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Household panel data provide valuable information about the extent of
similarity in coresidents’ attitudes and behaviours. However, existing analy-
sis approaches do not allow for the complex association structures that arise
due to changes in household composition over time. We propose a flexible
marginal modeling approach where the changing correlation structure be-
tween individuals is modeled directly and the parameters estimated using
second-order generalized estimating equations (GEE2). A key component of
our correlation model specification is the “superhousehold”, a form of social
network in which pairs of observations from different individuals are con-
nected (directly or indirectly) by coresidence. These superhouseholds parti-
tion observations into clusters with nonstandard and highly variable correla-
tion structures. We thus conduct a simulation study to evaluate the accuracy
and stability of GEE2 for these models. Our approach is then applied in an
analysis of individuals’ attitudes towards gender roles using British House-
hold Panel Survey data. We find strong evidence of between-individual cor-
relation before, during and after coresidence, with large differences among
spouses, parent–child, other family, and unrelated pairs. Our results suggest
that these dependencies are due to a combination of nonrandom sorting and
causal effects of coresidence.

1. Introduction. In the social sciences, there is considerable interest in study-
ing dependencies in the attitudes and behaviors of members of the same house-
hold. Previous research on couples suggests that such dependencies can be mainly
explained by homogamy or a causal effect of coresidence [Brynin, Longhi and
Martínez Pérez (2008), Butterworth and Rodgers (2006), Davillas and Pudney
(2017)]. Homogamy is a form of assortative mating wherein individuals se-
lect partners with similar social, cultural and demographic characteristics [e.g.,
Blackwell and Lichter (2004), Kalmijn (1998)], and is a special case of homophily
which refers to the tendency for people to form social connections with people
like themselves [McPherson, Smith-Lovin and Cook (2001)]. In contrast, a causal
effect of coresidence arises when the (possibly reciprocal) influence of one cores-
ident partner on another, and shared experiences and influences of family, friends
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and lifestyle factors, causes their attitudes and behaviors to converge over time.
There is evidence of couple concordance in social and political attitudes [Brynin,
Longhi and Martínez Pérez (2008)] and health indicators [Davillas and Pudney
(2017)]. Moving beyond couples to include other coresidents, within-household
correlations have been found across a range of individual outcomes such as vot-
ing in political elections [Johnston et al. (2005)], happiness and well-being [Ballas
and Tranmer (2012)], and self-rated health [Chandola et al. (2003), Sacker, Wig-
gins and Bartley (2006)].

In this paper, we examine individuals’ views about the relative contributions
made by men and women to household income and looking after home and family,
using longitudinal data from the British Household Panel Survey (BHPS). Previous
studies of attitudinal change have focused on either the effects of individual and
household characteristics on these attitudes [Berridge, Penn and Ganjali (2009),
Sweeting et al. (2014)], or the concordance of attitudes within couples [Brynin,
Longhi and Martínez Pérez (2008)]. We extend this work to explore whether
the association between an individual’s attitudes and those of other individuals
changes before, during and after they were members of the same household, and
test whether the similarity found between married and cohabiting partners found
elsewhere [Brynin, Longhi and Martínez Pérez (2008)] extends to parents and their
children, other family pairs, and unrelated sharers.

The main methodological challenges are estimating covariate effects on indi-
vidual outcomes and modeling the complex association structures for these out-
comes. This complexity arises because of the changes in household composition
over time following, for example, union formation and dissolution, and children
leaving or returning to the parental home. Such changes are commonly reflected in
the design of household panel studies, which follow the original sample members
and their new coresidents. This causes problems because household clusters are
defined entirely in terms of their members (usually as groups of people sharing
living accommodation or one meal a day). In contrast, clusters such as schools
and areas are uniquely identified entities which remain fixed no matter what mem-
bership changes occur. Hence, while identifiers for fixed entities like schools and
areas are naturally time-invariant, it is unclear how to define “longitudinal house-
holds” and attempts to do so have been described as “futile” [Duncan and Hill
(1985)]. An alternative view of households, which we adopt in this paper, is as
“evolving social networks” [Murphy (1996)]. Figure 1 illustrates the formation of
such a network over three waves. At the first wave, there is one household con-
sisting of a couple (A, B) and their son C [Figure 1(a)]. The couple has split by
the second wave, with the man A forming a new single-person household and the
woman B remaining with C. By the third wave, A has formed a new partnership
with D, C has left home to live with friend E, and B’s household does not respond.
The network at wave 3, containing all five individuals, is shown in the graph of
Figure 1(b). Other examples of clusters that could also be viewed as evolving net-
works are peer groups, defined as children taught in the same class or living in the
same neighbourhood, and friendship networks.
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(a) Household membership at each wave with gender and age of each individual
at entry to the panel. Coresidents are grouped together.

