
Discrete Optimization 12 (2014) 47–60

Contents lists available at ScienceDirect

Discrete Optimization

journal homepage: www.elsevier.com/locate/disopt

The quadratic balanced optimization problem✩

Abraham P. Punnen a,∗, Sara Taghipour a, Daniel Karapetyan a,b,
Bishnu Bhattacharyya c

a Department of Mathematics, Simon Fraser University Surrey, Central City, 250-13450 102nd AV, Surrey, British Columbia, V3T 0A3,
Canada
b ASAP Research Group, School of Computer Science, University of Nottingham, UK
c Google, Mountain View, CA, USA

h i g h l i g h t s

• Introduce the quadratic balanced optimization problem.
• Complexity results, algorithms, and polynomially solvable special cases.
• Experimental analysis of algorithms.

a r t i c l e i n f o

Article history:
Received 15 December 2012
Received in revised form 2 January 2014
Accepted 6 January 2014
Available online 12 February 2014

Keywords:
Combinatorial optimization
Balanced optimization
Knapsack problem
Bottleneck problems
Heuristics

a b s t r a c t

We introduce the quadratic balanced optimization problem (QBOP) which can be used to
model equitable distribution of resources with pairwise interaction. QBOP is strongly NP-
hard even if the family of feasible solutions has a very simple structure. Several general
purpose exact and heuristic algorithms are presented. Results of extensive computational
experiments are reported using randomly generated quadratic knapsack problems as the
test bed. These results illustrate the efficacy of our exact and heuristic algorithms. We also
show that when the cost matrix is specially structured, QBOP can be solved as a sequence
of linear balanced optimization problems. As a consequence, we have several polynomially
solvable cases of QBOP.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Let E = {1, 2, . . . ,m} be a finite set and F be a family of non-empty subsets of E. It is assumed that F is represented in
a compact form of size polynomial inmwithout explicitly listing its elements. For each (i, j) ∈ E× E, a cost cij is prescribed.
The elements of F are called feasible solutions and the m× m matrix C = (cij) is called the cost matrix. Then the quadratic
balanced optimization problem (QBOP) is to find S ∈ F such that

max{cij : (i, j) ∈ S × S} −min{cij : (i, j) ∈ S × S}

is as small as possible.
QBOP is closely related to the balanced optimization problem introduced byMartello et al. [1]. To emphasize the difference

between the balanced optimization problem of [1] and QBOP, we call the former a linear balanced optimization problem

✩ This research work was supported by an NSERC Discovery grant and an NSERC discovery accelerator supplement awarded to Abraham P. Punnen.
∗ Corresponding author. Tel.: +1 7787827611.

E-mail addresses: apunnen@sfu.ca (A.P. Punnen), sara_taghipour@sfu.ca (S. Taghipour), daniel.karapetyan@gmail.com (D. Karapetyan),
bishnu@gmail.com (B. Bhattacharyya).

1572-5286/$ – see front matter© 2014 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.disopt.2014.01.001

http://dx.doi.org/10.1016/j.disopt.2014.01.001
http://www.elsevier.com/locate/disopt
http://www.elsevier.com/locate/disopt
http://crossmark.crossref.org/dialog/?doi=10.1016/j.disopt.2014.01.001&domain=pdf
mailto:apunnen@sfu.ca
mailto:sara_taghipour@sfu.ca
mailto:daniel.karapetyan@gmail.com
mailto:bishnu@gmail.com
http://dx.doi.org/10.1016/j.disopt.2014.01.001

48 A.P. Punnen et al. / Discrete Optimization 12 (2014) 47–60

(LBOP). Special cases of LBOPwere studied bymany authors [1–10]. Optimization problemswith objective functions similar
to that of LBOP have been studied by Zeitlin [11] for resource allocation, by Gupta and Sen [12], Liao and Huang [13], and
Tegze and Vlach [14–16] for machine scheduling, by Ahuja [17] for linear programming, by Scutellà [18] for network flows,
and by Liang et al. [19] for workload balancing. A generalization of LBOP where elements of E are categorized has been
studied by Berežný and Lacko [20,21] and Grinèová, Kravecová, and Kuláè [22]. Punnen and Nair [23] studied LBOP with an
additional linear constraint. Punnen and Aneja [24] and Turner et al. [25] studied the lexicographic version of LBOP. To the
best of our knowledge, QBOP has not been studied in literature so far.

Most of the applications of LBOP discussed in literature translate into applications of QBOP by interpreting cij as the
pairwise interaction weight of elements i and j in E. To illustrate this, let us consider the following variation of the travel
agency example of Martello et al. [1]. A North American travel agency is planning to prepare a European tour package. Its
clients travel fromNewYork to London by a chartered flight. The clients have the option to choose amaximumof two tourist
locations from an available set S of locations. If a client chooses locations i and j, then cij is the total tour time. There are m
potential locations and the company wishes to choose k = |S| locations to be included in the package so that the duration
of tours for any pair of locations is approximately the same. This way, one can avoid waiting time of clients in London, after
their tour and thewhole group can return by the same chartered flight. The objective of the tour company can be represented
as Minimizing max{cij : (i, j) ∈ S × S} −min{cij : (i, j) ∈ S × S}while satisfying appropriate constraints.

Other applications of the model include balanced portfolio selection for managing investment accounts where risk
estimates on pairs of investment opportunities are to be considered because of hedging positions and participant selection
for psychological experiments where it is important that all the people in the group equally know each other.

The objective function of QBOP can be viewed as range of a covariance matrix C associated with a combinatorial
optimization problem. In this case, BQOP attempts to minimize a dispersion measure. Minimization of various measures
of dispersion such as variance, absolute deviation from the mean etc. has been studied in the context of combinatorial
optimization problems [26,27]. However, none of these studies take into consideration information from the covariance
matrixwhichmeasures impact of pairwise interaction. This interpretation leads to other potential applications of ourmodel.

In this paper we study QBOP and propose several general purpose algorithms. The polynomial solvability of these
algorithms are closely related to that of an associated feasibility problem. QBOP is observed to be NP-hard even if the family
F of feasible solutions has very simple structure. We also investigate QBOP when the cost matrix C has a decomposable
structure, i.e., cij = ai + bj or cij = aibj. In each of these special cases, we show that QBOP can be solved in polynomial
timewhenever the corresponding LBOP can be solved in polynomial time. As a consequence, we have O(m2 log n) and O(n6)
algorithms for QBOP when F is chosen as spanning trees of a graph on n nodes andm edges or perfect matchings on a Kn,n,
respectively. Our general purpose exact algorithms can bemodified into heuristic algorithms. Some sufficient conditions are
derived to speed up these algorithms and their effect is analyzed using extensive experimentation in the context of quadratic
balanced knapsack problems. We also compared the heuristic solutions with exact solutions and the results establish the
efficiency of our heuristic algorithms.

The paper is organized as follows. In Section 2 we discuss the complexity of the problem and introduce notations
and definitions. Section 3 deals with exact and heuristic algorithms. In Section 4 we present our polynomially solvable
special cases. In Section 5 we discuss the special case of the quadratic balanced knapsack problem. Experimental results are
presented in Section 6. In Section 7, a generalization QBOP where interaction between k-elements are considered instead of
two elements as in the case of QBOP. Concluding remarks are presented in Section 8.

2. Complexity and notations

Without loss of generality, we assume that cij ≥ 0 for otherwise we can add a large constant to all cij values to get an
equivalent problem with non-negative cost values. It may be noted that when cij ≥ 0 for all (i, j) ∈ E × E and cii = 0
for i ∈ E, QBOP reduces to the quadratic bottleneck problem (QBP) [28,29]. QBP is NP-hard even if F is the collection of all
subsets of E with cardinality no more than k for a given k, which depends on m [29]. In fact, for such a problem, computing
an ϵ-optimal solution is also NP-hard for any ϵ > 0 even if cij ∈ {0, 1} and cii = 0 [29]. As an immediate consequence, it
can be verified that for the corresponding instance of QBOP, computing an ϵ-optimal solution is NP-hard for any ϵ > 0. In
contrast, the corresponding LBOP is polynomially solvable. Thus, the complexity of QBOP and LBOP are very different and
QBOP apparently is a more difficult problem.

