composition of all known modes of 

reasoning (Kapitan 1992) (Rodrigues 2011) (Peirce 1883). In this sense, reasoning is 

defined as the act of associating premises to conclusions and is described through 

three distinct modes of reasoning: deductive, inductive, and abductive.  

In deductive reasoning, conclusions are derived from premises known or 

assumed to be true. The connections between premises and conclusions are made by 

terms. Deductive reasoning is a top-down logic, in a sense that, if all premises are 

true, and all terms are unambiguous, then the conclusion reached is necessarily true 

(Shin and Hammer 2016).  

𝑃 → 𝑄:𝐴𝑙𝑙 𝑚𝑒𝑛 𝑎𝑟𝑒 𝑚𝑜𝑟𝑡𝑎𝑙 
𝑃: 𝑆𝑜𝑐𝑟𝑎𝑡𝑒𝑠 𝑖𝑠 𝑎 𝑚𝑎𝑛 
𝑄: 𝑆𝑜𝑐𝑟𝑎𝑡𝑒𝑠 𝑖𝑠 𝑚𝑜𝑟𝑡𝑎𝑙 

In statements 𝑃 and 𝑄, if 𝑃 is true, then that would cause 𝑄 to be true. Since 𝑃 

is true, we should expect 𝑄 to be also true.  
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In inductive reasoning, premises are seen as probable evidence9, at various 

degrees, for the truth of the conclusion. Since evidence is uncertain, conclusions of an 

inductive argument are probable, depending on the evidence given. Induction 

reasoning is bottom-up, in a sense that a conclusion is reached by extrapolating the 

original, specific premises, to more general rules (Hawthorne 2017). Given for 

example two statements: 

𝑃: All biological life forms that we know depend on liquid water 
𝑄: If we discover a new biological life form it will probably depend on liquid 

water to exist. 

In these statements, following inductive reasoning, a conclusion 𝑄 is 

probable, based on the uncertainty of the premise 𝑃. The inductive reasoning asserts 

that in the future it is possible that a newly discovered biological life form does not 

depend on liquid water. 

                                                
9 The available body of facts or information indicating whether a belief or proposition is true or valid 

(Oxford University 2010) 
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In abductive reasoning a conclusion is a simplest or most likely explanation 

for a set of premises. In other words, abductive reasoning is the inference to the best 

explanation. For example, given a valid conclusion and a rule, abductive reasoning 

attempts to select premises that, when asserted, can support the conclusion. Given for 

example: 

𝑃 → 𝑄: When it rains, the grass gets wet 
𝑄: The grass is wet 

𝑃: It might have rained 

This abductive reasoning allows for investigation through the definition of 

various hypotheses, which can be further tested and falsified by the definition of 

additional statements, or more importantly – evidence, or data. Additionally, the 

abductive mode of reasoning is considered the core of Karl Popper’s falsifiability and 

testability argument of any scientific hypothesis (Popper 2005).  

Popper’s surprisingly simple theory proposes discovery to occur in two steps. 

On the first step – conjecture10 – a scientist offers a hypothesis that might explain 

some natural phenomena. The second step – refutation – the hypothesis is tested in 

order to show that the hypothesis is false (Popper 1962). If we succeed to show that 

the original conjecture is false, we go back to the first step, build a new conjecture, 

and follow the two-step process again. If in the second step we fail to test the 

hypothesis as false we should assume that the original conjecture is – for the moment, 

and as far as we could not prove otherwise – correct (Godfrey-Smith 2003).  

                                                
10 A conjecture is not materialized as a specific contribution. As a consequence, multiple experts can 

express the same semantic, and therefore one conjecture can possibly be reflected in different 
models.  
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Popper’s theory is fundamental to the definition of the proof pipeline 

proposed in this section through a variation of the H-D model, and application of all 

modes of reasoning. The exact formulation of the H-D model vary, but in most cases, 

it is a combination of Karl Popper’s view of falsifiability and testing, and a less 

skeptical view about confirmation11 (Godfrey-Smith 2003, 69). A less skeptical view, 

in this case, means that our reliance on the notion that evidence can affect the 

credibility of hypothesis is necessarily fallible12 (Crupi 2016). 

The essence of the idea behind the hypothetic-deductivism in science is old, 

with its origins in Plato’s dialogues, referred to in that work as “the method of 

hypotheses” (Nola and Irzik 2006). In a broader sense, the H-D model relies on a 

proposition of a hypothesis in a way that it can be falsified by a test of this 

proposition against observations, or evidence. The H-D model represents a 

formalization of the scientific method through a set of a simple sequence of four 

steps: observe; form a conjecture; deduce predictions from a conjecture; and test the 

predictions (Godfrey-Smith 2003). 

Additionally, the H-D model formalizes a process of investigation through 

individual, sequential steps. The formalization of a process of investigation through a 

pre-defined sequence of steps defines the process of discovery as inherently 

algorithmic (Alkhateeb 2017). The idea of algorithmic procedures of investigation is 

not new. A precursor of the modern scientific method, Francis Bacon, arguably a 

predecessor of Karl Popper in respect of the method of falsification (Jürgen 2016) 

had foreseen two critical interconnected insights that are relevant to this research: 
                                                
11 Confirmation refers to “the problem of understanding when observations can confirm a scientific 

theory”, and what is required in order to have an “observation evidence for the theory”. This is a 
complex philosophical problem, often referred to as “the mother of all problems” (Godfrey-Smith 
2003, 39).  

12 Observations cannot confirm theories or conclusions, i.e., “even with extensive and truthful 
evidence available, drawing a mistaken conclusion is more than a mere possibility”, and as a 
consequence “under usual circumstances, reasoning from evidence is necessarily fallible” (Crupi 
2016) 
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• The step-by-step, methodical approach to investigation, where Bacon used the 

word “machine” to describe his method in Novum Organum in 1620 

(Alkhateeb 2017) (Jürgen 2016) (Cintas 2003).  

• Bacon’s method intended to leverage a “community of observers to collect 

vast amounts of information” and tabulate it into a central repository 

accessible to all (Alkhateeb 2017).  

Following through on Bacon’s hint, if discovery is algorithmic, then we can 

safely assume that machines could perform it. Alternatively, better yet, as this 

research advocates, discovery can be performed in large scale, having machines 

orchestrate the steps and rules of the collaboration of human crowds. 

The application of this H-D model as an algorithm to a framework supporting 

crowd-based investigation can be described through a set of specific steps (Godfrey-

Smith 2003, 236): 

• Observe. The observer should use personal experience to understand and 

appreciate the problem under study. Gather previous contributions13 relevant 

to the case of use at hand.  

• Form a conjecture or hypothesis14. Form a supposition, or a proposed 

explanation for the phenomena under observation, based on whatever limited 

evidence has been currently gathered as a starting point for further 

investigation. State an explanation of your hypothesis. Materialize that 

conjecture as a model. Share that model. 
                                                
13 For now, the term “contribution” here is used in the same sense as when authors “contribute” to 

Wikipedia. A more detailed formalization of contributions is done later in this thesis in Section 
3.4.3. 

14 Literature refers to the specific step in the H-D model where a supposition or specific explanation is 
made as a conjecture, which is equivalent to the most commonly known term hypothesis. For 
fairness, and accuracy, this thesis refers to both terms interchangeably. 
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• Deduce predictions from your conjecture. Formalize predictions, stating 

what should be expected if the conjecture is true. Incorporate those 

predictions as part of the model. 

• Test. Experiment with the model, looking for evidence (observations) that 

might disprove your predictions. Record all evidence as contributions and 

share those contributions. If predictions are disproved, so is the hypothesis: go 

back to step 2 and repeat. 

This sequence of steps in a pipeline of proof is depicted in Figure 2. Each of 

the four steps in this process is detailed respectively in the following sections 3.2.1.1, 

3.2.1.2, 3.2.1.3, and 3.2.1.4. 
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Figure 2. Method of Proof in Crowd-Based Investigation 

A method of proof for collaboration in large-scale applying variations of the Hypothetico-Deductive 
Model to handle shared procedures of investigation in each of the phases: observe, conjecture, predict, 
and experiment. 

This research advocates the use of this process, created from features of the 

H-D model, as a baseline for a proof pipeline for a crowd-based investigation and 

validation through the exchange of shared evidence  

An end-to-end application of this algorithmic method is given during our 

investigation exercise of the profitability of momentum strategies, presented later in 

this thesis in Chapter 5.  

Observe	 Conjecture	 Predict	 Experiment	

Experience	

Contribu6ons	
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3.2.1.1. Observation 

The first step of a proof pipeline deals with human observations. Observations 

are organoleptic and by definition are subject to abstract human interpretation. Given 

its subjective nature, it would be hard, if not impossible, to use machines to automate 

the process by which we generate high quality, reliable observation records. On the 

other hand, machines should be ideal to establish a platform of collaboration in large 

scale where observations can be recorded and shared. 

The idea of collecting observations in large scale is not new. In Novum 

Organum, in 1620, Francis Bacon proposed a method intended to leverage a 

“community of observers to collect vast amounts of information” and tabulate them 

into a central repository accessible to all (Alkhateeb 2017). Now technology allows 

that vision of a central registry of contributions that can be shared and evaluated by a 

community of observers.  

An example of the observation step in practice is given later in this thesis, in 

Section 5.1 of the investigation exercise in Chapter 5, where we describe the overall 

problem, the mechanics of the mathematical models and algorithms involved, and 

observations that led to the original inquiry. 

3.2.1.2. Conjecture 

The second step of the proof pipeline is the generation of conjectures, or 

hypotheses, to attempt to explain the cause of phenomena under observation. 

Hypotheses must be falsifiable, and at the same time, by definition cannot be entirely 

and irrefutably confirmed. It should always be assumed that improved research 

methods should disprove a hypothesis at a later date.  
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Assuming an algorithmic nature of the discovery process, in what is 

commonly called automated hypothesis generation, hypotheses have a potential to be 

entirely generated by computers15 (Spangler, et al. 2014). Automated hypothesis 

generation is still in initial stages, but research has produced a significant number of 

exceptional use cases. 

Starting in the 1980’s some experiments were able to hypothesize links 

between cause and effect, in two initially unrelated fields of study, without 

specialized knowledge in any of the subjects of study, and without conducting any 

experiments. The links were established by merely following algorithmic steps while 

connecting scientific papers with no citation overlaps (Swanson 1986). More recent 

research allows for limited automated hypothesis generation based on large-scale text 

mining of academic publications, natural language processing, mathematical 

modeling, and graph theory. Some equally relevant and related features, taken out of 

the techniques in use in hypothesis generation, include the prediction of a successful 

academic career based on the writing style of scientists on entry-level positions and 

quantifiable metrics of efficiency in scientific discovery (Rzhetsky, et al. 2015) 

(Grauwin, et al. 2017) (Sinatra, et al. 2016) (Gupta and Manning 2011) (Spangler, et 

al. 2014).  

However, despite the evidences of potential and the slow advancement, 

science still lacks a complete theory for fully automated hypothesis generation. 

Additionally, these techniques currently rely on volumes of quality data associated 

with scientific publications, a scarce resource now that major scientific journals have 

placed severe restrictions on text mining of their content (Jha 2012).  

                                                
15 There are notable exceptions to the belief that discovery can be algorithmic. “Karl Popper insists 

there is no recipe for coming up with interesting conjectures” (Godfrey-Smith 2003) 
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Instead of a fully automated hypothesis generation, this research advocates the 

use of highly interconnected crowds orchestrated by computers. In such an 

environment, individual participants in a crowd would rely on computers to perform 

specialized discovery tasks, communication, and to produce metrics of quality on 

shareable contributions. In this scenario, hypotheses are generated by participants in a 

crowd, in an environment enhanced by computers, and not solely performed by 

machines. 

An example of the conjecture step in practice is given later in this thesis, on 

the generation of hypotheses in Section 5.4.1. On that example, when we are 

assessing the profitability of momentum strategies, a conjecture is given by a well-

defined, simple, falsifiable hypothesis, i.e.: 

There are scenarios under which momentum strategies 
are consistently profitable. 

The consequences of a falsifiable conjecture are predictions. Predictions for 

this conjecture are expressed over the investigation exercise in Chapter 5, on page 

177. 

3.2.1.3. Prediction 

The third step of the proof pipeline relates to prediction, where a researcher 

generates anticipations of probable outcomes of experimentations assuming that 

initial conjectures produced in the previous step, in Section 3.2.1.2, are true.  

The mechanisms used to generate valuable, and high-quality predictions are 

similar to mechanisms we use to anticipate and track patterns in experience (Godfrey-

Smith 2003). These mechanisms are subject to the complex rules that govern the 
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connection of experiences, or the rules of science itself16 (Mulder and van de Velde-

Schlick 1978a) (Oberdan 2016). These complex rules are bound to human traits of 

creativity and experience and, as of the time of this writing, there are no instances of 

efficient implementation in machines.  

In the same manner, as defined for the first step previously described in 

Section 3.2.1.1, probable outcomes can be defined as different shocks of executions. 

Shocks are by definition an iteration of a simulation, as described in Section 4.3.4. 

The results of the execution of individual shocks are recorded in datasets as shareable 

evidence, allowing other participants to understand the expectations of a model better 

and assess predictions against actual outcomes. 

An example of this prediction step in practice is given later in this thesis, in 

Section 5.4.1, when we define two specific predictions for a single conjecture, as part 

of the investigation exercise in Chapter 5. 

3.2.1.4. Test 

The last step of the proof pipeline is testing, where experiments are designed 

based on predictions produced during the third step, described in Section 3.2.1.3. 

Those experiments are performed in order to support or refute predictions, and the 

outcome of a test would either validate or falsify the original conjecture, or 

hypothesis.  

In some fields of study reliant on intensive and controlled testing, procedures 

related to experimentation are widely automated. Scientists can submit a description 

of their experiments online and have that description subsequently converted to 
                                                
16 The core objective of science is to understand how experience shapes discovery, on the words of 

Moritz Schlick “what every scientist seeks (…) are the rules which govern the connection of 
experiences, and by which alone they can be predicted” (Mulder and van de Velde-Schlick 1979b) 
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specialized instructions and fed into robotic platforms to execute a battery of 

repeatable experiments (Soldatova, et al. 2016) (Alkhateeb 2017).  

If we are to consider the assumption of standardized, quantifiable, and 

normalized results, as described in Section 3.1, it is important to introduce at this 

point the notion that experimentation on a complete method should also incorporate 

probabilities. In this case, a prediction should be expected to hold true 𝑁% of the 

time, in which case experimentation should be repeated to substantiate the probability 

𝑁 (Fetzer 2017).  

On this sense, achieving unambiguous conclusions about a problem then 

becomes a numerical exercise, in which statistical inference17 is the process of getting 

to conclusions about a specific problem by looking at statistical characteristics of 

data, and by using probability alone (Lindley 2000) (Apolloni, Malchiodi and Gaito 

2006).   

There is a widespread agreement that statistics depend on probability, but 

concomitantly there are disagreements as to what exactly is probability, and how 

probability is connected to statistics18 (Savage 1954). Over the last several decades 

Ronald Fisher (R. A. Fisher 1922), Harold Jeffreys (Jeffreys 1933), Jerzy Neyman 

(Neyman 1934), Leonard Savage (Savage 1954), and many of their followers have 

defined several paradigms and have engaged in a number of debates that gave birth to 

controversies that were key to its formative properties (Efron 1978). A positive and 

                                                
17 The term statistical inference, or alternatively quantitative inference, is defined in this thesis as “the 

act of passing from statistical sample data to generalizations usually with calculated degrees of 
certainty” (Merriam-Webster 2018). 

18 The definition of probability is at the root of the division on the understanding of what is physical 
and evidential probability, as “it is unanimously agreed that statistics depends somehow on 
probability. But, as to what probability is and how it is connected with statistics, there has seldom 
been such complete disagreement and breakdown of communication since the Tower of Babel. 
Doubtless, much of the disagreement is merely terminological and would disappear under 
sufficiently sharp analysis.” (Savage 1954, 2) 
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possibly unintended consequence of the debate is the multitude of statistical tools and 

the rich set of options available to the scientific community to conduct quantitative 

inference (Kass 2011) (Lenhard 2006). 

On this research, we acknowledge that these differences are essential, but we 

assume that even more important is to leverage this toolset to concentrate on 

relationships between data and model, or how representations mapping measurements 

in the real to the theoretical world are made. This shift in paradigm, in which 

statistical models take a back seat to the understanding of the relationships between 

data and methods to infer conclusions, is called statistical pragmatism (Kass 2011). 

In statistical pragmatism numerical methods are seen as an eclectic practice, 

emphasizing mechanisms by which observed data is connected to statistical 

procedures, as described in Figure 3 (Kass 2011). 
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Figure 3. Pragmatic Statistics and the Mapping Between Data and Methods 

Pragmatic statistics are defined through abstract mathematics constructs used to quantify and explain 
observable phenomena (Kass 2011). 

In essence, pragmatic statistics is a vehicle to aggregate real data and 

theoretical descriptions into quantifiable results, and as such can be seen as a model 

to reach a set of conclusions based on real and theoretical constraints. 

An example of the testing step and the partial application of pragmatic 

statistics is given later in this thesis, as part of the investigation exercise in Chapter 5. 

First on Section 5.4.2, for a Monte-Carlo simulation using stochastic generators on 

variations of arguments, and second, on Section 5.4.3, for the backtesting against 

constituents of the S&P 500 index (McGraw Hill Financial 2015a).  
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Evidence of testing results for the Monte-Carlo simulation using stochastic 

generators can be seen in Contribution 12 on page 182, and in Contribution 14 on 

page 186. Similar evidence for backtesting against constituents of the S&P 500 index 

is shown in Contribution 23 on page 196. 

3.2.2. SCIENTIFIC LEARNING AND ECONOMICS 

The scientific question posted in Section 1.1 brings in its core the observation 

that the process of investigation in economics should not be different from the 

process of learning we have in place in other hard sciences. As we have shown in 

Section 3.2, the process of learning and understanding followed by humans is 

abstract, fluid and subject to multiple definitions of what one might consider 

knowledge, assumptions, and beliefs. Given this abstract nature, it is essential to 

identify what is objective knowledge, or what is known, from what is not. 

Alternatively, in other words, demarcate the difference between what is considered 

science from what is not.  

The clear demarcation of what is considered science, and what is not, is part 

of a controversial issue usually referred to as a demarcation problem (Hansson 2017). 

In a scenario where the intent is to produce new knowledge from a pre-existent 

foundation of knowledge by using large crowds of participants in scientific 

investigation, it becomes even more critical establish clear criteria for demarcation 

and for separation of what is known from everything else. This process of building 

new knowledge from a pre-existing foundation of what is considered to be true is 

called scientific learning. Scientific learning occurs as a result of two specific 

requirements. 
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The first requirement is that by definition scientific learning occurs by 

application of the principles of the scientific method. These principles show that, 

despite its power, science is indeed a simple tool. In science, we rule out things 

considered false based on hard evidence. What is true (truthfulness) is then inferred 

by exclusion19 (Gauch 2003) (Horgan, (b) 1993) (Horgan, (a) 2016). We refer to this 

process of inference as the modern scientific method, outlined by a set of six 

principles (Munir 2010): 

• The goal of scientific investigation should be to gain objective knowledge 

(Faleiro Jr and Tsang 2016a).  

• Scientific knowledge is obtained through tests, experiments and observations. 

Tentative assumptions about a particular phenomenon may, however, be 

deduced from pre-existing knowledge. 

• A hypothesis must be verifiable by some experimental or observational 

method. 

• Experiments must be reproducible and must have controls 

• The integrity of the data must be appropriately safeguarded.  

In the modern scientific method, “each principle helps to increase the 

reliability and accuracy of knowledge resulting from scientific research” (Munir 

2010). By that definition, these principles naturally address the requirements for 

objective scientific learning in economics described previously.  

                                                
19 Discounting the recent resurgence of the truth-conducive controversy, in which “it is fashionable 

among (…) some philosophers to say there are no principles of rationality that are truth-conducive 
(…) since there are no standards of rationality, there is no logic or method to science” (Gauch 
2003). 
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The second requirement is that scientific learning is dependent on peculiar 

characteristics in a field of study. In our case, the field of economics, the process by 

which knowledge is acquired is defined, and dependent, on three specific peculiarities 

of the subject of study: 

• Complexity: modern economics deals with a unique subject of study - a 

shared, intertwined, complex market – that cannot be rewound. Time like life 

moves towards one direction (Tsang 2010). Given the usually large number of 

inputs to such a complex system and the apparent independence between 

these input variables, once an event occurs, we cannot derive different futures 

from what the present currently describes (Faleiro Jr and Tsang 2016a). 

• Lack of proper theoretical models: when taken from a recent historical 

perspective modern economics has been associated with compartmented 

classical fields like psychology, statistics, sociology, and computer sciences.  

Most of the assumptions in classical and theoretical sciences are inherently 

oversimplified and flawed when trying to predict or understand the behavior 

of a systemic market20 (Tsang 2010) (Faleiro Jr and Tsang 2016a).  

• Multidisciplinary fields of study: modern economics is, in essence, a 

multidisciplinary subject. Efforts to understand the market considering its 

most fundamental structures tend to rely on somewhat orthogonal fields of 

study like neuroeconomics (Camerer, Lowenstein and Prelec 2005), 

behavioral sciences (Camerer and Loewenstein 2002), and analysis of market 

micro-events (Madhavan 2000), among others. The interdependency of 

subjects in economics to bioengineering, neurosciences, social sciences, 

psychology, data and computer sciences, and related fields is diffuse and 
                                                
20 While we consider important to highlight this peculiarity, evaluating reasons for such limitations, or 

trying to entirely refute or confirm them is beyond the scope of this research. 
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difficult to correlate and at the same time, critical for scientific learning 

(Faleiro Jr and Tsang 2016a).  

As a consequence of these peculiarities of our field of study (i.e., systemic 

complexity, lack of proper theoretical models, and novelty of correlated fields of 

study) modern research in economics becomes strictly dependent on high-

performance computers21, requiring the implementation of elaborate simulation-based 

techniques. Similar to what is used in other hard-sciences, such as physics, 

engineering, and biophysics (Chen 2005) (Kay-Yut 2006) (Faleiro Jr and Tsang 

2016a). This dependency on high-performance computing has driven research in 

economics to favor specialized techniques for storage and processing speed. The field 

has been shaped so that the sheer generation of data and obscure ways to represent 

computational procedures is prioritized over proper control.  

The process of scientific learning in economics is highly dependent on these 

limitations. The rigor of the study in economics as a hard science would require to 

store, share, and replicate results and methods of experiments across a vast 

community of participants. Additionally, the complexity of financial use cases is 

increasing and as a consequence requiring more storage and computing power. It is 

now usual to have the results of everyday experiments to grow into massive datasets 

and the description of concepts that are inherently related to the domain of economics 

to be only adequately decipherable by computer scientists.  

This observation is a consequence of the fact that, in order to properly 

leverage more computational resources, the description of financial models had to 

                                                
21 A correlated consequence is that an ever-increasing dependency on high performance computers for 

scientific investigation makes it difficult to discern subjects that are specific to economics or 
computational finance.  In other words, there is an incentive and a justification for economics and 
computational finance to have a significant overlap. 
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become more cryptic, thus requiring specialized computational skills that often the 

economics researcher does not possess.  

The consequences of the absence of proper computational representation, and 

specifically its impact on the process of scientific learning are well documented, and 

it is beyond the scope of this research to list them all in details. This research 

identifies this and several other observable manifestations of disruption of current 

scientific procedures later in this thesis, in Section 3.3.3. These manifestations are an 

indication of a required change on current conventions for scientific investigation, 

making proper representation to become a priority for investigation and regulation in 

economics, other sciences, and even outside of academia in public and private 

institutions (Faleiro Jr and Tsang 2016a).  

One of the cornerstones of this research is the realization that computing 

power is required during an investigation in economics to generate and store massive 

amounts of data and perform intensive computations, but if computing power is 

important in this scale, proper representation is indispensable. The limitation factor 

for scientific learning, and the consequential scientific advancement, has clearly 

shifted from availability of storage and computational resources to proper 

representation of investigative procedures (Ioannidis, Allison, et al. 2009) (Camerer, 

Dreber, et al. 2016) (Nuzzo 2014) (Reinhart and Rogoff 2010) (Herndon, Ash and 

Pollin 2013) (Cassidy 2013).  

Simplification and streamlining of the representation of financial models is 

imperative to allow unquestionable transparency in the way raw data is obtained and 

stored, and corresponding results are modeled, used and calculated (Faleiro Jr and 

Tsang 2016a). This streamlined representation, called in the scope of this research a 

computational representation, will be described in details in Section 3.4 and Chapter 

4 of this thesis. 
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3.2.3. SCIENTIFIC SUPPORT SYSTEMS 

The modern scientific investigation cannot be performed without computers, 

especially when the agents of the investigation are participants in a crowd. In this 

section, we define a scientific support system22, based on concepts presented 

previously in Section 3.2.1 and Section 3.2.2. A scientific support system is a 

specialized form of a workflow and data management system designed specifically to 

compose and execute a series of computational or data manipulation steps compatible 

with the scientific principle (Goecks, Nekrutenko and Taylor 2010) (NIH 2000) 

(Faleiro Jr and Tsang 2016a).  

The modern investigation requires the handling of large volumes of data and 

the analysis of complex relationships between different financial models, each 

representing a relative simplification of real-world phenomena through 

experimentations (Press 2013). Each of these experiments may potentially yield a 

volume of data that would be impossible to understand and analyze by hand, hence 

the need for a specialized system to automate the steps of the investigation. 

This scenario makes computational resources indispensable and virtually 

never enough considering the increasing complexity of the studies at hand. This 

research identifies this and several other observable manifestations of disruption of 

current scientific procedures, analyzed later in this thesis in Section 3.3.3. These are 

examples of the hard consequences of the lack of proper control. They provide the 

realization that, contrary to the good intent, computing power without proper controls 

is detrimental to science. This status quo establishes the idea of this research that, if 

                                                
22 Some literature refers to this specific class of systems as scientific workflow systems (Curcin and 

Ghanem 2008). In the scope of this research, to avoid confusion with those systems, dedicated to 
generic workflow management, we use a specific denomination of scientific support system (J. M. 
Faleiro Jr 2013a).  
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computing resources are indispensable, even more so is the idea of computational 

controls. 

Computational controls in a financial investigation are enforced in scientific 

control systems by control methods. We define four specific required control 

methods: accessibility, reproducibility, communication, and collaboration.  

• Accessibility: a computational representation must be accessible. The use of 

high-performance systems demands computer literacy from scientists, what is 

not always possible. There is a need for an accessible computational 

representation that shields the inherent complexities of modern computer 

systems from collaborators in any scientific field, focusing on simplicity, and 

therefore not requiring specialized computer literacy (Faleiro Jr and Tsang 

2016a); 

• Reproducibility23: The term reproducibility relates, in the scope of this 

thesis, to reproducible research and the assumption that reproducible 

scientific procedures apply “not to corroboration, but to transparency” 

(Goodman, Fanelli and Ioannidis 2016). The term reproducible procedures in 

modern literature is associated with a software platform and procedures that 

allow a researcher to understand a processing trail of a scientific product, 

from raw data, to figures, text, and tables (Claerbout and Karrenbach 1992). 

The same assumptions apply to reproducibility of non-stationary systems in 

general and economics in particular (Baiocchi 2007) (Hamermesh 2007) 

(Koenker and Zeileis 2009). This research, however, recognizes the 

potentially disruptive aspects of technology and computational power when 
                                                
23 Reproducibility, by definition, “refers to the ability of a researcher to duplicate the results of a prior 

study using the same materials as were used by the original investigator. That is, the second 
researcher might use the same raw data to build the same analysis files and implement the same 
statistical analysis in an attempt to yield the same results (…). Reproducibility is a minimum 
necessary condition for a finding to be believable and informative” (Bollen, et al. 2015) 
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these are used without proper controls. An abundance of computational power 

requires a potentially obfuscated representation of ways to transform 

information, yielding massive amounts of data. The paradoxical condition in 

which modern investigative procedures are entangled requires more 

computing power. More computer power enables to transform more data, and 

as a consequence, a higher risk of uncontrolled models and massive amounts 

of untraceable data that will, in turn, require more elaborate techniques and 

computing resources to trace and decipher that data (Goecks, Nekrutenko and 

Taylor 2010). Reproducibility of scientific procedures cannot be achieved 

without proper controls around provenance, and versioning of data and 

models (Faleiro Jr and Tsang 2016a); 

• Communication: the massive amounts of computational inputs and outputs, 

as well as ways to transform the latter into the former, have to be adequately 

represented. Ways to communicate results through proper visualization and 

computational representation is crucial. The amount of data generated as input 

and output cannot be represented to humans the same way as they are to 

computers (Tufte 2006). To make research truly useful, we need human-

friendly ways to visualize evidence. At the same time, communicating 

methods and procedures, regarded as of greater importance than explanatory 

texts and figures as experimental outputs (Schwab, Karrenbach and Claerbout 

2000) (Gentleman 2005) cannot be addressed differently than other items that 

require human visualization (Faleiro Jr and Tsang 2016a); 

• Collaboration: collaboration is allowing results from one experiment to be 

seamlessly utilized by other experiments, allowing extensions on models and 

data to fit additional scenarios, at the same time tracking ownership of each 

revision or improvement. Collaboration can occur only by exchange of 
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artifacts24 that are traceable. Ways in which artifacts are produced and utilized 

have to be transparent to the overall community. 

By definition or for the sake of purpose, scientific support systems have to be 

designed based on principles of the scientific method, described earlier in Section 

3.2.2. By drafting a parallel between the control methods defined above, and the 

scientific principles in Section 3.2.2, we propose a framework for investigation 

conceived around the following drivers (Faleiro Jr and Tsang 2016a): 

• Providing an easy-to-use environment for individuals themselves to create and 

test their hypotheses (models); 

• Providing interactive tools for individuals, enabling them to execute their 

hypotheses and tests (scenarios) and view their results in real-time; 

• Simplifying the process of sharing and reusing contributions (shareable 

evidence of investigation procedures) among individuals; 

• Enabling individuals to track the provenance25 of results and use the record of 

provenance to reproduce those results. 