(b) Network members with coresidence status at t = 3.

FIG. 1. Illustration of the evolution of a household network over 3 waves.

The difficulty in defining longitudinal households is reflected in the methods
commonly used for panel data analysis. The standard approach to the analysis of
an individual-level outcome is simply to ignore household effects, and account
for changes in coresidents through the inclusion of covariates which index these
changes. Those studies which have considered household effects have focused on
outcomes from one wave [Ballas and Tranmer (2012), Chandola et al. (2003),
Johnston et al. (2005)], or restricted analysis to households (usually couples) that
have remained together for the entire observation period [e.g., Keizer and Schenk
(2012)]. The first of these approaches does not fully exploit the available panel
data, while the second leads to highly selective analysis samples in long panels.

To date, the only approach explicitly allowing changes in household composi-
tion is the multiple membership random effects model [Goldstein et al. (2000)]. We
argue that this approach is too restrictive because it constrains the association struc-
ture among coresidents in an unrealistic way and, more generally, that random ef-
fects models are less suitable when clusters are defined entirely by their members.
Instead, we propose a more flexible marginal modeling approach that allows us to
directly model and estimate the association structure between coresidents. By tak-
ing the individual as the unit of analysis, and incorporating household-composition
changes directly into the association model, it is unnecessary to define longitudi-
nal households, or restrict analyses to fixed-membership households. Our approach
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thus reflects the view that a household panel study is “a study of individuals in their
changing household contexts” [Buck and McFall (2012), page 7].

2. Panel models. We now introduce notation and set out a general panel
model for the mean outcome and the between-outcome covariance structure for
panel data on individuals and their coresidents. Random effects and marginal for-
mulations of this model are respectively described in Sections 3 and 4.

Let Yti be the outcome at wave t (t = 1, . . . , T ), and Yi = (Y1i , . . . , YT i)
′ the

vector of all outcomes, for individual i (i = 1, . . . , n). We make the usual simpli-
fying assumption that all individuals are interviewed at the same point in calendar
time, and that every between-wave interval is of equal length. The outcomes are
taken to follow the marginal model

(1) Yti = μt(xt i ) + rti,

where xt i is a vector of explanatory variables, μt(xt i ) = E(Yti |xt i ) is the mean
outcome and rti is the zero-mean model residual. For the application in this paper,
we take the mean outcome to follow the linear model

(2) μt(xt i ) = x′
t iβ,

where β is a vector of regression coefficients. We are equally interested in the
between-outcome covariances

(3) cov(Yti, Yt ′i′ |xt i ,xt ′i′) = σti,t ′i′(xt i ,xt ′i′),

including the pairs where i = i ′ or t = t ′. Note that μt and σti,t ′i′ may involve
different components of xt i because each model has separate covariates of direct
substantive interest.

The way in which household effects are accounted for in this model depends on
the modeling approach used. For the random effects models which we discuss in
Section 3, household enters through the decomposition of residual rti into distinct
components which include one for household. Conversely, for the marginal models
we develop in Section 4, household enters through parameterizing σti,t ′i′ to reflect
whether and how individuals i �= i′ are connected by coresidence.

