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Abstract

Migration is a political issue that has received more attention in recent years.

Many questions remain as to how Western societies can successfully absorb migrants-

economic arguments have largely been in favour of migration, but the social impact

of diversity in previously homogeneous societies has been subject to ongoing debates

in social science.

Migrant societies are complex social systems with many interacting moving parts.

How do rapid migration-changes in society affect the hosts? How do norms of toler-

ance towards minorities hold up when intergroup conflicts emerge? Can segregating

behaviour of different population groups be reduced by encouraging different settle-

ment locations for new migrants? The questions address both the physical aspect

of migrants entering an already populated space, and the social dimension in which

the hosts are adapting their attitudes.

I develop a Schelling model using Agent-based modelling to address these questions.

I introduce the concept of external migration into an existing society and test how,

by varying the kind of migration, introducing diversity affects local tolerance. In

the second chapter, I show that large-scale migration results in short-term shocks

to the populace, but that these effects are heavily dependent on the population

density and how large the native majority is. In Chapter 3 I implement a version

of the ‘contact hypothesis’ which stipulates that contact with out-group members

increases tolerance and I show that the adaptability increases the importance of

native majorities further. In the fourth chapter, I move on to the social norms of

tolerance, introducing an ABM in which agents can deceive others by signalling

false information about their true attitudes. I show that the emergent pattern of

these behaviours can lead to a false consensus effect in which the perceived majority

public opinion is unstable.

The thesis is able to generate societies that bear many similarities with the Western

countries of today and can suggest explanations for the mechanisms that lead to

changes in public opinion more negative towards migration, as well as reasons for

growing separation of different population groups.
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1 Introduction

Computer models as a method for scientists have enjoyed widespread use in the nat-

ural sciences since the advent of modern computing. Agent-based models (ABMs)

are computer models that allow the construction of autonomous individuals and

groups, and their complex interactions. These models can complement the com-

monly used methods in Political Science. They can be deployed to test existing

social theories and mechanisms where empirical research has been inconclusive or

where social theories can’t be approached with analytical models.

In recent decades, social scientists too have begun to adapt computer models

to test social theories and to simulate artificial societies (Epstein, 2006). Agent-

based models are a class of computer models that focus on simulating autonomous

individuals, groups and their interactions within a system. ABMs can be deployed

as an alternative method to equation-based modelling. While there has been an

increase in computer modelling in fields such as behavioural economics, they remain

underused in the social sciences (Helbing, 2012). Bruch and Atwell (2015) lament

its “minimal impact on mainstream sociological research”, suggesting that a lack of

dialogue between ABM work and data-driven work is one of the culprits.

One of the areas of research which has both an active ABM and a data-driven

community, is that of migration. Agent-based modelling approaches can be useful to

study migration, which spans several disciplines. Migration is a complex system of

decisions, opportunities and costs. The underlying scientific approach of agent-based

modelling is rooted in complexity science, which will be briefly discussed below.

Complexity theories aim at understanding the properties of complex systems.

There is no single complexity theory, in large part because there is no single field

of complexity science. Instead, disciplines ranging from physics, biology, economics,

anthropology and sociology have applied versions of complexity theory to systems of

interest. In Political Science, the complex systems of interest can be voters, parties,

elites, social groups or entire societies.
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Complexity and its intricacies have been studied for several centuries. In 1814,

Pierre Simon Laplace posited that, if one had all the information of any given

system (say, the whole universe), it would be possible to predict everything for eter-

nity (Mitchell, 2009). This notion was coined the ‘clockwork-universe’: a universe

made up of lots of parts, wound up and working according to Newtonian laws (Bryne,

1998). Laplace and others thought that the knowledge of every particle and veloc-

ity in the universe was a practical restriction: doable in principle but impossible in

practice (Mitchell, 2009). With this mindset, researchers likened societies of humans

to clocks as well: a complex (mechanical) system that is made of many individual

parts which, in interaction, form what we know as a clock (Sawyer, 2005). Accord-

ing to this view, if we knew every human being and every interaction in society, we

could predict its future. This view was challenged in subsequent developments in

physics, but the approach remains useful. Whilst we may not understand, explain

and predict everything, we can try and explain part of the systems of interest.

There are many complex systems of which we understand parts, but not all: In-

sect colonies, the brain, the immune system, economies and the internet (Mitchell,

2009). Economies consist of people and companies that engage in buying and selling

behaviour. Some complex systems respond to the external environment and adapt

to it through means such as learning. For example, economies reside in different

political and natural environments. The economy as a system comprises trading

elements, but the environment can affect the behaviour of individuals and groups

within economies and vice versa. Political changes can result in changes in reg-

ulation, thus directly altering the nature of transactions in parts of the economy.

Climate determines what type of fruit can grow on which part of the planet, thereby

influencing the kind of economies that exist in each of these regions. Conversely,

excessive gathering of sources such as large-scale deforestation or deep mining can

impact the ecosystem. Individuals that form part of an economy can also exert
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influence on the political system that coexists, and potentially achieve changes in

politics that in turn influence the economy (Mitchell, 2009). All these moving parts

and interactions influence the complex system of ‘the economy’.

To try and understand the nature of complexity helps our understanding of its

moving parts. If society does not function as a clockwork, how does it work? Once

society is interpreted as such, it raises the question of how these societies can come

into existence in the first place. If there is no super-structure or a concious will

to build a society, how can it exist in the first place? What makes some societies

withstand internal and external pressures, when others crumble?

These answers invite investigation and cannot be answered by studying idealized

problems of macro-states. This is the point in time in which the advent in computing

power opens up opportunities previously barred to scientists. The ability to carry

out millions of computations at a fraction of human time allows for the construction

of complexity in the virtual laboratory. To construct society, all of its inhabitants,

the agents, are created. The system is the collective of these agents. A computer

model that constructs a system from the ‘bottom-up’ in which the agents determine

its output, is called an agent-based model.

Agent based modelling adopts many of the principles of complexity theory. To

understand the whole (the macro-level), agent-based models construct the parts (the

micro-level) that constitute the whole and the interactions between the parts.

The aim of this thesis is two-fold. Firstly, it addresses two research questions

to understand the impact of migration on societies and the importance of social

norms that shape expectations and attitudes. Secondly, it demonstrates the various

applications of agent-based modelling that can be applied in Political Science. Each

chapter will address different elements of the subject and method matter. Chap-
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ter 2 focuses on the physical aspects of migration: how does the size and frequency

of migration differ in its impact on the hosts, and what effect do different settlement

locations have? How does the size of the native and migrant group interact with

these effects? The chapter will demonstrate how building on an established ABM

can make additions easier to understand. I use stylistic facts and existing models

to guide the model design. Chapter 3 builds on the physical elements and incor-

porates social theory in the form of adaptive tolerance. Given the native share of

the population, how do natives and migrants adapt their tolerance in reaction to

migration? The ABM in this chapter directly implements an existing social theory

to test its premises. Chapter 4 focuses on the social norms that influence perception

of migrant acceptance and the need to appear tolerant. The chapter demonstrates

the use of agent-based modelling to contribute to theory development by testing

existing elements of the theory.

The remainder of this introduction is structured as follows: Section 1.1 provides

a literature review of Agent-based modelling and relevant work in the social sciences.

I introduce boids, a well-known ABM, to demonstrate the strength of the method;

followed by a discussion of the weaknesses and pitfalls of agent-based modelling.

The following section reviews the relevant subject literature on migration, diversity,

tolerance and public opinion. Lastly, the research questions are outlined.

1.1 Agent-based Modelling

Socio-economic systems have been notoriously hard to model (Helbing, 2010). They

are more complex than physical models, providing the challenge that simple models

run danger of being too abstract, yet more realistic models may be too complicated to

be fully understood, thereby defeating the purpose of modelling: providing a simpler

version of the real version in order to understand or predict parts of, or an entire

system. Many different types of models exist that tackle socio-economic complexity
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from different perspectives. Each method has different merits. Classical models

for instance often implement analytical approaches and can provide predictions of

future behaviour under the conditions studied (Gilbert, 2007).

Agent-based models belong to the larger group of computer models, specifically

Multi-Agent Systems (MAS) (Mitchell, 2009). These kind of models approach the

target system from a Systems theory perspective: to understand the system, the

idea is to model the components from the bottom up (Gilbert and Conte, 1995).

The study of real-word societies (such as the rise and fall of the Mayan culture) was

among the first objectives of social science computer simulations (Gilbert and Conte,

1995). Agent-based modelling is used to provide the micro-foundations of changes

observed on macroscopic levels (Epstein, 2011). ABMs generally seek to provide

explanations of underlying processes as opposed to describing observed macro-level

outcomes (Smith and Conrey, 2007). In the social sciences, the equation-based

model has gained great popularity (Gilbert and Conte, 1995). These mathematical

models are usually employed in empirical work; structural equation models for ex-

ample test the relationship between explanatory variables, usually part of a social

theory. These models are measured by the goodness of fit with the supplied data,

and the focus lies on the description of the relationship between the key variables.

A statistical approach to segregation might be for example finding that whenever

ethnic minorities constitute a certain percentage of the overall population, segrega-

tion rises. Finding such a regularity (if it exists) is useful to describe and predict

the phenomena, but doesn’t look at why the phenomenon emerges in the first place.

Agent-based modelling emphasises this aspect of modelling: generating possible ex-

planations of underlying processes and showing how a phenomenon might emerge.

Instead of focusing on ‘what happened?’, the focus lies on the set of preconditions

that exist before something happened. This is very useful for testing and advanc-

ing existing social theory. Theorists have had problems specifying social theories

to a sufficient degree, and a wide gap between some areas of theory and empirics
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exists (Gilbert and Conte, 1995).

Because of its experimental nature and lack of empirical restraints, computer

simulation can test sets of conditions surrounding a theory, thereby informing fu-

ture debate in theory development. The many microeconomic models developed in

economics adopt a ‘representative agent’ framework (Epstein, 2011) which assumes

that the collectivity of agents is represented by the aggregation of individual deci-

sions. The population of agents is assumed to be homogeneous. Agent-based models

usually feature sets of heterogeneous agents, instead focussing on the dynamic inter-

actions between them. Agents’ behaviours can be internally driven through intrinsic

attributes, or externally driven through the interaction with the environment and/or

other agents (Epstein, 2011).

Computer modelling has brought the advent of ‘generative’ science: the ability

to artificially re-create and run experiments gives researchers the ability to generate

a set of explanations and proposed relationships (Epstein, 2006). Experiments are

designed to isolate the target system from its environment, and to subject the sys-

tem to a number of conditions in this controlled environment, so that the result can

be attributed to the experimental parameters. In social science, experiments usually

involve people- individuals or groups- and even in isolated environments, there are

a number of cognitive and physiological elements that cannot be controlled for or

have unintentionally not been controlled for. This makes the testing of some social

theories difficult. Especially when individual-level and group-level behaviour are the

subject of interest, it is often difficult to capture this link. One way of overcoming the

micro-macro gap is to collect data from both levels and combine them in multi-level

models. The drawback of this approach is that the model is reliant on the quality

and quantity of the data. Computer simulations circumvent the experimental prob-

lems of isolating people from their cognitive biases because every agent rule must be
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explicitly modelled. Cognitive biases of agents are the result of a concious decision

by the modeller. However, code does not always behave the way that the modeller

intends it to behave. Biases can be introduced through simple coding errors. Be-

cause computer models are not subject to the same time and money constraints of

experimental models, they can test a great range of experimental conditions, in-

cluding those that would be infeasible or unethical to test in human experiments.

Nigel Gilbert has termed this approach ‘exploratory simulation’ (Gilbert, 2007, p.4).

A computer simulation can be thought of as an experiment, written as a software

rather than conducted in a laboratory.

Agent-based modelling is a type of computer simulation that can use the prin-

ciples of Object-Oriented Programming(Gilbert, 2007): software that consists of

objects, which can have attributes and execute functions. In agent-based modelling,

the objects are agents that represent a social entity. In most cases, an agent is an

individual; but agents can also represent groups, businesses, governments, countries,

or more abstract patterns such as language or trade. The objects of an ABM operate

in an environment (analogous to the laboratory setting of a real-world experiment)

that is also specified in the program. The environment can be spatial, such as a

room, a street, a city or a country. It can be a physical representation of space,

including obstacles such as stones, walls or deep water. It can also be social space,

such as friends, family or the workplace. In recent years, Geographic Information

System (GIS) researchers have turned their attention to agent-based models and

build models firmly grounded in GIS data of physical environments (Crooks, 2010).

ABM environments must not necessarily be spatial. They can also be abstract, such

as a social network which is not tied to a spatial setting. In such a network-based

model, the distance between agents may be the strength of their friendship rather

than a physical distance, and interactions between agents take place regardless of

proximity.
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1.1.1 An Agent-based model: boids

An often cited example of an agent based model is Craig Reynold’s boids, ‘bird-

androids’ model (Reynolds, 1987). Reynolds attempted to simulate the behaviour

of flocks of birds. After examining the physical features and behaviours of bird

flocks, a simplified version was devised. The boids follow three rules as they move

around a 2-dimensional space:

1. avoid collisions with other boids;

2. try to fly at the same velocity of nearby boids

3. attempt to stay close to nearby boids

Each boid has these same rules. As a collective, they behave like real bird flocks

(later versions of the model included object avoidance and 3-dimensional space).

Figure 1.1 shows screenshots of a basic version of boids called the ‘flocking’ model

Figure 1.1: Screenshots of flocking behaviour emerging

and is part of the NetLogo standard library (Wilensky, 1998). Boids, or birds, are

represented by yellow arrows on black background, representing empty space. At

the start (left-hand side), all the birds are randomly positioned. Each bird has a

unique and randomised position, velocity and direction. As the model progresses

(centre screenshot), and the birds act based on their three rules, they start cluster-

ing into visible groups (flocking) and start flying in similar directions. After a while

(right-hand side), clear bird flocks have formed and they all fly in the same direction.
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The micro level of this model is the boid. Each individual boid has certain

attributes: position and velocity on the grid, and a set of rules that each boid

follows. A rule in an ABM is designed to guide the behaviour of individual agents

(boids). Boids have three rules in this case, but they can be expanded. Boids are

also not necessarily homogeneous. They share the same ruleset, but other versions

of the model can include heterogeneous boids: some follow one ruleset, some follow

another. Rules can also be contingent upon certain special conditions: for instance, if

a boid finds itself all alone, it will abandon the three-rule approach and will prioritise

re-uniting with other boids first, before resuming the three-rule-based behaviour.

Boids can also differ in size or shape, impacting their behaviour in the world. Agent

rules and behaviour can be deterministic or probabilistic. For example, a rule may

stipulate that a boid will always adjust their velocity according to their nearest

neighbour. Such a rule could also include a percentage chance of a random change

in velocity. The macro-level of the flocking model is the flock of boids, or the

population of boids. The strength of this model is that only three micro-level rules

are required to generate macro-level outcomes (flocking) that mimic real-world bird

flocking. This outcome provides a possible explanation for how bird flocks can

form as a result of the collective behaviour of individuals. Crucially, flocking is an

emergent property of the model. Boids are not programmed to form flocks, but

rather, to deal only with their immediate surroundings. The collective of these

decisions leads to patterns of flocking.

1.1.2 An Agent-based model in Political Science: Strategic voting

Agent-based models are not widespread in Political Science, but they do exist. Clough

(2007) introduced an Agent-Based model of strategic voting, basing the model on

the mechanisms of Duverger’s law. Duvergers law posits that the electoral system

influences which party systems develop in a democracy. Proportional representa-

tion, according to Duverger, is more likely to give rise to multi-party systems, as
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more parties stand a chance of governing through coalitions. The ‘law’ generally

holds but there exist exceptions and not everyone shares the belief that the under-

lying mechanisms are true. One criticism of the proposed mechanism has been the

availability of public information about the parties. Voters can only penalise parties

for not being able to win, if they can make a projection of what the outcome of the

future election will be. If voters do not know about the prospects of their preferred

candidate winning, they can’t discriminate against third parties on the basis that

they don’t want their vote to go to ‘waste’. The availability of information has

been recognised as a key part of the mechanisms of Duverger’s law, but existing

Game Theory-based models have not included the variance of information across

the population (Clough, 2007).

In this ABM, agents are heterogeneous and can have different levels of infor-

mation or access to information. In this model, the individual agents are voters,

connected through a social network (Clough, 2007, p. 318). Each round, voters vote

and talk to other voters to find out who voter for whom. Thus, their information

about the likelihood of a candidate winning is updated. In the next round, voters

cast a new vote, adjusting for the new information that they have received. Voters

will try to maximise their utility: to cast a meaningful vote that gets their preferred

candidate elected. Voters have a preference order over the candidates (Clough,

2007, p. 319). This ABM is more complex compared to the boids model: it includes

social networks, a number of parties, expectations that individual voters (agents)

have, and an electoral system that determines how votes are allocated and how a

candidate can win. The fundamentals remain the same, however: instead of boids,

agents are voters. Instead of flying over the map, voters don’t move, but rather

interact with peers in their network. Just like boids, voters are heterogeneous: to-

gether they form a collective group, but each has individual attributes. Boids have

different starting positions, velocity and direction, and voters have different can-

didate preferences, social networks and information access. The heterogeneity of
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information access and its abundance is the key contribution of this strategic vot-

ing ABM. The results find that strategic voting on its own does not always lead

to two-party systems in a single-member plurality electoral system (SMP). When

poorly informed, voters cannot coordinate effectively on two parties. The size of the

neighbourhood that agents ‘talk’ to to gather information determines their ability

to coordinate. In an age of an abundance of opinion polling this might seem less

of an issue, but recent election upheavals such as the US presidential election 2016

have highlighted a long-discussed theme in academia: the ideological polarization

of information (Spohr, 2017). Rather than lack of access due to not owning a TV,

phone or being able to afford a newspaper subscription, lack of information occurs

through various ‘bubbles’ on social media, which can distort perceptions.

This ABM has used the existing theory (Duverger’s law) and empirical findings

surrounding it as a basis for how the model is constructed, and was able to generate

an additional explanation of the underlying mechanisms that may drive the link

between the electoral systems and party systems.

1.1.3 Problems with Agent-based modelling

As with any other method, agent-based models have strengths but also weaknesses

and pitfalls, which will be reviewed in turn below.

Agent-based models are subjected to tests in order to verify its purpose and

to validate its design and results. Verification of agent-based models involves the

testing and fixing of the software itself and ensuring that its is error- and bug-free.

Model validation tests whether the model match the target system (Gilbert, 2007).

If it does, it must be subjected to sensitivity tests to check whether the outcomes,

even though they may match the target system in the real world, are not the result of

the specific set of parameters. The tractability of ABM outcomes has been subject

to some discussion in the scholarly literature. There are at least two commonly-

discussed concerns relating to tractability of agent-based models: i) complexity and
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uncertainty and ii) technical limitations. Debates over the theoretical assumptions

(iii) of agent-based models have been less common in comparison. I discuss each of

the concerns of tractability and theory in turn below.

(i) Uncertainty

A major concern for some scholars has been the uncertainty of what drives the re-

sults of an agent-based model. Generating outcomes is relatively easy compared to

analysing these outcomes, and more specifically, the mechanisms that have given rise

to these outcomes. In the past, the lack of computing power has meant that many

models were simplistic in their design in order to reduce the resources needed to run

these models (Sawyer, 2005). For most social models, this is no longer a concern.

This has encouraged researchers to add more features to the model and increase

the number of parameters in a bid to achieve greater social realism (O’Sullivan and

Haklay, 2000). Epstein and Axtell (1996) published their ‘Sugarscape’ model which

introduced the concept of artificial societies to test social phenomena to a wider

audience (Sawyer, 2005). In its simplest version, Sugarscape is a 2-dimensional lat-

tice on which there exist two mountains of sugar. Agents populate this lattice and

consume the sugar, which grows back at a certain rate. In Growing Artificial Soci-

eties (Epstein and Axtell, 1996), the model becomes increasingly complex: agents

metabolise sugar at different rates; fertility rates, sexual reproduction, pollution

levels and death rates are introduced; agents engage in combat with one another;

social networks are introduced and different types of social networks are tested.

Sugarscape has been an important cornerstone in the development of Multi-Agent

Systems for social simulation (Sawyer, 2005), but some scholars have questioned

the effectiveness of countless additions to an existing model (O’Sullivan and Haklay,

2000). With more moving parts, it becomes harder to attribute the model outcomes

to causal mechanisms within the model. The model of a complex system becomes so
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complex that it no longer serves its primary function: to provide a simplified version

of the complex reality so that it can be better understood. The growing complexity

of models is in part due to the growing capacity of computers to handle complexity

in models. If tractability of outcomes can be established, the complexity of a model

itself does not warrant dismissal (Sawyer, 2005). ABMs do not abandon the prin-

ciple of parsimony- far from it. The goal is to generate sufficient explanations for

observed phenomena (Epstein, 2006). Whilst many more elements in a model may

be necessary to explain a system, the set of explanations that is sufficient is desired

over those with excess moving parts.

An important difference has to be emphasised: the complexity of the target sys-

tem, approached by complexity sciences, and the complexity of the model that seeks

to study the target system. The temptation to add more variables to a model is not

a problem restricted to agent-based models. A regression equation can be extended

with countless explanatory variables in an attempt to increase the explanatory power

of the statistical model. Model completeness and model parsimony can tackle dif-

ferent kinds of questions. A parsimonious model may be useful in solving for a

particular problem in idealized circumstances- more complex, more complete em-

pirical models may be used to replicate and/or predict an existing problem such

that model outcomes can be turned into policy. The baseline prisoners dilemma

gives us valuable insight into fundamental problems of cooperation, but offers little

insight into specific problems. A more complex model of the prisoners dilemma that

accounts for more explanatory variables can thus provide a different angle. The

same is true of agent-based models. Their strength lies in the ability to model the

micro-states of complex systems.

Complex systems are non-linear and cannot be reduced to their micro-states.

To criticise agent-based models for their complexity misses the different focus that
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the method offers. Agent-based models are subjected to scientific scrutiny and their

tractability should be ensured.

(ii) Technical limitations

The model input of an ABM is determined by the modeller. Which parameters, what

kind and their respective range should be informed by existing theoretical and/or

empirical findings; as should the agent rules and the environment that agents reside

in. When model parameters are informed by stylised facts, there is a danger to

assume that only this set of parameters can serve as a potential explanation for the

subject of study. That is, if one explanation is found, it may be assumed that this

is the only explanation that exists for a particular question. However, it is plausible

that different sets of rules could give rise to the same pattern. An ABM can show

what a set of rules can lead to, but it cannot determine that there cannot be other

sets of rules that could do the same. The range of theories that can be used to inform

the rule set of an ABM is vast, but a large majority of models rely on some form

of bounded rationality (Epstein, 2006). Bounded rationality has the advantage over

traditional rational choice assumptions in that it can relax some of the assumptions

made about agent rationality. By definition, bounded rationality relaxes traditional

rational choice, but has the drawback that the rationality increases in complexity.

The strength of Multi-Agent Systems is its ability to model heterogeneous agents

with limited capabilities. The downside of this practice is that bounded rationality

is not well-defined. Those bounds can be restrictive or relaxed; and are likely to

vary widely across models and disciplines. The inconsistencies across disciplines are

indeed a concern that needs to be addressed. Several ABM standards have been

suggested, but not implemented (Epstein, 2006). A growing interdisciplinary com-

munity and a possible conception of a single complexity science field improves the

odds of a generalised standards. Until then, we can reduce inconsistency by build-

ing on existing models, replicating findings and drawing analogies to sister sciences.
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The problem of ‘boundless bounded rationality’ is not necessarily a problem: firstly,

we can repeat the virtual experiments of agent-based models and test the scope of

bounded rationality. What may be the source of initial uncertainty can instead be

used to generate more knowledge and further our understanding of rationality: what

limits there are to its bounds, and how agent behaviour may be influenced by levels

of boundedness. Secondly, the vast amount of theoretical and empirical literature on

bounded rationality in psychology provides a good foundation from which to make

informed choices for models. Herbert Simon (1955) lamented the lack of empirical

knowledge in psychology to inform theory. Several decades later we have this pool

of resources to put to use.

Computers have advanced, but are still subject to limitations that can frustrate

an agent-based modelling effort. Because computers operate sequentially, agents

cannot act simultaneously (Gilbert, 2007). A real world experiment may ask every-

one in the room to take one step forward; in a computer model, only one agent can

act at one point in time (asynchronous execution). This can impact the model out-

comes: in the prisoner’s dilemma game, synchronous versus asynchronous execution

produce a different pattern (Mitchell, 2009). This technical limitation is usually

circumvented by placing all agents in some form of a queue, and at every time step,

everyone in the queue acts. Because in a queue, the order is predetermined and thus

might affect the subsequent decision of agents further down the queue, the queue is

shuffled at every time step, so that tactical advantages are kept at a minimum. Time

is commonly modelled in discrete time steps, like rounds or taking turns (although

continuous time models exist). The relative length of each step can vary depending

on the model: in the case of a trading simulation between stock agents, time only

progresses whenever something relevant happens. The actual time that may pass

between such events in the real world is not relevant. In a simulation of the spread

of ancient societies, time steps may constitute years, in each of which the societies
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can perform some operations. The model description should therefore involve some

discussion about the time relative to other parameters in the model.

(iii) Principles of individualism

Many of the aforementioned issues can be traced back to complex nature of the

object of study: complex systems are multi-layered, exhibit macro patterns that

cannot be reduced to individual components, and feature highly endogenous inter-

actions of the moving parts. Raising these issues is important for good practice,

but there have been concerns about agent-based modelling (or microsimulation in

general) and its inherent theoretical biases that are independent from the nature

of the subject that they examine. Agent-based models have the tendency to view

the social world from an individualist perspective (O’Sullivan and Haklay, 2000).

Because ABMs are made up of individual agents, and these individual agents have

rules, attributes and decision-making capacity, ABMs inherently accept the view

that society is the aggregation of individual activity. Structural influences and col-

lective social behaviour do not exist unless generated by individual actions- this

assumption fails to acknowledge that social structures can pre-exist and can shape

individual behaviour (O’Sullivan and Haklay, 2000). There is some disagreement

among scholars on whether the English-language research of sociology in the 20th

century is biased towards individualism or structuralism (Sawyer, 2005), but it is

important to note that the debate exists and what role agent-based modelling plays

in that debate. Structuralist sociologists posit that social systems can be understood

on their social, or macro-level without the need to consider the individuals that ex-

ist underneath (Sawyer, 2005). Social Networks are an often-used example of such

a structural phenomenon. The individual-level characteristics are not necessary to

further understanding gained from the study of networks. As previously mentioned,

the link between the individual and the group in sociology (as opposed to the natural

sciences) is difficult to capture. Agent-based models are not free of this ‘theoretical
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baggage’. Brian Epstein echoes these sentiments and laments that in agent-based

modelling, researchers (erroneously) overestimate the effect of individual people on

macro-level social properties (Epstein, 2011). Models assume that the social entity

is entirely composed of individuals. Social structure could be included by modelling

agents that belong to different social classes that follow different rules. This way,

the social group affects the individual.

There are two aspects to this debate. The first aspect is the existential debate

in sociology and to what extent Western thought of individualism has influenced

perception of ‘the social’. Because Western society has placed an increasing impor-

tance on the value and rights of the individual, whose freedoms should be protected

from the group, it may cause sociologists to assume that these features are inher-

ent. The inclusion of non-individual entities in an agent-based model is technically

achievable, but only if one assumes that no matter how the group exerts influence

(collective rules, spatial concentration), the interaction still takes place within the

agent, the individual. This is an interesting issue, but it does not warrant the criti-

cism of agent-based models as such. Every method has an inherent bias towards an

explanation of the social. An equation-based model derives its strength from unit

homogeneity. An agent-based model conversely derives its strength from breaking

the whole down to its component parts (Epstein, 2006).

The second aspect of the criticism concerns our understanding of complex sys-

tems in general. Complex systems operate at different levels of interaction which

may not warrant the binary micro-macro distinction in the first place (Mitchell,

2009). If so, the method of agent-based modelling cannot solve this discrepancy,

and it should not be expected to. As any other method, ABMs are a tool designed

for a certain task. That task is to generate the macro-state from the micro-state,

bottom-up. Philosophical debates and discourse on micro and macro are a sepa-



19

rate endeavour which may inform agent-based modellers, but should not bind them

to solve a problem in a different domain. To decide on an ABM as a method of

scientific enquiry is to accept its weaknesses as much as its strength.

The history of complexity sciences and agent-based modelling has provided us

with a point of view that can tackle complex problems in political science. The fol-

lowing two sections will address the substantive elements of this thesis. The subjects

of migration, segregation and social pressures through norms are all highly inter-

twined with today’s migrant societies, and warrant a complexity-based approach.

1.2 Immigrant societies

Migration around the world has increased massively over last decades, affecting

many spheres of life such as nations, neighbourhoods, workplaces (Citrin, 2015).

The 2016 European refugee crisis has marked the largest mass-scale migration into

the EU since 1945 (van Prooijen et al., 2017). Voters in Europe and the US have be-

come increasingly worried about the impact of migration and diversity, and populist

authoritarian parties have gained greater support in the past 30 years (Inglehart and

Norris, 2017). The election of Donald Trump as US president and the UK’s decision

to vote to leave the European Union in 2016 have signalled a shift in voter attitudes

and the rise of polarised attitudes towards migration (Lambert et al., 2017).

As a result, the Social sciences have paid more attention to those questions

and concerns about impact of diversity, multicultural ideologies, immigrant adapta-

tion (Ramos et al., 2016). Concerns about migration are not new, however. Research

on populism, political correctness and challenging the liberal world order reach back

at least two decades (see for example Van Boven (2000), Miller (2000) Foner and

Alba (2008)). Migration is not always automatically a problem. But how does

it turn into one, or is perceived or framed as such? The challenges of migration

are economic, political and social. Economic concerns include costs and benefits of

migrants creating and taking jobs, paying for and using healthcare systems, labour
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market demands and pressures on housing markets. Social concerns include the inte-

gration of migrants into the host society, the cultural, ethnic and religious differences

of migrant minorities and a change of status quo of previously largely homogeneous

societies diversifying (van Prooijen et al., 2017). The different population groups

may have no prior knowledge about each other, and the perceived cultural distance

may be large. Population groups can be socially excluded and perpetuate segrega-

tion of different groups (Arbaci, 2007). The media narrative and political discourse

are also part of the cause and effect of immigration problems. Prejudices can shape

the way different migrants are perceived and represented in the media (KhosraviNik,

2010). Discourse studies have repeatedly shown how migrants, asylum seekers and

refugees are oftentimes conflated and little effort is made in the public discourse to

emphasize that refugees and migrants are very different groups with different pre-

requisites and subsequent demands on the welfare state (Abid et al., 2017).

One focus of this thesis is to draw attention towards the host society and mi-

grants within the host society. Integration is a vital part of migration policy. The

focus of integration studies are the migrant and host communities of host countries.

What are the challenges of integrating people that come from different cultural and

ethnic backgrounds, and how can these challenges be overcome? The structures

of immigrant-receiving societies in Europe and elsewhere are changing (Penninx,

2006a). The overarching research question of this thesis is: how does migration

affect the societies that are on the receiving end?

In light of this broad question, I want to focus on two related issues. The first

is the physical separation of natives and migrants. Does sudden migration act as

a shock to the system, causing more segregation of groups? Can different arrival

times and pattern reduce shock impacts? Can tolerance of the ‘other’ grow without

state intervention? What circumstances lead to higher or lower levels of tolerance?



21

The tolerance dimension links to the second issue: social norms of tolerance in host

societies. With norms promoting multiculturalism, how can public opinion shift so

dramatically against it?

Because I model the immigrant society, I draw from the findings of existing

literatures to inform my parameter and model design decisions. In the following two

sections I review relevant parts of the literature on migration and integration, and

norms and attitudes that will form the basis for the agent-based model.

1.2.1 Migration and Integration

Migration is studied in disciplines such as economics, demographics, political science,

sociology and anthropology. International migration of human beings traditionally

involves the travel from one country (country of origin) to another country (destina-

tion country or host country). Migration can be understood as a macro phenomenon

of large-scale population shifts and economic costs and benefits; and it can be un-

derstood as a micro phenomenon of individual decisions that lead to migration and

the challenges that must be overcome to achieve it.

The definition of a migrant has changed over time and can differ from country

to country, but in general a migrant is a person that settles down in the destination

country; usually for a minimum period of one year (Baganha et al., 2006). The

economic study of migration includes the fragmented labour theory of migration:

exploring why migrants move; what their economic incentives are and crucially,

what the economic gain is for the host country. Because many of the research insti-

tutions and grants have come from destination countries, much research is focused

on the impact of immigration on these destination countries (Black et al., 2006).

Although the volume of research on countries of origin of migrants is smaller, it

too has developed and diversified in recent decades. Previous theories had relied
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heavily on assumptions such as migration being driven by poverty in developing

countries; and that low development is the key to understanding high emigration

(Black et al., 2006). Whilst poverty can incentivise people to leave their country,

it can also provide an obstacle to doing just that: poor people might not have the

resources required to migrate (Black et al., 2006). A reduction in poverty can thus

facilitate migration, not reduce it. Other studies focus on the migrants themselves

as individuals or families of individuals. What drives people to migrate, what de-

termines their decisions of where to go, and what are the facilitators and obstacles

in their quest?

Migration is thus a vast subject that has always been explored in some form, but

the recent rise of populism, feeding on fears of overpopulation, the notion that the

‘boat is full’ and that migrants overwhelm the existing population, have highlighted

the need to grasp the effect on the host countries. A crucial element of new research

endeavours is the perception that migration is here to stay. In order to sustain the

growth and economic model of the West, migration is needed to combat the falling

birth rates and ageing populations. Minorities are increasing in size; projections

suggest that by 2043, White Americans will be outnumbered by the total of non-

white minorities (Rios and Wynn, 2016). Migration is thus not just an addition

of new, different population groups to existing societies. Centuries-old population

dynamics are shifting, bringing change that challenges prevailing conceptions of

national identities (van Prooijen et al., 2017), the role of ethnicity, culture, religion

in liberal states and their very identity (Joppke and Torpey, 2013). This was not

always the case, not even as recently as the 20th century.