For a given cost matrix C and S ∈ F , we denote

Zmax(C, S) = max{cij : (i, j) ∈ S × S},
Zmin(C, S) = min{cij : (i, j) ∈ S × S} and
Z(C, S) = Zmax(C, S)− Zmin(C, S).

For a given family of feasible solutions, we use the notation QBOP(C) to indicate that the cost matrix under consideration
for QBOP is C . Thus, QBOP(C) and QBOP(C∗), where C ≠ C∗, are two instances of QBOP with the same family of feasible
solutions but different cost matrices C and C∗ respectively.

For any two real numbers α and β such that α ≤ β and cost matrix C , let F(C, α, β) = {S ∈ F : Zmin(C, S) ≥ α and
Zmax(C, S) ≤ β} and E(C, α, β) = {(i, j) : cij < α or cij > β}. Then the quadratic feasibility problem can be stated as follows:

A.P. Punnen et al. / Discrete Optimization 12 (2014) 47–60 49

‘‘Given two real numbers α and β , where α ≤ β , test if F(C, α, β) ≠ ∅ and produce an S ∈ F(C, α, β) whenever
F(C, α, β) ≠ ∅.’’

Any solution S ∈ F can be represented by its incidence vector x = (x1, x2, . . . , xm), where

xi =

1 if i ∈ S,
0 otherwise.

The solution represented by an incidence vector x is denoted by S(x). Let FI be the set of incidence vectors of elements
of F . Consider the cost matrix C ′ given by

c ′ij =

1 if (i, j) ∈ E(C, α, β),
0 otherwise.

Then the quadratic feasibility problem has a ‘yes’ answer if and only if the optimal objective function value of the quadratic
combinatorial optimization problem (QCOP)

Minimize
m
i=1

m
j=1

c ′ijxixj

subject to x ∈ FI, xj = 0 or 1, j = 1, 2, . . . ,m

is zero and if x0 is the corresponding optimal solution then S(x0) ∈ F(C, α, β). Thus, the quadratic feasibility problem can
be solved by solving the QCOP.

The quadratic feasibility problem can also be viewed as the feasibility version of the linear combinatorial optimization
problemwith conflict pairs (LCOP),where the associated set of conflict pairs is precisely E(C, α, β); i.e, the quadratic feasibility
problem has a ‘‘yes’’ answer if and only if the set

{x : x ∈ FI, xi + xj ≤ 1 for (i, j) ∈ E(C, α, β)} (1)

is non-empty. For details on the LCOPwe refer to [30,31]. The quadratic feasibility problemdiscussed above is closely related
to the quadratic feasibility problem studied by Punnen and Zhang [29] in the context of quadratic bottleneck problems.

3. Exact and heuristic algorithms for QBOP

Let us now consider some general results which are used in the subsequent sections to design algorithms for QBOP. Let
F ∗ = {S1, S2, . . . , Sr} be a subset of F satisfying the following properties:

(P1) There exists an Si ∈ F ∗ which is an optimal solution to QBOP,
(P2) Zmax(C, S1) < Zmax(C, S2) < · · · < Zmax(C, Sr).

For any index k, 1 ≤ k ≤ r , let π(k) be the index such that Zmax(C, Sπ(k))− Zmin(C, Sπ(k)) = min{Zmax(C, Si)− Zmin(C, Si) :
1 ≤ i ≤ k}. Then, clearly, Sπ(r) is an optimal solution to QBOP. Let Ω be a real number such that Ω ≥ Zmin(C, Si) for any
optimal solution Si for QBOP in F ∗.

Theorem 1. For any 1 ≤ k ≤ r, if Zmax(C, Sπ(k))− Zmin(C, Sπ(k))+Ω ≤ Zmax(C, Sk) then Sπ(k) is an optimal solution to QBOP.

Proof. Suppose Sπ(k) is not an optimal solution to QBOP. Then there is an optimal solution Si to QBOP in F ∗ such that i > k.
Thus, Zmax(C, Si)− Zmin(C, Si) < Zmax(C, Sπ(k))− Zmin(C, Sπ(k)). Then

Zmax(C, Si) < Zmin(C, Si)+ Zmax(C, Sπ(k))− Zmin(C, Sπ(k))

≤ Ω + Zmax(C, Sπ(k))− Zmin(C, Sπ(k))

≤ Zmax(C, Sk).

Thus, by (P2), i ≤ k, a contradiction. �

Theorem 2. If Sπ(k) is not an optimal solution to QBOP then there exists an optimal solution Sq ∈ F ∗ such that q > k and
Zmin(C, Sq) > Zmax(C, Sk)− Zmax(C, Sπ(k))+ Zmin(C, Sπ(k)).

Proof. Since Sπ(k) is not optimal, by property (P1) there exists an optimal solution Sq in F∗ such that q > k. Suppose
Zmin(C, Sq) ≤ Zmax(C, Sk)− Zmax(C, Sπ(k))+ Zmin(C, Sπ(k)). Then Zmin(C, Sq) ≤ Zmax(C, Sq)− Zmax(C, Sπ(k))+ Zmin(C, Sπ(k)).
Thus, Zmax(C, Sq)− Zmin(C, Sq) ≥ Zmax(C, Sπ(k))− Zmin(C, Sπ(k)) establishing that Sπ(k) is also an optimal solution to QBOP,
a contradiction. �

Theorems 1 and 2 assist us in improving the average performance of our algorithms. Corresponding results can be
obtained by considering solutions that satisfy another set of properties. Suppose F 0

= {S1, S2, . . . , Sh} be a subset of F
satisfying the following properties.

50 A.P. Punnen et al. / Discrete Optimization 12 (2014) 47–60

(P3) There exists an Si ∈ F 0 which is an optimal solution to QBOP.
(P4) Zmin(C, S1) > Zmin(C, S2) > · · · > Zmin(C, Sh).

Choose an index σ(k) such that Zmax(C, Sσ(k))− Zmin(C, Sσ(k)) = min{Zmax(C, Si)− Zmin(C, Si) : 1 ≤ i ≤ k}. Then Sσ(h) is an
optimal solution to QBOP. Let ∆ be a real number such that ∆ ≤ Zmax(C, Si) for any optimal solution Si for QBOP in F 0.

Theorem 3. For any 1 ≤ k ≤ h, if ∆− Zmax(C, Sσ(k))+ Zmin(C, Sσ(k)) ≥ Zmin(C, Sk) then Sσ(k) is an optimal solution to QBOP.

Theorem 4. If Sσ(k) is not an optimal solution to QBOP then there exists an optimal solution Sd ∈ F 0 such that d > k and
Zmax(C, Sd) < Zmax(C, Sσ(k))− Zmin(C, Sσ(k))+ Zmin(C, Sk).

The proofs of Theorems 3 and 4 can be obtained along the same lines as that of Theorems 1 and 2 and hence are omitted.
Conditions similar to Theorems 1–4 have been used by many authors in the context of different optimization problems

involving linear terms [23,32–35]. The effect of such conditions are not tested in the context of quadratic type problems. One
of the goals of our experimental analysis was to test the efficacy of Theorems 1–4 in the development of practical algorithms.

3.1. The double threshold algorithm

The basic idea of this algorithm is similar to that used by Martello et al. [1] for solving LBOP. The difference, however, is
that we are using the quadratic feasibility problem discussed in the last section instead of a simple feasibility test considered
in [1] for LBOP. This is a significant deviation as it alters the problem complexity substantially. The validity proof of our
algorithm follows along the same line as that of the double threshold algorithm for LBOP discussed in [1]. We also use the
conditions provided in Theorems 1 and 2 to enhance our search for an optimal solution.

Let w1 < w2 < · · · < wp be an ascending arrangement of distinct elements of the cost matrix C and wp+1 = ∞. These
wi values are the candidates for Zmax(C, S) and Zmin(C, S) for any feasible solution S. The algorithm performs a bottom-up
sequential search by maintaining a lower threshold L and an upper threshold U , and tests if F(C, L,U) ≠ ∅. If the answer
is ‘yes’, the lower threshold is increased and if the answer is ‘no’, the upper threshold is increased. The lower and upper
threshold values are chosen amongst {w1, w2, . . . , wp}. At any stage of the algorithm, if a feasible solution is obtained with
the QBOP objective function value as zero, the algorithm is terminated since we have an optimal solution. Let L = wℓ and
U = wu for some ℓ and u, ℓ ≤ u. If F(C, wℓ, wu) = ∅ then U is increased towu+1. Otherwise, we choose an S ∈ F(C, wℓ, wu)
and L can be increased to wv+1, where wv = min{cij : (i, j) ∈ S × S}, and the best solution identified so far is updated, if
necessary. Note that wv ≥ wℓ.