Whichever modeling approach is used, we consider nonzero covariances to be
plausible in two situations: for variances and (auto)covariances on the same indi-
vidual (that is, when i = i ′); and for different individuals connected through having
been residents in the same household(s). We elaborate on this below, but first we
introduce the coresidence-status indicator for i and i ′ at wave t :

(4) ct

(
i, i′

) =
{

1 if i and i ′ are coresident at wave t,

0 otherwise,

where ct (i, i
′) = 1 if i′ = i. The members of individual i’s household at wave

t can thus be denoted by the set Mti = {i′ : ct (i, i
′) = 1}, where Mti = Mti′ for

all coresident pairs (i, i ′). The households are labelled h = 1, . . . ,H where hti ∈
{1, . . . ,H } is the label for Mti such that hti = hti′ for all coresidents.
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3. Random effects models. We first review and critique random effects spec-
ifications of (1)–(3). We begin with hierarchical models that incorporate household
effects for the situation where the composition of each individual’s household re-
mains fixed for the duration of the panel. This is followed by a description of
nonhierarchical multiple membership models that allow for changes in household
membership over time.

3.1. Three-level models for fixed household membership. Consider first the
special case where each household remains fixed across waves, so that hti = hi for
all t , i. Conventional random effects models can then be used to fit (1)–(3) and its
nonlinear generalisations [Goldstein (2010)]. In particular, the classical three-level
hierarchical model takes observations Yti to be nested within individuals, and indi-
viduals within the unchanging households. It decomposes the residual term in (1)
as rti = eti + ai + uhi

where eti is an outcome-specific residual, ai an individual-
level random effect and uhi

the random effect for household hi , and all of these
terms are taken to have zero mean and to be homoscedastic and mutually uncor-
related. Letting σ 2

u = var(uhi
) and σ 2

a = var(ai), the conditional covariances are
then

(5) σti,t ′i′(xt i ,xt ′i′) = I
(
i = i ′

)
σ 2

a + I(hi = hi′) σ 2
u .

This implies that there are two kinds of nonzero conditional dependencies of the
outcomes: the within-individual autocovariances σti,t ′i (xt i ,xt ′i ) = σ 2

a + σ 2
u for all

t �= t ′, and the within-household covariances σti,t ′i′(xt i ,xt ′i′) = σ 2
u between all in-

dividuals i �= i′ in the same household.
Three-level random effects models have been proposed for the analysis of re-

peated measures data on individuals in couples or families [Atkins (2005)]. An al-
ternative but closely related approach suitable for couples and other family dyads
is a bivariate two-level model [Raudenbush, Brennan and Barnett (1995)]. These
approaches have been applied widely in couple research, with analyses based on
household panel data restricted to individuals who remain with the same partner
throughout the observation period [e.g., Keizer and Schenk (2012)]. A three-level
model was also used in a study of household effects that included all adult respon-
dents, rather than only couples, but the treatment of households which change over
time was not discussed [Milner et al. (2014)].

Another type of three-level model is the dynamic group model which includes
time-varying group-level random effects [Bauer et al. (2013)]. While changing
group membership is potentially a reason to allow time-varying random effects,
the application of these models is limited to groups defined by entities that remain
fixed over time even if group membership changes. Moreover, dynamic group
models were explicitly formulated to answer research questions about temporal
patterns in group effects over time—for example, the stability of school effects
in Leckie and Goldstein (2009)—whereas our focus is specifically on questions
concerning correlations between group members.
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3.2. Multiple membership models for time-varying household membership.
We now return to the general situation where the composition of an individual’s
household may change over time. The only approach which has up to now been
available for this case is multiple membership random effects modeling as pro-
posed by Goldstein et al. (2000). These models are again based on decomposing
the residual rti in (1) as rti = eti + ai + uti , where uti is now a random effect for
the time-varying household. It is specified as

(6) uti =
H∑

h=1

wh(ti)u
∗
h

where the u∗
h are identically distributed zero-mean random variables for all the

distinct households, taken to have var(u∗
h) = σ 2

u and to be independent of each
other and of the explanatory variables x. The weights wh(ti) are specified by the
analyst and are nonzero if i was a member of h for at least one wave, and zero
otherwise. In other words, the household effect uti for an individual i at wave t

is formed as a weighted sum of effects contributed by the individual’s different
households over time. If the variances of eti and ai are constant, the variance of
rti is also constant if

∑
h w2

h(ti) = 1 [Goldstein et al. (2000) assumed, instead, that∑
h wh(ti) = 1].
In a multiple membership model, the conditional dependencies of observations

Yti are implied by the choice of the weights wh(ti). For instance, suppose that the
household effect uti is defined as an equally weighted sum of the effects of the dti

distinct households that individual i has belonged to in the observed waves up to
t , so that wh(ti) = 1/

√
dti for these households and wh(ti) = 0 otherwise. Then,

for example, the conditional correlation between Yti and Yti′ is proportional to
st (ii′)/

√
dtidti′ , where st (ii′) is the number of distinct households that individuals i

and i ′ have shared up to wave t .
Such implied correlation structures are not always substantively satisfactory.