Migration in the 20th and 21st century

For many Western (European) countries, international migration has become a ma-

jor issue in the second half of the 20th century and beyond (Citrin, 2015). Between
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1985 and 2005, the number of migrants in the world had doubled. This effect was

more pronounced in Europe compared to the US (Novotny and Hasman, 2015). Eco-

nomically, migration contributed heavily to growth and became an important source

of labour for European industry and commerce. The causes, source and impact of

migration has undergone many changes throughout the century and consists of many

complex relationships: shortly after the second world war, migration to Europe con-

stituted many low-skilled labourers that filled factories and industrial plants. As

the century progressed and European economies moved towards increased automa-

tion and a knowledge-based society, demand for low-skilled labour decreased. When

unemployment in the 1970s rose, the flux of low-skilled migrants became a political

problem (Hatton, 2005).

Unlike Canada, Australia or the United States, European countries did not see

themselves as immigration countries (Adam and Moodley, 2014). When migrants

were admitted to destination countries in the 1950s and beyond, states operated

under the assumption that these ‘guest workers’ would leave once their contracts

had been fulfilled1 (Baganha et al., 2006). When it became apparent that many of

these guests had put down roots in their hosts’ countries, started families and had

no intention of returning, the need for integration policies became an issue: many

migrant communities in host countries had formed concentrated communities, or

diasporas, that in some cases showed signs of social and cultural exclusion. The

consensus is that such exclusive behaviour is undesirable and that migrants should

make an effort in integrating in the host society (see Baganha et al. (2006), Hain-

mueller and Hopkins (2014)). The integration of a large number of foreign-born

migrants brought with it a challenge to national identities: ‘Who are we?’. These

challenges are framed differently depending on the political landscape of each coun-

try (Inglehart and Norris, 2017).

1In post-colonial countries such as France and the UK, migration from ex-colonies was not
assumed to be temporary, but it too was curbed.
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Many countries have since shifted their focus on the need for integration. Since

the policies of multiculturalism in the 1990s, many European states have moved

to the other end of the pendulum, criticising the failure of multiculturalism and

whether it is compatible with integration at all (Citrin, 2015). Concerns about mi-

gration are part of a wider cultural backlash in the wake of declining existential

security (Inglehart and Norris, 2017). The Netherlands and Denmark require new-

comers to partake in integration courses if they fail language tests (Baganha et al.,

2006). An often used example of a multicultural society with high levels of integra-

tion is Canada. The northern neighbour of the US receives mainly highly-educated

and well-off migrants. In Europe, many migrants have poor backgrounds, have re-

ceived little education and often times have very different cultural backgrounds. Of

all Western democracies, Canada is the only one in which a slight majority of citi-

zens considers immigrants an asset (Adam and Moodley, 2014).

The increasing diversity of societies had generated renewed interest in the social

sciences in the late 1990s. One scholar, Robert Putnam, published a large-scale

US study of the impact of diversity on social cohesion (Putnam, 2000). He chal-

lenged the prevailing view that diversity is a force for good for social capital and

demonstrated that in the US, increased diversity in neighbourhoods was related to

lower levels of social cohesion and social capital. His work is credited with spawn-

ing a host of new approaches to test his assertions. Researchers from various social

science backgrounds would now turn to individual-level explanations of these group-

level findings. The field of social psychology had developed theories and findings

for decades prior, with an emphasis on intergroup relationships: the study of how

different groups of people, however defined, interact.
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Integration and intergroup relations

With the advent of diversity and integration-of-diversity studies, a whole social psy-

chology discipline revolving around group identities, prejudices, contact between

different groups and threat perceptions has enriched the study of migration. In-

tegration research shifts the focus from economic costs and benefits to the social

dimension. These questions touch upon issues such as multiculturalism and have

undergone several developments. Scholars such as Putnam (2000) have challenged

the view that immigration-induced diversity is a force for good in any and all cir-

cumstances. Whilst many of the economic benefits are visible and measurable on a

macro level, they do not capture the uneven nature of migration. Migration varies

widely in space and time: not all countries receive the same level of migrants, and

not all areas in a country receive an even amount of migrants- even within cities,

migration occurs in certain clusters (Penninx, 2006b). Temporal shifts might mean

a sudden increase of migration in a certain area of a country or city, even though

overall migration in that same country has been steady. Whilst migration may be

overall a good influence on society, its benefits are not necessarily evenly spread and

some people may not feel any benefit at all (Hatton, 2005). Generally, larger shares

of immigrants of the population in a country correlate with more negative views on

immigration by the native-born public (Citrin, 2015).

Intergroup relations between ‘natives’ (those born in the host country) and mi-

grants depend on resource availability, public perceptions, cultural distance and

potential to ‘fit in’ (Hainmueller and Hopkins, 2014). Ethnic and cultural differ-

ences of migrants influence negative perceptions within the host society (Joppke

and Torpey, 2013). In Europe, the most pronounced difference between natives and

migrants is ethnicity and religion: many migrants are Muslims and of non-European

ethnic background (Joppke and Torpey, 2013). Religion and culture can explain the

sharp differences in anti-immigrant attitudes in the US and Europe. Europe’s mi-
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grants are largely Muslims, the United States’ migrants are largely Mexican and

thus, largely Christian (Joppke and Torpey, 2013). This reduces the cultural dis-

tance to the Christian-dominant US. Perceptions of ‘otherness’ of migrants change

over time. Spanish and Italian guest workers (who were usually white and Chris-

tian) were perceived as too different; today, these differences are no longer salient.

Before 9/11, Muslim immigrants were Moroccans or Algerians in France, Arabs in

the US and Turkish people in Germany. After 9/11, they were all ‘Muslims’: alien

and threatening (Joppke and Torpey, 2013). This shift in group perception is im-

portant in understanding why large proportions of migrants have come to be seen

as a threat to national identity and culture to many voters. The bounds of what

constitutes the out-group (the ‘other’) can change. Changes of such boundaries can

give rise to contesting ways of framing them (Brennan et al., 2013). Populist parties

for example can frame these differences based on perceived threats that majority

population members can experience (Rios and Wynn, 2016).

Outgroup prejudice towards minorities can be a response to perceived threat to

the ingroup (Esses et al., 2008). Contrary to racism, xenophobia has a rational

element: when resources are scarce, migrants do compete with locals, and the com-

petition is real (Adam and Moodley, 2014). Thus, despite economic arguments for

migration, the notion prevails that the “boat is full” (Adam and Moodley, 2014,

p.120). The perception of alien-ness of migrants is reinforced by the large share

of Muslims: immigrants are ‘doubly different’. The ingroups (non-Muslims, non-

migrants) have become more pronounced. Inglehart and Norris (2017) note that the

increase of value-based identities over class-based identities has furthermore con-

tributed to a heightened perception of value-based identity.

The range of empirical studies testing the impact of immigration, segregation,

ethnic diversity, social capital or intergroup threat is vast, spanning many disciplines.

In Political Science, social capital and diversity is a combination that is often used
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to understand the impact of introducing diversity in a homogeneous society, in part

driven by Putnam (2000). Empirical studies have enhanced our understanding of

how diversity can impact a society that was previously not accustomed to a diverse

crowd. But the jury on explanations of what drives the impact (i.e. the mechanisms)

of diversity is still out (Collier, 2013), in part due to the large differences between

datasets (Ariely, 2014). Agent-based modelling can be a useful tool to test social

theories directly, circumventing the difficulties of data collection and estimation.

By modelling mechanisms suggested in social theory and implementing them on an

individual-level, an ABM can function as a virtual experiment of the theory and the

mechanisms that it puts forward as explanations. A particularly difficult concept

for empirical scholars has been social cohesion. It is defined as the ‘glue’ that keeps

a group of people, such as a neighbourhood, together. Cohesion is hard to measure

in part because it is constituted of social norms: the unwritten rules that guide

the everyday interactions of people. When norms among a group are positive and

promote interaction and reciprocity, social cohesion is high (Van Assche et al., 2018).

Thus, scholarship that seeks to determine the impact of diversity on the social space

of people is bound to study the social norms that provide the context in which

diversity increases.

1.2.2 Social norms: a brief primer

The relevance of social norms in the context of our migration society is two-fold:

firstly, different norms of different groups set those groups further apart. Different

religions promote different set of norms. Secondly, norms regulate how outgroups

should be treated. For example, many European countries have social norms that

promote tolerance of minorities, including migrants (Blinder et al., 2013). These

norms can clash with concerns over cultural incompatibility of migrants.

Different cultures and religions can lead to social friction when members of those
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groups meet. Visual clues such as skin colour can be easily decoded as ingroup

or outgroup attributes. Groups also exhibit ‘cultural inertia’: inertia contained in

beliefs and values influences the decisions that people make (Chong, 2000). Cul-

tural inertia and habits are carried on through the unwritten rules of society: social

norms and customs. Some of the differences that distinguishes migrants from the

local population of the host society are obstacles to cooperation: if a migrant does

not speak the local language, contact with locals will inevitably be more difficult,

and contact to other migrants speaking the same native language becomes more

attractive.

Norms regulate everyday behaviour without the need for cumbersome laws and

can provide a useful heuristic for solving coordination and cooperation problems

without having to engage in high-level critical thinking. Some norms solve coordi-

nation problems and are beneficial for many participants: by driving on one side of

the road, everyone ensures that collisions occur at a greatly reduced rate (Brennan

et al., 2013). Norms decrease transaction costs within a social group because they

coordinate expectations and choices (Chong, 2000).

Social norms are pervasive because they affect the decision making of people:

people will consider what the perceived status quo is given some behaviour (Fields

and Schuman, 1976). In survey methodology, the tendency for survey respondents

to answer a question in such a way that conforms to an existing idea of what consti-

tutes a morally defensible behaviour or attitude is known as the social acquiescence

bias (Krosnick, 1999). Conformity to a group has many benefits: in the absence

of information, following the herd is a safer bet in uncertain situations. The more

crowded restaurant is more appealing and the empty restaurant, because the pres-

ence of people indicates that it is a good place to eat. Heuristics such as these

are not accurate, but they are easily deployed and require little effort (Kahneman,
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2011). Conformity behaviour is not restricted to solving simple cooperation or co-

ordination problems. In order to ‘fit in’, people will silence themselves (Sunstein,

2003).

Norm conformity is the act of following a social norm- say, offering the seat on

the bus to an elderly person because the social norm stipulates that able-bodied

should help the less able-bodied so as to relieve their discomfort. Norm defection

is the act of defying the norm: remaining seated when an elderly passenger nearby

has to stand. Because norm defection carries social risks (stares on the bus, per-

haps even apprehension by a fellow passenger), the costs of conformity are usually

deemed worth paying (Brennan et al., 2013). What makes social norms particularly

persuasive compared to rules of coordination (everyone drives on the left-hand side

of the road, thus reducing the risk of collision), is that they shape the emotional

response to behaviour or attitudes (Brennan et al., 2013). Knowing that one should

give up the seat for an elderly passenger, people will feel bad about defecting. The

possibility of punishment is independent from the emotional response. Social norms

can be deeply ingrained in our thinking and our moral standards: what is the right

thing to think, to say, to do. Norms permeate all levels of society; from holding the

fork in the left hand at the dinner table to the justification for declaring war on an-

other country. Norms make acts meaningful: hoisting a white flag on the battlefield

is a recognized sign for yielding in battle. Without the recognition of this norm,

the act of hoisting the white flag is reduced to the physical act of offering a piece of

cloth (Brennan et al., 2013). When a migrant minority does not adhere to the same

norms that permeate the host society, this can be interpreted as norm defection.

The tendency to conform and to reduce distance between oneself and other in-

group members can result in people adopting a view publicly, although they may

disagree with it privately. Once public opinion shifts, non-conformers can pretend
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to conform. This tendency to adopt the majority view can prevent social change in

providing resistance against challenging the status quo. Minority groups can also

use this process to push through social changes that are widely rejected. Because

people have very little information on what the private attitudes of others are, they

guess. And the result can be widespread belief in the dominance of a norm when, in

fact, it isn’t widely supported. This state in which the majority erroneously believes

in the dominance of any given norm, but actually, it is only privately supported by a

minority, is called pluralistic ignorance. To shift public opinion, periods of pluralistic

ignorance are required. Pluralistic Ignorance rose to prominence in studies of racial

prejudices in the US (O’Gorman and Garry, 1976). If a majority genuinely believes

in white supremacy, people can rationalise their views using the existing norm. Only

by misjudging public support for a rejection of white supremacy will adhering to the

supremacist view result in a discrepancy with the (assumed) view and thus create

social pressure to, if not genuinely swayed, pretend to reject white supremacy, too.

The shift away from the political centre towards its periphery and populist parties

suggest that this ‘sudden shift’ was not so sudden after all: attitudes had not been

reflected accurately in the public discourse, media attention and to some extent,

scholarly research.

1.2.3 Norms of tolerance: not all is what it appears to be

In contemporary Europe, social norms exist that condemn prejudice against specific

groups (such as migrants) (see Blinder et al. (2013) and Sniderman and Hagendoorn

(2007)). Immigration and the integration of migrant minorities have become salient

and contentious issues in many parts of Europe, and anxieties about unsustainable

migration levels are widespread (Blinder et al., 2013). In recent years, some populist

parties have been successful in framing the migration debate and win the support of

large sections of the population (Arzheimer, 2009). Populist parties that are openly
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discriminating against minority groups are less successful than those that remain

ambiguous in their message (Blinder et al., 2013). By remaining ambiguous, these

parties can draw the attention of voters which harbour prejudices against certain

minority groups, but who are also aware of the dominant norm of non-prejudice.

This is an example of a social norm affecting political choices. Without the norm

not to harbour prejudices, support for the restriction of rights of minorities might be

more openly expressed. What constitutes a legitimate case for ‘discrimination’ (for

the moment narrowly defined as a legal status that entails fewer rights compared to

those of other groups) can vary, too. In some cases, the non-discrimination norm

might not be viewed as applicable. For example, citizens of a country enjoy benefits

that foreigners don’t enjoy. This is seen as a legitimate practice of citizenship, not

discrimination (Miller, 2000). Thus, a political party advocating favourable legisla-

tion for citizens may not face clashes with an anti-discrimination norm. The process

of weighing a potentially norm-adverse position against what is deemed the cor-

rect opinion involves estimating of majority opinions. Is non-prejudice supported

by a majority? Why is the norm against prejudice perceived to be the majority

norm? This perception is based on a variety of social clues such as media cov-

erage, public debate, private debate and long-term factors such as education and

upbringing (O’Gorman, 1986).

Perceptions of what is deemed acceptable and what is not influence decision

making (Sunstein, 2003). If a society is publicly committed to non-discrimination

but privately, a large proportion of the populace harbours doubts about this norm,

the group can be susceptible to public opinion shifts that are instigated by norm

entrepreneurs or otherwise visible actors that can lend a voice to those who have

previously silenced themselves (see Wang et al. (2013) for a discussion on the causes

of flips in attitudes). The year 2016 was marked by such political shifts away from

existing norms of liberalism.



32

Leave voters in the UK voiced their concerns about immigration and rejected the

notion that harbouring doubts about the benefits of migration would brand them

racist, or xenophobic. In the United States, Trump voters were not deterred by

the number of political gaffes and controversies that their candidate was involved

in. ‘Political correctness’ (PC) as a term has resurfaced in the 1990’s as a result

of the ongoing battle as to what ideals (Western) society should strive for (Van

Boven, 2000). People fight over the right to frame the situation (Brennan et al.,

2013). On the surface, liberals had won that battle. The populist surge in Western

countries suggests that public opinion had not been swayed as much as it might

have previously been believed. In 2000 (!), Leaf Van Boven writes:

“The pressure to appear politically correct can have important conse-

quences for social life. In particular, the desire to appear politically cor-

rect, and to avoid being seen as racist, sexist or culturally insensitive,

can lead people to espouse publicly support for politically correct issues,

[...] despite privately held doubts” (Van Boven, 2000, p.267)

Viewed from this end, the increase in hostility towards the out-group of migrants is

not as sudden as it appeared through several large and sudden shifts in the political

landscape. Instead, the underlying, privately held beliefs were not expressed until

now. We understand what happens when pluralistic ignorance occurs and that it

emerges, but we don’t know how it emerges in the first place and what circumstances

facilitate its emergence. In the context of our complex immigration society, the social

pressures of public opinion are a vital component that influence preferences for a

segregation of different groups.

1.2.4 Research Questions

The preceding literature review has revealed a number of interesting challenges

facing migrant societies. The complexities of migration and integration are enormous

and empirical studies have experienced frustration in some areas. The agent-based
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approach of this thesis seeks to contribute to the understanding of the challenges

and questions around migration and its host societies.

In the context of migration societies, there are two research questions that I

address, focusing on two different perspectives of the same problem. The first per-

spective is the physical integration of new people into an existing population. When

a status quo is upset, it may take time to reach equilibrium again (or not at all).

Using Agent-based modelling, we can look at a hypothetical situation of migration

shock-waves that don’t correspond to real migration levels, but perception levels. If

people act as if migrants were swamping the country, we can model that. Generally,

people overestimate the share of the foreign-born or immigrant population (Markaki

and Longhi, 2012).

The two broad questions are (i) how does migration affect the host society and

migrant population? and (ii) how do norms and social pressure affect attitudes of

migrants and out-groups more generally?. The first question is broken down into

two specific aspects of migration: the number of migrants arriving and at what rate

they arrive; and the initial settlement locations when migrants arrive.

(i) How does migration affect the host society and migrant population?

Does rate of change of migration affect happiness and segregation?

Does the placement of migrants at the time of arrival matter?

(ii) How does norm conformity to be tolerant of minorities interact with growing

discontent with the status quo?

What gives rise to pluralistic ignorance in this context?
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1.3 In this thesis

The previous section has reviewed the existing literature on migration studies and

social norms. Migration, in itself a complex system, affects existing societies in many

different ways. This makes the migrant society a very good subject to approach with

agent-based modelling. We can construct our complex immigration society in which

agents are exposed to migration, must cope with outgroup contact situations and

navigate through the social space whilst conforming to the existing norms. The im-

portance of private beliefs and public pressures in an immigration society concludes

the substantive interests of this thesis.

I show that at different levels of analysis, agent-based models allow us to un-

derstand possible mechanics behind the macro-patterns that we observe in the real

world.

The baseline agent-based model that will be used is Schelling’s model of self-

sorting behaviour (described in greater detail in Chapter 2). Using this well-established

and widely applied model improves our ability to compare generated results and pro-

vides us with a breath of robustness checks that have been applied in other versions

of the model.

The first subject of interest is segregation outcomes under conditions of mi-

gration. Chapter 2 introduces the migration of new agents onto an existing grid,

modelling migration into a social space, which is a novel addition to the literature.

In this version, segregation and overall population happiness are the primary out-

comes of interest. This chapter demonstrates the depth of findings that can result

from a simplistic and idealized agent-based model that trades theoretical accuracy

for parsimony. The theoretical basis for the model design is drawn from a range of

existing findings from the political science literature.



35

Chapter 3 builds on this migration concept and moves towards the inclusion of

literature on norm conflicts that can exist between hosts and migrants. The model

in this chapter includes the crucial addition of adaptive tolerance, an addition de-

signed to implement the contact theory into the model. Agents are heterogeneous

and part of a tolerance feedback loop. Segregation preferences are no longer pre-

determined. Preference development is now based on contact theory. This model

version demonstrates the ability of agent-based models to test existing theories by

implementing them in a repeated virtual experiment.

Chapter 4 moves on from the migration aspects of the previous models and

focuses on the social norms that can pressure people to adapt their preferences,

at least outwardly. This model represents a smaller-scale social space in which

movement is severely limited and existing social structures exhibit great influence

on agents. This adaptation of the Schelling model highlights the ability to model

latent behaviours and their long-term effects, and how these models can be used to

enhance a theoretical debate. The subject of interest in this chapter is the emergence

of pluralistic ignorance. The study of emergence, central to complexity science

and subsequently, agent-based modelling, can contribute to our understanding of

political behaviour.
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2 Chapter 2

In this chapter I introduce a version of the Schelling model of segregation that

includes a mechanism of immigration. The Schelling model is part of the “contextual

neighbourhood effects” approach to diversity and segregation which posits that the

context of the neighbourhoods in which the variables of diversity, social cohesion and

segregation are measured, has to be explored rather applying existing theory that

might omit these effects (Andersson et al., 2017). Because the impact of diversity

is not straight-forward, the boundary conditions have to be explored first (Ramos

et al., 2016).

The model simulates a host society of existing ‘native’ agents which is exposed

to ‘migrant’ agents entering the existing society. The chapter addresses the first

set of research questions: How does migration affect the host society and migrant

population? Does the rate of change of migration affect happiness and segregation

differently, and does the placement of migrants at the time of arrival matter?

The Schelling model in its current form was published in 1971 by Thomas

Schelling in a bid to understand how individual decisions of agents to relocate

could lead to a macro pattern of segregation (Schelling, 1971). In the context of

widespread racial segregation in the US, the model could demonstrate that for seg-

regation to occur on a macro scale, no deeply entrenched racism was required- even

slight preferences to reside with people of ones’ own colour could lead to segregated

areas. The model has since been adapted and advanced in multiple ways and is a

well-known model of self-sorting behaviour. A recent adaptation by Hatna and Be-

nenson (Hatna and Benenson, 2015a) incorporates assumptions of a heterogeneous

society in which preferences for friendly neighbours would vary. This chapter builds

on their model and investigates how far the rules can simulate patterns of migration

in segregated cities. The literature on migration has not featured a Schelling model

implementing external migration onto the existing grid (rather than already existing

agents migrating within the grid).
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Migrant waves in the past have been accompanied by public debate in the re-

spective host countries (Baganha et al., 2006), and there is no consensus as to

whether immigration into the host societies is, as a whole, a positive or negative

influence (Penninx, 2006b). Because the subject is vast and complex, the academic

debate has diverged into the respective disciplines: the economic impact of migration

can differ from the sociological or ecological impact. In the past decades the notion

that immigration is generally good for the host population has been challenged (Put-

nam, 2007). Subsequent analyses have drawn heavily from pre-existing sociological

and socio-psychological studies on group identity, racial relations and segregation.

The latter subject area has been influenced by the Schelling model because it had

been so successful in demonstrating that segregating behaviour can result even in

a moderate population as a result of moderate preferences to be in the majority

group of the population. The theoretical justification of the Schelling model design

are found in social psychology rather than sociology, because the individual-level

model design lends to individual-level theories of how people (agents) act, react and

interact (Ramos et al., 2016). The model design decisions are based on empirical

findings and stylistic facts that social science models have developed. This serves as

a way to explore the interactions between the new addition of migration with the

existing model components.

The migration literature has enjoyed a host of agent-based approaches (see

Klabunde and Willekens (2016a) for an overview), but most attempt to explain

why migration occurs. In the scenarios that this chapter considers, migration is

taken as given, but its intensity (how often does it occur, and how many migrants

arrive) and the makeup of incoming migrants (where do they arrive) differs. The

goal of this chapter is two-fold. Firstly, it seeks to add to the theoretical insights

that the Schelling model can give us, not just for migration but for general behaviour

under conditions of sudden external shocks. Secondly, it seeks to evaluate whether

and how the group of newly arriving agents affects the future pattern of segregation
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in the population. In order to simplify replication of experiments, the model is based

on the aforementioned Hatna and Benenson study. Based on their description of

the model, I recreate their model and then proceed to adapt the model in order to

address my research questions. This approach, to focus on the rate and change of

migration, shifts the focus on the host population.

The structure of this chapter is as follows. The first part briefly summarises

previous research done in the areas of migration and ethnic segregation, and how

Schelling models in general operate. Subsequent paragraphs discuss how Schelling

models and migration can be combined, and how the model implements the migra-

tion element. Afterwards, the collection of data from the simulations is discussed

and the results are presented through analysis and a brief discussion follows at the

end.

2.1 Migration and ethnic segregation

The combination of migration and ethnic (residential) segregation has an intu-

itive appeal. Immigrants tend to cluster spatially (Bushi, 2014), and so do ethnic

groups (Søholt and Lynnebakke, 2015). Migration is usually defined as the move-

ment of people from one place to another. These places can be countries, regions,

boroughs, cities or neighbourhoods. The type of migration that is of interest to

this chapter is international migration of people from their country of origin to an-

other country (host country). When migrants enter a country, their point of entry

is not random. Cities such as London have distinct areas that are well-known for

accommodating newly arrived migrants (Hall, 2013). International migration is still

increasing (UKCensus, 2011) and affects the ethnic makeup of global cities such as

New York or London.

Ethnic segregation occurs when people perceive a group of other people as dif-

ferent based on ethnicity and subsequently seek to live in closer proximity to people

more like themselves. Migrants are an obvious group that can be singled out as dif-
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ferent since they are foreign to the country. This can be, but should not be, linked to

differences in ethnicity. Visually poignant features such as skin colour make it easy

for people to distinguish between those alike and those that are different. Studies

on migration and ethnic diversity are widespread. Putnam finds that migration can

increase the social costs of cooperation if the resulting society is more diverse (Put-

nam, 2007). The proposed link between high diversity and low social capital has

since been tested, yielding contradictory results, most likely due to differences in

operationalisation of the social variables (see Ariely (2014) for more discussion).

Segregation is to some extent a natural phenomenon: families live together. Mem-

bers of a family often share the same ethnic group. Second- and third-order relatives

may also live in the vicinity, and share the same ethnic background. Such an overlap

in cleavages can result in segregation without any explicit preference to stay away

from a different group (Schelling, 1971). When people segregate along ethnic lines,

it often has adverse effects on the community, usually the minority of lower social

standing (Zhang and Jager, 2011).

Figure 2.1 shows the different population density of white British, Black/African/Caribbean

and Arabic ethnic backgrounds across London. There are visible clusters of differ-

ent ethnic groups in the different London boroughs. White British are the most

numerous, but they are highly concentrated on the outskirts of the city.

Figure 2.1: The ethnic makeup of London in percentages, based on 2011 Census
Data. Colours represent population densities of ethnic groups.
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Migration is likely to make a difference to patterns of segregation. In a separate

literature that is primarily concerned with international migration, a subject of in-

terest oftentimes are diasporas: pre-existing communities of foreigners that exert a

form of attraction to fellow countrymen and women to move to the diaspora (Col-

lier, 2013). Diasporas thus grow larger and faster after forming, until a point is

reached at which the host population grows weary of its size and spread, and politi-

cal measures are employed to reduce the growth of diasporas. Diaspora growth has

been linked to the gravity model of migration: migrants are pulled towards already

existing migrants, even in the absence of pre-existing family ties (Klabunde and

Willekens, 2016a).

It is thus an intuitive conclusion that the rate of flow of migrants is at least in

part a function of the existing “map”: what country they move to and how the eth-

nic make-up of a country is shaped. Countries without diasporas are less attractive

to migrants (Novotny and Hasman, 2015). Equally, the ethnic makeup of a country

or city is (in part) a function of the rate and flow of incoming migrants. There

is a vacuum in research on the impact of migration on the happiness on the host

population (Collier, 2013). The aim of this chapter is to fill part of this vacuum by

exploring a possible mechanism for impacting host societies and immigrant minori-

ties.

The research questions focus on several well-known variables that are used in

migration research, such as the rate and change of migration flow, the size of migra-

tion communities and the settlement patterns of migrants entering host societies. I

break down the broader questions into the following:

1. How does the rate and change of migration impact the happiness and segre-

gation behaviour of the population?

a. How does the place of arrival of migrants affect long-term segregation
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and happiness patterns?

b. How does the size of groups in relation to one another interact with

migration?

2. Does the placement choice of migrants alter long-term behaviour observed in

the overall population?

2.2 Method

In line with one of the two purposes of this thesis, the research questions laid out

above will be tackled using agent-based modelling. Following calls for standard

model practices (see Collins et al. (2015) and Bruch and Atwell (2015)), I will be

using the Schelling model, a well-known model to test segregation behaviors. Before

describing my adaptation, I shall review the nature of the Schelling model below.

2.2.1 The Schelling Model

Thomas Schelling published the first version of his model in 1969 and revised it in

1971 (Schelling, 1971), introducing the 2-dimensional model that is well-known to-

day. The model describes a self-sorting mechanism of different groups of people, or

agents. In the context of a highly racially segregated United States, the model was

able to generate, using very few and simple rules, patterns akin to those of urban

segregation.

The basic premise of the Schelling model is that there exist two equally-sized

groups of people, usually represented through different colours, in a two-dimensional

world. All agents have a common preference as to how many ‘non-friends’ they

tolerate in their vicinity. ‘Friends’ are agents of their own colour. All agents have

the same preference f , the fraction of like-coloured agents that is preferred in their

immediate neighbourhood, and the fraction of non-friends is 1 − f . Say, f = .5
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denotes that an agent accepts 50% of other-coloured agents in the neighbourhood.

Agents cannot see the entire world, only several tiles in each direction. There is

no stacking of agents, every tile can either be empty or hold a maximum of one

agent. Agents can move around the grid without any restraints. Movement is

costless. Agents will move if they find a neighbourhood with more friends than the

preference f stipulates. Figure 2.2 shows a visualisation of a Schelling model. In

this case agents are blue or green, and white space is empty. The grid is usually at

near-capacity of 98% of the grid covered with agents. The usual sequence is that

agents are first randomly placed on the grid. Then, each turn, every agent gets to

act: they will evaluate whether the current neighbourhood meets their f threshold,

and will move when it does not, and stay when it does.

Figure 2.2: Visualisation of a Schelling model: Blue and green agents are first
randomly positioned. They then move in accordance with their preference. After a
while, clear clusters of segregated groups are visible.

The Schelling model has been studied extensively (see for example Singh et al.

(2009), Singh et al. (2011), Shin et al. (2014), Cortez et al. (2015)) and there are

a number of things that we know about model outcomes and usual patterns. The

model shows critical thresholds at f = .75 (Benenson and Hatna, 2011). At .75

(three-quarters of the neighbourhood must be friends), agents segregate into large

groups with unhappy agents that reside at the fringe of each cluster. Any f value

beyond .75 results in a breakdown of segregation and no equilibrium is reached.

Agents are always unhappy, as their demands are never met, and will move around

continuously. Segregation patterns become visible at f = .2 but are still outnum-

bered by mixed, or integrated, agents. At f = .3, agents segregate visibly (Benenson

and Hatna, 2011).
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Schelling showed that people do not need to be extremist in order to live in segre-

gated neighbourhoods- in fact, even when people prefer mixed neighbourhoods, the

aggregate pattern still tends towards segregation. For example, a person that tol-

erates mixed neighbourhoods, but wishes to be part of the majority (i.e. f > 0.5),

the aggregate pattern tends towards segregation: if everyone wants to be in the

majority, it is not possible to live in a mixed neighbourhood and have all people

satisfied. Recent studies interviewing migrants confirm such preferences for migrant

communities as well (Søholt and Lynnebakke, 2015).

The model generates small-worlds in which patterns of behaviour do not scale

with the size of the lattice (Singh et al., 2009). When the grid is increased from

50× 50 tiles to 100× 100 tiles, the size of the segregated clusters does not increase.

Instead, more clusters of the same size observed at 50× 50 emerge. This restriction

is due to the limited vision that agents have.

Because the Schelling model was able to provide an explanation for the mecha-

nism of persistent racial segregation in the US, the model has enjoyed considerable

attention since the 1980s (Clark and Fossett, 2008). The persistence of segregation

is the result of tipping behaviour which is driven by the coordination problem of

every agent aligning themselves in such a way that their preferences are satisfied.

Schelling termed this behaviour ‘speculative evacuation’ (Schelling, 1971, p. 185):

when a predominantly white area receives an influx of blacks, white people might

assume that an eventual tipping of balance towards a black majority is inevitable.

They vacate the area, thereby lowering the required number of blacks needed to

tip the majority balance. This means that “[...] integrated residential patterns are

inherently unstable” (Zhang and Jager, 2011, p. 169). Segregation persists because

it is a stable state: either majority is the favourable outcome for each respective
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group, and the dynamics of the behaviour are such that the majority will always

be sought. Integrated residential patterns on the other hand are inherently unsta-

ble (Zhang and Jager, 2011). The ease with which segregation can arise and sustain

itself is important in our migrant society. If speculative evacuation is the driver for

segregation, it may not make a difference how migrants have entered the existing

society; how many they are and how quickly they got there.

The Schelling version I use is based on a recent adaptation of the model which

has successfully generated both segregated and integrated areas. Hatna and Benen-

son (Hatna and Benenson, 2015a) introduce a heterogeneous society in which agents

can have one of two different preferences. This is more realistic than Schelling’s as-

sumption that everyone has the same minimum threshold. They are able to show

that with two preference groups, the setup can generate patterns of both integrated

and segregated areas on the grid, which is in line with real-word census data of US

cities 2010 that they cite: usually cities consist of both segregated and integrated

areas (Hatna and Benenson, 2015a).

The crucial addition to their model that I make is the introduction of migration.

Not all agents will be generated at the start of the simulation, but some will enter

later on. I vary the rate of migration (how many migrants enter at once, and how

often) and the type of arrival (do migrants cluster, or disperse). I will return to

ethnic composition and the importance of minority-majority relations later on in

this chapter.

It should be noted that Schelling himself discussed the possibility of introducing

out-group agents via inward migration (Schelling, 1971, p.161). Testing one setup of

migration, Schelling observed that clusters only form once enough out-group agents

have arrived. At this point, Schelling moves on to a different treatment and does
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not pursue the effects of migration further. This chapter will pick up where he left

off and test whether and how migration affects the segregating behaviour of agents

in the Schelling model.

2.2.2 The model

A set of agents At = {a1, . . . , an,t} are located on a toroidal grid with a total of

N = 50 × 50 tiles at time t ∈ Z. Each agent ai has a colour attribute denoted ci,

which is either blue (ci = B), or green (ci = G) and they occupy one tile on the grid,

location pi,t. Green agents are the hosts (‘natives’) and they are randomly placed

onto the lattice at the beginning of each simulation. Natives will occupy the grid

when initialised. The division of the population into two distinct groups serves the

purpose of representing in- and out-groups as experienced in the real world and de-

scribed in political psychology literature. An in-group is the group to which a person

feels they belong to, the group they identify with. The markers for identification

can be externally determined (such as ethnicity) or can be acquired through active

engagement or a shared interest (such as a particular social standing) (Pettigrew

et al., 2011).