Given these drivers, a platform must provide adequate controls in terms of 

definition and testing of a hypothesis, as well as transparently tracing and 

safeguarding of the underlying data as scientific evidence. From that, the principles 

driving the definition of scientific support systems specifically: 

• Allow the definition of a theoretically driven hypothesis; 

                                                
24 Artifacts are not synonym of evidence. Artifacts relate specifically to “observations in a scientific 

investigation or experiment that is not naturally present but occurs as a result of the preparative or 
investigative procedure” (Oxford University 2010) 

25 Chronology of the ownership, custody or location of historical entities (Oxford University 2010) 
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• Allow a hypothesis to be tested; 

• Allow a hypothesis to be reproduced and verified by independent parties; 

• Allow assumptions about a hypothesis to be deduced from historical data; 

• Safeguard historical data. 

We are calling the class of platform supporting these requirements a scientific 

support system. These drivers are the foundation to define the computational 

representation described later in this thesis in Section 3.4. Throughout the entirety of 

Chapter 4, these drivers are addressed again for the definition of computational 

representation specific for the field of economics. 

3.3. LARGE-SCALE COLLABORATION 

As we have explained in Section 3.1, this research advocates for a crowd-

based method of scientific investigation based on the existence of cognitive and non-

cognitive enablers. In this section, we outline requirements and justification for the 

second cognitive enabler for crowd-based investigation: large-scale collaboration.  

The use of crowds for resolution of problems follows one of two distinct 

approaches. The first approach, named “wise crowds” (Surowiecki 2004) relies on 

empirical observations (K. Wallis 2014) (Galton 1907) and assumes the existence of 

some invisible, unquantifiable mechanism, somehow providing a certain level of 

knowledge to crowds, therefore allowing them to make wise decisions. The “wise 

crowd” approach relies on the assumption of complete independence and 

decentralization between participants of a crowd. The second approach, named 

collaborative crowds, assumes that knowledge is produced as a result of structured 

collaboration between participants of a crowd.   
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This research subscribes to the second approach, collaborative crowds, where 

large-scale collaboration occurs by the existence of particular requirements of 

collaboration, as a natural evolutionary response to the environment in which 

investigation takes place.  

Over the following sections, we will list well-accepted requirements for large-

scale collaboration, discuss evidence on the use of large crowds for the resolution of 

complex problems, provide a historical perspective corroborating this our view that 

crowd-based investigation is a natural evolutionary response to changes on culture, 

environment, and available technology. 

3.3.1. REQUIREMENTS 

The use of crowds as agents of investigation requires an organization of large 

number of individuals, in different roles and at different levels of technical 

understanding, to continually collaborate for the resolution of complex problems.  

However, as we can readily ascertain by observation, collaboration does not come out 

of thin air. We need something to drive effective collaboration, and in this section, we 

concentrate on explaining requirements for effective collaboration to take place. 

Collaboration is what builds “some sort of a collective brain with the people 

in the group playing the role of neurons” (Nielsen 2012, 18) (Surowiecki 2004) and 

ultimately amplifies the intelligence of a group of people. Collaboration is facilitated 

as a result of four requirements: expert attention, proper cultural and intellectual 

development, manufactured serendipity, and human diversity. 

• Expert Attention: Maximizing collaboration is primarily a problem of 

restructuring expert attention by designing the correct incentives that would 

encourage any single participant in a crowd to play the role of an expert at 
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times, whenever it is required. Given the over-specialized nature knowledge 

and the narrow window of expertize, these experts in crowds are called micro-

experts. Being able to call “the attention of the right expert at the right time” 

is critical to problem resolution by crowds of individuals. “Expert attention is 

to creative problem solving what water is to life: it’s the fundamental scarce 

resource” (Nielsen 2012). 

• Proper Cultural and Intellectual Development: Collaboration must rely on 

participants in a proper stage of cultural and intellectual development. In the 

upcoming Section 3.3.3, we describe the historical evolution of the scientific 

process: from individual macro-experts to institutionalized science to the 

anticipated, next phase of crowd-based investigation. As part of this 

evolution, we start to notice evidence of disruption in the current discovery 

process based on hierarchies and institutions, and the transition to a new phase 

in which discovery is driven by crowds and micro-experts. This disruption 

and transition is discussed in details in the upcoming Section 3.3.3. 

• Manufactured Serendipity: Collaboration requires the right participant with 

the ideal amount of micro expertise to help in the resolution of a problem. 

This phenomenon called manufactured serendipity, allow for fortunate 

discoveries of possible opportunities for collaboration by quasi-accident. 

Serendipitous connections between individuals are known to be essential in 

any creative or investigative work. The thinking behind “manufactured 

serendipitous connections” (Udell 2002) assumes connections between 

individuals cannot be fabricated, but the conditions by which they occur can 

be stimulated on purpose. In other words, “you can’t automate accidental 

discoveries, but you can manufacture the conditions in which such events are 

more likely to occur” (Udell 2002). 
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• Cognitive Diversity: The last requirement calls for cognitive diversity. 

Cognitive diversity is the “extent to which a group of people reflects 

differences in knowledge, including abstract constructs like beliefs, 

preferences, and perspectives” (Miller, Burke and Glick 1998). Collaboration 

groups must be cognitively diverse, so to maximize instances of micro-

expertise amongst its participants (Mitchell and Nicholas 2006). Putting it 

differently, to maximize collaboration, participants need a wide range of non-

overlapping expertise. The minimum amount of shared knowledge must be 

the level that would allow participants to communicate effectively 

(Surowiecki 2004) (Nielsen 2012).  

These requirements reflect the need for collaboration in investigative 

procedures that often are cross-disciplinary. Existing literature has identified by 

empirical methods a different set of requirements, but in a perspective that seems 

influenced by thinking on that specific field of study (e.g., in social sciences these 

same requirements for collaboration are outlined as process, understanding, utility, 

and knowledge integration (Jeffrey 2003)). As a common limitation, other instances 

in the literature lack quantitative metrics to show evidence of the importance of each 

prospective feature in collaboration. We call collaboration metrics the quantification 

of requirements for large-scale collaboration, and provide a roadmap for future 

research of this subject later in this thesis, in Section 6.6. 

3.3.2. COLLABORATIVE RESOLUTION OF COMPLEX PROBLEMS 

As described in Section 3.1, this research considered particular assumptions as 

a starting point to the definition of the specific enablers of a crowd-based 

investigation. One of these assumptions is that organized human collaboration is well 

suited for the investigation and resolution of complex problems. In reality, it would 
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be impossible to infer absolute suitability of large-scale collaboration for the 

resolution of complex problems. Alternatively, we can enumerate results from 

empirical exercises, and their specific details, as evidence of resolution of complex 

problems by crowds. 

The first example, the Polymath Project (Gowers and Nielsen 2009) is a 

brainchild of Fields Medal winner Timothy Gowers, a mathematician at Cambridge 

University. The Polymath project started from a pair of simple posts on his blog. The 

first post inquiring on the possibility of the use of crowds in the resolution of 

complex mathematics problems (Gowers 2009a), and then shortly after that a second 

post where Gowers proposed a particular problem to be resolved using massively 

collaborative investigation (Gowers 2009b). 

Over the next 37 days, 27 people from around the globe – from mathematics 

enthusiasts to high school math teachers, and other Fields Medal winner Terence Tao 

– wrote 800 comments and more than 170,000 words on erratic movements of 

discovery (Nielsen 2012) following an open path of investigative try-and-error. After 

those 37 days, Gowers announced that the crowd had solved not only the original 

problem but also a harder, more generic problem that had the initially proposed 

problem as a special case (Polymath 2012)26. 

Considering the requirements for large-scale collaboration introduced in 

Section 3.3.1 the original problem was not proposed on the most appropriate platform 

for collaboration – basically, a sequence of textual comments on Gower’s online blog 

– and the specifics of the methods of incentive for micro-specialists was not clear. 

Despite that, over the following months around a dozen of unresolved problems were 

proposed and resolved by a crowd of mathematics investigators, and the platform was 
                                                
26 The published author of the paper “D. H. J. Polymath” is a reference to the proposed problem, a new 

proof of the Density Hales-Jewett theorem, and to the crowd that took part in the resolution during 
the Polymath project 
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moved from an online blog to a wiki (Nielsen 2011). Despite lacking an adequate 

computational representation for investigation in mathematics, the Polymath Project 

is a successful example of investigation and resolution of specialized, very complex 

problems by crowds. 

The second example is the control of predatory publishing in academia. 

Predatory publishing is a term popularized by Jeffrey Beall to refer to journals that 

charge huge fees to submit papers without proper peer review. Predatory publishing 

damage the scientific process by cheapening intellectual work and misleading 

scholars, especially early career researchers. 

Beall created the list in 2008 (Beall 2008), and from 2010 to 2014 alone the 

size of the list increased ten-fold, growing to include thousands of journals and 

publishers (Shen and Björk 2015). Inclusion on the list was based on a metric derived 

from a 52-point criterion that Beall created himself (Beall 2015). 

The list was controversial, mostly due to Beall’s biases and previous positions 

against the open-access movement he described as “anti-corporatist, oppressive and 

negative” (Beall 2013), or strong statements in the lines of “predatory publishing 

damages science more than anything else” (Beall 2016). Despite the controversy, 

evidence points to the fact that Beall’s list highlighted recognized problems in 

academia, and set to worsen (Shen and Björk 2015) (Bohannon 2013). Other studies 

point to the additional fact that the issue is strongly regional, and expected to worsen 

even further, as scientific research turns into a global endeavor (Seethapathy, 

Kumarand and Hareesha 2016) (Omobowale, et al. 2014) (Shen and Björk 2015). 

On January 15th of 2017, Beall took his site and the list down, due to “threats 

and politics” (Straumsheim 2017). 
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Private initiatives swiftly took on to seize the opportunity and fill the void 

(Anderson 2017) through centrally managed “black” and “white” lists. As it is 

usually the case with centrally managed initiatives, it ignores “local knowledge”27 

(Hayek 1945) and fails to address the causes of the negative phenomena28. 

At that point, a community-based initiative, called “Stop Predatory Journals”, 

ran by an anonymous community, took on the maintenance of the original list and 

extended it. The initiative mostly gathers contributions made through a simple 

configuration management platform and keeps a publicly available list of predatory 

journals, predatory publishers, hijacked journals29, and misleading or fake metrics. 

Despite a positive impact, this community-based initiative is still open to 

criticism, but more objectively, a crowd-based initiative has to look primarily at 

market incentives in large scale. In this sense, predatory publishing can be seen as a 

market-oriented, rational response to two factors:  

• A poor system of incentives currently in place in academia (Crotty 2017); 

• Bad funding models. There should be more than just ‘author pays’ or ‘reader 

pays’ models.  The actual cost of publication is a fraction of what used to be 

when these systems were designed. Additionally, other financial costs like 

peer review are very relative in an environment that relies on a system of 

incentives for virtual collaboration (Schroter and Tite 2006). 

                                                
27 The “local knowledge problem” in economics is often used to explain why the central control of 

distributed resources (including centrally planned economies) do not work (Hayek 1945) 
28 Even if unintended, there is symbiotic relationship in place - the very existence of a centrally 

managed, subscription based list is justified by the existence of the damaging practice - that serves 
as a reverse incentive to ending the practice of predatory publishing altogether. 

29 A hijacked journal is a journal that had either their websites or branding co-opted by a predatory 
journal or publisher. 
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In closing, the current status of crowd-based surveillance of predatory 

journals is positive but fail to address the root causes of the phenomena. The overall 

solution lacks adequate computational representation for academic content and an 

aligned system incentives for collaboration, considering the requirements for large-

scale collaboration introduced in Section 3.3.1. 

In general, empirical evidence shows that collaborative crowds are more 

appropriate for the resolution of complex problems than conventional methods. 

Current research, however, is not able to pinpoint the exact reasons, or characteristics, 

of problems that would be more suitable for resolution by collaborative crowds 

(Tausczik, Kittur and Kraut 2014) (Brabham 2008). With a few exceptions, current 

literature lacks a quantitative analysis of the suitability of crowds for the resolution of 

complex problems (Guazzini, et al. 2015). 

As a final observation on the topic, current research in the literature relies on 

experiments that fail to address the requirements outlined previously in Section 3.3.1 

and further explored over the upcoming Section 3.4, namely the lack of a proper 

system of incentives and the absence of a dedicated, domain-specific computational 

representation.  This realization seems to confirm the novelty of this research. 

3.3.3. SCIENTIFIC EVOLUTION AND BREAKTHROUGH  

It should come without surprise to most people that the ability to build 

objective knowledge through a scientific method is what drove humans out of caves 

and shot our race towards the stars. As we have previously explained in Section 3.2.2, 

the scientific method can be seen as a cumulative process in a sense that, over time, 

we build new knowledge based on previous knowledge considered to be true. Truth, 

or at least what we perceive to be true, is not constant (Kamen 2014). Given our 
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history of understanding of the world around us, previous knowledge will almost 

certainly be ruled as false at some time in the future. On this erratic pathway a 

“tapestry” of “knowns” slowly evolves to take the infinite space of “unknowns” 

based on ever-changing knowledge foundations (Krauss 2012).  

This dynamic and seemly chaotic method of acquiring an understanding of the 

world around us has been happening for as long as our ancestors started to grasp with 

inquiries and guesses about cause and effect of observable phenomena. Even if it was 

unintended, and we were not entirely aware of its exact mechanisms, this organic 

adaptation has been happening, constantly. It is so ingenious and so ancient that it has 

been organically adjusting itself to an ever-changing knowledge base, resources, and 

culture available at different points in history and time.  

This adjustment occurs in evolutionary stages in response to available 

technology, the individual performing the scientific investigation, drivers, 

collaboration, creativity, and control in three distinct phases, as described in Figure 4. 
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Figure 4. Phases of Collaborative Scientific Investigation 

Characteristics of the evolution of collaborative scientific investigation from macro-experts, to 
institutions, and to crowds, depending on five factors: the individual performing the investigation, 
drivers, collaboration, creativity, and control 

This chart summarizes each of the phases according to the individual 

performing the research, topology, drivers, collaboration, creativity, and control. The 

individual performing the investigation evolved from macro-experts, or “natural 

philosophers”, to groups arranged hierarchically organized in institutions, to an 

upcoming phase in which micro-experts are arranged in mesh-like crowds, subject to 

the requirements listed in Section 3.3.1. Each of the topologies represents the 

communication paths between participants in each phase. The drivers for discovery, 

or the entity in charge for conducting the investigation and inquiry, in each phase, are 

macro-experts, institutions, and crowds of micro-experts. Collaboration occurs in 

each of the phases by chance, central planning, and by serendipitous design, as 

		

		

		

		

		 		

		

		

		

		

1st	Phase	 2nd	Phase	 3rd	Phase	

Topology	 Hub	and	spoke	 Tree	 Mesh	

Drivers	 Macro-experts	 Institutions	 Crowds	of	micro-experts	

Collaboration	 Chance	 Planning	 Serendipitous	design		

Creativity	 Macro-expert’s	trait	 Parent’s	trait	 Crowd’s	trait	

Control	 Macro-expert’s	trait	 Strong	 Weak	
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explained previously in Section 3.3.1. Creativity in each phase is associated with the 

individual performing the investigation. Finally, control is either trait depending on 

the macro-expert, strong, or weak, depending on the topology in place, respectively 

hub-spoke, tree, or mesh. 

The first phase of scientific investigation relied uniquely on “natural 

philosophers”, bright individuals who were able to drive discovery based on their 

personal traits and occasional interaction with other “natural philosophers”.  

On this first phase, the domain of investigation was related to natural 

observations and research conducted by individuals almost in isolation. Given the 

relative simplicity of subjects under study, a few very bright individuals could still 

build on previous knowledge with little or no interaction with other individuals.  The 

collaboration was done on an ad hoc basis, and opportunities for interaction were left 

to chance and rare social exchanges. The proximity with domains of study would 

allow for self-funding, and the management of resources is de-centralized and done in 

almost complete isolation.  Ultimately, the expertise held by any single individual 

would determine the effectiveness of one’s research – this is the golden age of 

polymaths or macro-experts. 

Even with all of these intrinsic limitations, objective learning occurred, and 

the accumulation of knowledge led to increased complexity and a higher demand for 

resources to record, store and share knowledge. The ever-increasing body of 

knowledge demanded a more significant interaction with other researchers that would 

not necessarily share the immediate surroundings where research was taking place. 

Large institutions came along to fulfill the demand and manage the vast amount of 

resources needed for more complex methods, and more information. 
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That triggered to the second phase, in which institutions took over the task of 

organization of participants and the management of resources required for 

investigation and collaboration. As more and more resources were needed as 

multidisciplinary subjects increased in complexity, this second wave, the phase of 

institutionalized science, came to life.  

On this second phase, participants were organized in hierarchical institutions 

across diverse kinds of institutions, interested or dependent on scientific 

advancement: academia, governments, or private corporations. Most scientific 

procedures evolved to match the hierarchical organization of these institutions, and so 

the production of objective knowledge followed.  

As we move along through the second historical phase, institutionalized 

science started to shape research methods to fit into a more cumbersome, hierarchical 

communication, relying on larger, less efficient group sizes. Large institutions also 

brought along the unintended consequence of heavy top-down hierarchical 

communication and stronger controls. The immediate consequence overall was that 

complexity of research domains started to increase exponentially.  

This increased complexity has been producing two major changing forces that 

are shaping the resurgence of a next historical phase: 

• Multidisciplinary collaboration: multidisciplinary collaboration became 

mandatory. We cannot perform an objective investigation, on any field, 

without an understanding of orthogonal fields of knowledge. Unlike the first 

phase, no single participant, regardless of how bright, detains enough 

expertise to provide a full, overreaching solution to a modern-day problem. 

The natural limitation of individual participants of the scientific process in 
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dealing with an ever-growing knowledge body marks the beginning of the 

demise of the age of macro-experts. 

• Complexity requires control: technology is an amplifier of features present 

in any environment, regardless of how we perceive the results of these 

features as positive or negative. This amplifying side effect of technology is 

observable everywhere: in politics, personal and business relationships, 

financial markets, and especially in our topic of interest: scientific procedures 

applied to economics. Technology is getting to a level of complexity and 

sophistication that its scientific use without control plays a role of a double-

edged sword: it can cause more harm to the development of objective 

knowledge than good. One should expect the same scientific method that 

brought significant technological advancements would naturally improve the 

tools available for investigation, specifically computational tools. It did so to a 

certain extent. It is true we have advanced technology and methods available 

in the scientific investigation, but it is also true that we have abundant 

evidence of misuse of computational resources and methods in the scientific 

investigation leading to wrong or corrupt data and as a consequence defective 

research. 

These two forces are bringing several disruptive manifestations as signs of an 

upcoming wave of transformation. These manifestations, listed over the next 

paragraphs, are evidence that this second historical phase of the scientific 

investigation is presenting signs of inadequacy with current status of technology, 

historical, and cultural developments: 

• Misaligned Academic Incentives: despite an organized and commendable 

effort by scientific institutions to contain this harmful practice, evidence 
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shows that current academic incentives are fostering a culture of fraud. Based 

on pools and questionnaires, research finds an astonishing number of 

scientists engaging in a range of behaviors extending far beyond falsification, 

fabrication, and plagiarism (Martinson, Anderson and De Vries 2005). The 

issue is so prevalent that quantitative models can reliably predict and estimate 

the number of articles that should be retracted over time (Cokol, et al. 2007). 

• Hierarchies Stifles Creativity: scientific research is mostly driven by 

creativity. As explained earlier in this section, in the current phase of 

scientific investigation, work is often performed in hierarchical structures. 

While hierarchies work reasonably well for control and decisions, there is 

evidence that hierarchies are detrimental to creativity (Burkus 2013) (Burkus 

2012). There is also evidence that while hierarchical institutions usually 

verbally request for innovation, their top-down structures unintentionally 

reject them (Staw 1995) (Mueller, Melwani and Goncalo 2011) (Mueller 

2014). The ideal structure to foster creativity is closer to a peer-to-peer 

association, the one presented by human crowds, than a top-down hierarchical 

structure (Muller, Wakslak and Krishnan 2014). 

• Human Limitation on Information Processing: there are hard limitations 

on how much information humans can process. The limitation on how much 

information we can consume and understand also limits the throughput of 

quality research scientists can produce, review and reproduce (Tenopir, et al. 

2015). There is evidence that scientists have already reached a plateau on how 

much information they can efficiently absorb, handle, and produce (Van 

Noorden 2014). 
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• Unavailability of Quality Academic Content: major journals have recently 

placed restrictions on mining and use of scientific data in large scale (Jha 

2012). Similar limitations apply to the refusal of providing details on 

landmark research findings for “reasons of confidentiality” (Yong 2017) 

(Prinz, Schlange and Asadullah 2011) (Begley and Elis 2012). These 

restrictions undermine both the automation of hypothesis generation reliant on 

vast amounts of quality data and crowd collaboration of micro-experts 

dependent on access to peer-reviewed, quality academic content.  

• Lack of Means to Record and Share Reliable Data: lack of appropriate 

means to record and share reliable data has been indicated as one of the 

limiting factors in modern investigation procedures. An additional limiting 

factor is the lack of a central authority to validate observations, and a central 

repository evidence-based knowledge (Wallis, Rolando and Borgman 2013). 

Other evidence in the field of economics describe examples of global 

economic policies defined based on flawed data stored in plain excel 

spreadsheets (Reinhart and Rogoff 2010) (Herndon, Ash and Pollin 2013) 

(Cassidy 2013).  

• Science Hacking: evidence collected in a correlated field show a considerable 

rate of complex biotech experiments published in prominent journals, heavily 

reliant on advanced computational resources, just cannot be appropriately 

reproduced (Ioannidis, Allison, et al. 2009). Additionally, evidence shows that 

reproducibility is negatively correlated with the relative computational 

complexity of the experiment. In the field of economics, in particular, we 

have similar evidence (Camerer, Dreber, et al. 2016) measuring that only 61% 

of the articles in a major journal of economics can be successfully reproduced.  

Similar results have been found in psychology, in which only 38% of the 
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studies can be successfully reproduced (Open Science Collaboration 2015), or 

biotechnology where only 6 out of 53 “landmark cancer studies”, i.e., 11%, 

could be properly reproduced (Begley and Elis 2012). Quantitative metrics 

also show examples of “statistics used wrong”, proliferating the belief that p-

values alone can determine findings to the true when in reality they are false 

(Colquhoun 2016) (Ioannidis 2005).  

Modern science and the associated scientific method have taken a critical role 

in human societies. We have learned to blindly trust lives and outcomes of global 

reaching economic policies to findings that should be blinded from scrutiny by 

merely labeling them ‘scientific’. If these manifestations listed above sound alarmist, 

the feeling is rooted in plausible reasons. 

Now, here comes time for the third phase of collaborative scientific 

investigation based on multidisciplinary, diverse collaboration in large-scale through 

crowds. This research advocates for a crowd-based investigation to serve as an 

attenuator of the changing forces disrupting institutionalized science.  

As described previously in Section 3.1, a crowd-based investigation occurs as 

a result of the existence of three requirements given as two cognitive enablers and 

one non-cognitive enabler. The cognitive enablers of crowd-based investigation are 

methods of proof, described previously in Section 3.2, and large-scale collaboration, 

described in this section.  

Over the next section, we describe the third and last requirement: the non-

cognitive enabler referred to as a computational representation.  
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3.4. COMPUTATIONAL REPRESENTATION 

Languages are more than a vehicle for communication. They are often one’s 

windows to reality. A language shapes how a person thinks, what can be achieved, 

and how can be achieved. Some languages often come from and facilitate the 

representation of concepts in a specific domain of knowledge, and if used outside of 

that specific domain, could make the representation of those same concepts more 

obscure. A person might, for example, use the German language for philosophy, or 

French for poetry. Using them the other way around might make a person write more, 

or being forcibly more verbose, or even lose clarity. In extreme cases using the wrong 

language for a domain of knowledge can impede the expression of the exact ideas one 

might intend. 

Language defines reality (Lupyan and Ward 2013) (Rodriguez-Esteban and 

Rzhetsky 2008). Human observations that lead to the scientific inquiry, and drive our 

process of discovery are shaped by our method of questioning, and limited by the 

language we possess (Heisenberg 1958)30.  

This research explores literature and evidence showing that this is not only the 

case with natural languages but also with a layer of abstraction that is required to 

define domain-specific concepts in computers, in a way that these concepts can be 

shared in a crowd. We are calling this conceptual abstraction a computational 

representation. 

Similarly to natural languages, a computational representation often grows 

from needs of a specialized domain, and therefore is better suited for use cases 

relevant to that specific domain. In some domains of knowledge, like architectural 

                                                
30 “We have to remember that what we observe is not nature itself but nature exposed to our method of 

questioning. Our scientific work (…) consists in asking questions about nature in the language that 
we possess and trying to get an answer from experiments by the means that are at our disposal” – 
Werner Heisenberg (Heisenberg 1958) 
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sciences, one would be more concerned about spaces, shapes, volumes or colors, and 

their relationships with a three-dimensional environment and the effect of the 

interaction of those concepts with humans. In legal sciences, one would be more 

concerned about possible associations between real-world entities, and rules defining 

their behavior and constraints for interaction. In some other domains, like 

bioinformatics, the ability to represent interconnected shapes and strings could be 

more relevant. In biophysics, it is essential to keep track of genotypical and 

phenotypical traits, and their relationships with encoded protein sequences with a vast 

number of possible combinations. In economics, our subject of concern, a researcher 

would be more interested in the way changes in quantitative measurements, over a 

time series, would affect the valuation. 

A computational representation must mimic the inherently free flow of 

thoughts of the human mind and the speed of modern vehicles of collaboration and 

therefore, by similarity, a computational representation must be fluid. In 

contradiction, computational artifacts, like programming languages and databases, are 

born out of strictly technical aspects of a problem and bred outside of concerns 

relevant to specific domains of knowledge. Only after definition, they are forcedly 

introduced for use and therefore not able to follow the free-flow of the evolution of 

ideas. Computational artifacts remain frozen to domain-specific requirements of that 

specific point in time when the introduction occurred. When requirements on that 

domain evolve to follow the increasing complexity of the problems at hand, those 

artifacts would no longer fit, or in a best case require an additional verbosity, 

sacrificing the proper semantics of communication.  

In opposition to computational artifacts, a computational representation must 

be dynamic, able to adapt and evolve to solve new classes of problems and organize 

increasingly complex and powerful computing environments. These new classes of 
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problems are different from problems we had to deal with just a few years back. They 

require the collaboration of multi-disciplinary specialists exchanging different types 

of artifacts that must be adequately described and tracked (Faleiro Jr and Tsang 

2016a). An investigator must have adequate tools and methods to approach new 

problems correctly. On this sense, an adequate computational representation allows 

for the proper description and control of those tools and methods, allowing them to 

change in the face of new demands and be able to address new problems (Faleiro Jr 

and Tsang 2016).  

Unfortunately, as previously described in Section 3.3.1, the status quo in 

exploratory research in economics defines a different reality. The lack of adequate 

representation and an abundance of computational power allow, and unintentionally 

require, a potentially obfuscated representation of ways to transform and store data, 

yielding massive amounts of convoluted and dissociated information. This 

paradoxical condition entangling modern investigative procedures define a vicious 

circle. Uncontrolled methods require more computing power, which enables to 

transform more data, which as a consequence bring an incentive for uncontrolled 

models and increasing amounts of untraceable data. These, in turn,  require more 

opaque techniques and computing resources to trace and decipher that data, the 

“informatics crisis” (Goecks, Nekrutenko and Taylor 2010). 

The way in which an investigator describes to an increasingly complex and 

powerful binary being a method to resolve a problem plays a fundamental role in 

communication and collaboration, and as a consequence in the traceability of the 

process of investigation and discovery. The amount of data generated in modern 

investigative procedures as input and output cannot be represented to humans the 

same way as they are to computers (Tufte 2006). To make research truly useful, we 

need human-friendly ways to visualize, track, store and understand the evidence. In 
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addition to representing evidence, communicating methods and procedures - regarded 

as of greater importance than explanatory texts and figures as experimental outputs 

(Schwab, Karrenbach and Claerbout 2000) (Gentleman 2005) - cannot be addressed 

differently than other items that require human visualization and interpretation. 

3.4.1. REPRESENTATIONAL PROCESS 

One of the cornerstones of this research is the assumption that a 

computational representation is defined by, and tightly coupled to, a specific domain 

of knowledge. 

Given the intrinsic association of a computational representation to a domain 

of knowledge, it would be natural to expect that a computational representation could 

be derived from a domain of knowledge, given a set of well-defined inputs and 

general procedures. We are calling this organization of inputs and general procedures 

to produce a computational representation a representational process. 

The outline of a representational process to define a computational 

representation for any domain of knowledge is described in Figure 5. 
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Figure 5. Representational Process 

An outline of a generic process to define a computational representation for any domain of knowledge 
on four steps and two inputs: a list of exercises, or domain-specific cases of use, and a computational 
taxonomy.  

The outline of the representational process defined in Figure 5 shows a set of 

two inputs and four distinct steps that are necessary to generate a computational 

representation composed of facets, contributions, and constraints of data. Arrows 

define the flow of data, and as a consequence, dependencies for the execution of a 

given step. An example of an actual application of the representational process, to 

produce a computational representation for the field of economics, is given later in 

this thesis in Chapter 4. 
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The two inputs for a representational process, represented on the top of the 

diagram, are the entry points for the representational process. The inputs are a set of 

domain-specific cases of use and a computational taxonomy.  