In the case introduced above, for example, the correlation depends on how many
households the individuals have shared, but not when this sharing took place. It
also depends on the total numbers of households that have so far been observed
for the individuals. Since this can be no larger than the current wave t , for a given
st (ii′) the correlation is often higher for early waves of the study than for later
ones. Each of these features could be changed by modifying the specification of
the weights, but any such choice would introduce problems of its own. We are not
aware of any way of defining a multiple membership household effect (6) which
would not imply counterintuitive patterns of association in some situations.

Even if a multiple membership model always gave coherent associations, it
would still be poorly suited to our goals. This is because, as observed by Prentice
and Zhao [(1991), page 827], “a given random effects model and distributional
assumption implies a corresponding covariance structure on the response vector.
This structure may involve a parameterization that is not sufficiently flexible or
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interpretable, especially if the covariances are of substantive interest”. In our ap-
plication the changing association structure between individuals is of interest, and
we want to model it directly and to examine specific hypotheses about it. Instead
of random effects models, this goal is better achieved by using marginal model-
ing. In the rest of this article we focus on this approach for data with time-varying
household membership.

4. A marginal modeling approach. We now set out a marginal modeling
approach for household panel data. The joint model comprises distinct marginal
models for the mean of each outcome, the variance of these outcomes and the pair-
wise correlations between the outcomes of different individuals (or of the same
individual at different waves). A key component of the correlation model speci-
fication is what we refer to as a superhousehold. This is an artificial group con-
structed to contain individuals whose outcomes are potentially correlated because
they have experienced shared influences from the same (cross-sectional) house-
holds over time; conversely, there is no correlation between individuals in different
superhouseholds. In this way, superhouseholds impose a loose cluster structure on
the correlation matrix but, in contrast to standard marginal models for panel data,
the within-cluster structure can vary between superhouseholds.

4.1. Specification of the marginal models. Suppose there are nk individu-
als and mk person-wave observations in cluster k (k = 1, . . . ,K) (noting that∑

k nk = n), and let Ytik be the response at wave t for person i in cluster k.
(The definition of the superhouseholds used to determine these clusters is de-
ferred until Section 4.3.) Define the conditional expectation, scale and pairwise
correlation as μtik = E(Ytik|x1,tik), φtik = var(Ytik|x2,tik)/vtik and ρtik,t ′i′k =
cor(Ytik, Yt ′i′k|x3,tik,t ′i′k) where vtik is the variance function. The covariate vec-
tors x1,tik and x2,tik may contain a mix of time-varying and individual-specific
characteristics, while x3,tik,t ′i′k may contain variables that characterise the pair of
person-wave observations (ti, t ′i ′), for example the coresidence status of individ-
uals i and i′ at waves t and t ′.

Collating for cluster k, we let Yk = (Y11k, . . . , YT nkk) be the mk × 1 response
vector for cluster k, and μk , φk and ρk be the corresponding mk × 1 mean and
scale vectors and mk(mk − 1)/2 × 1 correlation vector, respectively. We further let
X1k , X2k and X3k be the covariate matrices for the mean, variance and correlation
functions respectively. Following Yan and Fine (2004), we specify generalized
linear models for the marginal conditional expectation, scale and correlation of Yk

as

g1(μk) = X1kβ,(7)

g2(φk) = X2kγ ,(8)

g3(ρk) = X3kα,(9)
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where g1(·), g2(·) and g3(·) are link functions and β , γ and α are parameter vec-
tors. To ensure positive variance estimates and correlation estimates in the inter-
val (−1,1), common choices for g2(·) and g3(·) are, respectively, the exponential
and hyperbolic tangent functions. However, when X2k and X3k consist only of in-
dicator variables, identity links may be adequate, and lead to more interpretable
parameters. In our application (see Section 7), the parameters of (7) and (9) are
of primary substantive interest and therefore X2k is specified as a constant vector;
X3k will contain a set of characteristics for each pair of observations (Ytik, Yt ′i′k)
in cluster k, including indicators that distinguish between observations on the same
person (t < t ′, i = i ′) or on two coresidents (t ≤ t ′, i �= i ′); for coresidents, indica-
tors are also defined to denote their coresidence status (future, current or past) at t

and t ′.