We also try to exploit the conditions of Theorems 1 and 2 for early detection of an optimal solution or rapid increase in
the lower threshold (and hence, possibly the upper threshold). Let t ≤ p be the total number of times L is updated and let
F ∗ = {S1, S2, . . . , St} be the set of solutions generated. The indexes are selected such that Si is generated before Si+1. Then
F ∗ satisfies the properties (P1) and (P2). Thus, the sufficient condition of Theorem 1 can be used to detect optimality in any
iteration, whenever the condition is satisfied. If it is satisfied then the best solution identified so far is indeed optimal and
the algorithm terminates. Otherwise, we try to increase the lower threshold L (and hence possibly the upper threshold U)
rapidly using the conditions of Theorem 2. If the algorithm is not terminated using any of the conditions discussed above,
then the search completeswhenU or L becomes∞ and the best solution produced during the search is selected as the output
which is an optimal solution to QBOP. A formal description of the bottom-up double threshold algorithm (BDT algorithm)
is given in Algorithm 1.

Algorithm 1: The BDT Algorithm
1 Let w1 < w2 < · · · < wp be an ascending arrangement of distinct values of eij for (i, j) ∈ E × E;
2 l← 1; u← 1; sol← ∅; obj←∞;
3 Compute the parameter Ω; /* See Section 6.3 for choice of Ω */
4 while l ≤ p and u ≤ p do
5 if F(C, wl, wu) ≠ ∅ then
6 Choose an S ∈ F(C, wl, wu);
7 if Z(C, S) < obj then obj← Z(C, S); sol← S;
8 if obj = 0 or obj+Ω ≤ wt then return sol Choose smallest k such that wk > max{Zmin(C, S), Zmax(C, S)− obj};
9 l← k;

10 if wl > wu then u← k;
11 else
12 u← u+ 1
13 end if
14 end while
15 return obj and sol

A.P. Punnen et al. / Discrete Optimization 12 (2014) 47–60 51

With the assumption that the dominating complexity of this algorithm in each iteration is the complexity of testing the
condition if F(C, wl, wu) ≠ ∅ or not. If this test can be performed in O(φ1(m)) time, then the BDT-algorithm terminates in
O(mφ1(m)) time. For most problems of practical interest, testing if F(C, wl, wu) ≠ ∅ or not is NP-hard. By performing this
test using heuristic algorithms, we can get a heuristic algorithm to solve QBOP. The computational issues associated with
this approach are discussed in detail in the section of experimental analysis of algorithms.

Just like the BDT algorithm, it is possible to obtain another double threshold algorithm using a top-down search. In
this case, we start with the upper and lower threshold values at wp and systematically decrease the threshold values. The
algorithm makes use of Theorems 3 and 4 to improve the search process, along similar lines as in the BDT algorithm where
the threshold values are systematically increased. The resulting algorithm is called top-down double threshold algorithm
(TDT algorithm). The detailed description of various steps of this algorithm can be easily constructed in view of the BDT
algorithm and, therefore, omitted.

3.2. Iterative bottleneck algorithms

Let us now discuss two additional algorithms for solving QBOPwhich solve a sequence of quadratic bottleneck problems.
The worst case complexities of these algorithms, in general, are higher than that of the BDT-algorithm, but their average
performance is expected to be better. A quadratic bottleneck problem of type 1 (QBP1) is defined as

QBP1: Minimize Zmax(C, S)
subject to S ∈ F .

We denote an instance of QBP1 with cost matrix C as QBP1(C). The problem QBP1 was investigated by Burkard [28] and
Punnen and Zhang [29].

To develop our iterative bottleneck algorithms, we consider a generalization of QBOP, where a restriction on the lower
threshold is imposed on the feasible solutions. Consider the problem

QBOP1(C, α): Minimize Zmax(C, S)− Zmin(C, S)
subject to S ∈ F ,

Zmin(C, S) ≥ α.

When α = min{cij : (i, j) ∈ E × E} QBOP1(C, α) reduces to QBOP(C). Let C ′ be anm×mmatrix defined by

c ′ij =

M if cij < α,
cij otherwise,

where M is a large number.

Theorem 5. Let S0 be an optimal solution to QBP1 with cost matrix C ′ and q be the index such that wq = Zmin(C, S0).

(1) If Zmax(C, S0) = M then QBOP1 (C, α) is infeasible.
(2) If Zmax(C, S0) < M and Zmax(C, S0) = Zmin(C, S0) then S0 is an optimal solution to QBOP1 (C, α).
(3) If conditions (1) and (2) above are not satisfied, then either S0 is an optimal solution to QBOP1 (C, α) or an optimal solution

to QBOP1 (C ′, γ) is also optimal to QBOP1 (C, α), where γ = wq+1.

Proof. The proof of (1) and (2) are straightforward. Let us now prove (3). Let χ = {S ∈ F : α ≤ Zmin(C, S) ≤ Zmin(C, S0)}.
By definition of χ

Zmin(C, S0) ≥ Zmin(C, S) for all S ∈ χ. (2)

Since condition (1) of the theorem is not satisfied, by optimality of S0 to QBP1 with cost matrix C ′, we have

Zmax(C, S0) ≤ Zmax(C, S) for all S ∈ χ. (3)

Multiply inequality (2) by −1 and adding to inequality (3) we have Z(C, S0) ≤ Z(C, S) for all S ∈ χ . Thus, either S0 is an
optimal solution to QBOP1(C, α) or there exists an optimal solution S to QBOP1(C, α) satisfying Zmin(C, S) > Zmin(C, S0)
and the result follows. �

In view of Theorem 5, we can solve QBOP as a sequence of QBP1 problems. In each iteration, the algorithm maintains
a lower threshold α and constructs a modified cost matrix C ′ which depends on the value of α. Then, using an optimal
solution to QBP1 with cost matrix C ′, the lower threshold is systematically increased until infeasibility with respect to
the threshold values is reached or optimality of one of the solutions generated so far is identified using condition (2) of
Theorem 5. Let F 1

= {Sρ1 , Sρ2 , . . . , Sρt } be the set of solutions generated for various QBP1 problems, where Sρi is generated
before Sρi+1 , 1 ≤ i ≤ t − 1. Then by choosing F∗ = F 1, these solutions satisfy properties (P1) and (P2). Thus, Theorem 1
can be used to detect optimality early and Theorem 2 may be used to increase the lower threshold rapidly. If the algorithm
is not terminated using an optimality condition, it compares all the solutions generated by the QBP1 solver and outputs

52 A.P. Punnen et al. / Discrete Optimization 12 (2014) 47–60

the overall best solution with respect to the QBOP objective function. The resulting algorithm is called the type 1 iterative
bottleneck algorithm (IB1 algorithm) and its formal description is given in Algorithm 2.

Algorithm 2: The IB1 Algorithm
1 Let w1 < w2 < · · · < wp be an ascending arrangement of all distinct values of {cij : (i, j) ∈ E × E};
2 C ′ ← C; obj←∞ ; sol← ∅,M ← 1+ wp; z0 = wp;
3 Compute the parameter Ω;
4 while z0 ≠ M do
5 Solve QBP1(C ′);
6 if If QBP1(C ′) is infeasible then return ∅ and∞;
7 else let S be the solution of QBP1(C ′);
8 z0 ← max{c ′ij : (i, j) ∈ S × S};
9 if z0 < M then

10 if Z(C, S) < obj then sol← S; obj← Z(C, S);
11 if obj= 0 or obj+Ω ≤ z0 then return obj and sol;
12 L← max{Zmin(C, S), Zmax(C, S)− obj};

13 c ′ij ←


cij if cij > L,
M otherwise for each i, j ∈ E;

14 end if
15 end while
16 return obj and sol

The IB1 algorithm solves at mostm problems of the type QBP1. Thus, if QBP1 can be solved in O(φ2(m)) time, then QBOP
can be solved in O(mφ2(m)) time. By solving QBP1 using a heuristic, we get a heuristic version of the IB1 algorithm.