Domain-specific cases of use are a collection of exercises reflecting specific 

characteristics of concern in that domain of knowledge. The selection of cases of use 

should represent an overreaching and diverse sample of the main activities relevant to 

that domain of knowledge. Each case of use defines the domain-specific knowledge 

necessary for that specific scenario to be understood and executed. We assume that 

the set of cases of use selected is representative enough to cover most of the scenarios 

of investigation relevant for that specific domain. A practical example of domain-

specific cases of use is given in Section 4.2, while we produce an outline of 

requirements for the field of economics. 

A computational taxonomy is an inventory of computer technologies available 

and relevant for the implementation of cases of use at that moment in time. Examples 

of items in a computational taxonomy are technologies to store, retrieve, analyze, and 

visualize data and computational methods. A computational taxonomy is fluid, in a 

sense that the exact definition of what is relevant is affected by qualities of the 

individual using this process, such as experience, and personal biases. A discussion 

on the non-deterministic nature of the process, concerning a computational taxonomy, 

is given in Section 3.4.5. An example of a computational taxonomy for the field of 

economics is given later on this thesis, in sections 4.3.1.1, 4.3.2.1, 4.3.3, and 4.3.4. 

The four distinct steps of the representational process defined in Figure 5 are 

shown in individual solid boxes: outline requirements, define aspects of 

representation, define contribution taxonomy, and define structural constraints of 

data. Incoming arrows in each box define dependencies, and outgoing arrows define 

products, or results, of the execution of that specific step. 
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 The first step outlines requirements that are relevant for the definition of a 

computational representation for a domain of knowledge. The outline of requirements 

is produced from a list of domain-specific cases of use, defined based on relevancy. 

Relevancy is given by, as we have mentioned before, the assumption that the set of 

cases of use is representative enough for most of the scenarios of investigation in that 

domain of knowledge. If the assumption is valid, we can infer as a consequence that 

any investigation exercise on that domain should depend, at least in a substantial part, 

with a combination of one or more of those requirements. For reasons of 

completeness, a proper computational representation for that domain of knowledge 

must address all these requirements. As a result, by definition, what we call a proper 

computational representation for a domain of knowledge should intend to represent 

all cases of use in the scope defined by the original list of cases of use31.  

The second step define aspects of representation based on the computational 

taxonomy and the domain-specific requirements produced as a result of the first step.  

The result of the second step is the set of facets of a computational representation. 

Facets and the specifics entailing their definition are described in details in the 

upcoming Section 3.4.2. An example of an execution of the step to define aspects of 

representation is given in the upcoming Section 4.3 when we describe facets and the 

process of their definition for a computational representation in economics. 

The third step defines a contribution taxonomy based on facets produced as a 

result of the second step. The results of the third step are contributions of a 

computational representation. Contributions and specifics entailing their definition 

are described in details in the upcoming Section 3.4.3. An example of the step to 

define contributions is given in the upcoming Section 4.4 when we describe 

                                                
31 An example of an execution of the outline requirements step is given in the upcoming Section 4.2 

when we define requirements for a computational representation for the field of economics. 
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contributions and the process of their definition for a computational representation in 

economics. 

The fourth step defines structural constraints of data based on facets and 

contributions produced as the result of the second and third step. The results of the 

fourth step are constraints of data, or meta-model, of a computational representation. 

Constraints of data and specifics entailing their definition are described in details in 

the upcoming Section 3.4.4. An example of the step to define contributions is given 

in the upcoming Section 4.5 when we describe constraints of data and the process of 

their definition for a computational representation in economics. 

The final result of a representational process, as shown in Figure 5 by a larger 

solid box on the right side, is a computational representation given by facets produced 

in step two, contributions produced in step three, and constraints of data produced in 

step four. Each of the components is depicted in Figure 5 as smaller boxes inside the 

computational representation. Facets, contributions, and constraints of data are 

detailed respectively over the upcoming sections 3.4.2, 3.4.3, and 3.4.4. 

3.4.2. FACETS 

A facet, in the context of this research, is defined as “one of the definable 

aspects that make up a subject or an object; denomination of things that are similar or 

related, but yet distinct things” (Merriam-Webster Online Dictionary 2016).  

A more intuitive definition of what exactly is a facet is done by example and 

would come from a domain in which concepts are more tangible and organoleptic 

than in economics. Intuitiveness, as it is always the case, is achieved by representing 

concepts that are keen to one or more of traditional human senses.  
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Taking the domain of architecture, or civil engineering sciences, for example. 

The representation of ideas is done through the placement of volumetric shapes 

considering restrictions like light, gravity, and the mutually exclusive placement of 

objects in space. One example of a typical representation of that domain is shown in 

Figure 6.  

 

Figure 6. Example of the application of facets to a domain of knowledge 

Aspects like volumetric shapes and specific coordinates in a 3D environment (facets) are used to 
describe a layout relevant to a specific domain of knowledge (architecture) 

Three-dimensional shapes, textures, colors, and measurements can be 

combined to define concepts like pieces of furniture, rooms, ambiance, and then 

extended to derive in computers notions that can only be asserted at naked eye, 

anticipating the effect of the interaction of these concepts with individuals.  
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These primary, fundamental elements that can be combined to generate core 

concepts on the domain of knowledge are called facets.  

In this example shapes, texture, colors, and measurements are facets, 

representable in computers, which make up a subject or an object relevant to that 

specific domain of knowledge: architecture. 

At this point, it is important to emphasize one of the core assumptions of this 

research: the exact definition of what constitutes a facet in a specific domain of 

knowledge is empirical. In some cases, e.g., our example related to architectural 

sciences, the proximity to visual and spatial concepts makes the establishment of 

what is indeed a facet - shapes, textures, color, and measurements - somewhat 

intuitive, and as a consequence more natural to derive32.  

3.4.3. CONTRIBUTIONS 

In the scope of this research, we call contributions the set of shareable and 

formal evidence33 of an objective investigation. As shareable evidence they can be 

exchanged, reused and traced through something called a record of provenance34, 

therefore becoming a vehicle for effective collaboration. 

To be qualified as contributions in a crowd-based investigation scenario, any 

evidence has to carry specific traits: evidential properties, intrinsicality, and 

characteristics of communication and interaction.  

                                                
32 For the domain of knowledge of concern for this research, the selection of facets for a 

computational representation for the field of economics and their formalization is given in Chapter 
4, specifically in Section 4.3. 

33 The available body of facts or information indicating whether a belief or proposition is true or valid 
(Oxford University 2010) 

34 Chronology of the ownership, custody or location of historical entities (Merriam-Webster Online 
Dictionary 2016) 
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3.4.3.1. Evidential Properties 

To be defined, shared, reused and traced contributions must carry particular 

mandatory traits we call evidential properties: classification, identification, a record 

of provenance, and ownership and security (Faleiro Jr and Tsang 2016a). 

• Classification: Contributions must follow a classification system of shareable 

entities, specific to the domain of knowledge under consideration, and 

referred to as taxonomy of contributions. This classification system is an 

organization of shareable artifacts, organized based on relevant features35. 

• Identification: Contributions should be appropriately identified following 

common standards for shared identification in a way to allow reference, 

sharing, and ownership (Berners-Lee, Fielding and Masinter 2005). 

• Provenance: Contributions should carry a record of the chronology of 

ownership, custody or location of contributions, as well as the history of 

associations of contributions to entities or participants. We call this 

chronological description of custody and location a record of provenance. 

• Ownership and security: Given the sensitive nature of contributions, 

contributions should ensure ownership and access only after proper 

authorization and authentication. For that reason, contributions must carry a 

record of ownership and authorization. 

                                                
35 The classification of contributions for the domain of economics is depicted in Figure 19. 
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3.4.3.2. Intrinsicality 

Contribution properties are defined as either intrinsic or extrinsic. Intrinsic 

properties of contributions36 are not explicitly described in the representation and are 

enforced by an implementation of the computational platform. They can be assumed 

to be in place based on physical aspects of the contribution, regardless of specific 

indications on the representation. On the other hand, extrinsic properties are explicitly 

represented.  

For example, ownership of each revision or improvement in a contribution 

occurs without an explicit description in a representation. As a consequence tracking 

the ownership of contributions occurs by the natural exchange of artifacts that are 

inherently traceable. In that way artifacts are traced when they are produced and 

utilized, making the record or provenance transparent (Faleiro Jr and Tsang 2016a) 

3.4.3.3. Characteristics of Communication and Interaction 

Contributions must carry characteristics to allow collaboration to take place. 

Collaboration is a direct result of how well contributions foster communication and 

interaction. A contribution must support three characteristics of communication and 

interaction to support large-scale collaboration: analytical description, granularity, 

and simplicity. 

• Analytical description: Problems must be proposed in a way that allows for 

an analytical description, following a top-to-bottom structure. Splitting the 

description of problems into sub-tasks allows micro-expertise to be harnessed 

                                                
36 Intrinsic elements of a representation are elements enforced by an implementation of the 

representation. An intrinsic element can be assumed to be in place regardless of any specific 
expressions on the representation itself. 
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more directly and contributions to be naturally generated and associated with 

solutions. 

• Granularity: A computational representation should encourage short, small 

contributions. Small contributions would make simpler and more 

straightforward for experts to review incoming collaboration and assess if 

they are relevant to their investigation. 

• Simplicity: Representation of contributions should be simple and 

straightforward. A streamlined representation would make it easier to refer to 

foundational knowledge, as well as making it easier for participants to 

communicate and describe contributions. 

These properties of analytical description, granularity and simplicity allow 

input and results from one experiment to be seamlessly utilized by other experiments, 

easing extensions on models and data to fit additional scenarios by short and 

specialized description. 

 The contribution taxonomy for the field of economics, listing the relevant 

properties for that specific domain of knowledge, is defined in Section 4.4. 

3.4.4. CONSTRAINTS OF DATA 

Most domains express real entities and relationships using structural 

constraints of data. Those constraints define rules of associations that establish what 

is feasible in that domain, in the real world. 

These rules of associations define structural constraints of data in place for a 

specific domain of knowledge. Those structural constraints use an abstract layer of 
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data to define restrictions on a separate layer of abstractions, based themselves on 

data, hence the term meta-data37. The set of structural constraints in a specific domain 

of knowledge is called meta-model. 

Depending on the complexity of the domain of knowledge, and what should 

be represented, meta-data in a specific domain can follow a classification. A specific 

meta-model for the field of economics is described in Section 4.5. 

3.4.5. DISCUSSION ON ASSUMPTIONS AND CONSEQUENCES 

The conceptual layout of a computational representation is, in essence, a 

proposal to represent knowledge in a given specialized field through abstractions 

commonly called models.  

The representation of knowledge through models is not something new. There 

is a long history of academic work attempting similar tasks in a variety of domains 

(Hayes 1978) (Davis and Shrobe 1983). However, most works concentrate on a 

comparative analysis, evaluating properties of specific representations against others.  

Alternatively, this research assumes a role-based definition of knowledge 

representation. In a role-based definition, a description of a knowledge system is 

defined in terms of five core roles a specific representation plays (Davis, Shrobe and 

Szolovits 1993) (Faleiro Jr and Tsang 2016a). 

• Models are surrogates: a surrogate is by definition a substitute for the target 

idea itself, and as a result, a measurement of how far or how close this 

surrogate is from calculations it intends to represent is secondary or irrelevant. 

                                                
37 Data that provides information about other data (Merriam-Webster Online Dictionary 2016) 
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• Models define human expressions: models should define measurements and 

concepts understood by humans in a language that is adequate for human 

consumption, even if not directly natural. 

• Models are a medium for efficient computation: models are a medium for 

pragmatic efficient computation, or in other words, models should be able to 

be replicated in computers given appropriate technology and sufficient 

resources. 

• Models establish ontological commitments: models define ontological 

commitments for a representation by defining “a set of decisions about how 

and what to see in the world” (Bricker 2016) (Rayo 2007). Models are 

approximations of reality, and as we define them, we make decisions of what 

to consider and what to ignore. These decisions are ontological commitments 

and are “not an incidental side effect but they are of essence in our 

representation” (Davis, Shrobe and Szolovits 1993). 

• Models define a theory of intelligent reasoning: Models define a 

“fragmentary theory of intelligent reasoning” represented in terms of concepts 

and inferences, sanctioned and recommended. Models represent “some insight 

indicating how people reason intelligently” about a problem or investigation 

(Davis, Shrobe and Szolovits 1993).  

The use of a role-based definition and these core roles bring important 

consequences when defining a computational representation for any domain of 

knowledge: 

The first and most important consequence is that computational 

representations are non-discriminatory. Representations should not be measured on 
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how efficiently they represent a target idea, and therefore should not be compared to 

one another. Representations are abstract surrogates for a target idea and as such, they 

are just a set of decisions of what to see in a subject, and therefore bound to 

limitations and biases of an observer. 

Second, a computational representation and associated models are fluid and 

not final. Representations are not set in stone and are expected to change whenever 

noticeable changes in technology bring new methods and tools, or a new case of use 

becomes relevant for that specific domain of knowledge. 

These assumptions and consequences are critical when assessing and 

understanding features and limitations of any computational representation defined 

from the representational process defined in Section 3.4.1. These same assumptions 

and consequences should be expected in any representation, and more importantly, in 

the case of this research, a computational representation for the field of economics.  

Over the following chapters, we apply this process to the domain of 

knowledge of our interest and will formalize requirements, facets, contributions, and 

constraints of data to define a specific computational representation for the field of 

economics in Chapter 4, respectively detailed in Sections 4.3, 4.4, and 4.5. 

3.5. CHAPTER SYNOPSIS 

This chapter fulfills the criteria of success described in Objective 1, on page 

19 of this thesis, by identifying what is required for the adequate use of crowds in 

structured, scientific investigation.  

We use the assumptions listed in Section 3.1 to define cognitive and non-

cognitive requirements, or enablers, for crowd-based investigation: methods of 

quantitative proof, collaboration in large-scale, and a computational representation. 
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These enablers are formalized in details in three separate sections: methods of 

quantitative proof in Section 3.2; collaboration in large-scale in Section 3.3; and a 

computational representation in Section 3.4. 

The first cognitive enabler, methods of quantitative proof, is required to 

provide a common framework for a step-wise, algorithmic investigation and standard 

control points based on statistical methods that apply to a crowd-based investigation. 

The general framework is defined as something we call a proof pipeline, detailed in 

Section 3.2.1. The discussion around proper methods of proof is extended in Section 

3.2.2 and Section 3.2.3 respectively to define the scope of scientific learning in 

economics, and highlight requirements for a specific class of systems called scientific 

support systems. 

The second cognitive enabler, collaboration in large-scale, establishes the 

mechanics and incentives that must be in place to leverage collaborative crowds. The 

mechanics and incentives for collaboration are listed in Section 3.3.1. The suitability 

of collaborative crowds for the resolution of complex problems is discussed in 

Section 3.3.2. In Section 3.3.3 we lay out the historical and evolutionary perspective 

to determine the use of collaborative crowds as the foundation for upcoming methods 

of scientific investigation. 

The third enabler, computational representation, is a crowd-friendly 

representation system to define concepts related to a specific domain of knowledge. 

A computational representation is defined based on facets, contributions, and 

constraints of data. Facets are definable aspects that make up a subject or an object of 

a domain of knowledge and are defined in Section 3.4.2. Contributions are shareable 

and formal evidence of a crowd-based scientific investigation, defined in Section 

3.4.3. Constraints of data define entities and rules of associations between entities in a 

specific domain of knowledge and are defined in Section 3.4.4. A generic process to 
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define a computational representation for any domain of knowledge is given in 

Section 3.4.1. This generic process is called a representational process. 

This chapter brings particular novelty contributions to this research, 

specifically: 

• Definition of specific cognitive and non-cognitive enablers to support 

structured scientific investigation based on large collaborative crowds. 

• The conceptual definition of a computational representation, in terms of its 

core concepts and components, namely facets, contributions, and constraints 

of data. 

• Definition of a representational process, a reproducible set of steps and 

procedures to generate computational representations from domain-specific 

requirements. 

•  Lining out of a historical perspective of scientific investigation, defining the 

drivers signaling the upcoming phase of crowd-based scientific investigation 

as a natural evolutionary process. 

The representational process defined in this chapter is used to define a 

computational representation for the field of economics in Chapter 4. The non-

cognitive enablers are used to define the method of proof and steps for investigation 

in Chapter 5. 
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CHAPTER 4. CONCEPTUAL FRAMEWORK FOR 
COLLABORATION AND TRANSPARENT INVESTIGATION IN 

ECONOMICS 

“A good notation has a subtlety and suggestiveness which at times makes it 
almost seem like a live teacher.” Bertrand Russell (Newman 1956) 

This chapter defines a specialized computational representation for crowd-

based scientific investigation for the field of economics. A computational 

representation, as previously defined in Section 3.4.1, is a layer of abstraction that is 

required to define domain-specific concepts in a way that these concepts can be 

shared with a crowd to allow collaborative investigation.  

The computational representation for the field of economics defined 

throughout this chapter is built based on the representational process defined in the 

previous chapter, specifically in Section 3.4.1. As explained earlier in Section 3.4, a 

computational representation is defined by three complementary components called 

facets, contributions, and constraints of data.  In this chapter, we will apply the 

guidelines of the representational process to define facets, contributions, and 

constraints of data for a computational representation for the field of economics. 

4.1. A COMPUTATIONAL REPRESENTATION FOR ECONOMICS 

A computational representation, as defined previously in Section 3.4, is a 

representation system based on facets, contributions, and constraints of data and used 

to define concepts related to a specific domain of knowledge, in a way these concepts 

can be shared with a crowd to allow controlled investigation in large-scale.  

A computational representation can be defined for any domain of knowledge 

by following the steps of the representational process defined in Section 3.4.1. 
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According to the representational process, a computational representation can be 

generated for any domain of knowledge given a set of domain-specific requirements 

and a computational taxonomy. The set of domain-specific requirements for the field 

of economics is defined over the following Section 4.2, and the computational 

taxonomy is presented as we describe each facet, on sections 4.3.1.1, 4.3.2.1, 4.3.3, 

and 4.3.4. 

4.2. DOMAIN-SPECIFIC REQUIREMENTS FOR ECONOMICS 

According to the representational process defined in Section 3.4.1, a 

computational representation is built based on a set of domain-specific requirements 

selected by careful examination of specific features of a number of domain-specific 

cases of use.  

Each case of use defines the knowledge necessary for that specific scenario to 

be understood and executed. For the definition of domain-specific requirements that 

will be used for the definition of a computational representation for economics, each 

case of use is a separate empirical exercise, listed as follows: 

• Assessing the performance of momentum cross-over strategies using Monte 

Carlo simulations and historical backtesting38 (Faleiro Jr and Tsang 2016)  

• Simulation of the performance of real-time strategies through backtesting (J. 

M. Faleiro Jr 2015)  

• Profitability of different moving average cross-over strategies (J. M. Faleiro Jr 

2014)  

• Real-time valuation of an equities portfolio (J. M. Faleiro Jr 2014)  
                                                
38 This exercise is the baseline for the exercise described over the upcoming Chapter 5.  
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• Assessment of profitability of strategies holding long positions on fixed-

length intervals (J. M. Faleiro Jr 2013).  

• Agent-based simulation of a central-limit order book (Foata, Vidhamali and 

Abergel 2011) (Panayi and Peters 2015) (Cont, Stoikov and Talreja 2010) 

(Murat, et al. 2009) (Chakraborti, et al. 2011) (Chan and Shelton 2001) 

Some of these exercises are extensive and relate to novelty research subjects. 

Each one of those exercises expresses specific behaviors, later translated to an outline 

of features for proper representation of financial models, and as a consequence, 

requirements for a computational representation for the domain of economics. With 

that, the requirements for a computational representation for the field of economics as 

listed as follows: 

• Simplicity of communication: a financial model is seldom defined and 

interpreted by one single group of users. The notation for its description 

should be simple enough to allow communication across a diverse community 

of users; 

• Predictability: financial models are often defined with the intent of 

anticipating behavior or critical events; 

• Complexity of the domain of knowledge: financial sciences deal with 

subjects that are inheritably complex and challenging to model; 

• Large volume of data: virtually infinite history associated to a record of 

time: The record of the memory of financial models is associated with either 

datasets or streams of data that are virtually infinite. 
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• Sliding window computations: a sequence of fragments of data has to be 

evaluated so that adjacent members in the sequence, fitting a constant sliding 

time window, are relevant for the computation of a result39.  

• Low latency: responsiveness in near real-time. Given an event, or stimuli, 

some cases of use most respond as quickly as possible to avoid penalizing 

accuracy of measurements and profitability of the model itself; 

• Event-driven: actions respond to events, originating from external and 

unpredictable sources; 

• Time-based: tightly coupled with notions of value variations (e.g., prices, 

ratios) over discrete time series; 

• Graph-oriented: financial models strongly rely on real-world entities and 

their ad-hoc relationships. Entities are associated with nodes and relationships 

to edges in graph-oriented representations. The sequence of transformations 

and steps to operate on real-world entities, either sequentially or not, is also 

graph oriented 

We assume that the set of use cases is representative enough for most of the 

scenarios of investigation in economics. If the assumption is valid, we can infer as a 

consequence that any financial model should depend, at least in a substantial part, 

with a combination of one or more of those requirements. For reasons of 

completeness, a proper computational representation for the field of economics must 

address all these requirements. In this sense, by definition, a proper computational 

representational should intend to represent all cases of use in the scope of economics. 

                                                
39 Examples are a sequence of prices, in which a specific algorithm tracks features of price variations 

over different time windows, e.g., during the last hour, a day, a week. Different windows can be 
compared with adjacent or non-adjacent windows for identification of useful patterns. 
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As we have mentioned previously in Section 3.4.1, a computational 

representation is defined in terms of components called facets, contributions, and 

constraints of data. The definition of the procedures for the generation of each 

component was given previously in sections 3.4.2, 3.4.3, and 3.4.4. Over the 

following sections, we apply those procedures to define facets, contributions, and 

constraints of data for the computational representation for the field of economics. 

4.3. FACETS 

A facet, previously described in Section 3.4.2, is a definable aspect that makes 

up a subject or an object in a domain of knowledge. Ideas in a domain of knowledge 

are expressed using a composition of facets, and together with a taxonomy of 

contributions and constraints of data, define a computational representation for that 

domain of knowledge. 

The definition of a facet can be understood intuitively. On the example we 

provided previously in page 86 in that same Section 3.3.3, we show that ideas and 

concepts in architectural and building sciences are tangible enough to allow for an 

almost immediate definition of facets relevant for that domain of knowledge. The 

proximity of ideas on architectural and building sciences to human senses make the 

definition of facets more intuitive.  

On the other hand, the definition of ideas and concepts in financial sciences is 

mostly non-spatial, and as a consequence, the designation of facets on our specific 

case not as intuitive. In financial sciences, a researcher would be more interested, for 

example, in the way changes in quantitative measurements, over discrete time, would 

affect the price. These are abstract concepts, and as a consequence, it is hard to 

describe them through concrete, tangible similarities. 
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According to the representational process defined in Section 3.4.1 facets are 

defined based on two inputs: intrinsic requirements of a domain of knowledge and a 

computational taxonomy. The requirements for a computational representation for 

economics were previously defined in Section 4.2. A computational taxonomy, as 

previously defined in Section 3.4.2, is an inventory of computer technologies 

available and relevant for the implementation of domain-specific cases. The specific 

computational taxonomy in use is explored during the definition of each facet when 

we explore technology alternatives. 

Over the next sections, we detail the exercise to find out the relevant set of 

facets for our domain of knowledge: economics. For that, we formalize the four 

facets required for the definition of aspects that make up subjects and ideas in the 

field of economics: streaming, reactives, distribution, and simulation. 

4.3.1. STREAMING 

The original idea of streams, put merely, starts with a vision of a graph in 

which nodes are processors and edges are communication paths. Each node holds 

incoming and outgoing communication paths to other nodes in the graph. The basic 

idea of streaming relates to continuous sequences of data fragments traveling over 

communication paths, in which each node executes specific tasks upon arrival of 

fragments of data.  

Streams are traditionally used in domains where concurrency and speed of 

processing is a core requirement. Some of those domains include micro-hardware 

control, image processing, graphics, sound processing, compression, networking, 

encryption, and digital signal filtering (Gordon 2010) (Thies 2009). Given similar 

requirements around performance, time series, sliding time windows computations, 
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and the graph-oriented nature of financial models, listed previously in Section 4.2, 

streaming is selected as the first facet in a computational representation for the field 

of economics. 

4.3.1.1. Models of Computation 

Streams have been used as a notation for representation of computational 

elements in domains of knowledge outside of economics for a long time (Stephens 

1997). The first reference to an equivalent paradigm was on bullet notes given by 

Douglas McIlroy (McIlroy 1964) on October 11th of 1964. 

 

Figure 7. The First Known Reference to Streams 

A bullet summary by Douglas McIlroy on “what’s most important”, suggesting a function to “have 
some ways of coupling programs like garden hoses”, what was referred by subsequent literature as 
streams 



 

 

103 

The original insight of “digital hoses”, coined by Douglas McIlroy (McIlroy 

1964) evolved through different milestones to consolidate the idea of streaming 

systems (Stephens 1997) (Thies 2009) (Gordon, Thies, et al. 2002).  Each milestone 

of the evolution of what were initially digital hoses refers to a specific model of 

computation, as shown in Figure 8.  

 

Figure 8. Timeline of Evolution: Models of Computation for Streams 

Over time the original idea of “digital hoses” evolved on variations called “models of computation” 
from Petri Nets, Computation Graphs, Communicating Sequential Processes, and Synchronous 
Dataflow. 

Each of these milestones, or models of computation, present different features 

and define a computational taxonomy of streaming systems (Thies 2009):  

• Petri Nets40: a directed bipartite graph, where nodes either represent 

transitions or conditions. A directed edge specify which pre or post conditions 

                                                
40 Despite of Petri’s original thesis of 1962 (Petri, Kommunikation mit Automaten (Communication 

with Automata) 1962) the formalization of Petri Nets as they are currently known only came a bit 
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are a requirement for a transition (Petri 1962) (Petri 1967) (Brauer and Reisig 

2006) (Murata 1989); 

• Computation Graphs: a graph-theoretic model for the description and 

analysis of parallel computations where computation steps correspond to 

nodes of a graph, while branches represent a dependency between 

computation-steps. Each branch is associated with independent queues of data 

(Karp and Miller 1966); 

• Kahn Process Networks: a distributed model of computation where 

deterministic sequential processes are nodes, and FIFO channels are the edges 

of a graph network (Kahn 1974); 

• Actors: a graph-based model of concurrent computation in which nodes are 

actors, and upon receipt of messages an actor can send new messages or 

create new actors. In this sense, edges can be created on demand and indicate 

a communication by message-passing (Hewitt, Bishop and Steiger 1973) 

(Greif 1975) (Clinger 1981) (Agha 1985) ; 

• Communicating Sequential Processes: a textual and formal language for 

describing concurrent interaction based on primitive processes and events. 

Primitive processes are fundamental behaviors, and events represent 

indivisible and instantaneous interactions (Hoare 1978) (Hoare 2015); 

• Synchronous Dataflow: a particular case of data flow in which each node 

represents a function, and each arc represents a signal path. It is a 

                                                                                                                                      
later, in a 1965 colloquium (Petri, Grundsätzliches zur Beschreibung diskreter Prozesse 1967), 
published in 1967 (Brauer and Reisig 2006). 
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simplification of Kahn Process Network by limiting the number of messages 

each node consume and produce per signal (Lee and Messerschmitt 1987). 

Despite lacking a standard nomenclature, topology, or modes of 

communication, all models of computation of streaming systems can be represented 

on a higher level by nodes and edges, arranged as graphs. In fact, the specific features 

of the models of computation can be normalized over three specific features 

(Stephens 1997) (Thies 2009) (Gordon, Thies, et al. 2002): topology, determinism, 

and dynamicity. 

• Topology: defines the way in which nodes are arranged in a network; 

• Determinism: establishes if the final results of execution are always the same, 

given the same set of inputs; 

• Dynamicity: establishes if execution parameters (i.e., amount of buffering 

and communication patterns) can be decided and arranged statically and 

dynamically (i.e., at compilation time or runtime) (Gordon 2010) (Gordon, 

Thies, et al. 2002) (Thies 2009) (Thies, Karczmarek and Amarasinghe 2002) 

The streaming facet translates these normalized features of models of 

computation – topology, determinism, and dynamicity – into three specific properties 

of financial models: synchronicity, connectivity, and plasticity. These properties are 

explained over the next topic when we explain the mechanics to define financial 

models using streams. 
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4.3.1.2. Defining Financial Models as Streams 

The streaming facet defines a graph-oriented domain-specific language (van 

Deursen and Klint 2002) (Hohpe and Woolf 2012) to define financial models as a 

route of fragments of meta-data 𝑥 through a chain of reusable and exchangeable 

processors 𝑃!. The chain of processors 𝑃! is arranged as function composition, as 

described in Equation 1 (J. M. Faleiro Jr 2007) (Spinellis 2001) (van Deursen, Klint 

and Visser 2000). 

(𝑃! 𝜊 𝑃! 𝜊…   𝜊 𝑃!)(𝑥) Equation 1. Function 
Composition 

In the specific representation for the domain of economics, processors are 

chained together by a synchronicity operator 𝛿 giving a composition of processors the 

form shown in Equation 2. 

𝑥 → 𝑃! 𝛿! 𝑃! 𝛿!…   𝛿!!! 𝑃!  Equation 2. Composition by 
Synchronicity Operator 

We call this chain of processors 𝑃!…  𝑃! connected by 𝛿 a stream. Equation 3 

gives an equivalent graph representation, based on edges and vertices, of the same 

stream. 
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𝜙 = (𝑃! , 𝛿!) Equation 3. Graph-
Oriented Representation of 

a Stream 

In Equation 3, 𝜙 is a directed sub-graph 𝜙(𝑉,𝐸) in which 𝑉, the set of 

vertices 𝑃!, are processors, and E, the set of edges 𝛿!, are synchronicity operators. The 

same graph 𝜙 can be visualized as a connected directional graph, as shown in Figure 

9.  