4.2. Estimation. We use an extension of the generalized estimating equations
(GEE) approach of Liang and Zeger (1986) for simultaneous estimation of the
marginal mean and association structure of a multivariate response [Liang, Zeger
and Qaqish (1992), Prentice and Zhao (1991)]. This approach, commonly referred
to as second-order GEE (GEE2), is appropriate in situations where the association
structure is of primary substantive interest. The advantage of standard first-order
GEE over GEE2 is that it produces estimates of the mean parameters which are
robust to incorrectly specified covariance models, but this is only an advantage if
the parameters of the covariance matrix are not of substantive interest.

We adopt the approach of Yan and Fine (2004) by modeling the association
structure with separate estimating equations for the scale and correlation. One ad-
vantage of modeling correlations rather than covariances is that correlation param-
eters have a more natural interpretation. The system of three estimating equations
for the mean, scale and correlation parameters is

u(β,γ ,α) =
K∑

k=1

⎛
⎝D1k 0 0

0 D2k 0
0 0 D3k

⎞
⎠

′ ⎛
⎝V1k 0 0

0 V2k 0
0 0 V3k

⎞
⎠

−1 ⎛
⎝Yk − μk

sk − φk

rk − ρk

⎞
⎠ ,

where sk and rk are the vectors of empirical variances and pairwise correlations,
D1k , D2k and D3k are matrices of first derivatives of μk , φk and ρk with respect
to parameters β , γ and α, and V1k , V2k and V3k are the conditional working co-
variance matrices of Yk , sk and rk . The equations may be solved using a modified
Fisher scoring algorithm which has been implemented in the R package geep-
ack [Højsgaard, Halekoh and Yan (2006)]. Standard errors may be obtained using
jacknife variance estimators, but less computationally intensive robust sandwich
variance estimators were found to perform well in the simulation study and appli-
cation that follow.
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4.3. Superhousehold definition. We now formally define the superhousehold
clusters for the joint marginal model. As discussed in Section 1, individuals chang-
ing household over time can be thought of as an “evolving network” [Murphy
(1996)]. In this context, the social network evolves as individuals move from their
original households at entry to the panel, and we can define a superhousehold by
grouping together individuals who are connected by having ever been coresident.
Figure 1 made clear that connections between individuals can be represented by a
network graph in which the coresidence of two individuals is indicated by an edge
between them. In general, a superhousehold is a group of individuals linked by
pathways of edges in the network graph; if no such pathway can be found between
a pair of individuals then they must necessarily be in different superhouseholds.
A pathway will thus exist if the pair were coresident at any wave (a direct con-
nection), or if they were never coresidents but one them was coresident with a
third person who was ever coresident with the other member of the pair (an in-
direct connection). In Figure 1, for example, B and D have never lived together,
but are indirectly connected through their coresidence with A at different waves.
The cluster at t contains all observations contributed by this set of individuals for
waves 1, . . . , t . The clusters in the model specified by (7)–(9) correspond to the
superhouseholds at the final observed wave T .

Using this formulation, we can focus on parameterizing the correlation between
individuals in superhouseholds, in line with how each pair is connected. The con-
struction of a network graph and the identification of superhousehold clusters only
requires that we are able to identify the (cross-sectional) coresidence status of in-
dividuals at each wave. In contrast to the three-level modeling approach, we do not
need to choose between unsatisfactory definitions of a longitudinal household.

