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Abstract: A new linear colour image filter based on linear quaternion systems (LQSs) is introduced. It detects horizontal,
vertical, left- and right-diagonal edges with a single LQS convolution mask. The proposed filter is a canonic minimal filter of four
LQS filters, each with different angles of rotation combined parallel wise. Different angles of rotation are a key features of the
new filter such that horizontal, vertical, left, and right-diagonal LQS filter masks rotate pixels through angles π /2, 5π /2, 3π /2, and
7π /2, respectively. Although, the four LQS masks are combined parallel to make a single LQS mask but derived using four
quaternion convolutions, one for each direction of edges, the LQS filter produces a result without the combination of results from
four separate edge detectors. This methodology could be generalised to design more elaborate LQS filters to perform other
geometric operations on colour image pixels. The proposed filter translates smoothly changing colours to different shades of
grey and produces coloured edges in multiple directions, where there is a sudden change of colour in the original image.
Another key idea of the proposed filter is that it is linear because it operates in homogeneous coordinates.

1 Introduction
Colour edge detection has been an active research area for more
than three decades. We present a holistic quaternion-based colour
edge detector, capable of detecting multi-directional coloured
edges with a single linear quaternion (LQ) convolution mask. The
proposed filter can be employed on colour images and it is the first
example of a filter based on LQ system (LQS) convolution.

Convolution is a fundamental operation in image processing
and it is often used as an initial stage of automated image
interpretation. Sometimes, strong edges between colours become
very faint in luminance and they are hard to detect. The main
advantage of colour edge detection is that the edges existing at
boundaries between regions of different colours if there is no
change in intensity, can be detected while it is not possible in grey-
level image processing. Linear grey-scale image convolution filters
only scale the pixel values, while most colour image convolution
filters process each colour channel separately, they apply scalar
convolution and produce the final result by combining the
processed channels conventionally. This restricts the convolution
operator to the scaling of pixel values, which produces incorrect
results as the three channels are highly correlated with each other.
Colour edge detection can be classified into two techniques such as
monochromatic-based techniques and vector-valued techniques [1].
There are several types of colour edge detection methods and one
of them is reduced ordering (R-ordering). Trahanias and
Venetsanopoulos [2] proposed a vector order statistics edge
detector based on reduced ordering. minimum vector dispersion
based on reduced ordering is shown to be good but it cannot
produce an estimate of edge direction. The entropy index is also
used in edge detection and Economou [3] introduced an edge
detection algorithm based on local, non-parametric estimation of
image density, which regards edges as a set of points separating
two coherent regions. The method locates and estimates the value
of the density minima at region boundaries as a measure of edge
strength.

This problem of incorrect filtering due to processing of three-
colour channels separately is solved by treating the pixel values as
hypercomplex vectors in colour image convolution filters, where
the three-colour channels are processed simultaneously. It was first
reported that red, green, and blue (RGB) colour components can be
processed by encoding the three channel RGB components on the
three imaginary parts of a quaternion simultaneously [4]. The

hypercomplex convolution operator also has the property of
geometrical operations such as stretching, reflecting, rotating, and
multiple shears on colour image pixel values. The first example of
a colour edge detector was investigated in 1998 [4], in which
colour image pixels are represented as pure quaternions and they
are multiplied by left and right quaternion coefficients in a
convolution. The left and right coefficients are used because of the
non-commutative nature of quaternion multiplication, and it allows
geometrical operations such as rotation. However, further
developments (Evans et al., [5], Sangwine and Ell [6], Sangwine
[7], Sangwine et al. [8, 9], Ell and Sangwine [10], Pei and Cheng
[11], Jin and Li [12], and Said et al. [13] did not achieve a
significant success due to the lack of a well-defined mathematical
framework. Only a few researchers worked in this field such as
Denis et al. [14] who developed a geometrical idea for spectral
content filtering of colour images; moreover, Shi and Funt
developed the first texture segmentation using quaternions [15] but
they did not develop any new idea. In 2007, Ell devised a key
mathematical idea (in Section 2.2), which proved to be unique in
the development of linear colour vector filters. He also suggested
the use of homogeneous [16] coordinates to express colour image
pixels (in Section 2.2.3). The idea for applying the theory of LQSs
was advised for such filters in [17]. Although vector image filtering
has many applications to date but it did not had a sound theoretical
framework based on ad hoc approaches.