The NatShare is also the starting density of occupation of the grid. Blue agents

are migrants and arrive at a later stage. Migrants will continue to arrive until the

target density FinalDen is reached and both groups make up half (or a proportion

otherwise specified by NatShare, described below) of the total population. Agents

cannot die or otherwise exit the grid. Population density is a crucial element to the

model, as it serves as a proxy for real world choices in the housing market and in

urban areas in general. Different type of housing is attractive to different kinds of

people. The availability of different housing types can drive segregation in urban

spaces (Skifter Andersen et al., 2016). Thus, the Schelling model is usually operated

using very high densities around 98% to approximate the reality that people cannot

simply pick a place and choose to live there, but rather are constrained by housing
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availability and their personal wealth to meet the costs associated with moving.

Moving is free in this model, but agents have a preference to be near other

agents of the same colour. This serves as a way to simulate urban behaviour and

to avoid unrealistic spreading of all agents into the periphery so as to avoid any

friction. Agents can only see their local neighbourhood. The model uses a Moore

neighbourhood2 of 5 × 5 tiles. Each agent’s neighbourhood consists of 24 tiles.

Formally, let Nt(ai) denote the neighbourhood of ai at time t, which consists of

the set of all other agents located on the lattice within a Euclidean distance of

two nodes from ai (allowing for diagonal movement); that is, the neighbourhood

for a given agent consists of all other agents within the 24 nearest locations to it.

This definition of the agents’ neighbourhoods is derived from the baseline model

by Hatna and Benenson (2015b) and was chosen to ease the comparison to other

similar models. Different neighbourhood sizes change the ratio from neighbourhood

to the total grid size, thus influencing the freedom of choice that agents have.

Each agent ai has a tolerance threshold Fi,t which determines the number of in-

group members the agent desires in their immediate neighbourhood. Higher values

of F therefore correspond to lower values of tolerance. An agent with F = 24

will not tolerate any out-group member in the neighbourhood. By default, each

population group consists of half F1 ∼ U(0, 7) and half F2 ∼ U(17, 22) agents,

where ∼ U(17, 22) denotes the uniform distribution over the interval 17, 22. The

differing ranges of F ensure that one group is tolerant below the critical value 12 that

leads to segregation, and on or above the critical value 17 that prevent equilibria due

to the inability to find satisfactory locations (Hatna and Benenson, 2015b). I use

the F(riend) notation to replicate Hatna & Benenson’s notation and to emphasise

that the range intervals are based on their findings of critical values. The range of

0-24 refers to the number of potential neighbours within the fixed neighbourhoods

of 24 tiles.

2Moore neighbourhoods are square neighbourhoods of n× n tiles where n ≥ 3.
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Agents are either satisfied or dissatisfied with their neighbours. They are satisfied

if and only if the number of nearby similar agents, si,t is at least as great as their

desired number of friends. The utility of agent i at time t is denoted ui,t ∈ {0, 1}

and is given by:

ui,t =

 1 : si,t ≥ Fi,t

0 : si,t < Fi,t

. (2.1)

Algorithm 2.1 Movement rule for agent ai
L← RandomlyChooseVacantSites(z) . choose |L| = w candidate
locations
L?← {pi,t} . initialise satisfactory locations
for all l ∈ L do

s← |{aj ∈ Nt(l) : ci = cj}| . number of friends in neighbourhood
d← |{aj ∈ Nt(l) : ci 6= cj}| . number of non-friends in neighbourhood
if si,t ≥ Fi,t then

ui,t = 1
L?← L? ∪ {l} . update satisfactory locations

end if
end for
l?← ChooseOneAtRandom(L∗)
pi,t+1 = l? . update location

The set of dissatisfied agents is given by Dt = {ai ∈ At : ui,t = 0}. At every time

period each dissatisfied agent ai ∈ Dt, who is currently located at pi,t, randomly

samples z = 30 of unoccupied locations Li from the lattice.3 They then randomly

choose a new location from the subset of these for which the number of friends

meets their friend threshold {l ∈ Li ∪ pi,t : si,t ≥ Fi,t}. If no satisfactory alternative

locations are found,then the agent remains at its current location pi,t. The movement

rule for an agent ai is summarised by the pseudo-code in Algorithm 2.1.

As in Benenson and Hatna (2011), with probability 10−2 per tick, agents that are

satisfied will also relocate, this time randomly picking a location from z randomly-

3The value 30 was adapted from the model by Hatna and Benenson (2015b). The authors have
not explained the choice of 30 tiles. I ran N=1,000 simulations testing a range of z ∼ U(25, 1250)
which did not affect any of the model outcomes. I thus adapted the value of 30 to keep the models
consistent.
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chosen vacant locations, without considering their utility. This models the fact that

people in the real world will move due to a variety of reasons, and not just due

to diversity tolerances. Moving is also not purely down to happiness: many life

situations call for moving, even if the present situation is satisfactory. If an agent

fails to find a new location, the agent will remain at the current location. If the

agent is still unhappy in the next time period, it will try and find a new location

again.

The concept of moving away when unhappy, unhappiness in turn based on neigh-

bourhood diversity has empirical merit: people’s intention to move (either within

the city or to another city) depend greatly on the general satisfaction (Van Assche

et al., 2018). In real life, this satisfaction is not just influenced by neighbourhood

diversity, but also by the social norms that maintain the cohesion in the local com-

munity (Van Assche et al., 2018). These norms are not modelled in this version:

their absence is interpreted as the absence of positive social norms: because agents

will not be swayed to remain in a diverse area, they have no social capital to ‘buffer’

against the effect of diversity. Equally, agents do not possess any form of ideology,

education or economic status that would otherwise influence the perceptions of di-

versity (Van Assche et al., 2018). As such, the model tests the lower bounds of the

parameter range.

2.2.3 Initial Conditions

The major contribution of this chapter is the introduction of migration into the

Schelling model. Migration occurs in waves, described in greater detail below. The

migrants will settle on empty tiles, and then proceed to follow the same rule-set

as the native agents. In order to make way for incoming migrants, the assumption

that urban neighbourhoods operate at a near-full capacity (i.e. nearly 100% of the

grid is covered with agents) needs to be relaxed. The starting density is therefore

lowered. I test the impact of migration waves and the impact of arrival locations in
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three separate treatment rounds which will be discussed in turn below.

The remaining parameters are listed in the tables below. Note that the values

for constants in Table 2.2 refer to the default values when no treatment is applied.

Table 2.3 lists the state variables referenced in the model description.

Table 2.1: Independent variables

Parameter Distribution Description
FluxType ∈ Scatter,Diaspora, Cluster Mode of arrival for migrants
FinalDen ∼ U(75, 98) Final density of the population
NatShare ∼ U(2, 98) Native share of the population

F1 ∼ U(0, 7) Desired friends of FShare of each group
F2 ∼ U(17, 22) Desired friends of (100− FShare) of each group

Table 2.2: Constants

Constant Description
tmax = 2, 000 Maximum number of ticks per simulation
N = 50× 50 Size of lattice

z = 30 number of considered empty tiles

Table 2.3: State variables

Variable Description
At The population of agents
ci,t Colour of agent ai
Fi,t Tolerance of agent ai
ui,t Utility of agent ai
pi,t Position of agent ai

Nt(ai) The set of agents that are neighbours of agent ai
N(p) The set of locations in the neighbourhood of location p

For each simulation, the initial conditions are stipulated by:

1. E The number of waves of migration which specifies how many migration

events occur and how many migrants arrive each time. The different waves

are described in Section Waves of migration: E below.

2. FluxType The settlement behaviour of migrants which denotes Where mi-

grants will locate to at the time of migration. The baseline model uses a
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Table 2.4: Dependent variables

Variable Description
M c

t Segregation of colour at time t (equation 2.8)
MF

t Segregation of tolerance at time t (equation 2.9)
M c Segregation of colour at the end of the simulation
MF Segregation of tolerance at the end of the simulation
h̄t Average happiness of agents at time t
h̄Gt Average happiness of natives at time t
h̄Bt Average happiness of migrants at time t
h̄ Average happiness of agents at the end of the simulation
h̄G Average happiness of natives at the end of the simulation
h̄B Average happiness of migrants at the end of the simulation

density-based settlement type: newly arriving migrants will seek the most

densely populated areas on the grid, regardless of whether this dense area

consists of migrants, natives or both. Migrants will also try and form a coher-

ent unit when arriving together. There are two more types of arrival, which

will be outlined in Section Arrival locations: FluxType.

3. FinalDen The final population density that is reached once all migrants have

arrived. The amount of empty space that agents have in Schelling’s model

is significant: the more space there is for intolerant agents to free themselves

from unsatisfactory neighbourhoods, the more likely they are able to avoid

dissatisfaction. In general, more agents can be happy and much more quickly

in situations of empty space. Crowded places on the other hands introduce

friction, as agents are not able to escape as quickly (if at all).

4. NatShare The share of native agents of the population. High levels of native

share translate into a minority situation for migrants. NatShare ranges on

the interval (2, 98), testing a range from a small native minority of 2% to

vast majorities. Because Schelling models don’t scale well beyond the size of

cities (Singh et al., 2009), the grid is assumed to be no larger than a city.

Country levels of migration are usually low, but cities can experience high

migration population share, which can be modelled by decreasing NatShare.
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Waves of migration: E

There are four different migration treatments and the control, no migration. The

number of native agents is always constant, but new migrants can arrive in discrete

waves of migration. The treatment is summarised in Table 2.5 below.

Table 2.5: First round treatment conditions

Treatment E = 0 E = 1 E = 4 E = 15 E = 100
Migration No Yes Yes Yes Yes
Number of waves - 1 4 15 100

A visualisation of the different migration treatments is shown in Figure 2.3 below.

Each row displays a treatment, the control experiment without migration is at

the top. The control in Figure 2.3a is closest to the standard Schelling model. Agents

of two colours are randomly initialised, and as they start to move, they segregate

into clusters of their own. Figure 2.3b places all migrants at once, effectively creating

a time-lagged initialisation because natives don’t segregate if there are no out-group

members around. When the rate of migration increases in Figure 2.3c, 2.3d and 2.3e,

the size of each wave shrinks and the grid is sparsely populated for longer periods

of time. The higher the rate, the longer will migrants be a minority population.

At the beginning of each simulation, a total of NG native agents are placed

randomly onto the grid, where4

NG = round(NatShare×N), (2.2)

and for the treatment where there is no migration (E = 0) a total of NB migrant

agents are also placed randomly, where

NB = round((1−NatShare)×Nmax) (2.3)

In treatments with migration, there are no migrant agents on the lattice at the

4The round function rounds to the nearest integer: round up when decimal is ≥ .5, else round
down.
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Figure 2.3: Screenshots of each migration treatment and the control.

(a) E = 0. The map is populated with both groups from the start. No migration.

(b) E = 1. The map is populated with natives. Migration occurs once.

(c) E = 4. Migration occurs in 4 instances, with ∼306 migrants each time.

(d) E = 15. Migration occurs 15 times, ∼82 migrants enter every time.

(e) E = 100. Migration occurs 100 times, ∼12 migrants enter every time.

beginning of the simulation. The first wave of migration occurs at time 0.05 ×

t = 1000, and the subsequent migration waves occur at evenly spaced intervals of

0.9 × t = 1000/E ticks. Migration is restricted to the first 1000 rounds so that

long-term behaviour that is not still recovering from a shock can be drawn from the
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results. During each wave of migration an additional number

∆B = round(NB/E) (2.4)

of migrant agents are placed sequentially (between turns, so that in effect, they

arrive simultaneously) onto the lattice, clustering around a focal vacant location

pT . The focal location is used as a starting point, and subsequent migrants will

be placed on vacant attractive tiles nearby. What determines the choice of the

focal point and the attraction of nearby vacant tiles depends on the FluxType,

described in Section 2.2.3 below. To demonstrate the basic principle of clustering

migrants on arrival, I use the heuristic of clustering around dense areas. With this

FluxType, referred to as Cluster, the objective of incoming migrants is to settle in

densely populated areas. Whether this area consists of migrants or natives is not

relevant. This is in line with our knowledge that migrants usually target job-rich

environments which are more common in cities, moving on to the next-best city

if opportunities decline (Collier, 2013). The additional migration locations for the

new arrivals are chosen by iteratively finding the best neighbour of the chosen focal

location pT ; sites are ranked firstly according to the highest number of surrounding

new migrants, and secondly according to their local population density within their

neighbourhood. That is, the incoming migrants exert an attraction to each other

while migration is occurring. This ensures that migrant waves will form clusters

whenever possible.

Figure 2.4 shows examples of the influx mechanism at work. This is not the actual

model, but a demonstration of what happens during the placement of migrants. The

first row 2.4a shows the most basic example: a completely empty map is populated.

For illustrative purposes, agent movement is disabled. The cyan-coloured tiles are

the tiles that will be populated by migrants in the future, so they are ‘flagged’ for

future arrivals. In the next screenshot the migrants have arrived (blue).
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Figure 2.4: Screen captures of the influx mechanism (using density-clustering) in
progress. The darker the shade of grey of an empty tile, the higher its appeal rating
to migrants.

(a) A completely empty map is populated over time. Agents are stationary.

(b) An empty map is populated over time. Agents move around randomly.

(c) An already-populated (30%) map is populated so that the density reaches 80%.

The existing agents (in this case, just migrants) exert an appeal to future mi-

grants, and thus, their neighbouring tiles are a darker shade of grey. In the following

migration wave, the cyan-coloured tiles start off by surrounding existing migrants,

but the cyan tiles exert an appeal themselves, so that the future settlement will

always prefer a cluster when possible. The cluster of tiles contains random elements

by randomly picking a neighbouring tile that is not directly adjacent to the existing

cluster. That is, instead of the circle increasing line by line, that line of tiles can

sometimes go off in a different direction away from the cluster. This prevents a

perfect sphere and provides more natural clustering.

The second row 2.4b shows the same process as above, but this time, agents that

have already arrived, have a 1% chance of moving randomly throughout the map.

After the first settlement, several migrants have moved from the cluster. Their ap-
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peal rating is visible around each of them. By the time the second migration wave

occurs, the cluster has completely dissolved and existing agents are randomly scat-

tered throughout the map. The incoming migrants now arrive in smaller, dispersed

clusters. The last screenshot in this row shows the dark grey areas in the population

centre, revealing its appeal to future migrants.

The third row 2.4c demonstrates the influx mechanism with existing agents, the

natives (green-coloured tiles). I recall that for this demonstration, initially, migrants

go to populated areas, and it doesn’t matter to them whether the population is made

up of natives or migrants. However, eventually they move near friends to increase

happiness; so natives dont exert the same appeal except initially. The first migration

wave will form the same snaky clusters as shown in 2.4b. In this particular instance,

both groups favour large majorities for themselves and segregation occurs quickly.

The newly arriving migrants are usually placed in the empty space between the two

groups, and will quickly move away and increase the size of each respective cluster.

The placement algorithm is summarised in the pseudo-code given by algorithm 2.2.

The process of migrating begins by gathering all empty tiles, or locations. For all

empty locations, the neighbourhood density is calculated. The highest density neigh-

bourhood will be the starting point for migrants. When more than one bestStart

is determined, one of them is chosen at random. As long as there are still migrants

to place in the current wave, the next-best neighbour from the bestStart is chosen

using algorithm 2.3. If the neighbourhood is full, tiles from surrounding areas are

chosen so that the migrants will always form a cluster when possible. A visualisation

of this process can be found at Urselmans (2017b).

Because the number of waves is pre-determined, the size of each wave has to be

calculated using maximum agents and number of influxes. The problem is that due

to divisions resulting in fractions (and agents must be whole integers), the accuracy

of the estimated migrants to place goes down the higher the number of fluxes is.
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Algorithm 2.2 Choose locations for migrant agents during migration waves

function PlaceMigrants(pT , ∆B) . Place ∆B migrant agents around
location pT

PT ← {pT} . Initialise the set of locations for immigration
while |PT | < ∆B do . More migrants to place?

pT ← BestNeighbour(pT , PT ) . Find the best neighbouring location
PT ← PT ∪ pT . add it to the result set

end while
return PT

end function

Algorithm 2.3 Find the neighbouring site with the greatest population density

function BestNeighbour(pT , PT ) . Best neighbour of pT excluding locations
PT

if |N(pT )− PT − {ai : pi ∈ N(pT )}| > 0 then . Vacant sites not already
chosen?

P∗ ← {} . Initialise best locations
d∗ ← −∞ . Initialise best density
for all p ∈ N(pT )− PT − {pi : ai ∈ At} do . All vacant unchosen

neighbours
d← |{ai : pi ∈ N(p)}|/|N(p)| . Calculate local population density
if d >= d∗ then

d∗ ← d
P∗ ← P∗ ∪ (p, d∗)

end if
end for
return ChooseOneAtRandom({p : (p, d) ∈ P∗ ∧ d = d∗})

else
p←ChooseOneAtRandom(N(pT ))
return BestNeighbour(p, PT )

end if
end function

Depending on the rate and size of migration the differences lie between 0.04% and

3.48% of density. The threshold that should not be exceeded is 0.24%, which is less

than a quarter of density different and can be rounded down. I.e. 87.24% density is

rounded down to 87%. If the actual density differs by more than that, the missing

agents are added. To avoid the case in which one influx is larger than the others, all

remaining migrants are randomly distributed across all influx waves. In the case of

E = 100, this can mean that 13 or 14 migrants will arrive at once, rather than 12.
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Arrival locations: FluxType

The second round of treatments varies the mode of arrival for migrants, the FluxType.

There are three kinds of FluxType, named Scatter, Cluster, and Diaspora for read-

ability purposes. Scatter places migrants on random empty locations throughout

the map. Cluster will ensure a clustering of migrants around dense areas, includ-

ing natives. Diaspora will cluster migrants around migrant-dense areas, excluding

natives.

I recall that the influx mechanism described in the previous section is the Cluster

approach, which seeks out high-density areas regardless of whether these areas are

populated by migrants or natives. This reflects our knowledge that migrants are

likely to target job-rich environments, which are more likely to occur in more densely

populated areas such as cities. Also, there may not be existing diasporas when mi-

grants arrive; diasporas might be too small and thirdly, not all migrants will auto-

matically seek out ‘their kind’ (Collier, 2013).

Scattering migrants will seek random empty locations on the grid and migrate to

these places. Intuitively, the scattering should reduce the impact of migration waves

on the native population, because neighbourhoods don’t find themselves suddenly

outnumbered. Most natives will only encounter a few new migrant neighbours that

way.

The diaspora migrants will only cluster around existing migrants. If no migrants

are present, the incoming migrants will cluster around dense areas instead. This

FluxType is based on existing real migration patterns: some groups of migrants are

highly diaspora-oriented and will only be attracted to migrate in the first place if

a diaspora exists in the future host country (Collier, 2013), see also (Novotny and

Hasman, 2015).
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Both Cluster and Diaspora treatments will treat the incoming migrants dur-

ing and after migration as appealing, but only the Cluster treatment will consider

natives as appealing during the placement of incoming migrants. There is a dis-

tinction between incoming migrants and existing migrants. Because migrants are

placed sequentially, the second migrant will know where the first migrant is going to

settle. Because this sequential placing happens between ticks, the placement is still

‘instantaneous’ in that agents were unable to act while migration occurs. Table 2.6

provides an overview of the different priorities of the influx mechanisms.

Table 2.6: The FluxType treatments and which circumstances are deemed appealing
when placing migrants

Incoming Existing Existing
migrants migrants natives

Treatment appealing? appealing? appealing?
Scatter No No No
Cluster Yes Yes Yes

Diaspora Yes Yes No

In order to ensure that migrants will arrive in some form of a cluster, both

Cluster and Diaspora will consider the incoming migrants appealing. The Scatter

treatment does not do this.

Figure 2.5 visualises each kind of FluxType. As in Figure 2.4, cyan-coloured

tiles denote ‘flagged’ tiles for future migrant placement. The three different cyan-

coloured patterns demonstrate the difference between each FluxType: scattered on

the left ( 2.5a), drawn towards dense areas in the centre ( 2.5b), and the large bloc

that ‘swallows’ existing native areas on the right ( 2.5c). The bottom row displays

the end of the tick at which the migrant wave has occurred: migrants are now placed,

and all agents have acted. The scattered migrants show no visible clusters yet. The

clustering migrants have caused the existing natives to form medium-sized clusters.

The diaspora migrants remain in a moving and shifting bloc, whereas natives on the
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same map only form smaller blocs.

Figure 2.5: Screen captures of the three kinds of migrant arrival. The top shows
the marked places for arrival; the bottom screen shows migrants arrived and having
moved.

(a) Scattering of migrants
at the time of arrival (top)
and after moving once
(bottom). White tiles are
empty space.

(b) Clustering of migrants
around densely populated
(native) areas at the time
of arrival and after mov-
ing once.

(c) Clustering of migrants
only around other mi-
grants (disapora) at the
time of arrival and after
moving once.

The scatter mechanism will select random empty tiles from across the grid and

place migrants there. The diaspora mechanism uses algorithm 2.2 for placing mi-

grants just as the cluster FluxType does, but it employs a variant of the BestNeigh-

bour algorithm 2.3 which prioritises migrants, as shown below, BestMigrantNeigh-

bour 2.4:

The model terminates at t = 2, 000 ticks, meaning that migration takes place

in 30-40% of the time, between t = 200 and t = 1000, depending on the number

of migration waves. The time scale of a Schelling model is usually not defined,

but intuitively in this case, the total number of ticks could refer to year of high
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Algorithm 2.4 Find the neighbouring site with the greatest migration density

function BestMigrantNeighbour(pT , PT ) . Best neighbour of pT excluding
locations PT

if |N(pT )− PT − {ai : pi ∈ N(pT )}| > 0 then . Vacant sites not already
chosen?

P∗ ← {} . Initialise potential locations
dB∗ ← −∞ . Initialise best density of migrants
for all p ∈ N(pT )− PT − {pi : ai ∈ At} do . All vacant unchosen

neighbours
dB ← |{ai : pi ∈ N(p) : ci = B}|/|N(p)| . Local migrant population

density
if dB > dB∗ then

dB∗ ← dB
P∗ ← P∗ ∪ (p, dB∗)

end if
end for
return ChooseOneAtRandom({p : (p, dB) ∈ P∗ ∧ dB = dB∗}) . of all

potential location, pick a random one
else

p←BestNeighbour(p, PT ) . If no migrant areas are found, revert to
density

return BestMigrantNeighbour(p, PT )
end if

end function

migration, or a decade of moderate migration, or several decades of little migration.

The ratio of migration to the overall time is more important, as it determines the

reaction time of agents and frequency of change.
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2.2.4 Dependent variables

For each realisation of the model I sample and record dependent variables every 10

time steps, allowing for both cross-sectional and time-series analysis. These variables

are described in turn below, and summarised in Table 2.4 at the end of this section.

The dependent variables are:

1. Global happiness h̄: the average happiness of agents

1.1 Native happiness h̄G: the average happiness of native agents

1.2 Migrant happiness h̄B: the average happiness of migrant agents

2. Segregation of colour M c: the Moran’s Index of spatial autocorrelation of

agent colour ci

3. Segregation of tolerance MF : which computes the Moran’s I not of agent

colours but their F value, F1 and F2.

The global happiness metric is collected to ease the comparison to many Schelling

models that use the agent’s happiness as the primary goal of the simulation.5 It can

demonstrate the upheaval that a new influx can cause. I define global average

happiness h̄ at time t as:

h̄t =
|ai,t /∈ Dt|
|At|

(2.5)

where Dt is the set of dissatisfied agents (see equation 2.1). To separate the effects

of migration on the happiness of both population groups, I also record the average

happiness of each group; for natives:

h̄Gt =
|ai,t /∈ Dt : ci = G|
|ai,t : ci = G|

(2.6)

5In several Schelling variations, when all agents are happy, the simulation terminates. This is
not the case for this model. The simulation will terminate when tmax is reached.
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and for migrants:

h̄Bt =
|ai,t /∈ Dt : ci = B|
|ai,t : ci = B|

(2.7)

As implemented by Benenson and Hatna (2011), I record Moran’s index of spatial

autocorrelation in order to quantify the amount of segregation by F1. The Index is

a measure of how clustered the agents are. High levels of Moran’s I indicate high

levels of segregation.

M c
t =

|At|∑
(i,j)∈A2

t
wi,j

∑
(i,j)∈A2

t
wi,j(ci − c̄t)(cj − c̄t)∑
i∈At

(ci − c̄t)2
(2.8)

where the mean colour is c̄t =
∑

i∈At
ci/|At|, and wi,j = 1 if and only if agents

ai and aj are immediately adjacent on the lattice (including diagonals), otherwise

wi,j = 0. I also compute the Moran’s I of tolerance, MF
t , where the mean tolerance

is F̄ =
∑

i∈At
F1,i/|At|:

MF
t =

|At|∑
(i,j)∈A2

t
wi,j

∑
(i,j)∈A2

t
wi,j(Fi − F̄t)(Fj − F̄t)∑
i∈At

(Fi − F̄t)2
(2.9)

A chequered chessboard would have a segregation index of 0, as every white tile

is followed by a black tile. A completely segregated grid has an index of 1. Schelling

models have a baseline segregation level that is caused by random movement of

agents: at any point in time, even a completely random agent with no preferences

can, by chance, reside next to a like-coloured agent. This noise-induced segregation

level is usually above 0.1 and below 0.2.6

6The value was obtained by running N=1000 simulations of the parameter range with no agent
rules other than random movement throughout the grid.
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2.3 Results

This section will describe the model outcomes and explain why such outcomes occur.

The implication of the results will be discussed in the discussion Section 2.4. For

each migration treatment of E > 0 and FluxType, the parameters are randomised.

Treatments were repeated for (4E×3FluxType) = 12×1, 500 = 18, 000 simulations.

The control treatment E = 0 does not have a FluxType as no migration takes place.

The control was repeated ∼ 4, 000 times, resulting in a total of 22, 000 simulations.

For every simulation, I record the results at tmax = 2, 000 for cross-sectional analy-

sis, and sample every 10 ticks for time-series data.

I will begin with an overview of model outcomes when NatShare = 50 and

FinalDen = 98, in line with the previously mentioned Schelling models. I will then

move on to analysis of varying these parameters.

Figure 2.6 shows boxplots of the dependent variables by each value of F2 across

all E and FluxType. I recall that F1 values are always low and thus agents are

tolerant. Both natives and migrants react with lower happiness levels when the F2

agents are less tolerant. Most F2 values are above the critical value F2 = 17 but

they drive happiness down as F2 increases. Natives are more negatively affected

compared to migrants when F2 ≥ 21 and at F2 = 20, mean happiness is slightly

higher than when F2 = 19. For migrants, the decline in happiness as intolerance

values increase is more gradual. Both population groups have near-total happiness

at the critical value of F2 = 17.

The segregation of colour M c shows that when F2 increases, segregation de-

creases. It is significantly higher at the cut-off value of F2 = 17. Combined with the

happiness pattern, this is indicative of agents being too intolerant to find acceptable

neighbourhoods. As they remain unhappy and move frequently, they break up seg-

regation patterns. Agents on the fringes of clusters will always try and relocate as
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Figure 2.6: Boxplots of the dependent variable by the F value of the intolerant
group at tmax. Bold red bars denote means, cyan bars denote medians.

they are in contact with out-group members. The segregation of tolerance increases

slightly when F2 > 17 < 21, but overall levels are low. MF does not correlate with

M c, suggesting that the agent behaviour that drives M c does not affect MF in the

same way.

To understand why we see such happiness and segregation patterns, I recall the

close link between segregation and agents’ utility-satisficing behaviour. Segregation

is the mechanism with which intolerant agents achieve happiness. We see lower
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segregation values at F2 ≥ 20 because the intolerant agents are too intolerant to

find satisfactory locations for sustained periods of time. This results in an increase

of movement, as perpetually unhappy agents keep moving to achieve the desired

state of happiness. In the process of moving away, they lower the ratio of friends for

other intolerant agents in the area, creating a domino-effect. Other intolerant agents

that were happy become unhappy, and move away. The volatility of this constant

movement makes it difficult for neighbourhoods to settle.

Happiness of agents is therefore dependent on moderate segregation levels- pro-

vided that the intolerant group has an F2 value of ≤ 17. This means that for a

population to appease its intolerant half, this intolerant half has to be largely segre-

gated. Important to note here is that up until F2 = 19, the vast majority of agents is

happy, despite an average segregation value of M c < 0.4. So while some intolerant

agents are unhappy, others have achieved a state of happiness despite their high

demands on the neighbourhood composition. Because F1 and F2 groups are half

of the population, an average happiness level of h̄G = 0.5 would indicate that the

entire intolerant half of the population is unhappy. Any values above suggest that

intolerant agents manage to find happiness.

Figure 2.7 graphs the happiness of all agents over time for the first 1, 000 ticks,

comparing the different treatments of E to the control at NatShare at 50%. With

no migration, happiness reaches convergent levels at t = 250. The impact that each

migration wave has is clearly visible as happiness drops at each new migrant wave

arrives. The one-off treatment E = 1 results in large shocks to happiness, dropping

from .95 to .53 within the one turn in which the migration wave arrives. As quickly

as happiness falls, it recovers almost instantaneously for E = 4, E = 15 and E = 100

so long as the final waves have not arrived. Past t = 700, when E = 4, the fourth

and final wave of migrants arrive- this time, happiness does not recover as quickly,

and it does not reach the same level again. For E = 15, this effect starts with the

penultimate wave at t = 789.



66

Figure 2.7: The global happiness over time, comparing all migration treatments and
the control over the first 1000 ticks when F2 = 17.

However, when we examine migrant and native agents separately, we see very

different patterns of happiness over time: Figure 2.8 displays the happiness of natives

overtime, and Figure 2.9 the happiness of migrants over the same time period. On

first glance, the native happiness resembles the overall happiness levels very closely.

All of the influx-driven dips in happiness appear, and convergence towards 800 ticks

and later happens as well. The only difference to overall happiness, as shown in

Figure 2.7, is that natives in the case of E = 100 and E = 15 have reached near-

total happiness. Every shock to happiness through migration is absorbed within a

handful of rounds. The E = 4 treatment shows similar trends, despite its much

larger downward spikes.

Migrant happiness (Figure 2.9) is much more erratic with the exception of the

control E = 0, in which migrants behave just as natives do. The happiness levels

over time for all other treatments do tend upwards overall and converge at the same

levels as native happiness does, but in the periods where migration still occurs,

migrant happiness shows a different pattern. At first, each migration wave causes
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Figure 2.8: Native happiness h̄G over time, comparing all migration treatments and
the control over the first 1000 ticks when F2 = 17.

an increase in migrant happiness, before decreasing at various degrees, depending

on the treatment. This is clearly visible for the cases E = 1, 4, 15, less so when

E = 100. For influx treatments less than E = 100, the next migration wave causes

a drop, rather than an uptick in happiness. For E = 100, this trend is delayed:

each wave still causes upticks up until t = 400, after which subsequent wave cause

a down-turn in happiness of migrants, too.

The changes in happiness are largely driven by two things: the proportion of the

population that each group represents, and the fact that happiness of new agents

(be it native or migrant) is randomly initialised. The population proportion ex-

plains why the overall happiness levels are so sharply dominated by natives. For

many treatments, they constitute a large chunk of the total agent population, and

the overall happiness levels do not capture the differences within each group. The

random initialisation of happiness is visible when looking at the E = 0, or OFF

treatment, on any of the graphs. Because agents are initialised at the start, the aver-

age happiness in the first round is always around 0.5. Combined with the proportion
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Figure 2.9: Migrant happiness h̄B over time, comparing all migration treatments
and the control over the first 1000 ticks when F2 = 17.

size, this explains why migration waves first seem to increase migrant happiness, and

then decrease it. When migrants are few and happiness is still below the average at

the time, each new wave comes with roughly half happy, and half unhappy migrants.

These push the overall happiness up. As average migrant happiness increases over

time, the unhappy new migrants drive down the overall levels. The drops in mi-

grant happiness are thus ‘artificial’ in the sense that a proportion of migrants is

always pre-determined to be initially unhappy. Existing migrants cannot experience

unhappiness as a result of new migrants, as they consider them friends.

Figure 2.10 below plots the segregation over time at the critical value of F2 = 17.

As the boxplot above indicated, long-term convergence of the Moran’s I is around

.48 for all treatments and the control. The migration waves cause shocks upwards

as segregation increases. When E = 15, the first wave causes a 1-tick upward shock,

but then declines steadily until the next wave arrives and sends segregation upwards

once again, After the arrival of the third wave, the falling segregation levels are less

pronounced, and the effect vanishes with further migration waves. When E = 100,
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the same effect can be seen at the first couple of waves at t = 200, but the differences

are subtle. This suggests that when E ≥ 15, enough migrants arrive at once to form

a cluster, but when migration waves are too small, migrants cannot create a stable

cluster. I recall that always 50% of each group is F1, so when only 20 migrants exist

of which 10 are happy living around natives, the quantity of familiarity-seeking

migrants is too low.

Figure 2.10: Colour segregation over time, comparing all migration treatments and
the control over the first 1000 ticks. Higher values indicate higher levels of segrega-
tion of green and blue agents.

The control treatment has consistently higher values of both segregation and

happiness, but towards the end, the values of both E = 0 and E = 1 converge to

very similar levels. The E = 4, E = 15 and E = 100 treatments show the same

pattern: every time an influx occurs, the system experiences an overall shock relative

to the size of the influx. The small and large step-like increases are very visible in

the segregation patterns. As with the E = 1, all values eventually converge on very

similar and often-times overlapping levels, showing no distinct difference over the

long term. In other words, how often migration happens and how big each wave is,
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does not change the circumstances in the long run. As density approaches 98%, the

model outcomes are virtually indistinguishable.