QBOP can also be solved as a sequence of quadratic bottleneck problems of the maxmin type, which we call a quadratic
bottleneck problem of type 2 (QBP2). Formally, QBP2 can be stated as follows:

QBP2: Maximize Zmin(C, S)
subject to S ∈ F .

QBP2 can be reformulated as QBP1 or the algorithms for QBP1 [29] can be modified to solve QBP2 directly.
Now, for any real number β , consider the problem:

QBOP2(C, β): Minimize Zmax(C, S)− Zmin(C, S)
subject to S ∈ F ,

Zmax(C, S) ≤ β.

When β = max{cij : (i, j) ∈ E × E}, QBOP2(C, β) reduces to QBOP(C). Define the cost matrix C̃ defined by

c̃ij =

−M if cij > β or cij < α
cij otherwise

whereM is a large number.

Theorem 6. Let S0 be an optimal solution to QBP2 with cost matrix C̃ and r be the index such that wr = Zmax(C, S0).
1. If Zmin(C̃, S0) = −M then QBOP2(C, β) is infeasible.
2. If Zmin(C̃, S0) > −M and Zmax(C, S0) = Zmin(C, S0) then S0 is an optimal solution to QBOP2(C, β).
3. If conditions (1) and (2) are not satisfied, then either S0 is an optimal solution to QBOP2(C, β) or an optimal solution

to QBOP2(C̃, γ) is also optimal to QBOP2(C, β) where γ = wr+1.

The proof of this theoremcanbe constructed by appropriatemodifications in the proof of Theorem5andhence is omitted.
In view of Theorem 6, we can solve QBOP as a sequence of QBP2 problems. In each iteration, the algorithm maintains a

lower threshold α and an upper threshold β and construct a modified cost matrix C̃ which depends on the value of α and
β . Using an optimal solution to QBP2 with cost matrix C̃ , the upper threshold is systematically decreased and the process is
continued until infeasibility with respect to the threshold values is reached or optimality of one of the solutions generated
so far is identified using condition (2) of Theorem 6. Let F 2

= {Sη1 , Sη2 , . . . , Sηt } be the set of solutions generated for various
QBP2 problems. The indexes are selected such that Sηi is generated before Sηi+1 , 1 ≤ i ≤ t − 1. Then by choosing F 0

= F 2,
these solutions satisfy properties (P3) and (P4). Thus, Theorem 3 may be used to detect optimality early in some cases and
Theorem 4 may be used to decrease the upper threshold rapidly. If the algorithm is not terminated using an optimality
condition, it compares the solutions generated by the QBP2 solver and outputs the overall best solution with respect to the
QBOP objective function. The resulting algorithm is called the type 2 iterative bottleneck algorithm (IB2-algorithm). A formal
description of the IB2 algorithm is omitted as it can be obtained by appropriate modifications of the IB1 algorithm.

The IB2 algorithm solves at most m problems of the type QBP2. Thus, if QBP2 can also be solved in O(φ3(m)) time then
QBOP can be solved in O(mφ3(m)) time. By solving QBP2 using a heuristic, we get a heuristic version of the IB2 algorithm.

A.P. Punnen et al. / Discrete Optimization 12 (2014) 47–60 53

3.3. The double bottleneck algorithm

Note that Algorithm IB1 sequentially increases the lower threshold value while the algorithm IB2 sequentially decreases
the upper threshold value. The two algorithms can be combined to generate another algorithm that alternately increases the
lower threshold and decreases the upper threshold. The operations of increasing the lower threshold or decreasing the upper
threshold are carried out by solving a QBP1 and QBP2, respectively. The resulting algorithm is called the double bottleneck
algorithm (DB-Algorithm). The validity of the DB-algorithm follows from Theorems 5 and 6 and the validity of algorithms
IB1 and IB2. A formal description of the DB Algorithm is given in Algorithm 3.

Algorithm 3: The DB Algorithm
1 Let w1 < w2 < · · · < wp be an ascending arrangement of all distinct values of {cij : (i, j) ∈ E × E};
2 C ′ ← C; obj←∞ ; sol← ∅, M ← 1+ wp; z̄ = wp; z̃ = w1;
3 while z̄ ≠ M and z̃ ≠ −M do
4 Solve QBP1(C ′);
5 if If QBP1(C ′) is infeasible then return ∅ and∞ else let S be the solution of QBP1(C ′) z̄ ← max{c ′ij : (i, j) ∈ S × S};
6 if z̄ < M then
7 if Z(C, S) < obj then sol← S; obj← Z(C, S);
8 if obj= 0 then return sol and obj;

9 c ′ij ←


cij if cij > Zmin(C, S),
M otherwise for each i, j ∈ E;

10 end if
11 Solve QBP2(C ′); let S be the resulting solution;
12 z̃ ← min{c ′ij : (i, j) ∈ S × S};
13 if z̃ > −M then
14 if Z(C, S) < obj then sol← S; obj← Z(C, S);
15 if obj = 0 then return sol and obj;

16 c ′ij ←


cij if cij < Zmax(C, S)
−M otherwise for each i, j ∈ E;

17 end if
18 end while
19 return opt and sol

4. Polynomially solvable cases

Let us now consider a special cases of QBOP that can be solved in polynomial timewhere the cost matrix is decomposable.
i.e. cij = ai + bj for given ai ≥ 0, bj ≥ 0 and i, j ∈ E. We denote such an instance of a QBOP by QBOP(a + b). Let Z+(C, S)
denote the objective function of QBOP(a+ b). Then,

Z+(C, S) = max{cij : (i, j) ∈ S × S} −min{cij : (i, j) ∈ S × S}
= max{ai + bj : (i, j) ∈ S × S} −min{ai + bj : (i, j) ∈ S × S}

= max{ai : i ∈ S} +max{bi : i ∈ S} −min{ai : i ∈ S} −min{bi : i ∈ S} (4)
= max{ai : i ∈ S} +max{−ai : i ∈ S} +max{bi : i ∈ S} −min{bi : i ∈ S}. (5)

Let wi be some prescribed weight of i ∈ E and g : F → R. Duin and Volgenant [36] showed that combinatorial
optimization problems of the type

COP(g): Minimize max{wi : i ∈ S} + g(S)
subject to S ∈ F

can be solved in O(mζ (m)), where ζ (m) is the complexity of minimizing g(S) over F . Note that

Z+(C, S) = max{ai : i ∈ S} + g(S),

where g(S) = max{−ai : i ∈ S} + g1(S) and g1(S) = max{bi : i ∈ S} −min{bi : i ∈ S}. But minimizing g1(S) over F is pre-
cisely the LBOP [1]. Thus, recursively applying the results of Duin andVolgenant [36], QBOP(a+b) can be solved inO(m2η(m))
time, where η(m) is the complexity of an LBOP with the same family of feasible solutions as that of the QBOP(a+ b).

54 A.P. Punnen et al. / Discrete Optimization 12 (2014) 47–60

Another interesting polynomially solvable case is obtained when cij = aibj for (i, j) ∈ E × E where ai ≥ 0, bi ≥ 0 for
i = 1, 2, . . . ,m. The corresponding instance of QBOP is denoted by QBOP(ab). Now, for any feasible solution S ∈ F ,

Z∗(C, S) = max{cij : (i, j) ∈ S × S} −min{cij : (i, j) ∈ S × S}
= max{aibj : (i, j) ∈ S × S} −min{aibj : (i, j) ∈ S × S}

= max{ai : i ∈ S}max{bi : i ∈ S} −min{ai : i ∈ S}min{bi : i ∈ S}. (6)

Let α and β be two real numbers such that α ≤ β and Qα,β = {i : α ≤ ai ≤ β}. Also let γ = min{bi : i ∈ Qα,β},
δ = max{bi : i ∈ Qα,β} and A = {a1, a2, . . . , am}. Consider the constrained g-deviation problem:

GDP(α, β): Minimize max{βbi : i ∈ S} +max{−αbi : i ∈ S}
subject to S ∈ F ,

max{bi : i ∈ S} ≤ δ,
min{bi : i ∈ S} ≥ γ ,
max{ai : i ∈ S} = β,
min{ai : i ∈ S} = α.

