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Highlights

• The paper proposes a Kernel Partial Least Square (KPLS) based Feature Selection
Method aiming for easy computation and improving classification accuracy for high
dimensional data.

• The proposed method makes use of KPLS regression coefficients to identify an optimal
set of features, thus avoiding non-linear optimization.

• Experiments were carried out on seven real life datasets with four different classifiers:
SVM, LDA, Random Forest and Näıve Bayes.

• Experimental results highlight the advantage of the proposed method over several
competing feature selection techniques.
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Abstract

Maximum relevance and minimum redundancy (mRMR) has been well recognised as one

of the best feature selection methods. This paper proposes a Kernel Partial Least Square

(KPLS) based mRMR method, aiming for easy computation and improving classification

accuracy for high-dimensional data. Experiments with this approach have been conducted on

seven real-life datasets of varied dimensionality and number of instances, with performance

measured on four different classifiers: Naive Bayes, Linear Discriminant Analysis, Random

Forest and Support Vector Machine. Experimental results have exhibited the advantage of

the proposed method over several competing feature selection techniques.

Keywords: Feature Selection, Kernel Partial Least Square, Regression Coefficients,

Relevance, Classification.

1. Introduction

In high-dimensional feature space, feature dimensionality reduction through selection of

highly predictive features plays an indispensable role in pattern recognition. The aim of fea-

ture selection is to identify the most informative features that ”optimally characterizes” the

class [1]. In literature, feature selection algorithms are broadly classified into three main cat-

egories: filter, wrapper and embedded. For wrapper methods, the optimal characterization
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condition signifies the maximal classification accuracy or minimal classification error with

respect to a particular classifier, whereas for filter methods they emphasise the dependency

of the features on the target class [1]. Embedded methods differ from filter and wrapper

because of the interaction of feature selection and learning process. In such methods feature

selection and learning can not be separated [2]. Filter methods are fast, since they do not

incorporate learning [2]. One of the most widely used tactics in filter methods is maximal

relevance, i.e., selecting features with highest relevance with the target class [1].

Relevance between features and the target class has been characterized in terms of dif-

ferent statistical measures such as information gain [3], mutual information [1, 4, 5, 6, 7, 8],

correlation [9, 10] and regression coefficients [11, 12, 13, 14]. Population based heuristic

search methods such as particle swarm optimization [15, 16], genetic algorithms [16, 17, 18],

ant colony optimization [19, 20, 21], simulated annealing [22], rough set [23] and fuzzy rough

set [24] have been used. The amalgamation of simulated annealing and genetic algorithm

has also found its application in selecting optimal feature subset [25]. Gargari et al. [26]

proposed an optimal feature selection method using Branch and Bound. Selection of opti-

mal features has also been attained using Support Vector Machines (SVM) [27, 28, 29] and

recursive feature elimination method [30]. Besides, unsupervised methods have also been

used [8, 31, 32, 33].

Regression coefficients have attained quite popularity in identifying the relevance between

the features and the class [34]. Regression coefficients reflect the rate of change of one variable

with respect to other thus reflecting the relevance between the two. Partial Least Square

(PLS) has widely been used in this context [11, 12, 13, 14]. The advantage of PLS over

other regression methods like least square is that it maps the predictor and the response

variable onto some uncorrelated components called latent vectors and then applies regression

onto these components. Hence it is suitable for high-dimensional data. The commonly used

metrics to identify an optimal set of features based on PLS are Selectivity Ratio (SR)
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[11, 12, 35], Significance of Multivariate Correlation (SMC)[12, 35] and Variable Importance

Projection (VIP) [12, 35]. However, PLS is useful for feature selection in linear systems only.

Rosipal et al [36] proposed a non-linear PLS technique called Kernel Partial Least Square

(KPLS) for dealing with non-linear systems. Besides KPLS, different non-linear variants of

PLS have been proposed. KPLS is found to perform better than PLS as well as its other

non-linear variants [37, 38]. This study employs KPLS to select an optimal set of features.

Its efficacy has been compared with different non-linear methods used for selecting features.

The main advantage of KPLS lies in the fact that it avoids nonlinear optimization by

using kernel functions that correspond to the inner product in the feature space. It is a

fast and effective method for non-linear systems [39]. KPLS maps the data onto latent

vectors and then applies regression onto these components, which makes it suitable for

high-dimensional data as well. Thus the method is applicable for both small and large data.

The aim of this paper is to exploit the advantage of KPLS for feature selection in non-

linear systems through the use of the KPLS regression coefficients to compute the depen-

dency between a feature and its target class. As an alternative to mutual information in

mRMR [1], this paper proposes a KPLS regression coefficients based feature selection method

that identifies an optimal set of features by exploiting maximum feature-class relevance and

minimum feature-feature redundancy in terms of KPLS based relevance scores.

The proposed method will be evaluated in terms of classification accuracy of four classi-

fiers on seven datasets including UCI datasets, gene expression dataset and BCI Competi-

tion dataset of varied dimensionality and number of instances. Four well known classifiers:

Support Vector Machine (SVM) [40], Random Forest [41], Naive Bayes [42] and Linear

Discriminant Analysis (LDA) [43] have been tested. The effectiveness of the method has

been compared with four filter methods: MI-mRMR [1], KPLS based Selectivity Ratio (SR)

[11, 12, 35], Coefficient of Determination (R), Significance Multivariate Correlation (SMC)

[12, 35], two embedded methods: Lasso [44] and Elastic Net [45] and Deep Learning [46] in
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terms of 10-fold cross-validation classification accuracy.

The rest of the paper is organized as follows. The concept of KPLS and the proposed

method are introduced in Section 2. Section 3 presents the experimental results while

Section 4 discusses the findings. Finally, Section 5 concludes the paper.

2. KPLS-mR and KPLS-mRMR for feature subset selection

KPLS method models a non-linear relationship between a set of output data Y and a set

of input data X. It maps the original input variables to some higher-dimensional function

space F and then applies the PLS algorithm onto the transformed data. F can be of high and

even infinite dimension, in which PLS regression is computationally expensive [35]. KPLS

solves this using the kernel trick: the kernel function evaluates an inner product between two

vectors in F : k(xi,xj)=φ(xi)
Tφ(xj), ∀xixj ∈X [35]. Different kernel functions are available

such as sigmoid kernel, polynomial kernel or radial basis (Gaussian) kernel [39]. Among

these kernels, radial basis kernel is most common [39]. Detailed algorithms and equations

for KPLS can be found in [36, 39].