In this paper, we have shown that the geometric operations such
as rotation on samples or pixels can be expressed in a canonic form
and this is a significant step toward the development of linear
colour vector image filters. In the formalism of the canonic form, it
requires at most four quaternion coefficients. Generally, any linear
vector filter can be reduced to a sum of four convolutions, each
based on quaternion coefficients or a series or parallel combination
of such filters. Many geometrical operations in three-dimensional
(3D) can be encoded as a LQ monomial map such as rotations,
reflections and simple dilations (see Kuipers [18, p. 345]. The
coefficients are 4 × 4 matrices, or members of the general linear
group of order four, in the formalism of matrices and groups. The
proposed filter is formed by combining four LQS (hypercomplex)
filters in parallel, reducing the result to the canonic form.

The main contributions of our paper are as follows:

i. First time an ad hoc LQ filter is proposed.
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ii. This paper represented how multi-directional edges can be
detected using a single mask.

iii. It presents a theory for multiple geometrical operations
combined in a single mask.

iv. The proposed filter is linear as convolution with a quaternion-
valued mask is a linear operation and it is also carried out in
homogeneous coordinates.

v. The theory reported here is a significant attempt for
development of linear colour vector image filters.

vi. It provides a large set of possibilities for design of such filters
based on the LQSs framework.

This paper is structured as follows. In Section 1, there are brief
descriptions of quaternions and LQSs, in Section 1 we explain the
working of the proposed filter, in Section 2, we show the
experimental results, produced by applying our proposed filter on
colour images in Section 3, and finally in Section 4 we conclude
our comments on this paper.

2 Preliminaries
2.1 Quaternion

The quaternions are a division algebra, which means they have a
multiplicative inverse property, and without this property
numerical algorithms such as those used in image and signal
processing, could not be handled. This work uses the
hypercomplex numbers of Hamilton [19], known as the quaternion
four-tuple (w, x, y, z) represented in hypercomplex form as

q = w + xi + y j + zk (1)

where, w, x, y, z ∈ ℝ. The hypercomplex operators obey the
operation

i jk = i2 + j2 + k2 = − 1 (2)

A quaternion, q ∈ ℍ, can be divided into scalar and vector parts
such as

q = s + v (3)

where s = w = S[q] is the scalar part and v = xi + y j + zk = V[q]
is the vector part. A conjugation is represented by an overbar
which negates the vector part q̄ = s − v. Generally, three-space
vectors are represented as quaternions with a zero scalar part,
called pure quaternions, denoted by V[ℍ].

2.2 Linear QSs

In the formalism of LQS, the canonic form consists of at most four
quaternion coefficients. In the formalism of matrices and groups,
the coefficients are 4 × 4 matrices or members of the general linear
group of order 4. In this paper, we have combined four LQS filters
in parallel, which reduce to the canonic or minimal filter in
homogeneous coordinates.

Real linear functions can be represented as the monomial form

f (x) = mx + c, (4)

where x, m, c ∈ ℝ.
Linear combinations, direct sums or compositions, of such

functions would always be reduced to the same form. However,
quaternion linear functions would also have a multinomial form
[20]

f (q) = ∑
p = 1

P
mpqnp (5)

where all factors are quaternion valued, q, mp, np ∈ ℍ.

A quaternion is associated with a four-tuple of reals such as
(a, b, c, d), a1 + bi + cj + dk and the canonic LQ function would be
associated with four-tuple of quaternions as

{A; B; C; D}, Aq + Bqi + Cqj + Dqk (6)

The four-tuple of quaternions are used to represent the canonic
form.

Generally, LQ functions may contain an arbitrary number of
terms but they can always be reduced to at most four terms. This
reduced function, called the quaternion canonical form of the
function, can be completely specified with a four-tuple of
quaternions. It is well known that vector rotation and dilation
(stretching and compression) and reflections in 3D can be encoded
as a LQ monomial map [21]. Rotations of 3D vectors p are
encoded with a unit quaternion q in the well known LQ equation
[22]

Rq[p] = qpq̄ (7)

The axis of the rotation corresponds to the eigenaxis of the
quaternion q and the angle of rotation is twice the eigenangle of q.
The composition of two rotations Rq[] and Rr[] is as follows:

Rr[Rq[p]] = r(qpq̄)r̄ = (qr)p(q̄r) (8)

Finally, the inverse rotation, Rq
−1[], of Rq[] is as follows:

R−1q[p] = q̄pq (9)

2.2.1 LQS convolution operation: In this section, we explain
how linear filters may be constructed using LQSs as point
operators (the operators that operate on individual samples of the
signal or image being processed). We are assuming here linear
time-invariant filters (signal processing) or linear shift-invariant
filters (image processing) characterised by a finite impulse
response or a finite coefficients’ mask. Making these assumptions,
a filter can be represented as a convolution (we assume here a 1D
filter for simplicity and generalisation to two dimensions is simple)

y(n) = ∑
m = 1

M
h(m)x(n − m) = h × x (10)

where h(m) is the impulse response of the filter.
In the case of vector signals and quaternion coefficients, we

need four products in the convolution

y(n) = ∑
m = 1

M
((A(m)x(n − m) + B(m)x(n − m)i

+C(m)x(n − m) j + D(m)x(n − m)k))
= A × x + B × xi + C × x j + D × xk

(11)

where A(m) is the mth sample of A and A is a finite quaternion-
valued function with N quaternion samples and similarly for B, C
and D. In this way, we construct a filter from the sum of four
quaternion-valued convolutions, three of which are multiplied on
the right by the constant values i, j and k.

