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Abstract

Sponsored Search Auctions (SSAs) arguably represent the problem at the intersection of computer science
and economics with the deepest applications in real life. Within the realm of SSAs, the study of the effects
that showing one ad has on the other ads, a.k.a. externalities in economics, is of utmost importance and has so
far attracted the attention of much research. However, even the basic question of modeling the problem has
so far escaped a definitive answer. The popular cascade model is arguably too idealized to really describe the
phenomenon yet it allows a good comprehension of the problem. Other models, instead, describe the setting
more adequately but are too complex to permit a satisfactory theoretical analysis. In this work, we attempt
to get the best of both approaches: firstly, we define a number of general mathematical formulations for the
problem in the attempt to have a rich description of externalities in SSAs and, secondly, prove a host of results
drawing a nearly complete picture about the computational complexity of the problem. We complement these
approximability results with some considerations about mechanism design in our context.
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1. Introduction

The computation of solutions maximizing the social welfare, i.e., maximizing the total “happiness” of the
advertisers, in sponsored search auctions (SSAs) strongly depends on how such happiness is defined. Clearly,
the more clicks their ads receive, the more content advertisers are. The number of clicks received by an ad
is usually modeled by means of a suitably defined click-through rate (CTR) function. A naive CTR would,
for instance, only consider the quality of the ad itself (e.g., “better” ads receive more clicks). However, one
cannot overlook the importance of externalities in this context: specifically, slot-dependent externalities (i.e.,
ads positioned higher in the list have a higher chance to get a click) and ad-dependent externalities (e.g., the
ad of a strong competitor – e.g., BMW – shown in the first slot can only decrease the number of clicks that
the ad – e.g., of Mercedes – in the second slot gets).

Related Work. Much research focused on modeling externalities in SSAs and providing algorithms for
the resulting optimization problem. On one hand of the scale, there is the simple, yet neat, cascade model
[10, 1]. In the cascade model, users are assumed to scan the ads sequentially from top to bottom and to click on
ad ai shown in slot sm with a probability that is proportional to the product of the intrinsic quality qi of the ad,
the relevance λm of slot sm (slot-dependent externality) and the continuation probability (i.e. the probability
that the user, having looked at an ad, continues to the next ad) of all the ads allocated to slots s1 through sm−1.
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A host of results is proved in this model as the input parameters vary (e.g., λm ∈ {0, 1} rather than λm ∈
[0, 1]). In its more general version, the optimization problem of social welfare maximization is conjectured
to be NP-hard, shown to be in APX (i.e., a 1/4-approximation algorithm is given) and shown to admit a
QPTAS (a quasi-polynomial time approximation scheme) [10]. In addition to its unknown computational
complexity, the cascade model has two main limitations to be considered a satisfactory model of externalities
in SSAs. First, it assumes that users have unlimited “memory” and that, consequently, an ad in slot s1 exerts
externalities on an ad many slots below. This is experimentally disproved in [8] wherein it is observed how
the distance between ads is important. Second, it assumes that the externality of an ad is the same no matter
what ad is exerted on. Nevertheless, while BMW can have a strong externality on Mercedes since both makers
attract the high end of the market, the externality on makers in a different price bracket, e.g., KIA, is arguably
much less strong.

On the other hand of the scale, we can find models that try to address these limitations. In [6] Fotakis et
al. propose a model whereby users have limited memory, i.e., externalities occur only within a window of c
consecutive slots, and consider the possibility that externalities boost CTRs (positive externalities) as well as
reduce CTRs (negative externalities). In particular, the externalities of an ad apply to ads displayed c slots
below (forward externalities) and ads displayed c slots above (backward externalities). Moreover, in order
to model the fact that externalities might have ad-dependent effect, they introduce the concept of contextual
graph, whereby vertices represent ads and edge weights represent the externality between the endpoints.
Their model turned out to be too rich to allow tight and significant algorithmic results (their main complexity
results apply to the arguably less interesting case of forward positive externalities).

Our contribution. The present work can be placed in the middle of this imaginary spectrum of models for
externalities in SSAs. Our main aim is to enrich the literature by means of more general ways to model slot-
and ad-dependent externalities, while giving a (nearly) complete picture of the computational complexity of
the problem. We do not attempt to explicitly model the user’s behavior but bridge the aforementioned models
in order to overcome the respective weaknesses. In detail, we enrich the naive model of SSAs by adding
the concepts of window and contextual externalities, while keeping ad- and slot-dependent externalities fac-
torized as in the cascade model. We also complement much of the known literature by studying a model
wherein the externalities coming from ads and slots cannot be expressed as a product. Our study gives rise to
a number of novel and rich models for which we can provide (often tight) approximability results. Since the
case of selfish advertisers is of particular relevance in this context, we also initiate the study of mechanism
design for the optimization problems introduced and consider the incentive-compatibility of our algorithms,
i.e., whether they can be augmented with payment functions so to work also with selfish advertisers.

As regards externalities, we analyze two families of models: one in which slot- and ad-dependent exter-
nalities cannot be factorized, which we name FNEaa, and another one in which we assume that externalities
can be factorized, which we name FNEsa. Furthermore, we discriminate our models along two other dimen-
sions that are orthogonal to the factorization of externalities. The first dimension has to do with the size c of
the user memory with respect to the number of slots K. Specifically, we consider the case when users have
“limited” memory, i.e., c < K, and “large” memory, i.e. c = K. The second dimension regards the effect
empty slots have on users’ attention. In a sort of whole page optimization fashion [11], we think of those
slots as occupied by a special fictitious ad (e.g., an image) that either raises users’ attention (reset model),
or does nothing (non-reset model). The combination of these orthogonal dimensions give rise to the models
listed in the first row of Table 1, which gives an overview of our results (formal definitions of these models
are given in Section 2).

For FNEsa(c) (i.e. the version in which slot- and ad-dependent externalities cannot be factorized and
externalities occur in a window of size c) we prove that the optimization problem is in P , if c is a constant.
We consider the LP relaxation of the ILP describing the problem and prove that the integrality gap is 1.

For FNEaa(c) (i.e. the variant of the problem with factorized externalities, contextual ad-dependent
externalities and window of c slots) the aforementioned distinction on the effects that empty slots have on
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FNEaa(c) FNEaa(K) FNEsa(c)nr r nr r
LB APX-hard

APX-complete poly-APX-complete APX-complete P ?

UB log(N)
2 min{N,K}

?

SP log(N)
2 min{N,K}

?
1/2 1/K 1/2 1?

Table 1: Summary of our results: LB (UB, resp.) stands for lower (upper, resp.) bound on the approximation of the problem; the row
SP, instead, contains the approximation guarantees we obtain with truthful mechanisms. Results marked by ‘?’ require c = O(1).
APX-completeness of a subclass of FNEaa(c)-nr is also given. (See the model for details on the notation.)

users’ behavior is useful. For FNEaa(c)-nr (i.e. the variant of FNEaa(c) where the special ad cannot be
used, or, equivalently, the user’s attention cannot be reset) we prove that the allocation problem is poly-
APX-complete whenever c = K. Specifically, we give an approximation preserving reduction from the
Longest Path problem and design an approximation algorithm using several different ideas and sources of
approximation; interestingly, its approximation guarantee matches the best known approximation guarantee
for Longest Path. However, we prove that this algorithm cannot be used in any truthful mechanism and
note that a simple single-item second price auction gives a weaker, yet close, truthful approximation. We
complement the results for this model with the identification of tractable instances for which we provide
an exact polynomial-time algorithm. For c < K instead, we are unable to determine the exact hardness
of approximating the problem in general. To the APX-hardness proof, we pair a number of approximation
algorithms that assume constant c. The first, based on color coding [2], returns a non-constant approximation
on any instance of SSA. The second assumes that the contextual graph is complete and returns a solution
which (roughly) guarantees a γcmin fraction of the optimum social welfare, γmin being the minimum edge
weight in the graph. Interestingly, this algorithm shows the APX-completeness of the subclass of instances
having constant γmin (we indeed further provide a hardness result for instances with complete contextual
graphs). We believe the tight result for this subclass of instances to be quite relevant. In fact, complete
contextual graphs are quite likely to happen in real-life: the results returned by a keyword search are highly
related to one another, and, as such, each pair of ads has a non-null externality, however small.