In the short term however, differences are big; in particular, the E = 1 exper-

iment stands out. In that setting, the target density is reached in an instant, and

thus the behaviour converges to similar levels of the E = 0 density of 98%. The

convergence takes nearly 200 ticks to occur (between 200 and 400), which means

that the short-term impact of a one-off migration wave causes lower happiness levels

than when migrants existed from the start. The results indicate that the size and

rate of migration in this model does not alter segregating behaviour or outcomes.

The Schelling-esque model patterns emerge as soon as critical densities are reached.

Because the convergence of behaviour occurred in the latter stages of the exper-

iments, I zoomed in on the latter stages of the first 1000 ticks. Figure 2.11 shows

a close-up view of the global happiness under Treatment E = 100 with small waves

of 12-14 migrants each. The happiness is plotted against the board density at the

time.

Figure 2.11: Time-series of average agent happiness as the number of agents increase.
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The two vertical lines denote the start and end-point of the drop in happiness

until convergence is reached, 89% and 98% density respectively. When the target

density is lower than 89%, the convergence of behaviour would not occur and the

happiness level would have remained 3% higher. This confirms the importance of

density in a Schelling model, which is robust to migration.

I now turn to the NatShare parameter which had been 50% for the previously

discussed time-series graphs, and the impact of FluxType. Figure 2.12 plots low

levels of NatShare on the left (a,b,c,d) and high levels on the right (e,f,g,h). Each

row represents a FluxType and the top row (a,e) is the E = 0 control without

a specified FluxType. The happiness of each population group is plotted in their

respective colours, native green and migrant blue.

The population group enjoying their majority is near-total happiness for all treat-

ments. (b) and (c) show the slightly lowered happiness just after the migration wave

has entered. As a general rule, natives, when in the minority (b-d) start off happy,

and stay happy when the first migrants arrive, and then decline until resting at

values between .91 and .96 for the different FluxType treatments. When migrants

are clustered (b), natives are the happiest in the long run; even diaspora arrival (d)

records slightly higher long-term happiness levels for natives compared to scattering

migrants (b).

The right-hand side of the plot shows a general pattern of similar behaviour:

migrants in the minority are not as happy as the majority-natives. Their happiness

starts off very low as they begin to arrive, and moves upwards as more waves enter.

Migrants are usually less happy than their native counterparts in a minority, sug-

gesting that the late arrival impacts the long-term happiness. When migrants arrive

at diasporas (h), they are consistently happier than their clustering cousins (g) and

happier than the scattered migrants (f), especially at the early stages of arrival.

At t = 250, diaspora-seeking migrants are just below 80% happiness, whereas the

scattering migrants and the same time period are at 40% average happiness. This
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Figure 2.12: Native and migrant happiness over the duration of 2000 ticks, plotted
by NatShare and FluxType. The vertical dashed lines indicate the end of migration
waves.
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shows that by targeting existing migrant populations, new migrants can achieve

higher satisfaction levels especially when they are among the first to arrive. At later

waves, the effect diminishes. Clustering migrants (g) are roughly in between the

other FluxType treatments on levels of average happiness.

I confirm the differences in behaviour of natives and migrants when each are in

a minority of 20% or less in Figure 2.13, which shows the happiness levels at the

end of the simulation at tmax.

Figure 2.13: Boxplots of native and migrant happiness when each group is in a
minority of 20% or less. Bold red lines denote mean, cyan lines denote median
values.

The different FluxTypes impact natives very little, but the subtle increase in

happiness under diaspora settlement is visible with an increased median. The box-

plot 2.13 shows more clearly than the time-series graph that the scatter treatment

has a much higher variation in outcomes as all E > 0 treatments are combined.

The mean is the same for all treatments, but the medians vary significantly, and the

superiority of diaspora-guided settlement as measured by happiness outcomes is vis-

ible. The reason that migrants are more strongly affected by changes in FluxType

is straightforward: the rule is designed to affect their initial settlement specifically.

Natives are only affected indirectly. When natives are in the minority, they show
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only subtle reactions to the different FluxTypes. The Diaspora settlement leads

to a slightly increase median happiness. This is because when natives are in the

minority, the settlement of the then-majority of migrants inadvertently affects most

of natives. The scattering of 80% or more of the population has a high chance of

affecting most natives on the grid. Equally, the clustering of such a large proportion

of the population around a high-density minority neighbourhood can overwhelm the

local population. The diaspora settlement avoids this issue by purposefully settling

the migrants away from the natives, resulting in the slightly higher median of native

happiness. But as previously noted, these changes at this stage of the model are

minor.

Major changes result in the happiness of migrants when they are in the minority.

Most notably, the scatter settlement results in a large variance in Migrant happiness

h̄B, despite the mean being close to 1. Note the median which is fairly low, just

below h̄B = 0.8. This suggests that whilst half of the migrants have happiness levels

below that value, the vast majority of happy migrants are very happy, thus keeping

the mean at near-maximum. Migrants that are scattered have thus very little way

of dealing with being dealt a bad set of cards: if a scattered migrant ends up in a

largely-native neighbourhood, and the migrant is intolerant, the migrant is unhappy

and has to start moving to find the right place to live. Because the tolerant migrants

who have ended up, by chance, in a majority-native neighbourhood are happy, they

don’t move away, thus lowering the number of potential neighbourhoods for intol-

erant migrants to cluster into. Scattering migrants hurts the intolerant migrants,

as the tolerant ones don’t provide a buffer in which intolerant migrants can settle.

The clustering settlement shows this effect in diminished strength: the vast majority

is very happy, but the number of not-that-happy migrants has decreased. Because

migrants cluster, only the fringes of the cluster will be effected: this can occur when

the local population density is too high to establish a neighbourhood connection

between two migrants. The next vacant tile might not be in visible range of another
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migrant, despite it being the closest vacant tile to the cluster. Intolerant migrants

find this situation unacceptable. However, the clustering mechanism greatly reduces

the number of unhappy migrants compared to the scattering FluxType. The dias-

pora FluxType achieves even better happiness levels because the problem of high

local densities is circumvented by picking less populated spots to cluster around.

FluxType can change happiness, but has no impact on segregation outcomes,

as shown in Figure 2.14: again, low NatShare is on the left, high NatShare on the

right, and each FluxType on a row with E = 0 at the top. The tolerance segregation

MF is convergent and no different from the control. The colour segregation M c is

slightly higher in (b-d) compared to its control: migration increases segregation

but the arrival type does not impact this pattern any further. The same trend

is visible for high NatShare levels. Graphs (f-h) show slightly elated values of

M c at .6 compared to .55 under no migration (e). I can conclude that colour-

segregation behaviour is not impacted by FluxType, but increases with NatShare

and with F2. Colour segregation M c
t is lower when E = 0. This is because when no

migration occurs, intolerant and tolerant agents have an equal likelihood of meeting

outgroup members at the beginning of the simulations. This leads to hardliners

segregating, and tolerant agents forming buffer zones by remaining on the outskirts

of clusters or not being in a cluster in the first place. When E = 0, hardliners

are exposed from the start. When E > 0, the tolerant agents have clustered with

intolerants, forming larger clusters containing both tolerant and intolerant agents.

When migration waves come in now, intolerant agents on the fringes of clusters are

caught off-guard. Because tolerant agents can reside inside intolerant clusters (they

don’t mind either way), it creates fewer opportunities for intolerant agents to be

happy with the current situation. Thus, hardliners will try and form clusters. The

movement patterns settle down when clusters have an intolerant core surrounded

by tolerant buffer. This mechanism also explains why colour-based segregation is

higher when natives are the vast majority of the population. It is them who exist
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before the first wave of migration and that create clusters without providing support

for intolerant natives. Fringes thus become overexposed and start breaking up the

previously established clusters.

Figure 2.14: Colour and tolerance segregation over time until tmax by E and low and
high levels of NatShare. The dashed lines represent the end of migration waves.
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Colour segregation is consistently higher by up to 20% when NatShare is high.

When migrants form the large majority, migration is lower overall and over time.

This shows that the way agents are introduced does alter long-term outcomes. Not

of happiness, but of segregation. When migrants arrive in waves forming a majority

which grows larger over time, the society is overall less segregated without sacrificing

happiness. Because the natives are so quickly outnumbered, they effectively have

to look for the highest possible diversity situation when density is still low and the

range of options are high. This allows agents to find satisfactory neighbourhoods.

As the migrant majority grows, they may not need to move at all, as they already

reside in the right place. In the real world, migration generally involves a context

in which the natives-born or previously resident people form a majority. Whilst the

majority might shrink, it usually doesn’t shrink to percentages as low as 2% or 20%.

2.4 Discussion

The model in this chapter sought to examine the impact of migration on the host so-

ciety using a Schelling model with very few moving parts. The short-term impact of

migration differs significantly from long-term impacts in this model. The contextual

neighbourhood effects are dependent on density and the ratio of migrants to natives.

The size and rate of migration of a new set of agents into an existing popula-

tion have no long-term impact on happiness levels of agents. Assuming an equal

population share between natives and migrants, any short term variation that may

exist between large and small migration flows can be explained by the differences in

population density: higher levels of density correspond to lower levels of happiness,

because agents have fewer options to move to a satisfactory place. Free space in a

Schelling model is a proxy for freedom of choice of residency within towns and cities.

The lack of long-term impact corresponds to the general findings of the existing
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literature and supports the concept that given passage of time, host societies absorb

first-generation migrants (Collier, 2013). However, the absence of such ramifications

in this model do not prove that such ramifications cannot or would not occur in the

real world. It shows rather that mere segregating behaviour alone wouldn’t, at least

in the absence of mediating factors or behaviours, lead to long-term negative effects.

This finding is in line with our knowledge of long-term reactions to migrants. After

several decades, new types of migrant groups arrive that shift the framing of dif-

ference of existing migrants (Hatton, 2005). Changing discourse and framing can

re-cast different population groups, such as post-9/11, which lead to the primacy

of Islam as the defining attribute that distinguishes a population group from its

(Western, mostly Christian) group (Joppke and Torpey, 2013).

The impact of scale and size of migration in the long run only matters under

conditions of lower density, where overcrowding is less likely to cause constant fric-

tion. When the number of arriving agents is low, agents have, on average, more

empty space to use. Intolerant agents thus seek to belong to groups of their own

colour, and if they are on the edge of a group, they are usually surrounded by empty

space. Visually, this results in white ‘buffer zones’ between groups. These zones do

not appear if the population covers 98% of the map. Thus, agents on the fringe of

a group will likely neighbour agents of a different colour, causing unhappiness and

more movement. Because the space to move is so limited, constant friction keeps

agents less happy and in a perpetuated state of seeking better places. With more

space available, differences in migrant and native population are more visible.

The terminology of ’low’ and ’high’ density levels however is relative. Whether

a figure of 88% density translates into a highly or lowly populated population in

the real world will shape any conclusions drawn. Because the Schelling model can

resemble urban spaces closely, and urban spaces are confined, high densities in the

model can construct the reality in which the housing market restricts the choices of
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movement (Benenson and Hatna, 2011). Small differences in density can be remi-

niscent of property development and new opportunities opening up on the housing

market: this has been used in various Schelling models of urban geography (Hatna

and Benenson, 2012). Previous research in urban development and spatial segre-

gation in cities has shown that the availability of different housing types can drive

segregation (Arbaci, 2007). Economic status can also reduce the options and change

the preferences of people moving: poor people struggle moving into non-poor neigh-

bourhoods (South et al., 2011).

Aside from the rate of change of migration, different initial settlement strategies

were compared. The settlement strategies had a mixed effect on model outcomes.

Natives in the model did not react negatively to migrant diasporas, their happiness

was even slightly higher in these circumstances. Because the migrating group segre-

gates right away, intolerant agents are effectively shielded from negative experiences.

Both groups have their share of tolerant and intolerant agents. When tolerant mi-

grants scatter or target high-density native areas, they may not be compelled to

seek out a diaspora because they have settled and are content. This reduces the

number of migrants that live in a diaspora, making it harder for intolerant migrants

to find satisfactory places to live. When tolerant migrants settle in a diaspora, they

are again not compelled to move, and contribute to a larger migrant community

that can satisfy its intolerant members. The implications of the impact of migrant

settlement types on happiness are that it is in the migrants’ interest to seek out

their own right away, even if that drives up segregation. In essence, this is what

migrants in the real world already do (Collier, 2013) and this model generates the

same pattern. The model suggests that happiness-segregation trade-offs are what

need to be considered when understanding the impact of migration on hosts and mi-

grants. Initial settlement preferences of migrants may differ from those that develop

after migrants have settled in (Søholt and Lynnebakke, 2015).
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If diasporas are to be avoided, it is the more tolerant migrants that can be tar-

geted as they will be more open to live in a minority situation. This is reminiscent

of high-skilled vs. low-skilled migrant workers who have very different settlement

patterns (Joppke and Torpey, 2013). Crucially, migrants that scatter experience

50% less happiness on average than the diaspora migrants. The results suggest that

a targeted policy of scattering migrants, designed to reduce individual local impact

on natives, might need to consider that the reduced local shock comes at the cost of

migrant happiness. In this model this has no further consequences, but in a coun-

try that relies on migrant labour, these potential deterrents should be considered.

For instance, immigration in Europe in the past decades has branched into two

extremes: low skilled (yet useful) labour, and highly skilled migrants that attract

niches of the economy (Baganha et al., 2006). Skilled migrants have the resources to

chose alternative destinations, and unskilled migrants (particularly those that stay

in the country illegally, by means of overstaying visas for example) have ever more

reason to “keep to themselves” (Baganha et al., 2006).

Contrary to the long-term convergence, the short-term outcomes in the model

are significantly affected by the rate of change of migration. The short-term dip in

happiness in a one-off migration situation however is by far the largest and takes

long to recover. These short-term differences could be meaningful when considering

electoral cycles: even though different migration patterns may theoretically lead

to an equally happy society, short-term dips in happiness could be decisive in an

election, where long-term prospectives might not be politically useful. This is par-

ticularly relevant in recent years which has seen the rise of populism in Europe and

the US, partially preying on fears of Überfremdung (‘over-foreignization’) fuelled by

the refugee crisis (van Prooijen et al., 2017); but also previous backlashes to migra-

tion waves in the 20th century (Hatton, 2005). The refugee crisis has posed (and

still poses) a great political challenge for EU countries for parties on all ends of
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the political spectrum (van Prooijen et al., 2017). The short-term effects are thus

substantial and affect future political decisions and ideology. The model suggests

that negative responses result through the pure logistics of such a large-scale and

short-term change. That is, threat perceptions, identity politics or populist narra-

tives are not necessary to generate shock effects within the population. We know

that attitudes are slow to change and that people prefer the status quo for prolonged

periods, rather prolonging some discomfort than risk to cause upheaval (Shamir and

Shamir, 1997). The sheer size of a logistic challenge should thus be considered, no

matter how well-justified it may be on an ideological basis.

These short-term effects matter. Perhaps in fifty years time, the refugee crisis

will have been forgotten or overshadowed by different events. But its impact on

political forces and on media, society and discourse in this short period time is

substantial.

Lastly, the model included different strengths of tolerance to see how different

tolerance groups react to migration waves. The grade of intolerance matters. Lower

values of high intolerance F2 were correlated with higher values of happiness in each

population group. If the intolerant agents are just a little less intolerant, this can

lead to significant differences in overall happiness without driving segregation up as

well, as shown in Figure 2.6 when F2 > 17 < 21. Translating this mechanism into

public policy might mean that it is not required to ‘convert’ large swathes of the

population to become completely open towards migrants, but that small differences

can matter, too. Instead of presenting migration as a pro vs. anti binary political

stance, it could be construed as a scale that acknowledges a potentially wide-spread

desire to be in the majority population group. The importance of framing has been

highlighted in diversity research, especially when reaching out to ‘hardliners’, i.e.

people who self-identify with the majority population and who view their race and

ethnicity as central to their identity (Rios and Wynn, 2016). Hardliners are more

open to multiculturalism when it is presented as a learning opportunity to learn
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about other people, rather than as a political aim or ideological pursuit (Rios and

Wynn, 2016). Learning about other cultures or ethnic backgrounds can constitute a

first contact situation and provides an opportunity to adjust pre-existing prejudices.

If this lowered perceived threat (and subsequently, intolerance) just mildly, it could

have a positive effect overall.

As a final concluding remark, the long-term convergence speaks to the robustness

of the Schelling model. Even introducing 96% of a population at once does not

alter the general model outcomes and patterns- intuitively, a one-off shock of a

large number of migrants should be more disruptive in the long term. A long-term

disruption could be caused by path dependency: because of the initial shock, agents

segregate strongly. If these segregation patterns persist, then the initial shock would

have altered the long-term outcome. This is not the case with this model.
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3 Chapter 3

In this chapter7, I build on the immigration model introduced in Chapter 2. The aim

of this section of the thesis is to implement an existing social theory into an Agent-

based model to test the theories’ assumptions in a repeated virtual experiment. The

theory to be implemented is the so-called ‘contact theory’ which draws from wider

work on group identity in psychology and sociology. By implementing a theory in a

computer model, its assumptions and predicted outcomes can be scrutinized. The

implementation of the contact theory introduces a crucial aspect into the existing

Schelling model of immigration: adaptive tolerance. Depending on the experience

with migrants, native agents can now respond by raising or lowering their tolerance

towards out-group members. I again address the research question (i): “How does

migration affect the host society and migrant population?”. The introduction of

immigration to a Schelling model tested two very specific concerns relating to mi-

grant settlement and rate of change of migration. The model introduced in this

chapter uses existing social theory that makes assumptions about contact between

two different groups of people- such as migrants and citizens of the host country.

In the realm of diversity, two main strands of thought have crystallised. The

contact theory posits that diversity increases tolerance and solidarity (i.e. social

capital). The greater the exposure to otherness in a social environment, the more

likely is it that people perceive these differences as the status quo, and they cease

to be markers of difference. Opposing the contact theory is the conflict theory (or

threat theory). The otherness, so the theory claims, triggers anxieties and leads to

a protective reflex. The higher the diversity, the more likely people are to stick to

their own kind and try and turtle, mistrusting the other. Both theoretical approaches

have empirical evidence to support their claims (Kaufmann & Harris, 2015). Prob-

lems arise in both the operationalisation as well as the level of analysis. Capturing

7This chapter is based on a paper co-authored by Steve Phelps (KCL): Urselmans and Phelps
(2018)
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migration on national or sub-national level does not entail data on the individual

or group-based interactions, which are the crucial level of analysis for social cap-

ital. Kaufmann and Harris (2015) provide a meta-analysis of studies testing the

minorities, migrants and outgroup-hostility. Note that the share of minorities and

share of migrants are sometimes combined in these studies. Of the studies listed, 11

support conflict theory and 8 support the contact hypothesis. Two studies find a

neutral relationship, while the remaining 4 report multiple responses (i.e. both neg-

ative and positive, or neutral and negative). The absence of consensus on contact or

conflict is evident. The authors point at the difference in level of analysis as a crucial

factor in deciding the outcome: movement is easier to capture with smaller units

of analysis. Ariely (2014) echoes a similar observation, analysing studies conducted

between 2007 and 2014. Especially the operationalization of variables such as trust

leads to contradictory results between studies, even if studies are internally valid.

I bridge this micro-macro gap by employing an agent-based model suited to

explore theories of social complexity through the ability to capture the properties

of heterogeneous populations of individuals (Klabunde and Willekens, 2016b). This

bottom-up approach in which the model is imbued with micro-level behaviours,

can give rise to macro-level behaviours which can be observed empirically in the

output from the model; thus it is easier to bridge the micro-macro gap because all

micro-level behaviour is automatically accounted for.

3.1 Introduction

International migration is becoming an increasingly defining feature of Western

countries, and a key question is what the social implications of large-scale migration

and increasing ethnic diversity are. As societies grow more diverse and immigration

increases as the world becomes increasingly globalised, concerns about immigration

in Europe are high (Heath et al., 2016). The parsimonious model introduced in

Chapter 2 revealed the importance of minority population share and grades of in-
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tolerance, but is still based on several unrealistic assumptions about the real world.

To bring the model closer to corresponding literature on intergroup contact, this

chapter implements the contact theory to test its micro-foundations.

That people harbour (even slight) preferences for belonging to social majorities is

well-known; disagreements occur when trying to explain why these preferences exist

and how they come into existence (Singh et al., 2009). One such explanation is pro-

vided by group identity theory (Clark and Fossett, 2008). People will self-categorize

themselves and others into ‘us’ and ‘them’ and establish differences between these

categories as a means of identifying with a group and to experience the benefits of

belonging to a group (Pettigrew et al., 2011).

In social psychology, immigrants and citizens of host societies can be under-

stood as two different groups that lend identity to its members. To native-born

people, immigrants thus form an ‘outgroup’. Intergroup threat theory describes

the perceptions of threat that people perceive from an outgroup (Stephan et al.,

2009). Perceived threats to society and culture from immigrants are worrying large

amounts of voters across Europe (Heath et al., 2016). Threat theory includes per-

ceptive threats, which will be the focus in this chapter. Thus, whether or not the

threat is real is not the primary concern: what matters is that people feel as if it

were real. Survey respondents frequently overestimate the number of immigrants

in their country (Markaki and Longhi, 2012). Actual numbers of migrants do not

predict perceived threat (Semyonov et al., 2004; Stephan et al., 2009), but perceived

numbers do (Semyonov et al., 2004). This can help explain why anti-immigration

attitudes are often high in areas with low migration: following the Brexit referen-

dum in 2016, Goodwin and Heath (2016) have examined the demographics of voters.

They find a negative relationship between EU migration and support for leaving the

EU: “of the 20 places with the most EU migrants 18 voted to remain. In many of

the areas that were among the most receptive to the Leave campaign there were
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hardly any EU migrants at all.” (Goodwin and Heath, 2016, p.10).

Intergroup threat theory has proven an effective tool in testing what drives such

sentiments (Stephan and Renfro, 2002). Perceived threats to key values in society

can explain the anti-immigrant hostility in Europe (Mclaren et al., 2012). Those

who believe that traditional values are undermined and that societal cohesion is

not ‘what it once was’, are also more likely to be sceptical of immigration (Mclaren

et al., 2012).

Threat theory has drawn elements from intergroup contact theory, initially pro-

posed by Allport (1954) in 1954 as the ‘Contact hypothesis’. Drawing on studies

from mixed and segregated neighbourhoods in the US, Allport concluded that under

certain conditions, white people with frequent contact with black people experienced

decreased racial prejudice. Despite being frequently construed as such, Intergroup

contact theory is not a proposition of frictionless interactions of out-groups result-

ing in increased trust or social cohesion. Positive contact can potentially lead to

these outcomes, but negative contact implies opposite effects (Pettigrew et al., 2011).

Physical proximity increases the likelihood of contact, but whether that contact is

positive (promoting understanding) or negative (invoking a threat perception) is

not always clear (Pettigrew et al., 2011). In many empirical cases which often times

feature migrants as an out-group, the contact conditions are not positive (Pettigrew

et al., 2011). Migrants that flee poverty and seek work in a first-world country

may have a very different collective set of common goals than the host society that

was born into what they perceive as a very different status quo. Differing cul-

tural norms between the host and migrant population can present a social challenge

to migration (Collier, 2013), and this would not constitute a positive contact situa-

tion. Migrants might not speak the native language, presenting an obvious technical

barrier to surpass, strengthening the ‘otherness’ perception of out-groups (Collier,

2013).

In the field of political science, contact theory has enjoyed increased attention
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since Robert Putnam proposed that, contrary to the consensus at the time, diversity

decreases social cohesion in communities (Putnam, 2000, 2007). Putnam pointed

out that while immigration as a source of diversity has a positive effect on society

in the long run, its short-term effects can be largely negative. Collier (2013) echoes

similar sentiments: in the long run, immigrants contribute to society and integrate,

but in the short run, positive effects may be outweighed by social friction generated

from the influx of diversity. The inclusion of migration into the Schelling model

presented previously corroborates this view.

Contact and threat theory appear conflicting but focus on slightly different as-

pects of the same phenomenon. Threat theory is the study of precedents of prejudice

towards outgroups, and contact theory is the study of the context in which different

groups interact. The differences are described in further detail below.

Both theories have been empirically tested in social psychology and political sci-

ence, resulting in hundreds of studies (for a meta-study of contact and threat theory,

see Kaufmann and Goodwin (2016), for a meta-study on social capital and cohesion,

see Portes and Vickstrom (2015)). To date, the relationship between diversity and

social capital is unclear. The occurrence and strength of the relationship is depen-

dent on the context it is placed in. Kaufmann and Goodwin (2016) find whether data

is taken from national or sub-national level, will effect the resolution of information

of groups and their behaviour and ultimately, the results of a study. Movement is

easier to capture with higher resolution data. Tangential to these findings, Ariely

(2014) notes the stark differences in operationalisation of social capital variables

(particularly that of trust) that drive the differences in results between studies.

Empirical studies face difficulties in operationalising variables. Effects on the

individual level, such as decreased prejudice as a result of positive contact with

an out-group member, must not necessarily persist at the group level (Pettigrew

and Tropp, 2006). However, much of the research that has spawned as a result

of Putnam (2007)’s finding that diversity invoking threat perceptions on macro-
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level. This means that parts of the underlying theory cannot be captured. Threat

theory emphasizes the threat-related antecedents of prejudice such as loss of identity

though the presence of an outgroup that challenges the values on which the identity is

founded. Contact theory by contrast focuses on the context of the contact (Stephan

et al., 2009).

This chapter approaches inter-group tolerance from an agent-based perspective

in order to understand the implications of migration as an introduction of diversity

into an existing population. Previous research has employed agent-based models to

introduce differing levels of tolerance (Hatna and Benenson, 2015b) and to explore

the minority-majority relationships of different groups (Hatna and Benenson, 2012).

In this chapter I build on the immigration model that was introduced in the previous

chapter. I analyse a model in which I introduce a crucial innovation: tolerance

in this model is adaptive; agents can alter their tolerance levels as they evaluate

their surroundings. I use this model to investigate segregation outcomes under

environmental conditions where migrants introduce new diversity into the existing

population, and both groups have to adapt to the changed social environment. The

adaptation of the model proposed by Hatna and Benenson (2015b) was chosen so

that model outcomes of non-adaptive and adaptive agents can be compared more

easily. The ways in which adaptive tolerance is implemented are based on the contact

theory.

The remainder of the chapter is structured as follows. In the next section I

describe my methods and my model. In Section 3.3 I present my results. Finally I

conclude in Section 3.4.

3.2 Method

The method is once again ABM, using the Schelling model of the previous chapter.

The main concepts of the Schelling model remain: agents have a preference for loca-

tions which are populated by agents of the own colour, and they move accordingly.
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Preferences are quantified according to the threshold fraction of similarly-coloured

agents in the neighbourhood that is required for an agent to be satisfied with its

locale. Schelling (1971) showed that even a small preference to be near agents of the

same colour gives rise to a large amount of segregation.

I use a similar framework, but introduce migration and adaptation of tolerance.

I denote one of the colours — green — as representing natives, and the other — blue

— as representing migrants. Migration is modelled by allowing the blue population

to grow as new migrants arrive at particular times, and at particular locations,

around which they cluster. Both groups of agents follow the same behavioural rules,

which comprise a movement rule, and a tolerance adaptation rule. The former is

similar to earlier Schelling models in which agents move over time relocating to their

preferred neighbourhoods. The latter is an innovation of my particular model; when

agents are exposed to the out-group their tolerance increases if they are currently

satisfied with their environment, but otherwise it decreases.

In the next section I describe my model in precise detail. The model is analysed

by simulating it very many times, recording and drawing free parameters randomly

as described in Section 3.2.2. I analyse the model under five different immigration

treatments, which are described in Section 3.2.3. I record the dependent-variables

for each simulation run, as described in Section 3.2.4. In Section 3.3 I present

a cross-sectional and time-series analysis of dependent and independent variables

under each treatment. My analysis shows that there are very clear effects, which

can be demonstrated by the use of simple descriptive statistics and scatter-plots.

The source-code used for simulations is freely available under an open-source li-

cense (Urselmans, 2017a).

3.2.1 The model

The model baseline is very similar to the one described in the previous chapter,

Section 2.2.2. To ease the comparison, most of the notation and variables are kept
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the same, any differences will be highlighted throughout the description of the model

below. Again, a set of agents At = {a1, . . . , an,t} are placed on a grid with a total

of N = 50 × 50 vertices V at time t ∈ Z. Each agent ai has a colour ci, which is

either blue (ci = B), or green (ci = G). Green agents, as previously, are the natives

and they are randomly placed at the beginning of each simulation. Blue agents are

migrants and arrive later on during migration waves. Agents cannot die or otherwise

exit the grid. Fig 3.1 shows a visualisation of the now familiar patterns of the model:

blue and green agents occupy one tile at most, and white space is empty space that

agents can move to.

Figure 3.1: An example state of the simulation showing the colour ci of each agent ai.
Blue squares are occupied by migrant agents and green squares by natives. White
squares are empty cells. Both populations eventually form visible clusters.

Agents can only see their local neighbourhood. Let Nt(ai) denote the neighbour-

hood of ai at time t, which consists of the set of all other agents located on the

lattice within a Euclidean distance of two nodes from ai. The neighbourhood for a

given agent thus consists of all other agents within its 5× 5 Moore neighbourhood.

As implemented previously, agents have a preference to be with others of their

own colour, but the implementation differs in this version of the model. Each agent

ai has a tolerance threshold fi,t ∈ [fmin, fmax] which determines the fraction of

out-group members the agent tolerates in their immediate neighbourhood8. This

fraction is continuous and differs from the discrete number of friends in Chapter 2.

8Despite the similarities to the model from 2, the mechanisms of tolerance deviate significantly
and thus the F notation was dropped. Because tolerance is now continuous as it allows for slow
changes, the scale of 24 discrete friends was no longer applicable.
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The fraction of agents that are similar to agent ai is given by

si,t =
|{aj ∈ Nt(ai) : ci = cj)}|

|Nt(ai)|
. (3.1)

Agents are satisfied with their neighbours if and only if the fraction of nearby

similar agents meets their tolerance threshold. The utility of agent i at time t is

again denoted by ui,t ∈ {0, 1}, given by:

ui,t =

 1 : si,t ≥ fi,t

0 : si,t < fi,t

. (3.2)

The movement rule algorithm for agents ( 3.1 below) incorporates the ratio s of

in-group agents g and out-group agents d in an agent’s neighbourhood.

Algorithm 3.1 Movement rule for agent ai
L← RandomlyChooseVacantSites(z) . choose |L| = w candidate
locations
L?← {pi,t} . initialise satisfactory locations
for all l ∈ L do

g ← |{aj ∈ Nt(l) : ci = cj}| . number in-group agents in neighborhood
d← |{aj ∈ Nt(l) : ci 6= cj}| . number of out-group agents in neighborhood
s← g/g + d
if d > 0 ∧ s ≥ fi then

L?← L? ∪ {l} . update satisfactory locations
end if

end for
l?← ChooseOneAtRandom(L∗)
pi,t+1 = l? . update location

Dissatisfied agents are given by Dt = {ai ∈ At : ui,t = 0}. Every tick or turn,

each dissatisfied agent ai ∈ Dt, who is currently located at pi,t, randomly samples a

number, z, of unoccupied locations Li from the grid. They then randomly choose

a new location from this subset for which the ratio of in-group to out-group agents

meets their tolerance threshold, i.e. {l ∈ Li ∪ pi,t : si,t ≥ fi,t}. If no satisfactory

alternative locations are found, then the agent remains (unhappily) at its current

location pi,t. If an agent fails to find a new location, the agent’s tolerance will remain
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unchanged. If the agent is still unhappy in the next time period, it will try and find

a new location again.

As before, agents that are satisfied will have a small chance (probability 10−2 per

tick) of relocating by randomly picking a location from z vacant locations without

considering their utility. This aims to model movement that is not just due to

tolerance of diversity, but for other reasons. The agents’ reasoning, including their

adaptive tolerance, is described in Algorithm 3.2 below:

Algorithm 3.2 Decision rule of agent ai.

if |{aj ∈ Nt(ai) : cj 6= ci}| > 0 then . at least one outgroup agent in
neighbourhood?

if ui,t = 0 then . agent is dissatisfied?
Move agent . see Algorithm 3.1
fi,t+1 ← fi,t . tolerance remains the same

else
fi,t+1 ← min(fi,t + ∆f , fmax) . increase tolerance by ∆f

p← draw randomly from U(0, 1)
if p ≤ 0.01 then . satisfied agents move with probability 0.01

L← RandomlyChooseVacantSites(z)
pi,t+1 ← ChooseOneAtRandom(L)

end if
end if

else
fi,t+1 ← max(fi,t −∆f , fmin) . decrease tolerance by ∆f

end if

Implementing the assumptions of contact theory, the model includes that toler-

ance of an agent adapts to its local environment. Positive contact with out-group

agents leads to an increase in tolerance, in line with the theory (Allport, 1954).