In this paper KPLS regression coefficient is used to determine the relevance of a feature

with its target class. Based on the regression coefficient obtained for a feature and its class

(or between two features), a unique weight is assigned to each feature, which reflects the

relevance of the feature with its class (or with another feature). This is termed as Rel Score

(Definition 1).

Definition 1. Relevance Score (Rel Score) : It is a number based on regression coeffi-

cients of class labels w.r.t. features which tells how much relevant a feature f is w.r.t. its

class c. This gives the feature-class relevance score (Rel Score(f|c)). Similarly, relevance

score computed based on the regression coefficients of a selected feature f1 w.r.t. non-selected

features tells how much relevant a non-selected feature f2 is w.r.t. f1. This gives the feature-

feature relevance score (Rel Score(f2|f1)).
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Maximum relevance (mR) of a feature with its target class is obtained by searching the

features based on the Rel Score. The feature with the highest Rel Score is the most relevant

feature while the feature with the lowest Rel Score is the least relevant.

Based on Rel Score(f|c), where f is a feature and c is its target class, maximum relevance

(mR) can be defined as in Equation 1

mR = max
i

(Rel Score(fi | c)) (1)

It is likely that features selected based on their relevance with the class might have high

redundancy, i.e., the relevance among these features might be large [1]. When two features

are highly relevant with each other, the respective class-discriminative power will not differ

much if one of them is discarded [1]. Hence, redundant features can be removed. This

criterion of selecting least redundant feature is minimum redundancy (MR) [1].

Let F be the set of all features, F’ be the set of selected features. Minimum redundancy

based on Rel Score(fi | fj ) where fj ∈ F’ ; fi ∈ S ; S=F -F’ is defined as in Equation 2

MR = min
i

(Rel Score(fi | fj )) (2)

The criterion that combines Equations (1) and (2) is called “maximal relevance and

minimum redundancy” (mRMR) [1]. The mRMR feature set is identified by optimizing the

conditions in equations (1) and (2) simultaneously. Combining the two equations into a

single criterion function R can be achieved by optimization of both conditions as follows:

R = max(mR− (γ ×MR)) (3)

A weight γ has been assigned to MR in the optimizing criteria R. The idea is to check
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how R performs for different values of γ which is checked in two different ranges [0.1,1] and

[1,10]. The first range starts with γ=0.1, since with γ=0, R would behave similarly to mR

(Equation 1). This range of γ values provides more weightage to mR . It ends with γ=1

providing equal weightage to mR and MR. The second range starts with γ=1 and ends with

γ=10. This range provides more weightage to MR.

In practice, suppose we have a set F with n features and a set of selected features F’

with m-1 features. The task is to select the mth feature from the set S=F-F’. In that case,

redundancy of each feature fi ∈ S christened as Rfi is evaluated as in Equation 4.

Rfi =
1

m− 1

∑

fj∈F ′

[Rel Score(fi|fj)] (4)

The search method then selects the mth feature from S by optimizing the following

condition in which R is rewritten as follows:

R = max
fi∈S

[mR− γ ×Rfi ] (5)

Fig. 1 portrays the relevance analysis of the features. The leftmost graph shows the

feature-class relevance analysis, i.e., Rel Score(f|c), the middle graph shows the feature-

feature redundancy analysis (Equation 4) and the rightmost graph illustrates Equation 5.

In order to find out whether using R described in Equation 5 is more effective than using

mR described in Equation 1 for the proposed KPLS-based feature selection, two algorithms

named KPLS-mR and KPLS-mRMR are investigated by experiments in this paper. They

are described by Algorithm 1 and Algorithm 2, respectively.

Both KPLS-mR and KPLS-mRMR depend on two major modules, namely KPLS and

Compute RS.

1. KPLS(a,b): For any two matrix ’a’ and ’b’, this module computes the regression
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Figure 1: Illustration of relevance as well as redundancy analysis of features. The circled point in the
leftmost graph is the most relevant feature as selected by mR (Equation 1) while the circled point in the
rightmost graph is the maximum relevant and minimum redundant feature selected by R (Equation 5). The
black horizontal bar in the rightmost graph acts as the threhold so as to select the feature with maximum
value of R.

Algorithm 1: KPLS-mR

Input: F=set of n features and N samples, Y=set of class labels
Output: F’=an optimal subset of k features

R=KPLS(F,Y);
Rel Score(f |c) = Compute RS(F,R);
[weight,FeatureRank]=descend(Rel Score(f |c));//Rel Score(f |c) in descending order
foreach i ≤ k do

F’(i)=FeatureRank(i);
i++;

end
//FeatureRank comprises of the features with most relevant in the first position and
least relevant in the last.
function Compute RS(F,R)
w =F−1R;
w=w2;
Rd=sum(R);
dor=Rdw;
Rel Score =sqrt(dor/Rd);
returnRel Score
end function
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Algorithm 2: KPLS-mRMR

Input: F=set of n features and N samples, Y=set of class labels, γ,count=1
Output: F’=an optimal subset of k features

R=KPLS(F,Y);
Rel Score(f |c) = Compute RS(F,R);
[weight,FeatureRank]=descend(Rel Score(f |c));//Rel Score in descending order
F’(1)=FeatureRank(1);// Select feature with max. feature-class Rel Score
F=F-F’(1);
while count ≤ (k-1) do

ffR=0;
foreach feature fj ∈ F’ do

R=KPLS(F,fj);
Rel Score(f |fj) = Compute RS(F,R);
ffR=ffR + Rel Score(f |fj);

end
Rf=average ffR;
foreach feature fi ∈ F do

R = Rel Score(fi|c)− (γ × Rfi) for fi ;
end
[weight,FeatureRank]=descend(R);
F’=F’ ∪ FeatureRank(1);
f1=FeatureRank(1);
F=F-f1;
count=count + 1;

end
function Compute RS(F,R)
w =(F−1R)2;
Rd=sum(R);
dor=Rdw;
return(sqrt(dor/Rd));
end function
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coefficients between them using KPLS algorithm. KPLS first makes use of kernels

that map ’a’ to some high-dimensional function space. It then computes uncorrelated

latent vectors (components) on the transformed data using SIMPLS algorithm [47]. A

least square regression is then performed on the subset of the extracted latent vectors.

The size of the subset of latent vectors is set by 10-fold cross-validation. The module

computes regression coefficients between features and class as well as between two

features.

2. Compute RS(a,b): For a given feature set ’a’ and regression coefficients ’b’, Compute RS

returns the Rel Score between a feature and its class or a feature with another feature.

