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Abstract

Bioinformatics is a subject that requires the skills of biologists, computer scientists,
mathematicians and staisticians. This paper introduces the reader to one small aspect
of the subject: the study of microarrays. It describes some of the complexities of the
enormous amounts of data that are available and shows how simple statistical techniques
can be used to highlight deficiencies in that data.

1 What is Bioinformatics?

In our Oxford Dictionary of Statistics (Upton and Cook, 2008) we defined Bioin-
formatics as “A subject concerned with extracting information from data arising
from study of DNA, genomes, etc. The subject interweaves biology, computer
science, and statistics.” As with any dictionary definition this is a definition that
provides an impression rather than detailed information. To get a more detailed
view of the subject we need to turn to a specialized book. A useful introduction
to the subject is provided by Lesk (2008). His book begins as follows:

“Biology has traditionally been an observational rather than a deduc-
tive science.Although recent developments have not altered this basic

orientation, the nature of the data has radically changed. ... in the
last generation the data have become ... much more quantitative and
precise.”

Thus the word “data” appears immediately! Lesk goes on to write that
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. an obvious property of the data of informatics is their very very
large amount”

The italics are those of Lesk and they emphasise the key property that makes the
subject a challenge for statisticians. There is a parallel with a National Lottery: the
chance of anyone winning is very small indeed and yet, in most weeks, there is a
winner — seemingly paradoxically, rare events are happening constantly. So it is
with Bioinformatics! Anything that can happen, will happen — ordinary notions
of significance must be abandoned.



The word ‘Bioinformatics’ is an amalgam of ‘Biology’, the science of living
things, and ‘Informatics’, the science of information, information processing and
information systems. Informatics leans heavily on computer science and many in-
troductory books on Bioinformatics place it in the context of some form of com-
puter programming (Gibas et al, 2001; Orengo et al, 2002; Tisdall and Stein,
2003; Gentleman, 2008). In the introduction to their book Gibas et al write that

“The field of bioinformatics relies heavily on work by experts in sta-
tistical methods and pattern recognition.’

Thus the impact of statistics is clearly recognized. Nevertheless, it is not suffi-
cient to understand the statistical methodology — one must also understand the
biological implications. Gibas and Jambeck warn that

“These new tools [algorithms, databases, statistical tools] also give
you the opportunity to over-tinterpret data and assign meaning where
none really exists.”

At Essex we are constantly performing ‘apple tests’ for situations where we have
discovered apparent links between phenomena: we ask the questions ‘Are these
results repeatable?” and “Was this certain to happen in any case?’. Generally, and
disappointingly, the answers are usually ‘No!” and ‘Yes!’.

1.1 The growth of Bioinformatics

For academics an obvious measure of growth lies in the number of journals that
are devoted to some aspect of the discipline. In the case of Bioinformatics this s a
revealing exercise, as Table 1 illustrates.

Clearly something occurred at the start of the second millenium that sparked
activity in the subject. It is not difficult to discover that the spark was the comple-
tion of the Human Genome Project, which was an international project to chart the
entire genetic material of a human being, the first draft of which was completed
in 2000. To have some understanding of this project requires familiarity with a
number of biological terms.

2 Some relevant biological terms

Most of the following descriptions have been taken from the Oxford Dictionary of
English (Soanes and Stevenson, 2005): this will be indicated by ODE in the text.

DNA is now well-known as the compound in the human body that contains the
essence of an individual. It is a shorthand for deoxyribonucleic acid. The ODE
describes it as



Table 1: First publication dates of major Bioinformatics journals

Bioinformatics 1985
BMC Bioinformatics 2000
Briefings in Bioinformatics 2000
Statistical Applications in Genetics and Molecular Biology 2002
Applied Bioinformatics 2004
Journal of Integrative Bioinformatics 2004
IEEE/ACM Transactions on Computational Biology and Bioinformatics 2004
International Journal of Bioinformatics Research and Applications 2005
Current Bioinformatics 2006
International Journal of Data Mining and Bioinformatics 2006
The Open Bioinformatics Journal 2007
Journal of Computational Intelligence in Bioinformatics 2008
Journal of Proteomics and Bioinformatics 2008

“A self-replicating material which is present in nearly all living or-
ganisms as the main constituent of chromosomes. It is the carrier of
genetic information.

(Each molecule of DNA consists of two strands coiled round each
other to form a double helix, a structure like a spiral ladder. Each
rung of the ladder consists of a pair of chemical groups called bases
(of which there are four types), which combine in specific pairs so that
the sequence on one strand of the double helix is complementary to
that on the other: it is the specific sequence of bases which constitutes
the genetic information.)”