 

Figure 9.  Streams as a directed graph 

A stream can be visualized as a connected graph 𝜙(𝑉,𝐸), in which edges are given by synchronicity 
operators ð𝒊 and vertices, or nodes, by processors 𝑷𝒊  

We assume that a financial model, to be defined in terms of requirements 

listed in Section 4.2, must carry three fundamental properties:  

• Synchronicity: financial models must operate on data fragments 𝑥 

synchronously or asynchronously, where 𝑥 is defined in Equation 1; 

P1	 P1	 (…)	 Pn	
δ1	 δ2	 δ(n-1)	

x	
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• Connectivity: financial models are created by the composition of smaller, 

modular pieces that can often be recursively leveraged as smaller, reusable 

models; 

• Plasticity: the composition and the behavior of a financial model can change, 

in real-time, upon arrival of new data fragments 𝑥, as defined in Equation 1. 

Each of these three fundamental properties – synchronicity, connectivity, and 

plasticity - is formalized as stream elements, or interchangeably41 as graph properties. 

Over the next sections, we formalize the representation of financial models over a 

stream-oriented language based on these three fundamental properties. 

Synchronicity 

In a stream 𝜙, as described in Equation 3, processors 𝑃! spawn tasks 𝑡!,! in 

pools of tasks 𝑇! to handle data fragments 𝑥 as they arrive. Each pool holds a variable 

number of tasks 𝑠, where the exact value of 𝑠, is irrelevant and associated with 

scheduling configuration details.  

The synchronicity operator 𝛿! indicates how a fragment 𝑥 is “handed over” 

from tasks in pools 𝑇! in processors 𝑃!, to 𝑃!!!, where each 𝛿! can indicate two 

distinct modes: synchronous and asynchronous. 

In synchronous mode, 𝑇! depends on the completion of 𝑇!!!, and therefore 𝑇! 

can only proceed, and consume the next fragment 𝑥, after termination of task 𝑇!!!. 

                                                
41 As we have shown in Section 4.3.1.1 through the different models of computation of streams, graph 

or stream representations are functionally interchangeable (Stephens 1997) (Thies 2009) (Gordon, 
Thies, et al. 2002). 
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Alternatively, in asynchronous mode, 𝑇! does not depend on the completion of 

𝑇!!!, and therefore 𝑇! can consume the next fragment 𝑥 regardless of the result and 

termination of 𝑇!!!. 

Connectivity 
Financial models are represented as directed graphs composed of a limited set 

of directed sub-graphs 𝜙, as described in Equation 3, bound together by connectors. 

For all purposes, a connector 𝐶 is a specialization type of processor 𝑃, as defined in 

Equation 1 as 𝑃!..!, so that 𝐶 ≅ 𝑃.  

As a specialized processor, a connector carries additional properties to allow 

the connection of multiple streaming sub-graphs 𝜙 = (𝑃! , 𝛿!) into larger, 

interconnected networks of streams.  

The composition of more elaborate, interconnected networks of streams 

allows the support of more complex functions. These functions include the plasticity 

property, described through a graph modification connector in the next section, 

reactive behaviors described in Section 4.3.2, the distribution facet described in 

Section 4.3.3, and enabling of distribution spaces described in Section 4.3.3.2. A 

complete outline of possible connectivity functions is provided later in this thesis, 

when we describe in details the processor contribution, in Section 4.4.2. 

Plasticity 
A graph representing a financial model should be able to modify itself upon 

arrival of relevant data fragments, depending on specific requirements of the model 

under study.  
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In the scope of this research, the ability to modify a graph Φ on demand is 

referred to as plasticity and is given by a special modification connector 𝐶!. The 

connector 𝐶! is given by function 𝑓 of a predicate 𝑃 on data fragment 𝑋, and a sub-

graph template 𝜙, formalized by Equation 4. 

𝜙 = 𝑃! , 𝛿!  
𝑃:𝑋 → 𝑡𝑟𝑢𝑒, 𝑓𝑎𝑙𝑠𝑒  
𝐶! = 𝑓(𝑃,𝛷,𝜙) 

Equation 4. Definition of 
Plasticity Function 

 

Plasticity occurs upon arrival of data fragment 𝑋. In case 𝑃 resolves as a 𝑡𝑟𝑢𝑒 

for 𝑋, a sub-graph 𝜙 based on template 𝜙 is appended to graph Φ. 

In short, this model in Equation 4 allows a graph to modify itself, if an arrival 

of a data fragment 𝑋 causes the predicate 𝑃 to resolve as 𝑡𝑟𝑢𝑒. 

The best way to explain the plasticity property is through an example, and 

preferably in finance, through a common use case. In Figure 10, we depict the 

example of a definition of a new pricing route for a stock that should be set up upon 

arrival of a new symbol of that stock on a sequential feed of price ticks. 
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Figure 10. Graph Modification Connector Example 

An example of plasticity through the application of a graph modification connector, when new 
symbols arrive and predicate 𝑃 fires 𝑡𝑟𝑢𝑒, a new path on the graph is added based on the sub-graph 
template. In this example, the arrival of symbol AMZN will create a new branch and the modification 
of the overall graph. 

On this use case it is assumed high-frequency requirements, so to maximize 

throughput every branch on the graph is dedicated to one symbol. The complete set of 

symbols is not known in advance. Therefore, a new branch must be created for every 

new incoming symbol, the first time an instance of this symbol is received. On this 

exercise, each branch executes the following steps for any given price tick: 

• Query current state of the order book for current bid and ask prices of stock 𝑠; 
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• Calculate the price of a stock based on current mid-price, spread, and 

exponentially weighted moving average of the mid-price42. 

Every incoming fragment 𝑥, arriving at time 𝑡, carries a tuple (𝑠,𝑝) where 𝑠 is 

symbol and 𝑝 is the price. In this exercise, for the sake of simplification, since our 

concern is specifically to exemplify the property of plasticity, we are only interested 

in symbols. The sequence of incoming symbols is given on this example by the 

sequence in Equation 5. 

𝑠: (𝐼𝐵𝑀, 𝐼𝐵𝑀,𝐺𝑂𝑂𝐺,𝐺𝑂𝑂𝐺,𝐴𝑀𝑍𝑁,… ) Equation 5. Sequence of 
Incoming Symbols 

In response to each item in the sequence, predicate 𝑃 turns to 𝑡𝑟𝑢𝑒 if this is 

the first arrival of that symbol on the sequence. In response to the sequence of 

symbols in Equation 5, 𝑃 yields a correspondent sequence of results given by 

Equation 6. 

𝑃: 𝑡𝑟𝑢𝑒, 𝑓𝑎𝑙𝑠𝑒, 𝑡𝑟𝑢𝑒, 𝑓𝑎𝑙𝑠𝑒, 𝑡𝑟𝑢𝑒,…  Equation 6. Sequence of 
Predicate Results 

In the previous Figure 10, the configuration of the graph Φ is shown as a 

snapshot in time right after the arrival of the AMZN symbol, as result of the use of a 

modification connector 𝐶!. Before that snapshot, the symbol IBM had arrived, 

                                                
42 Signal attenuation functions are explored in details in the upcoming Chapter 5. The exponentially 

weighted moving average specifically is described in Section 5.2.2.4. 
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producing sub-graph 𝑠 = 𝐼𝐵𝑀, followed by symbol GOOG, what produced the sub-

graph 𝑠 = 𝐺𝑂𝑂𝐺.   

On arrival of symbol AMZM, the predicate 𝑃 yields 𝑡𝑟𝑢𝑒 and the third branch 

is created and associated with the newly arrived symbol AMZN. From that point on, 

arrivals of new symbols AMZN will be routed through the newly created branch. 

The plasticity property allows for on-demand modifications on connections of 

a graph representing a financial model. This example is an important and common 

use case on models related to trading of financial instruments. 

4.3.2. REACTIVES 

Financial models must maintain continuous interaction with an ever-changing 

state that varies over time and is external to the financial model at hand, as stated on 

requirements defined in Section 4.2. Rules on the financial model have to trigger 

specific actions based on external events that can occur at unpredictable times. 

These unexpected, unpredictable, external changes are hard to represent in 

conventional, sequential programming. External changes are associated to events, and 

require a number of non-sequential43 properties for representation in financial 

models: inverted control, abstraction of time management, and abstraction of 

synchronicity details (Bainomugisha, et al. 2013): 

• Inverted Control: Financial models keep a continuous and persistent 

interaction with their execution environment, executing actions based on 

                                                
43 Some literature considers reactives an extension of stream processing (Stephens 1997). Given the 

nature and requirements of financial models we opted to differentiate between sequential (streams) 
and non-sequential (reactives) as two separate and yet complementary facets. 
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events triggered by external sources. External sources then drive the order of 

execution, and as a consequence, in many particular cases, the rules and 

control flow of a financial model is inverted (Bainomugisha, et al. 2013). 

• Abstraction of Time Management: Financial models often require a notion 

of a discrete time series, in which the modification of the event associated 

with each time 𝑡! in the time series is performed by behaviors (Harel and 

Pnueli 1985) (Bainomugisha, et al. 2013). The event is associated to either a 

lifecycle change (e.g., corporate actions in a stock, roll-over operations in 

derivative instruments) or variations of value (e.g., the price of an asset, ratio 

of risk exposure) over time. After a relationship between reactive entities is 

set, computation dependencies and handling of events over time are automatic 

and the representation of time is intrinsic to every event (Nilsson, Courtney 

and Peterson 2002). 

• Abstraction of Synchronicity Details: Financial models require abstraction 

of synchronicity details in the event-driven communication. Financial entities 

are often defined in terms of relationships with other entities. In a 

representation suitable for financial models, associations are established 

declaratively, similar to the way in which cells in a spreadsheet are defined 

and associated with a formula44. The declarative association through formula 

provides automatic management of associations between data dependencies. 

The event-driven communication synchronizing the state of those entities is 

intrinsic to the representation of the association and therefore transparent. 

Functionally, these properties – inverted control, abstraction of time 

management and details of event-driven communication - are related in computer 

                                                
44 The designation of a formula is equivalent to the concept of a formula in an electronic spreadsheet 
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science to what is commonly called reactive programming (Harel and Pnueli 1985), 

and referred in the scope of this research as a reactive45 facet. 

The reactive facet is a declarative paradigm that allows the definition of what 

has to be done through reactive relationships, and let the computational representation 

automatically take care of when to do it, and who gets affected. A similar and more 

intuitive model is exemplified by a number of cells in an electronic spreadsheet 

representing a formula. Similarly, reactives allow for an intuitive representation of 

primitives and formula, in which composition of formula from primitives and other 

formula is defined declaratively (Harel and Pnueli 1988) (Bainomugisha, et al. 2013).  

To describe declarative associations of reactive variables, we take for example 

the simple formula in Equation 7. 

𝐴 = 𝐵 + 𝐶 Equation 7. Reactive Formula 
Example 

In a sequential representation, variables 𝐵 and 𝐶 would have to be set first, so 

that only then the computation of 𝐴 could occur. Alternatively, in a reactive 

representation, the formula is declared first, setting a graph of reactive dependencies. 

In Figure 11 we show the graph of dependencies for the formula in Equation 7. 

                                                
45 Functionally equivalent patterns like observers, event-driven programming and asynchronous 

callbacks were also considered as possible alternatives to reactives, but unfortunately they carry 
their own impeding limitations. The coordination of individual callbacks, over a shared state, across 
numerous code fragments, in which the order of execution cannot be predicted, is an error prone, 
cryptic, daunting programming task (Bainomugisha, et al. 2013). Additionally, since callbacks do 
not produce a return value, these alternative programming patterns must perform side effects in 
order to affect the application state (Cooper and Krishnamurthi 2006).  
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Figure 11. Graph of Reactive Dependencies 

The reactive graph, representing a simple formula 𝐴 = 𝐵 + 𝐶. A formula of functions, operators, or 
other reactives is set as a graph of communication between reactives.  

The graph in Figure 11 represents that, in case of a change on the value of 

either 𝐵 or 𝐶, the executing environment abstracts the notion of a discrete time 

change and event-driven communication by propagating the modification across all 

dependencies in the graph. The exact way a value propagates over time through a 

graph of dependencies, in this case from 𝐵 or 𝐶 to 𝐴, can occur in more than one way 

and is abstracted from the representation itself. 

The reactive paradigm is a broad concept, subject to a specific classification 

in terms of basic features, evaluation model, lifting, and directionality. These classes 

are related to special considerations for the use of the reactive paradigm is used to 

represent financial models, according to requirements defined in Section 4.2. 

B	

C	

A	+	
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4.3.2.1. Basic Features 

Two basic features define the reactive programming paradigm: behaviors and 

events. They are often referred to as duals because one can be used to represent the 

other. The behavior feature refers to mutable, time-varying values. The event feature 

refers to potentially infinite, immutable modifications that occur at discrete points in 

time.  

In the computational representation for the field of economics, behaviors are 

associated with specialized processors 𝑅 so that 𝑅 ≅ 𝑃. The dual of 𝑅 is a virtually 

infinite sequence of events 𝑥, as previously discussed in Section 4.3.1.   

Given for example two disjoint sub-graphs 𝜙! and 𝜙!!, a generic 

synchronicity operator 𝛿, and behaviors associated to reactive processors 𝑅! and 𝑅!!, 

as described in Equation 8. 

𝜙! 𝛿 𝑅! 
𝜙!! 𝛿 𝑅!! Equation 8. Composition of 

Streams and Reactives 

A reactive function 𝑓!
!(𝑅!,  𝑅!!) is evaluated on the arrival of either 𝑥! or 𝑥!!, 

in each of the streams defined by sub-graphs 𝜙! and 𝜙!!, as shown in Figure 12. 
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Figure 12. Composition of Streams and Reactives 

Reactives are specialized processors in a stream, either as reactive steps in linear streams, like 𝑅′ and 
𝑅′′, or as connectors for disjoint sub-graphs, like the reactive function 𝑓!

!. 

As represented in Figure 12, reactives are specialized processors in a stream. 

In the case of 𝑅! and  𝑅!!, they have to behave like regular, sequential processors for 

sub-graphs 𝜙! and 𝜙!!, and at the same time act as reactives for the reactive function 

𝑓!
!(𝑅!,  𝑅!!).  

Reactive dependencies and respective flow of execution are defined 

declaratively. As a consequence, after the reactive graph is defined, calculations are 

not affected by the sequence of initialization of 𝑅! and  𝑅!!. 
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4.3.2.2. Evaluation Model 

The evaluation model of the reactive facet defines how a change 𝑥 in stream 

𝜙 propagates through a dependency graph of values and computations. 

In a pull-based evaluation model, a value is calculated on demand, or in other 

words, a value has to be “pulled” from the source whenever required.  

On the other way, in a push-based evaluation model, every change in value 

has to be sent to dependent computations. The push-based propagation is called data-

driven since it occurs by the availability of new data. 

The evaluation model has no direct implications on the representation, but it 

does, however, have implications on the distribution facet. Those implications are 

discussed in detail in the upcoming Section 4.3.3. 

4.3.2.3. Lifting 

We call lifting the transformation of a generic function 𝑓(𝑥) applied to 𝑥 to a 

lifted function 𝑓!(𝑅 < 𝑥 >), where 𝑅 < 𝑥 > is a reactive, or behavior, type of 𝑥 

(Bainomugisha, et al. 2013) given in Equation 9. 

𝑙𝑖𝑓𝑡: 𝑓 𝑥 →  𝑓!(𝑅 < 𝑥 >) Equation 9. Reactive Lift 
Function 

When looking at time step 𝑖, the resolution of a lifted function 𝑓! on value 𝑥! 

yields the original function 𝑓, as shown in Equation 10. Mathematical operators (e.g., 
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+, −, ∗) and user-defined functions, respectively, are functionally equivalent to lifted 

operators and functions. 

𝑓! 𝑅 < 𝑥! > → 𝑓 𝑥!  Equation 10. Original Lifted 
Function 

 

The representation of the lifting transformation is classified further in terms of 

how much additional context is needed whenever an operator or a function has to be 

lifted to a reactive representation. This classification defines a lifting transformation 

as manual, explicit, or implicit. 

• Manual: on manual lifting, a representation does not provide transparent 

lifting. A time-varying value has to be manually extracted and applied to 

operators, functions, or dependent variables.  

• Explicit: on explicit lifting, the representation defines a number of unique 

operators that can be used to lift a function 𝑓 to 𝑓!.  

• Implicit: on implicit lifting, all operators and functions of a representation 

applied to 𝑥, user-defined or not, are transparently lifted to a reactive item 

𝑅 < 𝑥 >. 

For simplicity of communication, in the computational representation for the 

field of economics, all reactive transformations are implicitly lifted. This requirement 

will impose additional constraints on candidate implementations, but as a 

consequence gives a higher level of abstraction to the representation. 
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4.3.2.4. Directionality 

A reactive representation may allow reactive propagation of changes to occur 

in one direction – unidirectional – or in either direction – multidirectional. In 

requirements listed in Section 4.2, there were no specific cases in which 

multidirectional propagation was an absolute requirement. As a consequence, for 

simplicity, for a computational representation for the field of economics, only a 

unidirectional propagation is required. 

4.3.3. DISTRIBUTION 

In Section 4.2 we listed some requirements explicitly related to the operation 

of financial models in large scale, both in terms of computational power and storage.  

Those requirements - virtually infinite historical records, and responsiveness – 

require the use of distributed resources (Dean and Ghemawat 2004) to be able to 

scale to more than a single processing or storage unit. The distribution facet gives the 

computational representation the ability to communicate functions related to scaling 

up the workload of a financial model across multiple processors. 

 A distribution facet is, in essence, a particular application of connectors, as 

described in Section 4.3.1.2. A connector 𝐶 is a specialized type of processor 𝑃 so 

that 𝐶 ≅ 𝑃. That specialization means that in addition to the behavior of processors, a 

connector carries additional properties to allow the composition of streaming sub-

graphs 𝜙 = (𝑃! , 𝛿!) into larger, interconnected networks of streams.  
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On its more generic form, any connector 𝐶! allows for bridging of a number 𝑛 

of incoming sub-graphs 𝜙′ and a number 𝑚 of outgoing sub-graphs 𝜙′′, as described 

in Figure 13: 

 

 Figure 13. Connectors and Incoming and Outgoing Streams 

Connectors in the distribution facet are used to compose streams by bridging a number n of incoming 
sub-graphs 𝜙′ and m outgoing sub-graphs to build more elaborate graphs. 

The generic description of the distribution facet as connectors for a 𝑛:𝑚 

association of incoming to outgoing sub-graphs of streams has two significant 

consequences: improved expressiveness of the streaming notation, and leveraging of 

distributed and parallel processing in large scale. 
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4.3.3.1. Improved Expressiveness 

The first consequence, improved expressiveness, is related to the possibility of 

laying out streams and connectors in different combinations to define more 

elaborated patterns (Hohpe and Woolf 2012). The placement of connectors in 

different locations of the streaming graph can define structures like split-joins and 

feedbacks (Gordon 2010) (Gordon, Thies, et al. 2002) (Thies 2009) (Thies, 

Karczmarek and Amarasinghe 2002) (Stephens 1997) (Kamburugamuve and Fox 

2013). A visual representation of split-join and feedback loop is given in Figure 14. 

 

Figure 14. Use of Connectors for the Composition of Communication Patterns 

Combination of connectors used to create more elaborate composite patterns like split-joins and 
feedback loops. 
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A split-join pattern is given by a pair of connectors, 𝐶! and 𝐶!, positioned 

around a set of processors. The connector 𝐶! is placed on the splitting, inbound edge 

of the set of processors, while the connector 𝐶! is placed on the joiner, outbound edge 

of the set of the processor.   

Edges for communication in and out of the processor stack between 𝐶! and 𝐶! 

are given by the asynchronous operator 𝛿. As a consequence, fragments leaving 𝐶! 

might hit all processors concurrently, and the order of execution of these processors 

cannot be guaranteed. Unless specialized processors are inserted in the flow before 

the join of 𝐶!, with the ability of re-establishing the original order of execution, the 

overall execution is non-deterministic. 

A variation of the split-join pattern, the feedback loop, given in the lower part 

of Figure 14, is a re-arrangement of 𝐶! and 𝐶! to represent a loopback of data 

fragments. Edges for communication out of 𝐶! and into 𝐶! are asynchronous, i.e., the 

synchronicity operator 𝛿 is of type asynchronous. 

Since there is a requirement of asynchronous communication on edges from 

and to 𝐶! and 𝐶!, results of the execution of the overall stream in a feedback loop are 

non-deterministic. 

4.3.3.2. Parallelism and Distribution Spaces 

The second consequence is the possibility of describing an execution flow 

spanning multiple computational environments and locations concurrently. Each of 

those disjoint computational environments is called space. A space by definition can 

be associated with different processors, in different locations, as required. 
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For example, given a connector 𝐶′ and disjoint sub-graphs 𝜙!, 𝜙!′ and 𝜙!′′ on 

a specific composition, as described in Equation 11: 

𝜙! 𝛿 𝐶! 
𝐶! 𝛿 𝜙!! 
𝐶! 𝛿 𝜙!!! 

Equation 11. Connectors and 
Distribution Spaces 

Following the definition of the connectivity property of financial models, 

described in Section 4.3.1.2, a larger graph Φ is defined as a result of connector 𝐶′ 

applied on sub-graphs 𝜙!, 𝜙!′ and 𝜙!′′ as shown in Figure 15. 
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Figure 15. Graph Composition by Connectors and Spaces 

The application of connectors to sub-graphs defines a generic graph Φ and multiple spaces 𝑆′, 𝑆′′ and 
𝑆′′′, which can be optionally associated to computational resources spanning multiple locations. 

Each space is a fragment of a complete graph Φ, in which boundaries of any 

space are given by incoming or outgoing edges of a connector. Each space abstracts 

details related to distribution or concurrency aspects of a financial model and can be 

at a later time associated to computational resources spanning multiple locations, 

without affecting the high-level representation of the financial model itself.  

A complete graph Φ in Figure 15 shows the use of a connector 𝐶′ to define 

multiple spaces 𝑆′, 𝑆′′ and 𝑆′′′, each associated to sub-graphs 𝜙!, 𝜙!′ and 𝜙!′′. Each 

space and sub-graph can be associated to different distribution contexts, without 

affecting the intuitive description of a financial model. 
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In essence, connectors allow scaling of a financial model to handle a virtually 

infinite load and volume of data by adding the notion of locality and distribution 

transparently through the use of spaces. 

 This notion is intrinsic to the representation in a sense that it is not defined in 

the financial model described, and decisions relative to performance, storage, and 

processing power can be made at a later time, with no modifications to the financial 

model itself. 

4.3.4. SIMULATION 

Financial models are a representation of complex systems in which the intent 

of defining one, in many cases, is to allow prediction of outcomes, through the 

application of disciplined, objective research methods.  

Simulations are a fundamental technique for research of complex problems in 

many disciplines, especially in financial sciences, through the application of 

specialized algorithms (Von Ronne 2012) to define, search and test possible viable 

solutions. The exact placement of simulations in the proof pipeline proposed in this 

research is given in Section 3.2.1. According to that definition, simulations are the 

imitation of a system (Robinson 2004). Financial models are, in essence, an imitation 

– a controlled simplification to the right scale – of large, complex systems. 

The facet simulation is responsible for representing methods allowing the 

anticipation of possible outcomes in financial models. As described in Section 3.2.1 

the general topic of simulations is extensive and under active research. To that, the 

primary challenge when defining a simulation facet in a domain of knowledge is to 

establish the exact level of simplification that can be applied to models on that 
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representation, without affecting the quality of insights into the central problem under 

simulation. 

According to the representational process previously defined in Section 3.4.1, 

any facet, and in this case precisely the simulation facet, must be selected based on 

domain-specific requirements and a computational taxonomy. Domain-specific 

requirements were previously defined in Section 4.2, and given the importance of the 

subject of simulation, should be augmented by the proof pipeline defined in Section 

3.2.1. A computational taxonomy is given by various alternatives for classification 

simulation techniques (Leemis and Park 2006) (Robinson 2004) (Sulistio, Yeo and 

Buyya 2004) (Von Ronne 2012), shown in Figure 16. According to that 

representational process, the combination of requirements and techniques are enough 

to select and adjust relevant properties of simulation for financial models. 
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Figure 16. Simulation Taxonomy and Relevance to Economics 

Simulation facet classified according to a generic taxonomy based on the presence of time, behavior 
and data organization. Leafs marked in a dotted like do not represent relevance to the field of 
economics. 

The taxonomy of a simulation facet organizes all possible representations in 

three dimensions according to the presence of time, behavior and data organization. 

All three dimensions of classification are complete and not mutually exclusive, in a 

sense that a model requires a concomitant classification in each of the dimensions.  

For example, a model that anticipates the effect of corporate actions over the 

price of an asset is static, deterministic and grid-based, while a model that uses 

random shocks to determine the influence of multiple features in the profitability of a 

portfolio in closing prices is dynamic time-stepped, stochastic and grid-based. 
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4.3.4.1. Presence of Time 

The first classification takes into consideration the presence of time (Sulistio, 

Yeo and Buyya 2004), or time of change (Von Ronne 2012). As the name implies, 

this classification considers if time is a significant variable in defining the outcome of 

a simulation (Leemis and Park 2006).   

Under this classification, system models can be classified as static or 

dynamic, respectively by observing if the system can be adequately modeled without 

or with a variable associated with time. 

In our cases of use, previously defined in Section 4.2, it is clear that the 

absolute majority of financial models are dynamic. However, we cannot ignore that 

some critical exceptions do not require the presence of time. An example of a static 

system relevant to the field of financial sciences would be the influence of corporate 

actions on the valuation of equity assets on the day that a specific action took place. 

Dynamic systems are further classified as either continuous or discrete 

(Sulistio, Yeo and Buyya 2004). Continuous dynamic systems consider that variables 

or features into consideration evolve continuously and are usually subject to 

modeling through differential equations, representing continuous modifications of a 

system. Some examples outside of economics are often related to classic mechanics 

like particles moving in gravitational fields, or an oscillating pendulum (Leemis and 

Park 2006). All observable phenomena are by nature continuous, but since by 

definition models are surrogates of real events, the use of discrete dynamic systems 

allow a significant simplification by considering that all variables of the system are 

piecewise constant functions of time, only possessing one of many values within a 

finite range. 
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Dynamic discrete systems can be classified even further depending on the 

irregularity of the time interval as time-stepped or event-driven systems.  

On time-stepped systems, time intervals are constant or derived from fractions 

of time in which periodicity can be clearly ascertained. Examples of a dynamic 

discrete system in finance are models associated with changes in discrete values (e.g., 

prices, returns, risk ratios) over a time-series. Dynamic discrete time-stepped systems 

account for the majority of the cases of use in finance. 

On event-driven systems46, time interruptions occur in irregular intervals, 

driven by external sources of the model itself. In finance, such systems are not as 

usual as systems based on constant time steps. Event driven-systems should, 

however, be considered at least as necessary, and an adequate tool when investigating 

sophisticated use cases. Some examples are related to cases of agent-based simulation 

of a central limit order book. In these simulations, software agents play the role of 

market participants and are used to gauge the influence of real-world economic 

agents to study the effect of a pre-defined behavior in variations of the price of 

financial instruments (Foata, Vidhamali and Abergel 2011) (Panayi and Peters 2015) 

(Cont, Stoikov and Talreja 2010) (Murat, et al. 2009) (Chakraborti, et al. 2011) (Chan 

and Shelton 2001). 

Dynamic discrete systems are represented in a computational representation 

for the field of economics by adjusting generic streams 𝜙(𝑃, 𝛿)  in two specific 

points to represent either time-stepped systems or event-driven systems. 

Time-stepped systems are replicated by replacing the generic endpoint 𝑋 of 

fragments 𝑥 in a stream 𝜙(𝑃, 𝛿) by a time-paced endpoint 𝑓(𝑇,𝑋) so that the period 

                                                
46 We assume agent-based modeling is an extension of tools commonly used to simulate event-driven 

dynamic systems (Bandini, Manzoni and Vizzari 2009) (Borshchev and Filippov 2004). 
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𝑇 between events 𝑥! can be adjusted, as shown in Figure 17. 

 

Figure 17. Simulation of Time-Stepped System 

A time-stepped system is simulated by replacing the generic endpoint 𝑋 of fragments 𝑥 by a periodic 
function 𝑓(𝑇,𝑋) in which the period 𝑇 is a fraction of the time-step present in the original system 
under simulation. 

Adjusting 𝑇 to minimal amounts allows for the simulation in milliseconds of 

market behaviors that otherwise could only be observed over long periods, achieving 

for all practical purposes a time-squeezing effect. The simulation can then be 

replayed as many times as required, with different values for all relevant features 

(Faleiro Jr and Tsang 2016). An example of a time-stepped simulation is given in 

Chapter 5 when the hypothesis of profitability of momentum crossover strategies is 

tested against historical values of an index in Section 5.4.3. 

Event-driven systems are represented in a computational representation for 

the field of economics by two different variations: time scaling and agent emulation. 

In the time scaling variation, a generic endpoint 𝑋 of fragments 𝑥 in a stream 

𝜙(𝑃, 𝛿) is replaced by an endpoint 𝑓(𝑘,𝑋), allowing event-driven systems to be 
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replicated by replaying events 𝑥! from 𝑋 in a different scale of time. The same time-

squeezing effect observed in time-stepped simulations is achieved by adjusting the 

time of occurrence of each event 𝑥! to a shorter scale 𝑘 as 𝑥!!  as described in 

Equation 12. 

𝑡! = 𝑡! +
1
𝑘 𝑡 Equation 12. Time Scaling 

Where 𝑡! is an arbitrary time assigned to the beginning of the simulation, and 

𝑘 is the time compression scale. 