Let Sαβ be an optimal solution to GDP(αβ) with optimal objective function value Z∗(C, Sαβ). Choose S0 such that

Z∗(C, S0) = min{Z∗(C, Sαβ) : (α, β) ∈ A× A, α ≤ β}.

Theorem 7. S0 is an optimal solution to QBOP (ab).

Proof. Let Fαβ be the family of feasible solutions of GDP(αβ). It is possible that Fαβ
= ∅ and in this case we choose Sαβ

= ∅

with objective function value a very large number. Note that Z∗(C, S) = max{βbi : i ∈ S} + max{−αbi : i ∈ S} for all
S ∈ Fαβ . Thus, Z∗(C, Sαβ) ≤ Z∗(C, S) for all S ∈ Fαβ . Since F = ∪{Fαβ

: (α, β) ∈ A× A, α ≤ β} the result follows. �

Thus by Theorem 7, QBOP(ab) can be solved by solving O(m2) problems of the type GDP(α, β) considering all (α, β) ∈
A×A such that α ≤ β . But GDP(α, β) is a special g-deviation problem [36]. Hence, using the algorithm discussed in [36] for
solving the general G-deviation problem, GDP(α, β) can be solved by solving O(m) bottleneck problems of the type

BP(α, β): Minimize max{−αbi : i ∈ S}
subject to S ∈ F ,

max{bi : i ∈ S} ≤ δ,
min{bi : i ∈ S} ≥ γ ,
max{ai : i ∈ S} = β,
min{ai : i ∈ S} = α.

Now the bottleneck problem BP(α, β) can be solved by solving O(logm) feasibility problems using the binary search version
of the well known threshold algorithm for bottleneck problems [37]. But we need to take care the constraints in BP(α, β)
associated with the feasibility routine embedded within the threshold algorithm and this can be achieved by solving a
minsum problem of the type

MSP : Minimize

i∈S

wi

subject to S ∈ F .

The value of wi in MSP depends on α, β and the threshold value used for the feasibility test. We omit the details of the
selection of wi values which can easily be constructed by an interested reader. Thus if MSP can be solved in O(η(m)) time,
then QBOP(ab) can be solved in O(m3η(m) logm) time.

5. The quadratic balanced knapsack problem

Let us now consider a specific case of QBOP called the quadratic balanced knapsack problem (QBalKP)which can be defined
as follows:

Minimize max{cij : (i, j) ∈ E × E, xi = xj = 1} −min{cij : (i, j) ∈ E × E, xi = xj = 1}

subject to
m
j=1

ajxj ≥ b (7)

xj ∈ {0, 1} for j ∈ E. (8)

By choosing F ⊆ 2E such that S ∈ F implies


i∈S ai ≥ b we can see that QBalKP is an instance QBOP. The compact
representation of F is given by the constraints (7) and (8). QBalKP can be used to model the travel agency example and

A.P. Punnen et al. / Discrete Optimization 12 (2014) 47–60 55

portfolio selection examples discussed in Section 1. Since the quadratic bottleneck knapsack problem (QBotKP) [38] is a
special case of QBalKP and QBotKP is strongly NP-hard, QBalKP is also strongly NP-hard. (Note that the LBOP version of
QBalKP is solvable in polynomial time.) QBalKP can be formulated as a mixed integer program:

Minimize u− v

Subject to
m
j=1

ajxj ≥ b,

u ≥ cijyij for (i, j) ∈ E × E, cij ≠ 0,
v ≤ cijyij +M(1− yij) for (i, j) ∈ E × E, cij ≠ M,
yij − xi ≤ 0 for (i, j) ∈ E × E,
yij − xj ≤ 0 for (i, j) ∈ E × E,
xi + xj − yij ≤ 1 for (i, j) ∈ E × E,
xj ∈ {0, 1}, for j ∈ E,
0 ≤ u, v ≤ M,

where M = max{cij : 1 ≤ i, j ≤ n}. Solving the mixed integer programming formulation given above becomes difficult as
the problem size increases. However, we can use the general purpose algorithms developed in the previous section to solve
QBalKP. To use the algorithms IB1, IB2, and DB, we can make use of the algorithm of Zhang and Punnen [38] as the QBP1
(QBP2) solver. To apply the BDT and TDT algorithms, we need an algorithm to solve the corresponding quadratic feasibility
problem.

Recall that the quadratic feasibility problem is: ‘‘Given two real numbers α and β , where α ≤ β , test if F(C, α, β) ≠ ∅ and
produce an S ∈ F(C, α, β) whenever F(C, α, β) ≠ ∅.’’

In Section 2, we indicated that a quadratic feasibility problem can be solved as a combinatorial optimization problem
with conflict pair constraints [30,31]. We now observe that the quadratic feasibility problem for QBKP can be solved by
solving the maximumweight independent set problem (MWIP) [39,40] on a graph with node set E and edge set E(α, β). An
integer programming representation of this MWIP is given below.

MWIP: Maximize
m
i=1

ajxj

subject to xi + xj ≤ 1 for (i, j) ∈ E(α, β),
xj ∈ {0, 1}, for j ∈ E.

Let x∗ = (x∗1, x
∗

2, . . . , x
∗
m) be an optimal solution to the MWIP and z∗ be its optimal objective function value. Then

F(C, α, β) ≠ ∅ if and only if z∗ ≥ b. Thus, we can use anMWIP solver to implement the algorithms discussed in the previous
section for the special case of QBalKP. The solution of the quadratic feasibility problem discussed above is closely related
to the quadratic feasibility problem studied by Zhang and Punnen [38] for the quadratic bottleneck knapsack problem with
appropriate differences to handle the QBalKP objective.

6. Computational experiments

In this section we report results of extensive experimental analysis conducted on randomly generated QBalKP instances.
The objective of the experiments is to assess the relative performance of various algorithms developed in Section 3. We
have implemented exact and heuristic versions of these algorithms and compared the outcomes in terms of solution quality
and computational time. Our experiments also examined the effectiveness of the conditions provided by Theorems 1–4 for
early detection of optimality and rapid advancement through the search intervals. All the experiments were conducted on
an Intel i7-2600 CPU based PC. The algorithms are implemented in C#, and CPLEX 12.4 was used to solve the mixed integer
programming problems within our implementations. x86-64 instruction set was used and concurrency was not allowed in
our the algorithms as well as in CPLEX.

All the algorithms discussed in this paper (except the MIP formulation of QBalKP) require a feasibility test procedure and
the dominating complexity of these algorithms in each iteration is that of this procedure. Recall that a feasibility test answers
the question if there exists a feasible solution to the QBalKP and, whenever the answer is ‘yes’, it generates such a solution.
In Section 5 we observed that this can be achieved by solving a maximum weight independent set problem. We can also
use other variations of this approach to test feasibility and the empirical behavior of different variations could be different.
Since the feasibility test is carried out several times in the algorithm, the effect of different variations of the feasibility tests
could affect the running time as well as solution quality (for heuristic algorithms). For definiteness and simplicity, we have
restricted our implementation to three different feasibility test procedures which are summarized below:

FT1: Solve the maximum weight independent set problem as described in Section 5 and then compare the objective valuem
i=1 aixi with b. If

m
i=1 aixi ≥ b, the resulting solution S(x) is a feasible solution to the QBalKP. Otherwise the answer

is ‘no’. We used CPLEX 12.4 to solve the resulting integer program.

56 A.P. Punnen et al. / Discrete Optimization 12 (2014) 47–60

FT2: Consider the maximum weight independent set problem as described in Section 5. Choose the objective function
coefficients to be zero1 and add the new constraint

m
i=1

aixi ≥ b

to the formulation.We used CPLEX 12.4 to solve the resulting constrainedmaximumweight independent set problem.
The CPLEX solver stops as soon as a feasible solution is found. When using this feasibility test procedure, we set the
‘MIP Emphasis’ parameter of CPLEX to ‘Emphasize feasibility over optimality’ which in our experiments provided the
best performance.

FT3: Solve the integer programdefined in FT2 by providing a time limit for themixed integer programming solver. Note that
if the solver fails to find a feasible solution in the allowed time limit, there is no guarantee that a feasible solution does
not exist and, thus, using such a procedure in any of the algorithms turns an exact algorithm into a heuristic. Because
of this heuristic decision, the properties (P1) and (P2) may not hold precisely. Nevertheless, we make a heuristic
assumption that these properties hold and proceed accordingly.