In DNA the four bases are Adenine (A), Cytosine (C), Guanine (G), and
Thymine (T). Adenine and Guanine contain three Nitrogen atoms and are called
Purines, while Cytosine and Thymine have just two Nitrogen atoms and are called
Pyrimidine. It is the specific sequence of bases that distinguishes individuals from
one another (though, for the most part, the sequences are at least very similar).

Alongside their DNA, organisms have RNA, described in the ODE thus:

“Ribonucleic acid, a nucleic acid present in all living cells. Its princi-
pal role is to act as a messenger carrying instructions from DNA for
controlling the synthesis of proteins, although in some viruses RNA
rather than DNA carries the genetic information.”

Adenine, Cytosine and Guanine appear (in the same order that they appear in an
individual’s DNA) in RNA, but in RNA Thymine is replaced by another Pyrimi-
dine: Uracil (U).



Familiar terms to the layman are chromosomes and genes. The ODE defines a
chromosome thus:

“A thread-like structure of nucleic acids and protein found in the nu-
cleus of most living cells, carrying genetic information in the form of
genes.

(Each chromosome consists of a DNA double helix bearing a linear
sequence of genes, coiled and recoiled around aggregated proteins
(histones). Their number varies from species to species: humans have
22 pairs plus the two sex chromosomes (two X chromosomes in fe-
males, one X and one Y in males). During cell division each DNA
strand is duplicated, and the chromosomes condense to become visi-
ble as distinct pairs of chromatids joined at the centromere.)”

and a gene is described technically thus:

“A distinct sequence of nucleotides forming part of a chromosome,
the order of which determines the order of monomers in a polypeptide
or nucleic acid molecule which a cell (or virus) may synthesize.”

This definition leads us too far into biology for the purposes of this paper, so we
will rely on the alternative idea that (perhaps) ‘statistical ability is in my genes’.

We noted that the Human Genome Project had a major impact on Bioinfor-
matics. Its purpose was to determine the typical sequence of bases (C, G, A and
T) in the human genome and to identify the sub-sequences (of around 100 million
bases) corresponding to chromosomes and, within them, the sub-sub-sequences
corresponding to about 25,000 genes.

3 Microarrays

The Bioinformatics work in our department at Essex has concentrated on data
from microarrays, and the remainder of this paper will concentrate on these ob-
jects.

Microarrays are manufactured by several companies and more than one tech-
nology is involved: we will concentrate on the so-called GeneChip microarray
produced by Affymetrix, which is the leading manufacturing company. The HGU Plus2
microarray is the most recent Affymetrix microarray designed to provide informa-
tion about human tissue. It consists of a lattice of regions with 1164 rows and 1164
columns (the array) all contained on a thin wafer the size of a small postage stamp
(hence microarray).

At each of the 1.4 million locations on the array there are thousands of indi-
vidually constructed sequences of the bases (C, A, G and T) introduced earlier.
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These sequences (created using photolithography) are chosen to match sequences
occurring in specific human genes, with the aim being to discover the extent to
which that gene is expressed in a given piece of human tissue.

The initial hope was that if an individual human suffered from some unfortu-
nate disease then, by comparing the levels to which genes were expressed for that
individual with the level to which they were expressed for a normal individual, it
would be possible to identify the (presumably defective) gene responsible, which
would open up the possibility of some form of genetic engineering to eliminate
the disease. Unfortunately, in reality, when one compares results for two pieces
of human tissue, there are inevitably major differences in the expression levels of
dozens (if not hundreds) of genes.

In a GeneChip the sequences at each location are 25 bases in length and the
collection of sequences at a location is referred to as a probe. As previously
stated, each probe is intended to match a 25-base sequence in a specified gene,
though occasionally the sequence may appear in more than one gene. To guard
against the resulting possibility of misinterpreting a high level of expression as
indicating the target gene when it may result from some other gene, and to guard
against manufacturing flaws or failure to correctly follow the biological protocol
for preparation of the microarray, there are typically 11 probes all targeting the
same gene (with sequences matching different segments of the gene): these 11
probes are referred to as a probe set. The members of a probe set are typically
distributed widely across an array, so that if there a small region of the array has
flawed data, then most members of a probe set will remain unaffected.

There are several statistically based procedures in common use for accumu-
lating the information from the probes in a probe set — typically testing for, and
discarding, outlier values (see e.g. Li and Wong 2001; Wu et al, 2004). At Es-
sex we have adopted a rather different approach, attempting to identify incorrect
probe values by examining and comparing entire microarrays rather than just the
11 values in a probe set.