For FNEaa(c)-r (i.e., the variant of FNEaa(c) where the special ad can be used to refresh users’ memory)
the problem becomes easier and turns out to be APX-complete, for any c. We first prove the problem with
c = K to be APX-hard, via a reduction from (a subclass of) ATSP (i.e., asymmetric version of TSP) and then
surprisingly connect instances with c < K to instances with c = K by reducing the case with c = 1 to the
case with c = K and binary externalities (i.e., the weights of the edges of the contextual graph can be either 0
or 1). We also observe how a simple greedy algorithm cleverly uses the special ad to return 1/2-approximate
solutions and leads to a truthful mechanism.

Three final observations on our set of results are needed. Firstly, as common in the literature on SSAs,
the number of slots is an input parameter of the problem, rather than a fixed constant. This is consistent
with common practice of SSA in real life in some scenarios: for instance, the number of ads displayed by
major search engines like Google and Bing is not constant, but rather varies with respect to the keyword
being used. However, in the scenarios where K can be assumed to be constant, the allocation problem in our
models becomes computationally tractable (by, e.g., running the color coding algorithm [2]) and truthfulness
can be achieved by imposing VCG payments. Secondly, more research is needed to complete the picture
concerning truthful SSAs with externalities. The fact that we principally address computational complexity
issues is nevertheless a needed step in this direction. Indeed, recall that in our (single-parameter) setting,
truthfulness reduces to designing a (computationally efficient) monotone algorithm (see below for details).
Therefore, settling the computational complexity serves as a benchmark for the approximation guarantee
of the monotone algorithms we design. Thirdly, our analysis is worst case and then does not rule out the
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possibility that on real-life instances the approximation ratio obtained is smaller: e.g., the best know algorithm
for the cascade model performs better than its theoretical approximation guarantee.

The remainder of this paper is organized as follows. In Section 2 we introduce our models of SSA
with externalities and give some preliminary definitions. In Section 3 we give our results about FNEsa. In
Section 4 we turn our attention to FNEaa(K)-nr, and prove it is Poly-APX-hard. In Section 5 we prove that
FNEaa(K)-r is APX-complete. In Section 6 we prove that FNEaa(c) is APX-hard, irrespective of the reset
model. In Section 7 we focus on the complexity of FNEaa(c)-nr and establish the APX-completeness of
the subclass of instances having constant γmin, whereas in Section 8 we give an approximation algorithm
for FNEaa(c)-nr. Finally, in Section 9 we draw some conclusions and highlight some open problems and
directions for future research [7].

2. Model

In a SSA we haveN ads andK slots. We assume that each ad corresponds to an advertiser; this is w.l.o.g.
from the optimization point of view. We denote each ad by ai with i ∈ N , where N = {1, . . . , N} is the set
of indices of the ads. We introduce a fictitious ad, denoted by a⊥, s.t., when allocated, the slot is left empty.
The K slots are denoted by sm with m ∈ K, K = {1, . . . ,K} being the set of slot indices s.t. s1 is the slot at
the top of the page and sK is at the bottom. We also have a fictitious slot, denoted by s⊥ s.t. an ad allocated
to s⊥ is not displayed in the webpage. Each ad ai is characterized by: (i) the quality qi ∈ [0, 1], i.e., the
probability a user clicks on ad ai when he observes it, irrespectively of other externalities (i.e. when the ad
is displayed on its own) 1; (ii) the valuation vi ∈ R+ advertiser i associates to his ad being clicked by a user.
The fictitious ad a⊥ has q⊥ = v⊥ = 0.

A feasible allocation of ads to slots, denoted as θ, consists of an ordered sequence of ads θ = 〈a1, . . . , aK〉
s.t. the ads are ordered by increasing slot number, i.e., a1 is allocated to the top slot, aK to the bottom one.
Every ad ai can be allocated to at most one slot, whereas a⊥ can be allocated to more than one slot. The set
of all possible feasible allocations is denoted as Θ. With a slight abuse of notation, we let: (i) θ(ai) denote
the index of the slot ad ai is allocated to; and (ii) θ(sm) denote the index of the ad allocated to slot sm. Given
θ ∈ Θ, the click through rate of ad ai, denoted as CTRi(θ), is the probability ad ai is clicked by the user
taking externalities into consideration. The optimal allocation θ∗ is the one maximizing the social welfare,
namely: θ∗ ∈ arg maxθ∈Θ SW (θ), where

SW (θ) =
∑
i∈N

CTRi(θ)vi.

A 1/α-approximate solution θ satisfies SW (θ) ≥ SW (θ∗)/α.
Typically, CTRi(θ) defines how the quality qi of ad ai is “perturbed” by the externalities in terms of

click probability. Accordingly, in general CTRi(θ) = qiΓi(θ), where Γi(θ) is a function encoding the effect
of externalities. For instance, in the cascade model,

Γi(θ) = Λθ(ai)

θ(ai)−1∏
l=1

γθ(sl)

where: (i) Λθ(ai) =
∏θ(ai)
l=1 λl, for λm ∈ [0, 1], is called the factorized prominence of sm and denotes the slot-

dependent externality; and (ii) γi ∀i ∈ N , is called continuation probability and denotes the ad-dependent

1The value of qi can be estimated empirically by individually (hence removing externality effects) showing each ad ai to a population
of users and computing the frequency with which the ad is clicked.
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externality. Our conceptual contribution rests upon novel and richer ways to define Γi(θ), along three main
dimensions.

The first dimension concerns the user memory, a.k.a. window. We let c be the number of ads displayed
above ai in θ, from sθ(ai)−1 to sθ(ai)−c, that affect Γi(θ). The second dimension concerns a generalization of
the externalities. Here we propose two alternative families of externalities, called sa (for slot-ad) and aa (for
ad-ad). The sa-externalities remove the factorization in slot- and ad–dependent externalities: i.e., λm and γi
are substituted by parameters γm,j ∈ [0, 1], m ∈ K and j ∈ N . When the window is c, the CTR is defined
as CTRi(θ) = qiΓi(θ), where

Γi(θ) =

θ(ai)−1∏
m=max{1,θ(ai)−c}

γm,θ(sm).

This definition captures the situation in which an ad can affect the ads displayed below it in a different way
according to the position in which it is displayed. For the aa-externalities, on the other hand, we preserve
the factorization in λm and γi, but redefine these latter parameters as γi,j ∈ [0, 1] where aj is the ad that is
displayed in the slot just below θ(ai). It is convenient to see the γi,j’s as the weights of the contextual graph
G = (N , E) where the direct edges (i, j) weigh γi,j > 0 and represent the way ad ai influences aj . Note that
non-edges of G correspond to the pairs of ads ai, aj s.t. γi,j = 0. Here, with window c,

Γi(θ) = Λθ(ai)

θ(ai)−1∏
l=max{1,θ(ai)−c}

γθ(sl),θ(sl+1)

where Λm is defined as above. This definition captures the situation in which each ad can affect each other
ad in a different way.

The third dimension concerns the definition of γm,⊥ for the sa-externalities and γi,⊥ and γ⊥,i for the
aa-externalities. In the model with reset we have γm,⊥ = 1 for sa and γi,⊥ = γ⊥,i = 1 ∀i ∈ N ∪ {⊥}
for aa. This variant captures the situation in which slots can be distributed in the page in different positions
(a.k.a., slates) and, in order to raise the user’s attention, we can allocate a content, e.g. pictures, that nullifies
the externality between the ad allocated before and after the content. In the model without reset, γm,⊥ = 0
for sa and γi,⊥ = γ⊥,i = 0 ∀i ∈ N ∪ {⊥} for aa, thus capturing the situation in which leaving a slot empty
between two allocated slots does not provide any advantage.