3. Experimental Results

Experiments were carried out on a workstation with 12 GB RAM, Intel(G) Xeon pro-

cessor and 64 bit windows 7 operating system. The proposed methods were implemented

using MATLAB R2015a.

For our experiments, seven different real-life datasets of varied dimensionality and num-

ber of instances have been used. The detailed descriptions of the datasets are in Table 1.

Note that the Musk data from UCI-ML repository has been discretized for experimental

purpose using equal width binning method.

The proposed algorithms KPLS-mR and KPLS-mRMR have been evaluated in terms

of 10-fold cross-validation classification accuracy with four well-known classifiers: SVM,

Random Forest, LDA and Naive Bayes. The proposed methods were compared with four

existing filter based feature selection algorithms: MI-mRMR, SR, R and SMC, two embedded

feature selection methods: Lasso and Elastic Net and Deep Learning.

Our approach to select an optimal set of features consists of two key steps:

1. KPLS model selection: The samples of the datasets were split into equal sized training

and testing partitions to compute the KPLS scores. The number of KPLS components
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Figure 2: KPLS Scores for optimal number of KPLS components depicting perfect separation of the classes

were checked in the range of 1 to 6. The optimal number of KPLS components was

determined on the KPLS scores by 10-fold cross-validation classification accuracy for

radial basis kernel. KPLS takes as input two matrices X and Y. The Y matrix is a

vector of class labels. The X is a n×m matrix with n being the number of samples

and m being the number of features. KPLS regression coefficients are computed on

training data. KPLS scores are then estimated in testing by projecting the testing

data on the KPLS regression coefficients found in training. The optimal number of

KPLS components was then determined on the KPLS scores by 10-fold cross-validation

classification accuracy for radial basis kernel. Fig. 2 portrays the KPLS scores of

different classes for three datasets: BCI Competition II Dataset 4, Ionosphere and

Sonar datasets. All the three datasets consist of two classes. The figure shows that

KPLS scores for the optimal number of KPLS components are distinctively different

for the two classes depicting that it perfectly separates two classes.

2. Use of the selected model for feature selection: The KPLS model selected as described

above was then applied to select the optimal set of features for each dataset. The

method involves four basic steps. 1) computation of KPLS regression coefficients

using SIMPLS algorithm, 2) computation of Rel Score(f|c) and Rel Score(f2|f1) based

on regression coefficients for each feature, 3) computation of R and 4) selection of

11
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features based on R. For the KPLS-mRMR method, the optimal γ value was obtained

by searching it in two different ranges : [0,1] where γ increases by 0.1 and [1,10]

where γ increases by 1. The optimal γ value was then set by 10-fold cross-validation

classification accuracy. The optimal gamma value obtained for different datasets with

different classifiers are shown in Table 2. The R computed based on the optimal

gamma value is taken as the final measure for identifying the set of optimal features.

Fig. 3 portrays each step of selecting a feature from the set of non-selected features

based on R. The figure shows the selection of the best four features of the BCI

Competition II Dataset 4. The first feature with maximum Rel Score(f|c) is feature 5,

hence feature 5 is selected first and is removed from the set of non-selected features.

Next, feature 6 has the highest R and hence is selected. The process is repeated till

the desired number of features are selected. Note that both SR and R give the same

set of optimal features for each dataset. Hence, while comparing the performances of

different feature selection methods, SR and R have not been interpreted separately.

Figure 3: Selection of features using KPLS-mRMR

We implemented filter methods: KPLS based SR, R and SMC in Matlab, while for
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Table 1: Dataset Description

Types Dataset Raw Data Experimental Data No. of features No. of samples

UCI

Ionosphere Continuous Continuous 34 351
Sonar Continuous Continuous 60 208

Hill Valley Continuous Continuous 100 606
Musk Continuous Discrete 166 275

Madelon Continuous Continuous 500 2000

EEG BCI Comp. II Dataset 4 Continuous Continuous 12 316

Gene Leukemia Discrete Discrete 7070 72

Table 2: Optimal gamma values obtained for different datasets with different classifiers

Dataset LDA Naive Bayes Random Forest SVM

Ionosphere 0.53 0.53 0.1 0.1
Sonar 7 5 10 10

Hill valley 0.2 0.1 0.2 0.2
Madelon 0.1 0.1 0.1 0.1

Musk 0.1 0.1 0.1 0.2
BCI Comp. IV Dataset 2 0.4 0.4 0.1 0.1

Leukemia 0.53 0.2 0.2 0.53

MI-mRMR we have referred Peng’s implementation 1. For the implementation of the two

embedded methods: Lasso and elastic net, we have referred Karl’s webpage 2 while for the

implementation of Deep Learning, we have used simple convolutional neural network 3.

3.1. Comparison with other filter methods

The cardinality of the selected feature subset for the filter methods for different datasets

varies according to the dimension of the datasets. BCI Competition II Dataset 4 consists of

12 features and the maximum number of selected features was set to 4. Maximum number

of selected features for Hill Valley consisting of 100 features was set to 20 whereas for Sonar

dataset consisting of 60 features was set to 15. For all other datasets, the maximum number

of selected features was set to 10. To compare the results, one way ANOVA followed by

Scheffe’s posthoc test [48] was conducted. The results are shown in tables. Each table

1http://penglab.janelia.org/proj/mRMR/
2http://www.imm.dtu.dk/projects/spasm/
3https://in.mathworks.com/matlabcentral/fileexchange/59223-convolution-neural-network-simple-code-

simple-to-use
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shows the comparison of KPLS-mR with MI-mRMR, SR and R and SMC followed by the

comparison of KPLS-mRMR with the four aforesaid methods. The comparison is made

based on p-values. A p-value less than 0.05 is considered to indicate significantly better

performance by KPLS-mR or KPLS-mRMR than the above four methods (indicated by

X) while a p-value greater than 0.05 is considered to be insignificant or worse performance

(indicated by ×). Furthermore, the size of the optimal feature set identified by different

methods using different classifiers are also tabulated. In all such tables classifiers are listed

in the first column, feature selection methods, size of the optimal set of selected features

and 10-fold cross-validation accuracy with the selected feature subset are given in the 2nd,

3rd and 4th column respectively.

3.1.1. Performance Comparison on Ionosphere Dataset

Ionosphere dataset consists of 34 features. The performance of different methods with

different classifiers are shown in Fig. 4(a)-(d). The results of one way ANOVA followed by

Scheffe’s posthoc test are in Table 3.