4 Comparison of replicate microarrays

A mainstay of experimental design has been the use of repeat observations (repli-
cates) to give an idea of experimental error (uncertainty). Although microarrays
are becoming cheaper, they remain an expensive item and technical replicates (i.e.
material coming from the same sample) are very rare. Biological replicates (mate-
rial coming from different samples from a common population) are less rare. The
existence of any type of replicate provides an immediate opportunity for a simple
test for spatial flaws.

Figure 1 provides an example of how a particularly simple statistical idea can



Figure 1: Colour-coded comparison of three replicate microarrays showing unde-
sirable spatial flaws

be very revealing. The diagram presents results from a comparison of three bio-
logical replicates. Each of the 1.4 million locations on the microarray has been
represented by a dot coloured either red, green, or blue, depending on which repli-
cate provided the greatest value at that location. Whilst there are other features
present in the diagram (such as the evident horizontal line ‘background’ pattern)
it is evident that two of the three replicates have significant regions of enhanced
(which means incorrect!) signal. A rather more sophisticated approach was given
by Upton and Lloyd (2005). A detailed overview of spatial defects in Affymetrix
GeneChips is provded by Langdon et al (2008).

This simple spatial screening implies that the affected probes can be detected
without reference to the values of the other members of their probe sets. However,
detection is simply the first step. There then comes the question of what to do next.
A simple solution is to treat each as an outlier and to discard it. However, there
are only 11 members in a probe set, so discarding nearly 10% of the information
would be reckless if there was an alternative. Research at Essex has suggested an
algorithm that may be capable of repairing ‘damaged’ values by reference to the
values in the remaining replicates (whilst, nevertheless, maintaining independence
of replicate values); details are given by Arteaga-Salas et al (2008).



5 Large-scale comparison of microarrays

Biologists carrying out investigations of particular genes, or of particular races or
subspecies, naturally focus on the results of their own experiments. However, a
rich pool of information is waiting to be tapped: it is called the National Center for
Biotechnology Information (NCBI) Gene Expression Omnibus (GEO) repository.
At the time of writing (early 2009) it contains nearly 300 000 publicly available
data sets which include over 20 000 of the HGU133 Plus2 arrays. The size of
this database is constantly growing; in late 2007 we had downloaded almost all
the arrays then available and that was then fewer than 3000. Nevertheless, 3000
arrays, each containing nearly 1.4 million data points, provides an appreciable
data resource!

All the probes in a probe set are supposed to react to the presence of a gene,
with the extent of their reaction reflecting the extent to which the gene is present.
Across 3000 arrays one can expect a good range of levels of gene expression
and thus the usual product-moment correlation coefficient should have a value
reasonably close to 1. For the case illustrated in Figure 2 the correlation is 0.76.

16384 |

8192

4096 [

2048

1024 -

512

256

208772_at pnll Nornalised intensity

128

64 L L L L L L L L
64 128 256 512 1624 2048 4096 8192 16384

208772_at pn9 Normnalised intensity

Figure 2: A typical scatter diagram for two correctly functioning members of
the same probe set. Note the logarithmic scales (the underlying distributions are
approximately log-normal).

Figure 2 presents a clear picture of two correctly functioning probes. How-
ever, it is not feasible to study the 55 possible scatter diagrams for the members
of a typical probe set. A swifter visual alternative is provided by a heatmap of
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correlations such as that illustrated in Figure 3. It is immediately apparent that
one probe is not behaving in an expected fashion.
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Figure 3: A heatmap showing one member of a probe set that is not well correlated
with the other members (which are reasonably well correlated with one another).
The numbers are correlations multiplied by 10 and rounded.

Possibilities that occurred to us were that the probe sequence (TCCTGGACT-
GAGAAAGGGGGTTCCT) corresponded to more than one gene, or that there
had been some form of transcription error. We calculated, for all the probes in
two related probesets, their correlations with about 245 000 other probes. The re-
sult is shown in Figure 4: there are four probes that are conspicuously different to
the others (they have correlations that exceed 0.5 with around 15 000 other probes
across the microarray). Clearly this is not a genetic effect. The key to discov-
ering the cause was shown by the probe sequences of the four atypical probes:
all contained the base sequence GGGG. It turns out that there is a biochemical
explanation for why such probes are atypical: the implication is that such probes
are not effective and should not be included. For details see Sanchez-Graillet et al
(2008) and Upton et al (2009a).