We let FNEx(c)-y be the problem of optimizing the social welfare in our model with Forward Negative
Externalities with window c, x ∈ {sa, aa}-externalities and y ∈ {r, nr} reset (r stands for reset; nr for no
reset). When the value of y is not relevant for our results, we talk about FNEx(c). We are interested in two
particular subclasses of FNEaa(c), namely: (i) subclass FNE+

aa(c)-y, defined upon a complete contextual
graph and such that 0 < γmin = mini,j∈N ,i6=j γi,j and (ii) subclass B–FNEaa(c)-y, where γi,j can take
values in {0, 1}.

Mechanism design. A mechanism M is a pair (A,P ), where A : (R+)N → Θ is an algorithm that
associates to any vector v = (v1, . . . , vN ) of valuations a feasible outcome in Θ (only valuations are private
knowledge). The payment function Pi : (R+)N → R+ maps valuation vectors to monetary charges for
advertiser i. The aim of each advertiser is to maximize his own utility ui(v, vi) = CTRi(A(v))vi − Pi(v).
An advertiser could misreport his true valuation and declare v̂i 6= vi when ui((v̂i,v−i), vi) > ui(v, vi), v−i
being the vector of the valuations of all the agents but i. We are then interested in truthful mechanisms. A
mechanism is truthful if for any i ∈ N , v−i ∈ (R+)N−1, vi, v̂i ∈ R+, ui((v̂i,v−i), vi) ≤ ui(v, vi).

In this setting, a monotone algorithm must be used in truthful mechanisms [3]. Algorithm A is monotone
if for any i ∈ N , v−i ∈ (R+)N−1, CTRi(A(v̂i,v−i)) is non-decreasing in v̂i. Important for our work
is also the family of VCG-like mechanisms, a.k.a., Maximal In Range (MIR) mechanisms. An algorithm A
is MIR if there exists Θ′ ⊆ Θ s.t. A(v) ∈ arg maxθ∈Θ′ SW (θ) ∀v ∈ RN [12]. These algorithms can
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be augmented with a VCG-like payment so to obtain truthful mechanisms. (VCGs are MIR mechanisms
wherein Θ′ = Θ.) We are interested in mechanisms for which both A and P are computable in polynomial
time. MIR mechanisms run in polynomial-time if the MIR algorithm does. As usual in the context of SSA,
we adopt a pay-per-click payment scheme, i.e., we charge Pi(v)/CTRi(A(v)) when a user clicks on ai.

3. FNEsa(c) is in P for constant c

Our presentation focuses on FNEsa(1)-nr to simplify the notation. The more general cases when c > 1
and the reset model is considered are easily obtainable by generalization from FNEsa(1), but require a more
cumbersome notation without significant new ideas (see discussion at the end of this section). We first give
the ILP formulation of FNEsa(1)-nr and prove that if there is an optimal fractional solution, then there are
at least two feasible integral solutions with the same value of social welfare. Since it is well known, by LP
theory, that the ellipsoid algorithm can be forced (in polynomial-time) to output an integral optimal solution,
we are able to prove the following:

Theorem 1. For c = O(1), there is a polynomial-time optimal algorithm for FNEsa(c).

FNEsa(1)-nr can be formulated as following ILP:

max

K∑
m=2

∑
i∈N

∑
j∈N ,j 6=i

γm−1,jqivixj,m,i +
∑
i∈N

x1,iqivi

subject to:
K∑
m=2

∑
j∈N ,j 6=i

xj,m,i + x1,i ≤ 1 ∀i ∈ N

x1,i =
∑

j∈N ,j 6=i

xi,2,j ∀i ∈ N

∑
j∈N ,j 6=i

xj,m,i =
∑

j∈N ,j 6=i

xi,m+1,j ∀i ∈ N ,

2 ≤ m < K∑
i∈N

x1,i = 1 (1)∑
j∈N

∑
i∈N ,i6=j

xj,m,i = 1 ∀m ∈ K \ {1}

x1,i ∈ {0, 1} ∀i ∈ N
xj,m,i ∈ {0, 1} ∀2 ≤ m ≤ K,

i, j ∈ N , i 6= j

where xj,m,i = 1 iff ai is allocated to slot sm, m > 1, and aj is allocated to slot sm−1; x1,i = 1 iff
ai is allocated to s1. The objective function and the constraints are rather straightforward and, hence, their
description is omitted here.

The next proposition proves Theorem 1 since it shows that we can solve the above ILP in polynomial-
time, despite its similarities with the 3D-assignment, a well-known NP -hard problem.

Proposition 1. The continuous relaxation of the above ILP always admits integral optimal solutions.
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Proof. We show that, if there is an optimal fractional solution x, then there are at least two feasible integral
solutions with the same value of social welfare. Specifically, we prove that x is equivalent to a probability
distribution over integral allocations θ = 〈a1, . . . , aK〉. The probability P(θ) given to θ is:

P(θ) =

K∏
i=1

P

θ(ai) = si

∣∣∣ ∧
j<i

θ(aj) = sj


= x1,1

K∏
l=2

xl−1,l,l∑
m≥l

xl−1,l,m
.

In order to show that P(θ) is actually a probability distribution over allocations, we show that
∑
θ∈Θ P(θ) =

1.
The proof is recursive. Let Θ′ be the set of allocations θ with the same first K − 1 ads. The allocations in

Θ′ differ only for the ad allocated to sK . To fix the notation, for θ ∈ Θ′ let θ(sl) = al, for l < K. We have:

∑
θ∈Θ′

P(θ) = x1,1

K−1∏
l=2

(
xl−1,l,l∑

m≥l xl−1,l,m

) ∑
h≥K

xK−1,K,h∑
m≥K

xK−1,K,m

= x1,1

K−1∏
l=2

(
xl−1,l,l∑

m≥l xl−1,l,m

) ∑
h≥K xK−1,K,h∑
m≥K xK−1,K,m

= x1,1

K−1∏
l=2

(
xl−1,l,l∑

m≥l xl−1,l,m

)
.

By applying recursively the same argument above from Θ′′ ⊃ Θ′, the set of all allocations θ satisfy-
ing θ(sl) = al, for l ≤ K − 2, down to the set of allocations having only the same first ad, we have∑
θ:θ(s1)=a1

P(θ) = x1,1. Since (1) forces
∑
i∈N x1,i = 1, we have

∑
θ∈Θ P(θ) =

∑
i∈N x1,i = 1. This

shows that P(θ) is a well defined probability distribution. The proof concludes by observing that all integral
solutions are indeed feasible.

To solve the problem when c > 1, we just need to modify the ILP and allow each variable x to depend on
c + 2 indices to take into account the (at most) c indices of all the ads that precede the ad of interest. The
reset model for c = 1 instead requires the introduction of K additional variables for a⊥ to be visualized in
each slot (together with some constraints to fix each variable for a⊥ to a slot).

Theorem 1 implies that mechanism design becomes an easy problem for FNEsa(c) and c = O(1), since
the optimal algorithm can be used to obtain a truthful VCG mechanism.

4. FNEaa(K)-nr is Poly–APX–complete

In this section, we establish the following results. Firstly, we study a tractable subclass of instance of
FNEaa(K)-nr, and give a polynomial algorithm to compute the optimal allocation. Secondly, we establish
the Poly–APX–completeness of FNEaa(K)-nr in the general case. Finally we show that the algorithm pre-
sented to prove membership in Poly–APX is non-monotone, and hence cannot be used to obtain a truthful
mechanism.
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4.1. Easy Instances for FNEaa(K)-nr
As a warm-up, we identify a significant class of instances of FNEaa(K)-nr for which we can design a

polynomial-time optimal algorithm. These instances are characterized by the fact that the underlying contex-
tual graph is a DAG, thus modeling nearly oligopolistic markets in which the ads can be organized hierarchi-
cally. The idea of Algorithm 1 is that since DAGs can be sorted topologically in polynomial time then we can
rename the ads as a1, . . . , aN so to guarantee that for any pair of ads ai, aj , if i < j then (aj , ai) /∈ E . We can
then prove that we can focus w.l.o.g. on ordered allocations θ, i.e., for any pair of allocated ads ai, aj , with
i < j, θ(ai) ≤ θ(aj). Consider an unordered θ and let ai be the first ad (from the top) for which there exists
aj , i < j, such that θ(ai) > θ(aj). Since γj,i = 0 then all the ads ak s.t. θ(ak) ≥ θ(ai) have CTRk(θ) = 0
and, therefore, we can prune θ of (i.e., substitute with a⊥) ai and all the subsequent ads without any loss in the
social welfare. But then in the class of ordered allocations, the optimum has an optimal substructure and we
can use dynamic programming. LetD[i,m] be the value of the optimal ordered allocation that uses only slots
sm, . . . , sK and allocates ad ai to sm. It is not hard to see that D[i,m] = Λmqivi + maxj>i γi,jD[j,m+ 1]
and that the optimum is maxi∈[N ]D[i, 1]. In the pseudo-code of the algorithm, we simply construct the table
D after the topological sort of the contextual graph (with renaming of the ads) is done. The algorithm runs in
time O(KN2).