Table 3: Statistical Test on Ionosphere Dataset

Method 1 Method 2 LDA Naive Bayes Random Forest SVM

KPLS-mR
MI-mRMR 1.55e−5 X 0.0028X 0.32828× 0.000215X

SMC 5.12e−19 X 7.48e−24 X 3.38e−6 X 4.28e−21 X
SR and R 9.97e−11 X 1.59e−21 X 0.0002 X 2.3e−15 X

KPLS-mRMR
MI-mRMR 1.43e−6 X 0.008X 0.4536× 0.000156X

SMC 9.37e−20 X 4.81e−23 X 7.52e−6 X 3.44e−21 X
SR and R 1.04e−11 X 1.04e−20 X 0.00043 X 1.75e−15 X

KPLS-mR and KPLS-mRMR achieved significantly better classification performance

than all the other methods with LDA, Naive Bayes and SVM classifiers. The size of the

optimal set of features selected by each feature selection method and the corresponding

cross-validation accuracy of each classifier are shown in Table 4.

14
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Figure 4: Accuracy of different classifiers with selected features from Ionosphere dataset

3.1.2. Performance Comparison on Sonar Dataset

Sonar dataset consists of 60 features. The performance of different methods with dif-

ferent classifiers are shown in Fig. 5(a)-(d). Table 5 shows the results of one way ANOVA

followed by Scheffe’s posthoc test. The results show that KPLS-mRMR performed better

than KPLS-mR. KPLS-mRMR achieved best performance with Random Forest. Classifi-

cation accuracy of KPLS-mRMR is significantly better than SMC with all classifiers while

KPLS-mRMR performs better than SR and R with Random forest. The size of the op-

timal set of features selected by different feature selection methods and the corresponding

cross-validation accuracy of each classifiers are shown in Table 6.

3.1.3. Performance Comparison on Hill Valley Dataset

Hill Valley dataset consists of 100 features. The performance of different methods with

different classifiers are shown in Fig. 6(a)-(d).The results of one way ANOVA followed by

15
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Table 4: Performance Comparison on Ionosphere Dataset

Classifier Method used Number of selected features 10-fold cross validation accuracy

LDA

MI-mRMR 10 86.1248
SMC 4 72.3647

SR and R 9 80.057
KPLS-mR 6 88.3191

KPLS-mRMR 6 87.8946

Naive
Bayes

MI-mRMR 9 90.53926
SMC 10 73.7892

SR and R 3 77.208
KPLS-mR 10 91.453

KPLS-mRMR 8 92.0228

Random
Forest

MI-mRMR 9 92.5926
SMC 8 87.7493

SR and R 7 88.8889
KPLS-mR 7 93.4473

KPLS-mRMR 7 93.4473

SVM

MI-mRMR 7 87.4644
SMC 1 74.3591

SR and R 4 80.3419
KPLS-mR 7 88.604

KPLS-mRMR 10 88.89

(a) LDA accuracy (b) Naive Bayes accuracy

(c) SVM accuracy (d) Random forest accuracy

Figure 5: Accuracy of different classifiers with selected features from Sonar dataset
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Table 5: Statistical Test on Sonar Dataset

Method 1 Method 2 LDA Naive Bayes Random Forest SVM

KPLS-mR
MI-mRMR 6.83e−18 × 3.94e−18 × 0.841512× 2.25e−29 ×

SMC 0.001046 X 4.58e−6 X 4.83e−10 X 2.74e−10 X
SR and R 1.01e−10 × 0.0009 × 0.464 × 5.14e−16 ×

KPLS-mRMR
MI-mRMR 1.18e−7 × 7.87e−7 × 0.977 × 1.04e−22 ×

SMC 1.08e−13 X 2.23e−17 X 2.56e−13 X 1.09e−18 X
SR and R 0.097358 × 0.4388 × 0.010 X 1.86e−7 ×

Table 6: Performance Comparison on Sonar Dataset

Classifier Method used No. of selected features 10-fold cross validation accuracy

LDA

MI-mRMR 10 77.4038
SMC 12 67.3077

SR and R 14 75
KPLS-mR 10 71.6346

KPLS-mRMR 15 75.4808

Naive
Bayes

MI-mRMR 3 75.9615
SMC 4 60.53769

SR and R 11 67.788
KPLS-mR 10 67.3077

KPLS-mRMR 4 69.7115

Random
Forest

MI-mRMR 12 78.8462
SMC 12 70.6731

SR and R 15 78.8462
KPLS-mR 15 80.7692

KPLS-mRMR 7 80.7692

SVM

MI-mRMR 15 78.81
SMC 13 60.0962

SR and R 4 74.5192
KPLS-mR 14 67.7885

KPLS-mRMR 8 69.2308
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(c) SVM accuracy (d) Random forest accuracy

Figure 6: Accuracy of different classifiers with selected features from Hill Valley dataset

Table 7: Statistical Test on Hill Valley Dataset

Method 1 Method 2 LDA Naive Bayes Random Forest SVM

KPLS-mR
MI-mRMR 0.000369 X 7.64e−28 X 1.68e−37 × 0.00949 X

SMC 0.801589 × 0.134 × 1.08e−14 X 0.00107 X
SR and R 0.807547 × 0.0428 X 0.99814 × 0.009427 X

KPLS-mRMR
MI-mRMR 1.08e−34 X 7.4e−17 X 0.06157× 0.000215X

SMC 5.5e−24 X 0.079 × 4.14e−26 X 0.0118 X
SR and R 5.19e−24 X 0.0275 × 1.99e−42 X 0.3477 ×

Scheffe’s posthoc test are shown in Table 7. KPLS-mRMR performed best with LDA,

SVM and Random Forest classifier. With Naive Bayes both KPLS-mR and KPLS-mRMR

achieved better performance than MI-mRMR. The number of selected features and the

corresponding cross-validation accuracy for each classifier are shown in Table 8. It can be

seen that KPLS-mRMR achieved the best classification accuracy using the selected feature

set, as compared to others with all the classifiers. KPLS-mR performs worst with Random

Forest
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Table 8: Performance Comparison on Hill Valley Dataset

Classifier Method used Number of selected features 10-fold cross validation accuracy

LDA

MI-mRMR 18 59.401
SMC 12 61.7612

SR and R 19 67.8218
KPLS-mR 17 59.2409

KPLS-mRMR 19 70.462

Naive
Bayes

MI-mRMR 11 50.8251
SMC 2 51.3201

SR and R 2 51.3201
KPLS-mR 2 51.3201

KPLS-mRMR 1 51.1551

Random
Forest

MI-mRMR 18 57.7558
SMC 16 55.6106

SR and R 10 51.3201
KPLS-mR 1 49.0009

KPLS-mRMR 9 58.7459

SVM

MI-mRMR 10 50.3152
SMC 9 49.1749

SR and R 1 49.67
KPLS-mR 6 50.4854

KPLS-mRMR 4 50.33

3.1.4. Performance Comparison on Madelon Dataset

Madelon Dataset is a highly non linear dataset consisting of 500 features. The results

in terms of classification accuracy for different classifiers are shown in Fig. 7(a)-(d). The

results of one way ANOVA followed by Scheffe’s posthoc test are shown in Table 9. The

results show that with LDA both KPLS-mR and KPLS-mRMR performed significantly

better than MI-mRMR and SMC. With Naive Bayes KPLS-mRMR gave insignificantly

improved performance over MI-mRMR, SR and R; while with SVM, KPLS-mRMR gave

significantly better performance than MI-mRMR and SMC. The number of selected features

and the corresponding cross-validation accuracy for each classifier are shown in Table 10.