An alternative and higher-level view of the filter is to consider
it as the convolution of the signal x with a finite LQ function
F = A + Bi + C j + Dk like this

y = F × x (12)

Now, at each sample point in F, we have a LQ function which
implements some geometrical operations and we regard the filter as
the convolution of these geometrical operations with the vector
signal.
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2.2.2 Parallel and series combinations: The linear sum of two
such functions is calculated by the component-wise addition
suppose

f 1(q) = A1q + B1qi + C1q j + D1qk (13)

f 2(q) = A2q + B2qi + C2q j + D2qk (14)

then

f 1(q) + f 2(q) = A3q + B3qi + C3q j + D3qk (15)

where

A3 = A1 + A2

B3 = B1 + B2

C3 = C1 + C2

D3 = D1 + D2

(16)

The composition of two linear functions, f 2( f 1(q)), is as follows:

f 2( f 1(q)) = A3q + B3qi + C3q j + D3qk (17)

where

A3 = A2A1 − B2B1 − C2C1 − D2D1

B3 = A2B1 + B2A1 − C2D1 + D2C1

C3 = A2C1 + B2D1 + C2A1 − D2B1

D3 = A2D1 − B2C1 + C2B1 + D2A1

(18)

This composition rule shows that it has the same structure as the
standard quaternion multiplication. The composition is not
commutative: f 2( f 1(q)) ≠ f 1( f 2(q)).

2.2.3 Homogeneous coordinates: A point is represented by
coordinate values on 3D axes (x, y, z) (distance in three mutually
perpendicular directions from an origin) in Euclidean coordinates
of 3D space, while a fourth value is added, known as the weight
(w) in homogeneous coordinates. Therefore, a point is expressed by
four coordinates w, x′, y′, z′  such as x = x′/w, y = y′/w and
z = z′/w. For converting from Euclidean to homogeneous
coordinates, w = 1.

It is assumed that the images to be processed have samples in a
3D colour space. The theory presented here, based on LQSs,
requires that the pixel values have been coded into homogeneous
coordinates. The encoding requires a weight to be assigned to each
pixel and this is done by arbitrarily assigning a weight of 1 to each
pixel value. When representing pixel values in quaternion form, the
weight is represented by the scalar part of the quaternion. For
example, to encode an RGB pixel value with components (r, g, b)
into a quaternion representation in homogeneous coordinates, they
are simply encoded as

1 + ri + g j + bk (19)

The decoding process requires that all the pixel values be
normalised to the same weight. Therefore, taking the same
example, we may have a pixel with value

w + r′i + g′ j + b′k . (20)

Now, we have to divide it by w

1 + r
wi + g

w j + b
wk (21)

for getting the pixel value

r
wi + g

w j + b
wk (22)

Translations, affine transformations and projections are linear in
homogeneous coordinates, which means these operations could be
combined with other operations by matrix multiplication or
composition of LQSs. However, the scalar part plays a unique role
in homogeneous coordinates.

3 Working operation of the proposed filter
Monomial mapping of rotation creates LQS coefficient L from left
and right quaternion monomials R and R∗ coefficients [23].
Similarly, L∗ from right and left quaternion monomials R∗ and R
coefficients. The LQS operator L[ ]L∗ defines a rotation in three-
space about the axis μ through an angle π /2 as was discovered by
Hamilton [24]. Conjugation of the values L and L∗ reverses the
sense of the rotation. Here, the axis μ of rotation is the ‘grey line’
in RGB space which extends from black to white: pixels with
values r = g = b fall on this line. The upper and lower rows of the
first LQS filter's mask rotate pixel values within RGB space to
+π /4 and −π /4 of their original positions and total is π /2, in a
plane normal to the grey line, as shown in Fig. 1. In terms of hue,
saturation and intensity coordinates, this rotation is a hue shift. In
image areas where the upper and lower rows of the masks cover
pixels of very similar colour, the rotations of the upper and lower
rows add to produce an achromatic pixel value on or near to the
grey line. In contrast, when the pixel values under the upper and
lower rows differ in hue, as happens at edges in the image, they do
not cancel in this chromatic sense. Pixel values with similar hues
but different intensities, also cancel chromatically and the filter is
insensitive to intensity edges, as shown in Fig. 2. 