Algorithm 1
1: TOPOLOGICALSORT(G)
2: for all m ≤ K do
3: D[N,m] = ΛmqNvN
4: for all i ≤ N do
5: D[i,K] = ΛKqivi
6: for i = N − 1 to 1 do
7: for m = K − 1 to 1 do
8: D[i,m] = Λmqivi + maxj>i γi,jD[j,m+ 1]
9: return (maxi∈[N ]D[i, 1])

Since social welfare maximization is a utilitarian problem, and given that the algorithm above is optimal we
can use the VCG mechanism to obtain a polynomial-time optimal truthful mechanism.

4.2. FNEaa(K)-nr is poly–APX–Complete in the general case
Now we establish the poly–APX-Completeness of FNEaa(K)-nr in the general case. In order to do this,

we will prove the poly–APX-hardness of FNEaa(K)-nr, and we will exhibit a polynomial time algorithm
that approximates the optimal allocation within an approximation ratio that is polynomial in the size of the
instance.
Hardness. We now prove the hardness of approximating FNEaa(K)-nr.

Theorem 2. FNEaa(K)-nr is poly–APX–hard.

Proof. We reduce from the Longest Path problem. An instance of the Longest Path problem consists of a
direct graph G′ = (T,A) where T is the set of vertices of the graph and A 6= ∅ is the set of unweighted
edges. The problem demands to compute a longest simple path, i.e., a maximum length path that visits each
vertex of the graph at most once. This problem is poly–APX–complete [5] and the best known asymptotic
approximation is log |T |/|T |. From an instance G′ = (T,A) of Longest Path we obtain an instance of
FNEaa(K)-nr as follows. For each vertex ti ∈ T we add an ad ai, with qi = vi = 1 and for each directed
arc (ti, tj) ∈ A we add an arc (i, j) in E . Furthermore, we set γi,j = 1 if (i, j) ∈ E and γi,j = 0 otherwise.
Finally, we set N = K = |T | and Λm = 1, ∀m ∈ [K].
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Given an ordered sequence of vertices ρ = (t1, t2, . . . , tN ), we denote as len(ρ) the length of the path
that starts in t1 and visits the nodes in ρ till the first node tj s.t. (tj , tj+1) 6∈ A is reached. Let us denote as ρ∗

the sequence that describes the longest path in G′ and as θ∗ the allocation that maximizes the social welfare
in the instance of FNEaa(K)-nr defined upon G′. It is easy to check that len(ρ∗) = SW (θ∗)− 1. Indeed, θ∗

allocates sequentially from the first slot the ads that correspond to the vertices composing the longest path.
Conversely, we can transform an allocation θ into a sequence of vertices ρ just by substituting the ads with
their corresponding vertices until the first a⊥ in θ is found. Thus, we have that for θ and the corresponding ρ
it holds len(ρ) = SW (θ)− 1.

Consider a generic α-approximate allocation θα for FNEaa(K)-nr: SW (θα) ≥ αSW (θ∗). Since A is
non-empty, there is a solution θ2 to FNEaa(K)-nr of social welfare at least 2. Let θβ denote the solution in
{θα, θ2} with maximum social welfare. As θα is an α-approximate solution so is θβ . By letting ρβ denote the
path constructed from θβ as described above, we prove that the reduction preserves the approximation (up to
a constant factor): len(ρβ) = SW (θβ)−1 ≥ 1

2SW (θβ) ≥ α
2SW (θ∗) = α

2 (len (ρ∗) + 1) ≥ α
2 len(ρ∗).

Membership. We show that the problem is in poly–APX, by exhibiting a polynomial algorithm with an
approximation ratio that asymptotically matches the best guarantee known for Longest Path. Our algorithm
combines the Color Coding (CC) algorithm [2] together with three approximation steps.

Let C be a set containing K different colors. CC is a randomized algorithm, randomly assigning colors
from C to the ads, and then finding the best colorful (i.e., no pair of ads has the same color) allocation.
To find the best colorful allocation, given a random coloring we do the following. For S ⊆ C, we define
(S, ai) as the set of partial allocations with the properties of having the same number |S| of allocated ads
(each colored with a different color of S) in the first |S| slots and having ad ai in slot s|S|. We start from
S = ∅ where no ad is allocated. Then, allocating one of the ads in the first position, we add one color to S
until S = C. Iteratively, the algorithm extends the allocations in (S, ai) appending a new ad, say aj , with
a color not in S in slot s|S|+1 obtaining (S ∪ {oj}, aj) where oj is the color of aj . Each partial allocation
in (S, ai) is characterized by the values of SW and Γi. We can safely discard all the Pareto dominated
partial allocations: given two allocations θ1 and θ2 in (S, ai), we say that θ2 is Pareto dominated by θ1 iff
SW (θ1) ≥ SW (θ2) and Γi(θ1) ≥ Γi(θ2). However, there is no guarantee that the number of allocations
in (S, ai) is polynomially bounded and, in principle, all the generated O(NK) partial allocations may be
Pareto efficient. The complexity per coloring is O(2KNK+1K2). CC generates eK random colorings, but
it can be derandomized with a cost of log2(N) and a total complexity O((2e)KK2NK+1(logN)2). To
make the algorithm polynomial, we apply three approximation steps. Initially, we briefly sketch these three
approximations and, subsequently, we provide the details. Firstly, we run CC over a reduced number K ′ of
slots where K ′ = min(dlog(N)e,K). Secondly, we discard all the allocations θ in which the probability to
click on the last allocated ad is smaller than a given δ ∈ [0, 1]. Finally, we discretize the γi,j’s. We prove in the
following that the running time is indeed polynomial and the approximation ratio is (1−δ)(1−ε) log(N)

2 min{N,K} ,
ε controlling the granularity of the γi,j discretization. All the three approximations are necessary in order to
obtain a polynomial-time algorithm. This algorithm is not monotone as we show below. However, a simple
1/K-approximate truthful mechanism can be obtained, via a single-item second price auction. From here on,
we provide the details of the algorithms and we prove its approximation ratio.

Approximation 1. We apply CC over a reduced number K ′ of slots, where K ′ = min(dlog(N)e,K),
implying the following approximation ratio.

Proposition 2. Given θ∗, the optimal allocation over K slots, and θ∗K′ , the optimal allocation over the first
K ′ ≤ min{N,K} slots, we have SW (θ∗K′) ≥ 1

2
K′

min{N,K}SW (θ∗).

Proof. We partition K ′′ = min{N,K} slots in groups of K ′ consecutive slots. There could be remaining
slots that will constitute the last group with less then K ′ slots. The number of groups in which the K slots
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are divided is NG = dK
′′

K′ e. Let Gi = {(i − 1)K ′ + 1, . . . ,min(iK ′,K)}, for i ∈ [NG], be the i-th group
of indices of K ′ slots.