It is observed that KPLS-mRMR achieved best classification accuracy with LDA and SVM

with the set of selected features than all the other methods.

3.1.5. Performance Comparison on Musk Dataset

Musk Dataset version 2 has 168 features. For the analysis, the last 166 features have

been used. The results in terms of classification accuracy for different classifiers are shown

19



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

(a) LDA accuracy (b) Naive Bayes accuracy

(c) SVM accuracy (d) Random forest accuracy

Figure 7: Accuracy of different classifiers with selected features from Madelon dataset

Table 9: Statistical Test on Madelon Dataset

Method 1 Method 2 LDA Naive Bayes Random Forest SVM

KPLS-mR
MI-mRMR 0.000332 X 1.53e−6 × 0.00149 X 0.093 ×

SMC 9.62e−27 X 3.04e−17 X 8.29e−13 X 2.58e−24 X
SR and R 0.1329× 5.91e−8 × 0.5347 × 0.339 ×

KPLS-mRMR
MI-mRMR 0.00032 X 0.53168× 0.99 × 0.0454 X

SMC 1.76e−27 X 8.75e−26 X 2.77e−6 X 8.76e−26 X
SR and R 0.16117 × 0.965 × 0.064× 0.22 ×
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Table 10: Performance Comparison on Madelon Dataset

Classifier Method used Number of selected features 10-fold cross validation accuracy

LDA

MI-mRMR 4 58.7
SMC 1 50.3

SR and R 4 61.05
KPLS-mR 7 61.55

KPLS-mRMR 7 61.6

Naive
Bayes

MI-mRMR 1 60.6
SMC 1 51.35

SR and R 7 62.1
KPLS-mR 10 59.8

KPLS-mRMR 5 60.75

Random
Forest

MI-mRMR 6 71.6
SMC 4 51.4

SR and R 10 75.15
KPLS-mR 9 88.1

KPLS-mRMR 8 72

SVM

MI-mRMR 4 59.6
SMC 1 50.8

SR and R 4 60.85
KPLS-mR 10 61.1

KPLS-mRMR 2 61.55

Table 11: Statistical Test on Musk Dataset

Method 1 Method 2 LDA Naive Bayes Random Forest SVM

KPLS-mR
MI-mRMR 0.99298 × 0.4924 × 0.686 × 0.5372 ×

SMC 0.978 × 0.9934 × 0.999 × 0.9978 ×
SR and R 1.02e−18 X 1.21e−17 X 0.011 X 2.54e−17 X

KPLS-mRMR
MI-mRMR 0.967× 0.5327 × 0.72 × 0.73 ×

SMC 0.991× 0.982 × 0.99 × 0.97 ×
SR and R 1.44e−18 X 8.96e−18 X 0.009 X 1.33e−18 X

in Fig. 8(a)-(d). One way ANOVA followed by Scheffe’s posthoc test was conducted and

the results in terms of cross-validation accuracy of different classifier are shown in Table 11.

With all the four classifiers, KPLS-mR and KPLS-mRMR performed significantly better

than SR and R methods whilst their performance was similar to MI-mRMR and SMC. The

number of selected features and the corresponding cross-validation classification accuracies

are shown in Table 12. The results show that KPLS-mRMR produced best performance in

terms of classification accuracy with Random Forest using the selected features .
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Figure 8: Accuracy of different classifiers with selected features from Musk dataset

Table 12: Performance Comparison on Musk Dataset

Classifier Method used Number of selected features 10-fold cross validation accuracy

LDA

MI-mRMR 9 99.6364
SMC 7 98.9091

SR and R 8 74.1818
KPLS-mR 5 99.6364

KPLS-mRMR 6 99.6364

Naive
Bayes

MI-mRMR 5 99.6364
SMC 2 98.5445

SR and R 10 78.545
KPLS-mR 2 98.5445

KPLS-mRMR 2 98.5445

Random
Forest

MI-mRMR 8 96.3636
SMC 4 99.6364

SR and R 3 99.6364
KPLS-mR 3 99.6364

KPLS-mRMR 6 99.6569

SVM

MI-mRMR 9 99.6364
SMC 2 98.5455

SR and R 3 74.1818
KPLS-mR 10 99.6364

KPLS-mRMR 7 99.6364

3.1.6. Performance Comparison on BCI Competition II Dataset 4

This dataset consists of only one subject and two classes: left hand and right hand

movement. Common Spatial Pattern (CSP) features are extracted from three frequency
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Figure 9: Accuracy of different classifiers with selected features from BCI Competition II Dataset IV

bands: alpha, theta and beta and thus the feature vector consists of 12 features, 4 features

from each band. The maximum number of selected features was set to 4. The results in

terms of classification accuracy of different classifiers with the selected features are shown

in Fig. 9(a)-(d). One way ANOVA followed by Scheffe’s posthoc test was conducted and

the results are shown in Table 13. The results show that with LDA, SVM and Naive

Bayes classifiers KPLS-mR and KPLS-mRMR performed significantly better than SMC, SR

and R but performed similarly to MI-mRMR. The number of features and corresponding

cross-validation accuracies are shown in Table 14. It conveys that the performance of KPLS-

mRMR is the best with all the classifiers.

3.1.7. Performance Comparison on Leukemia Dataset

This dataset has 7,070 features. The maximum number of selected features was set to 10.