Similarly, the vertical LQS filter detects vertical edges, which
rotate pixel values within RGB space to +5π /4 and −5π /4 of their
original positions and total is 5π /2, in a plane normal to the grey
line. In the same way, the left diagonal LQS filter detects left
diagonal edges, which rotate pixel values within RGB space to
+3π /4 and −3π /4 of their original positions and total is 3π /2, in a
plane normal to the grey line. Similarly, the right-diagonal LQS
filter detects right-diagonal edges, which rotate pixel values within

Fig. 1  Parallel combination of filters
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RGB space to +7π /4 and −7π /4 of their original positions and
total is 7π/2 rotation, in a plane normal to the grey line.

The colour generated by the filter at an edge between two
colours is mid-way between the colours in the hue sense. Reversing
the sense of the filter by interchanging L and L∗ in the masks
changes the directions, in which the two colours are rotated. Thus,
with one sense of the filter, an edge between red and green will
yield yellow in the filtered image, while with the other sense, blue
(the opponent colour to yellow) will result. The edge colour is
defined by the sudden change of hue/colour and the detected edge
colour totally depends on it. The more detail, which colour edge
should be appeared/detected, is clearly observed from the filtered
test image, as shown in Fig. 3. The four LQS masks are combined
in parallel to make a single LQS mask. This carries out a single
LQS convolution equivalent to four quaternion convolutions. Each
multiplication of a mask coefficient with a pixel requires four
quaternion multiplications, each of which requires 16 real
multiplications and 12 additions. Thus, our LQS filter produces a
result without having to combine results from four separate filters
and lengthy procedural algorithms. In the classical approach, we
have to find each edge direction with individual mask and each
convolution is carried out with a separate mask. Then the detected
edges are combined using the gradient formula as

|M | = Mh
2 + Mv

2 (23)

θM = tan−1 Mv
Mh

. (24)

where θM is the angle of detected edges, |M| is the gradient and Mh
and Mv are the horizontal and vertical edges, respectively. 

Similarly, with a quaternion filter, we can only find each
directional edge with a separate quaternion convolution mask.

However, in our proposed filter, we skip all these procedural
algorithm steps and use a single LQ (LQS) convolution mask.

The reason for the four angles chosen is to avoid their
cancellation effect when they are combined in parallel. The
detected edges appear in primary and secondary colours because of
the different rotation angles. Each angle of rotation in a quaternion
convolution mask was 45∘ rotation in each of four homogeneous
coordinates. Masks are reduced/combined into a single mask in
parallel. Parallel combination is a weighted sum of pixel values.
These chosen angles of rotation are selected for each convolution
mask in each four different homogeneous coordinates. That is why
they rotate independently of each other and do not cancel out their
filtering effects.

A key point is to use homogeneous coordinates because
operations on colour images are then linear. A filter consisting of a
single quaternion mask has only four degrees of freedom, whereas
an LQS mask consists of four quaternions, and therefore has 16
degrees of freedom. Hence, more flexibility is possible in the
design of linear colour image filters. Since, in our paper, we use
LQSs containing four quaternion-valued LQS convolutions filters,
combined in parallel to form a final filter, it is capable of detecting
the edges in four different directions such as horizontal, vertical
and left- and right-diagonal edges simultaneously.

The proposed filter can be generalised to handle more directions
of edges if we increase the size of the convolution mask. For
example, a 3 × 3 mask can only detect horizontal, vertical, 45∘

directional edges of both left and right diagonals. If we use a 5 × 5
mask, then it can also detect (45/2)23.5∘ edges in both left and right
directions. For a 7 × 7 mask, it can also detect (23.5/2)11.75∘ edges
in both left and right directions. As we increase the size of
convolution mask, the number of directions of detected edges
increases with more enhancing effects but it also increases blurring.