Positive contact is defined as sharing the neighbourhood with out-group members

whilst the agent is happy. Accordingly, at each time period every satisfied agent

ai ∈ At : ui,y = 1 who is exposed to at least one out-group agent in its environment

increases its tolerance threshold by a constant term ∆f , up to the maximum value

fmax. Tolerance decreases by the same amount if an agent is surrounded by agents

of the same colour, and is not in a contact situation: the reasoning is that lack of

contact increases likelihood of stereotype-reliant views of the out-group (Pettigrew
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et al., 2011). In all other cases, tolerance remains the same:

fi,t+1 =


min(fi,t + ∆f , fmax) : ui,t > 0 ∧ |{aj ∈ Nt(ai) : cj 6= ci}| > 0

max(fi,t −∆f , fmin) : |{aj ∈ Nt(ai) : cj 6= ci}| = 0

fi,t : ui,t = 0 ∧ |{aj ∈ Nt(ai) : cj 6= ci}| > 0

. (3.3)

Agents keep their tolerance level when they are unhappy and in a contact situation-

this is because they will attempt to move away. Moving away and lowering toler-

ance would in effect constitute a double penalty of negative contact, as agents in a

Schelling model will seek happiness not just through adaptation, but relocation. If

agents were to lower their tolerance and move away, they would contribute to more

segregation (by seeking a same-coloured neighbourhood meeting their needs) and to

lower tolerance at once. However, it is possible to imagine why agents should carry

out a double penalty:

Essentially, one has to decide whether it would be more realistic to implement

the double penalty or not. Thinking about a real-life situation, a family of white

people lives in a majority white neighbourhood. Then, black people start moving

in. The ratio of white-to-black changes, and the white family decides they are not

comfortable in this situation, and are going to move away. There are two potential

causes: (1) the family is already intolerant, but doesn’t know it yet. The exposure to

black people merely reveals this low level of tolerance. (2) The family is somewhat

tolerant, but the presence of black people lowers the existing tolerance, and this

then leads to the unhappiness of the white family. In the first case, the family

would not adjust their tolerance. In the second case, the family would indeed first

lower their tolerance and then move away. It is thus possible to construct the

rule in this different way, with potentially big impacts on the model outcomes. I

have decided against the double penalty because a volume of research in social

psychology, communication studies and discourse analysis on the denial of racism

(“I have nothing against blacks, but...” in van Dijk (1992)) suggests that racism and
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prejudice more broadly are inherent and often unintended (Dovidio and Gaertner,

2010). Issues of inherent & systemic racism as well as the mixed results of anti-

racism campaigns (Stephan et al., 2002) all suggest that a certain level of racism is

present, and that this level is higher than people admit, even to themselves, and not

just in one type of country (see for example Wasserman (2010) for a study in South

Africa, Rojas-Sosa (2016) in Latin America, Andreouli et al. (2016) in the UK).

There is also support (De França and Monteiro, 2013) for Dovidio’s and Gaertner’s

theory of ‘aversive racism’, the idea that out-group prejudice is not exercised in

situations in which the out-group is seen as positive, but that prejudice shows when

situations are ambiguous (Dovidio and Gaertner, 2000).

Thus, it is likely that as underlying racist views are frequently denied, they are

simply bought to the fore in a contact situation, rather than created.

A different approach would be to emphasise the volatility of racist thoughts

and views based on framing (Branscombe et al., 2007), arguing that as people

can change their minds quickly, they could decrease their tolerance before moving

away. Moreover, a much-studied theme in intergroup relations is the use of legiti-

mation of inequalities as a key driver perpetuating these very inequalities, including

racism (Costa-Lopes et al., 2013). There is thus a material interest in keeping racist

attitudes (or prejudice in general) up. I acknowledge the validity especially of the

second argument. I argue that the act of moving in the real world constitutes a

decision with many consequences, and is thus not taken lightly- a single situation

framed in a negative way may not be enough to lead to such a drastic change- unless

it simply exposes an intolerance that has been present, but had not been ‘triggered’

before. The need to keep racism up must not necessarily result in an increase in in-

tolerance, it could also be interpreted as a refusal to decrease intolerance- something

that is not discussed in contact theory and is not part of the model. To conclude,

there are grounds on which the decision rule could include a double penalty, but

there exists plenty of evidence that supports my model design of leaving it out.
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The changes in tolerance in the model are tightly linked to states of happiness,

and contact is not frictionless. The inclusion of the happiness-condition emulates

the fact that integration is potentially a costly process. The costs themselves are

not modelled, but rather, the happiness condition acts as a proxy for willingness

to pay these costs. A happy person is more willing to engage than an unhappy

person. Happiness, I recall, is purely a representation of whether the neighbourhood

is satisfactory.

Depending on the experimental treatment (see Section 3.2.3 below), the popu-

lation of agents can grow as new migrants arrive. The number of native agents is

always constant, new migrants arrive in discrete waves of migration up until the

final point of arrival, tmig = 1000. The population dynamics are specified in terms

of:

1. the final population density — PopDen — which is a parameter that specifies

the fraction of occupied sites after all migration event have occurred (at t =

tmig);

2. the native share of the population — NatShare — which specifies the ratio

of natives to migrants at the end of the simulation; and

3. the number of waves of migration — E — which specifies how many migration

events occur.

Migration is carried out using the same influx mechanism Cluster introduced in

the previous chapter (see Section 2.2.3. Migrants will target high-density areas

irrespective of whether migrants or natives populate those areas. At the beginning

of the simulation a total of NG native agents are placed randomly onto the lattice:

Nmax = round(PopDen×N) (3.4)

NG = round(NatShare×Nmax), (3.5)
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and for the control where there is no immigration (E = 0) a total of NB migrant

agents are also placed randomly at the start of the simulation, making them in effect

blue natives:

NB = round((1−NatShare)×Nmax) (3.6)

In treatments where migration is dynamic (E > 0), there are no migrant agents

on the lattice at the beginning of the simulation. Rather, the first wave of migration

occurs at time 0.05 × tmig, and the subsequent migration waves occur at evenly

spaced intervals of 0.9× tmig/E ticks. During each wave of migration an additional

number

∆B = round(NB/E) (3.7)

of migrant agents are placed onto the lattice, clustering around a focal vacant loca-

tion pB. The additional migration sites for the new arrivals are chosen by iteratively

finding the best neighbour of the chosen focal location pB; sites are ranked firstly

according to the highest number of surrounding new migrants, and secondly accord-

ing to their local population density within their neighbourhood. The placement

algorithm is summarised in the pseudo-code given by algorithms 3.3 and 3.4.

Algorithm 3.3 Choose locations for migrant agents during migration waves

function PlaceMigrants(pB, ∆B) . Place ∆B migrant agents around
location pB

PB ← {pB} . Initialise the set of locations for immigration
while |PB| < ∆B do . More migrants to place?

pB ← BestNeighbour(pB, PB) . Find the best neighbouring location
PB ← PB ∪ pB . add it to the result set

end while
return PB

end function



97

Algorithm 3.4 Find the neighbouring site with the greatest population density

function BestNeighbour(pB, PB) . Best neighbour of pB excluding locations
PB

if |N(pB)− PB − {ai : pi ∈ N(pB)}| > 0 then . Vacant sites not already
chosen?

P∗ ← {} . Initialise best locations
d∗ ← −∞ . Initialise best density
for all p ∈ N(pB)− PB − {pi : ai ∈ At} do . All vacant unchosen

neighbours
d← |{ai : pi ∈ N(p)}|/|N(p)| . Calculate local population density
if d > d∗ then

d∗ ← d
P∗ ← P∗ ∪ (p, d∗)

end if
end for
return ChooseOneAtRandom({p : (p, d) ∈ P∗ ∧ d = d∗})

else
p←ChooseOneAtRandom(N(pB))
return BestNeighbour(p, PB)

end if
end function

3.2.2 Initial conditions

The majority of parameters governing the initial conditions of the model are ran-

domly varied between simulation runs in order to test the robustness of the model.

I also record these values so that they can be used as independent variables in or-

der to ascertain any effects. These are described in turn below, and summarised in

Table 3.1 (the remaining constant parameters are summarised in Table 3.3, and the

state variables in Table 3.4).

Tolerance distribution

When agent ai arrives at the simulation its initial tolerance fi,0 is drawn i.i.d. from

a uniform distribution fi,0 ∼ U(fmin, fmax). After the initialization, the agent adapts

their tolerance according to Equation 3.3 as summarised in Algorithm 3.2. For all

simulations in this chapter I set fmin = 0.05 and fmax = 0.95. These limits prevent

agents from ‘locking in’ at the extreme values of tolerance; with these constraints
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agents will always be able to tolerate one out-group member in their neighbourhood

(without these constraints, any agent reaching full tolerance or intolerance would

never readjust again, since just one out-group member would be above the tolerance

threshold). Due to the conversion of discrete numbers of friends between 0 to 24

(in the neighbourhood) to a continuous scale of tolerance between 0 and 1, multiple

values of tolerance correspond to one discrete friend, as agents can only be whole.

For instance, tolerance levels between 0 and 0.04 all correspond to 0 friends.

Rate of change of tolerance

The rate of change of tolerance ∆f is the increment used when agents adapt their

tolerance (see Equation 3.3). At the beginning of each simulation it is drawn ran-

domly ∆f ∼ U(10−5, 10−3) and remains constant throughout the simulation. The

low values of ∆f are chosen to reflect the fact that attitudes, on average, change

only slowly. Because the time-scale of the model is arbitrary (one tick could mean a

day, a month, a year, an electoral cycle), the rate of change of tolerance in relation

to the number of ticks can determine on what scale the model is interpreted. A

∆f of 0.001 means that an agent has to increase tolerance for 40 subsequent ticks

before one additional out-group member will be tolerated. This is a very slow pace,

designed to model a society over several decades. Adjusting the rate of change of

tolerance can represent faster-paced time-scales of months or a couple of years.

Final population density

The final population density PopDen determines the fraction of occupied sites after

all waves of immigration have occurred (|Atmig
|/N). From thereon, the number of

agents is constant. At the beginning of each simulation this parameter is randomly

drawn from a uniform distribution ∼ U(0.75, 0.98).

Schelling models are typically assumed to run under conditions of high den-

sity (Hatna and Benenson, 2012), which is why the minimum is still 3/4 of the map

covered. Density also acts as a proxy for freedom of choice. Higher density results
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in less freedom of choosing better areas.

Final native share of the population

The final native share of the population NatShare determines the ratio of natives

to migrants after all waves of immigration have occurred. This parameter is ini-

tialised randomly by drawing from a uniform ∼ U(0.02, 0.98) at the beginning of

each simulation. In treatments without migration (E = 0) it determines the fraction

of natives in the initial population, which thereafter remains fixed. In treatments

with migration (E > 0), it determines the number of migrants added in each wave

(see equations 3.5, 3.6 and 3.7), which in turn determines the final fraction of natives

in the population.

Considering the extremes of this parameter, when NatShare = 0.02, the world

would fill up with migrants until migrants constitute 98% of the population, and

natives constitute 2%. Whilst national-level migration does not lead to migrants

outnumbering natives, the reasoning is that on smaller geographical areas, this

majority-minority flipping can indeed occur. Because segregation is mediated by

how society is made up, how big minorities are and how they are distributed, the

ratio seeks to test in how far, if at all, different minority-majority relationships in-

fluence segregation behaviour and tolerance levels. The traditional Schelling model

has usually assumed an even split, an assumption that is not theoretically useful in

the context of migration and attitudes towards diversity.

Considered tiles to move

The parameter z specifies the number of vacant locations than each agent considers

when moving. At the beginning of each simulation it is initialised randomly by

drawing from a discrete uniform distribution z ∼ U(25, 125). The minimum and

maximum of this distribution correspond to 1% and 5% respectively of the size of

the entire lattice. In the previous model in Chapter 2, this parameter was fixed as

it did not affect any model outcomes. Because there are a number of significant
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changes in this version, the parameter was re-introduced to see whether it would

have an effect this time round.

3.2.3 Immigration treatments

Consistent with the immigration implementation of the previous model, there are

five different experimental treatments for immigration of blue agents into the model,

which correspond to five different values of the parameter E. These are summarised

in Table 3.5. Immigration waves arrive within the first 1,000 ticks of tmax = 20, 000.

This allows agents to adjust their behaviour for a prolonged period after the last

migration wave has occurred.

The first treatment E = 0 is a control condition with no immigration taking

place. In this condition, both natives and migrants are initialised at the start of

the simulation and there is no increase in the size of the migrant group over time.

The four remaining treatments all feature immigration at different rates, aiming to

simulate one-off large influxes of migrants as well as a “trickle-down” scenario in

which few migrants arrive at one time, but do so for a sustained period of time. The

precise dynamics are described by equations 3.4 to 3.7 in the previous section. For

a more in-depth description with visualisation, see Section 2.2.3 in Chapter 2.

3.2.4 Dependent variables

Dependent variables are sampled on every simulation run every 10 time steps, allow-

ing for both cross-sectional and time-series analysis. These variables are described

below, and summarised in Table 3.6.

Firstly, the Moran’s Index of spatial autocorrelation is recorded for (1) colour

segregation:

M c
t =

|At|∑
(i,j)∈A2

t
wi,j

∑
(i,j)∈A2

t
wi,j(ci − c̄t)(cj − c̄t)∑
i∈At

(ci − c̄t)2
(3.8)

where the mean colour is c̄t =
∑

i∈At
ci/|At|, and wi,j = 1 if and only if agents ai
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and aj are immediately adjacent on the grid, including diagonals, otherwise wi,j = 0,

and (2) segregation of tolerance, M f
t , by substituting f in place of c in equation 3.8:

M f
t =

|At|∑
(i,j)∈A2

t
wi,j

∑
(i,j)∈A2

t
wi,j(fi − f̄t)(fj − f̄t)∑
i∈At

(fi − f̄t)2
(3.9)

Because happiness is now in part a function of adaptive tolerance, it is no longer

a dependent variable. Instead, I focus on the tolerance of agents: I record the first

four moments of the tolerance distribution across the population (f̄t, σ
2
ft

, γft and

κft), and subdivide this into tolerance of migrants:

f̄Bt =
∑
ai∈Bt

fi/|Bt| (3.10)

and tolerance of natives:

f̄Gt =
∑
ai∈Gt

fi/|Gt| (3.11)

where Bt is the migrant population {ai ∈ At : ci = B}, and Gt is the native

population {ai ∈ At : ci = G}.

Finally, to help identify whether the tolerance distribution is bimodal, I record

the bimodality coefficient (Pfister et al., 2013) of the tolerance distribution:

βft =
γ2
ft

+ 1

κft
(3.12)

As a notational convention, I refer to the final value of an independent variable

at t = tmax by omitting the time subscript from all of the above.

Table 3.1: Independent variables

Parameter Distribution Description
NatShare ∼ U(0.02, 0.98) Fraction of natives
PopDen ∼ U(0.75, 0.98) Final population density

∆f ∼ U(10−5, 10−3) Rate of change of tolerance
z ∼ U(25, 125) No. of considered locations when moving
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Table 3.2: Restricted ranges of independent variables for which the model converges
within t ≤ tmax

Parameter Range
NatShare 0.2 ≤ NatShare ≤ 0.8

∆f 5× 10−4 ≤ ∆f < 0.001

Table 3.3: Constants

Constant Description
tmig = 1, 000 Time until final migration

tmax = 20, 000 Maximum number of ticks per simulation
N = 50× 50 Size of lattice
fmin = 0.05 Minimum tolerance
fmax = 0.95 Maximum tolerance

Table 3.4: State variables

Variable Description
At The population of agents
ci,t Colour of agent ai
fi,t Tolerance of agent ai
ui,t Utility of agent ai
pi,t Position of agent ai

Nt(ai) The set of agents that are neighbours of agent ai
N(p) The set of locations in the neighbourhood of location p

Table 3.5: Treatment conditions

Treatment E = 0 E = 1 E = 4 E = 15 E = 100
Migration No Yes Yes Yes Yes
Number of waves - 1 4 15 100

Table 3.6: Dependent variables

Variable Description
M c

t Segregation of colour at time t (equation 3.8)

M f
t Segregation of tolerance at time t (equation 3.9)

f̄Bt Tolerance of migrants at time t (equation 3.10)
f̄Gt Tolerance of natives at time t (equation 3.11)
βf Bimodality of tolerance at the end of the simulation (equation 3.12)
M c Segregation of colour at the end of the simulation
M f Segregation of tolerance at the end of the simulation
f̄G Tolerance of natives at the end of the simulation
f̄B Tolerance of migrants at the end of the simulation
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3.3 Results

The model was analysed through simulation and empirical methods. For each treat-

ment in Table 3.5 I executed 7,000 independent realisations of the model, draw-

ing free parameters from the distributions specified in Table 3.1. Each realisation

was run for a total of tmax = 20, 000 simulation ticks. This resulted in a total

of 5 × 7, 000 = 35, 000 cross-sectional samples of each of the dependent variables

(Table 3.6). During each simulation I also sample all dependent-variables every 10

ticks, resulting in a total of 35, 000 × (20, 000/10) = 7 × 107 time-series samples.

In the following I first give an overview of the qualitative properties of a single

typical simulation run before analysing the aggregate data across simulation runs.

The model is updated sequentially, every tick. Agents act in sequential order; that

order is shuffled every tick to avoid tactical advantages that might result from a

pre-determined sequence.

3.3.1 A typical simulation run

Fig 3.2 shows a visualisation of a typical simulation run to demonstrate the clustering

of agents. The top row shows a progression of migration (E = 4) at a starting density

of 37%, filling up with migrants up until a 75% density so that both groups are equal

in size. The blue and green agents move around, empty space is white.

The bottom row shows the corresponding tolerance heat-map. Light colours

denote tolerant agents, dark colours denote intolerant agents, and the grey areas are

vacant tiles. The period from t = 90 (pre-migration) to t = 100 (post-migration)

is marked by a significant changes in tolerance levels. The native fraction of the

population that is not in vicinity of migrants are uniformally hostile, whereas the

newly arrived migrants have a large variance in their tolerance levels, which are

randomly drawn from a uniform distribution upon entering the map. At this stage,

the map is sparsely populated and the clusters of migrant and natives have visible

buffer-zones between which make inter-group contact less likely.



104

Figure 3.2: States of the simulation at different times. The top row shows the colours
ci of each agent. The bottom row shows the corresponding tolerance heatmap.

As more migrants arrive, I start to observe the effects of inter-group contact.

Natives exposed to migrants react either by increasing their tolerance, resulting in

the lighter colours visible at t = 300, or by moving. Once all of the migrants arrive,

at t = 790, there are two pronounced clusters of agents (one of which wraps around

the grid). On the tolerance heat-map, I see corresponding clusters of tolerance, with

highly-intolerant agents surrounded by highly-tolerant agents. At this stage, most

of the population has either very high or very low levels of tolerance, but as long as

there is enough empty space to form a buffer zones between the clusters, the majority

of agents are still highly intolerant, because only very few contact situations arise;

unhappy agents relocate before adapting their tolerance levels.

This situation changes as space becomes more scarce. The final two states shown

in Fig 3.2 illustrate a rapid phase-transition from a mainly intolerant society into a

bimodal society of two equally-large fractions of highly-tolerant and highly-intolerant

agents. The vacant buffer zones are now populated with tolerant agents of both

colours who have relocated from the periphery of their respective clusters, thus
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forming a new zone of highly-tolerant agents. This tolerant zone expands as more

out-group members mix in these high-tolerance areas, which in turn influence agents

on the periphery of the intolerant clusters through positive contact, which results in

a rapid erosion of their size.

This process continues until the intolerant clusters are completely surrounded by

tolerant agents, who are satisfied and therefore static. This provides a dense, rigid

substrate which restricts the movement of agents on the periphery of the intolerant

clusters, who provide a protective membrane shielding the inner-core from further

out-group contact. The periphery itself is highly dynamic; because agents on the

periphery are unhappy they relocate, but their range of movement is restricted

to locations within or near the cluster. However, inside these clusters, agents are

intolerant but satisfied, as they are surrounded by in-group members, and therefore

they remain static. Thus the entire cluster of intolerant agents achieves a relatively

stable configuration, and persists over time.

The smaller orange-coloured clusters are unstable pockets of medium tolerance

which appear throughout the simulation, but rapidly disappear again as they con-

sist entirely of satisfied agents who either become more tolerant through out-group

contact, or become isolated and intolerant.

Thus movement and adaptive tolerance interact leading to an emergent shield-

and-buffer dynamic that polarises the population, causing it to self-assort along the

tolerance axis with agents being either extremely tolerant or intolerant. Although

in this section I have only discussed a single simulation run, in subsequent sections

I show empirically that the model results in bimodal tolerance for many different

initial conditions, and despite Monte-Carlo variance.

3.3.2 Model convergence

As discussed in the previous section, the model exhibits subtle dynamics, and the

parameter range for the rate of change of tolerance ∆f has been very low on purpose.
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Therefore it is important to establish whether the key dependent variables stabilise

within the finite time period t ≤ tmax. I test the convergence of each independent

realisation of the model individually by analysing the final n = 250 values Vf of the

time-series of each independent variable V sampled at intervals of 10 ticks.

The criteria I use to test convergence of each variable are:

(i) if the variance of the final sample is extremely small σ2
Vf
< 10−20; or

(ii) the standard deviation is small compared to the overall range σVf < [max(V )−

min(V )]× 10−4; or

(iii) if Vf is stationary under an augmented Dickey-Fuller test (Elliott et al., 1996).

This is established by estimating the model ∆Vt = α+βt+γVt−1 + δ1∆Vt−1 +

. . .+ δλ−1∆Vt−λ+1 + εt where the lag order λ is chosen using the Akaike infor-

mation criterion, and accepting the time-series as convergent i.i.f. if the value

of the test statistic γ̂/SE(γ̂) is less than the critical value for p = 0.05.

These criteria were chosen because they allow to test not only for cases where

the model reaches a static steady state in which values of dependent variables are

constant over time, but also stochastic steady states in which the time-series is

stationary; i.e. the moments, such as the mean and variance, are constant, despite

the fact that the dependent variable has non-zero rate of change.

Using the above criteria, I analyse the time-series of the tolerance of migrants,

the tolerance of natives, and the segregation of colour; i.e. V ∈ {f̄Bt , f̄Gt ,M
c
t }. I

record that the model has converged for a given realisation i.i.f. all three variables

converge in the final period.

Over the entire range of parameters only 86% of simulation runs reached (stochas-

tic) steady state within tmax ticks. I was able to identify which independent variables

contributed to the convergence of the model through a correlation analysis, which

identified NatShare and ∆f as the most promising explanatory variables. I binned
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Figure 3.3: Proportion of simulations run that converge by independent variable.
Each variable X is binned into intervals of size 0.05, and then I count the fraction
of independent simulation runs which converge within each bin.
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NatShare and ∆f × 100 into bins of size 0.05, and plotted the proportion of simu-

lation runs that converged within each bin (Fig. 3.3).

The highest failure rate occurs for extreme values of NatShare and for small

values of ∆f < 0.0005; for very small values of ∆f agents adapt very slowly, and

the model fails to reach equilibrium within t ≤ tmax, whereas for extreme values of

NatShare, the respective minorities are likely too small to form sustainable clusters,

thus breaking up and forming again. In fact, both variables interact; if I do not

control for NatShare then the convergence rate increases asymptotically, but slowly,

with ∆f . However, if I control for extreme values of NatShare then provided that

∆f ≥ 0.0005 I obtain a fairly consistent convergence rates of ∼ 97%.

Based on the convergence analysis, I restrict the ranges of the NatShare and ∆f

parameters used in the remainder of the chapter. All results in subsequent sections

use the ranges 0.2 ≤NatShare≤ 0.8, and ∆f ≥ 0.0005, for which the vast majority

(97%) of simulation runs converge. These ranges are summarised in Table 3.2.
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3.3.3 Time-series analysis

The tolerance of natives f̄G (henceforth: ‘native tolerance’) and migrants f̄B (hence-

forth: ‘migrant tolerance’) over time is plotted in Fig 3.4). An important variable

affecting tolerance behaviour is NatShare, which determines the final size of the

native share of the population. Fig 3.4 shows tolerance levels over time by the high

and low values of native share, grouped into NatShare ≤ 0.3 and NatShare ≤ 0.7

respectively.

In the case of low native share, under no migration (E = 0) conditions, natives

and migrants behave similarly (graphs Fig 3.4a and Fig 3.4f). The majority group

is slightly less tolerant. The differences are visible at first, but nearly converge after

t = 2500. The differences are very small, but still significant.

The case of E = 1 stands out from the rest. When NatShare is low (Fig

3.4b), natives never recover fully from the initial shock of migration. As with all

other cases, native tolerance drops sharply and quickly recovers, but not exceeding

f̄G = 0.7 for the remaining time. The reverse scenario of high NatShare (Fig 3.4g) is

visibly different: natives recover and reach near-total tolerance, along with migrants.

These values are slightly higher than those observed in Fig 3.4f, with no migration.

The reason that the E = 1 treatment is so different from the rest is that in the

case of low NatShare, the proportion of natives to migrants is flipped immediately:

native agents who constitute 20% of the final population make up 100% of the pre-

migration population. Because of the large number of migrants coming in, many

migrants are immediately exposed to a majority of migrants, presenting a shock not

just to parts of the population, but to most of it. As no migrants had been present

before, natives have not clustered into groups which could at least ‘shield’ the inner

part from the effects of the one-off migration (this is because segregation behaviour is

triggered by unhappiness rather than absence of out-group members, see section ??).

Because natives suddenly find themselves in a minority and most of the agents

become unhappy, they will move into areas with fewer migrants. The sudden influx
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Figure 3.4: Time series of native tolerance f̄G (green) and migrant tolerance f̄B (blue), by treat-
ment, filtered by extreme values of the native-share initial condition (0.2 ≤ NatShare ≥ 0.7).
The error bars show the 95% confidence interval for the mean of the f̄ values across independent
simulation runs and the range of ∆f that leads to convergence. The dashed line at tmig marks
the end of migration waves.
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has prevented even moderate natives to adapt to their changing neighbourhood,

and as they start to segregate away, not enough tolerant natives remain to become

happy and increase their tolerance levels. The sudden minority is an important

element of this behaviour. As the high NatShare situation shows (Fig 3.4g), a one-

off influx does not reduce long-term native tolerance when natives are in a majority

even after the large migration wave. In contrast, natives in E = 0 treatments are

exposed to migrants from the very beginning: they experience unhappiness and will

segregate to improve it, creating pockets of happy and intolerant natives surrounded

by tolerant natives that are exposed to migrants and shield the intolerant parts

of their population group from exposure. This process is not achieved in E = 1

treatments, where previous absence of migrants has meant that native tolerance

had started to decline.

At E = 4 (Fig 3.4c, Fig 3.4h), the shocks from each migration wave is visible.

When NatShare is low (Fig 3.4c), migrant tolerance is low when migration is still

occurring. The increases in tolerance at each migration wave is due to the random

initialisation of tolerance for new migrants. Effectively, each wave presents an op-

portunity to tip the tolerance balance within the population. This is not achieved

until the fourth and last wave of migration has arrived at t = 700. Natives are

visibly affected by the influx of migrants. During the first two migration waves,

native tolerance f̄G drops to near-zero, before increasing sharply to above 0.6 at

t = 1000. Beyond this point, both natives and migrants transition to a majority

tolerant society of f̄G > 0.98 by t = 5000.

For E = 15 (Fig 3.4d,i) and E = 100 (Fig 3.4e,j) the overall pattern is very

similar. The migration waves are no longer as visible on the graphs, as the size of

waves is not large enough to upset the overall population. Both natives and migrants

will first experience a drop to low levels of tolerance, and recover quickly as more

waves arrive, reaching their peak. Higher numbers of migration waves increase the

time required to reach convergence of peak tolerance when NatShare is high (Fig
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3.4i,j). When E = 4, the peak is reached by t = 5000. When E = 100, this requires

an additional 2,500 ticks. This means that for longer periods of time, the population

groups are not as tolerant. The higher convergence times are also visible in Fig 3.3.

A notable difference between natives and migrants in the E = 15 and E = 100

cases is that natives will always drop their tolerance to near-zero, regardless of their

population share. Migrants mirror this pattern only when they are in the minority

(Fig 3.4d,e). When migrants are a majority (Fig 3.4i,j) their lowest tolerance is

above 0.1. If natives and migrants behaved the same way, the graphs on the left

should be mirrored by the graphs on the right.

Lastly, when E = 100 and NatShare is high (Fig 3.4j), the maximum tolerance

levels are not as high compared to cases with fewer migration waves. The variance

increases as the number of waves increases, suggesting a less settled pattern of

tolerance.

3.3.3.1 Non-convergent cases

The previous section highlighted that not all cases of the model converge, and that

two parameters, namely NatShare and ∆f , had to be restricted to ensure model

convergence. However it can be useful to investigate what happens in the case

of non-convergence. Even though the end-state results cannot be supported, the

behaviour of agents over time in cases of non-convergence can shed light on the

model dynamics.

Figure 3.5 plots the tolerance of natives and migrants over time, just like Fig-

ure 3.4. In this case, the low range of NatShare is between 0.01 and 0.1, and the

high range between 0.8 and 1; the two ranges that lead to non-convergence. On first

glance, the non-convergence occurs because the tolerance of each population group

is usually still increasing by the time the simulation finishes. I note here that the

model was also run at different lengths of up to tmax = 200, 000 ticks, i.e. ten times

longer than the current set of results. None of these repetitions led to convergence-
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instead, it would slow down, but still tend upwards at the final stage. Comparing

the outcomes of Figure 3.4 and 3.5, tolerance is generally much lower in the non-

convergent cases. In the convergent cases, total tolerance is reached quickly after the

final migration wave has occurred. This is not the case here: Native tolerance, which

is usually near-1 and only deviates from this pattern when E = 1 and NatShare is

low, is now often lower, reaches full tolerance when NatShare is low but also when

E = 1, reversing the pattern.

Notable is also that the high levels of tolerance do seem convergent for E = 1.

The error bars show very low variation and the non-convergence in this case is largely

driven by the erratic migrant tolerance (Fig 3.5b). Given that natives are in such a

small minority in these cases, they are too few to find each other to form a coherent

group, and adjust by increasing their tolerance towards the migrant group, which

constitutes 90%+ of the population. When NatShare is slightly higher, as is the

case in Figure 3.4, it is enough to provide ‘pockets of intolerance’ which prevent

natives from lowering their thresholds and thus remaining unhappy after the large

shock of the one-off migration. Migrants are quite intolerant in the case of low

NatShare, seen in Fig. 3.5a,b,c,d,e. Population groups that outnumber migrants to

such a large extend simply can’t provide sufficient contact opportunities for agents

to increase their tolerance levels. The rate of change of arrival does not alter this

pattern, however tolerance is higher overall when migrants arrive later on, as opposed

to the control experiment of no-migration. Migrant happiness slumps after reaching

a high population share (this pattern occurs in the non-adaptive model as well, see

Section 2.3) and starts increasing again, very slowly and has not settled by the time

tmax is reached.

When NatShare is high (right hand side of Figure 3.5), both natives and mi-

grants have moderate levels of tolerance and do not show the near-maximum levels

that they show when the model converges. What is interesting here is that the high

end of NatShare does not mirror the low end of the range: now migrants are the
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Figure 3.5: Time series of native tolerance f̄G (green) and migrant tolerance f̄B (blue), by
treatment, non-convergent cases only. Native share is (0.01 ≥ NatShare ≤ 0.1) and (0.8 ≥
NatShare < 1). The error bars show the 95% confidence interval for the mean of the f̄ values
across independent simulation runs. The dashed line at tmig marks the end of migration waves.
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minority, yet they do not reach stages of full tolerance. Instead, migrant and native

tolerance first flips (natives start off more tolerant and become the less tolerant pop-
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ulation group) and then continues to increase, natives slowly catching up to migrant

tolerant- but again, as the end-state of the model does not converge, there is no

certainty that the trend continues upwards.

The non-convergent cases of the model also show a very different outcome of

tolerance- it is not that the convergent cases show the same patterns with the only

difference being that they reach convergence before the simulations terminate- the

short-term patterns also differ markedly in many cases. The reason that agents

behave so differently is due to the extreme values of NatShare. The ratio of the

two groups is an important parameter in a Schelling model (see Section 2.4) and

in the case of adaptive agents, extreme ratios in which one group outnumbers the

other by 8 or 9 to 1 cause the otherwise stable patterns to break down. When

this situation occurs, natives and migrants differ in their behaviour, suggesting that

the fact that migrants come in later on does change the short-term behaviour of

agents. The control of E = 0 is roughly a mirror image with some variation likely

due to the larger range of cases of 0.8 ≤ NatShare ≤ 1, but the same overall

pattern. When E > 0, native minorities can adjust their tolerance upwards whereas

migrant minorities are slower to do so and may not reach the same levels at any

stage. Natives are also more tolerant when they are the majority and are exposed to

migrants at a slower rate. This seems intuitive, yet again cannot be confirmed due to

the still-changing tolerance values at tmax. When natives are the large majority, they

suffer a shock in tolerance (as they do when the model converges), but are slower

to recover. This is due to the very slow rate of change of tolerance. When ∆f is so

low, agents’ response rate effectively slows down. The relationship between levels of

∆f and the time required to reach convergence is not linear. Whilst I cannot draw

definite conclusions from non-convergent cases, the preceding graph has highlighted

the sensitivities of the model with regards to extreme values of NatShare.
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3.3.4 Cross-sectional analysis

In this section I analyse the dependent variables listed in Table 3.6 across a total of

15,000 independent simulation runs, drawing parameters from the distributions in

Table 3.1.

Fig 3.6 shows a scatter-plot of the average final tolerance of each group against

the native-share initial condition (NatShare), subdivided by treatment. The first

column shows the tolerance of natives f̄G and the second column depicts the toler-

ance of migrants f̄B. Outcomes from the five immigration treatments from Table 3.5

are each shown on a separate row.

Because both natives and migrants share the same decision-rule for adapting

their tolerance (algorithm 3.2), my initial intuition was that all the graphs would

simply be mirrored. The control treatment with no migration, E = 0, shows this

mirroring pattern for both native and migrant agents: when natives are in a minority,

their tolerance is more varied, dropping to 0.8. The same behaviour is observed for

migrants when they are in the minority.

When migration occurs only once (E = 1), natives and migrants differ markedly

in their tolerance behaviour. Part of the pattern is still mirrored: natives that

constitute the vast majority of agents (NatShare ≥ 0.7) are very tolerant, as are

migrants when NatShare ≤ 0.3. When natives are in majorities smaller than 0.7,

the native tolerance splits: a large number of cases see very high native tolerance,

and very low tolerance. Medium levels of f̄G are observed throughout. A part of this

pattern is reflected in the earlier time-series of native tolerance in Fig 3.4. Migrants

don’t diverge in their behaviour as much, although their tolerance starts to vary

more as well, never dropping below 0.6. Migrants in minorities cope better than

natives in minorities when E = 1.

This pattern does not apply for the cases E > 1. When E = 4, both natives and

migrants are very tolerant with the exception of one outlier each, where tolerance

is at or near zero. This means that the tendency to the extreme in these cases has
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Figure 3.6: Scatter plots, by treatment, of native tolerance (f̄G) and migrant tolerance (f̄B)
against native share of the population (NatShare), in steady-state at t = tmax.
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shifted to the other end. When E = 15, more cases of intolerant natives and migrants

occur throughout the range of NatShare. When E = 100, those low-tolerance cases

only appear at NatShare ≥ 0.5. Thus, when the number of migration waves is

very high and natives form the majority of the population, more cases of intolerance

occur. Tolerance levels always verge on the extreme ends of the scale.