The results in terms of classification accuracy of different classifiers with the selected features

are shown in Fig. 10(a)-(d). Since the number of samples is too small, all the aforesaid
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Table 13: Statistical Test on BCI Competition II Dataset 4

Method 1 Method 2 LDA Naive Bayes Random Forest SVM

KPLS-mR
MI-mRMR 0.939864 × 0.9996517 × 0.996211 × 0.991643 ×

SMC 5.97e−7 X 7.32e−8 X 0.045692X 7.73e−7 X
SR and R 2.04e−6 X 5.74e−7 X 0.281497 × 2.92e−6 X

KPLS-mRMR
MI-mRMR 0.99 × 0.93 × 0.99 × 0.9786 ×

SMC 5.11e−7 X 1.3e−7 X 0.021915 X 5.2e−7 X
SR and R 1.74e−6 X 8.18e−7 X 0.154129 × 1.91e−6 X

Table 14: Performance Comparison on BCI Competition II Dataset 4

Classifier Method used Number of selected features 10-fold cross validation accuracy

LDA

MI-mRMR 4 80.6962
SMC 4 68.6709

SR and R 4 68.038
KPLS-mR 4 81.962

KPLS-mRMR 4 81.962

Naive
Bayes

MI-mRMR 4 79.1139
SMC 4 66.4557

SR and R 4 67.4051
KPLS-mR 4 80.3797

KPLS-mRMR 4 80.3797

Random
Forest

MI-mRMR 4 73.7342
SMC 4 66.7722

SR and R 4 71.2025
KPLS-mR 4 75.6329

KPLS-mRMR 4 78.7975

SVM

MI-mRMR 4 79.672
SMC 4 68.3544

SR and R 4 70.8861
KPLS-mR 4 80.0633

KPLS-mRMR 4 88.0633

methods that used SVM suffered from overfitting. Hence, the effectiveness of KPLS-mR

and KPLS-mRMR has been shown with three classifiers only: Naive Bayes, Random Forest

and LDA.

The statistical test was conducted with ANOVA followed by Scheffe’s posthoc test based

on the results depicted in Fig. 10. The results are shown in Table 15.

The results demonstrate that with these three classifiers, KPLS-mR and KPLS-mRMR

performed significantly better than SMC, SR and R and performed similarly when compared

to MI-mRMR. The number of selected features and the corresponding cross-validation ac-

curacy are shown in Table 16.
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(a) LDA accuracy (b) Naive Bayes accuracy

(c) Random forest accuracy

Figure 10: Accuracy of different classifiers with selected features from Leukemia Dataset

Table 15: Statistical Test on Leukemia Dataset

Method 1 Method 2 LDA Naive Bayes Random Forest

KPLS-mR
MI-mRMR 0.999 × 0.6455 × 0.944 ×

SMC 6.04e0−39 X 2.39e−38 X 7.74e−41 X
SR and R 4.34e−20 X 3.22e−21 X 4.98e−19 X

KPLS-mRMR
MI-mRMR 0.0644 × 0.93× 0.77×

SMC 5.2e−40 X 5.95e−38 X 7.17e−41 X
SR and R 1.2e−22 X 1.63e−22 X 8.3e−19 X
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Table 16: Performance Comparison on Leukemia Dataset

Classifier Method used Number of selected features 10-fold cross validation accuracy

LDA

MI-mRMR 9 98.611
SMC 1 65.22

SR and R 3 86.11
KPLS-mR 8 98.611

KPLS-mRMR 7 99.97

Naive
Bayes

MI-mRMR 6 99.8
SMC 3 68.0556

SR and R 4 86.11
KPLS-mR 5 98.611

KPLS-mRMR 5 98.611

Random
Forest

MI-mRMR 8 99.8
SMC 8 61.11

SR and R 8 87.5
KPLS-mR 2 98.611

KPLS-mRMR 3 98.611

3.1.8. Average Performance Comparison

An average performance comparison has been conducted over all datasets. Table 17

shows the average performance which indicates that KPLS-mRMR performed better than

KPLS-mR on average. One way ANOVA followed by Scheffe’s posthoc test was conducted

to determine statistical significance. Results show that KPLS-mR and KPLS-mRMR per-

formed significantly better than SMC, SR and R with all the four classifiers and their per-

formance is not significantly different from that of MI-mRMR. The statistical significance

of the results are shown Table 18.

3.1.9. Computational time

The computational time in seconds for computing mutual information (MI) for MI-

mRMR feature selection, relevance score for KPLS-mRMR, significance multivariate corre-

lation for SMC and Selectivity Ratio and Coefficient of Determination for SR and R are

shown in Table 19. The computational time for computing dependency measures is consid-

ered here. This is because SMC, SR and R are mR methods, which consider dependency

between features and class, while KPLS-mRMR and MI-mRMR are mRMR methods con-

sidering the dependency of features with other features as well as its class and need an
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Table 17: Overall Average Performance Comparison on all the datasets

Classifier Method used 10-fold cross validation accuracy

LDA

MI-mRMR 73.83297
SMC 65.18

SR and R 68.67
KPLS-mR 73.49842

KPLS-mRMR 77.2701

Naive
Bayes

MI-mRMR 72.66
SMC 62.89

SR and R 65.13
KPLS-mR 71.267

KPLS-mRMR 72.38842

Random
Forest

MI-mRMR 76.16
SMC 64.24369

SR and R 70.883
KPLS-mR 75.25

KPLS-mRMR 76.4176

SVM

MI-mRMR 73.388
SMC 61.81

SR and R 65.78
KPLS-mR 71.23

KPLS-mRMR 71.93

Table 18: Statistical Test on all the Datasets

Method 1 Method 2 LDA Naive Bayes Random Forest SVM

KPLS-mR
MI-mRMR 0.998 × 0.885 × 0.98 × 0.79 ×

SMC 7.68e−11 X 9.62e−8 X 1.6e−11 X 9.7e−8 X
SR and R 0.0015 X 0.000316 X 0.046 X 0.043 X

KPLS-mRMR
MI-mRMR 0.069 × 0.99 × 0.99 × 0.89 ×

SMC 3.81e−21 X 6.95e−10 X 5.92e−14 X 2.64 e−10 X
SR and R 1.23e−10 X 7.48e−6 X 0.0039 X 0.000633 X

additional step of computing redundancy as well. Further, our aim is to portray the easy

computation of Rel Score. KPLS based methods involves computation of the kernel matrix.