For the previous situation it was the similarity of the probe sequences that
provided the clue to the misbehaving probes. In the next case, there is a very
different type of explanation. The problem (and its solution) emerged when we
created a composite heat map (Figure 5) for two unrelated genes.
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Figure 4: A graph showing, for each of a number of related probes, the right-
handend of the cumulative distribution of their correlations with around 245 000
other probes. The top four probes therefore have correlations that exceed 0.5 with
nearly 15000 other probes.

In Figure 5 we see that probe 16 is not well correlated with the other members
of its probe set, but it is surprisingly well correlated with probe 1. The answer to
the question “What do these probes have in common?’ is that they sit adjacent to
the outer edge of the microarray. This outer edge includes an alternating sequence
of extremely high-valued probes. Our investigations (described in detail in Upton,
2009b) again used correlation as a discovery tool.

Table 2: The typical average correlation between the values of probe that have
large-valued neighbours. The probes are subdivided by the value of their largest
neighbour.

In(Value of largest neighbour) | 4.0- 5.0- 6.0- 7.0- 8.0- 9.0+
Median correlation 0.07 0.13 025 0.50 0.70 0.85
No. of probes (*000) 893 373 67 14 4 3

Table 2 shows how the typical correlations between the neighbours of large-
valued probes is influenced by the magnitude of the large neighbour. Evidently the
correlation is greatest for those with the largest neighbours (as with those probes
adjacent to the edge of the microarray). To properly understand this phenomenon
requires some understanding of how values are assigned to probes.

To quantify the levels at which genes are expressed, a fresh microarray is
immersed in a ‘soup’ containing biological material and a fluorescent marker.
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Figure 5: A composite heatmap for two unrelated probe sets. Probes 1 to 11 are
well correlated, as are (for the most part) probes 12 to 22. The features of interest
concern probe 16, which is poorly correlated with the others in its probe set, but
is (relatively) well correlated with probe 1.

Following a set protocol, the microarray is withdrawn and thoroughly washed so
that the only biological material that remains is that which has bound itself to the
material initially on the microarray. The microarray is then scanned by a laser
and the amount of fluorescence at each location provides the quantification that
is assigned to the probe and is presumed to indicate the expression level of the
corresponding gene.

The laser is therefore effectively ‘seeing stars’. When we look at stars in
the sky we do not see well-defined circles, but simply regions of light that are
brightest in the centre. So it is when the laser looks at the microarray and there
are interesting statistical issues (not directly relevant here) concerning the formula
used to change the initial laser records into the value reported. What is relevant
is that a poorly focused laser will blur all the bright dots to a greater extent than
will a well-focused laser. Poor focusing implies that some of the blurred light
may be assigned to a neighbouring probe. Since this happens to the same extent
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across the entire microarray it follows that these neighbouring values will have
the correlated values that are reported in Table 2.
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Figure 6: A time series graph for a single laser scanner. The quantity plotted is
the simple ratio of the variance of the logarithms of the values on a single array to
the median of this variance for all arrays. High values correspond to sharp images
and low values to blurred images.

Since each GeneChip data set records both the date at which the data were
recorded and the identity of the laser scanner used it is possible to track the per-
formance of scanners over time. Figure 6 shows a previously unreported time
series for a particular scanner. Ignoring some obvious outliers it is obcious that
this scanner was performing well in 2005, but was starting to deteriorate in 2006.
Similar results have been found for other scanners.
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6 Summary

This paper will stand out from its peers because of its concentration on context
and complete absence of equations. However, the reader should not be misled
into thinking that because the techniques reported (the use of the maximum, the
median and linear correlation) are simple, that the subject matter is also simple.
The difficulties lie in the huge amount of data (that needs to be efficiently manip-
ulated) and the wide variety of sources of variation, some obvious and intended
(genetic make-up), some biochemical (the problems with probes containing the
GGGG sequences — we believe that there are others such), some due to the con-
struction of the microarrays (we have not previously mentioned that each probe is
one of a pair, with the second probe intended as a measure of background but often
greater than the primary probe) and some physical (the inability of laser scanners
to perfectly measure the light intensity of microscopically small light sources).

Microarrays are growing ever more varied and their capabilities are being ex-
tended. The latest arrays from Affymetrix use smaller sized features to provide in-
formation on more than six million probes simultaneously. Accurate measurement
is therefore more challenging and the need for statistical techniques is enhanced.

This paper has concentrated on microarrays because that is the region that the
Essex team has been addressing. However, it should be realised that any book on
Bioinformatics will be addressing only a few pages on this branch of the subject.
There is plenty of scope for mathematicians of all types (both pure and applied)
in addressing the many challenges that Nature has presented.
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