The different types of migration flows modelled by the treatments in Table 3.5
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do not significantly affect the broad functional relationship between tolerance (f̄)

and native-share (NatShare) if E > 1. The high variance of native tolerance at

E = 1 is likely due to the fact that the one-off migration wave is so disruptive that

for large parameter ranges, natives do not recover their tolerance.

High tolerance within very small groups is due to the fact that with so few agents,

no coherent group can form, and thus all free-moving agents become more and more

tolerant as they have no homogeneous neighbourhood to escape into. This line of

reasoning is intuitive for migrants in general, since they arrive in smaller batches.

The high variance of tolerant minority migrants is down to their initial placement:

depending on where their clusters are located, they may find a cluster large enough

to ensure lower tolerance levels: intolerant migrants will stick to the cluster and if

they are inside of the cluster, they will stop contact with outgroup members, thus

reducing their tolerance. Migrants that have higher tolerance levels can roam the

grid on their own: many neighbourhoods are satisfactory to them, and being in an

unhappy contact situation, they will first try and move away before dropping their

tolerance. Moving away presents them with a bigger range of potential satisfactory

locations compared to intolerant agents. This means that tolerant agents will only

by chance end up increasing the size of an intolerant cluster. It is more likely that

they will settle in other areas of the map, simply because there is more of it.

I recall that agents are utility-satisficing, not -maximizing. That is, a tolerant

agent that accepts a 20% outgroup-share in their neighbourhood will view a 20%

share the same way as a neighbourhood with a 5% outgroup-share. Thus, the

locations that would be picked by a maximizer, those around the intolerant clusters

of ingroups, remain vacant and are picked only by chance. The agents that can

sustain their intolerance reside at the centre of such ‘intolerance hot-spots’. These

clusters must be large enough to sustain themselves. Too small, and the fringe

agents will become more and more tolerant (their access to the cluster satisfies their

tolerance requirements, but their outside access provides positive contact), and thus
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tolerate more and more outgroup members. As these move in, the intolerant hot-

spot disintegrates, starting outside and ‘eating’ inwards: the cluster becomes more

and more tolerant until it breaks up. A few intolerant agents will move away and

smaller intolerant clusters form, but they too break apart. The smaller the clusters,

the quicker their disintegration.

3.3.5 Bimodality analysis

Both the cross-sectional and the time-series analysis indicate highly polarised toler-

ance levels. Fig 3.7 shows a histogram of tolerance values fi across the population

at the end of representative simulation runs. In these cases, tolerance values are

concentrated at both extremes of the distribution, and the distribution is bimodal.

Depending on the parameters such as ∆f and NatShare, the split can vary between

30-70 and 70-30, with less than 10% of agents taking more moderate tolerance val-

ues. Thus parameters can determine the extent to which a population leans to the

very tolerant or very intolerant, but the overall pattern remains that of a deeply

divided society.

Figure 3.7: Histograms of the three most common distributions of final tolerance
levels fi. Intermediate tolerance is infrequent when tolerance levels are polarised.

Fig 3.8 shows a scatterplot of the bimodality coefficient of tolerance Bf against

the native share of the population across all simulation runs. Regardless of the

experimental setup, the bimodality coefficient is almost always above the critical
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value Bf >
5
9
, denoted by the red horizontal line. Due to their similarity, E = 1

and E = 4, as well as E = 15 and E = 100 were grouped together. Bimodality

is lowest when native share is either < 1
3

or > 2
3

of the population. In cases with

migration, bimodality drops earlier compared to the control. In a large number of

cases, bimodality is nearly at 1 for the mid-range values of native share, illustrating

its strong polarising effect on the population. The sharp drops in bimodality near

the critical value are caused mainly by very low values of ∆f . When the rate of

change of tolerance is near-zero, it increases the chance that the tolerance values

change too slowly to ever hit the extremes. That said, these lower values are still

well above the critical threshold.

Figure 3.8: Scatterplot of the bimodality coefficient of the tolerance distribution
βf at the end of simulations, against native share of the population (NatShare).
Treatments were merged here due to their similarity. The critical value βf >

5
9

is
denoted by the horizontal red line.
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The bimodality in this model is a crucial indicator that the moderate levels of

tolerance are not stable. Agents will tend towards either extreme, sooner or later-

even when the value of ∆f is very low, requiring up to forty consecutive turns to

change tolerance so that one additional agent is tolerated (or not tolerated) in the

neighbourhood. The trend towards extremes is driven by the self-enforcing nature

of the neighbourhoods, as described in section 3.3.4 above: intolerant agents will

segregate until they are happy, and start dropping in tolerance once they lose any
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contact to outgroup members. Tolerant agents will reaffirm their positivity by in-

creasing their tolerance as a result of being happy whilst being in contact with the

outgroup. Extreme tolerance is more stable than moderate tolerance. The cases in

which the intolerant extreme dominates, segregation has established large enough

clusters that sustain itself, and density levels have provided enough vacant buffer

zones that remove the enforced contact situation in high-density settings. In these

scenarios, tolerant agents reside on the fringes, but are not numerous enough to

penetrate the intolerant core of the segregated cluster.

A divided society of agents is typical for a Schelling model, since agents are

intrinsically homophilic by construction. However, divisions in a Schelling model

are based on colour, or in this case, native or migrant status. The segregation of

tolerance in this case is higher: Figure 3.9 shows the Moran’s I of spatial autocor-

relation for both colour-based segregation M c (as typically measured in a Schelling

model) and for tolerance-based segregation M f . Again, the results are grouped

into both ends of native share values and broken down by immigration treatment.

The long-term segregation levels for out-groups (colour) are consistent throughout

all cases, including the control (Figure 3.9a,f), never reaching M c = 0.2. The val-

ues are not much higher than the values observed when movement is random (i.e.

0.1 ≤ M c ≤ 0.15). Schelling models have a baseline M c value because some seg-

regation exists by pure chance of agents’ position at any point in time, suggesting

that adaptive agents can circumvent segregation of colour to a large extent.

By contrast, segregation of tolerance attitudes, M f is higher at the end of each

simulation for most treatments of E and levels of NatShare. The exception is E = 1

and low NatShare, Fig 3.9 b which sees both colour and tolerance segregation at

similar low levels. Segregation is much lower compared to traditional Schelling mod-

els because segregating is no longer the only way agents can mitigate unhappiness.

Because moving away only occurs in once instance (contact + unhappiness) and ad-
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Figure 3.9: Time series, by treatment, of the segregation levels of colour M c
t (black), and tolerance

M f
t (yellow), filtered by extreme values of the native-share initial condition (0.3 ≤ NatShare ≥

0.7). The error bars show the 95% confidence intervals of the mean of Mt across simulation runs.
The dashed line at tmig marks the end of migration waves.
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justing tolerance levels occurs in two instances, segregation is no longer the required

proxy for tolerance of agents.

The differences between M c and M f are more pronounced when NatShare is

high (Fig 3.9 h-j). In the case of E = 4 (Fig 3.9 h), each migration wave is a

visible shock to the existing tolerance level. Each drives M f and M c up. The same

pattern is true of E > 4 (Fig 3.9 i,j), but the smaller waves leave less distinct marks.

As seen previously with tolerance developments in Fig 3.4, the values change most

during the arrival of migration waves, and settle once the final wave has arrived.

Convergence of segregation values is reached before t = 5000, where cases of E > 1

and high NatShare (Fig 3.9 h-j) need slightly longer than cases with low NatShare

(Fig 3.9 c-e). Long-term levels of tolerance segregation are at or above 0.2 when

E > 1, whereas no migration shows lower levels of M f .

The higher level of attitude-based segregation is interesting because agents do

not actively seek out tolerant or intolerant neighbours; in fact, they are oblivious

to the tolerance attitudes of their neighbours. The movement rule, as described in

3.1 and 3.2, drives adjustment of attitudes, but not an open choice of out-group

neighbourhood, as is the case with agent colour. The connection between diverse

neighbourhoods and adjustments of tolerance causes an unintended, much larger

segregation than that of out-groups. Previous work including segregation of prefer-

ences have found the same effect (see Urselmans (2016) and Hatna and Benenson

(2015b)), but the scale of M f is much lower in this adaptive model (see Hatna and

Benenson (2015b) for more insight into M f in a non-adaptive model). Segregation

levels of tolerance drop after the initial spike caused by migration waves (or initial

settlement in the case of E = 0) because the tolerance levels adjust. As we know

from the previous results, agents will tend towards the extremes of tolerance. This

in turn means that the differences in tolerance between all agents become smaller,

and thus the segregation measurement does not detect as large a difference. For in-

stance, a group of agents that share a tolerance range of 0.7 and 0.9 will not register
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as a significantly divided group, since the difference is only 0.2. Because intolerant

agents reside in segregated clusters, the mixing of tolerance groups is rare.

As discussed above, the tolerance adjustments cause a domino effect: tolerant

agents will be surrounded by slightly less tolerant agents, who then turn tolerant

as a result of positive contact. The reason why segregation levels spike during

migration waves is two-fold: firstly, there is an artificial upheaval caused by the

arrival of new agents that have a normally distributed tolerance range. They are

yet to adjust their tolerance, and thus cause an uptick of moderate or low-tolerance

values that are distinct from the established patterns. Secondly, for many agents

migration waves become the first time of outgroup contact: movement increases and

segregation increases with it, as intolerant agents will try and re-settle somewhere

else. After the final migration wave arrives, tolerance levels start adjusting and as a

result, segregation drops: both colour segregation, as agents become more tolerant,

and tolerance segregation, because levels of high tolerance are more similar than

levels of low and high tolerance.

3.4 Discussion

By implementing a version of the contact theory into a Schelling model of immi-

gration, I was able to generate a highly divided society split between tolerance and

intolerance towards out-group members. Contact theory may not predict a divided

society, but its proposed mechanisms of positive contact versus negative contact as

implemented here do lead to a society that is reminiscent of several Western soci-

eties that have experienced an increase in populist parties targeting immigration

or immigrants as a problem to be tackled (see below). The model reveals several

answers to the research question “how does immigration affect a host society and

its migrant community”, which will be discussed in turn below.

From the perspective of intergroup contact theories and threat theory, the results

highlight the importance of minority and majority situations, which is corroborated
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by other studies (Hatna and Benenson, 2012). Migration affects the tolerance and

segregation levels of a society, but minority-majority population shares mediates

the effects strongly, especially in the short-term. The differences are particularly

pronounced for more extreme values of the population share, and the effects can

be both negative as well as positive. The importance of population share is in line

with Allport (1954)’s suggestion that the respective standings of each out-group

in society plays an important role in contact situations. My model suggests that

the mere size difference leads to logistic situations that affect inter-group contact.

This result also resonates with some of the findings in the empirical literature. For

example, Pettigrew et al. (2007) find that majority groups experience a greater

decline in prejudice as the result of contact compared to minority groups. The

status of groups influences the potential perceived threat (Stephan and Renfro,

2002). Dominant groups might fear a loss of privilege, the subordinate groups might

worry about oppression(Stephan and Renfro, 2002, p.195).

From the perspective of political science, I have shown that behavioural rules

based on existing social theory can give rise to a polarisation in tolerance towards

out-groups, and self-assortment of the population into tolerant and intolerant clus-

ters. Neither behaviour is built into the model from the outset, but rather these are

emergent behaviours that arise from a subtle interaction between adaptive tolerance

and movement of the population. Crucially, divisions of native-migrant groups do

not necessarily predict divisions in tolerance. Rather, intermediate tolerance levels

are inherently unstable when movement and tolerance-adaptation interact. Some-

times individual agents transition from one extreme to the other, but most agents

remain either very tolerant or intolerant. That medium levels of tolerance are an

unstable spatial pattern was unexpected. My intuition was that the largest section

of society is moderate, following a bell-shaped curve of tolerance distribution. How-

ever, findings from the most recent European Social Survey have found the same

development of bimodality: across Europe, attitudes on immigration are becoming
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more and more polarised (Lambert et al., 2017).

This assortment of the population into communities of similar tolerance is highly

reminiscent of the 2016/17 political landscape in the UK, the US and the many Euro-

pean countries that have experienced a surge in populist parties, although the trends

towards negative views on immigration have been observed for years prior (Drinkwa-

ter et al., 2013).

These new developments have shifted the divide between economic left and right

to more sociocultural divisions. In Britain, those who voted to leave the EU in

the 2016 referendum were characterised by social conservatism, nationalism and low

levels of political trust, whereas remain voters were more likely social liberals, cos-

mopolitan and high on trust values (Ford and Goodwin, 2017). Similar divisions

are visible for Trump and Clinton voters in the US. Social and economic ideolo-

gies change how voters perceive social and economic issues (Crawford et al., 2017).

Non-economic issues have become increasingly important for political parties in

the West (Inglehart and Norris, 2017), and populist parties and candidates appeal

on the basis of fears about immigration, sovereignty, and security. Both liberals

and conservatives are subject to increased prejudice towards the respective politi-

cal out-group (Crawford et al., 2017), but the rise in populist narrative builds on

immigrant narratives especially in the Netherlands and in the Brexit referendum in

Britain (Ford and Goodwin, 2017). The Leave majority was highest in areas that

were the least diverse or featured high numbers of working-class voters; but also in

areas which had experienced rapid demographic change as the result of immigration

in the past ten years (Ford and Goodwin, 2017). These empirical findings speak to

the strength of the contact theory.

Moreover, the mechanism that causes self-assortment along the tolerance axis

also has a plausible real-world analogy. Within the model, polarisation of tolerance

is caused by the shield-and-buffer dynamic described in Section 3.3.1 which prevents

clusters of intolerant agents from one group from being exposed to out-group agents.
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This shield-and-buffer dynamic might offer one potential explanation for the political

bimodality found today. Cosmopolitan areas of a country are generally populated

by people that are more tolerant of migrants; and migrants that reside in these areas

are generally tolerant in turn (Goodwin and Heath, 2016). However, if the migrant

diaspora exceeds a certain size, it could potentially sustain a sub-culture that is

not dependent on integration with the host population. If non-migrants that live

outside these areas have no direct contact with migrants, or the migrant fraction of

the population is too small to provide sufficient contact situations, and peoples’out-

group tolerance increases or decreases as described by contact and threat-theory,

then polarisation would ensue, just as it does in my model.

Empirical studies seeking to support either contact or threat theory have been

inconclusive (see Section 3.1), and more recent meta-studies lean slightly in favour

of threat theory, although results depend heavily on operationalisation of variables

and unit of analysis (Kaufmann and Goodwin, 2016). Implementing an Agent-

based model of the contact theory has shown that the individual-level mechanisms

suggested in the contact theory are sufficient to generate a macro-level pattern that

reflects stylistic facts about migrant societies. The impact of immigration on a

host society is mediated by the rate of change of migration, of tolerance, and the

minority-majority relations between the two population groups.
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4 Chapter 4

In this chapter, I move on from the physical segregation of (native) citizens and

migrants and shift attention to social norms in an immigrant society. Norms are a

subject of interest on their own, but the growing proportions of migrants in the West

has highlighted their importance particularly when different norms clash. Norms

do not just change what we do, but also change how we think about what we

ought to do, and even what we ought to think (Brennan et al., 2013). Social norms

have been the subject of interests of computer modellers (see Chapter 1) due to

their inherent complexities: they are unwritten, widely adhered, can emerge and

be sustained without enforcement (Willer et al., 2009), spread quickly and become

obsolete (Mitchell, 2009).

Norms are very relevant to migration for a number of reasons. For instance, they

they are important for the contextual neighbourhood effects that I have explored in

Chapter 2. Neighbourhoods with positive social norms have higher satisfaction and

less movement (Van Assche et al., 2018). Social norms can lead people to silence

themselves in order to ‘fit in’ (Sunstein, 2003). This is of particular relevance for

the study of public opinion- both in relation to migration, but also in general.

If people silence themselves for long periods of time, perceived consensus can be

misleading (Shamir and Shamir, 1997). The recent re-emergence of populism has

raised questions as to what precipitated it (Groshek and Koc-Michalska, 2017). The

internal pressure to conform offers an explanation for such perceived sudden changes

of public support.

The focus of this chapter is on a particular kind of misperception of public sup-

port for a norm: pluralistic ignorance (PI). PI describes a situation in which a group

of people erroneously believe in majority support for a given norm or attitude. For

instance, college students might believe that most students are in favour of excessive

alcohol consumption, and it is only themselves that do not agree with the practice-

when in fact, a silent majority disapproves of the practice. Yet, in the collective
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belief that alcohol consumption has majority blessing, students do not signal their

discontent (see Brennan et al. (2013) for more details on the college drinking studies).

PI has been used to explain sudden shifts in public opinion (Shamir and Shamir,

1997), which are normally slow to change. Attitudes change slowly, yet public opin-

ion can sometimes undergo rapid shifts, such as the growing support for same-sex

marriage (Perryman et al., 2017). Pluralistic ignorance can give rise to widespread

misperceptions about public opinion consensus, so that when attitudes shifts occur,

they have in fact been occurring for a long time- but the perception of majority

consensus has led people to misrepresent their personal views or led them to believe

that others were truthful in their public attitude positioning (Shamir and Shamir,

1997).

I investigate the phenomenon of sudden shifts in public opinion or rather, support

for popular norms. I conjecture that, as suggested by previous scholars (Kuran,

1995), (Shamir and Shamir, 1997), pluralistic ignorance is the reason why some shifts

appear so sudden. Based on the existing P.I. theory, I suggest a mechanism why

pluralistic ignorance can occur, and which circumstances can facilitate its occurrence

and lead to vulnerabilities to the false consensus effect: the mistaken belief in a

consensus which does not exist.

The goal is to determine what behaviours lead to a high level of PI, and what

behaviours can mitigate PI occurrences. Agent behaviour is modelled on the basis

of existing findings in the literature. In the context of the migration society mod-

elled in the previous chapters, assume a society as bimodal as those generated in

Chapter 3. In this version of the model, there are no migrants and natives. Instead,

there are those that adhere to a norm of tolerance, and those that do not: an ide-

ological segregation of norms. Crucially, agents can believe privately in one norm,

but publicly express their support for another norm. The model is again based on

the Schelling framework to simulate the social environment.

Exposure to false consensus effects can explain sudden shifts such as experienced
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in the case of same-sex marriage (Perryman et al., 2017), but it also opens up

possibilities for populists to reach out to those people that silence themselves because

they don’t want to appear as if they violate existing norms of tolerance or support for

multiculturalism (Blinder et al., 2013). Populism is not a new phenomenon and has

experienced waves of support before (Norris and Inglehart, 2018). A core defining

feature of populism is that it challenges established institutions and/or authorities,

and presents the status quo as something that is no longer feasible (Norris and

Inglehart, 2018). Attacking the legitimacy of the prevailing system and set of beliefs

is a way to reach people who silence themselves. Finding the prerequisites for such

fertile ground for populists is possible by studying when pluralistic ignorance can

arise.

4.1 Introduction

Typically, social norms are modelled as spreading or emerging usually by means

of contagion, imitation, learning, and coercion or through rational-choice and ex-

pected utility-maximising behaviour (Beheshti and Sukthankar (2014), Centola et al.

(2005)). Wang et al. (2013) introduce an opinion-dynamics model adapted to incor-

porate pluralistic ignorance. In their model, a single agent rejecting the status of

pluralistic ignorance can lead to a complete change in opinions of the entire group,

if the agent’s opinion is firm and its neighbours are unsure about their own attitude

(Wang et al., 2013, p.247). Nevertheless, the occurrence of pluralistic ignorance

presents a puzzle for theories of social norms, because it is unclear how it occurs

in the first place (how it differs from individual psychological error) and how it can

spread and persist.

Agent-based modelling enables us to look at the emergence of pluralistic igno-

rance from a bottom-up perspective. By giving the individuals rules of behaviour on

a micro level, the model can give rise to macro-level patterns of behaviour that can
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illustrate how emergence can occur, i.e. which preconditions are needed and what

rules can recreate the stylistic facts that have been established in the literature. As

Centola et al. (2005) note, pluralistic ignorance theory has several shortcomings, one

of which will be addressed in this chapter. The existing theory makes no explicit

assumptions about the group element of pluralistic ignorance, an important part

that I will demonstrate to be crucial to define and understand pluralistic ignorance.

I show how PI can arise as a result of a desire to be with others with similar pub-

lic behaviour, without the need for switching norms or sophisticated information

exchange mechanisms. Secondly, I show that the restriction of movement through

social space can explain how pluralistic ignorance can persist even when many peo-

ple are truthful in their public expression of their private views.

The aim of the chapter is two-fold. Firstly, it aims at contributing to the existing

theory of pluralistic ignorance by examining the crucial group-conditions that are

necessary for pluralistic ignorance to unfold. Secondly the chapter demonstrates

how pluralistic ignorance can emerge from very few and simple rules that can lead

to complex macro-patterns of norm adherence and rejection, the rule being that

people desire to be with others with similar public behaviour- there is no need for

attitude-switching or information-exchange mechanics to explain the emergence of

pluralistic ignorance. The relevance to immigration societies is discussed at the end

of this chapter, Section 4.6.

The study of pluralistic ignorance dates back to Katz and Allport (1931) who are

widely credited with first developing the notion of pluralistic ignorance. Since the

first definition of PI by Katz and Allport (1931), the concept has been expanded and

has led to many different nuanced interpretations of PI. Brennan et al. (2013) cite

Allport saying that PI is “[...] a situation where a majority of group members pri-

vately reject a norm, but assume (incorrectly) that most others accept it” (Allport,
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1954). For example, a norm could be table etiquette: the use of the fork with the left

hand. A scenario of pluralistic ignorance would be: a family gathered around the

table; everyone using the left hand to operate their forks. However, every member

of the family secretly wishes to switch hands. But they all believe that they are the

only ones wishing to deviate from the (perceived) norm. The unwritten nature of

norms makes these situations more likely. It is reasonable to assume that neither

parent at the table has a written version of the etiquette. Because people use heuris-

tics to guide them through social comparison (Kahneman, 2011), assumptions are

not always the result of informed decisions.

In the realm of Political Science, pluralistic ignorance received intermittent at-

tention in studies of public opinion. Public opinion can be the result of widespread

pluralistic ignorance, explaining sudden shifts in public opinion (Lerman et al.,

2016). Survey respondents for public opinion polls are aware of norms surrounding

what they are supposed to be or think, and will feel pressured to answer accordingly

(social acquiescence bias (Krosnick, 1999)). This bias can be the result of the same

process that creates pluralistic ignorance: individuals wrongly assume that a given

viewpoint is in fact supported by ‘the majority’, and will give biased answers in a

survey.

Voters are subjected to norms such as the norm on whether one should vote or

not, or which way one should vote. Generally, the norm in most OECD countries

is that a citizen should vote, but some subgroups disregard the country-wide norm

and replace it with a different one that discourages voting (Labovitz and Hagedorn,

1973). The study of public opinion and attitudes relies to a great extent on survey

responses about policy preferences and the salience of issues (Stimson, 2004), both

of which are subject to a lack of information and little willingness on the part of

people to obtain that information, thus relying on less accurate but easier methods of

interpreting signals (Kahneman, 2011). Voters will make decisions in the absence



132

of much accurate information, and will resort to easier methods to reach a state

in which they feel qualified to make a choice. The situation bears resemblance

to the social comparison process of the fork-wielding family: having incomplete

information, voters rely on inferring the missing bits by observing others. Absence

of visible defection is assumed to signal compliance. For the public sphere as opposed

to the situation at the family dining table, the role of the media is relevant as well.

It can provide access to information that is otherwise not obtainable by individuals.

However, when media provides a narrative for a given topic, people tend to disregard

their personal experiences (Andersson et al., 2017). With an increased reliance on

indirect sources via traditional media and social media, people are vulnerable to

misreading cues- these can be intentionally misleading, or interpreted wrongly.

Pluralistic ignorance is a group phenomenon in that it is analytically distinct

from the psychological process of deriving attitudes from behaviour (O’Gorman,

1986). But without the individual processes of misreading social cues, PI cannot

exist. This makes it a very suitable subject for a bottom-up agent-based approach.

By modelling individual behaviour of which we have empirical proof, we can study

the emergence and persistence of pluralistic ignorance resulting from the collective

of actions of individuals. Before laying out the agent-based model of pluralistic

ignorance, I shall define the minimum requirements for PI in response to the ex-

isting debate around pluralistic ignorance and what it constitutes. Definitions of

the phenomenon vary widely and capturing it in a computer model requires greater

specificity.

4.2 Defining pluralistic ignorance

There is no single agreed-on definition of pluralistic ignorance in the literature (Cen-

tola et al., 2005). One of the intuitive examples often cited to explain pluralistic

ignorance is Hans Christian Anderson’s tale of the Emperor’s new clothes. The

respected and acclaimed emperor is fooled by a group of rogues into believing that
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their (in fact) non-existent new robe for the emperor is real. The rogues persuade

the emperor that stupid people can’t see the robe- and thus the emperor, afraid to

admit that he can’t see the robe, pretends that he can see it and that the robe ex-

ists. The citizens fear the emperor and pretend to be amazed by the garments- until

an innocent child comes along and laughs at the naked emperor, and the spell of

pluralistic ignorance is broken. The citizens realise that they had all been wrongly

assuming they were the only one to see the naked emperor and join in with the

laughter. The fable is appealing in that it is very easy to imagine. As strong as

the intuition is, it is also vague and does not include all conditional attributes for

pluralistic ignorance.

Because the Emperor’s New clothes example is so ubiquitous in the literature of

pluralistic ignorance and norms, I will use it to put forward the theoretical argument

that different majorities need to be considered when trying to explain pluralistic ig-

norance as a group phenomenon. The fractionalised nature of pluralistic ignorance

literature has led to the use of different examples and case studies that are not al-

ways comparable. I will thus use the Emperor’s tale to ensure that the context of

PI is clearly defined before applying it to real life cases.

Consider the following situation. The emperor rules over a court of 30 people

who are all equal in their status, influence and visibility. All members can see each

other and directly observe behaviour. Now imagine that five people pretend the

emperor’s clothes exist and these people also assume that everyone else believes it.

The remaining 25 do not share that social reality: they assume everyone does not

believe the clothes exist, and act accordingly: they laugh. It seems counter-intuitive

to classify that as pluralistic ignorance, even though those five people form a group

of PI. What if not just five, but 15 people believed in the pretence? Imagine that for

some reason, the other 15 people sincerely believe the clothes exist. All 30 people

signal that the clothes exist, and half of them are sincere in doing so. The assumed
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consensus of existing clothes (based on visual confirmation of signals) is actually

not a majority; it’s 50% of the population. Yet 100% of the population makes the

(erroneous) assumption of a majority. There are three questions related to the group

of PI that arise from this tale:

1. What is the minimum group size for pluralistic ignorance?

1.1 What are the conditions of behaviour within the subgroup?

2. Is a social group, in which its members cannot directly observe one another,

a valid group for pluralistic ignorance?

Deciding what the minimum group size for PI should be affects the range of

cases that it can be applied to. For the study of public opinion, group sizes are

naturally large. For sociological experiments, group sizes can be very small. Which

size should it thus be?

A source of confusion is that in a PI scenario, there are two different kinds of

majorities. The first majority is that of the assumed popular opinion (“the em-

peror’s clothes are real!”). The second majority is the fraction of people (in this

case, at least 16) within a defined group (the emperor’s court) that has to believe in

the majority opinion, and they have to be wrong. Not all definitions of pluralistic

ignorance make that distinction.

The most basic condition for pluralistic ignorance is the requirement of a shared

cognitive error by a group of people. PI definitions can be categorized into ei-

ther focussing on the collective, the group and the environment in which pluralistic

ignorance occurs, and those focussing on the individual, trying to explain the psy-

chological reasons for individual failings. Allport’s definition (quoted earlier) implies

that a precondition for pluralistic ignorance is that a majority of a group has to suf-

fer from the cognitive error, and that the assumed norm consensus must be shared

by ‘most’ people. This detail is not present in many other definitions.
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Definitions focussing on the individual stress that people have to have a distinct

private attitude and public display of behaviour, and that it often involves wrong

assumption about others. This interpretation is often attributed to Miller and Mc-

Farland (1991), stating “[p]luralistic ignorance is a psychological state characterized

by the belief that one’s private attitudes and judgements are different from those

of others, even though one’s public behaviour is identical [...]”(p.287). This defi-

nition describes the process of erroneous judgement that is required for pluralistic

ignorance to occur. It differs markedly from the Allport definition, which specifies

majority requirements of PI groups.

4.2.1 Group size and subgroups

A more specific definition including the size of groups was presented by O’Gorman

(1986) stating that “[p]luralistic ignorance refers to erroneous cognitive beliefs shared

by two or more individuals about the ideas, feelings, and action of others.” Accord-

ing to O’Gorman, any pair of individuals (sharing their cognitive error) within any

group would constitute pluralistic ignorance. This is not compatible with Bren-

nan & Goodin’s notion that a majority of a group has to share the cognitive error,

unless a pair of people constitutes a majority in a group of three (Brennan et al.,

2013). The notion of group size varies between definitions and research areas. From

a public opinion perspective, the group can encompass large elements of society, or

society as a whole (see for example Moy and Rinke (2012); O’Gorman and Garry

(1976); and Kuran (1995)). Other studies mention smaller groups, such as social

groups at university (Prentice and Miller, 1993), inmates in prisons (O’Gorman,

1986) or a religious community in a localized space (Schanck, 1932). Bjerring et al.

(2014) offer an in-depth discussion on the variety of pluralistic ignorance definitions

and conclude that many definitions offered in fact lead to overestimation of plural-



136

istic ignorance as the definitions leave too much theoretical leeway. They offer the

following alternative definition of pluralistic ignorance:

[...] “Pluralistic ignorance” refers to a situation where the individual

members of a group

(i) all privately believe some proposition P;

(ii) all believe that everyone else believes ¬P;

(iii) all act contrary to their private belief that P (i.e. act as if they

believe ¬P); and where

(iv) all take the actions of the others as strong evidence for their private

beliefs about P.

This definition contains both individual-based (iv) and group-based elements (i-

iii). However, I argue that the notion of “all” individuals and “all” actions is not

justified for cases (iii) and (iv). It is not necessary for all members of a group to act

contrary to their beliefs, nor that everyone, as stated in (ii), believes that anyway. If

truly every single member of a relevant group has to follow the same pattern, these

strict conditions are unlikely to ever be met in the real world. It is reasonable to

assume that most authors will acknowledge that the absoluteness of all members is

in fact more flexible once applied to the real world.

The importance of absoluteness instead applies to the individual cognitive pro-

cess that can lead to pluralistic ignorance: people tend to think of ‘everyone else’

when they gauge public positions on an issue (Gunther et al., 2008). In other words,

members of a PI group may believe that everyone else believes, but this is the actor’s

subjective view of the situation, not the objective assessment. While the individual

views are part of the mechanisms of social behaviour that can lead to PI, they do not

form part of the definition of the group of PI. Another way of distinguishing the two

could be the individual psychological explanation versus the collective sociological
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explanation. The minimum group size should not be equal to the maximum group

size. I believe that the notion of two or more people put forward by O’Gorman

(1986) is the most useful minimum working example. There exists an ongoing de-

bate among social psychologists whether dyads (pairs of two people) constitute a

group or not (Williams, 2010). In the case of pluralistic ignorance, a minimum group

size of three people (triads) is more applicable. Pluralistic ignorance stems from so-

cial comparison processes that are employed in order to reduce the complexity of a

social situation. This complexity is a defining feature of triads (Moreland, 2010) and

larger groups. Dyads are characterised by more intimate, intense and direct types

of contact, a social context in which pluralistic ignorance is not normally defined in.

Triads feature majority-minority relations, which dyads by definition cannot (More-

land, 2010). Pluralistic ignorance relies heavily on perceptions of majorities, so the

minimum group size should be a triad of three individuals.

Thus, the first requirement for minimum pluralistic ignorance conditions is:

(a) Define a group as a set of individuals of a minimum of three members.

For pluralistic ignorance among the emperor’s court, the minimum group size is

three people. Three out of thirty people privately believe P: the emperor’s clothes do

not exist. Those three people also believe that everyone but themselves (29 others)

believes ¬P: the emperor’s clothes do exist. This private-public attitude inconsis-

tency is widely accepted in studies of PI: the psychological process of individuals

can entail the belief about all group members. Crucial is however the resulting

behaviour: The three people will act as if they believe ¬P: they act as if the clothes

existed. This addresses the second part of a minimal PI situation:

(a) Define a group as a set of individuals of a minimum of three members.

(b) Require that at all members of the PI group have the same public behaviour.

Require at least a plurality of the members of the group to have the same

inconsistency between their public behaviour and private beliefs.
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These requirements translate into a political science related issue in the following

way: the minimum group size ensures that virtually any political group can be

studied, from country-wide or international public opinion and attitudes to the study

of small groups of elites or various interest groups within a cabinet of a government,

comprising of a handful of people. In the study of public opinion, display of public

behaviour is translated into either the prevailing media narrative, opinion surveys

or more recently, online sources such as social media engagement and twitter feeds.

‘Behaviour’ in the realm of public opinion refers to the display of messages, and

crucially the absence of open dissent against a prevailing message.

The third question relates to the need to have physical or otherwise visible social

interaction with others as a prerequisite for pluralistic ignorance. If yes, then groups

will naturally be relatively small.

4.2.2 Mutual observability

Bjerring et al. (2014) argue that situations characterized by a “lack of observational

interaction among agents in the relevant social group” (2014, p. 12) do not count

as pluralistic ignorance. If there is no direct observation of others possible from

which assumptions may be drawn, pluralistic ignorance is not present- supporting

this claim is the wealth of previously mentioned examples akin to the Emperor’s

New Clothes, all of which feature direct observation. When social interaction is not

possible, other types of information gathering can take its place.