As indicated earlier, even for these special cases of feasibility tests, the solutions returned by these feasibility tests could be
different and, thus, not only the execution time of each feasibility test but also the optimization process itself for a QBalKP
algorithm may vary even for the exact feasibility tests FT1 and FT2.

We use the following notations to represent our algorithms under different parameter settings. MIP stands for themixed
integer programming formulation of the QBalKP solved with CPLEX (the parameters of CPLEX are default). BDT, IB and
DB denote the BDT, IB1 and DB algorithms, respectively, where the effect of Theorem 1 is suppressed. By default, we use
feasibility test FT2. If ‘B’ is added to the name of an algorithm (such as BDTB or IBB), feasibility test FT1 is used. BDTΩ and
IBΩ stand for the variations of BDT and IB, where early optimality detection is guaranteed by Theorem 1 is enabled. BDTt
denotes the heuristic version of the BDT algorithm, where t is the time limit prescribed for each feasibility test (FT3). IBt and
DBt denote the heuristic version of the corresponding algorithms, where t is the time limit prescribed for each feasibility
test (FT3) within the QBP1 solving procedure.

6.1. Test problems

Since this is the first time when the QBalKP is considered in the literature, we have developed a class of test instances
for the problem. These test instances are random problems constructed as follows. For each test instance, we are given a
triple (m, σ , s), where m > 1 is an integer, σ > 0 and 0 ≤ s ≤ 1. We first generate an m × m matrix C ′ = (c ′ij), where c ′ij
is a normally distributed random integer with mean µ = 0 and standard deviation σ as given. Then the matrix C = (cij) is
generated, where cij = c ′ij −minrs c ′rs. This guarantees that cij ≥ 0. Then, an m-vector (ai), where ai a uniformly distributed
random integer in the range 0 ≤ ai ≤ 1000, is generated. Finally, b is selected as a uniformly distributed random integer in
the range ⌊250ms⌋ ≤ b ≤ ⌊750ms⌋. Observe that E[


i∈S ai] = E[b] if S ⊆ E such that |S| = ms, where E[x] is the expected

value of x. In other words, by varying the value of s, one can control the number of non-zeros in an optimal solution to the
QBalKP instance.

It may be noted that the instances we generated are symmetric in the following sense; replacing cij with (maxi′j′ ci′j′)−cij
would not, on average, change the properties of the matrix C . Hence, the algorithms IB1 and IB2 are expected to show
similar average performance. Thus, hereafter, we do not discuss the algorithm IB2 and denote IB1 as IB. Likewise, BDT
and TDT algorithms are expected to have similar average performance. Thus, we do not consider the TDT algorithm in our
experimental analysis and focus on the BDT algorithm.

Fig. 1 indicates relative performance of the BDT and IB algorithms as a function of the parameter s. We setm = 100 and
σ = 100 in this experiment.

It appears that the instance with either large or small values of s are relatively easy to solve. For small values of s, each
feasibility test takes only a small amount of time since it is easy to find a feasible solution if b is small. For large values of
s, each feasibility test also takes a relatively small time since many such problems become infeasible. Another interesting
observation is that the number of iterations of the BDT algorithm almost does not depend on s (indeed, even if the problem is
infeasible, the BDT algorithm will make p iterations) while it varies significantly for the IB algorithmmaking it significantly
faster for certain class of instances.

Fig. 2 indicates the performance of the BDT and IB algorithms as a function of the parameter σ of the instance. The value
of s is set in this experiment to s = 0.1 andm = 100.

One can see that the random instances become harder with increase in the value of σ . Indeed, a larger σ leads to a larger
number p of distinct weights cij which, in turn, increases the number of iterations of the algorithm. However, p is limited by
m2 and, thus, it grows slower than σ . In fact, the number of iterations of the BDT algorithm is approximately proportional
to p. In contrast, the IB algorithm efficiently handles instances with large p. Recall that it needs only O(log p) feasibility tests

1 One can use any objective function in this feasibility test. If the objective function is not a constant, it is useful to force the solver to stop after it finds
the first feasible solution. However, our experiments showed that using the original objective function in this feasibility test slows down the algorithms.

A.P. Punnen et al. / Discrete Optimization 12 (2014) 47–60 57

Fig. 1. Analysis of the random instances with different values of parameter s. The lines with circle marks indicate the running time of the algorithms and
the lines with square marks indicate the number of feasibility tests applied within the algorithms.

Fig. 2. Analysis of the random instances with different values of parameter σ . The lines with circle marks indicate the running time of the algorithms and
the lines with square marks indicate the number of feasibility tests applied within the algorithms.

to solve each QBotKP subproblem [38]. Hence, for instances with large p, the IB algorithm appears preferable. Also it follows
from our experiments that the time needed for the feasibility test is almost independent on the value of σ .

Based on these preliminary observations, we set s = 0.1 and σ = 100 for the rest of the experiments to assure that the
test problems generated are reasonably hard.

6.2. Comparison of BDT, IB, DB and MIP

Let us first evaluate performance of the basic algorithms proposed in this paper. In Table 1, we report the results of our
experiments with the BDTB, BDT, IBB, IB, DBB, DB andMIP algorithms. The notations used in various columns of the table are
explained below:
• m is the size of the test instance;
• ‘obj’ is the objective value of the optimal solution to the problem;
• p is the number of distinct cij values in matrix C;
• ∆ = maxi,j cij −mini,j cij;
• ‘Running time (s)’ columns report the running time of each of the algorithms;
• ‘Feasibility tests’ columns report the number of times feasibility tests are carried out within each of the algorithms. Note

that in IB, IBB, DB, and DBB algorithms, we are not explicitly solving feasibility problems. However, feasibility problems of
similar nature are solved within the QBotKP solver that is used within these algorithms. Thus, the number of feasibility
tests include the feasibility tests carried outwithin the QBotKP solver used, which is a variation of the algorithm by Zhang
and Punnen [38].

The last rowof the table reports the average values for corresponding columns. However, itmay be noted that the average
running time cannot be used to judge the algorithm’s performance in general because the running times vary significantly
from instance to instance.

The best result (running time and number of tests) for each instance is underlined.
Feasibility test FT2 provides a better performance than feasibility test FT1 in each case. Indeed, according to Table 1, the

optimality of a solution to the maximum weight independent set problem does not reduce the number of feasibility tests,
while reaching the optimal solution clearly takes more time than finding a feasible solution.

The IB algorithm clearly outperforms all other algorithms for each test instance with regards to both the number of
feasibility tests and the running time. The MIP algorithm turns out to be very slow for any practical instances.

58 A.P. Punnen et al. / Discrete Optimization 12 (2014) 47–60

Table 1
Comparison of basic algorithms.

m obj p ∆ Running time (s) Feasibility tests
BDTB BDT IBB IB DBB DB MIP BDTB BDT IBB IB DBB DB

50 64 453 689 2.7 2.2 0.6 0.5 0.6 0.5 1.7 463 462 94 87 97 95
100 239 568 728 131.5 22.0 56.2 8.0 99.3 12.2 7,018.1 582 581 128 125 235 209
150 204 622 772 476.0 115.8 240.1 37.5 282.7 43.1 13,187.2 642 643 191 188 227 228
200 181 672 778 938.1 217.7 475.3 38.8 756.0 75.1 — 684 684 117 101 207 174
250 206 701 807 3543.5 980.2 3806.5 473.5 8449.6 916.4 — 719 720 182 178 347 348

Avg. 179 603 755 1018.4 267.6 915.7 111.7 1917.6 209.5 — 618 618 142 136 223 211

Table 2
Analysis of efficiency of the early detection speed up.

m obj Ω Running time (s) Early Iterations Feasibility tests
BDT BDTΩ IB IBΩ BDTΩ IBΩ BDT BDTΩ IB IBΩ BDT BDTΩ IB IBΩ

50 64 466 2.2 2.2 0.5 0.4 ✓ ✓ 462 432 10 9 462 440 87 86
100 239 295 22.0 19.2 8.0 8.2 ✓ ✓ 581 467 14 13 581 476 125 124
150 204 346 115.8 55.3 37.5 34.5 ✓ ✓ 643 477 21 20 643 485 188 186
200 181 362 217.7 120.1 38.8 37.1 ✓ ✓ 684 497 12 11 684 505 101 99
250 206 348 980.2 804.9 473.5 503.0 ✓ ✓ 720 554 20 19 720 563 178 177

Avg. 179 363 267.6 200.3 111.7 116.6 618 485 15 14 618 494 136 134

6.3. Early detection of optimality

In this section we report the results of our experiments that assess the effectiveness of Theorem 1 for algorithms BDT
and IB. In Table 2, we compare the results of the corresponding experiments. The ‘Ω ’ column reports the objective value of
the optimal solution to the QBP2 version of the bottleneck knapsack problem (QBotKP2):

Maximize min{cij : (i, j) ∈ E × E, xi = xj = 1} −min{cij : (i, j) ∈ E × E, xi = xj = 1}

Subject to
m
j=1

ajxj ≥ b (9)

xj ∈ {0, 1}, for j = 1, 2, . . . ,m. (10)

This is used as the value of the parameter Ω in BDTΩ and IBΩ algorithms. The ‘Early’ columns report if early detection of
optimality happened for the particular algorithm and test instance. ‘Iterations’ columns report the number of iterations of
the algorithms.