We let SW (θ|Gi) =
∑
m∈Gi ΛmΓθ(m)(θ)qθ(m)vθ(m), for any θ ∈ Θ. Since SW (θ∗) =

∑NG
i=1 SW (θ∗|Gi),

there must exist a group Gi s.t. SW (θ∗|Gi) ≥ 1
NGSW (θ∗). Observing that dK

′′

K′ e ≤
K′′

K′ + 1 and K ′ ≤ K ′′

we get SW (θ∗|Gi) ≥ K′

2K′′SW (θ∗). The proof concludes by noting that, by optimality, SW (θ∗K′) ≥
SW (θ∗|Gi).

Approximation 2. In CC, we discard allocations θ in which Γi(θ) of the last allocated ad ai, i ∈ [N ], is
less than a given δ ∈ [0, 1], implying the following approximation ratio.

Proposition 3. Given θ∗K′ , the optimal allocation over K ′ slots, and θδK′ the optimal allocation among the
allocations θ ∈ Θ where the last allocated ad ai, i ≤ N , satisfies Γi(θ) ≥ δ, we have SW

(
θδK′
)
≥

(1− δ)SW (θ∗K′).

Proof. Consider the allocation θ∗K′ and assume that the last ad satisfying Γi(θ
∗
K′) ≥ δ is the one in slot sl.

Recalling the notation SW (θ|S) for S ⊆ [K], provided in the proof of Proposition 2, by optimality of θ∗K′
we have SW (θ∗K′) ≥ 1

Γθ∗
K′

(l+1)
SW (θ∗K′ |{l + 1, . . . ,K}). Indeed, on the r.h.s. we have a lower bound on

the social welfare that the ads allocated by θ∗K′ in slots sl+1, . . . , sK′ would have if shifted to the first slot.
If this were bigger than SW (θ∗K′) then θ∗K′ would not be optimal. But then since Γθ∗

K′ (l+1) < δ, we have
δSW (θ∗K′) ≥ SW (θ∗K′ |{l + 1, . . . ,K}).

Finally we have that θδK′ , the allocation that removes from θ∗K′ the ads allocated from sl+1 to sK′ , has
SW (θδK′) = SW (θ∗K′)− SW (θ∗K′ |{l + 1, . . . ,K}) ≥ SW (θ∗K′)− δSW (θ∗K′) = (1− δ)SW (θ∗K′).

Approximation 3. In CC, we use rounded values for γi,j . More precisely, we use b 1
τ log 1

γi,j
c in place

of log 1
γi,j

, where the normalization constant τ is defined below. The constraint due to Proposition 3 is now
a capacity constraint of the form

∑
m∈[K]:m<lb

1
τ log 1

γθ(m),θ(m+1)
c ≤ b 1

τ log 1
δ c. Notice that, with rounded

values, the capacity can assume a finite number of values (i.e., b 1
τ log 1

δ c) and therefore we can now bound
the number of allocations to be stored in (S, ai). More precisely, for each value of capacity, we can discard
all the allocations except one maximizing the social welfare measured with rounded values. This step has the
following consequences on the approximation guarantee.

Proposition 4. Given θδK′ , defined as in Proposition 3, and θδεK′ , the optimal allocation when the rounding
procedure is applied, we have that, choosing τ = 1

K′ log 1
1−ε , SW

(
θδεK′
)
≥ (1− ε)SW

(
θδK′
)
.

Proof. Let ξxm,m+1 be a shorthand for log 1
γθx
K′

(m),θx
K′

(m+1)
and x(i) be a shorthand for θxK′(ai), for x ∈

{δε, δ}. By definition:

SW
(
θδεK′
)

=
∑
i∈[N ]

Λδε(i)Γi
(
θδεK′
)
qivi

=
∑
i∈[N ]

Λδε(i)
∏

m<δε(i)

2−ξ
δε
m,m+1qivi.

Since ξδεm,m+1 ≤ τ(b 1
τ ξ
δε
m,m+1c+ 1), we then have

SW
(
θδεK′
)
≥
∑
i∈[N ]

Λδε(i)
∏

m<δε(i)

2−τ(b
1
τ ξ
δε
m,m+1c+1)qivi

≥
∑
i∈[N ]

Λδ(i)
∏

m<δ(i)

2−τ(b
1
τ ξ
δ
m,m+1c+1)qivi,
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where the latter inequality follows from optimality of θδK′ . Given that byc ≤ y we can conclude that
SW

(
θδεK′
)

is bounded from below by:

∑
i∈[N ]

Λδ(i)

 ∏
m<δ(i)

2
log γ

θδ
K′

(m),θδ
K′

(m+1)
−τ

 qivi

≥ 2−K
′τ ·
∑
i

Λδ(i)Γi
(
θδK′
)
qivi

= (1− ε) ·
∑
i

Λδ(i)Γi
(
θδK′
)
qivi = (1− ε)SW

(
θδK′
)
.

This concludes the proof.

The approximation ratio of the algorithm is thus (1−δ)(1−ε) log(N)
2 min{N,K} , asymptotically the same as the

best known approximation ratio of the Longest Path once N = K. The complexity instead can be derived as

follows. The maximum number of allocations that can be stored in each (S, ai) is O(
log 1

δ

τ ) with τ =
log 1

1−ε
K′

thanks to dominations. Thus, given that log( 1
1−ε ) → ε as ε → 0, the number of elements is O(K ′ 1ε ). Thus,

the complexity when K ′ = log(N) is O((2e)log(N) 1
ε log( 1

δ )N2 log4(N)) = O( 1
εδN

3 log4(N)).
Notice that all the three above approximations are necessary in order to obtain a polynomial–time algo-

rithm. Approximation 2 and Approximation 3 allow us to bound the number of the allocations stored per pair
(S, ai) and would lead, if applied without Approximation 1, to a complexity O((2e)KK2N2 log2(N) 1

εδ ).
Notice also that, without Approximation 2, the possible values for the capacity are not upper bounded. Ap-
proximation 1 allows us to remove the exponential dependence on K and to obtain polynomial complexity.

4.3. Non–monotonicity of the approximation algorithm

We here prove that the approximation algorithm presented above is not monotone and therefore we cannot
augment it with a payment function to obtain a truthful mechanism.

Let us initially consider the case where Approximation 1 is not used, therefore all the K slots can be
allocated. We will discuss below how to extend the proof to the case where Approximation 1 is used.

Consider the following instance of FNEsa(K)-nr:

• K = 3 slots;

• N = 4 ads, where q1v1 = 22τ Λ2−Λ32−6τ

Λ2−Λ3
+ 3, q2v2 = x, q3v3 = q4v4 = 1, where τ is the generic

rounding factor of Approximation 3;

• the contextual graph is s.t. γi,j = 0 ∀i, j ∈ [N ] except: γ1,2 = 2(−4+φ)τ , γ1,3 = 2−τ , γ2,4 = 2−τ ,
γ3,2 = 2−τ . φ is a small number;

• the rounded capacity
⌊

log 1
γi,j

τ

⌋
= +∞ ∀i, j ∈ [N ] except:

⌊
log 1

γ1,2

τ

⌋
= 3,

⌊
log 1

γ1,3

τ

⌋
= 1,⌊

log 1
γ2,4

τ

⌋
= 1,

⌊
log 1

γ32

τ

⌋
= 1.

• the K colours are {o1, o2, o3}.

The product q1v1 has been chosen s.t., when x is in the neighbourhood of 22τ Λ2−Λ32−4τ

Λ2−Λ3
, a1 is always

allocated in the first slot. Thus, we can focus only on the colouring that assigns colour o1 to a1, o2 to a2 and
o3 to a3 and a4. Indeed, with this colouring the two longest path of the contextual graph are colourful, i.e.
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the unique two colourful allocations are θ1 = (a1, a3, a2) in the set ({o1, o2, o3}, a2) and θ2 = (a1, a2, a4)
in the set ({o1, o2, o3}, a4).

Notice that, with this colouring, all the allocations where there is a pair of ads (ai, aj) with γi,j = 0
are infeasible, not satisfying the capacity bound. We will now prove that the approximation algorithm is not
monotone with respect to a2.