In Table 19, datasets are listed in the first column, the 2nd column shows the computational

time of MI, whereas the 3rd to 9th columns show the computational time of KPLS based

dependency measures. The 3rd column shows the computational time of the kernel matrix,

the 4th, 6th and 8th columns show the computational time of different dependency mea-

sures, and the 5th, 7th and 9th columns show the total computational time of dependency

measures that includes the computational time of the kernel matrix as well.
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Table 19: Computational time in secs for computing dependency measures of the aforesaid methods

Dataset MI KPLS based dependency measures

Kernel matrix Rel Score SMC SR and R

Rel Score Total time SMC Total time SR and R Total time

Ionosphere 0.0044 0.0754 0.0158 0.0912 0.0189 0.0943 0.0197 0.0951
Sonar 0.0033 0.0372 0.0067 0.0439 0.0096 0.0468 0.0098 0.047
Hill Valley 0.0050 0.2623 0.0811 0.3434 0.1165 0.3788 0.1210 0.38
Madelon 0.0670 18.3614 2.5455 20.9069 4.4023 22.8 4.3456 23.4
Musk 0.0112 0.0793 0.0207 0.100 0.0284 0.1067 0.0268 0.1061
BCI Comp. II Dataset 4 0.0029 0.0627 0.0085 0.0712 0.0144 0.0774 0.0144 0.072
Leukemia 0.1381 0.161 0.0811 0.2421 18.8944 18.9341 18.90 18.9478

It can be seen from Table 19 that the computation of Rel Score is comparatively faster

than that of SMC, SR and R methods as it involves simple algebra while SMC, SR and

R require additional steps of computing target projection matrix, explained variance and

residual variance. SMC, SR and R took the longest time on Leukemia dataset which consists

of 7070 features. However, the computational time of Rel Score was longer than that of

mutual information. This is because the computational load for building the kernel matrix

(gaussian or polynomial) increases with the square of the number of training samples [49].

Hence, in case of datasets with numerous training samples the building of kernel matrix

requires much time. It is evident from experimental results as shown in Table 19. The

computational time for Madelon was long as it consists of 2000 training samples. Hence, the

selection of an appropriate kernel plays a vital role. However, if we ignore the computational

time of building the kernel matrix, the KPLS method performed best in case of Leukemia

dataset, which shows that KPLS performs best when no. of samples << no. of features,

i.e., when the dataset is of high dimension.

3.2. Comparison with embedded methods

Lasso and Elastic Net are regression methods that identify an optimal set of features

as a part of model construction process. The size of the optimal feature set identified by

Lasso, Elastic Net and KPLS-mRMR using different classifiers are also tabulated. In Ta-
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Table 20: Performance Comparison of Lasso and Elastic Net on all datasets

Dataset Classifier Lasso Elastic Net KPLS-mRMR

No.of selected features Accuracy No.of selected features Accuracy No.of selected features Accuracy

Ionosphere

LDA 25 88.0342 25 88.0342 6 87.8946
Naive Bayes 25 85.755 25 85.755 8 92.0228

Random Forest 25 93.302 25 93.302 7 93.4473
SVM 25 88.0342 25 88.0342 10 88.89

Sonar

LDA 46 80.25 46 80.25 15 75.4808
Naive Bayes 46 68.27 46 68.27 4 69.7115

Random Forest 46 81.2115 46 81.3 7 80.7692
SVM 46 74.5192 46 74.5192 8 69.2308

Hill
Valley

LDA 79 69.31 79 69.31 19 70.462
Naive Bayes 79 50.66 79 50.66 1 51.1551

Random Forest 79 61.38 79 61.38 9 58.7439
SVM 79 48.84 79 48.84 4 50.33

Madelon

LDA 88 63.16 88 63.16 7 61.6
Naive Bayes 88 64.85 88 63.5 5 60.75

Random Forest 88 65.15 88 65.15 8 72
SVM 88 63.9 88 63.9 2 61.55

Musk

LDA 64 99.6364 64 99.6364 6 99.6364
Naive Bayes 64 98.18 64 98.18 2 98.5445

Random Forest 64 99.6364 64 99.6364 6 99.6469
SVM 64 99.6364 64 99.6364 7 99.6364

BCI Com-
petition II
Dataset IV

LDA 11 82.27 11 82.27 4 81.962
Naive Bayes 11 81.32 11 81.32 4 80.3797

Random Forest 11 80.6962 11 80.6962 4 78.7975
SVM 11 81.012 11 81.012 4 88.06334

Leukemia

LDA 72 99.91 161 99.91 7 99.97
Naive Bayes 72 99.91 161 99.91 5 99.97

Random Forest 72 99.91 161 99.91 3 98.611

ble 20 datasets are listed in the first column, classifiers, Lasso, Elastic Net and KPLS-mRMR

methods with size of optimal feature subset and 10-fold cross-validation classification perfor-

mance are given in the 2nd, 3rd, 4th, 5th columns respectively. However, the cardinality of

the selected feature subset for different datasets in case of KPLS-mRMR is set as mentioned

in Subsection 3.1. The experimental results convey that KPLS-mRMR achieved similar per-

formance as compared to Lasso and Elastic Net but selected much fewer features, as shown

Table 20.

3.2.1. Computational time

Computational time in secs for constructing and learning the model and finding the best

model by Lasso and Elastic Net are shown in Table 21. The results portray that Elastic

Net performed the worst in case of Leukemia and Madelon datasets. It can be seen that

Lasso performed faster than Elastic Net, while the computation of Rel Score is faster than
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Lasso and Elastic Net (see Table 19). However in case of Ionosphere and Madelon datasets,

the computation of Rel Score took more time than that of model construction process by

Lasso.

Table 21: Computational time in secs for constructing the model by Lasso and Elastic Net

Dataset Lasso Elastic net

Ionosphere 0.0882 0.0370
Sonar 0.0647 0.1452

Hill Valley 0.5372 0.6088
Madelon 18.0176 136.2853

Musk 0.3195 2.2803
BCI Comp. II Dataset 4 0.0089 0.0219

Leukemia 2.9199 1870

3.3. Comparison with Convolutional Neural Network

A convolutional neural network (CNN) is a class of deep, feed-forward artificial neural

networks. A CNN comprises an input and an output layer, along with multiple hidden

layers. The hidden layers are typically convolutional layers, pooling layers, fully connected

layers or normalization layers. Since feature selection has been nested inside such deep

neural networks, the performance of a simple CNN on all the aforesaid datasets has been

evaluated in terms of both 10-fold cross-validation accuracy and the computational time.

The learning rate was set to 0.01. The performance was evaluated for 100 iterations, and the

iteration with maximum cross-validation accuracy was considered as the best performance.

The computational time considered here was the total time to train the CNN after the

100 iterations. The results are shown in the Table 22 where datasets are listed in the first

column, performance of the CNN in terms of 10-fold cross-validation classification accuracy,

computational time are given in the 2nd and 3rd columns while the performance of KPLS-

mRMR in terms of 10-fold cross-validation classification accuracy and computational time

are given in the 4th, 5th, 6th and 7th columns respectively.