In the agent emulation variation, streams 𝜙(𝑃, 𝛿) play the role of individual 

software agents, similar to what some literary references call a process-oriented 

paradigm (Matloff 2008), process-modeling (Pedgen 2010) or process-interaction 

(Vangheluwe 2014). 
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Figure 18. Discrete-Event Simulation Environment 

Each stream 𝜙(𝑃, 𝛿) plays the role of software agents 𝐴!, and execution is done by specific signals 
activate, cancel or yield. Agent communication and competing access for shared resources is done 
through the agent context. 

Each software agent 𝐴!, represented by stream 𝜙(𝑃, 𝛿), is used to model real-

world entities that hold state and evolve in time. Agents interact through a shared 

context, either by direct communication or by modification of state in a shared 

resource.  

A component called a Discrete-Event Simulation Environment is responsible 

for proper scheduling and coordination of an agent 𝐴! by issuing and capturing 

variations of events of type activate, cancel, or yield.  

In a higher level, an activate signal marks an agent as eligible for execution, 

while a cancel event forces an agent to release resources and yield execution. Agents 

notify the discrete-event simulation environment of specific changes in a task status 
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by issuing different types of yield signals. A yield signal tells the discrete-event 

simulation environment that the agent can be de-scheduled and action can go to an 

eligible agent if such an agent is available (Matloff 2008) (Scherfke 2014). 

4.3.4.2. Behavior 

The second classification of simulation models takes into consideration the 

randomness of results of the execution of a model given a constant set of inputs.  

In deterministic models, the result of a model execution depends only on the 

input given to the model, what means that repeating a simulation several times will 

yield the same results (Sulistio, Yeo and Buyya 2004). On the other hand, in 

stochastic models, the result of a simulation varies randomly47 (Perros 2009). 

Both deterministic and stochastic behaviors are required for financial models, 

and the exact nature of a model is defined by behaviors of processors and topology of 

the underlying graph 𝜙 describing the model, as explained previously in Sections 

4.3.1, 4.3.2, and 4.3.3. 

4.3.4.3. Data Organization 

The third classification of simulation models arranges simulations as grid-

based or mesh-free, depending on the data organization scheme (Von Ronne 2012). 

In the mesh-free organization (Gingold and Monaghan 1977), data is 

associated with individual and disconnected (i.e., mesh-free) nodes called particles. 

                                                
47 Pseudo-random models, in which a random outcome is emulated by a pre-defined sequence of 

random values, based on a number called a seed, are indeed a special case of a deterministic model. 
If following this definition, the simulation of a random walk in Section 5.4.2 should be more 
accurately referred to as a pseudo-random walk. 
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Updates to a particle are not bound to neighboring or connected relationships between 

particles, but instead are related to interactions to all particles considered relevant. 

The mesh-free organization enables the simulation of complex systems, at the 

expense of computing power and programming complexity. Use of mesh-free 

simulation in finance usually applies to overspecialized cases of use (Kim, Bae and 

Koo 2013) (Duffy 2006) (Lopez 2012) (Fasshauer 2006) and as a result was 

considered out of scope and left out of the list of cases of use in Section 4.2. 

Alternatively, in the grid-based organization, the state of a simulation is 

arranged in discrete cells at particular locations in a grid. Updates occur to each cell 

based on previous state and those of its neighbors, or to cells to which it is connected. 

The absolute majority of the financial models are grid-based.  

In this proposed computational representation for the field of economics some 

of the fundamental constructions - reactive primitives, functions, and operators - play 

the role of cells in a grid-based organization while connections reactive primitives 

constructions are arranged in the same way as cell dependencies. 

4.4. CONTRIBUTIONS 

As defined by the representational process introduced in Section 3.4.1, the 

second component of a computational representation is referred to as contributions. 

As introduced in Section 3.4.3, contributions are defined as shareable and formal 

evidence of a scientific crowd-based investigation. 

According to the representational process in Section 3.4.1 contributions are a 

taxonomy of shareable evidence that is relevant to cases of use on the domain of 

knowledge under study, in this specific case, economics. The cases of use were 

described previously in Section 4.2. According to the evidential properties discussed 
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in Section 3.4.3, all contributions must follow a classification system, called 

taxonomy of contributions. Contributions for a computational representation for the 

field of economics must cover a broad range of models, methods, and results relevant 

to financial sciences (Herndon, Ash and Pollin 2013). Some examples include 

datasets in small, medium or large scale; time series in low, medium or high 

frequency; calculation processors and visualization plots; and results related to 

historical and real-time execution, simulation and backtesting. The taxonomy of 

contributions for the field of economics is shown in Figure 19. 

 

Figure 19. Taxonomy of Contributions 

Contributions are classified as financial models, processors, or endpoints. Endpoints are either 
visualization (i.e., plots, animations) or datasets. 

All contributions carry the evidential properties defined in Section 3.4.3, and 

therefore, in addition to falling in precisely one classification of the tree in Figure 19, 
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all contributions are also uniquely identified, carry a detailed record of provenance 

and hold enforceable ownership and access information. On a higher-level, 

contributions are classified as financial models, processors or endpoints.  

4.4.1. FINANCIAL MODEL 

The first type of contribution for a computational representation for the field 

of economics is a financial model. Financial Models are by definition a description of 

observable phenomena in the field of economics, simplified to the right scale, and 

adjusted for use in the process of a crowd-based investigation described in Section 

3.2. An extensive outline of requirements of financial models is listed in Section 4.2. 

Since financial models are contributions, they follow what we call evidential 

properties of contributions, explained in Section 3.4.3. As such, financial models can 

be defined and reused by different users.  

From a representational perspective, financial models are built based on 

streams of processors and endpoints, arranged as graphs. The fundamentals for the 

description of financial models as streams are described in Section 4.3.1.2 on page 

106. An example of a generic financial model is depicted as graph Φ in Figure 15 on 

page 126. Processors and endpoints as contributions are explained over the following 

sections 4.4.2 and 4.4.3 respectively. 

4.4.2. PROCESSORS 

The second type of contribution for a computational representation for the 

field of economics is a processor. Processors are steps on the execution stream and 
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are placed to perform specific computations on fragments of data 𝑥, as already 

explained in details in Section 4.3.1.2. 

Since processors are contributions, they carry evidential properties of 

contributions, explained in Section 3.4.3. As such, processors can be defined and 

reused across different financial models (i.e., execution streams, as explained in 

Section 4.3.1.2), by different users, whenever that same specific function is required. 

Processors are further classified as handlers, connectors, modifiers, reactives, or 

agents.  

• Handler: the simplest type of a processor is a handler. A handler applies 

transformations to a fragment of meta-data 𝑥 as defined in Section 4.3.1.2; 

• Connector: the composition of larger, more complex financial models from 

multiple smaller sub-graphs is possible by using a specialized type of 

processor called connectors. Connectors were explained in details in Section 

4.3.1.2 on page 109 when the connectivity property of financial models as 

streams is explained; 

• Modifiers: modifiers support the plasticity property of financial models, as 

extensively explained in Section 4.3.1.2 on page 109. The plasticity function 

was formalized in Equation 4. A practical example of plasticity applied to 

finance was described in Figure 10; 

• Reactives: reactives allow the representation of declarative, non-sequential 

properties in financial models: inverted control, abstraction of time 

management, and abstraction of synchronicity details. The formalization of 

reactive processors was given previously in Section 4.3.2 on page 113. 
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• Agents: this specialization of a processor is used to support a sub-

classification of event-driven simulation model called agent emulation. Agent 

emulation is described in details in Section 4.3.4.1 on page 130. On that 

section, an agent processor is described as software agent 𝐴!, represented by 

stream 𝜙(𝑃, 𝛿), in Figure 18. 

4.4.3. ENDPOINTS 

The third type of contributions in a computational representation for the field 

of economics is called an endpoint. Endpoints can be used as either a source or a 

destination of data fragments 𝑥 in the execution stream 𝜙(𝑃! , 𝛿!), as previously 

represented in Figure 9 on page 107.  

Since endpoints are contributions, they follow what we call evidential 

properties of contributions, explained in Section 3.4.3. As such, endpoints can be 

defined and reused across different financial models (execution streams, as explained 

in Section 4.3.1.2), by different users, whenever that same endpoint, or state of data, 

is required. Depending on the intended use of the data, endpoints can be further 

classified as visualizations or datasets.  

Visualizations can be static or dynamic. Static visualizations, called plots, 

show a complete and immutable representation of samples (𝑥! …  𝑥!) in which the 

window associated to the interval [𝑖, 𝑗] is constant. On the other hand, dynamic 

visualizations - also referred to as animations - represent mutable windows, or 

samples, of data. Dynamic visualizations adjust a geometric representation in real 

time, depending on the arrival of new data. 
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The second type of endpoints is called a dataset. Datasets are a repository of 

transformed data fragments, as previously described in Figure 9, as either an entry 

point of virtually infinite streams of data fragments 𝑥, or a destination of the 

execution of stream 𝜙(𝑃! , 𝛿!).  

Datasets can serve as intermediary entry and exit points of multiple sub-

graphs or streams 𝜙(𝑃! , 𝛿!). In that sense, the resulting dataset of one execution 

stream can be a source dataset in a second, different, execution stream. 

4.5. CONSTRAINTS OF DATA 

According to the representational process defined in Section 3.4.1, the third 

component of a computational representation is called constraints of data. Constraints 

of data are explained in details in Section 3.4.4. Constraints of data define rules of 

association that establish what is feasible in a domain of knowledge. Those structural 

constraints use an abstract layer of data to define restrictions on a separate 

abstraction, based itself on data, hence the term meta-data. The set of structural 

constraints in a specific domain of knowledge is called meta-model. 

For our domain of interest, financial sciences, structural constraints for 

associations between contributions and facets are defined in three of different groups 

of meta-models, based on its particular use: configuration, execution or simulation 

meta-model.  

• Configuration meta-model: represents a versioned snapshot of a 

configuration of facets, arranged in a graph, over time. In other words, a 

structural description of all graphs defining the execution steps of a specific 

financial model. Since execution flows, or graphs, can change over time, a 

versioned configuration meta-model allows the exact definition and 
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reproducibility of execution flow, at any given moment in the past. Instances 

of this meta-model will determine a reproducible sequence of execution, 

versions and provenance tracking of all data used to generate any specific 

result set. 

• Execution meta-model: represent fragments of hierarchical data that flow 

through one or more compatible steps of a model. Instances of an execution 

meta-model are related to one specific configuration meta-model. In a sense is 

a description, in structured data, of concepts inherent to financial sciences: 

entities, contracts, instruments, or relationships. An example of an execution 

meta-model is given later in the investigation exercise in Chapter 5, 

specifically on references to ‘fitness’, ‘Ticker’, and ‘Adj. Close’ features, in 

Contribution 22 on page 195. 

• Simulation meta-model: supports the registration of experiments, results, and 

methods required to support an investigation. The registration is a permanent 

ternary association between financial models, shocks, and benchmarks. A 

financial model is a contribution describing the problem domain, the 

hypothesis under test, and the method under verification. The background for 

the definition of the hypothesis under tests and methods are part of the proof 

pipeline, previously described in Section 3.2.1. Shocks describe each of the 

executions of a financial model, used for recording utilized data, and results of 

each individual execution. Benchmarks describe the final comparison of 

results, of different shocks, and outline conclusions. An example of shocks 

and benchmarks on a Monte Carlo simulation is given later in the exercise in 

Chapter 5, in Contribution 9, on page 179. 
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It is important to note that meta-models are defined and dependent on a 

finance case of use, or exercise, and should be defined in an ad hoc fashion, as 

required. To define an extensive set of meta-models that could be used in a large 

number of financial use cases is not practical, and would yield no additional insights 

to justify the increased complexity.  

Additionally, some cases of use might require a partial set of meta-models. 

For example, for a real-time stock pricing financial model, given a strict dependency 

on mid-prices and a static price calculation function, a simulation and a configuration 

meta-model would not be necessary. A financial model for this specific case of use 

can rely exclusively on an execution meta-model. A more extensive example is given 

in the investigation exercise in Chapter 5. 

4.6. INVESTIGATION CASES OF USE 

At this point, we have defined a computational representation for the field of 

economics following the representational process outlined previously in Section 3.4.1 

given by facets, contributions, and constraints of data, respectively defined in this 

chapter under sections 4.3, 4.4, and 4.5. This representation enables a platform for an 

objective application of the scientific method that can be utilized efficiently in three 

specific scenarios, exemplified next: application of the scientific method, large-scale 

collaboration across a heterogeneous community of users, and support for simulation 

in economics.  

On this section we present these three scenarios as examples of each of these 

cases of use, picturing a hypothetical exercise for the selection of fast learning 

methods for neural networks (Castillo, et al. 2006). 
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4.6.1. APPLICATION OF THE SCIENTIFIC METHOD 

Researcher 𝐴 is studying a new method for fast learning of neural networks 

based on sensitivity analysis. The study intends to find a fast learning method while 

predicting a Dow-Jones index for a given day using a historical dataset from 1994 to 

1996. For that, Researcher 𝐴 records in the platform the following contributions: 

• Hypothesis 𝐻! and null hypothesis 𝐻!; 

• Six pluggable implementations, one for each of the possible problem 

resolution scenarios:  standard algorithms, linear least square, second order, 

adaptive step size, appropriate weights, and rescaling.   

• Pluggable implementation of a one-layer neural network 

• Input datasets for the time series of price variations of the index, and output 

dataset registering learning time and fitting 

Researcher 𝐴 executes and collects the resulting data once for each of the six 

scenarios. For each cycle of execution and data collection, it is only necessary to 

switch the pluggable implementation of the resolution scenario.  

Researcher 𝐴 collects output datasets for each execution and contributes the 

results to the platform. He also records the final findings of his experiment, stating 

that adaptive step size is the fastest method and provides the best fitting overall.  

From this point, their findings will be unquestionably and transparently bound 

to the method he followed (model), input data and findings, so any other participant 

in the community can leverage, inspect or challenge his findings. 
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4.6.2. LARGE SCALE COLLABORATION 

Researcher 𝐵 works in the same field as Researcher 𝐴. He develops a new 

approach called Sensitivity-Based Linear Learning Method (SBLLM) and wants to 

compare the performance of that approach to previous methods bound to findings of 

Researcher 𝐴. 

Researcher 𝐵 contributes a new pluggable implementation he calls SBLLM. 

Researcher 𝐵 adds this single implementation to scenarios already contributed by 

Researcher 𝐴 and re-runs what are now seven scenarios.  

Researcher 𝐵 records the new revision of the original financial model, what 

now brings an additional scenario, and records the results of the experiment: SBLLM 

is now the fastest learning method and provides the best fitting. From that point on 

any researcher in the world can participate in this scientific search for better learning 

methods.  

4.6.3. SIMULATIONS 

Researcher 𝐶 is also studying the same subject as Researcher A and 

Researcher 𝐵. He believes previous findings are somewhat flawed because they 

failed to take into consideration a considerable number of independent variables. 

Researcher 𝐶 defines a new hypothesis stating that performance of learning 

methods are indeed affected by at least two independent variables: 

• Number of layers 𝑁 of the subject network; 
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• Generic input as a random walk of drift 𝐷 and variance 𝜎 

Researcher 𝐶 maps each independent variable to a parameter, defining 

parameters 𝑁, 𝐷, and 𝜎, and contributes a new pluggable implementation of a neural 

network of 𝑁 layers, as well as a random walk generator for drift 𝐷 and variance 𝜎. 

He also contributes a new revision of the model created by Researcher 𝐴, later 

augmented by Researcher 𝐵. This revised model accounts now for the random walk 

generator and a variable layer neural network.  

Researcher 𝐶 executes one run of all seven scenarios for every permutation of 

𝑁, 𝐷, and 𝜎 as well as historical data of Dow-Jones from 1994-1996 as a baseline. 

Researcher 𝐶 contributes back to the platform his output datasets as well as an 

explanation of his final findings: SBLLM is a faster implementation for 𝑁 = 1 for 

reasonable values of 𝐷 and 𝜎. For 𝑁 >  1, other methods were found to perform 

better. Researcher 𝐶 starts working on research explaining possible causes. 

4.7. FRACTI 

As previously explained in Chapter 3, enablers for crowd-based scientific 

investigation define what is required, or should be in place, to enable an investigation 

to occur across a large number of participants in a crowd (Franzoni and Sauermann 

2014). There are two types of enablers: cognitive and non-cognitive enablers. 

As we have explained in Chapter 3, cognitive enablers are domain 

independent, or in other words, should be the same regardless of the characteristics of 

the domain of knowledge under consideration. This research considers two cognitive 
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enablers, we call methods of proof and collaboration in large-scale, defined 

respectively in sections 3.2 and 3.3. 

The non-cognitive enabler, on the other hand, is strongly dependent on the 

specifics of a domain of knowledge. The only non-cognitive enabler for crowd-based 

scientific investigation is called a computational representation. A computational 

representation is a representation system based on facets, contributions, and 

constraints of data used to define concepts related to a specific domain of knowledge. 

A computational representation is defined for a specific domain of knowledge based 

on the representational process described in Section 3.4.1. In this chapter, we applied 

this representational process to define a computational representation for the field of 

economics. 

The computational representation defined in this chapter is the non-cognitive 

enabler that would allow a crowd-based scientific investigation to occur in 

economics. The use of this computational representation and other enablers for 

crowd-based investigation defined in Chapter 3, for support for scientific 

investigation and collaboration in large scale, brings tangible benefits: 

• Transparent Collaboration: support for the transparent description of 

structure and contents of large datasets following a standard method of 

representation and visualization. Shared items can be examined in details and 

re-executed against different scenarios by different groups of users. 

Collaborators can easily define and backtest their hypotheses, support sharing, 

tracking and provenance of contributions, ensure that results are replicable 

and in this sense, playing a role of a scientific support system (J. M. Faleiro Jr 

2013a) (Goecks, Nekrutenko and Taylor 2010). 
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• Reproducibility: a scientific approach to analytical research, in which 

reproducibility becomes a hard scientific requirement: models and scenarios 

have to be reproducible by anyone. Large sets of data and models can be re-

executed, allowing different organizations and individuals to replicate results 

easily 

• Accessibility: end users do not have to be proficient in computer science to be 

able to use, collaborate or visualize models or scenarios in the framework 

• Openness: Instances of the meta-model representing a specific configuration, 

execution or simulation can be exchanged across environments or different 

implementations. Data and method of an investigation can be traced 

regardless of ownership, origin or location of a contribution. 

From now on and throughout this thesis, we will refer to the set of cognitive 

and non-cognitive enablers of crowd-based investigation in the field of economics as 

FRACTI (Faleiro Jr and Tsang 2016a).   

FRACTI stands for FRAmework for Collaboration and Transparent 

Investigation in economics, and it is an abstraction designating the three enablers of 

crowd-based investigation for the field of economics: methods of proof, requisites for 

large-scale collaboration, and the computational representation defined in this 

chapter.  It is essential to clarify that FRACTI is a conceptual abstraction, and is not a 

software implementation, or a programming language. 

4.8. CHAPTER SYNOPSIS 

This chapter fulfills the criteria of success described in Objective 2 on page 20 

of this thesis by defining a computational representation to support investigation and 

collaboration in large-scale for the field of economics. As previously defined in 
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Section 3.4, a computational representation is a representation system based on 

facets, contributions, and constraints of data, and used to define concepts related to a 

specific domain of knowledge for crowd-based investigation. 

The computational representation for the field of economics was defined in 

this chapter by application of the generic representational process described in the 

previous chapter, specifically in Section 3.4.1. According to that representational 

process, a computational representation is closely tied to a domain of knowledge and 

defined based on domain-specific requirements and a computational taxonomy. 

Requirements for the field of economics are defined from financial sciences cases of 

use, described in Section 4.2. The computational taxonomy is described during 

definition of each of the facets in sections 4.3.1, 4.3.2, 4.3.3, and 4.3.4. As previously 

introduced in Section 3.4, a computational representation is given by three 

complementary components called faces, contributions, and constraints of data.  

Facets are the definable aspects that make up a subject or an object and were 

previously introduced in Section 3.4.2. The facets of the field of economics are 

streaming, reactives, distribution and simulation, and are defined respectively in 

sections 4.3.1, 4.3.2, 4.3.3, and 4.3.4.  

Contributions are shareable and formal evidence of an objective crowd-based 

investigation and were previously introduced in Section 3.4.3. Three specific classes 

of contributions define the taxonomy of contributions for the field of economics, 

namely financial models, processors, and endpoints. Each of these classes of 

contributions for the field of economics is defined respectively in sections 4.4.1, 

4.4.2, and 4.4.3.  

Constraints of data are structural constraints defining domain-specific rules of 

association between entities and relationships and were introduced in Section 3.4.4. 
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For the field of economics are proposed three types of meta-model: configuration, 

execution, and simulation, defined in Section 4.5. 

This chapter brings several novelty contributions of this research, specifically:  

• Definition of a computational representation based on the formal steps of the 

representational process previously defined in Section 3.4.1; 

• Definition and formalization of a computational representation for the field of 

economics through the definition of facets, contributions, and constraints of 

data, respectively defined in sections 4.3, 4.4, and 4.5; 

• Formalization of financial models through models of computation of graph-

based streams, or agents, in sections 4.3.1.1 and 4.3.1.2. 

The computational representation for the field of economics defined in this 

chapter and the cognitive enablers defined in Chapter 3 are jointly referred to as 

FRACTI, a FRAmework for Collaboration and Transparent Investigation in 

Economics, defined in Section 4.7. FRACTI is used in the upcoming Chapter 5 to 

formalize, investigate and resolve a non-trivial problem in economics. 
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CHAPTER 5. INVESTIGATING THE PROFITABILITY OF 
MOMENTUM TRADING STRATEGIES 

“In God we trust; all others must bring data. ” – Edwin R. Fisher (E. Fisher 
1978)48 

This research chapter defines an end-to-end investigation exercise to measure 

the actual efficiency of a momentum strategy in technical analysis using historical 

trading data and the formal methods developed in previous chapters of this thesis. 

These methods were introduced in Chapter 3 when we define enablers for crowd-

based investigation, and in Chapter 4, when we present a computational 

representation for the field of economics. 

5.1. THE PROBLEM 

Now has finally come the time to gather all the methods and tools defined in 

previous research chapters in this thesis and apply them to resolve a concrete problem 

in financial sciences. In this chapter, we present a real end-to-end example of a non-

trivial investigation of the performance of a financial trading strategy using FRACTI, 

as defined previously in Section 4.7. 

As previously explained in Chapter 3, enablers for crowd-based scientific 

investigation define what is required, or should be in place, to enable an investigation 

to occur across a large number of participants in a crowd, what we call crowd-based 

investigation (Franzoni and Sauermann 2014). There are two specific types of 

cognitive enablers, and by definition cognitive enablers are not dependent on 

specifics of a domain of knowledge. As a consequence, cognitive enablers should be 

the same across different domains of knowledge: psychology, architecture, physics, 
                                                
48 This quote is often erroneously attributed to William E. Deming (O'Toole 2017) (Walton 1986) 
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mathematics, etc., all should rely on the same characteristics of cognitive enablers if 

they wish to leverage crowds for investigation. These cognitive enablers are methods 

of proof and large-scale collaboration and were defined previously in sections 3.2 

and 3.3. 

Non-cognitive enablers, on the other hand, are strongly dependent on the 

specifics of a domain of knowledge and should be different depending on the domain 

of knowledge under consideration. In other words, we should not expect a non-

cognitive enabler defined specifically for the field of economics to be directly applied 

to some other unrelated area, like psychology or engineering.  

As explained before in Section 3.4, the non-cognitive enabler for crowd-based 

investigation is called a computational representation. A computational representation 

is a representation system based on facets, contributions, and constraints of data, and 

used to define concepts related to a specific domain of knowledge for crowd-based 

investigation.  

A generic process to produce a computational representation is called a 

representational process, as previously defined in Section 3.4.1. A representational 

process produces computational representations described as a set of facets, 

contributions, and constraints of data, based on domain-specific cases of use and a 

computational taxonomy. In Chapter 4 we used the computational process to define a 

computational representation specific to the field of economics. 

As explained in Section 4.7, we are referring to the cognitive and non-

cognitive enablers for the field of economics, already defined in Chapter 3 and 

Chapter 4 as FRACTI. 

In this chapter, we use FRACTI to perform an end-to-end exercise of 

investigation in financial sciences: the profitability of a specific trading strategy. We 
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consider this chapter an important formalization that will help consolidate the vision 

of this thesis, by providing concrete examples of the application of enablers for 

crowd-based investigation, as defined in Chapter 3. 

We have been emphasizing that FRACTI is not a software implementation\ 

or a programming language. However, for the specific set of examples outlined in 

this chapter we have to rely on one particular implementation, or dialect, of FRACTI. 

This dialect is an open source platform called QuantLET (J. M. Faleiro Jr 2008). This 

dialect has evolved to serve as an illustration of concepts in FRACTI and is not 

intended to be a full-fledged implementation of all the concepts of FRACTI at this 

point. Throughout this work, the dialect has been providing valuable insights to this 

research, and vice-versa, this research fed back to the dialect several ideas that were 

materialized as concrete extensions. This dialect relies on many underlying 

computational resources (Pérez and Granger 2007) (Jones, Oliphant and Peterson 

2001) (McKinney 2010) (Hunter 2007). Since the chain of direct and indirect 

dependencies is fluid and always changing, this list is not final.  

We will be using financial models, as described in sections 4.4.1 and 4.3.1.2, 

to investigate if one common trading strategy prevalent in technical analysis is indeed 

profitable, and if so under which circumstances. Even for a somewhat complex and 

extensive exercise, we will show that financial models in FRACTI are a succinct and 

straightforward way to describe and communicate details and features of the trading 

strategy. 

Throughout this investigation, you will learn how financial models are built as 

streams, by chaining processors, and endpoints, as described in sections 4.3.1.2, 

4.4.2, and 4.4.3. As we had previously described in Section 4.4, financial models, 

processors and endpoints are contributions. As we have described in Section 4.4, 

contributions are shareable and formal evidence of an objective, crowd-based 
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investigation, and as evidence they can be exchanged, reused and traced through 

something called a record of provenance, therefore, becoming a vehicle for 

collaborative scientific investigation. For the convenience of the reader, shareable 

evidence of this exercise are captioned as Contributions, as per definition provided in 

Section 3.4.3, and a complete list of all contributions is supplied at the beginning of 

this thesis, on page xiii. 

This exercise will also demonstrate how easy it is to adjust a financial model 

to perform various functions in the investigation. The example of this exercise will 

illustrate how slight adjustments can make the same model serve for tasks of 

visualization, benchmarking, simulation and even real-time trading. 

This chapter is broken down into four specific parts, outlining the process of 

an investigation described in Section 3.2. 

The first part, in Section 5.2 defines the fundaments of the scenario under 

investigation, a common technical trading strategy called breakthrough crossover 

momentum strategy. This exercise will dissect this technical strategy in the search for 

scenarios of profitability on two steps: first against random walks, and second against 

real historical data from components of a liquid index, the S&P 500 index. 

The second part in Section 5.3 describes each of the components of a 

breakthrough crossover momentum strategy, presented in the first part, as FRACTI 

contributions. FRACTI was previously introduced and defined in Chapter 4. 

The third part, in Section 5.4 describes the end-to-end exercise of 

investigation using the proof pipeline defined in Section 3.2.1: formulation of a 

hypothesis; outlining of limitations, simplifications, and expected outcomes; 

development of a model and components; definition of shocks and simulations; 

execution of simulations; and finally formulation of conclusions. During this exercise 
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we generate a number of contributions – as extensively mentioned before, 

contributions are a shareable record of scientific evidence – and a step-by-step 

analysis of that evidence. Throughout those steps, we will demonstrate how easy it is 

to formalize financial models and adjust them to cover a broad spectrum of functions, 

from visualization to benchmarking, to historical simulation. The definition and 

execution of financial models generate a number of relevant shareable and traceable 

contributions.  

The last and fourth part of this chapter in Section 5.5 is an overall analysis of 

the investigation, in which by the end of the process, we list a number of possible 

explanations for our findings, given evidences produced. 

5.2. MOMENTUM TRADING STRATEGY UNDER THE MICROSCOPE 

The concrete example described in this chapter investigates a common trading 

strategy, a variation of a Moving Average Cross-Over (MAC-O) momentum strategy 

(Schoeffel 2011). This type of hybrid strategy uses breakthrough signals to identify 

momentum of a pseudo-random movement. A momentum indicates a tendency of a 

price movement to remain moving one way, up or down. We call this variation of 

MAC-O the Breakthrough Cross Over Momentum, or BCOM, strategy.   

Breakthrough strategies are the most commonly used strategies in technical 

analysis and electronic trading and are strongly based on the assumption of 

momentum. Momentum strategies (Chestnutt 1955) identify profit opportunities by 

assuming that, unlike a purely random movement of a price (random walk), a price 

movement might carry some “inertia” and tend to gain on an already higher price, 

and in the assumption that in “many more times than not … the strong get stronger 

and the weak get weaker” (Chestnutt 1955). 
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Technical analysis is usually seen as an alternative to two other types of 

analysis called Fundamental and Quantitative analysis. Despite its continuous use in 

modern days, technical analysis has its origins on the Dow Theory and the works of 

Cowles (Cowles 1933), Dow and Hamilton (Hamilton and Dow 1922) (Hamilton 

1903-1929) from early twentieth century. Since that early time, the effectiveness of 

technical analysis when compared to fundamental and quantitative analysis has been 

a matter of controversy, with references testifying for the efficacy of technical 

analysis (Patterson 2007) (Brown, Goetzmann and Kumar 1998) and against it 

(Marshall, Cahan and Cahan 2010). Different researchers test variations of these 

strategies using different data, which makes it very difficult to compare and contrast 

different tests and results used in each of these analyses.  