Let us denote by S̃W the social welfare computed on the basis of the rounded values. It is easy to check
that the following hold: S̃W (θ1) = 22τ Λ2−Λ32−6τ

Λ2−Λ3
+3+Λ22−4τx+Λ32−6τ and S̃W (θ2) = 22τ Λ2−Λ32−6τ

Λ2−Λ3
+

3 + Λ22−τ + Λ32−4τx. Notice that the rounded CTR2 in θ2 is always greater than the one in θ1, given
Λ2 ≥ Λ3, while CTR2(θ1) = Λ32−2τ > Λ22(−4+φ)τ = CTR2(θ2) when Λ2

Λ3
< 22τ−φτ .

We have that S̃W (θ1) > S̃W (θ2) when x > 22τ Λ2−Λ32−4τ

Λ2−Λ3
. Thus a2 gets a lower CTR by increasing

her bid, which proves that the algorithm is not monotone.
The example can be extended also to the case where Approximation 1 is applied introducing ads with

qv = 0 and γi,j = 0, s.t. logN = K.

5. FNEaa(K)-r is APX-complete

In this section we will prove the APX-hardness of FNEaa(K)-r and provide a 1/2-approximation algo-
rithm.

Theorem 3. In this section we study the complexity of computing an allocation f FNEaa(K)-r is APX–
hard. More specifically, FNEaa(K)-r cannot be approximated within a factor of 1

1+α , for α < 1
412 , unless

P = NP .

Proof. We reduce from the Asymmetric TSP with weights in {1, 2}, hereinafter denoted asATSP (1, 2). The
ATSP (1, 2) problem demands finding a minimum cost Hamiltonian tour in a complete directed weighted
graph G′ = (T,A) where T is the set of nodes of G′, A is the set of edges and the weight function wi,j ∈
{1, 2} for all edges (i, j) ∈ A. ATSP (1, 2) cannot be approximated in polynomial time within a factor of

1
1+β , with β < 1/206 [9]. Below, we denote as τ a solution of an ATSP (1, 2) instance, as cost(τ) its cost
and as τ∗ the optimal tour.

Given an instance of ATSP (1, 2) on graph G′ = (T,A) we construct an instance of FNEaa(K)-r as
follows: (i) for each vertex ti ∈ T we generate an ad ai with qi = vi = 1, then we have N = |T |; (ii) the
contextual graph is G = ([N ], E), where (i, j) ∈ E iff wi,j = 1; (iii) for all (i, j) ∈ E , γi,j = 1; and finally
(iv) the number of slots is equal to the cost of the optimal tour τ∗ in ATSP (1, 2), i.e. K = cost(τ∗). We
will show at the end of the proof how we can deal with the fact that we do not know cost(τ∗). Observe that
with K = cost(τ∗), we have SW (θ∗) = N , θ∗ denoting the optimal solution of the FNEaa(K)-r instance
constructed. The definition of the reduction is completed by observing that an allocation θ for the FNEaa(K)-
r that allocates all theN ads can be easily mapped back to a tour τ for theATSP (1, 2) by simply substituting
the ad with the corresponding vertex of the graph G′.

Let us suppose for the sake of contradiction that there exists a 1
1+α -approximate algorithm for FNEaa(K)-

r, with α < β
2 < 1

412 . Let θα be the 1
1+α–approximate solution returned by such an algorithm, i.e.,

SW (θα) ≥ 1
1+αSW (θ∗) = N

1+α . It is easy to check that θα consists of d N
1+αe ads, each providing a

contribution of 1 to the social welfare, while there are SW (θ∗) − d N
1+αe ads that w.l.o.g. we can consider

empty. Moreover, being α < 1, N
1+α ≥ cost(τ∗) − N

1+α holds. For the sake of conciseness, hereinafter
we omit the ceiling notation. Let τβ be the tour obtained from θα. We state that in τβ there are, at least,
2N
1+α − cost(τ

∗) − 1 edges of weight 1. Divide the ads allocated in θα in two sets: the N
1+α allocated ads

ai i ∈ [N ] and a⊥. Allocate in alternation one of the N
1+α ads ai, with i ∈ [N ], and one of the cost(τ∗)− N

1+α

ads a⊥. When the slot index 2(cost(τ∗)− N
1+α ) is reached, the available a⊥ are finished, thus, in the following
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cost(τ∗)−2(cost(τ∗)− N
1+α ) = 2N

1+α − cost(τ
∗) slots, only non-fictitious ads ai, i ∈ [N ], are consecutively

allocated (no slots are left empty). This means that in θα, where the ads are disposed in a different way, we
still have the guarantee that there are 2N

1+α − cost(τ
∗) − 1 pairs of consecutive ads (ai, aj) s.t. γi,j = 1.

Thus, in the tour τβ there are, at least, 2N
1+α − cost(τ

∗)− 1 edges of weight 1. Therefore, given that a tour is
composed ofN edges, in τβ there can be at mostN− 2N

1+α +cost(τ∗)+1 edges of weight 2. The length of τβ
is upper-bounded by cost(τβ) ≤ 2N

1+α − cost(τ
∗)− 1 + 2(N − 2N

1+α + cost(τ∗) + 1) = cost(τ∗) + 2Nα
1+α + 1.

Now we can state: cost(τβ) ≤ cost(τ∗) + 2αN
1+α + 1 ≤ cost(τ∗) + 2αN ≤ cost(τ∗) + 2α cost(τ∗) =

(1 + 2α) cost(τ∗) < (1 + β) cost(τ∗), where: (i) the second inequality holds for N ≥ 1+α
2α2 ; (ii) the third in-

equality holds since N ≤ cost(τ∗) and (iii) the last inequality holds since, by assumption, α < β
2 . Thus, for

the instances whereN ≥ 1+α
2α2 if there were an algorithm that 1

1+α–approximates FNEaa(K)-r with α < 1
412 ,

there would be a 1
1+β approximation of ATSP (1, 2) with β < 1

206 . We obtained an absurd.
We finally show that we can deal with the non existence of the oracle returning cost(τ∗). For all

the instances of ATSP (1, 2) with N vertices, N ≤ cost(τ∗) ≤ 2N . So, we run the polynomial 1
1+α–

approximation algorithm of FNEaa(K)-r for all the values K = m with m ∈ {N . . . , 2N}, obtain m tours
τmβ and set τβ = arg minm∈{N,...,2N} cost(τ

m
β ), guaranteeing

cost(τβ) ≤ cost(τ cost(τ
∗)

β ).

1
2 -Approximate Greedy Algorithm for FNEaa(c)-r, for any c. The algorithm orders the ads in non-

increasing order of qivi and allocates them in the odd slots, starting from the one with the highest product;
even slots are left empty.

Proposition 5. The greedy algorithm above is 1
2 -approximate for FNEaa(c)-r, for any c.

Proof. Let θ.5 be the allocation obtained by the algorithm. We want to prove that SW (θ.5) ≥ SW (θ∗)/2.
W.l.o.g., rename the ads so that q1v1 ≥ q2v2 ≥ . . . ≥ qNvN . Let K ′ = dK/2e. We have SW (θ.5) =∑
m∈[K′] Λ2m−1qmvm. On the other hand, SW (θ∗) ≤

∑
m∈[K] Λmqmvm. Since Λiqivi ≥ Λi+1qi+1vi+1,

we have Λiqivi ≥ 1/2
∑
m=i,i+1 Λmqmvm. We conclude:

SW (θ.5) =
∑

m∈[K′]

Λ2m−1qmvm ≥

∑
m∈[K′]

Λ2m−1q2m−1v2m−1 ≥

1/2
∑
m∈[K]

Λmqmvm ≥ SW (θ∗)/2.

The greedy algorithm above is a MIR, range Θ′ being all the allocations that leave even slots empty. The
solution output is indeed the one guaranteeing maximum social welfare in Θ′. We therefore have proved the
existence of a 1/2-approximate truthful polynomial-time mechanism for FNEaa(c)-r.