In any scenario with perfect information, pluralistic ignorance can, by definition,

not occur. Any discrepancy of public behaviour versus private attitudes would be

the result of an informed choice, not an uncertain assumption. Norm persistence

is not dependent on what members of the group do but rather what they presume

other group members do. Norms are sustained so long as people reveal their private

attitudes only to a small number of people (Kitts, 2003), but pluralistic ignorance
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can persist even when there is widespread knowledge that most people in fact, mis-

represent their private attitudes (Brennan et al., 2013).

Even if one concedes the strict precondition of direct observability, it raises the

question of whether one must observe absolutely everyone else in a relevant group,

or just a fraction: if social interaction is a prerequisite, pluralistic ignorance cannot

occur in groups larger than the maximum number of people that can be observed

simultaneously at any point in time. Widening the time-span, it would include the

sum of all people that were observed to do something relevant to the private attribute

in question. Images of others in day-to-day life are utilized using different sources

of knowledge such as memory of observation or media consumption (O’Gorman,

1986). There is no convincing argument as to why knowledge of known behaviour

must only be obtained through direct observation. O’Gorman (1986) posits that

the “visible social milieu” of individuals and the “more distant and less visible

social world of which that milieu is part” is both relevant to pluralistic ignorance,

which is perhaps an analytically less pure but more realistic assumption. Pluralistic

ignorance can result from ‘small-world’ networks: people have a limited social mileu,

but will project their knowledge of that social circle onto the wider, indirectly linked

or not linked nodes in the network (Lerman et al., 2016). Therefore, I reject the

assumption of direct social observability. Instead, social interaction information can

be obtained directly as well as indirectly. This can also incorporate the erroneous

assumption that not observing defiance is interpreted as observing compliance with

a norm (Brennan et al., 2013), or that public actions always reflect private attitudes

of others.

Consider the bystander scenario, illustrated by Miller and McFarland (1991): an

accident, such as a car crash, occurs and people arrive at the scene. No one has

sufficient information to determine whether or not the scene is an emergency and

warrants further help on their behalf. It is embarrassing to overreact and thus safer
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to err on the side of caution and show composure, even if that leads to a bystander

situation which is ultimately not desired by any participant.

Whether or not a person truly believes that the situation is not an emergency,

is ultimately not relevant: imagine an accident, and the first person to arrive at

the scene is convinced that there is no emergency. The next person to arrive will

use social comparison and investigate what the first person is doing, and then con-

clude that there is no emergency because that first person is not helping, and not

signalling any distress. But the same result would occur if the first bystander was

not a true believer: the first bystander knows of the norm of composure and will

act accordingly. Pluralistic ignorance is not dependent on dispersal of information

through observation. For example, people’s estimation of public opinion towards

an issue is influenced by their media perception (Perryman et al., 2017). Whether

media coverage includes active acts of defiance against an existing norm (such as

a public protest) can influence the estimate of majority public opinion of individuals.

To conclude, I define the minimum conditions for a group-focused definition of

pluralistic ignorance as follows:

(a) Define a group as a set of individuals of a minimum of three members.

The set of individuals are either in direct or indirect contact through a

(network) path

(b) Require that at all members of the PI group have the same public behaviour.

Require at least a plurality of the members of the group to have the same

inconsistency between their public behaviour and private beliefs.

Indirect contact with different groups is a common source for information about

social identities and can be substantial in the absence of any direct contact (Pet-

tigrew et al., 2007). Inconsistency between public behaviour and private beliefs
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are well-documented in the context of eliciting truthful survey responses from peo-

ple (Krosnick, 1999).

4.3 Scenarios of pluralistic ignorance in the model

The discussion on the preconditions of PI is of direct relevance not just for the the-

oretical concepts of PI, but also for the agent based model that I present in order

to test the conditions for its emergence. In order to investigate whether one condi-

tion led to more pluralistic ignorance than another, I need to define what a group

exhibiting pluralistic ignorance is characterized by in the first place. The definition

that I offer might help to serve as a starting point towards a complete formal defi-

nition that includes the group conditions.

I am examining pluralistic ignorance under the strictest possible definition, re-

quiring universal inconsistency, not just majority inconsistency. If I can show that

desire to belong and movement leads to pluralistic ignorance merging with such a

definition, my theory works under the toughest conditions. The rules are stricter

than the theory in order to model the lower bound of pluralistic ignorance. The

differences are described below. By simulating the harshest conditions for PI to oc-

cur, I prevent overstating its propensity to emerge and generating results with high

levels of PI. Figure 4.1 visualises minimum PI groups and how pluralistic ignorance

is captured in the model. Dark green tiles are pluralistic ignorance groups. The first

letter is the private norm; the second letter is the public norm. An “AB” agent is

thus privately following norm A, and publicly displaying support for norm B. Each

scenario meets the minimum requirement for PI, but in every case, the group size

of pluralistic ignorance is three.

The first scenario (a) contains three AB agents that are in a PI group. They

all publicly adhere to B, yet all privately believe A. Three agents is the minimum

amount for a group, and thus this scenario captures a PI situation. Scenario (b)
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Figure 4.1: Scenarios of pluralistic ignorance

(a) (b) (c) (d)

includes a fourth agent of type BB. This agent believes both privately and publicly

in norm B. This agent is norm-consistent, or truthful. The algorithm employed to

find PI groups will exclude this agent, because it does not share the same norm

inconsistency as the other AB agents. As an individual, this agent can’t be part of

the majority of agents that form a PI group. But since the agent saw neighbours

signalling publicly the same norm that the BB agent adheres to privately, the agent

has moved into the group. As discussed in Section 4.2, the BB agent would in the-

ory be part of the group that harbours pluralistic ignorance. Consider it as public

opinion is believed to favour B, because agents have signalled so. But some agents

will genuinely believe in B. In this scenario, 100% of agents publicly believe in B,

and 25% do so genuinely. The majority consensus is an illusion to which the BB

agent has indirectly contributed. To denote this, the tile is coloured light green.

Scenario (c) shows a case with an additional AA agent instead. This time, the

AA agent does not contribute to the majority illusion of public adherence to B,

because the agent signals A. But the three PI agents who all believe AB will have

taken this agent into account: since they all privately adhere to A, they seek the

company of an agent who publicly adheres to A. Consider public opinion to be be-

lieved to favour B by 75%, but 0% are sincere in this display. The majority is an

illusion, but the AA agent has not contributed to it. This is also the case in scenario

(d), where the fourth agent is of the type BA and does not signal norm adherence
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to the perceived majority. In this scenario, the AB agents and the BA agent attract

each other. Each believes privately what the other publicly displays. This too does

not constitute a part of the majority illusion, neither under the strict conditions of

the model nor in theory.

In addition, the definition of a group in the model requires geographic proximity

(adjacency on the grid), but the group must not necessarily be a rectangle-shaped

cluster. As long as agents are adjacent to at least one other agent of the same norm

inconsistency, they can form a group of pluralistic ignorance. For instance, a line

of agents would constitute a group, because each agent is connected to at least one

other agent: because direct visibility is not a requirement, agents can be part of a

group through indirect network connections. Networks can give rise to and perpet-

uate pluralistic ignorance (Lerman et al., 2016).

Pluralistic ignorance captures the self-sustaining system of people feeding off

other people’s behaviour whilst signalling certain behaviour themselves. No one is a

neutral observer to the system but always a participant, willing or not. The absolute

notions of ‘all people in a group’ were discarded as too strict to be applicable to real

life. A single helping bystander might not convince others that they should help

if many others just stand and watch; not everyone at the court must pretend the

Emperor’s clothes exist, as long as enough others do. Individuals tend to assume

that there exists their attitude and then that of ‘all others’, people don’t tend to

differentiate further (Gunther et al., 2008).

How does PI emerge and what behaviours foster its perseverance? The following

section describes the implication of the definition decisions on the model elements,

and how PI is captured empirically.
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4.4 Method

The aim of the model is to simulate the emergence (and persistence) of pluralistic

ignorance, testing several conditions for their propensity to generate pluralistic ig-

norance or stifle it.

A virtue of the model is that it contains so few parameters that are sufficient

to give rise to pluralistic ignorance. Alternative (agent-based) models of pluralistic

ignorance usually feature notions of ”true-believers” and varying degrees of pressure

exerted by different kinds of agents (see for example Centola et al. (2005)). I show

that this is not necessary for pluralistic ignorance to arise.

4.4.1 The Model

The set of agents A = {a1, . . . , an} are positioned on a toroidal 2-dimensional grid

of size S = 50 × 50 = 2, 500 tiles W at time t ∈ Z. Agents are assigned random

tiles which they will occupy at the start of each simulation. Agents cannot enter or

exit the grid. A number of agents is initialised at the start of each simulation which

remains constant throughout. Each agent ai has a public norm Ψ and a private norm

Ω, both of which can have either value A (Ψi = A) or B (Ωi = B). Figure 4.2 shows

a visualisation of the model. Agents have different colour visualisations depending

on the norm that they follow. Public norm Ψ = A is amber, Ψ = B is dark blue.

For instance, private norm Ω = A is yellow, public norm Ω = B is light blue. As a

notational convention, when agents’ norms are described, the private norm is listed

first. Thus, an agent with norms BA has the private norm B and public norm A.

Agents that hold differing private and public views are norm-inconsistent. AA and

BB agents are norm-consistent.

Agents know both their private and their public norm, but can only see the

public norms of other agents in their local neighbourhood. Private norms can never

be disclosed or signalled to other agents.
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Table 4.1: Constants

Constant Description
tmax = 10, 000 Maximum number of ticks per simulation
S = 50× 50 Size of grid

Figure 4.2: Example of a typical simulation run. Public norms are visualised on
the top, private norms on the bottom. The private view shows distinct clusters of
norms, the public view shows a more mixed population. States of the simulation at
different times. Density 62%

(a) Public Norms Ψ of agents at t = 1, 10, 100, 500, intelligent movement, nbr = 3

(b) Private Norms Ω of agents corresponding to the states above

Agents have a preference to reside in neighbourhoods that have the highest

share (within that neighbourhood) of the agent’s private norm. Since agents can

only see public norms of their neighbours, they compare their own private norm to

the public norms of their neighbours to determine the utility of each tile. Higher

utility is always preferred. The agent’s preferred norm followers si should outnumber

the agents publicly following the other norm, di. The neighbourhood of an agent

is represented by Nt(ai). Agents count themselves as ‘sames’, thus giving a slight

advantage to ‘same’ agents. This is due to the propensity of people to assume

that everyone else shares their beliefs; they would not see themselves as neutral

bystanders.
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si = |{aj ∈ Nt(ai) : Ψj = Ωi}|+ 1 (4.1)

di = |{aj ∈ Nt(ai) : Ψj 6= Ωi}| (4.2)

(4.3)

The differences of s and d is denoted by k.

ki = s− d (4.4)

Because agents will always prefer higher numbers of ki (see equ. 4.4), they are utility

maximizers, not satisficers. Let Nt(ai) denote the neighbourhood of an agent ai at

time t. Agents will count themselves when comparing the numbers of si to di in

a neighbourhood. The size of the neighbourhood varies according to treatments.

Those will be described in Section 4.4.3 (see Figure 4.3).

4.4.2 Movement treatments

I vary the movement and satisfaction behaviour of agents. Table 4.2 shows the

different combinations of reasoning that agents can have. For each treatment, all

agents on the grid will share this reasoning pattern; there are no differences between

agents’ movement behaviours for the duration of a simulation. For readability pur-

poses, each movement rule has a name designed to reflect the reasoning patterns of

agents. The terminology of ‘intelligent’ reflects that agents are able to adjust their

behaviour based on their reasoning, and that their behaviour is not merely deter-

mined through random choice. As agents can conceal their private norm and display

a different public norm, the reasoning patterns of intelligent, reasoning agents are

based on sometimes faulty information. This may lead to suboptimal choices, but

intelligently reasoned choices nonetheless.

In order to ascertain the effect of intelligent movement, I vary the agents’ move-
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ment rules across four different experimental treatments summarised below in Ta-

ble 4.2. These are described in detail below.

Table 4.2: The movement treatments

Should I move Where to move
Treatment Movement rule reasoning reasoning

Control Random Random Random
Treatment 1 Intelligent Intelligent Intelligent
Treatment 2 Semi-Intelligent Intelligent Random
Treatment 3 Risky Random Intelligent

The control treatment induces random movement. The decision whether to move

is assigned p = .5. If the agent decides to move, it will do so by picking a random

vacant tile in the agent neighbourhood Ni, given by algorithm 4.1.

Algorithm 4.1 Move randomly

L← l ∈ {N(pi) : pi,t = |a ∈ A : aj = l| = 0} . all empty neighbourhood tiles
l?← ChooseOneAtRandom(L)
pi,t+1 = l? . update location

Dissatisfied agents will try to move to an empty area within the agent’s neigh-

bourhood Ni. Agents cannot move beyond any tile within their current neighbour-

hood. This feature is meant to represent the social space (as opposed to geographical

space) that the agents reside in. Friendship groups or networks such as work and

family are durable and movement is costly: giving up friendships and finding new

friends is a longer-term endeavour. The decision whether or not to move is given by

algorithm 4.2.

These agents, labelled ‘random’, do not consider private or public norms in

any way. Agents labelled ‘risky’ will also decide whether to move or not with a

probability of p = 1
2
. Risky agents will not decide their future location randomly,

but will do so by considering all vacant tiles in the neighbourhood that satisfy a norm

plurality si > di, given by algorithm 4.3. The larger the plurality (or majority) ki

of norms in the neighbourhood N(l), the more attractive is the location l. That

is, agents are utility maximizers. Satisfied agents will not consider moving even if
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Algorithm 4.2 Check need to move

NeedToMove← False . default decision is to not move
for all l ∈ N(pi) : pi = |a ∈ A : aj = pi| = 0 do . check empty neighbourhood
tiles

s← |{aj ∈ Nt(l) : pi = pj}|+ 1 . number of nearby public norm equals
d← |{aj ∈ Nt(l) : pi 6= pj}| . number of nearby public norm differents
if s > d then

NeedToMove← true . See 4.3 and 4.1
else if d > s then

NeedToMove← false
else p← drawrandomlyfrom(0, 1) . Probability .5

if p > 1/2 then
NeedToMove← True

end if
end if

end for

there is a neighbouring location with a higher value of ki. Dissatisfied agents that

cannot find a neighbouring tile with a higher value of ki compared to their current

location, will remain stationary.

In the event that an agent will find itself isolated, with all neighbouring tiles

vacant, the agent will always move. Isolated agents are always dissatisfied. To be

in a norm-minority is preferable to being on their own. Agents of type ‘Intelligent’

and ‘Risky’ will consider the best vacant neighbouring tiles whose respective neigh-

bourhood has the highest preferred norm plurality. ‘Random’ and ‘Semi-intelligent’

agents will chose a random vacant tile. If the neighbourhoods of neighbouring va-

cant tiles are also vacant (i.e. the agent would end up in isolation), all agents will

move randomly.

The different reasoning patterns are designed to test the impact of flawed as-

sumptions or false information. Because pluralistic ignorance relies on the sending

of misleading signals, I test the impact that relying on these signals can have. The

control treatment serves as a means of distinguishing patterns from noise: the occur-

rence of pluralistic ignorance through random movement serves as a baseline noise

that any treatment is compared to. In effect, the different treatments serve as a
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Algorithm 4.3 Move intelligently

if NeedToMove = True then . See alg. 4.2
k?← highestNumberOfNormEquals
L?← bestFutureLocation
Lc ← SurroundingEmptyNeighbourSites . surrounding locations in range

nbr
for all l ∈ Lc do

s← |{aj ∈ Nt(l) : ii = pj}|+ 1 . number of nearby public norm equals
d← |{aj ∈ Nt(l) : ii 6= pj}| . number of nearby public norm differents
k = s− d
for all l ∈ Lc do

k?← {k ∈ Kt(l) : k? ≥ k ∈ Kt(l)} . find the highest possible k
if k(l) = k? then

L?← L? ∪ {l} . update satisfactory locations
end if

end for
end for
l?← ChooseOneAtRandom(L∗)
pi,t+1 = l? . update location

end if

proxy for reliance on information (signals from other agents). The intelligent agents

that reason through both of their decisions rely on information the most: they trust

the public signals of their fellow agents both when they reason if they should move,

and if so, where they should go. The semi-intelligent and risky treatments each

rely on public signals only during one of their reasoning steps: risky agents consider

signals when deciding where to move, and semi-intelligent agents consider them

when deciding if they move. The two treatments thus halve their reliance on public

signals, yet at different stages. This serves as a way to determine what the impact

of movement is: as movement is crucial in Schelling models, and agents are depen-

dent on it to reach states of happiness. Semi-intelligent agents are able to ascertain

whether they are indeed happy or not, risky agents are not. Any differences be-

tween the two treatments will thus be down to the probability of moving, and the

information considered at the different stages of reasoning.

Agents cannot switch behaviours or norm adherence. In reality, people are able
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to change their attitudes and behaviours. The focus of this model is to explain

misconceptions of attitudes- not their change. I explain the emergence of pluralistic

ignorance on the basis of the desire to belong to a social group and the possibil-

ity of movement. There is no pressure exerted other than the mere presence of

others. Agents can only escape or enter pluralistic ignorance through movement.

Movement through social space is not equivalent to movement through geographi-

cal space, which can be costly. Social environments can be altered by reducing or

increasing social interactions with different factions of friends, relatives, colleagues;

or by changing the people and pages to follow on social networks (McPherson et al.,

2001). The structure of space is another possible addition to the model: if the world

wasn’t a toroid (wrap-around, as this one is), agents in corners and on the side of the

board would have a restricted neighbourhood. This would alter their reaction based

on the neighbourhood ratios k and potentially result in border-agents that behave

differently. A possible effect could be that border- or corner-agents are more erratic,

as the reduced number of neighbours leads to fewer scenarios that are satisfactory:

it is easier to satisfy the condition of 10/20 agents compared to 1/2. A single moving

agent has a larger effect if the neighbourhood is so small. Because the model is held

closely to the Schelling model and other ABMs that have modelled the spread of

norms using Schelling, this feature is omitted. This has the benefit of comparing the

model outcomes to similar models whilst making fewer changes at once. However,

the concept of a restricted neighbourhood for corner- or border-agents could be a

useful feature to simulate real-world situations in which people are socially cornered:

for example, poverty could be a reason why social life is restricted to family or family

and work- people can’t afford to expand their social space.

4.4.3 Initial conditions

At the start of each simulation, initial conditions are randomised to test the robust-

ness of the model.
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1. Population density

The population density PopDen determines the number of agents relative to

the grid size, S×S. At the beginning of each simulation, the population den-

sity is drawn randomly from a uniform distribution ∼ U(0.25, 0.98). Typically,

Schelling models are run under conditions of high density. Because agents in

this model have limited movement and the 2-dimensional space represents a

social environment, low densities such as 25% are also considered, represent-

ing a small social environment. The reduced movement capability lessens the

impact that density usually has. Higher densities restrict freedom of move-

ment, but agents in this case are restricted to the vacant tiles of their local

neighbourhood.

2. Neighbourhood range The neighbourhood has a range nbr which specifies

how far the agent’s neighbourhood reaches. Figure 4.3 shows a visualisation

of the different neighbourhood ranges. The smallest neighbourhood is a von

Neumann neighbourhood with 12 tiles in a diamond shape. The medium

and large neighbourhoods are Moore neighbourhoods with 24 and 48 tiles

respectively. The different neighbourhoods were chosen so that each range

doubles the number of tiles, making it easier to track any impact that the

neighbourhood size has. The range nbr of 1 − 3 refers to the radius of the

neighbourhood.9

Agents with nbr = 3 have potentially 48 tiles to move to (if vacant). A larger

range thus increases the freedom of choosing a better area. More tiles also

create more variations of s to d ratios.

Neighbourhood size is usually constant for Schelling models and should be

kept so to ease model comparison (see Section 2.2.2). However, because the

grid in this model is meant to represent a far smaller environment, agents have

9Because the von Neumann neighbourhood is diamond-shaped, its range is not even.
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Figure 4.3: Agent neighbourhood ranges

(a) Range nbr = 1, 12
tiles

(b) Range nbr = 2, 24
tiles

(c) Range nbr = 3, 48
tiles

limited movement and cannot ‘jump’ across the grid. Because their choices of

movement are restricted to their local neighbourhood, the neighbourhood size

acts as a proxy for freedom of movement. A neighbourhood of 12 compared

to 48 tiles at the same population density is more likely to offer fewer choices.

If 50% of neighbourhoods are occupied, there would still be 24 empty tiles to

choose from, as opposed to just 6. This could influence the opportunity for

agents to maximise their utility, and thus I include the neighbourhood range

as a parameter.

3. Number of norm-consistent agents

The number of agents that are norm-consistent is given by NC, drawn ran-

domly from a uniform distribution ∼ U(0.2, 0.8). NC rates represent a range

of minority, equality and majority situations for agents that follow either AA

or BB. Each group (consistent and inconsistent agents) consists of a 50:50

split between the norm combination. If NC = .25, then .12,5 of all agents are

AA, .12,5 BB, .37,5 AB and .37,5 BA. This split persists throughout every

treatment of NC.
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Table 4.3: Independent variables

Parameter Range Description
MoveRule ∈ Random, Intelligent, Semi− int., Risky Movement rule
PopDen ∼ U(0.25, 0.98) Final population density

NC ∼ U(0.2, 0.8) No. of norm-consistent agents
nbr (1− 3) Neighbourhood range

4.4.4 Dependent variables

Each simulation runs for tmax = 10, 000 ticks. Every 10 ticks, the dependent vari-

ables are sampled, allowing for time-series analysis of the outcome variables. Each

treatment was repeated 3, 000 times, resulting in 4× 3, 000 = 12, 000 cross-sectional

samples and 1.2× 108 time-series samples of the dependent variables. These are de-

scribed below and summarised in Table 4.4. The end-state values of each dependent

variable is denoted by removing the t subscript.

Table 4.4: Dependent variables

Variable Description
MΨ

t Segregation of Public Norms at time t (equation 4.5)
MΩ

t Segregation of Private Norms at time t (equation 4.6)
Ōt Number of occurrences of PI at time t (alg. 4.4)
Z̄t Average size of PI groups at time t (alg. 4.4)
ICt No. of norm-inconsistent agents in PI groups at time t
v̄t average agent movement at time t

MΨ Segregation of Public Norms at the end of the simulation
MΩ Segregation of Private Norms at the end of the simulation
IC No. of norm-inconsistent agents in PI groups at the end of the simulation
Ō Number of occurrences of PI at the end of the simulation
Z̄ Average size of PI groups at the end of the simulation

I record the Moran’s index of spatial autocorrelation for both public norms and

private norms in order to quantify the segregation that exists between the norm

groups. Because agents consider their own private norm when comparing it to

others’ public norms, the two segregation indexes are correlated. The segregation

of public norms is given by:
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MΨ
t =

|A|∑
(i,j)∈A2 wi,j

∑
(i,j)∈A2 wi,j(Ψi − Ψ̄t)(Ψj − Ψ̄t)∑

i∈A(Ψi − Ψ̄t)2
(4.5)

where the mean public norm is Ψ̄ =
∑

i∈At
Ψi/|At|, and wi,j = 1 iff agents ai and aj

are immediately adjacent on the grid (including diagonals), otherwise wi,j = 0. The

equivalent segregation index for private norms is:

MΩ
t =

|A|∑
(i,j)∈A2 wi,j

∑
(i,j)∈A2 wi,j(Ωi − Ω̄t)(Ωj − Ω̄t)∑

i∈A(Ωi − Ω̄t)2
(4.6)

Because the segregation indexes measure public and private norms indepen-

dently, I record the number of Pluralistic Ignorance groups (PI groups), Ōt and

the average size of all groups Z̄t using an implementation of a FloodFill algorithm

4.4. Let LA be the positions of all agents At and all tiles W of the grid. The world

is searched for a given public norm Ψ = A or Ψ = B. A tile with an agent of

the given public norm and an inconsistent private norm is added to the list of PI

groups. If adjacent agents show the same norm inconsistency, they are added to the

same group.

Algorithm 4.4 FloodFill

function FloodFill(z,Ψ)
n← Ψ = A . the norm to be searched
F ← {} . initialize flagged tiles
for w ∈ W : w /∈ F do

if w ∈ LA then . If tile has agent
if Ψ(ai) = n ∧ Ω(ai) 6= n then . If the agent is norm inconsistent

F ∪ w . add tile to flagged tiles
FloodFill(w,Ψ)

end if
end if

end for
end function

The FloodFill thus captures either AB agents or BA agents. AA and BB agents

are not considered. Norm consistent agents are considered when inconsistent agents

move. Groups with fewer than three agents are not considered PI groups. The
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minimum of three was chosen because PI definitions require a plurality of norms,

which is not possible with two agents (which would tie) or one agent, which does

not constitute a group.

To capture prevalence of pluralistic ignorance, I record the number of norm-

inconsistent agents that are in PI groups, ICt. Because the number of inconsistent

agents is predetermined by NC, this parameter serves as a measure of how many

inconsistent agents manage to escape pluralistic ignorance. As groups of PI are

defined by a minimum of three adjacent agents with the same norm inconsistency,

some PI groups can occur by chance (through random movement). The measure of

ICt can be compared between the treatments to describe propensity of PI emergence.

ICt =
Z̄t × Ōt

|ai ∈ A : Ψi 6= Ωi|
(4.7)

Lastly, I capture average movement of agents, capturing the average number of

agents that have moved at time t:

v̄ =
|ai ∈ A : pi,t 6= pi,t−1|

|A|
(4.8)

Table 4.5: State variables

Variable Description
A The population of agents

Ψi Public Norm of agent ai
Ωi Private Norm of agent ai
pi,t Position of agent ai at time t
PA The positions of all agents

Nt(ai) The set of agents that are neighbours of agent ai
N(p) The set of locations in the neighbourhood of location p



156

4.5 Results

4.5.1 Typical simulation runs

Figure 4.4 visualises the clustering arrangements of private norms Ω across the

different movement treatments and over time. Ticks t = 1, 10, 100, 500 are presented

(left to right, each row).

The random movement(a) shows no clustering. Intelligent movement (b) shows

clusters typical of a Schelling model: because agents seek others with the same

norm convictions, they end up forming visible clusters that grow larger over time.

Because NC is 50% for these model runs, only half of the visible private norms will

be consistent with what the public norm signals.

Semi-intelligent movement (which includes ‘whether-to-move’ reasoning, but not

‘where-to-move’) shows clustering as well, but less dense. Agents broadly align into

clusters, but empty space is scattered across and between the different norm groups.

Risky movement shows the least jagged edges: agents form one large cluster that

is not very segregated (many areas contain both norms) but has very smooth edges.

4.5.2 Quantitative analysis

The emergence and occurrence of pluralistic ignorance is tested by comparing dif-

ferent movement rules and varying the model parameters described in Section 4.4.

Figure 4.5 shows a scatterplot of IC, the fraction of possible PI agents that is part

of PI groups against the norm consistency of agents, NC. The figure also distin-

guishes between the different neighbourhood ranges, nbr. As a general rule, the

more norm-consistent agents exist, the lower is the overall propensity of agents to

get caught in pluralistic ignorance situations. This is intuitive: more consistency

between private and public norms means fewer misleading signals that other agents

pick up and thus, the probability that agents experience pluralistic ignorance goes
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Figure 4.4: Comparison of cluster arrangements of Ω between Movement conditions.
Parameters: PopDen = 62, nbr = 3, NC = 50. Time t = 1, 10, 100, 500.

(a) Random movement

(b) Intelligent movement

(c) Semi-intelligent movement

(d) Risky movement

down (misrepresentation of attitudes is a crucial element of PI, as discussed earlier).

Higher neighbourhood ranges affect intelligent and risky agents the most, those are

the agents that reason when deciding where to move (Table 4.2). Intelligent agents

have higher PI rates when nbr increases, indicating that their reasoning fosters the

advent of PI when the range of options is greater. This is due to the intelligent
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agents’ desire to prevent isolation and seek friends. The farther they can see, the

more options they have to find friends and, ultimately, fall prey to faulty informa-

tion. The worst performers, judged by how much PI they suffer, are risky agents

with nbr = 3. They experience much higher levels of PI when NC is between 65%

and 70% (Figure 4.5: l). The key to these differences is population density.

Density of the population, PopDen, affects the number of agents that form

part of PI groups. Higher levels of PopDen are denoted by darker colours of the

grey-scale. Except when agents are risky (j,k,l), lower levels of PopDen generally

correlate with lower values of IC. Intelligent agents with larger nbr ranges (e,f)

don’t benefit from this effect as much: similar to their risky counterparts, the high

levels of IC continue as NC increases and only drop off when NC passes 60%.

The risky agents’ PI results show far less spread because density no longer im-

pacts the results as it does with random, semi-intelligent and intelligent agents.

Why is that? The effect of density is to provide more room for movement when

density is low, and that also means that there are more ways to be satisfied: in

high density areas, agents have fewer choices to move to, even if they want to. This

perpetuates PI situations. Risky agents however ignore the local population density

when they decide whether to move, because their reasoning is random. That means

that when a situation is satisfactory, the agent still has a 50% chance of moving

away. A low-population situation in which all agents stop moving because all of

them have found a satisfactory place is not possible. The movement indicator (red

line) highlights the high numbers of movement. Contrary to random agents, who

also move by chance, risky agents will seek satisfactory locations once they have to

move. Finding new places based on faulty information creates PI situations, and

lower densities alleviate this effect. Risky agents cannot benefit from this mechanic.

When NC is between 60% and 70% and nbr = 3, risky agents experience a
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Figure 4.5: IC by NC, controlling for moveRule, popDen and nbr. The x-axis
shows the proportion of norm-consistent agents (NC). The y-axis shows the amount
of norm-inconsistent agents in PI, IC. The z-axis is depicted as a gradient, showing
the different population densities between 25% and 98%. Darker shades of grey
denote higher densities. Each row shows a different moveRule, each column shows
a different neighbourhood range nbr. The average agent movement v̄ is depicted by
the red lines and share the scale of the y-axis of 0.0 to 1.0.
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further uptick in PI (l). The same effect is hinted at when nbr = 2 (k), but the

variance is too large to make out the same effect clearly. Contrast this to intelligent

agents at nbr = 3 (f): once NC levels of 60% are reached, PI drops sharply. This is

the point at which norm-consistent agents form a larger majority and the chances

of being surrounded with genuine agents are higher. Intelligent agents stop mov-

ing, as do semi-intelligent agents: their movement indicator drops to near-zero at

NC=70%. More consistency leads to less of a domino-effect: with norm-inconsistent

agents, a new neighbour who thinks they have found the right place tips off existing

neighbours who have been untruthful and move away as a result. This is less likely

with higher levels of NC. Thus, movement grinds to a near-halt and many agents

reside satisfied in places that, depending on the population density, have high PI

(high popDen) or low PI (low popDen). Risky agents, through their push to move,

effectively raise the required number of norm-consistent agents for PI to go down.

Because they keep moving and prevent non-PI happiness, the majority of NC has

to be so overwhelming that PI can be reduced. Their reliance on signals of others

seals their fate, as it were.

As indicated above, the different reasoning patterns of agents affects their aver-

age movement (red lines). As expected, random and risky agents have movement

levels close to .5 and .4 respectively. This 10% difference is due to their different

neighbourhood considerations: random agents check their neighbours for empty,

risky agents check their neighbours’ neighbours as well as the suitability of new

places, and can change their mind. When nbr = 1, intelligent agents achieve the

same results (d) as their random counterparts (a) with far less movement: across

all values of nbr, both intelligent and semi−intelligent agents move very little (d-i).

Greater neighbourhood ranges results in these agents moving more, with an av-

erage of 20% of agents moving at times (f,i). This is due to the greater range of
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locations to move to. With only 12 neighbours, it’s less likely to find an improved

empty location compared to 48 neighbours. When the range of neighbours increases,

the numbers required to meet or miss a preference target changes. I.e. out of four

neighbours, only two friends are required for a majority, but out of ten agents, at

least five need to be friends. The ratio doesn’t change, but the number of possibili-

ties to achieve that ratio increases. The neighbourhood range affects one element of

agents’ reasoning in particular: their drive to be in community with others, and not

isolated. The farther an agent can see, the more options they have to overcome isola-

tion quickly. We can see this effect looking back at 4.4: risky and intelligent agents,

the two that reason where to go, show tighter clusters and clear edges, with large

areas of empty space. Semi-intelligent agents who consider whether to move, but

not where to, show a different pattern: they form clusters, but these clusters have

ample empty room inside, leaving no discernible borders between different clusters.

The density inside of the clusters increases under risky and intelligent movement,

but not under semi-intelligent (and random) movement.

The overall ‘winners’ of keeping PI low are semi-intelligent agents, particularly

those when nbr = 1 (Figure 4.5 g). They outperform random movement especially

when NC is very low. In low-density situations, IC is often lower than 0.2, i.e. less

than 20% of all agents that could be in a PI situation, are in PI situation. When

misinformation is rife, ignorance is bliss: because semi-intelligent agents leave it to

chance where to move to, they don’t suffer the effects of relying on wrong signals

(intelligent agents do). And because they stop moving once they are happy, they

allow neighbourhoods of low PI to settle and don’t generate new chances of PI (risky

agents do).

Figure 4.6 shows the levels of IC at the end of simulations as boxplot diagrams.

Norm consistency and population density are grouped into four and three different
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ranges respectively to aid comparison. When density is low (a-d), truthfulness of

agents reduces pluralistic ignorance. When more agents are truthful, inconsistent

agents can find satisfactory groups made of consistent agents and avoid PI. When

keeping truthfulness constant, the movement rule accounts for major differences in

PI propensity. When truthfulness is low (a,b), semi− intelligent agents outperform

random agents in avoiding pluralistic ignorance. When truthfulness is above 50%

(c,d), random agents marginally outperform semi− intelligent agents. Intelligent

agents suffer up to 30% more agents in pluralistic ignorance compared to random

movers, but risky agents have the largest PI occurrences throughout the range of

NC (a-d), for the reasons discussed above.

For medium PopDen levels (e-h), the movement treatment differences follow the

same pattern, but pluralistic ignorance is higher overall. It is no longer the case

that semi − intelligent agents outperform random movers, but they remain the

best-performing of the reasoning agents. The differences between intelligent and

semi− intelligent behaviour are reduced. Consistent with intuition, overall, higher

levels of truthfulness still drive down levels of IC as more truthful signalling will

reduce the number of chances of PI occurring in the first place.