In our experiments, early optimality detection happened for every test instance and every algorithm, where such an
option was enabled. For the BDT algorithm, early detection significantly reduced the number of iterations and improved
the overall performance. However, it reduces the number of iterations of the IB algorithm only by one in each run. Since
calculating of Ω is approximately equivalent to one iteration of the IB algorithm, the overall running time of the procedure
almost did not change after enabling early detection.

Another interesting observation thatwe canmake from Table 2 is that the number of iterations of the IB algorithm almost
does not depend on the size of the problem. Since each such iteration needs O(log p) = O(logm) feasibility tests, the real
running time of the IB algorithm per iteration is expected to be much higher than that of the BDT algorithm given large
instances.

Recall that the value ofΩ does not need to correspond to an optimal solution of the QBotKP2 but may be an upper bound
to the optimal objective function value of QBotKP2. Observe that the algorithmused in our experiments to solve theQBotKP2
maintains a search interval which depends on the values of two indices ℓ, u where ℓ ≤ u. When u − ℓ < 1 the algorithm
terminates and guarantees an exact optimal solution [38]. This termination condition can be relaxed to u− ℓ < d to obtain
a heuristic bound. In our implementation, we used the termination condition with u − l < d, where 1 ≤ d ≤ p. Then the
resulting upper bound Ω(d) can be calculated as Ω(d) = wu−1.

The results of our experiments with the approximate value of Ω are reported in Fig. 3. When the value of d is relatively
small, the upper bound Ω(d) is very close to the exact value of Ω . For d > 40, the upper bound becomes less accurate and
the early detection happens in neither DTAΩ(d) nor IBΩ(d) algorithm. Thus, the effect of using an upper bound Ω(d) instead
of the optimal objective value Ω is relatively small.

A.P. Punnen et al. / Discrete Optimization 12 (2014) 47–60 59

Fig. 3. Analysis of the early optimality detection for different values of d. Observe that BDTΩ(1)
= BDTΩ , and for d = pwe replace BDTΩ(p) and IBΩ(p) with

the BDT and IB algorithms, respectively. The relative running time is calculated as td/t1 , where td is the running time of the BDTΩ(d) or IBΩ(d) algorithm and
t1 is the running time of the BDT or IB algorithm, respectively. The experiments were conducted for a random instance of sizem = 150.

Fig. 4. Performance of the BDTt , IBt and DBt heuristics. The experiment is conducted for a random instance of size m = 500. The values of t , in seconds,
are reported near each node.

6.4. Comparison of heuristics

Recall that, by setting a time limitation to CPLEX when running a feasibility test, one can speed up the BDT, IB and DB
algorithms at the cost of losing optimality guarantee. In Fig. 4, we show how the solution quality depends on the running
time for each of the BDTt , IBt and DBt algorithms.

In our experiments, the running time and the solution quality of each of the heuristics monotonically depend on the
parameter t . Thus, the balance between the solution quality and the running time in the proposedheuristics can be efficiently
controlled by t . Note that the IBt algorithm, likewise its exact version, shows the best performance among the proposed
heuristics.

We also compared the BDTt , IBt and DBt heuristics with the MIP algorithm given a time limitation (in this case, we set
the ‘MIP Emphasis’ parameter of CPLEX to ‘Emphasize feasibility over optimality’). However, in our experiments, such aMIP
heuristic showed very poor performance.

7. Multinomial balanced optimization

We now discuss a generalization of the quadratic balanced optimization. For any fixed integer k, a cost ci1 i2...ik for k-tuple
(i1, i2, . . . , ik) is prescribed. Consider the familyF of feasible solutions as in the case of QBOP. Then themultinomial balanced
optimization problem (MBOP)is to find an S ∈ F such that

max{ci1 i2...ik : (i1, i2, . . . , ik) ∈ Sk} −min{ci1 i2...ik : (i1, i2, . . . , ik) ∈ Sk}

is minimized, where Sk = S × S × · · · × S  
k-times

.

In QBOP, cij is viewed as pairwise interaction cost while in MBOP we have ‘interaction cost’ for k-tuples (i.e. cost for k
element ordered subsets of the ground set E.) The algorithms discussed in this paper extend in a natural way to the case of
MBOP with an appropriate definition of the corresponding feasibility problem. We leave it for an interested reader to verify
this claim. The number of distinct cost elements to be considered is mk as opposed to m2 for the case of QBOP. Thus, as k
increases the resulting algorithm could slow down significantly.

8. Conclusion

We introduced the combinatorial optimizationmodel QBOPwhich can be used tomodel equitable distribution problems
with pairwise interactions. The problem is strongly NP-hard even if the family of feasible solutions has a simple structure

60 A.P. Punnen et al. / Discrete Optimization 12 (2014) 47–60

such as the collection of all subsets of a finite set with an upper bound on the cardinality of these subsets. Several exact and
heuristic algorithms are provided along with detailed experimental analysis in the case of quadratic knapsack problems.
Special cases of the problem with decomposable type cost matrices are discussed. It is shown that the complexity of the
resulting QBOP depends on that of the corresponding LBOP.

It is not difficult to extend our results to the maximization version of the problem. By exploiting special structure of the
family of feasible solutions F and the structure of C , one may be able to obtain improved algorithms. These are interesting
topics for further investigations, especially when real life situations warrant the study of such problems.

Acknowledgments

We are thankful to the referees for their helpful comments which improved the presentation of the paper.

References

[1] S. Martello, W. Pulleyblank, P. Toth, D. de Werra, Balanced optimization problems, Oper. Res. Lett. 3 (1984) 275–278.
[2] Y. Dai, H. Imai, K. Iwano, N. Katoh, K. Ohtsuka, N. Toshimura, A new unifying heuristic algorithm for the undirected minimum cut problem using

minimum range cut algorithms, Discrete Appl. Math. 65 (1996) 167–190.
[3] D. Eppstein, Minimum range balanced cuts via dynamic subset sums, J. Algorithms 23 (1997) 375–385.
[4] Z. Galil, B. Schieber, On finding most uniform spanning trees, Discrete Appl. Math. 20 (1988) 173–175.
[5] P. Hansen, G. Storchi, T. Vovor, Paths with minimum range and ratio of arc lengths, Discrete Appl. Math. 78 (1997) 89–102.
[6] N. Katoh, K. Iwano, Efficient algorithms for minimum range cut problems, Networks 24 (1994) 395–407.
[7] T. Nemoto, An efficient algorithm for the minimum range ideal problem, J. Oper. Res. Soc. Japan 42 (1999) 88–97.
[8] P.M. Camerini, F. Maffioli, S. Martello, P. Toth, Most and least uniform spanning trees, Discrete Appl. Math. 15 (1986) 181–197.
[9] P. Cappanera, M.G. Scutellà, Balanced paths in acyclic networks: tractable cases and related approaches, Networks 45 (2005) 104–111.