6. FNEaa(c) is APX-hard

We now prove that FNEaa(1)-r (Proposition 6) and FNEaa(1)-nr (Proposition 7) are APX-hard. First we
state two auxiliary lemmata. Hereinafter, for the sake of notation, we will denote as SW1(θ) and SWK(θ)
the objective function of B–FNEaa(1)-r and B–FNEaa(K)-r, respectively.
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Lemma 1. Let θ be an allocation (possibly containing empty slots) and let θ′ be the allocation obtained from
θ by replacing, for each pair (ai−1, ai) in θ such that γi−1,i = 0, ad ai−1 with a⊥. Then SW1(θ) = SW1(θ′).

Proof. Let (ai−1, ai) be the first pair of ads in θ with the property that γi−1,i = 0, and let θ′′ be the allo-
cation obtained from θ by substituting ai−1 with a⊥. Let SWA

1 (θ) =
∑i−2
j=1 CTRj(θ)vj and SWB

1 (θ) =∑K
j=i+1 CTRj(θ)vj denote the contributions to the SW of the ads allocated, respectively, above and below

the pair (ai−1, ai). We can write SW1(θ) = SWA
1 (θ) + SWB

1 (θ) + CTRi−1(θ)vi−i + CTRi(θ)vi. By
assumption, we have CTRi−1(θ)vi−i = 1 (as CTRi−1(θ) = 1 and ai−1 6= a⊥) and CTRi(θ)vi = 0. We
note that SWA

1 (θ′′) = SWA
1 (θ) and SWB

1 (θ′′) = SWB
1 (θ). Furthermore, we note that CTRi−1(θ′′)vi−i +

CTRi(θ
′′)vi = 1, as vi−i = 0 and CTRi(θ′′) = 1. So we can conclude that SW1(θ) = SW1(θ′′). By

repeatedly applying the above procedure on θ′′ we can obtain an allocation θ′ containing no pair of ads
(ai−1, ai) where γi−1,i = 0 and such that SW1(θ) = SW1(θ′).

Lemma 2. Let θ be an allocation such that no pair of ads (ai−1, ai) exists where γi−1,i = 0. Then SW1(θ) =
SWK(θ).

Proof. The claim follows from the fact that ∀i ∈ N , CTRi(θ) = 1 for both B–FNEaa(1)-r and B–
FNEaa(K)-r if θ does not contain any pair of ads (ai−1, ai) for which γi−1,i = 0.

Proposition 6. FNEaa(1)-r is APX-hard.

Proof. We prove that the subproblem B–FNEaa(1)-r is APX–hard via an approximation preserving reduction
from the APX-hard problem B–FNEaa(K)-r (Theorem 3). In particular, we will show that computing an
approximate solution for B–FNEaa(1)-r is not easier than B–FNEaa(K)-r on the same instance.

We will first prove that SWK(θ∗K) ≤ SW1(θ∗1) holds, where θ∗K and θ∗1 denote, respectively, the op-
timal allocation for B–FNEaa(K)-r and B–FNEaa(1)-r. For the sake of contradiction, let us suppose that
SWK(θ∗K) > SW1(θ∗1). We can assume without loss of generality that θ∗K does not contain a pair (ai−1, ai)
such that γi−1,i = 0, as replacing ai−1 with a⊥ would yield an allocation with a non-decreasing SW value.
By Lemma 2 and by hypothesis we have that SW1(θ∗K) = SWK(θ∗K) > SW1(θ∗1), which contradicts the
optimality of θ∗1 .

We are now going to prove that given an α–approximate solution θα1 to the objective of B–FNEaa(1)-r
we can compute in polynomial time an approximate solution θαK to the objective of B–FNEaa(K)-r such that
SW1(θα1 ) ≤ SWK(θαK). This is easily done by replacing ai−1 with a⊥ for each couple of ads (ai−1, ai)
in θα1 such that γi−1,i = 0, thus obtaining θ′α1 . By Lemmata 1 and 2 we finally conclude that SW1(θα1 ) =
SW1(θ′α1 ) = SWK(θ′α1 ).

Proposition 7. FNEaa(1)-nr is APX-hard.

Proof. We conduct the proof by reduction from problem B–FNEaa(1)-r. In particular, we add to the instance
of B–FNEaa(1)-r K new ads {aN+1, . . . , aN+K} such that: (i) vj = 0 for all j ∈ {N + 1, . . . , N +K} and
(ii) γi,j = γj,i = 1 for all i ∈ {1, . . . , N +K} and j ∈ {N + 1, . . . , N +K}. Let θαnr be an α-approximate
solution for the so-defined FNEaa(1)-nr problem. We can assume w.l.o.g. that θαnr does not contain any a⊥, as
in the no-reset model we can always allocate any non-allocated ad to an empty slot obtaining a non-decreasing
SW value. We observe that, from a generic allocation θnr, it is possible to obtain an allocation θr by
substituting any ad aj , j ∈ {N+1, . . . , N+K}, in θnr with a⊥ s.t. SW r(θr) = SWnr(θnr), and vice versa.
Thus, from θαnr we can obtain an allocation θαr s.t. SW r(θαr ) = SWnr(θαnr); SW x(θ) denoting the social
welfare of θ ∈ Θ in the model with reset x ∈ {r, nr}. Furthermore, let θ∗r and θ∗nr be the optimal solutions,
respectively, for B–FNEaa(1)-r and the FNEaa(1)-nr defined by our reduction. According to the observations
above, it is easy to check that SW r(θ∗r) = SWnr(θ∗nr) holds. In fact, let θ̃nr be the solution obtained from
θ∗r by substituting each a⊥ with an ad aj , j ∈ {N + 1, . . . , N + K}. Then SW r(θ∗r) = SWnr(θ̃nr).
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Furthermore, SWnr(θ̃nr) = SWnr(θ∗nr), as otherwise if SWnr(θ̃nr) < SWnr(θ∗nr) we could translate
θ∗nr into a solution θ̃r for B–FNEaa(1)-r such that SW r(θ∗r) < SW r(θ̃r). A similar argument holds if we
consider the allocation θ̃r obtained by substituting all ads aj , j ∈ {N + 1, . . . , N + K}, in θ∗nr with a⊥.
Finally, SW r(θαr ) = SWnr(θαnr) ≥ αSWnr(θ∗nr) = αSW r(θ∗r).

7. FNE+
aa(c)-nr is APX-complete for constant γmin

We now prove that FNEaa+(c)-nr is APX-complete if γmin is constant. In the first part of this section
(Theorem 4) we prove that this sub-problem is APX-hard, whereas in the second part we give a constant-ratio
approximation algorithm for it, via a reduction from FNEaa+(c)-nr to W3SP.

Theorem 4. FNE+
aa(1)-nr is APX-hard.

Proof. Let {γmin, 1}-FNE+
aa(1)-nr denote the subclass of FNE+

aa(1)-nr where γij ∈ {γmin, 1} for all i, j ∈
N and a given 0 < γmin < 1. We prove the APX-hardness of FNE+

aa(1)-nr by an approximation pre-
serving reduction from problem B-FNEaa(1)-nr (proved APX-hard in Proposition 7) to problem {γmin, 1}-
FNE+

aa(1)-nr: we prove the existence of an α-approximate algorithm for {γmin, 1}-FNE+
aa(1)-nr to imply

the existence of a 2α-approximate algorithm for B-FNEaa(1)-nr.
The instance of {γmin, 1}-FNE+

aa(1)-nr is obtained from the instance of B-FNEaa(1)-nr by simply setting
γ′i,j = γmin = 1

K−1 for all i, j ∈ N such that γi,j = 0 in the given instance of B-FNEaa(1)-nr, γ′i,j = 1
otherwise.

Let θ∗γmin and θ∗B be an optimal solution for problems {γmin, 1}-FNE+
aa(1)-nr and B-FNEaa(1)-nr, re-

spectively. We have SW (θ∗B) ≤ SW (θ∗γmin). Indeed, if there is no (ai−1, ai) ∈ θ∗B s.t. γi−1,i = 0
then SW (θ∗B) = SW (θ∗γmin), whereas if there is a pair (ai−1, ai) ∈ θ∗B s.t. γi−1,i = 0 then SW (θ∗B) <
SW (θ∗γmin).