On this exercise, we will be using FRACTI, as defined in Chapter 4, and 

financial models as previously described in sections 4.3.1.2 and 4.4.1 to determine 

the efficiency of the BCOM strategy as an example of the performance of one method 

of technical analysis. Throughout this investigation, we will move our biases and our 

pre-conceptions aside, and expect readers to do the same. We may not be able to offer 

a definitive conclusion for this investigation vis-à-vis evidences collected. The 

primary intent of this exercise is to serve as a showcase of the methods of crowd-

based investigation proposed in this research. 

Financial models that rely on breakthrough strategies intend to predict the 

behavior of a random – or pseudo-random - walk based on fluctuations of this walk 

crossing (or breaking through) the line given by attenuations of its past values.  To 

establish momentum and the breakthrough, this type of financial models rely on four 

specific components: random walks, moving averages, rules for generation of buy 

and sell signals and portfolio management. Over the next sections, we will formalize 

each of these components. 
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5.2.1. RANDOM WALKS 

The first components of BCOM strategies when we intend to evaluate its 

effectiveness when a series of prices on the underlying is ideally efficient are random 

walks. A typical random walk is a path of successive values following some efficient 

random generation pattern. The random walk theory, in essence, states that the path 

of prices over time is efficient when past prices do not influence future prices (Fama 

1965). 

Although random walks can be specified on multiple dimensions, a random 

price movement can be properly modeled as a one-dimension random walk. One-

dimensional random walks are used extensively for simulation of stochastic 

movement of asset prices over time. On this exercise, we will specifically use a 

Brownian motion (R. Brown 1827), or Wiener process (Mandrekar 1995), 

characterized by the following properties: 

 

𝑊! = 0 

𝑊! ~ 𝑁 0, 𝑡 − 𝑠 +  𝑊!   
Equation 13: Brownian Motion 

 

Where 𝑡 →𝑊! is continuous, and 𝑁(𝜇,𝜎!) is the normal distribution with 

expected value 𝜇 and variance 𝜎!. For any 𝑡, 𝑠, and 𝑢, 𝑊! −  𝑊! and 𝑊! are 

independent for 𝑢 ≤ 𝑠 < 𝑡.  

In FRACTI parlance, we can illustrate a random walk using a straightforward 

financial model of just one stream, as described in Section 4.3.1.2, and in one 

sentence, as shown in Contribution 1. 
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Contribution 1. Random Walk Over a Time Series 

A contribution of a financial model describing a random walk and a time series as one stream, showing 
two endpoints 𝑡𝑠 and 𝑝𝑙𝑜𝑡, and one processor 𝑏𝑟𝑜𝑤𝑛𝑖𝑎𝑛 

On this dialect, we represent one stream connecting a daily time-series from 

beginning to end of 2013, a Brownian motion random walk49 for 𝑊! = 10, as defined 

in Equation 13. This financial model - like any other financial model in FRACTI, as 

explained in Section 4.3.1.2 - is a stream. As any financial models in FRACTI, it has 

precisely the same format of a stream formalized in Equation 2 in page 106, with the 

synchronicity operator 𝛿 in this specific dialect carrying a connotation ≫ to indicate 

synchronous communication.  

The resulting contribution – as a reader might recall from definitions set forth 

previously in Section 4.4.3, plots are also an endpoint contribution – is a bi-

dimensional plot shown in Contribution 2. 

                                                
49 On all instances of this exercise “seed” arguments are provided in order to achieve repeatability of 

results of a random series across different executions of the exercise (what in reality makes samples 
on this exercise pseudo-random and deterministic). 
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Contribution 2. Single One-Dimension Brownian Motion 

A one-dimensional Brownian motion representing a pseudo-random price movement of an asset in a 
daily time series from 01/Jan/2013 to 31/Dec/2013 

Additionally, for simulation purposes, the original financial model given in 

Contribution 1 can be extended to take into account multiple Brownian movements 

over a time-series. In Contribution 3 we generate in one stream a series of prices 

mimicking random walks for closing prices of three symbols: GOOG, IBM, and B: 
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Contribution 3. Multiple Random Walks Over a Time Series 

One financial model as a stream, showing one endpoint 𝑡𝑠, defining a time series from 01/Jan/2013 to 
31/Dec/2013, three instances of the same processor 𝑏𝑟𝑜𝑤𝑛𝑖𝑎𝑛, one for each symbol, and a final 
endpoint 𝑝𝑙𝑜𝑡 for visualization of the combined set of random walks 

This financial model defines a stream connecting from a daily time series for 

the entire year 2013 to three separate random walks with different 𝑊! for GOOG, 

IBM, and B. Like before, all results aggregated over a bi-dimensional plot, shown in 

Contribution 4. 
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Contribution 4. Multiple One-Dimension Brownian Motions 

One endpoint contribution, a visualization, showing three different random walks simulating three 
symbols B, GOOG, and IBM 

As we had previously described in Section 4.3.1.2, financial models are 

described as streams connecting processors using synchronicity operators denoted by 

𝛿. As it is shown in Contribution 1 and Contribution 3, this dialect represents the 

synchronous communication between processors by the operator ≫.  

5.2.2. SIGNAL ATTENUATION 

The second major component in evaluating a BCOM strategy is the 

generation of an attenuation signal. The attenuation of a signal removes, or filters, 

variations of values around an intermediate point between high and low values. There 

are multiple ways to attenuate a signal, each providing different characteristics to the 
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filtered curve. On this specific exercise, filtering, or dampening, of signals is 

achieved by running or rolling averages50 of past prices in a time series updated on 

each new tick of the price.  

Moving averages in their basic form are computing intensive. For every new 

price, all past prices would have to be traversed and a new average calculated. To 

avoid this potentially inefficient computation, we skip the calculation of all values by 

acting on values on the tail of the series, and some residual representing past values.  

We call this a recursive representation, and this exercise aims to represent 

calculations in a recursive form. In a recursive representation, iterations over past 

values of a series, in each calculation, are not necessary. 

The most commonly used moving averages are cumulative, rolling, weighted, 

and exponentially weighted moving averages (Croarkin and Tobias 2012). 

                                                
50 Arithmetic mean 
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5.2.2.1. Cumulative Moving Average 

The simplest moving average is an arithmetic average of the previous 𝑛 

values in a series. The non-recursive and recursive calculation are given by Equation 

14: 

𝐶𝑀𝐴! =  !
!

 𝑥!!
!!!    (non-recursive) 

𝐶𝑀𝐴! =  !
!

 (𝑥! + 𝑛 − 1  𝐶𝑀𝐴!!!) (recursive) 
 

Equation 14. Cumulative 
Moving Averages 

 

A cumulative moving average is a particular case of moving average where 

there is no sampling window, so all data is considered equally in the calculation of 

the moving average. 
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5.2.2.2. Rolling Moving Average 

The “rolling” average is an un-weighted mean of previous samples, 

considering a sampling window of size 𝑚′. A more precise definition accounts for 𝑛 

where 𝑛 < 𝑚′, and the window is given by 𝑚 = min(𝑚′,𝑛). Equation 15 gives the 

non-recursive and recursive forms. 

𝑅𝑀𝐴! =  !
!

𝑥!!
!!(!!!!!)   (non-recursive) 

𝑅𝑀𝐴! =  𝑅𝑀𝐴!!! +  !
!
(𝑥! −  𝑥!!!!!) (recursive) 

 

Equation 15. Rolling 
Moving Averages 

 

5.2.2.3. Weighted Moving Average 

Weighted averages have a dampening factor (𝑚) assigning different weights 

to values at different positions in a moving sample window of size 𝑚′. A more 

precise definition of the dampening factor, considering 𝑛 samples, where 𝑛 < 𝑚′, the 

dampening factor is given by 𝑚 = min(𝑚!,𝑛).  

In this moving average 𝑚 past factors are adjusted by a decreasing linear 

factor (𝑚 − 𝑛 + 1), so that more recent observations have a larger influence on the 

filtered signal. Its form is given by: 
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𝑊𝑀𝐴! =  
𝑚. 𝑥! + 𝑚 − 1 . 𝑥!!! +⋯+ 𝑥!!!!!

𝑚 + 𝑚 − 1 +⋯+ 1  

 

Where the denominator 𝑚 − 𝑖  !!!
!!! is a triangular number (Weistein 2015) 

that can be reduced to ! (!!!)
!

, giving the model a final form shown in Equation 16. 

This model is partially recursive from 0 to the value of 𝑚 for each iteration 𝑛. 

𝑊𝑀𝐴! =  
2

𝑚 (𝑚 + 1)  𝑖
!

!!!
 . 𝑥!!!!!  Equation 16. Weighted 

Moving Averages 

5.2.2.4. Exponentially Weighted Moving Average 

In the exponentially weighted moving average, a dampening factor 𝛼 is used 

to decay older terms of the series. Its recursive form is given by: 

𝐸𝑊𝑀𝐴! =  𝛼 𝑥! + 1−  𝛼  𝐸𝑊𝑀𝐴!!! Equation 17. 
Exponentially Weighted 

Moving Averages 

Where 0 <  𝛼 < 1. Higher dampening factors (𝛼) would give lower weight to 

older terms of the series, yielding slower filters. This model is recursive by definition 

and therefore easily adapted to computational forms. 
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5.2.2.5. Representation of Moving Averages 

For the representation of any dampening effect in a time series, we can bind 

together multiple filters to a random walk and a visualization endpoint on the same 

stream using one single line, shown in Contribution 5. 

 

Contribution 5. Stream for Visualization of a Random Walk 

A financial model as a stream representing one time-series of random values, and three attenuation 
processors for exponentially weighted moving, rolling, and cumulative moving averages. The resulting 
visualization is sent to a plot endpoint. 

In Contribution 5 is defined a financial model for a random walk with 

𝑊! = 37 over a time series from 1/Jan/2014 to 31/Dec/201451. Over this random 

signal is added three different filters: 𝑒𝑤𝑚𝑎 (exponentially moving average, in 

Section 5.2.2.4) with 𝛼 = 0.2, 𝑟𝑚𝑎 (rolling moving average, in Section 5.2.2.2) with 

𝑚 = 20 and 𝑐𝑚𝑎 (cumulative moving average, in Section 5.2.2.1). All results are 

chained to a plot endpoint for visualization, shown in Contribution 6. 

                                                
51 In Contribution 5, the parameter 𝑊! is represented on the dialect as 𝑠0. 
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Contribution 6. Multiple Filters Over a Random Walk 

A visualization of three different attenuation filters of a random walk, given by signal 𝑏𝑟𝑜𝑤𝑛𝑖𝑎𝑛. The 
attenuation filters 𝑒𝑤𝑚𝑎, 𝑐𝑚𝑎, and 𝑟𝑚𝑎 provide different levels of attenuation for the original random 
signal. 

Momentum strategies tend to rely on filters that provide some control over 

how much decay should be applied to older terms of the series. Additionally, as 

explained before, on page 162, best results are achieved from filters that can be 

represented recursively. Given these characteristics, we will be using an 

exponentially weighted moving average as a filter for the BCOM strategy on this 

investigation. 
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5.2.3. DERIVATION OF MARKET SIGNALS 

The third major component for evaluating a BCOM strategy is associated with 

mathematical rules for generation of market signals. Market signals are by definition 

an automated instruction to the market of either a buy or sell signal. In a BCOM 

strategy, any buy or sell signals 𝑆! are generated depending on how a fast curve of 

prices 𝐹! crosses over a slow, or dampened, curve 𝐷!. The dampening effect is 

achieved by applying one of the filters described in Section 5.2.2. 

In essence, a buy signal is generated whenever the fast curve crosses the slow 

curve upward. On the other hand, a sell signal is generated whenever the fast curve 

crosses the slow curve downward, as formalized in Equation 18. 

𝑆!!! → 𝑆𝐸𝐿𝐿    𝑖𝑓 𝐷!!! >  𝐹! 𝑎𝑛𝑑 𝐷!!! ≤  𝐹!!! 
𝑆!!! → 𝐵𝑈𝑌    𝑖𝑓 𝐷!!! <  𝐹! 𝑎𝑛𝑑 𝐷!!! ≥  𝐹!!! 

Equation 18. Model for 
Derivation of Market Signals 

Using Cross-Overs 

Where (𝑡 − 2, 𝑡 − 1, 𝑡) is the relevant tuple of three steps in time, shown in a 

sequence that is relevant to determine if the signal 𝑆 in the immediately subsequent 

step 𝑡 + 1 will be either a sell or a buy signal. 

A clear illustration of this behavior is given later in this investigation exercise, 

in Contribution 8 on page 174. On that example, red triangles denote 𝑆𝐸𝐿𝐿 signals, 

while green triangles denote 𝐵𝑈𝑌 signals. 

In Contribution 7, on page 172, we illustrate the application of this full 

strategy as the introduction of a 𝑚𝑎𝑐𝑜 (moving average cross over) processor, which 

takes a time series as input and outputs a set of buy and sell signals.  
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On this model, there are two possible variations of rules for the derivation of 

signals, depending on what makes the faster and slower curves. These variations are 

called double and single crossover rules. 

In a double crossover variation, both the slower and faster curves are 

themselves filtered curves of a spot price curve.  The slower curve has a higher 

dampening factor (𝛼) than the slower curve. For example, if we were to use moving 

averages, as defined in Section 5.2.2.1, as dampening filters, the fast curve 𝑀𝐴′′! and 

slow curve 𝑀𝐴′! would differ by how far back in the past spot prices would be used 

in the average calculation. In other words, slow-moving averages track longer periods 

than fast moving averages does, i.e.:  

𝐹!  ≈ 𝑀𝐴′′!  
𝐷!  ≈  𝑀𝐴′!  

In a single crossover variation, the faster curve is given by the spot price over 

time 𝐹!, what could be for example the random walk 𝑊!. The slower curve is given by 

the dampening of the spot price curve through some filter, usually a moving average 

𝑀𝐴!, i.e.: 

𝐹!  ≈𝑊!  
𝐷!  ≈  𝑀𝐴!  

On this investigation exercise, we will be using a single crossover variation, in 

which the model takes the final form in Equation 19. 
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𝑆!!! → 𝑆𝐸𝐿𝐿    𝑖𝑓 𝑀𝐴!!! >  𝑊! 𝑎𝑛𝑑 𝑀𝐴!!! ≤  𝑊!!! 
𝑆!!! → 𝐵𝑈𝑌    𝑖𝑓 𝑀𝐴!!! <  𝑊! 𝑎𝑛𝑑 𝑀𝐴!!! ≥  𝑊!!! 

Equation 19. Model for 
Derivation of Market Signals 

Using a Single Cross-Over 

Where 𝑊!, 𝑀𝐴!, and 𝑆! are respectively values of the stochastic random walk, 

moving average filter, and a buy or sell signal at time 𝑡 = 𝑖. 

5.2.4. PORTFOLIO MANAGEMENT 

The fourth and final major component of a BCOM strategy should account for 

portfolio management. Portfolio management is a comprehensive term that, in the 

scope of this exercise, refers to the act of keeping track of overall gains and losses of 

the application of any given trading strategy. On this model we will be tracking 

profitability by taking into consideration four quantities, as shown in Equation 20: the 

cash flow resulting from buys and sell signs, transaction costs, a cash balance, and 

price variations of the underlying (Markowitz 1952) (Markowitz 1959). 

(𝑃,𝐵,𝛼)! = 𝑝𝑚(𝐾! , 𝑆! , 𝐿! ,𝑊!) Equation 20. Model for 
Portfolio Management 

The function 𝑝𝑚 is the portfolio management function where the arguments 

𝐾!,  𝑆!,  𝐿!, and 𝑊! are respectively the cash balance, signal (Buy or Sell), load 

(transaction costs) and the value of the stochastic random walk at time 𝑡 = 𝑖. This 

function 𝑝𝑚 takes buy and sell signals generated by the crossover momentum 

strategy as input. Based on the cash balance (𝐾), the function 𝑝𝑚 outputs a 3-tuple 
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(𝑃,𝐵,𝛼)! of the model at time t.  This specific version of portfolio management is 

referred in the dialect as a processor called 𝑐𝑎𝑠ℎ_𝑠𝑡𝑜𝑐𝑘, so for all purposes of this 

exercise they are equivalent, i.e., 𝑝𝑚 ≈ 𝑐𝑎𝑠ℎ_𝑠𝑡𝑜𝑐𝑘. 

In this resulting tuple (𝑃,𝐵,𝛼)! on time 𝑡, the value 𝑃 is the final signal to be 

sent to the marketplace (Buy, Sell or Nothing). The full portfolio balance 𝐵 accounts 

for the summation of cash and non-cash positions. The rate 𝛼 is the overall 

profitability of the model at 𝑡. 

5.3. REPRESENTATION IN FRACTI 

 At this point, we have formalized the BCOM strategy using its core 

components and equations in Section 5.2, and have explained FRACTI in Section 4.7. 

In this section, we will combine these two pieces of knowledge to represent the 

required models for this investigation exercise using FRACTI facets and 

contributions. 

As explained in Section 4.3.1.2, financial models in FRACTI are represented 

by a particular type of facet: a stream. A financial model as a stream is described in 

using steps, associated to either processors or endpoints, detailed respectively in 

previous sections 4.4.2 and 4.4.3.  

Using that approach any financial model, regardless of its complexity, is 

described in terms of steps, performed by processors. Despite the relative complexity 

of the BCOM strategy, explained in Section 5.2, a financial model to benchmark the 

strategy’s performance can be outlined by a specific set of steps: 

• Generate price ticks, either from random Brownian generators or historical 

data, as described in Section 5.2.1; 
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• Generate moving average, preferably allowing the plugging-in of different 

types of moving averages to enable different comparisons and benchmarks, as 

described in Section 5.2.2; 

• Generate signals buy or sell, based on breaks of the spot price curve through 

the attenuated signal, as described in Section 5.2.3; 

• Decide whether to send an order to the market or not, based on current 

portfolio and liquidity (balance of available cash), as described in Section 

5.2.4; 

• Processing the resulting test data (e.g., plotting, storing). 

The financial model associated with a benchmark of the BCOM strategy will 

connect all components defined in Section 5.2, in one line, as shown in Contribution 

7.  

 

Contribution 7. Breakthrough Momentum Strategy Model 

A financial model for the use of a BCOM strategy for a time series from 1/Jan/2013 to 31/Dec/2014, 
for values in a random walk, attenuation signal given by an exponentially weighted moving average, a 
BCOM implementation given by a moving average crossover, and a portfolio management function 
based on cash and stock value. 
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This brief representation of this contribution is a financial model as a one-line 

stream. Starting from a first step defining a time-series for years 2013 and 2014 (𝑡𝑠), 

following to a simulation of a stochastic random walk of closing prices (𝑏𝑟𝑜𝑤𝑛𝑖𝑎𝑛), 

as described in Section 5.2.1, with 𝑊! = 37. The result is sent to the third step of an 

exponentially weighted filter (𝑒𝑤𝑚𝑎), as described in Section 5.2.2, with 𝛼 = 0.05. 

The result on a next step is a moving average crossover (𝑚𝑎𝑐𝑜) for cross-over 

signals, as described in Section 5.2.3; and a portfolio management function 

(𝑐𝑎𝑠ℎ_𝑠𝑡𝑜𝑐𝑘), as described in Section 5.2.4, with an initial cash balance 𝐾! =

$10,000 and load per transaction 𝐿! = $7.5.  

The resulting contribution of the execution of this stream is a visualization 

plot giving the first quick and structured glimpse into what to expect from an 

execution of a BCOM strategy, shown in Contribution 8. 
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Contribution 8. BCOM Performance of Random Prices 

The visualization of a financial model representing the performance of the BCOM strategy, in which 
alpha indicates performance, or profitability if prices are to be considered efficient by following a 
pseudo-random walk. Green triangles indicate a buy signal, and red triangles indicate a sell signal over 
time. 

In blue the random walk simulating closing prices of an underlying 

instrument, and in green the attenuating EWMA filter. The green and red triangles 

show when buy and sell signals are sent to the market. Finally in red, on the right 

vertical axis, in percentage points, is the profitability over time of the overall strategy. 
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A profitable strategy would show 𝑎𝑙𝑝ℎ𝑎 (red line) greater than one, so our 

definition of a profitable strategy would be: 

𝛼 > 1.0 

This first run simulates a random walk, with the specific parameters of the 

initial price of the underlying 𝑊! = 37, dampening factor 𝐸𝑊𝑀𝐴! = 0.05, initial 

cash balance of 𝐾! = $10,000, and transaction costs, or load, of 𝐿! = $7.5. In this 

instance, a BCOM strategy is shown as not profitable, losing about ~6.5% overall in 

the period, two years. 

As we have extensively discussed in Section 3.2, models are in essence a 

simulated simplification of a real world phenomenon. This BCOM model is no 

exception. To allow proper simulation and study, this FRACTI representation of 

BCOM will assume a few important simplifications: 

• Single-symbol order book: support for one single order book, in other words, 

one symbol of the underlying asset. The same conclusions of this 

investigation should be assumed for additional symbols following the same 

price behavior; 

• Infinite market liquidity: the marketplace guarantees market orders to be 

fully executed over the cycle of the next price tick; 

• No price lagging: the marketplace guarantees market orders to be executed 

on the last price tick received. 
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These simplifications help with the understanding and investigation of the 

problem, but should not substantially impact the generality of the experiment under 

study. 

5.4. THE INVESTIGATION EXERCISE 

By now we finally have all we need to start the investigation exercise, and 

will be following the methods of proof outlined in Section 3.2.1. We have explained 

the foundations of FRACTI in Chapter 3 and Chapter 4, and the BCOM strategy is 

understood and defined using FRACTI concepts, each respectively done in Section 

5.2 and Section 5.3. We have built a good idea of what we intend to measure and, as a 

consequence, given proper evidence – or contributions - we should be able to prove 

or disprove. We will now move forward with the investigation per se. Steps of the 

procedure described here are available as a FRACTI scratchpad (Pérez and Granger 

2007) and can be inspected online (J. M. Faleiro Jr 2015). 

Given first brief results from Contribution 8 there are a few immediate 

inquiries that need to be addressed and will form the basis for the remainder of this 

exercise: 

• Are breakthrough momentum strategies money losers? Or are they ever 

profitable? 

• If they are profitable, what features, if any, do we need to fine tune to make 

them consistently profitable? 

Considering these preliminary inquiries, the first step on the scientific 

investigation method is to state our hypothesis. We will look into our hypotheses, 

test, and falsifiability criteria over the next section. 
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5.4.1. HYPOTHESIS 

Based on the proof pipeline introduced in Section 3.2.1, we specify 

conjectures and predictions for this investigation exercise. Given the conjecture step 

of the proof pipeline, defined in Section 3.2.1.2, we define one specific, falsifiable 

hypothesis: 

There are scenarios under which momentum strategies 
are consistently profitable. 

From this conjecture, according to terms previously defined in Section 

3.2.1.3, we define two specific predictions: 

• For some combinations of 𝑊!, 𝐸𝑊𝑀𝐴!, 𝐾! and 𝐿!, as defined in Section 5.2, 

we expect the momentum strategy to be consistently profitable. 

• If profitable against a random walk, we expect the strategy to be profitable 

against a representative sample of financial instruments that follow a quasi-

stochastic price movement path.  

We will test these predictions on two primary cases. First, on Section 5.4.2, a 

Monte-Carlo simulation using stochastic generators on variations of arguments of 

𝑊!, 𝐸𝑊𝑀𝐴!, 𝐾!, and 𝐿!; and second, on Section 5.4.3, back testing against 

constituents of a well-known index: the S&P 500 index (McGraw Hill Financial 

2015a). 

5.4.2. MONTE CARLO SIMULATION OF BROWNIAN VARIATIONS 

The first part of this exercise is an attempt to examine the first portion of our 

hypothesis: finding out for which combinations of parameters of a random walk 𝑊!, 
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𝐸𝑊𝑀𝐴!, and 𝐿! we should expect the momentum strategy to be consistently 

profitable. 

We will answer that by defining a model that executes on different shocks. As 

previously described in Section 4.5, the term shock in FRACTI nomenclature denotes 

one single iteration of a recurring simulation. In other words, each shock carries one 

permutation of values of features relevant for a specific simulation. In this exercise 

specifically, each shock carries one possible variation of values of three particular 

features:  

• An initial value of the random walk given by 𝑠ℎ𝑜𝑐𝑘. 𝑠0, representing the 

value of 𝑊! in Equation 13 on page 157 when we model and describe random 

walks;  

• The dampness factor of the filter given by 𝑠ℎ𝑜𝑐𝑘.𝑎𝑙𝑝ℎ𝑎, representing the 

value of 𝛼 in Equation 17 on page 165, when we described the model for an 

exponentially weighted moving averages for dampening. On this context, 𝛼 

on that equation is referred to as 𝐸𝑊𝑀𝐴!52;  

• Transaction costs, given by 𝑠ℎ𝑜𝑐𝑘. 𝑙𝑜𝑎𝑑, representing the value of 𝐿! in 

Equation 20 on page 170, when we model and describe portfolio management 

as a function of cash and stock balance.  

The specific financial model for this simulation, with these three features, is 

shown in Contribution 9. The attentive reader will notice that this Contribution 9 is 

very similar to the original financial model for a BCOM strategy previously defined 

                                                
52 To avoid confusion with the fitness of the BCOM strategy, denoted by 𝛼, and defined in page 163. 
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in Contribution 7 on page 172. This realization should not come as a surprise since 

essentially they both describe the same financial model.  

 

Contribution 9. Simulation Model 

This contribution performs a simulation of the performance of a BCOM strategy against a random 
walk by permutations of possible values on features of the financial model. Each permutation is given 
by a 𝑠ℎ𝑜𝑐𝑘 instance, carrying specific features 𝑠ℎ𝑜𝑐𝑘. 𝑠0, 𝑠ℎ𝑜𝑐𝑘. 𝑎𝑙𝑝ℎ𝑎, and 𝑠ℎ𝑜𝑐𝑘. 𝑙𝑜𝑎𝑑.  

The similarity between in Contribution 7 on page 172 and this Contribution 9 

is an example of a practical consequence of the use of streams for the representation 

of financial models, in which one can come from definition and execution, and from 

there, to a repetitive simulation of a financial model with minimum descriptive 

changes. One could use the same stream to switch from visualization to a Monte 

Carlo simulation on the same model immediately, just changing from constants to 

arguments in a shock.  

After defining the composition of a shock, the next step is to perform a 

simulation. In this exercise, for illustration purposes, we decided to use uniform 

samples to represent variations on each of the arguments.  

In a uniform distribution, if 𝑟𝑠(𝑛) is a random sample of size 𝑛, the 

continuous uniform distribution in the range 𝑎, 𝑏 , denoted by 𝑈𝑛𝑖𝑓 𝑎, 𝑏  for 𝑏 > 𝑎, 

is given by Equation 21. 
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𝑈𝑛𝑖𝑓 𝑎, 𝑏 = 𝑏 − 𝑎 ∗ 𝑟𝑠 𝑛 +  𝑎 Equation 21. Uniform 
Distribution 

In this dialect, a continuous uniform distribution using the same arguments as 

in Equation 21 is denoted by 𝑢𝑛𝑖𝑓(𝑎, 𝑏,𝑛).  

The execution environment of this dialect is responsible for generating all 

shocks for the simulation, covering all possible variations of features 𝑊!, 𝐸𝑊𝑀𝐴!, 

and 𝐿!. The simulation consists of the generation of an exhaustive variation of all 

these features, trying to identify for which combination of features, the performance 

of the BCOM strategy is higher. On this financial model, the performance of a 

BCOM strategy is given by 𝑓𝑖𝑡𝑛𝑒𝑠𝑠, a feature denoted by 𝛼, which indicates the 

overall profitability of the model.  

We shock the model defined in Contribution 9 with values in 𝑠ℎ𝑜𝑐𝑘. 𝑠0, 

𝑠ℎ𝑜𝑐𝑘.𝑎𝑙𝑝ℎ𝑎, and 𝑠ℎ𝑜𝑐𝑘. 𝑙𝑜𝑎𝑑 as permutations of values in uniform distributions. 

The entire definition of the procedure is done in one line, in Contribution 10. 

 

Contribution 10. Shocks of Permutations of Uniform Distributions 

A Monte Carlo simulation of 𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚_𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛, defined in Contribution 9, by generating 
permutations of each of the arguments as uniform distributions as defined in Equation 21. 
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In Contribution 10, we specify how each of the permutations of each of the 

features on the simulation in Contribution 9 will be generated. In this case, a Monte 

Carlo simulation, each of the features will take permutations of random values taken 

from a uniform distribution 𝑢𝑛𝑖𝑓(𝑎, 𝑏,𝑛) as explained in Equation 21.  

In this exercise, for illustration purposes, we intend to investigate correlations 

using linear regressions and scatter plot matrices53 (Friendly and Denis 2005). For the 

first try of the investigation, we generate the scatter plot matrix by streaming the 

Monte Carlo simulation using one statement, as shown in Contribution 11. 

 

Contribution 11. Streaming a Scatter Matrix 

Generation of a scatter matrix from a BCOM model previously defined in Contribution 9 to a Monte 
Carlo simulation previously defined in Contribution 10. 

The result of the simulation defined in Contribution 9 in a visualization should 

show all features displayed on both x and y-axis. The resulting plot, shown in 

Contribution 12, allows for a visual description of the correlation between each 

feature.  

                                                
53 Usually real-world investigation scenarios will rely on a much higher number of features, which 

would make the use of visual methods impractical. Numerical methods on that case would be more 
appropriate. 
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Contribution 12. First Monte Carlo Simulation, Scatter Plot Matrix 

The resulting plot of a first Monte Carlo simulation shows each feature arranged in rows and columns 
in a scatter plot matrix. On a scatter plot, features are arranged so that correlations between each 
feature can be visually inspected, and in the diagonal a normal interpolation gives a sense of mean and 
distribution of each feature. 