The value of L in the proposed filter as shown in Fig. 4 is given
by

Fig. 2  Original Lena image (left), filtered Lena image by the proposed filter (middle) and filtered chrominance Lena image by the proposed filter (right)
 

Fig. 3  Original test image (left), filtered test image by the proposed filter (middle) and filtered chrominance test image by the proposed filter (right)
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L = f (R, R∗)
L∗ = f (R∗, R)

where

R = S expμθ = S(cos θ + μ sin θ)

with

S = 1/ x
Sh = Sv = 6

Sdi = Sd2 = 4
μ = (i + j + k)/ 3

θh = π /4
θv = 5π /4

θd1 = 3π /4
θd2 = 7π /4

R∗ is the conjugate of R, μ is the unit (pure) quaternion and
f ( ⋅ ) is the monomial function as defined in (see Kuipers [18, p.
345]: the subscripts h, v, d1 and d2 indicate horizontal, vertical, left
and right diagonals. While S is a scale factor to account for the
addition of x pixel values, Sh and Sv for horizontal and vertical
masks and Sd1 and Sd2 for left and right-diagonal masks.

4 Experimental results
The experimental results showed that our filter is capable of
detecting colour edges in multiple directions such as horizontal,
vertical and diagonal edges with only one LQS convolution mask.
The proposed filter consists of four LQS filters, which are
combined in parallel and the convolution is carried out in
homogeneous coordinates.

It is seen in the filtered Lena image, there are two coloured
(green and reddish) edges on the hat. Areas of smoothly varying
colour become achromatic in the filtered image while the sudden
change of colour produce coloured edges, as shown in Figs. 2 and
3. Thresholding to separate the coloured edges from the achromatic
areas is simple and easy using a chromatic threshold. Note that,
where the original image had a step change from black to white or
vice versa, the filtered image has a grey or achromatic line. The
coloured edges in the filtered image have a colour dependent on the
colour difference across the edge. As we know that hue/colour
depends on the angle of rotation, which causes for the detection of
all coloured edges (primary and secondary coloured edges) in the
quaternion rotation convolution operation such as π /4 rotation in
first coordinate, π /4 rotation in second coordinate (equivalent to
3π /4), π /4 rotation in third coordinate (equivalent to 5π /4) and π /4
rotation in fourth coordinate (equivalent to 7π /4).

We apply orthogonal plane decomposition of a quaternion on
the filtered Lena and Test images using quaternion MATLAB
toolbox [25] to get the chrominance component of the filtered
images. Chrominance component is perpendicular decomposition
part of the filtered image when axis of rotation of grey line is
chosen, as shown in Figs. 2 and 3.

Denis et al. [14] introduced a saturation/gradient colour filter,
which is independent from the path (left-wise or right-wise)
applied to convolve the filter with the image while Sangwine's
filter cannot [4]. The gradient colour filter is used to filter the
horizontal, vertical and both diagonal directions. Then, the
maximum of these values of saturation at each pixel of the image is
chosen to design the final colour gradient filter by maximum
distance. The quaternionic filtering operation is linear but the total
process is not linear as the ‘maximum’ operator interferes. Denis's
method handles shadows very well but it compares saturation only
and cannot distinguish them as efficiently as real contours. This is
why the differences in luminance between colours are not detected.
Since thresholding is done on the colour gradient to thin detected
edges but shadows contours are erased from the edge map. Fig. 5
shows the results of Denis's experiment: left image is the colour
gradient, middle image is the log colour gradient (colour gradient
image is amplified to amplify the edges detected by the colour
gradient filter) and finally the edge map images (it is produced by
thresholding the colour gradient). We compare our approach with
Denis et al. [14] approach in Fig. 5 and it is shown that our filter is
better in performance than Denis's filter. 

5 Conclusion
We have reported a new type of holistic colour image filter, which
can detect horizontal, vertical, left- and right-diagonal edges
simultaneously. We have combined four quaternion-based
convolution masks into one mask in parallel and the proposed filter
detects coloured edges without combination of results from four
separate edge detectors. The new filter possesses 16 degrees of
freedom of operation in detecting four different directions of edges
of a colour image with only a single LQS mask. A very important
and significant feature of the proposed filter is that it is a linear
filter because convolution with a quaternion-valued mask is a
linear operation and the operation is carried out in homogeneous
coordinates. The filter theory presented in this paper is a significant
step in linear colour vector image filters, which opens a large set of
possibilities of the design of such filters based on the LQSs
framework. The LQSs operating on homogeneous coordinate
representations of the samples or pixels contributes a very useful
and general linear framework. These kinds of filters have great
usage in the design of efficient aero-dynamic shapes and brute-
force procedural search algorithms of high-resolution images. The
proposed filter can be employed on colour or other multi-spectral
images and it is the first example of a filter based on LQ
convolution (LQS). The theoretical concept and understanding the
structuring ideas of systems reduction in a single system using
LQS discover a research area in colour vector image processing,
especially for linear vector filters [26].

Fig. 4  Horizontal LQS mask (first), vertical LQS mask (second), left diagonal LQS mask (third) and right-diagonal LQS mask (fourth) of the proposed filter
(from left to right)
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