Let now θγmin be an α-approximation of {γmin, 1}-FNE+
aa(1)-nr and let θB be the corresponding solution

for B-FNEaa(1)-nr. (I.e., θB is the solution θγmin where the γmin externalities weigh 0.) We now prove that
SW (θγmin) ≤ 2SW (θB). We have SW (θB) = 1 + P(θB), where P(θB) ≤ K − 1 denotes the number
of pairs (ai−1, ai) of ads in θB such that γi−1,i = 1. Likewise, SW (θγmin) = 1 + P(θγmin) + (K − 1 −
P(θγmin)) · γmin. By construction, P(θB) = P(θγmin) = P , from which it follows that SW (θγmin) ≤
2 · SW (θB) is equivalent to 1 + K−1−P

1+P γmin ≤ 2. This is proved by noticing that 1 + K−1−P
1+P γmin ≤

1 + K−1
1+P γmin = P+2

P+1 , where last equality follows from definition of γmin.

Approximation algorithm. We now prove that any α-approximate algorithm for Weighted 3-Set Packing
(W3SP) can be turned into an (αγcmin)–approximation algorithm for FNE+

aa(c)–nr.
Given a universe U and a collection of its subsets each of cardinality at most 3 and associated to a weight,

W3SP consists of finding a sub-collection of pairwise-disjoint subsets of maximal weight. Several constant-
ratio approximate algorithms are known in literature to solve this problem, e.g., the algorithm in [4] provides a
1/2-approximation. We now present a reduction from FNE+

aa(c)-nr to W3SP, similar in spirit to that defined,
for positive only externalities, in [6].

Theorem 5. Given anα–approximate algorithm for problem W3SP, we can obtain an (αγcmin)-approximation
algorithm for problem FNE+

aa(c)-nr.

Proof. Given an instance of FNE+
aa(c)-nr, we obtain an instance of W3SP by means of the following reduc-

tion. To simplify the presentation, we suppose that K is even (the proof can be easily extended for an odd
K). We divide K into K/2 blocks of two slots each. We construct a collection of K

2 ·
(
N
2

)
sets, each set

having the form {ai, aj , p}, where p ∈ {1, 3, 5, . . . ,K − 1} and i, j ∈ N . The weight of a set is defined as
the maximum social welfare that ads ai and aj can provide when assigned to slots sp and sp+1 without taking
into considerations the externalities of ai and aj on the ads allocated to slots sm, m 6= p, p+ 1. Specifically,
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W (ai, aj , p) = max{Λpqivi + Λp+1γi,jqjvj ,Λpqjvj + Λp+1γj,iqivi}. Note that there is an immediate map-
ping between solutions of W3SP and FNE+

aa(c)-nr. For a solution θS of W3SP, let W (θS) denote its total
weight. Now, let θ∗S and θ∗ denote, respectively, an optimal allocation for W3SP and an optimal allocation
for FNE+

aa(c)-nr. Furthermore, let θαS be an α-approximate solution for W3SP, and θα be the corresponding
solution to FNE+

aa(c)-nr. Since in W3SP, outer-block externalities are not taken into consideration, we have:
W (θ∗S) ≥ SW (θ∗) and SW (θα) ≥ γcminW (θαS). From these inequalities we obtain:

SW (θα) ≥ γcminW (θαS) ≥ αγcminW (θ∗S) ≥ αγcminSW (θ∗).

Corollary 1. If γmin is bounded from below by a constant (i.e., γmin ∈ Ω(1)), then FNE+
aa(c)-nr is approx-

imable within a constant factor.

It can be easily shown that the above algorithm is not monotone.

Theorem 6. The algorithm of Theorem 5 is not monotone

Proof. Consider an instance I of FNE+
aa(1)-nr with N = K = 4 wherein Λ3γz,4 < Λ4γ3,4, for z ∈ {1, 2},

v1, v2 � v3, v4 and γ1,2 = γ2,1 = 1 so that W (a1, a2, 1) is much bigger than any other W (ai, aj , 1). There-
fore, any reasonable approximation of the W3SP instance constructed upon I must return sets {a1, a2, 1}
and {a3, a4, 3}. Additionally consider v4 <

Λ4γ4,3
Λ2

3−Λ3Λ4γ3,4
so that W (a3, a4, 3) = Λ3q3v3 + Λ4γ3,4q4v4.

So the solution θ returned by the algorithm run on I places a4 in s4, resulting in CTR4(θ) = q4Λ4γ3,4.
Take now the instance I ′ defined as I except that v1, v2 � v′4 >

Λ4γ4,3
Λ2

3−Λ3Λ4γ3,4
> v4. As before, the ap-

proximation algorithm for W3SP will return sets {a1, a2, 1} and {a3, a4, 3} but this time W ′(a3, a4, 3) =
Λ3q4v4 + Λ4γ4,3q3v3. Therefore, the solution θ′ returned by the algorithm run on I ′ places ad a4 in slot s3,
i.e., CTR4(θ′) = q4Λ3γz,4, where z ∈ {1, 2} is the ad placed in slot s2 in the allocation θ′. The algorithm is
therefore not monotone and cannot be used to design a truthful mechanism.

8. Approximating FNEaa(c)-nr

Similarly to the case c = K, Color Coding can be applied to design an optimal exponential-time algorithm
finding the optimal solution and a simple modification of such algorithm returns a log(N)

2 min{N,K} approximation
in polynomial time. While the basic idea is the same, some details change here.

We denote by S ⊆ C a subset of colors and by δ(a) a function returning the color assigned to a. Given a
coloring δ, the best colorful allocation is found by dynamic programming. For |S| > c,W (S, 〈ah0 , . . . , ahc〉)
contains the value of the best allocation with colors in S in which the last c+ 1 ads are ah0 , . . . , ahc from top
to bottom. (The definition naturally extends for |S| ≤ c.) Starting from W (∅, 〈〉) = 0, we can compute W
recursively. For instance, for |S| > c,

W (S∪{δ(ahc)}, 〈ah0 , . . . , ahc〉) =

Λ|S|+1vhcqhc

c−1∏
i=0

γhi,hi+1 + max
a

W (S, 〈a, ah0 , . . . , ahc−1〉), if δ(ahc) 6∈ S

−∞, otherwise

Given a random coloring, the probability that the ads composing the best allocation are colorful is K!
KK .

Thus, repeating the procedure reK times, where r ≥ 1, the probability of finding the best allocation is
1 − e−r. The complexity is O((2e)KKN c+2). The algorithm can be derandomized with an additional cost
of O(log2(N)).

By applying the above algorithm to the first K ′ slots, K ′ = min{K, dlog(N)e}, we obtain an algorithm
with complexityO(K3.5N c+2 log2

2(N)). We observe that if c is not a constant, the complexity is exponential.
It is not too hard to note that such an algorithm is log(N)

2 min{N,K} -approximate. Moreover, this algorithm is MIR
and as such can be used to design a truthful mechanism.
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9. Conclusions

We enrich the literature on externalities in SSAs by introducing more general ways to model slot- and
ad-dependent externalities, while giving a (nearly) complete picture of the computational complexity of the
problem. In detail, we enrich the naive model of SSAs by adding: (i) the concepts of limited user memory
(ii) contextual externalities and (iii) refreshable user memory (i.e., reset model).

This gives rise to the FNEsa model, where ad- and slot-dependent externalities are factorized as in the
cascade model and the FNEaa model, where the externalities and not factorized.

We satisfactorily solve the problem for FNEsa, whereas our results leave unanswered a number of inter-
esting questions, with regards to both approximation and truthfulness for FNEaa. The parameter c is central
to this list. If c is constant, then we do not know whether a constant approximation algorithm for FNEaa(c)
exists; this holds also for the special case of FNE+

aa(c)-nr when γmin is not a constant. In the latter case, when
γmin is instead constant we are not aware of any truthful constant approximation mechanism. Motivated by
the fact that FNEaa-r is, apparently, an easier problem than FNEaa-nr, we believe that an interesting direction
for future research is to study reset in more detail in order to understand its role w.r.t. the relatively harder
FNEaa-nr.
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