The diagonal of the scatter plot brings a normal interpolation of each of the 

features, from where we can visually get a sense of mean and distribution for each of 

the features. The upper right half of the matrix brings a scatter plot of each pair of 

features, along with a linear interpolation of the pair. This visual arrangement gives 
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us a sense of mutual correlation. The lower left half of the matrix shows a cluster plot 

where we can observe any patterns of clustering on each of the pairs. 

From top to bottom, and left to right, a scatter plot matrix presents the same 

sequence of features in horizontal and vertical. In this case, these are in order 

𝐸𝑊𝑀𝐴!, 𝛼, 𝐿!, and 𝑊! – respectively representing the dampening factor of the 

EWMA, fitness (or profitability), load (or transaction costs) and the initial price of 

the instrument under simulation. 

This first Monte Carlo simulation and the analysis of the correlation between 

features in the scatter plot matrix brings specific and essential insights into the 

BCOM strategy under investigation: 

• This strategy is never profitable against random walks using the range of 

uniformly distributed arguments for this simulation. No shocks were able to 

bring 𝛼 > 1, our definition of profitable as explained in Contribution 8. 

• The lower the dampening of the filter, the less money an investor will lose. 

The relationship between dampening and profitability is shown by the 

(dampening x fitness) scatterplot on the upper half right side of the scatter 

matrix, row 1 and column 2, with a negative line-of-fit. In other words, an 

investor will lose less money using slow filters; or using yet another phrasing, 

𝐸𝑊𝑀𝐴! (dampening) is negatively correlated to 𝛼 (fitness). 

• As one could expect, this simulation shows the obvious negative correlation 

between transaction costs and profitability. The lower the transaction costs 

(load), the less money you lose. The lower the feature 𝐿! (transaction costs, or 

load), the higher 𝛼 (profitability, or fitness). 



 

 

184 

• As one could intuitively expect, the initial price of a stock does not influence 

the profitability of this model. The relationship between initial stock price and 

profitability is shown by the (s0 x fitness) scatterplot on the upper half right 

side of the scatter matrix, with a virtually neutral line-of-fit. In other words, 

the feature 𝑊! (initial price) does not correlate to 𝛼 (profitability). 

We can see that one of the features is irrelevant for what we are investigating. 

The quick inspection described above showed 𝑊! (initial price of a stock) does not 

influence 𝛼 (profitability or fitness) and should be removed. On that note, we will 

adjust our model to remove 𝑊! and add a new feature 𝑊!, namely the variance of the 

Brownian random walk, as explained in Equation 13 through the parameter 𝜎 on that 

model. 

 

Contribution 13. Modified Simulation Model 

This contribution performs a modified simulation of the performance of a BCOM strategy, by 
permutations of possible values of a different set of features in a financial model. Each permutation is 
given by a 𝑠ℎ𝑜𝑐𝑘 instance, carrying specific features 𝑠ℎ𝑜𝑐𝑘. 𝑠𝑖𝑔𝑚𝑎, 𝑠ℎ𝑜𝑐𝑘. 𝑎𝑙𝑝ℎ𝑎, and 𝑠ℎ𝑜𝑐𝑘. 𝑙𝑜𝑎𝑑. 
For illustration purposes, compare this modified simulation to the original one, given in Contribution 
9. 

Our new model, in essence, represents the same as Contribution 9.  However, 

it functionally does something substantially different: this new model investigates if 
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the variance of a random walk (𝑊!) affects profitability (𝛼) and if so under what 

circumstances. 

The new shock features top to bottom and left to right are, in order, 𝐸𝑊𝑀𝐴!, 

𝛼, 𝐿! and 𝑊! – respectively representing dampening of the EWMA, fitness (or 

profitability), load (or transaction costs) and variance of the Brownian motion. A 

scatter plot of this simulation is given in Contribution 14. 
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Contribution 14. Second Monte Carlo Simulation, Scatter Plot Matrix 

The resulting plot of a second Monte Carlo simulation shows each feature into consideration. On this 
second simulation, we detect a slight negative correlation between the variance of the random walk 
and profitability of a BCOM strategy. 

In Contribution 14 we see that all findings on the first try still hold true for the 

second try, with an extra insight. Now we get an additional conclusion about the 

correlation between 𝑊! and 𝛼: the (sigma x fitness) cell on the right side of the 

scatter matrix shows a scatterplot with a negative line-of-fit. This correlation between 
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the variance of a random walk and profitability indicates that the variance of a 

random walk (sigma, or 𝑊!) is negatively correlated to profitability (fitness, or 𝛼) or, 

in other words, we should expect to lose slightly less money when a random walk 

presents lower volatility. 

The second try also confirms the bottom line of this simulation: against a 

random walk this model is never profitable. 

5.4.3. BACK-TESTING AGAINST THE S&P 500 INDEX 

For the second part of our hypotheses stated in Section 5.4.1, we will back-

test the BCOM model for profitability against historical price data. For the sake of 

transparency, we selected to use constituents of the S&P 500 index. The S&P Index, 

created in 1957, was the first market-cap-weighted stock market and tracks US stocks 

with at least USD 5.3 billion of market cap (McGraw Hill Financial 2015b).  

As we have explained in Section 4.4.3, one type of contributions in FRACTI 

is called an endpoint. As described in that section, endpoints are further classified 

into something called a dataset. Datasets are a repository of transformed data 

fragments, generated at one point in time, and reused, or consumed later.  

Historical data is a dataset, and as such, it is also a contribution in our 

framework. Since historical data is a contribution, it can be leveraged as part of 

streams and be bound to other contributions, as explained in Section 4.4. As an 

example, we show in Contribution 15 how the dataset ℎ𝑖𝑠𝑡𝑜𝑟𝑖𝑐𝑎𝑙, representing 

historical time series of adjusted closing prices of an AAPL stock, can be used in a 

simple financial model to extract and plot a historical time series. 
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Contribution 15. Model for Historical Adjusted Close Prices for APPL 

A simple financial model shows how a dataset can be used as an endpoint to plot historical adjusted 
closing prices of stock of symbol AAPL for the year of 2014. The resulting stream is sent to another 
endpoint, a visualization plot. 

This financial model represents an operation to get and show price points as a 

simple stream of two steps: from an endpoint dataset to an endpoint, as a static 

visualization explained in Section 4.4.3. On the first step, the first line on 

Contribution 15, the endpoint ℎ𝑖𝑠𝑡𝑜𝑟𝑖𝑐𝑎𝑙 produces all adjusted closing prices54 for 

Apple Computers for the year 2014. The second step simply directs the stream of 

prices to a static visualization, shown in Contribution 16. 

                                                
54 A stock's closing price on any given day of trading that has been amended to account for 

distributions and corporate actions that occurred at any time prior to that day's closing (Norton 
2010). 
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Contribution 16. Adjusted Closing Prices for AAPL in 2014 

A contribution of a static visualization showing all adjusted closing prices of Apple Computers Inc. for 
the year of 2014. 

The dataset ℎ𝑖𝑠𝑡𝑜𝑟𝑖𝑐𝑎𝑙 is a contribution. As we have described in Section 

4.4.3, we can leverage historical data on any financial model as we would do with 

any other contribution. If we want to use historical data, instead of the random walk 

in our BCOM financial model shown in Contribution 7 in page 172, all we have to do 

is switch the first and second steps, related to a 𝑡𝑠 endpoint and a 𝑏𝑟𝑜𝑤𝑛𝑖𝑎𝑛 

processor, with one step: ℎ𝑖𝑠𝑡𝑜𝑟𝑖𝑐𝑎𝑙. The slightly modified financial model for 

historical data is shown in Contribution 17. 
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Contribution 17. BCOM Applied Over APPL Historical Adjusted Closed Prices 

A financial model used to back-check the profitability of a BCOM strategy on historical prices of 
Apple Inc. stock AAPL for the year of 2014, for an initial cash balance of $10,000 and a transaction 
cost (load) of $7.5 per transaction 

This financial model in Contribution 17 compared to the original financial 

model in Contribution 7 in page 172 shows that they are descriptively very similar. 

This similarity is intentional, and desirable, since they essentially represent the same 

underlying attempt: to measure the profitability of a BCOM strategy. This slight 

modification, however, brings a relevant conceptual difference: the financial model in 

Contribution 7 gauges the performance of a BCOM strategy against a random walk, 

while the newly introduced financial model in Contribution 17 gauges the 

performance of that same strategy against an actual symbol, and its historical prices. 

The result of the static visualization, or plot, of the financial model in Contribution 17 

is shown in Contribution 18. 
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Contribution 18. Historical BCOM Performance of AAPL 

The visualization of a financial model representing the performance of the BCOM strategy, in the 
hypothetical case the strategy was used to trade AAPL stock during the year of 2014. Alpha indicates 
profitability, green triangles indicate buy signals, and red triangles indicate sell signals over time. 

If we compare the BCOM performance over a random walk, shown in 

Contribution 8 back in page 174, to the newly assessed results of the same strategy 

applied over historical prices of AAPL, as shown in Contribution 18, it seems like the 

trend of poor performance repeats itself.  

What this new Contribution 18 tells us is that, if one were to start using the 

BCOM strategy to trade APPL stock at the beginning of 2014, one should expect to 

lose approximately 3% of the original cash balance. In other words, of the initial 

$10,000 investment in APPL stocks on 1/Jan/2014, only about $9,700 would remain 

by 31/Dec/2014. 
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Since now we know how easy is to change features of our investigation, we 

can extend our inquiry. Would this poor performance be something specific to Apple 

Computers? How would a different stock perform given the same strategy? For 

example, how would Google Inc.55 (GOOG), behave in the same period using the 

same BCOM strategy and features?  

 

Contribution 19. BCOM Applied Over GOOG Historical Adjusted Closed Prices 

A financial model used to back-check the profitability of a BCOM strategy on historical prices of 
Google Inc. stock GOOGL for the year of 2014, for an initial cash balance of $10,000 and a 
transaction cost (load) of $7.5 per transaction 

To answer these questions, we create a slightly different financial model, 

shown in Contribution 19, bringing only one modification: a change of a constant 

from ‘APPL’ to ‘GOOG’. This small modification is all it is required to visualize the 

historical performance of this new instrument, shown in Contribution 20. 

                                                
55 Throughout this research the name of the company carrying the symbol GOOG changed from 

Google Inc. to Alphabet Inc. We kept the original designation, counting on the fact that readers 
would be more familiar with the original name. 
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Contribution 20. Historical BCOM Performance of GOOG  

The visualization of a financial model representing the performance of the BCOM strategy, in the 
hypothetical case the strategy was used to trade GOOGL stock during the year of 2014. Alpha 
indicates profitability, green triangles indicate buy signals, and red triangles indicate sell signals over 
time. 

Considering this new security on the simulation, GOOG, we lost even more 

money: as it is shown by the 𝑎𝑙𝑝ℎ𝑎 line Contribution 20, as much as 12% of the 

original investment would be lost over the same period. 

Still, by now we have run the financial model twice, on two separate stocks, 

and neither was profitable. One could argue that the sample is not representative of 

expected behavior, both stocks are in the same sector, and both are large-cap stocks. 

In exact terms, the bad performance we have observed in both exercises, shown in 

Contribution 17 and Contribution 20, could be related to poor data selection and bias 

in our part. 
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To investigate further, looking to falsify these scenarios, we could back-test 

this model against a more significant, representative sample of stocks, on multiple 

sectors, and reasonably large caps. For consistency, and to minimize unintended 

biases, instead of trying to select a sample of stocks ourselves, we picked a set of 

stocks already present and tracked in a market index.  

Therefore, in this next experiment, we will investigate the performance of a 

BCOM strategy if that strategy were to be applied to all stocks constituents of the 

S&P 500 index. 

As we did on the first exercise, described in Contribution 9, the first step of a 

simulation exercise is to define the simulation model, specifying all features in a 

shock. The simulation model for this investigation is given in Contribution 21. 

 

Contribution 21. Simulation Model for a Generic Stock 

This contribution performs a simulation of the performance of a BCOM strategy in the year of 2014, 
for a specific stock by permutations of possible values on features of the financial model. Each 
permutation is given by a 𝑠ℎ𝑜𝑐𝑘 instance, carrying specific features 𝑠ℎ𝑜𝑐𝑘. 𝑠𝑦𝑚𝑏𝑜𝑙, and 
𝑠ℎ𝑜𝑐𝑘. 𝑐𝑜𝑙𝑢𝑚𝑛 

Under this dialect of FRACTI, a significant conceptual change in the 

simulation only requires a slight modification of the original model given in 

Contribution 9. In this new Contribution 21, we modify the original model to 

simulate different symbols in an index, instead of different characteristics of a 
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random walk. This specific new simulation case requires a smaller set of features, 

especially: 

• The symbol of the stock, given by 𝑠ℎ𝑜𝑐𝑘. 𝑠𝑦𝑚𝑏𝑜𝑙; 

• The feature, or column, on the historical dataset, given by 𝑠ℎ𝑜𝑐𝑘. 𝑐𝑜𝑙𝑢𝑚𝑛. 

The simulation exercise consists of retrieving all constituents of the S&P 500 

index and execute the benchmark of all adjusted close prices  (‘Adj. Close’) for all 

symbols, using the simulation model given in Contribution 21, as shown in 

Contribution 22. 

 

Contribution 22. Benchmark of All Constituents of S&P 500 

A benchmark of all symbols of the S&P Index, present in dataset 𝑖𝑛𝑑𝑒𝑥, uses the simulation model 
𝑠𝑛𝑝500_𝑚𝑜𝑑𝑒𝑙, previously defined in Contribution 21, and a specific column of the dataset associated 
to adjusted closing prices (‘Adj. Close’). The 𝑠𝑒𝑙𝑒𝑐𝑡 statement specifies which feature of the 
simulation the histogram is generated against, 𝑓𝑖𝑡𝑛𝑒𝑠𝑠, or profitability of a specific symbol. The 
resulting plot will show a distribution of profitability of all stocks on the S&P. 

This benchmark of the S&P Index generates the individual profitability of 

each symbol constituent of the index in two steps: 

• The 𝑖𝑛𝑑𝑒𝑥 dataset, labeled ‘SP500’, contains all constituents of the S&P 500 

index. For every entry of that dataset is extracted the symbol  (‘Ticker’) of all 

constituents of the index; 
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• The simulation model 𝑠𝑛𝑝_500, previously defined in Contribution 21, is 

executed once for each symbol in 𝑡𝑖𝑐𝑘𝑒𝑟𝑠, defined in the previous step. This 

step-wise sequential execution is called a benchmark. The benchmark 

executes individual shocks, in which each shock has a symbol and a column, 

in this case, the column associated with adjusted closing prices (‘Adj. Close’). 

We collect the fitness of the model for this specific symbol and plot a 

histogram with the distributions of results. 

The final result of the benchmark is given by a histogram of the profitability 

of individual stocks of the index, fitted by a normal approximation, as shown in 

Contribution 23.  

 

Contribution 23. Distribution of Results, Simulation S&P 500 

The histogram shows the distribution of profitability of the BCOM strategy, in the hypothetical 
scenario where the strategy would be used to trade on every single individual stock of the S&P 500 
index during the entire year of 2014.  
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This resulting Contribution 23 presents the results of the benchmark, showing 

the profitability of the BCOM strategy in the hypothetical scenario where the strategy 

would be used to trade on individual stocks of the S&P 500 index for the year of 

2014. In this hypothetical scenario, an investor would start with a hypothetical initial 

cash balance of $10,000 and would incur a cost of $7.50 per transaction, as described 

on the underlying simulation model in Contribution 21. The results closely fit a 

normal distribution, and the bottom line of this part of the exercise is clearly 

demonstrated: 

• Evidence collected here indicate that this strategy is not profitable for stocks 

in the S&P 500 index. The mean stays at around 0.98, or 98% of the 

distribution. 

• There is one single outlier in which we can achieve a return of approximately 

18%. The right end tail of the distribution has a single outliner on 1.18, or 

118% of fitness, or 18% profitability. 

The conclusion, based on the evidence described by these contributions, is 

that on average, a stock in the S&P 500 index picked randomly and traded with a 

BCOM strategy would be losing around 2% for the year 2014. This scenario assumes 

an initial cash balance available for the trading of $10,000 and a transaction cost of 

$7.50.  

Therefore, given the parameters of this exercise, the BCOM strategy for a set 

of diversified stocks in the S&P 500 is not profitable. 
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5.4.4. PROVENANCE OF CONTRIBUTIONS 

Everything produced and stored in FRACTI is a contribution. By definition, 

as explained in details in Section 3.4.3, a contribution is a shareable and formal 

evidence of a crowd-based investigation. To be qualified as evidence in a crowd-

based investigation scenario, collaborations have to carry a number of evidential 

properties such as a record of provenance, as previously described in Section 3.4.3.   

To illustrate that, we investigate in this section the record of provenance of 

Contribution 20, a performance plot generated previously in this exercise, on page 

193. 

 

Contribution 24. Extracting the Provence of a Plot Contribution 

Generating a record of provenance of a specific contribution generated previously. The original 
contribution is a plot, generated by 𝑝𝑙𝑜𝑡(𝑜𝑢𝑡 = goog_momentum.png) given in Contribution 19. 

In this Contribution 24 is shown the statement for generation of a record of 

provenance for a specific contribution named ‘goog_momentum.png’. The original 

plot is generated as a result of Contribution 19, on the endpoint 𝑝𝑙𝑜𝑡(𝑜𝑢𝑡 =

goog_momentum.png). As described in Section 4.4.3, endpoints are contributions, 

and as such they must carry a record of provenance. A static visualization of the 

endpoint is shown in Contribution 20.  

 The statement in Contribution 24 extracts the record of provenance of 

Contribution 20, short-named on generation as ‘goog_momentum.png’. The record of 

provenance shows all details related to ownership, time stamps, versioning, source, 
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and transformation steps to get to the generation of the plot. Additionally, the record 

of provenance should be complete enough to allow the re-creation of any specific 

contribution, if needed. The record of provenance is shown in Contribution 25. 

 

Contribution 25. Record of Provenance of GOOG Plot 

The record of provenance of an endpoint associated to a static visualization, short named 
‘goog_momentum.png’. The record of provenance shows all details related to ownership, time stamps, 
versioning, source, and transformation steps to get to the generation of the plot. Additionally, the 
record of provenance should be complete enough to allow the re-creation of any specific contribution 
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There are a number of important details we can infer from a record of 

provenance shown in Contribution 25: 

• The source of all data and steps followed for generation are public and 

transparent. Ownership of each contribution (user jfaleiro), the timestamp of 

each contribution (i.e., date and timestamp at which the contribution was 

generated), an MD5 checksum, and source (indicated by a URI) are shown 

explicitly. 

• From the record of provenance, we can observe that the data used to create 

this plot was obtained on-line (Quandl 2015) on a specific date shown on the 

record, and was passed through a number of stages for caching and 

transformation, according to a specific stream. The stages themselves are 

either endpoints or processors, are also contributions, as explained in Section 

4.4.2 and Section 4.4.3. The stream is also a contribution as explained in 

Section 4.4.1. The generation of this version of the plot is also stated on the 

record of provenance. 

• There is a URI associated with any contribution. In the case of this plot 

contribution, the URI of the version 0 of the plot goog_momentum.png is 

given by hdf://quantlet/jfaleiro/goog_momentum.png:0 and 

indicates a universal location of the contribution and version. This URI allows 

this contribution to be shared with any collaborator with knowledge of this 

URI, as long as the recipient carry proper credentials. 

• Contributions are created, read, updated, and deleted by respective operations 

referencing the URI of the contribution. A creation is always associated to 

version 0 of a contribution, and further operations of update increase the 
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version number. A removal is not definitive. An update on a removed 

contribution brings the contribution to a created state. 

• All contributions are signed, safe-stored, and check-summed. 

Although not the only evidential property of contributions, described in 

Section 3.4.3, provenance tracking is one of the fundamental features of FRACTI that 

allows for contributions to be treated as shareable evidence in a crowd-based 

investigation.  Support for traceable sharing and collaboration among heterogeneous 

parties is one of the core features by which we achieve reproducibility in large-scale 

scientific research (Faleiro Jr and Tsang 2016a). 

5.5. FINAL NOTES ON EVIDENCE OF PROFITABILITY 

There are two opposing views regarding the efficiency of technical analysis 

similar to BCOM strategies. In one end are a number of skeptical studies, derisively 

equating technical strategies to “tea leaves reading” (Browning 2006), “black magic” 

(Samuelson 1965), or “financial astrology” (Huebscher 2009) (Carolan 1998). In the 

other opposing end of the spectrum are several claims of consistent return in the 

range of double-digit percentage points year after year. (Park and Irwin 2004)  

Mimicking those same opposing views, but avoiding extreme stances, peer-

reviewed scientific publications are apparently divided between supporting and 

repudiating claims of efficiencies of technical strategies (Park and Irwin 2007) 

(Balsara, Chen and Zheng 2007) (Hoffmann and Shefrin 2014). A survey of past 

studies indicated that from “95 modern studies, 56 concluded that technical analysis 

had positive results”, and pointed to the difficulty in getting to conclusive findings 

due to “data-snooping bias and other problems” (Park and Irwin 2007) and “noise in 

trading price” (Black 1986). 
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Evidence from this investigation exercise corroborates these previous 

findings. The first simulation used in this chapter observed that entirely random 

walks were consistently unprofitable, retaining 96% of the initial cash investment in a 

year.  On the second simulation, using real historical data shows that this model was 

only profitable in about 8% of stocks constituents of the S&P 500 Index, and in 

average retaining 98% of the initial cash investment during 2014. 

We were not able to achieve claimed results indicating a consistently 

profitable behavior using either random walks or real historical data. Evidence 

produced in this exercise suggest that the strategy is not consistently profitable. As a 

consequence, the hypothesis we had outlined at the beginning of this exercise, in 

Section 5.4.1, is false. 

These findings show strong discrepancies from claims from several 

investment resources. Given the lack of reliable evidence from previous studies the 

specific causality is difficult to assess, but taking into consideration our evidence, and 

indications on other studies, we can list a number of possible explanations: 

• Data snooping56 (Young and Karr 2011) and survivorship biases57 (Shermer 

2014). Evidence in this experiment might be getting the same results as 

previous studies did, in which technical “rules are profitable when considered 

in isolation, but these profits are not statistically significant after adjustment 

for data snooping and survivorship bias” (Marshall, Cahan and Cahan 2010). 

• Our data samples are too efficient. The very notion of a pure random walk 

contradicts the assumptions followed by chartists that price movement carries 
                                                
56 Data snooping, also known as data fishing, data dredging, equation fitting or p-hacking, is the 

intentional or unintentional use of data inference techniques the researcher decides to perform after 
looking at the data (University of Texas 2011) (Simth and Ebrahim 2002) 

57 Survivorship bias is the unintentional error of concentrating on data items that have “survived” 
some process and overlooking those that have perished (Schemer 2014)  
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some “past memory” or private information (Fama 1965). In that sense, 

random walks and components of the S&P 500 Index might be just too 

efficient for momentum strategies to perform. “There is some evidence that 

technical trading rules perform better in emerging markets” due to their 

inefficiencies (Marshall, Cahan and Cahan 2010), and technical strategies 

tend to perform better in inefficient markets (Chaudhuri and Wu 2003). 

• Traders might be using variations of this momentum strategy that are actually 

profitable, and not disclosing its details. Reproducibility, in this case, is 

obviously not possible. 

• Either data or algorithms we relied on for these calculations are wrong or have 

bugs. Despite care, multiple reviews and regressions over this model, 

inaccuracies of this kind are unfortunately commonplace in scientific research 

(Bisig, et al. 2012) (NPR 2013) (Reinhart and Rogoff 2010) (Olsen and 

Cookson 2009) (Lehrer 2011) (Tsang 2014). In this case, all contributions in 

this exercise are available, traceable and verifiable by any interested parties if 

needed. This transparency of evidence that can be shared and investigated by 

crowds is indeed the primary motivation behind FRACTI (Faleiro Jr and 

Tsang 2016a). 

To derive causality from computational artifacts that seem correlated at first 

sight is a hard task, especially when scenarios are not exhaustive.  As we have 

discussed in previous publications (Faleiro Jr and Tsang 2016a), we should expect 

this determination to become increasingly more difficult as we have to deal with 

higher volumes of data, and more complex representations. As previously discussed 

in Section 3.3.3, evidence in the literature associates this phenomenon as a 
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consequence of the “informatics crisis” (Goecks, Nekrutenko and Taylor 2010) and 

the noise present in scientific investigation (Faleiro Jr and Tsang 2016a).   

In closing, as we stated at the beginning of this exercise, the determination of 

the exact cause for a phenomenon in our investigation is secondary. The primary 

objective of this chapter is to demonstrate how simple it is to adjust and modify 

financial models and simulations in order to allow following fluid ideas, and how the 

FRACTI conceptual framework enforces collaboration through shared evidence 

(FRACTI contributions). At this point, we cannot determine the cause of the 

discrepancy between research claiming for or against the profitability of technical 

analysis in financial trading, and the answer will remain debatable and possibly the 

subject of future research. Our core argument on this overall research is that for 

increasingly complex cases of use, collaborative crowd-based scientific research is 

becoming the only way to achieve unequivocal answers. 

5.6. CHAPTER SYNOPSIS 

This chapter fulfills the criteria for success described in Objective 3, on page 

21 of this thesis, the definition of an end-to-end investigation exercise to measure the 

actual efficiency of technical analysis using formal methods and historical trading. 

The core argument of this research is that finance should be studied like any 

hard science, strictly following the procedures of the modern scientific method, 

leveraging computational controls and crowds, as previously explained in Chapter 3 

and Chapter 4. 

In this chapter, we have demonstrated how a trading strategy commonly used 

in technical analysis could be studied scientifically, for example, with control 

experiments (Brownian motion), generalization (testing on multiple assets) and 
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statistical analysis. By specifying the experiments under the proposed FRACTI 

framework, described in Chapter 4, researchers can communicate without ambiguity 

what experiments they have conducted. Other researchers can repeat the experiments 

to verify the results. This way, FRACTI can support crowd science, which is an 

efficient way to accelerate research in complex subjects of knowledge like finance. 

We presented a concrete case in which we use FRACTI facets and 

contributions to outline a hypothesis, produce, record and collect evidence and get to 

an objective conclusion about a financial phenomenon under research, and as a 

consequence prove or disprove it. 

In this exercise, we intentionally selected a model that is simple enough for a 

broad community of finance users to understand and test. An additional incentive is 

the exposure of this and similar strategies that are of constant public debate, in the 

media and academia, of opposing views of technical, fundamental and quantitative 

approaches to investing. The investigation exercise is assembled based on the steps 

and premises previously defined in Section 3.2.1. 

A reasonably sophisticated trading strategy, called a BCOM strategy, is 

defined and formalized in Section 5.2 based on its components: random walks, signal 

attenuation, derivation of market signals, and portfolio management. Despite its 

complexity, this strategy can be described by FRACTI models in clear and accessible 

text as shown in Section 5.3, for example, Contribution 7 and Contribution 9. As 

described in a previous chapter, in Section 3.4, and demonstrated here, by using other 

researchers’ contributions, a researcher does not have to be a computer specialist to 

understand, communicate and improve new contributions.  

The hypotheses of this investigation exercise are defined in Section 5.4.1. The 

investigation exercise, described in Section 5.4, defines two steps: a Monte Carlo 
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simulation of Brownian variations in Section 5.4.2, and backtesting against stocks 

constituents of the S&P Index in Section 5.4.3. 

Every single one of the shareable evidence generated in this exercise is called 

a contribution, defined as a shareable and formal evidence of an objective crowd-

based investigation, previously described in Section 3.4.3. As explained in that 

session, contributions inherently carry a number of traits and evidential properties, 

such as ownership, provenance and access restrictions. These properties are produced 

and maintained transparently at the same time the contribution is generated, and as 

explained in Section 3.4.3, are crucial for scientific process of crowd-based 

investigation. An example of evidential properties of a contribution is given in 

Section 5.4.4. 

Conclusions of the investigation exercise are given in Section 5.5. The first 

simulation in Section 5.4.2 observed that entirely random walks were consistently 

unprofitable, retaining 96% of the initial cash investment in a year.  On the second 

simulation in Section 5.4.3, using real historical data shows that this model was only 

profitable in about 8% of stocks constituents of the S&P 500 Index, and in average 

retaining 98% of the initial cash investment during 2014. 

This chapter brings a number of novelty contributions to this research, 

specifically: 

• The study, formalization, and investigation of profitability of a BCOM 

strategy regarding Monte Carlo simulation of a random walk of prices, and 

historical prices of constituents of an S&P Index, respectively in Section 5.4.2 

and Section 5.4.3; 
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• Representation of an end-to-end investigation of a non-trivial problem in 

economics using FRACTI concepts for crowd-based investigation, in Section 

5.3; 

• Representation of evidential properties of contributions, in Section 5.4.4. 

Code excerpts provided in this chapter are examples of one possible dialect 

called QuantLET (J. M. Faleiro Jr 2008) are provided for illustration purposes only 

and are not the core subject under research. Despite that, these features align 

themselves with the vision of the long-term research and could be looked at as an 

illustration of the overall roadmap for FRACTI, as described in Section 4.7. 
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CHAPTER 6. CONCLUSION 

“There is no end to education. It is not that you read a book, pass an 
examination, and finish with education. The whole of life, from the moment 

you are born to the moment you die, is a process of learning.” (Krishnamurti 
2014) 

6.1. SUMMARY 

Exploration exercises usually start by trying to answer essential questions 

coming from the observation of a phenomenon. The exploration entailing this 

research is no exception. Why is it so difficult to predict outcomes in financial 

sciences, even when we know the social cost of an error is so high? Why are 

scientific methods in economics conducted so differently from investigations 

performed in other sciences? What are the core differences between the discipline of 

economics and other disciplines keener to hard sciences, where predictions and 

answers are trusted, often dealing with more complex subjects? 