More generally, denote by N = (V,E) the undirected network graph at wave T ,
where V = {1, . . . , n} is the set of vertices/individuals, E = {CT (i, i′) : for all i �=
i ′ ∈ V} is the set of edges between them, and

(10) Ct

(
i, i′

) =

⎧⎪⎪⎨
⎪⎪⎩

1 if
t∑

t ′=1

ct ′
(
i, i′

)
> 0,

0 otherwise

for t = 1, . . . , T is the superhousehold coresidence indicator at wave t . Us-
ing this notation, the members of individual i’s superhousehold are Si = {i ′ :
pathN (i, i′) = 1}, where pathN (i, i′) = 1 if N contains a pathway between i and
i′ or else zero, and pathN (i, i) = 1. If the superhousehold clusters are indexed by
k, then the index of superhousehold Si can be denoted by ki such that ki = ki′ if
Si = Si′ and ki �= ki′ if Si �= Si′ .

An important point to note is that the edges in N represent the presence of con-
ditional associations between pairs of individuals given the rest, and not pairwise-
marginal associations. This is not problematic for normally distributed residuals



376 F. STEELE, P. S. CLARKE AND J. KUHA

because although conditional covariances are nonzero for pairs connected by path-
ways in N , and zero otherwise [e.g., Jones and West (2005)], this implies that all
marginal correlations between pairs of individuals within the same superhousehold
are nonzero.

4.4. Positive definite correlation matrices. As noted above, we can ensure that
the GEE2 estimator of α yields estimates of the pairwise correlations in the (−1,1)

range by using a hyperbolic tangent link function. Nevertheless, the GEE2 estima-
tor does not constrain the fitted correlation matrix under model (9) to be posi-
tive definite. While other approaches are available which could potentially do this,
we argue that these are unsuitable for the present application, in which household
transitions lead to superhouseholds with distinct and unpatterned correlation struc-
tures.

Within the GEE framework, quasi least squares regression can be used to en-
sure the fitted correlation matrix is feasible in the sense of being positive definite
[Chaganty (1997)]. However, the analyst must derive bounds for the correlations
based on the structure imposed on the correlation matrix. Bounds have been de-
rived for a range of longitudinal and nested structures [Shults and Hilbe (2014)],
but in our case the feasible parameter space cannot easily be calculated as su-
perhouseholds do not have patterned correlation structures. Most other approaches
are based on constrained maximum likelihood estimation of joint mean-covariance
models [e.g., Jennrich and Schluchter (1986), Pourahmadi (1999)], but to date the
implementation of these methods has been confined to patterns where the form
of the within-cluster covariance matrix is the same across clusters. More gen-
eral approaches present substantial computational challenges [Chiu, Leonard and
Tsui (1996)], or are suitable for observations with a spatial or temporal structure
[Gneiting (2002)].

We thus propose to use GEE2, despite its not being able to guarantee positive-
definite correlation matrices, because our substantive interest lies in obtaining ac-
curate estimates of the population correlation parameters rather than the corre-
lation matrix for each superhousehold. If our correlation model were correctly
specified (or at least not badly mis-specified) then the impact of failing to con-
strain our estimates to produce positive-definite correlation matrices would be
an estimator with increased bias and lower precision, but we could interpret our
correlation-parameter estimates in the same way even if one or more of the esti-
mated superhousehold correlation matrices were not positive definite. Conversely,
if the correlation model were badly mis-specified, Crowder (1995) showed that a
mis-specified working correlation matrix could result in nonpositive-definite cor-
relation matrices and inconsistent joint estimators for which the usual asymptotic
results do not hold. However, as Crowder [(1995), page 410] suggests, “in prac-
tice, statistical judgement would normally be employed in an attempt to avoid such
hidden pitfalls.”
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We investigate this issue empirically in the simulation study by considering the
frequency with which nonpositive definite estimates of the superhousehold corre-
lation matrices occur and, in the application to gender role attitudes, by checking
whether the estimated superhousehold correlation matrices are positive definite or
not (in the event, every correlation matrix was estimated to be positive definite).
Further discussion of positive-definite correlation matrices can be found in the
Supplementary Material [Steele, Clarke and Kuha (2019)].