When density is high (i-l), the number of agents in pluralistic ignorance rises as

well. A crucial difference is that risky agents are no longer the worst performers. As

truthfulness goes up (k,l), they out-perform both intelligent and semi− intelligent

agents, but random movers enjoy lowest values of IC. The combination of high

density and low truthfulness (i,j) features the highest levels of PI: nearly all of the

agents that are norm-inconsistent are in a pluralistic ignorance situation. The dif-

ferent movement rules can no longer mitigate the occurrence of PI, as they do under

conditions of medium truthfulness and low population density. This shows that

reasoning agents can indeed lower the propensity of PI, but that their abilities are
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Figure 4.6: Propensity of norm-inconsistent agents to be part of PI groups
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restricted to low and medium-range values of popDen and NC. The higher the

population density, the less pronounced are the movement rule effects and differ-

ences. This affects semi − intelligent agents the most. This is because the higher

density increases the chances of inconsistent agents when agents survey their neigh-

bourhood. The more deception there is, the more likely it is that reasoning agents

draw the wrong conclusions. For the semi − intelligent agents, the random move-
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ment away is no longer an advantage when the world is densely populated. Further

evidence that their strategy stops working is visible in 4.6 i, j: the levels of IC of

semi − intelligent and intelligent agents are nearly identical, in both levels and

pattern. Only as consistent agent numbers increase further, can semi− intelligent

agents gain some ground compared to their intelligent versions, but the differences

are very small.

The IC variable is computed using average PI group sizes Z̄ and numbers of

groups Ō (see equation 4.7). Figures 4.7 and 4.8 show boxplot diagrams of mean

group size Z̄ and number of groups Ō instead of the computed value of IC. Again,

the diagrams are broken down by moveRule and NC, and split into low, medium

and high population densities popDen. This can show us which patterns of IC in

general are driven by each of its components.

The relationship between higher NC and lower IC is driven by both the number

of PI groups (Fig. 4.8) and their average size (Figure 4.7). The diagrams on each

row show the same trend: as NC increases, Ō decreases. Similarly, in Figure 4.7, as

NC increases, Z̄ decreases, but the differences between NC20− 34 and NC35− 49

are more pronounced than any other. At low densities, there are very little changes.

The average size of PI groups captures the differences between the movement rules

more clearly. Mean group size of PI groups goes down as NC increases because the

likelihood of inconsistent agents who find a PI situation decreases overall.

When density is high (Figure 4.7 i-l), the previously clear patterns of low group

size and low variance for random and semi − intelligent, and high group size and

high variance for intelligent and risky agents, disappear. Measuring Z̄ only, risky

agents outperform their reasoning counterparts at medium-high density (Figure 4.7

k). However the number of groups for the same scenario is not lower for risky agents

(Figure 4.8, k). This shows that the ‘uptick’ we saw in Figure 4.5 k, l, is driven

by group size Z̄. The diagram shows that the ‘uptick’ is a result of the variance in
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sizes: a large number of groups are larger than average, causing the spike in IC- the

trend however, continues downwards.

When NC < 34, risky agents have the fewest groups, but large group sizes.

This is due to the clustering pattern that risky agents show (see Figure 4.4 and the

discussion above): their constant movement into densely populated clusters at the

expense of free space that can break up PI clusters. When the density is higher,

free space becomes limited regardless of the movement rule and stop affecting group

sizes as much.

The mean group size is vastly increased when NC is very low (Fig. 4.7: a, e, i.

Note: the y-axis is different for those three plots, ranging from 0-37 instead of 0-

20). When density is high, the lowest truthfulness values (i) feature average groups

of 10 agents more than the groups when NC is higher (j). The difference for low

and medium densities (a,e) is less pronounced but still significant, with at least 5

agents more per group.Z̄ is so high when NC is low because of the great majority of

inconsistent agents. Especially when popDen is high and the map becomes crowded,

even random agents cause large PI groups. This shows that the movement rules

no longer account for Z̄, but the higher quantity of agents and low number of

consistent agents among them do. Mean group sizes grow so large when not enough

empty space exists to break up existing groups. The floodfill algorithm considers

adjacent tiles a group, regardless of how much of a cluster it might look like. A

long line of agents constitutes a group as much as a cluster does. When NC is so

low, the sheer quantity of inconsistent agents makes it more likely that, even by

chance, a stray inconsistent agent provides a link between two existing PI clusters.

The bad performance of random agents at higher densities (Figure 4.7 i) supports

this: under these conditions, even completely random movement will result in very

large PI groups. For densities less than 73%, intelligent and risky agents show

similarities in mean group size. Their reasoning when picking a new place leads to

larger groups- again, this can be captured visually by observing the lack of empty
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Figure 4.7: Mean group size of PI groups
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Mean group size Z̄ by MoveRule and NC

space during these runs. The mean group size boxplots confirm the importance of

population density and their influence on the agents’ movement behaviours, in line

with the observed patterns of behaviour in Schelling models.

As described in Section 4.4.4, I also record segregation levels. Because agents

essentially exist in two domains (public and private), I record each domain inde-

pendently. Figure 4.9 shows average private norm segregation levels broken down
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Figure 4.8: Number of occurrences of pluralistic ignorance groups

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

PopDen < 46%

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

PopDen > 46% & < 73%

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

PopDen > 73%

RND INT SEM RIS
(a)

0

20

40

60

80

100

nu
m

be
r 

of
 g

ro
up

s 
Ō
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Number of PI groups Ō by MoveRule and NC

by MoveRule, nbr and PopDen as previously shown in Figure 4.5. The columns

represent the neighbourhood range nbr, the rows show the different movement rules.

The x-axis is NC, and the z-axis shows density as a gradient. Private norm segre-

gation is shown in shades of orange, public norm segregation in shades of blue. It

should be noted that the range of segregation level differs in each figure: Figure 4.9

measures private segregation levels up to 0.8, Figure 4.10 scales not higher than 0.4.
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Figure 4.9: Segregation of Private Norms MΩ
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The control of random movement shows consistently low levels of segregation

across all parameter ranges. The value is just below .2, as typical for random move-

ment induced segregation in Schelling models. The three movement treatments

affect segregation slightly differently. When agents move intelligently, segregation

increases as NC increases, and density drives segregation higher still. This is true

for all nbr treatments, but when nbr = 3, segregation is higher on average when

NC is low. At peak levels of NC and PopDen, segregation levels are just shy of

.8, whereas nbr = 2 peaks just under .7 and nbr = 1 at .54. The increased vision

and equally, movement options of agents increases their ability to segregate accord-

ing to their preferences (see the discussion on the effect of increased nbr above).

Higher levels of nbr generally increase private norm segregation at all levels of den-

sity. Semi-intelligent agents show a very similar pattern of segregation compared to

intelligent agents, showing that the whether-to-move reasoning is the driving factor

of segregation. Agents stay in their neighbourhoods when these are satisfactory-

which often means a level of segregation that agents are oblivious to. Risky agents

on the other hand have lower segregation levels for a larger range of NC. When NC

is less than 50, the segregation levels rise only marginally. Once NC reaches 60,

private norm segregation shoots up, surpassing those levels found with intelligent

and semi−intelligent agents by the time NC = 75 is reached. The effect of popDen

is therefore delayed: only at NC > 50 does segregation begin to rise: the higher the

nbr, the more rapid is the rise. At peak NC and PopDen levels, only 40% agents

with nbr = 1 are segregated, compared to nearly 80% of agents under nbr = 3.

When truthfulness increases, so does segregation. Because agents signal their

private attitudes publicly, the decisions made where to move to and if to stay are

largely based on true information. Wrong signals deceive agents to reside next to

“false friends”, thereby lowering segregation because agents are now mixed. Density

increases segregation as truthfulness increases, because it increases the chances of
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responding to true signals. The movement rule effects again show a critical difference

between randomly deciding whether to move, and randomly deciding where to move.

Risky agents achieve low levels of segregation for a long period of NC because they

don’t stay where they are when satisfied. While this increases the occurrences of PI

(see Figure 4.5 j, k, l), it does keep segregation down. Segregation levels are a result

of the agents’ behaviours, and are negatively correlated with pluralistic ignorance

occurrences, IC.

Figure 4.10 shows the same breakdown of values, this time for public norm seg-

regation MΨ. At first glance, patterns are similar to those of MΩ: the control is

consistently low, and the movement treatments show increases in segregation as NC

and PopDen go up. However, public norm segregation is consistently lower than

private norm segregation. The peak values, again when nbr = 3, NC > 50 and high

PopDen levels, reach no more than .4, compared to .8 of private norm segregation.

This is intuitive. Private norm segregation MΩ should be higher than public norm

segregation MΨ, because agents consider their own private norm when determining

their happiness. When NC is low however, this effect is diminished: because such

a large amount of agents send misleading signals, the population ends up mixed, as

any attempt to bring own private norms together with other public norms will end

up in a mismatch. Indeed, at very low levels of NC and nbr = 1, both MΩ and MΨ

are very low (both Figures, a, d, g, j).

Under intelligent movement and nbr = 3, high density and low NC values cause

less segregation than lower density levels at the same parameter range, but quickly

overtakes when NC approaches 65. Public norm segregation is also lower when den-

sity is high and agents are risky, as shown in the bottom row. Whereas MΩ increases

for risky agents as NC increases, this is not the case for public norm segregation MΨ.

When truthfulness is low and the majority of agents deceive with their publicly

displayed attitudes, the public ‘surface’ will be a mixture of both norms, but the pri-
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Figure 4.10: Segregation of Public Norms MΨ



172

vate ‘beneath the surface’ pattern is more clustered. The scatterplots thus confirm

the visual impression that was given by Figure 4.2 in Section 4.4.1. As truthful-

ness increases, the two measures of segregation measure increasingly the same thing,

leading to the greater similarities between private and public norm segregation levels

at high levels of NC.
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4.6 Discussion

In this chapter I sought to determine what behaviours lead to a high level of PI, and

what behaviours mitigate its occurrence. I have tested various reasoning patterns

in order to distinguish the effects of reliance on external signals and the desire to

belong to a group.

One major element concerns the combination of IC and MΩ. Taking Figures 4.5

and 4.9 together, pluralistic ignorance is also prevalent under random movement, but

clustering is much more common when agents do not move randomly. PI emerges

automatically, possibly due to the strict definition outlined in this chapter. The

combination with clustering when agents reason means that levels of fragility of

assumed public opinion is higher: in clusters, agents reinforce their deception and

misconception, and create closed spaces that leave little room for escape. In the mi-

gration society of a perceived public consensus around tolerance of minorities, this

could mean that low-tolerance agents cluster together, but only some in the cluster

signal their true preference- enough to attract deceivers, but too few to repel those

who disagree with the public projection. This cluster is vulnerable to exposure of the

false consensus: a norm entrepreneur may start to challenge the public perception,

and there are many agents within the cluster that could then flip. Moving is costly,

so any sudden shift in opinions will take time to break up again. This presents a

vulnerability to populists that can target people who silence themselves. Populists

can use their rejection of established institutions and authorities to present them-

selves as a norm entrepreneur that sends dissenting signals out, without the urge to

silence themselves (Nome and Weidmann, 2013).

A second finding is that when agents reason whether to move, they are most

effective in reducing PI and keeping costs low. I recall that the lattice in this model

represents social space, not physical space- reinforced by the limited range of agent
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movement. They can ‘jump’ to empty tiles, but only those within the reach of their

neighbourhood. To change friends is a costly endeavour. Thus, movement should

be lower rather than higher. Figure 4.5 demonstrates that when agents decide

whether or not do move, they will move far less on average than those agents who

do so randomly. At peak movement levels, no more than 20% of all intelligent or

semi-intelligent agents move. Semi-intelligent agents have been the most effective

strategists in preventing pluralistic ignorance: they move little and will often decide

not to move- but when they do, they will chose a random new location. By not

trying to find norm-friends, they inadvertently prevent PI situations. These agents

thus rely on signals only when determining their own state of comfort, but not when

deciding where to go. This pattern persists for all but the highest levels of density.

In very dense social space, it is impossible to avoid deceivers.

The model generates a range of stylistic facts that are reminiscent of recent de-

bate on media consumption, ‘filter bubbles’ and reliance on social media (Groshek

and Koc-Michalska, 2017). By avoiding to follow just like-minded people and by di-

versifying the social realm, pluralistic ignorance has less of a chance to occur: when

people openly disagree, there is no false consensus. Reducing reliance on indirect

signals (analogous to preventing a too-crowded situation) could involve reducing

the consumption of media through others, such as social media or opinion pieces in

newspapers.

The model in this chapter has used simple movement rules. Rather than switch-

ing private attitudes or bending to other kinds of pressure such as global opinions or

strength of attitudes, agents solely seek to minimise the difference between their sur-

rounding neighbours and themselves. The cost of movement through its restriction

to the current neighbourhood emulates the high cost of switching- while switching

does happen in the real world (but not in this model), the purpose of this design

was to identify situations in which a sudden wave of flipping would have the most
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fertile ground. This is when agents are too crowded, many of which sending false

signals, and a heavy reliance on signals of other agents. We already know that PI

is emergent. I have shown that the combinations of relying on signals (or cues) and

movement costs exposes groups to situations in which flipping could occur.

Pluralistic ignorance occurs not because people are actively striving towards a

dominance of norm, but because every person tries to reduce any possible internal

friction that might arise from conforming to a norm they do not privately agree

with. These micro-behaviours lead to the macro pattern of pluralistic ignorance.

The answer to how pluralistic ignorance emerges is thus: people bring it onto them-

selves. There is no need for any external pressure through coercion or legal norms,

no active exchange between agents (that might result in peer pressure type settings)

is required either.

The pattern of pluralistic ignorance is a value-neutral phenomenon which can

occur as a catalyst for both positive and negative norm-change and preservation.

In the case of student drinking and peer pressure, or rules that harm individuals,

pluralistic ignorance is a hindrance to morally superior norms, if one assumes that

individual happiness or opportunities are the goal. But it can also occur to bring

change such as the changing norms about racist thought- white supremacy was

once a widely accepted norm, but in most western countries today this has shifted.

Racism still exists, but the attitudes underlying racism are no longer the accepted

norm, even though they are contested (Inglehart et al., 2016). For such large changes

to happen, it is more than plausible to imagine that there has to exist a period of

pluralistic ignorance in which dissidents of the new norm find themselves in a posi-

tion in which they are ostracised, and knowing what the new norm has become, will

shift to identifying non-breaching of the new norm as an implicit compliance of the

new norm, despite not knowing what the others’ private attitude may be.
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In the past, pluralistic ignorance could explain how high levels of racism could

be sustained in the US, despite researchers’ knowledge that groups of white people

had changed their private attitudes (O’Gorman and Garry, 1976). The best ‘cure’

for prejudices remains direct contact with the out-group, as has been repeatedly

demonstrated in the effect of exposure to black Americans through military enlist-

ment (Fischer et al., 2016). However, it is not possible for all groups of people to

be in direct contact with all other relevant groups about which they may harbour

prejudices. The aim should perhaps be to view consensuses with healthy suspicion,

and to identify proxies of dissent- for instance, general distrust towards foreigners

by generally white, male and less educated citizens can be an indicator for a more

general disagreement with cultural shifts in society (Inglehart et al., 2016).

Finding more stringent conditions for groups of pluralistic ignorance theory is

important to distinguish the phenomenon from social acquiescence bias and other

related concepts. I have proposed one such possible definition here, which hopefully

can serve as a starting point for further discussion on this matter.
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5 Conclusion

Social norms, tolerance, and social norms of tolerance have become increasingly im-

portant in a world which is increasingly diversifying. International migration shows

no sign of abating, and existing societies that had previously built self-identity on

ethnicity see their beliefs challenged by the growing diversity. The US is projected

to turn into a majority-minority population by 2043 (Rios and Wynn, 2016). Eu-

rope, traditionally Christian, experiences continuing decline of Christian faith, cou-

pled with increasing immigration from Muslim countries Joppke and Torpey (2013).

Western society has seen its previous cultural shifts towards multiculturalism, plu-

ralism and has started to undermine privileges that parts of the populations used

to enjoy, sparking subsequent backlashes (Inglehart et al., 2016). The increased di-

versity in the US leads, contrary to previously suggestions, not to an increase in the

Democratic vote share, but to a stronger partisan divide as marginalised groups and

those who have experienced (or perceive) a loss of privilege are driven towards Con-

servative views (Craig and Richeson, 2014). In the smaller social realms, diversity

is still dividing scholarship on when and where its effects are good or bad.

In the context of all of these changes and challenges (and opportunities), I have

looked at several aspects of these changing dynamics with the intention to shed more

light on the mechanisms that drive changes of tolerance, reactions to migration and

sudden shifts in opinion about the norms that guide our understanding of tolerance

and what we ought to believe. I have focused on the use of Agent-based models

to explore potential explanations to further the existing empirical and theoretical

debates in Political Science.

In this final section of the thesis, I will reiterate the main findings of each chapter

in relation to the research questions and discuss the implications of the findings. This

is accompanied by a review of agent-based modelling as a complementary method

for studying migration. I conclude by reviewing the scope of this thesis and further

work that can be carried out on the basis of my findings.
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5.1 Main findings

One purpose of this thesis has been to apply agent-based modelling to the broad

research area of immigration, more specifically, migrant-receiving societies. The

topic of immigration spans many disciplines and is a vast subject area with many

new developments and approaches. Recent migration research in Political Science

has focused on the impact that diversity has on previously homogeneous or largely

homogeneous societies. The results of these studies vary greatly, driven by different

levels of analysis and operationalisation of social variables such as trust, prejudice,

social capital or ethnic diversity. Agent-based modelling is a computational method

based on the principles of complexity theory. It is designed to implement agents,

an environment, and the rules governing the agents. On this micro-level, rules can

be directly implemented, rather than inferred from aggregates. The interaction

of agents can result in macro-level patterns that are emergent, rather than pre-

determined. Using this approach, complex systems can be modelled without having

to understand all of its properties. Human society is one such complex system, and

immigration or changes in ethnic diversity of populations are changes induced into

these complex systems. Using this approach, I have modelled societies that are on

the receiving end of migration. Agent-based models of migration are numerous, but

have thus far concentrated on either migrants themselves, or the flow of migration,

not on the host society (Klabunde and Willekens, 2016a). I thus have aimed to bring

agent-based modelling and recent research on population diversity and immigrant

sentiment together to approach the topical questions of how migration impacts a

society, and what role norm conformity can play in such a society.

5.1.1 How does migration affect host society and migrant community?

Two-thirds of the thesis have been devoted to the physical impact of migration and

how societies of migrants and natives react and adjust both in the short-term and

long-term. The research question is intentionally broad, to reflect the complexity-
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and agent-based approach that I have used, basing model parameters and rules on

well-known stylistic facts, existing models and social theory.

The first section introduced migration to the Schelling model of ethnic segre-

gation as the baseline model with which the research questions would be tackled.

The Schelling model is well-established and robust, making it easier to compare

my findings to other Schelling approaches, but also providing a legitimate basis for

some of the model decisions. The ethnic segregation nature of the model made it

an intuitive choice when testing the impact of (ethnic) diversity on a given popula-

tion. The first version of the model in Chapter 2 represents a parsimonious effort

to asses the effects that migrants have on the local ‘native’ population in the host

country, and how migrants experience their newfound situation. I introduced im-

migration to the Schelling model: agents would no longer be spawned at the start

of the simulation, but rather the model distinguishes between ‘natives’, initialised

in the beginning, and ‘migrants’, agents that enter the grid at a later stage. The

focus of this chapter was to address two particular concerns regarding migration:

how, if at all, does the rate of change of migration impact the happiness and seg-

regation behaviour of the overall population? And does the placement of migrants,

i.e. the manner in which they arrive, change these happiness and segregation levels

differently? These are frequently debated subjects in diversity and migration re-

search (Laurence and Bentley, 2016). By providing a virtual repeated experiment,

parameters can be taken to the extreme without ethical considerations that would

be present in a real-life experiment.

Because this parsimonious model is not data-driven, any conclusions can be

drawn as analogies or suggestive of mechanisms that drive macro-level patterns that

can be picked up empirically.

The Schelling model is largely robust to the experimental treatments of migra-

tion, but exhibits short-term volatility and a sharp reduction in agent happiness

when migration waves occur. Large, one-off influxes of migrants are difficult to ab-
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sorb by the host society initially, and overall happiness and segregation levels are

worse compared to more steady introduction of migrants. The short-term shocks

in the model can be relevant for policy decisions. Electoral cycles for example are

short, and decades-away potentially positive developments may not be as useful for

politicians to use in an election campaign or to justify policy. It would thus be in the

politicians’ interest to introduce migration slowly and steadily, if an electoral cycle

is part of the consideration. Even the introduction of diasporas must not necessarily

prompt negative reactions- in the model, diaspora migrants were the happiest, and

natives coped just as well with the existence of diasporas. This pattern is consistent

with theories that assume that only when critical levels of diaspora size are reached,

do natives ‘turn’ (Collier, 2013). The differences between rates of change of migra-

tion mirrors the empirical findings that have been made in the wake of Brexit: not

the level of migration mattered in predicting a vote for leave, but rather the rate at

which an area had been exposed to newcomers (Inglehart and Norris, 2017). That

migrants are most happy in a diaspora is unsurprising- especially when only few

migrants exist in the host society, actively targeting people of similar/shared back-

grounds can be a relief when language barriers exist or initial settlement is otherwise

difficult (Chong, 2000).

Important for the outcomes of the model were the levels of intolerance, F2: as

long as these agents preferred no more than 20 out of 24 neighbours to be of their

own kind, overall happiness was much higher for both migrants and natives. Any

values beyond 20 resulted in sharp dips in happiness for natives. The implication

is that degrees of intolerance matter. From a policy perspective, this could mean

that rather than providing a binary choice between yes-migration and no-migration,

sceptical voters for whom migration is a concern, could be targeted to promote ben-

efits of migration whilst acknowledging that the perception of a threat of migrants is

very real for these voters. Most recent work on populism and immigration finds that

a problem for pro-immigration parties is that their voters do not perceive migration
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as a problem, and for these parties migration is a non-issue, enabling anti-migration

or migration-sceptic parties and politicians to frame the issue (Lambert et al., 2017).

The mechanisms employed in this model suggest that even among high intolerance,

small gains can come a long way.

The second version of this migration model in Chapter 3 has introduced adap-

tive tolerance behaviour, modelled after the contact theory, prominent in the field

of intergroup relationships and out-group prejudice. This adaptation has aimed to

demonstrate the ability of agent-based models to implement existing social theories

and scrutinise their individual-level assumptions, but also to expand the parsimo-

nious immigration model to include more realistic mechanisms without overwhelm-

ing the model with additional layers of attributes and interactions.

Adaptive behaviour is a crucial component of complex systems and in the de-

terministic environment of computer models, we can trace the causal mechanisms

that produce the model results. Using the adaptive tolerance model, I have found a

strong tendency towards bimodality of tolerance: over time, society of migrants and

natives will split into very tolerant and very intolerant camps. Very small minori-

ties are more likely to become tolerant, as they find too little room to cluster- but

when a critical minority size is reached, intolerant clusters can be sustained. Just

as integration of out-group members is an unstable state, so is moderate tolerance.

Moderate tolerance is mostly observed short-term throughout the model when in-

tolerant clusters turn tolerant or vice versa. Crucially, this behaviour is robust with

regards to very slow rates of change of tolerance up to ∆f = 0.001. Even under these

conditions, the system will tend towards bimodality. This outcome mirrors some of

the debates in the political landscape of 2016/17 in Western countries such as the

US, the UK, or other European states such as the Netherlands (see Goodwin and

Heath (2016) on the UK, Inglehart and Norris (2017) on the US and Heath et al.

(2016) for Europe more generally). The ‘liberal divide’ may be as inevitable as seg-
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regation itself, according to this model. If too few contact situations come about,

isolated parts of society will tend towards intolerance. If one were to construe a

tolerant, inclusive society, one would have to make sure that contact is frequent,

but limited in scope. This avoids triggering threat responses and negative contact

situations. Additionally, the spread of out-groups must be ensured so that isolated

parts of society do not remain isolated for too long. This model shows that these

mechanisms give rise to the divided society reminiscent of actual countries, but it

cannot ascertain that there are not other possible explanations and mechanisms that

can also achieve this.

Three key assumptions of the contact theory were modelled: that positive contact

drives up tolerance, that contact is not frictionless, and that negative contact drives

down tolerance (in the form of segregating behaviour). These rules were sufficient in

generating a society with the parallels to real-world societies mentioned above: there

were no additional variables required such as income, housing restrictions, type of

labour, left-right positions or religious and ethnic background that would usually

feature in questions around voting behaviour and anti-immigrant votes. The model

mechanics suggest that the contact theory provides a good framework to understand

how micro-level contact between groups can, on the aggregate level, lead to tolerant

and intolerant pockets of society.

5.1.2 How does norm conformity interact with discontent of status quo?

The final third of the thesis moves on from purely physical impacts and norm of

migration to the realms of social norms and engages in a theoretical exercise. Norms

are oftentimes the reason why friction can occur between migrants and natives:

both groups have an inherent set of social norms that eases communication and

cooperation among groups, but inhibits it between different groups (Chong, 2000).

The subject of interest of this research question concerns itself with the norms

that exist around integration of migrants or inclusion and tolerance of minorities in
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general. I have looked at the phenomenon of pluralistic ignorance (PI), a situation

that describes a collective mistake of a group to assume a status quo that is in fact a

minority view. PI can explain how previously seemingly unchanging public attitudes

can flip in a short period of time (Shamir and Shamir, 1997). The phenomenon is

relevant to the political landscape of today, which has seen the issue of migration and

integration of migrants rise sharply in this decade and that social norms of minority

inclusion have potentially dampened outspoken criticism of migration (Blinder et al.,

2013). The chapter has furthermore highlighted how agent-based models can be used

to support a theoretical argument that I had laid out previously.

The model of emerging pluralistic ignorance in Chapter 4 highlights the ability

of agent-based models to not just model, but advance theory. The wide range of

loose definitions of pluralistic ignorance is a source of confusion for scholars that take

interest in the subject. By incorporating PI in an ABM, I was forced to specify each

element of the existing theory. This has resulted in a strict definition of PI which

enables the ability to replicate the model and consider the effects of each of the

assumptions that was made to devise this working definition. I have demonstrated

that pluralistic ignorance can emerge unwittingly through the interplay of wanting

to belong to a group of like-minded norm conformers and the inability of agents to

determine what their neighbours actually think. This is a possible explanation for

the rise of attitudes against migrants and populist parties that build on concerns

surrounding migration (Blinder et al., 2013). It also throws up parallels to the model

from Chapter 3. Clustering is once again an important driver of social behaviours

that may not be intended. Clustering of deceiving agents is fragile: perceived norm

consensus can be broken up quickly, but underlying attitude shifts remain slow-

paced. For policy makers, this can signal that perceived consensus might not always

be stable. If we suspect that inaccurate predictions of private preferences are a

major culprit, it can open up opportunities such as amending survey questions

to incorporate this inaccuracy(as has been done for other models- see O’Gorman
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(1986)). If party-surveying prior to election campaigns included the possibility of

voter deception with their own voters or members, target messages could be altered

accordingly.

Public opinion shifts or changes in media narrative can appear sudden, whereas

in fact they may have been no longer genuine and simply perpetuated through a false

consensus effect. It thus takes a norm entrepreneur to shock the system of pluralistic

ignorance into changing the narrative. Populists are such norm entrepreneurs: they

reject the legitimacy of the status quo and accept the costs of publicly dissenting

against prevailing norms. Since the late 20th century, these approaches have found

fertile ground in many countries (Norris and Inglehart, 2018). It is thus useful to

identify potential situations which could be misleading. A similar effect has taken

place in the study of elections: the prediction of several recent elections has been in-

creasingly difficult due to the mobilisation of previously inactive voters and generally

a disconnect between self-reported likelihood of voting and actual turnout (Mellon

and Prosser, 2015). If consensus of norms and views (such as post-modernism)

can be viewed with the same healthy suspicion, false consensus situations may be

detected.

5.2 The scope of this thesis and future work

The preceding section has summarised the main findings of this thesis, which has

applied agent-based modelling and a complexity-theory perspective to the issue of

migration and its impact on segregation, tolerance, and norms.

Whilst the explanations suggested by the models can inform policy makers, they

cannot serve as proof that the suggested mechanism is in fact the only possible ex-

planation. Thus, to advance policy proposals, the proposed mechanisms should first

be validated by empirical work. Agent-based modelling can disentangle micro-macro

connections and suggest re-directions for empirical research, but it is not designed to

replace it. ABM is, due to its experimental nature, very useful for theory testing and
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discussion, as I have shown in Chapters 3 and 4. In non-empirical literature, agent-

based models can provide an alternative method for proof of concept in contrast to

equation-based models.

The initial Schelling model with immigration introduced in Chapter 2 was a par-

simonious model basing the model design on stylistic facts, empirical findings and

social theory, where available. A virtue and weakness of agent-based models is that

they can be expanded to incorporate ever-more complex interactions, attitudes and

agents. The more moving parts are introduced in an ABM, the harder it becomes to

track the causal mechanisms resulting in observed macro-patterns- the reason why

the model was reduced to as few moving parts as possible. Any addition should be

justified. One such addition would be the introduction of a FShare parameter that

handles the majority of tolerant agents over intolerant agents. Because group size

is a critical factor in determining population happiness and segregation clusters, it

stands to reason that tipping points and critical values also exist for the distribu-

tion of tolerance among non-adaptive agents. The potential benefit of this addition

could be to see if and when minorities of intolerance can no longer be sustained,

or when majorities of tolerance become fragile. From the perspective of a policy

maker, knowing that segregation levels and/or happiness levels can change drasti-

cally with just little differences in tolerance distribution, it can inform migration

policy or political campaigning.

The findings of this thesis and the models that have been devised provide op-

portunities for further study. One future project that builds on this thesis will focus

on the migration dynamics in greater detail. Based on the findings of Chapter 2,

the migration treatment interacts strongly with population density and majority-

minority ratios within the population. The suggested project considers migration

on a continuous scale, checking whether there are thresholds in rate and size of mi-

gration at which collective behaviour changes in some ways. In Chapter 2 I have
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already highlighted one such threshold (see Section 2.11) and more work needs to be

done. In addition to this further exploration of the parameter ranges of the model,

I will consider scenarios of absorption of migrant clusters into the host society over

time, as suggested by Collier (2013). This will also include different diaspora sizes

and the probability with which an existing migrant group can exert influence on

future migrants of the same group. Heterogeneous absorption and integration levels

have been suggested as early as the 1940s (Penninx, 2006b, p.134) and have not

been modelled as such. The goal of this research is to perhaps determine possible

mechanisms of integration (or lack thereof) depending on the socio-demographic

characteristics of both the immigration groups and host society communities. Fur-

thermore, the model can serve as a baseline for further exploration of the impact

of migration on inequality, which too has been a rising concern. For instance, the

variance in happiness at each point in time in the model could serve as a proxy for

inequality. Migrants and natives may show different variance levels, as has been

indicated in the analysis of Figures 2.8 and 2.9 respectively.

Lastly, further work that includes agent-based modelling can incorporate empiri-

cal data as a means to validate the model. The parameter range can be cross-checked

with existing data. For example, initial tolerance levels of agents could be adapted

to tolerance levels of European citizens responding to a social survey. A growing

field within the agent-based community is the use of GIS data. Agent-based models,

instead of using 2-dimensional lattices with square tiles, use existing GIS data to

shape the lattice with shapefiles that reflect the actual geographical boundaries of

residential areas. Crooks (2010) have implemented such a version for the Schelling

model, providing a useful basis for GIS-ABM work that builds on the abstract mod-

els of this thesis. A major difficulty facing GIS-based models is that the social

variables are usually not gathered with high-resolution geographical information,

so that combining social and geographical information requires extrapolating from

larger aggregate findings. An alternative approach to using surveys is to rely on
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GPS-enabled social media data such as Twitter feeds and networks, which have a

growing relevance in studies of elections and voters.

The adaptive migration model could be adjusted to incorporate agent death or

exit from the grid, modelling change of population composition over time. This can

address theories put forward by Collier (2013) on the tendency of homogeneous,

low-fertility societies relying on immigration (and thus, very likely, an introduction

of ethnic diversity) to shift not just positions but composition. A commonly re-

quested addition to the model is some form of distinction of income or class. For

example, three types of agent could be introduced- low-, mid-, highly skilled or ed-

ucated agents, that could reflect the divide between pro-migration cosmopolitans

and migration-sceptic, provincial voters. There is evidence that skills in particular

changes public perception of migrants greatly (Lambert et al., 2017), even trumping

concerns about ethnic differences. Among natives, the “ethnic penalty” is reduced

or eliminated when the assumed migrant is highly skilled (Lambert et al., 2017). An

inclusion of skills or more broadly socio-economic differences would enable a better

fit with existing economic models of migration and be beneficial to bridge a gap

between social models and economic models of migration and its relevance to host

societies.

In this thesis I have sought to demonstrate three useful ways in which agent-based

modelling can further research in Political Science. It can provide experiments on

models of parsimony, exploring basic mechanisms (Chapter 2). It can implement

existing social theory directly, scrutinising its suggested mechanisms and predictions

(Chapter 3), and lastly it can be used to support theoretical advancements in areas

that have previously relied on equation-based arguments (Chapter 4). The virtue

of agent-based models in Political Science is that it can complement areas in which

empirical research has been slow or hindered by practical restrictions, although it
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should not be understood as a replacement empirical research.

The cultural backlash to societal changes in the West, the election of Trump,

the vote for Brexit, the general surge of populists and the fears of terrorism, de-

mographic shifts and concerns about globalisation are all significant events and

developments that have marked the 21th century so far and will, at least in the near

future, continue to present challenges for all elements of society. In this context,

Political Science and the social sciences more generally can be crucial in providing

explanations of how different causes and effects are linked, and how they function.

In this context, I have provided potential explanations of such mechanisms which

contribute to the growing body of knowledge of tolerance and norms in migrant

societies.
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