During the regular process of this research we had a chance to present our 

ideas to knowledgeable, specialized audiences in the field of economics, and use that 

opportunity to slip in these same inquiries. The most common answer we received 

expresses a belief that economics is a unique domain of knowledge, in which its 

principal subjects of study – humans – are difficult, if not impossible, to model. This 

answer seems to imply that human behavior is fundamentally non-deterministic and 

therefore adequate modeling is impossible. The absence of proper models makes 

prediction and measurement impractical; hence economics has to be handled like a 

soft science, similar to psychology, political sciences or sociology, and not like 

engineering, physics or astrophysics. 
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This research approached this answer as incomplete by cheer observation. If 

we can safely fly in vehicles made of metal, perform unmanned pinpoint landings in 

dashing meteorites, and quickly continue to solve the mysteries of life hiding deep 

into our chromosomes, why can’t we achieve similar results from our explorations in 

economics? 

Throughout this long research developed over the last several years, this study 

grew both in breadth and scope responding to new questions, the introduction of new 

ideas, additional fields of research, and contributions. From the beginning we 

assumed that the complexity or unpredictability of human behavior should not be 

used a justification for the lack of scientific methods in economics. The answer 

advocating a soft science approach for economics was assumed to be incomplete, and 

weak. We assumed the need for something else to enable structured investigation in 

economics, even if in the beginning we were not exactly sure about what this 

“something” would be. We knew, however, and literature seemed to confirm, that the 

answer had to be centered in human characteristics, and geared towards modeling of 

complex and dynamic, ever-changing, systems. 

We began by concentrating solely on the computational aspect of an answer, 

maybe following our experience, or intuition. Despite its richness, and without a 

doubt required in the overall solution, the technological aspect showed itself limiting. 

The more we looked into a solely computational answer, and the more we surveyed 

existing literature, the research led to the realization that computers alone are more 

part of the problem than the solution. Computational power without proper control 

should be considered problematic. As it is the case with any advanced technology, 

computer power amplifies errors, risk, and unfitness of models of prediction to 

possibly disastrous consequences. We borrow the existing term “informatics crisis”, 

coined on a somewhat related context, to describe the computer power paradox.  
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6.2. CONTRIBUTIONS 

Contributions of this work are anticipated by the objectives defined in Section 

1.2, and organized in specific research chapters of this thesis, described in Chapter 3, 

Chapter 4, and Chapter 5, and summarized respectively over the next paragraphs. 

• Enablers for Crowd-Based Investigation: the computer power paradox 

brings indeed the first contribution of this research: the definition of cognitive 

and non-cognitive enablers for crowd-based scientific investigation, defined 

in Chapter 3. This first contribution fulfills the criteria of success described in 

Objective 1, on page 19 of this thesis, by identifying requirements for the 

adequate use of crowds in structured, scientific investigation. As far as this 

research could find, despite few references in which individual facilitators are 

listed, there is no other similar work outlining what is required for efficient, 

scientific, crowd-based investigation. A detailed bullet list of specific novelty 

contributions is given on the chapter synopsis, in Section 3.5, on page 93. 

• Specialized Computational Representation for Economics: this initial 

insight allowed us to elaborate on one crucial aspect, the importance of a 

proper computational representation for structured scientific investigation in 

general, and specifically for economics. In Chapter 4 we describe the second 

contribution of this work: a specialized computational representation for the 

field of economics, given by a conceptual framework called FRACTI.  This 

second contribution fulfills the criteria of success described on Objective 2 on 

page 20 of this thesis by defining a computational representation to support 

investigation and collaboration in large-scale for the field of economics. This 

conceptual framework is not a computer language or an implementation, but a 

representation system based on a set of fundamental building blocks to 

assemble and describe financial models, at a conceptual level. As far as this 
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research could find, there are no similar approach or idea for representation of 

financial models. A detailed bullet list of specific novelty contributions is 

given on the chapter synopsis, in Section 4.8, on page 148. 

• Non-Trivial Investigation Exercise: the third and final contribution of this 

research is given on Chapter 5 by answering an age-old question in financial 

sciences: how profitable is technical analysis?  We make sure we follow a 

strictly scientific approach to answering that question, by using the 

contributions we previously advocated on previous chapters: enablers of 

crowd-based investigation given in Chapter 3, and a computational 

representation for the field of economics given in Chapter 4. This third and 

last contribution fulfills the criteria for success described in Objective 3, on 

page 21 of this thesis, the definition of an end-to-end investigation exercise to 

measure the actual efficiency of technical analysis using formal methods and 

historical trading. This exercise is a practical end-to-end example of the use of 

concepts on this research based on reverse engineering, formalization, and 

data analysis to answer this traditional question in a way that no previous 

research has done, using a structured approach for crowd collaboration and 

structured, computational representation. A detailed bullet list of specific 

novelty contributions is given on the chapter synopsis, in Section 5.6, on page 

204. 

6.3. ASSUMPTIONS 

All scientific research is axiomatic to a certain extent. Research deemed 

scientific has to build on top of pre-existing knowledge, considered certain and 

originating in previous works of science, and from there, consider particular 
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assumptions to build up further knowledge. While some assumptions might 

eventually be testable and falsifiable, others are considered approximations.  

As much as would like to avoid it, this research was no exception. We 

considered a number of specific assumptions for the definition of the ideas in this 

research, listed in the following paragraphs. 

• The intrinsic behavior of economic agents can be modeled, and the quest for 

such models is worth pursuing. The science of economics should be seen and 

treated as a hard science like physics, mathematics or engineering, and 

approached with objectivity, with similar methods. The argument of inherent 

complexity or unpredictability of economic systems as a justification for 

treating economics as a soft science – like psychology, social sciences, or 

political sciences – is assumed as incomplete and is refuted for the specific 

purposes of this research. The rationale for this assumption is described in 

Section 1.1 and Section 6.1. 

• The ever-increasing reliance on high-powered computing resources for 

complex investigations in economics makes the subjects of economics and 

computational finance more and more intertwined. Given the nature and the 

scope of this research, there is no practical distinction between these two 

fields, as discussed in the peculiarities of our field of study in Section 3.2.2, 

specifically on page 55. 

• The process by which we acquire objective knowledge must follow the rules 

dictated by the scientific method, as discussed in Section 3.2. The proof of 

observations as being real or false must be driven by a widely known and 

accepted collection of pragmatic and quantifiable standards, as described in 

Section 3.2.1. 
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• Human collaboration in large scale is assumed to be an adequate method to 

investigate and resolve complex problems. As explained in Section 3.3.2, this 

assumption is inferred empirically.  

• Collaboration in large-scale is enabled by providing the correct set of 

incentives to crowd participants, as explained in Section 3.3.1. 

• Computers should fulfill the role of a tool to support discovery and should not 

serve as a replacement for the application of reproducible and falsifiable 

procedures of the scientific method. In other words, computers should serve 

as control points for collaboration and interaction of human participants, and 

not as agents of scientific inquiry themselves, as explained in Section 3.1. 

• A computational representation is defined by and tightly coupled to, a specific 

domain of knowledge. The representational process defined in Section 3.4.1 

explains the concept of a computational representation and the inter-

dependency between representation and a domain of knowledge. 

• The exact definition of what constitutes a facet in a specific domain of 

knowledge is empirical, as explained in Section 3.4.2. In some cases, like 

architectural sciences, the proximity to visual and spatial concepts makes the 

establishment of what is indeed a facet - shapes, color, and measurements - 

somewhat intuitive, and as a consequence easier to derive. The same Section 

3.4.2 provides the rationale for a facet. 

• This research assumes a role-based definition of knowledge representation, as 

explained in Section 3.4.5. In a role-based definition, a description of a 

knowledge system is established in terms of five core roles a specific 

representation plays (Davis, Shrobe and Szolovits 1993). The explanation of a 



 

 

214 

role-based representation and significant consequences of this assumption are 

discussed in Section 3.4.5.  

• Different models of computation of streams (i.e., topology, determinism, and 

dynamicity) are fully translated by variations of three specific properties of 

financial models, i.e., synchronicity, connectivity, and plasticity. Models of 

computation of streams are described in Section 4.3.1.1. Basic properties of 

financial models and the translation to models of computation of streams are 

described in Section 4.3.1.2. 

• A financial model must carry three basic properties to fulfill the requirements 

for the domain of knowledge of economics, as defined in Section 4.2. The 

three basic properties are synchronicity, connectivity, and plasticity, all 

explained in Section 4.3.1.2. These properties are crucial for the 

representation of financial models as streams, explained on that same section. 

• It would only make sense to entertain the investigation exercise in Chapter 5 

with an assumption of a presence of price momentum on breakthrough 

strategies. The assumption of momentum and consequences are explained in 

Section 5.2. 

More details about the context in which these assumptions were made, 

restrictions, and consequences, can be found on specific sections and references listed 

in each of bullets above. 

6.4. LIMITATIONS 

In this section we provide a few reservations and pre-empt a common 

questions and observations we received from reviewers of our peer-reviewed 

publications, lectures, readers, and followers of this research. 
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• The computational representation presented in Chapter 4 is not a 

programming language or a software platform. The computational 

representation we call FRACTI is a conceptual framework that relies on 

facets, contributions, and constraints of data, as explained in Section 3.4, to 

describe and assemble financial models. These financial models are abstract 

descriptions that be exchanged by participants in a crowd that are not 

necessarily specialized computer engineers. 

• As explained in Section 3.4.5, a computational representation is a role-based 

knowledge system. As a consequence, comparisons of fitness of our 

computational representation to any other representations, in the most generic 

sense, or even to target ideas, and neither relevant nor appropriate. We assume 

that financial models on our computational representation are surrogates 

(Davis, Shrobe and Szolovits 1993), in a sense that these models are by 

definition a substitute for the target idea itself. As a consequence, any 

measurement of how far or how close this surrogate is from calculations it 

intends to represent is secondary or irrelevant. 

• As we have described in Chapter 3, we use the term enablers to refer to 

requirements that enable, but do not guarantee, a crowd-based scientific 

investigation to occur in a given environment. In other terms, using 

implicational relationships enablers are a necessary but not sufficient 

condition for the proper support of a crowd-based investigation. 

• The qualification given in Chapter 3 of either cognitive or non-cognitive 

refers to enablers, or requirements, which are purely computational or not. A 

non-cognitive enabler is purely computational, and a computational 

representation is by definition a non-cognitive enabler. On the other hand, 
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cognitive enablers are non-computational by nature, and as the name implies, 

related to cognition. Cognition, “the mental action or process of acquiring 

knowledge and understanding through thought, experience, and the senses” 

(Oxford English Dictionary 2011), applies precisely to the context in which 

the two non-cognitive enablers of methods of proof and large-scale 

collaboration are used. 

• Reproducibility of procedures is limited by current data and evidence, and 

cannot account for upcoming data and technology unknown at the time of this 

writing. Limitations of the scope of the general term reproducibility are given 

on page 59. 

The use of structured computational methods to power crowd investigation is 

a relatively new subject and this research does not intend to exhaust all the 

possibilities on this upcoming field. The complexity of relevant problems and the 

damaging social impact of investigative mistakes in economics are only increasing 

over time and require more and more the participation of the right specialists at the 

right time.  

We expect this research to serve as a foundation over which new concepts can 

be built, and to allow the transparent and objective collaboration of a multitude of 

diverse specialists, in different levels, in the search for right solutions. In the end, we 

are all companions and collaborators on the quest for the “scientific truth” (Ellerton 

2012) that will serve as a positive agent of change in our communities, in local and 

global levels.  
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6.5. SIMILAR WORK 

This thesis relates to the use of technology for improvement of methods of 

investigation. This topic covers a broad variety of related academic work, defined by 

two ends of a spectrum, as shown in Figure 20. 

 

Figure 20. Comparable Research in Methods of Scientific Investigation 

The spectrum defining the topic of improved methods of scientific investigation covers a broad range. 
On the right end of the spectrum are methods that rely on the full automation of methods of 
investigation. On the opposite end, methods relying on “wise crowds”. This research, proposing the 
use of specific enablers of a crowd-based investigation, sits somewhere in-between the two opposing 
ends. 

One end of the spectrum is defined by research that intends the full 

automation of the process of investigation. This approach relates to the assignment of 

computers to execute tasks that are usually performed by scientists. Some of those 

Comparable	research	in	improved	methods	of	scientific	investigation	

full	automation	 “wise	crowds”	

Crowd-based	scientific	investigation		
through	enablers	
	
-  Methods	of	proof	
-  Large-scale	collaboration	
-  Computational	representation	
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tasks are associated to the registration of observations (Alkhateeb 2017), automated 

hypothesis generation (Spangler, et al. 2014) and contextual gaps (Swanson 1986), 

and automated testing based on robotics (Soldatova, et al. 2016). Fully automated 

research is not feasible given current technology, as previously discussed in the 

definition of the proof pipeline, in Section 3.2.1. Research on fully automated 

methods of investigation usually brings the same consequences and criticisms 

associated to data-driven research (Shih and Chai 2016), in which correlations of data 

are detected first, and only then, hypotheses are produced. 

On the other end of the spectrum are solutions that rely on the existence of 

“wise-crowds”, based on empirical evidence collected over the years (Surowiecki 

2004) (K. Wallis 2014) (Galton 1907). The wise-crowds approach assumes the 

existence of some invisible, unquantifiable mechanism that makes crowds wise, and 

relies on the assumption of complete independence and decentralization. 

Paradoxically, the assumption of independence would diminish the value of 

structured collaboration in crowd investigation. Evidence on the existence of some 

mechanism enabling wise-crowds to occur is often empirical (Kelley and Tetlock 

2013) and the subject some of criticism (Mannes 2009). 

This research sits somewhere in the middle of this spectrum. We advocate the 

use of a crowd-based investigation through enablers, methods of proof, large-scale 

collaboration, and a computational representation. This research emphasizes the use 

of computers for mechanical and repetitive tasks, like the orchestration of scientific 

interaction in crowds and the record of scientific evidence as contributions, as 

previously described in Section 3.4.3. Additionally, this research also advocates for 

the importance of intangible human factors related to experience and creative 

thinking in science, and a hypothesis-driven process of discovery, as described in 

Section 3.2.1. 
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6.6. FUTURE WORK 

This research offers a solution for large-scale crowd collaboration in finance 

investigation to potentially circumvent the inherent problems related to the 

information crisis we currently observe in scientific investigation, as described 

previously in Section 3.3.2. The foundations provided in this research are a 

significant improvement over the current methods of investigation in finance, as 

explained in Section 3.3.3, and opportunities for further research on the same subject 

are far from exhausted.  

The subject of modern methods of investigation relies mostly on mechanisms 

of extreme complexity, as explained in Section 3.2, and an approach to find for a 

resolution of a complex problem is to search a prospective solution through organic 

and incremental iterations (Visser 2006) (T. Brown 2008) (Dorst 2015). This 

incremental, iterative approach is based on the classical principle of “design thinking” 

(Archer 1965). The main concerns of iterations of future research would be related to  

(a) a working minimum collaborative environment for crowd-based investigation; (b) 

versioning of complex run-time graphs; and (c) quantification of features of 

collaboration. 

The initial step in an iterative approach would be the definition of a minimum 

environment in which the original ideas on this research could be exposed to an 

initially restricted group of participants and tested. A platform to support a controlled 

interaction, even if for a small and controlled number of research participants, will 

help explore algorithms and methods to record contributions and their evidential 

properties, as explained in Section 3.4.3. The use of evidential properties would 

require, amongst other things, the support of a record of provenance, as shown in 

Contribution 25, on page 199. The record of provenance would require storing and 
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versioning of the representation of the financial model as a graph associated with the 

stream of the execution, as explained in Section 4.3.1.2.  

Versioning of complex graphs by a simple full copy of the entire graph on 

change of any attributes of the graph will trigger a space explosion. Some alternatives 

have been recently proposed for a particular type of graph called property graphs 

(Vijitbenjaronk, et al. 2017). Property graphs are oversimplified, compared to a 

FRACTI graph that intends to represent a flow of execution that must be materialized 

on different execution spaces, and as a consequence can be materialized on distinct, 

distributed processors, as explained in Section 4.3.3.2. An alternative to in-place 

versioning would be to apply changes to graphs by separate clone and merge 

operations, in a distributed approach (Torvalds and Hamano 2010). The drawback of 

a clone-and-merge approach is that, since processors and endpoints are in nature 

pervasive58 as described in Section 4.4.2, a clone of a single graph can force cloning 

of others. The feasibility of a clone and a subsequent merge operation is limited by 

how large the affected graph might be.  

For example, if both financial models 𝜙! and 𝜙! use a processor 𝑃, then a 

clone of 𝜙! will force clone of 𝜙!, and the same for the merge operation. Due to 

other processors that can be possibly involved, the cloning chain can potentially 

involve other graphs. As a consequence, for real-world investigations, the final full 

size of the final chain can become an impediment for clone and merge operations. 

Even if limited, in case not all of these questions are finally and adequately 

addressed, a minimum platform allowing a rudimentary interaction amongst 

participants of a scientific investigation is still useful for the investigation and 

additional financial models. The set of cases of use, defined in Section 4.2, was 
                                                
58 Given the intent of reusability, explained in Section 4.4.2, the same processors and endpoints should 

potentially repeat themselves in a large number of financial models.  
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enough for the definition of a functional computational representational for the field 

of economics introduced in Chapter 4, but in no way, they should be considered 

complete. Additional individual financial models should not be enough for a 

doctorate thesis in isolation but should bring two direct consequences. First, since a 

minimum platform would allow for reproducibility and traceability of evidence 

through the use of contributions, it should serve as an incentive for research to be 

conducted on the platform. Second, new financial models, or cases of use, would 

show the need for additional facets and possibly even contributions, extending the 

current computational representation.  

The use of crowds for resolution of problems follows one of two distinct 

approaches. The first approach, named “wise crowds” (Surowiecki 2004) relies on 

empirical observations (K. Wallis 2014) (Galton 1907) and assumes the existence of 

some invisible, unquantifiable mechanism, somehow providing a certain level of 

knowledge to crowds, therefore allowing them to make wise decisions. The “wise 

crowd” approach relies on the assumption of complete independence and 

decentralization between participants of a crowd. The second approach, named 

collaborative crowds, assumes that knowledge is produced as a result of structured 

collaboration between participants of a crowd.  

This research subscribes to the second approach, collaborative crowds, where 

collaboration in large scale occurs by the existence of particular requirements of 

collaboration, listed previously in Section 3.3.1. It is necessary to produce metrics 

and quantify the requirements that must be in place for large-scale collaboration, but 

proper quantification can only happen in a real collaboration environment, and proper 

participants are engaged. The quantification of requirements for large-scale 

collaboration, what we call collaboration metrics, would allow to measure the 

potential efficacy of a disjoint group of researchers and compare the performance of 
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different investigation exercises on items that are specifically related to how well 

collaboration takes place. 

Quantifiable requirements would affect one or more features of collaboration. 

Features of collaboration would give, as a group, indications on the efficiency of the 

scientific investigation performed by the crowd, for a given specific investigation. 

Not all requirements for collaboration, previously listed previously in Section 3.3.1, 

are subject to quantification. Proposed quantifiable requirements for future research 

are the level of micro-expertise attention and cognitive diversity.  

The first quantifiable requirement, the level of micro-expertise attention, is 

crucial to collaboration, and as a consequence, also to collaborative crowds59. The 

level of micro-expertise attention would measure specific features of collaboration: 

the relevancy of a participant in a crowd, per investigation subject; the quality of 

contributions produced per participant; and the influence of a participant.  

Consider for illustration purposes a directed graph 𝜙 = (𝐶,𝐸) of vertices 𝐶 

and edges 𝐸. In 𝜙 = (𝐶,𝐸), 𝐶 is a set of contributions (𝑐!, . . . , 𝑐! ), and 𝐸 is a set of 

edges (𝑒!, . . . , 𝑒! ), indicating dependencies between contributions. Since 

contributions are produced as a result of a financial model60, a contribution 𝑐! is 

considered a dependency of 𝑐!! if 𝑐!! is upstream to 𝑐! (in the sense that a financial 

model is a stream). A specific financial model might be tagged as belonging to zero 

or more subjects of investigation61. Given the streaming nature of a financial model, 

                                                
59 As already emphasized in Section 3.3.1, “expert attention is to creative problem solving what water 

is to life: it’s the fundamental scarce resource” (Nielsen 2012) 
60 A financial model is also a directed graph, as previously explained in Section 4.3.1.2 
61 For example, in the exercise for investigation of performance of momentum strategies, previously 

described in Chapter 5, the financial model in Contribution 18 for example, could be tagged with 
“momentum”, “trading strategy”, “APPL”, or “stocks” 



 

 

223 

this determination is straightforward. Features of collaboration are taken from the 

application of specific graph algorithms to the graph 𝜙 = (𝐶,𝐸): 

• The in-degree centrality62 of the contribution 𝑐! would quantify the quality of 

that specific contribution; 

• The relevancy of a participant in a crowd, per subject of investigation, is 

given by the summation, of the quality of all contributions 𝐶 created by that 

participant; 

• The level of influence of a participant is the summation of the relevancy of 

that participant, across all subjects of investigation. 

The second quantifiable requirement is cognitive diversity. The literature 

points to metrics for cognitive diversity based on cognitive distance (Castner 2014) 

(Griffiths and Joshua 2009) (Tanenbaum and Griffiths 2000). Future research should 

also assume a possible reliance on the interaction of participants, or “texts of 

utterances of a collective’s member” (Castner 2014), for measurement of a crowd’s 

cognitive diversity. Another possibility, given recent literature just published, would 

be the use of a more sophisticated model of sentiment and emotion analysis using 

unstructured data (Rout, et al. 2018). This research could not find in the literature a 

proposal for quantification of cognitive diversity for scientific investigation.  

This list of future research opportunities is obviously not final.  The 

availability of a platform for crowd-based investigation would allow the collection of 

evidence to provide new insights into metrics and algorithms for additional items of 

research. 

                                                
62 The number of inbound edges to a vertex in a directed graph 
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6.7. FINAL NOTES 

Finally, I would like to add a few personal notes related to the fascinating 

endeavor of this research. This research extended over several years, consuming 

thousands of hours of hard work, the reading of hundreds of books and articles of all 

kinds, and what seemed like an infinite number of paragraphs written on notes, peer-

reviewed publications, and finally, in this thesis. 

  This research is primarily about one approach in many in how to improve the 

way we currently search for objective knowledge. Knowledge, as it seems, is the 

result of a recipe by which we mix the contents of a number of different buckets into 

where we keep distinct perceptions of the world around us: experiences, creative 

thoughts, hunches, beliefs, biases, and the systematic training. All in some measure is 

important, and they all have a role in producing objective knowledge. However, the 

exact recipe, or mechanisms, we follow in mixing the contents of those buckets hides 

deep in the way our collective minds work and is still an incognita. For that 

mysterious recipe, we advocate for the use of crowds to perform scientific 

investigation in complex subjects, specifically in our case, in the field of economics. 

 The use of crowds in scientific investigations is indeed a complex subject in 

itself, involving a multitude of subjects outside of our field of concern: philosophy, 

computer sciences, psychology, sociology, data sciences, and biomedicine. The many 

powerful ideas and insights from the ones that came before me are humbling, and 

make crystal clear the meaning of the term "standing on the shoulders of giants".  

We are lucky to be alive these days, when the full power of knowledge of 

millennia, as well as just yesterday’s, is available at the click of a mouse. Scientists in 

all these subjects are in one way or another looking at the same type of problems, 

dealing with their consequences, and coming up with their particular answers.  
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The evidence of breakage in traditional scientific research is plenty, and 

everywhere we look. The cause, one might argue, is the amplifying effects of 

technology combined with misaligned academic incentives currently at play in 

institutionalized science. The solution, we propose, is a crowd-based scientific 

investigation based on a combination of the adequate methods of proof, collaboration 

in large scale, and a domain-specific computational representation. These are the 

enablers we propose, and the ideal combination to harness the power of crowds using 

computers in a controlled, structured way. 

 Throughout this research, in addition to the use of conventional and formal 

methods of peer-review publications and interactions, we did as we say and also 

leveraged anonymous crowds in our investigation. Several of the topics were 

discussed in online question-and-answer sites. Platforms and financial models were 

open-sourced to the public for use and feedback. The involvement of crowds in this 

research should not stop as this thesis ends. Many of the ideas on this research can 

and should be extended. 

  "You want to explore in depth all the points that you have omitted, you want 
to chase all the tangential ideas that struck you but that you eliminated for 
brevity, you want to read other books, and you want to write essays. This is 

the sign that the thesis has activated your intellectual metabolism, and that it 
has been a positive experience. It is the sign that you are the victim of a 
compulsion to research, somewhat like Charlie Chaplin’s character in 

Modern Times, a factory worker who keeps tightening screws even after a 
long day of work. Like Chaplin, you will have to make an effort to restrain 

yourself." (Eco 1977, 252) 

 Indeed, as I write these final lines, I keep seeing screws that must be 

tightened everywhere. This "intellectual compulsion" is fascinating, but like 

everything else, this thesis has a scope, and must now come to an end (the thesis, not 

the compulsion). 
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  I truly hope this tiny little speckle of several pages of organized thoughts 

will challenge similar curious minds into new inquiries and discoveries. These 

thoughts might ultimately help others to build on new ideas and solutions for the 

complex problems affecting humanity.  

We have plenty to worry about during these challenging times, and 

thankfully, the ingenuity of the human scientific mind is standing by, ready to tackle 

and fix it all. 
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GLOSSARY 

Ad hoc Designates a non-generalizable solution or idea that is 

not intended to be adapted to other purposes. Applicable 

to the particular end or case at hand without 

consideration of wider application (Merriam-Webster 

2018) 

BCOM Strategy Breakthrough Cross Over Momentum strategy, a 

variation of a MAC-O strategy that used break-through 

signals to identify momentum of a pseudo-random 

movement. 

Benchmark  Benchmarks describe the final comparison of results, of 

different shocks, and outline of conclusions. 

Characteristics of 

Communication and 

Interaction 

One of the traits defining a contribution as a formal 

evidence for the purposes of crowd-based investigation. 

Collaboration in large-scale is a direct result of how well 

contributions foster communication and interaction, 

therefore a contribution must support three basic 

characteristics of communication and interaction: 

analytical description, granularity and simplicity 
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Computational 

Representation63 

A representation system based on facets, contributions, 

and constraints of data and used to define concepts 

related to a specific domain of knowledge. A layer of 

abstraction that is required in order to define domain-

specific concepts in computers, in a way these concepts 

can be shared in a crowd for the purposes of controlled 

investigation in large-scale. 

Computational 

Taxonomy 

An inventory of computer technologies available and 

relevant for the implementation of domain-specific cases 

of use. An exact composition of a computational 

taxonomy is non-deterministic and heavily dependent on 

biases and experience of the individual performing the 

selection, as well as his personal assessment of the 

relevancy of the technology for the case of use at hand 

Constraints of Data Structural constraints defining domain-specific rules of 

association between entities and relationships. These 

rules and associations describe for computers what is 

feasible for a domain of knowledge, in real world. Those 

structural constraints use an abstract layer of data to 

define restrictions on a separate layer of abstractions, 

based themself on data, hence the term meta-data to refer 

to constraints of data  

                                                
63 To avoid a common misunderstanding, it is important to note that a computational representation is 

not a programming language, or a software implementation. 
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Contribution Shareable and formal evidences of an objective crowd-

based investigation. To be qualified as shareable and 

formal evidences for a crowd-based investigation 

scenario, collaborations have to carry specific traits: 

evidential properties, representational perspectives, and 

characteristics of communication and interaction. As 

shareable evidences they can be exchanged, reused and 

traced therefore becoming a vehicle for collaborative 

scientific investigation. 

Evidence The available body of facts or information indicating 

whether a belief or proposition is true or valid (Oxford 

University 2010) 

Evidential 

Properties 

One of the traits defining a contribution as a formal 

evidence for the purposes of crowd-based investigation. 

Evidential properties are classification, identification, 

record of provenance, and ownership and security 

Facet A definable aspect that make up a subject or an object; 

denomination of things that are similar or related, but yet 

distinct things (Merriam-Webster Online Dictionary 

2016).  



 

 

230 

Financial Model Financial Model is a type of a contribution, defined as a 

component of a computational representation for the field 

of economics. A financial model represents observable 

phenomena in economics, simplified to the right scale, 

and adjusted to use in a process of crowd-based 

investigation 

FRACTI FRACTI is an acronym for a FRAmework for 

Collaboration and Transparent Investigation in 

economics. FRACTI is an abstraction designating the 

three cognitive and non-cognitive enablers of crowd-

based investigation for the field of economics: methods 

of proof, large-scale collaboration, and the computational 

representation for the field of economics. FRACTI is a 

conceptual abstraction, and is not a software 

implementation, or a programming language. 

Intrinsic Element Intrinsic elements of a representation are elements that do 

not have to be explicitly described, and are enforced by 

an eventual computer implementation of the 

representation. An intrinsic element can be assumed to be 

in place regardless of any specific expressions on the 

representation itself. 

MAC-O Strategy Moving Average Cross-Over strategies are special types 

of BCOM strategies in which the break-through is the 

movement of price movement up or down its moving 

average. 
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Meta-model The set of structural constraints of data in a specific 

domain of knowledge. 

Momentum A tendency of a movement to remain moving one way, 

up or down. Momentum strategies identify profit 

opportunities by assuming that, unlike a purely random 

movement of a price (random walk), a price movement 

might carry some “inertia” and tend to gain on an already 

higher price, “many more times than not … the strong 

get stronger and the weak get weaker” (Chestnutt 1955). 

Record of 

Provenance 

Chronology of the ownership, custody or location of 

contributions. 

Representational 

Perspectives 

One of the traits defining a contribution as a formal 

evidence for the purposes of crowd-based investigation. 

Representational perspectives are defined are either 

intrinsic or extrinsic. 

Representational 

Process 

Set of generic procedures to derive an ad hoc 

computational representation, for any given domain of 

knowledge. 

Shock Shocks describe each of the executions of a financial 

model, recording utilized data and results of each 

individual execution. 
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