[10] L. Wu, An efficient algorithm for the most balanced spanning tree problems, Adv. Sci. Lett. 11 (2012) 776–778.
[11] Z. Zeitlin, Minimization of maximum absolute deviation in integers, Discrete Appl. Math. 3 (1981) 203–220.
[12] S. Gupta, T. Sen, Minimizing the range of lateness on a single machine, J. Oper. Res. Soc. 35 (1984) 853–857.
[13] C.-J. Liao, R.-H. Huang, An algorithm for minimizing the range of lateness on a single machine, J. Oper. Res. Soc. 42 (1991) 183–186.
[14] M. Tegze, M. Vlach, Improved bounds for the range of lateness on a single machine, J. Oper. Res. Soc. 39 (1988) 675–680.
[15] M. Tegze, M. Vlach, Minimizing maximum absolute lateness and range of lateness under generalized due dates, Ann. Oper. Res. 86 (1999) 507–526.
[16] M. Tegze, M. Vlach, Minimizing the range of lateness on a single machine under generalized due dates, INFOR 35 (1997) 286–296.
[17] R.K. Ahuja, The balanced linear programming problem, European J. Oper. Res. 101 (1997) 29–38.
[18] M.G. Scutellà, A strongly polynomial algorithm for uniform balanced network flow problem, Discrete Appl. Math. 81 (1998) 123–131.
[19] Z. Liang, S. Guo, Y. Li, A. Lim, Balancing workload in project assignment, in: Advances in Artificial Intelligence, Springer, 2009, pp. 91–100. LNCS 5866.
[20] Š. Berežný, V. Lacko, Balanced problems on graphs with categorization of edges, Discuss. Math. Graph Theory 23 (2003) 5–21.
[21] Š. Berežný, V. Lacko, Color-balanced spanning tree problems, Kybernetika 41 (2005) 539–546.
[22] A. Grinèová, D. Kravecová, M. Kuláè, Alternative approach to data network optimization, Acta Electrotech. Inform. 6 (2006) 1–5.
[23] A.P. Punnen, K.P.K. Nair, Constrained balanced optimization problems, Comput. Math. Appl. 37 (1999) 157–163.
[24] A.P. Punnen, Y.P. Aneja, Lexicographic balanced optimization problems, Oper. Res. Lett. 32 (2004) 27–30.
[25] L. Turner, A.P. Punnen, Y.P Aneja, H.W. Hamacher, On generalized balanced optimization problems, Math. Methods Oper. Res. 73 (2011) 19–27.
[26] N. Katoh, An ϵ-approximation scheme for combinatorial optimization problems with minimum variance criterion, Discrete Appl. Math. 35 (1992)

131–141.
[27] A.P. Punnen, Y.P. Aneja, Minimum dispersion problems, Discrete Appl. Math. 75 (1997) 93–102.
[28] R.E. Burkard, Quadratische Bottleneckprobleme, Oper. Res. Verfahren 18 (1974) 26–41.
[29] A.P. Punnen, R. Zhang, Quadratic bottleneck problems, Nav. Res. Logist. 58 (2011) 153–164.
[30] A. Darmann, U. Pferschy, J. Schauer, G.J. Woeginger, Path, trees and matchings under disjunctive constraints, Discrete Appl. Math. 159 (2011)

1726–1735.
[31] R. Zhang, S.N. Kabadi, A.P. Punnen, Theminimum spanning tree problemwith conflict constraints and its variations, Discrete Optim. 8 (2011) 191–205.
[32] R.K Ahuja, Minimum cost to reliability ratio problem, Comput. Oper. Res. 15 (1988) 83–89.
[33] E.Q.V. Martins, An algorithm to determine a path with minimal cost/capacity ratio, Discrete Appl. Math. 8 (1984) 189–194.
[34] J. LaRusic, A.P. Punnen, The balanced travelling salesman problem, Comput. Oper. Res. 38 (2011) 868–875.
[35] A.P. Punnen, On combined minmax–minsum optimization, Comput. Oper. Res. 21 (1994) 707–716.
[36] C.W. Duin, A. Volgenant, Minimum deviation and balanced optimization: a unified approach, Oper. Res. Lett. 10 (1991) 43–48.
[37] J. Edmonds, D.R. Fulkerson, Bottleneck extrema, J. Combin. Theory 8 (1970) 299–306.
[38] R. Zhang, A.P. Punnen, Quadratic bottleneck knapsack problems, J. Heuristics 19 (2013) 573–589.
[39] A. Brandstäd, V. Giakoumakis, Maximum weight independent sets in hole- and co-chair-free graphs, Inform. Process. Lett. 112 (2012) 67–71.
[40] A. Brandstäd, V.V. Lozin, R. Mosca, Independent sets of maximum weight in apple-free graphs, SIAM J. Discrete Math. 24 (2010) 239–254.

http://refhub.elsevier.com/S1572-5286(14)00002-4/sbref1
http://refhub.elsevier.com/S1572-5286(14)00002-4/sbref2
http://refhub.elsevier.com/S1572-5286(14)00002-4/sbref3
http://refhub.elsevier.com/S1572-5286(14)00002-4/sbref4
http://refhub.elsevier.com/S1572-5286(14)00002-4/sbref5
http://refhub.elsevier.com/S1572-5286(14)00002-4/sbref6
http://refhub.elsevier.com/S1572-5286(14)00002-4/sbref7
http://refhub.elsevier.com/S1572-5286(14)00002-4/sbref8
http://refhub.elsevier.com/S1572-5286(14)00002-4/sbref9
http://refhub.elsevier.com/S1572-5286(14)00002-4/sbref10
http://refhub.elsevier.com/S1572-5286(14)00002-4/sbref11
http://refhub.elsevier.com/S1572-5286(14)00002-4/sbref12
http://refhub.elsevier.com/S1572-5286(14)00002-4/sbref13
http://refhub.elsevier.com/S1572-5286(14)00002-4/sbref14
http://refhub.elsevier.com/S1572-5286(14)00002-4/sbref15
http://refhub.elsevier.com/S1572-5286(14)00002-4/sbref16
http://refhub.elsevier.com/S1572-5286(14)00002-4/sbref17
http://refhub.elsevier.com/S1572-5286(14)00002-4/sbref18
http://refhub.elsevier.com/S1572-5286(14)00002-4/sbref19
http://refhub.elsevier.com/S1572-5286(14)00002-4/sbref20
http://refhub.elsevier.com/S1572-5286(14)00002-4/sbref21
http://refhub.elsevier.com/S1572-5286(14)00002-4/sbref22
http://refhub.elsevier.com/S1572-5286(14)00002-4/sbref23
http://refhub.elsevier.com/S1572-5286(14)00002-4/sbref24
http://refhub.elsevier.com/S1572-5286(14)00002-4/sbref25
http://refhub.elsevier.com/S1572-5286(14)00002-4/sbref26
http://refhub.elsevier.com/S1572-5286(14)00002-4/sbref27
http://refhub.elsevier.com/S1572-5286(14)00002-4/sbref28
http://refhub.elsevier.com/S1572-5286(14)00002-4/sbref29
http://refhub.elsevier.com/S1572-5286(14)00002-4/sbref30
http://refhub.elsevier.com/S1572-5286(14)00002-4/sbref31
http://refhub.elsevier.com/S1572-5286(14)00002-4/sbref32
http://refhub.elsevier.com/S1572-5286(14)00002-4/sbref33
http://refhub.elsevier.com/S1572-5286(14)00002-4/sbref34
http://refhub.elsevier.com/S1572-5286(14)00002-4/sbref35
http://refhub.elsevier.com/S1572-5286(14)00002-4/sbref36
http://refhub.elsevier.com/S1572-5286(14)00002-4/sbref37
http://refhub.elsevier.com/S1572-5286(14)00002-4/sbref38
http://refhub.elsevier.com/S1572-5286(14)00002-4/sbref39
http://refhub.elsevier.com/S1572-5286(14)00002-4/sbref40

	The quadratic balanced optimization problem
	Introduction
	Complexity and notations
	Exact and heuristic algorithms for QBOP
	The double threshold algorithm
	Iterative bottleneck algorithms
	The double bottleneck algorithm

	Polynomially solvable cases
	The quadratic balanced knapsack problem
	Computational experiments
	Test problems
	Comparison of BDT, IB, DB and MIP
	Early detection of optimality
	Comparison of heuristics

	Multinomial balanced optimization
	Conclusion
	Acknowledgments
	References

