Research Repository

Predictable ecological response to rising CO2 of a community of marine phytoplankton

Pardew, Jacob and Blanco Pimentel, Macarena and Low-Decarie, Etienne (2018) 'Predictable ecological response to rising CO2 of a community of marine phytoplankton.' Ecology and Evolution. ISSN 2045-7758

[img]
Preview
Text
Pardew_et_al-2018-Ecology_and_Evolution.pdf - Published Version
Available under License Creative Commons Attribution.

Download (1MB) | Preview

Abstract

Rising atmospheric CO2 and ocean acidification are fundamentally altering conditions for life of all marine organisms, including phytoplankton. Differences in CO2 related physiology between major phytoplankton taxa lead to differences in their ability to take up and utilize CO2. These differences may cause predictable shifts in the composition of marine phytoplankton communities in response to rising atmospheric CO2. We report an experiment in which seven species of marine phytoplankton, belonging to four major taxonomic groups (cyanobacteria, chlorophytes, diatoms, and coccolithophores), were grown at both ambient (500 ?atm) and future (1,000 ?atm) CO2 levels. These phytoplankton were grown as individual species, as cultures of pairs of species and as a community assemblage of all seven species in two culture regimes (high?nitrogen batch cultures and lower?nitrogen semicontinuous cultures, although not under nitrogen limitation). All phytoplankton species tested in this study increased their growth rates under elevated CO2 independent of the culture regime. We also find that, despite species?specific variation in growth response to high CO2, the identity of major taxonomic groups provides a good prediction of changes in population growth and competitive ability under high CO2. The CO2?induced growth response is a good predictor of CO2?induced changes in competition (R2 > .93) and community composition (R2 > .73). This study suggests that it may be possible to infer how marine phytoplankton communities respond to rising CO2 levels from the knowledge of the physiology of major taxonomic groups, but that these predictions may require further characterization of these traits across a diversity of growth conditions. These findings must be validated in the context of limitation by other nutrients. Also, in natural communities of phytoplankton, numerous other factors that may all respond to changes in CO2, including nitrogen fixation, grazing, and variation in the limiting resource will likely complicate this prediction.

Item Type: Article
Uncontrolled Keywords: competition coefficient, global change, primary producers, taxonomic group
Subjects: G Geography. Anthropology. Recreation > GC Oceanography
G Geography. Anthropology. Recreation > GE Environmental Sciences
Divisions: Faculty of Science and Health > Life Sciences, School of
Depositing User: Elements
Date Deposited: 09 Apr 2018 09:20
Last Modified: 30 Sep 2019 20:15
URI: http://repository.essex.ac.uk/id/eprint/21792

Actions (login required)

View Item View Item