The results portray that the computational time of the CNN is much higher than the

computational time of Rel Score. The classification accuracy of the CNN is lower than

KPLS-mRMR except for that on Ionosphere and Musk datasets where it achieves similar
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Table 22: Performance comparison of CNN on all the datasets

Dataset CNN KPLS-mRMR

Accuracy Time Accuracy (Classifier 4) Time (in secs)

(in mins.) Kernel Matrix Rel Score Total time

Ionosphere 94.29 500 93.4473 (RF) 0.0754 0.0158 0.0912
Sonar 54.33 780 80.7692 (RF) 0.0372 0.0067 0.0439

Hill Valley 50.81 1800 70.462 (LDA) 0.2623 0.0811 0.3434
Madelon 50.05 2400 72 (RF) 18.3614 2.5455 20.9069

Musk 99.64 1500 99.6469 (RF) 0.0793 0.0207 0.1
BCI Comp. II Dataset 4 50.9 400 88.06334 (SVM) 0.0627 0.0085 0.0712

Leukemia 87.5 2600 99.97 (LDA) 0.161 0.0811 0.2421

classification accuracy.

The performance of the CNN shown here is based on simple CNN architecture. Op-

timization of the architecture using different learning rates, different activation functions,

different number of layers or using architectures like DeCAF, AlexNet or LeNet may im-

prove the performance but the method is computationally expensive to train. Further deep

learning needs huge amount of data to train. Although there exists no standard minimum

sample size to train a CNN, more training samples ensure better performance. However, the

performance of the CNN is comparable to KPLS-mRMR in case of Ionosphere and Musk

datasets. On all the aforesaid datasets, a simple CNN took more computational time as

compared to the computation of Rel Score.

4. Discussion

KPLS-mRMR identifies the relevant as well as redundant features in nonlinear datasets

using KPLS regression coefficients. SR and SMC select features based on the ratio of ex-

plained variance to residual variance. Maximal relevance is computed based on the maximum

value of this ratio. R selects features based on the ratio of explained variance to total vari-

ance and thus maximal variance is obtained based on the largest value of this ratio. All the

three aforesaid methods compute the target projection matrix first by projecting the rows of

4The classifier with maximum 10-fold cross-validation accuracy; RF stands for Random Forest

31



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

the original data onto the regression coefficients. Explained variance, residual variance and

total variance are then computed. However, the proposed method avoids the computation

of the target projection matrix and involves only simple linear algebra. Hence, the computa-

tion of Rel Score is faster than that of SMC, SR and R methods. Lee et al. [35] used SR and

SMC to select features based on their relevance with the class whereas our proposed method

KPLS-mRMR considers both feature-class relevance as well as feature-feature redundancy.

Lasso and Elastic Net are embedded methods that perform feature selection as a part of

model construction process. The subset of features that gives the best model are then se-

lected. KPLS-mRMR performs similarly as compared to Lasso and Elastic Net but selects

much fewer features. Unlike Peng et al. [1] who used mutual information to select features,

we have used KPLS regression coefficients to find the relevance between the features and the

class. Similar to their method, our KPLS-mRMR method also selects features with maxi-

mum relevance and minimum redundancy. From the experimental results, we observed that

the proposed KPLS-mR and KPLS-mRMR performed significantly better on Ionosphere,

Hill Valley, Madelon datasets than all the aforesaid methods. The overall performance of

the proposed method has been found significantly better on average in terms of classification

accuracy when compared to SR, R and SMC. KPLS-mRMR could not perform well on Sonar

dataset as compared to both filter and embedded methods. On average KPLS-mRMR does

not perform significantly better than MI-mRMR. Unlike MI-mRMR, KPLS-mRMR avoids

the non-linear optimization by making use of kernels [39].

In recent years, research on feature selection has focused on deep neural networks for

representational learning. It learns feature representations in each of the early layers, with

the layers forming a hierarchy from low level to high level features. This mode of learn-

ing is quite powerful and promising. However, it requires a large amount of data and is

computationally expensive to train [50]. The performance of the CNN on all the aforesaid

datasets supported that training the CNN requires much time. The results also portray

32



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

that the performance of the CNN is comparatively lower than that of KPLS-mRMR except

for that on Ionosphere and Musk dataset. The main reason for this may be due to the

lack of a large amount of training data. The advantage of KPLS is that it maps the whole

data into a subset of uncorrelated latent vectors which are the linear combinations of the

original regressors. Computation of KPLS regression coefficients is carried out on the subset

of the extracted latent vectors. KPLS reduces the dimension of the data first and hence is

suitable for high-dimensional data. Thus the method proposed in this paper is applicable

for both small as well as large data. One of the limitation of the kernel based methods

is that the computational load for building the kernel matrix depends on the number of

training samples [49]. Hence, in case of datasets with lots of training samples the building

of the kernel matrix requires much time. Therefore, the selection of kernels plays a vital

role in reducing the computational time as well as increasing the classification performance.

Another limitation is that the KPLS based methods are sensitive to datasets and thus de-

pend on the choice of the kernels and the number of latent vectors (components). If the

dataset is noisy or the kernels and number of components are inappropriate, the regression

coefficients may not be able to capture the proper relevance between the feature and the

class (or another feature). The kernel or the number of latent vectors depend on the size

of the feature set. The same number of latent vectors may not be suitable for feature sets

of different sizes. Hence, selecting an appropriate KPLS model in each round of selecting

a feature from the set of non-selected features may further improve its performance. In

addition, the KPLS-mRMR criterion is based on the difference between the relevance of a

feature with its class and the redundancy among the features (see Eq. 5). As stated in Peng

et al [1], the unbalance between the relevance and the redundancy term is a limitation of

mRMR methods. It may be possible that a redundant feature with high relevance with its

target class gets selected. Our study uses a weight γ as a manually tuned parameter checked

in two different ranges [0,1] and [1,10] for controlling the redundancy penalization. However,

33



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

the value of γ strongly depends on the given problem and the study does not include any

automatic way to estimate optimal γ.

5. Conclusion

This paper proposes KPLS-mRMR to select strongly relevant and less redundant fea-

tures based on KPLS regression coefficients. The method has been evaluated in terms of

classification accuracy on seven different real life datasets with four different classifiers. The

proposed method performs significantly better than SMC, SR and R and similarly as MI-

mRMR, Lasso and Elastic Net but selects fewer features in general. However, selecting an

appropriate KPLS model plays a vital role in improving the performance of the algorithm.

An incremental feature selection method could be developed in future research, which would

update the KPLS model in each step of selecting a feature from a set of non-selected features.
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