4.5. Missing data. In the presence of missing data, our estimates use the data
from all respondent-wave observations where (Yti,xt i ) are completely observed.
GEE estimators based on these data are generally consistent only if the data are
missing completely at random, that is, nonresponse is independent of any vari-
able (covariate or outcome) in the model. Inferences from missing at random data,
where nonresponse depends only on the values of the observed variables, can be
obtained by incorporating a model for the nonresponse probability into the esti-
mating equations [Robins, Rotnitzky and Zhao (1995)].

5. British household panel survey. Our data are from the British House-
hold Panel Survey (BHPS), which began in 1991 with 10,300 adult (aged 16 or
over) residents in 5500 households [ISER (2009)]. These original sample mem-
bers (OSMs) are followed up and interviewed annually. People who form house-
holds with OSMs after 1991 are referred to as temporary sample members, un-
less they have children with OSMs in which case they become permanent sample
members (PSMs); children of OSMs also become PSMs after turning 16. Like
OSMs, PSMs are then followed regardless of whether they remain coresident with
an OSM. Tracking of OSMs and PSMs and their households allows identification
of correlations between future, current and previous coresidents. We use data from
waves 1–17 between 1991 and 2008.

5.1. Household structures. A major motivation for our modeling approach is
that changes in household composition over time lead to complex nonhierarchical
structures where person-wave observations are not nested in households. In BHPS,
12.7% of adult members of a sample household for two consecutive waves experi-
ence a change in their adult coresidents between waves t and t + 1 (t = 1, . . . ,16;
n = 204,367 person-waves), where an adult is defined as a potential BHPS re-
spondent. The proportion experiencing a change increases to 31.8% over a 5-year
interval (n = 106,795), 44.0% for a 10-year interval (n = 41,708) and 50.5% for
a 15-year interval (n = 9779). Thus there is appreciable churn in household mem-
bership during the period of observation. Further analysis of the types of event that
lead to household change is given in the Supplementary Material [Table S1, Steele,
Clarke and Kuha (2019)].
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The superhouseholds we use to define clusters are created using cross-wave
individual and cross-sectional household identifiers. These identifiers allow us
to infer the coresidence of any pair of respondents at waves t and t ′. In prac-
tice, the construction of superhouseholds is challenging because household panel
studies have complex designs. In particular, any algorithm must account for new
entrants (from single individuals to entire households) at each wave, individuals
who rejoin previous coresidents (e.g., children returning to the parental home),
and wave nonresponse of households and individuals within households. Fur-
ther details are provided in the Supplementary Material [Steele, Clarke and Kuha
(2019)].

5.2. Response variable and covariates for the mean and correlation functions.
The response variable is an index of attitudes towards gender roles obtained from
a principal components analysis of six ordinal items. The items measure strength
of agreement with statements such as “family life suffers when the woman has a
full time job” and “both the husband and wife should contribute to the household
income.” The response is the standardized score for the first principal component,
with high values corresponding to more egalitarian attitudes. These questions were
asked of the adult respondents every two years so that each individual is observed
for a maximum of nine waves (although the mean is 3.9 waves due to a combi-
nation of late entry into the study, wave nonresponse and attrition). The analysis
sample contains 27,033 adult individuals who contribute 106,060 person-wave ob-
servations. There are 11,460 superhousehold clusters at wave 17, ranging in size
from 1 to 100 person-wave observations (mean = 9.4, SD = 9.0).

The marginal model for the mean attitude includes the following covariates: age
in years (centred at 45), gender, highest academic qualifications (none, below uni-
versity level, university degree), marital status (married/civil partnership, cohabit-
ing, widowed, separated/divorced, never married), housing tenure (own outright,
own with mortgage, social housing, private rental), and survey year. The choice of
covariates was informed by previous studies of gender role attitudes using BHPS
data [e.g., Berridge, Penn and Ganjali (2009), Sweeting et al. (2014)].

However, the correlation structure is the focus of our application. We wish to
estimate the correlation between different individuals’ attitudes while they are liv-
ing together (“current” coresidents) and test whether this correlation persists after
coresidence ends (“past” coresidents). Specific research questions, and details of
the covariates X3k from (9) are given in Section 7. This design matrix contains
891,951 pairs of person-wave observations across the superhouseholds. A small
number are of size 1 (single-person households observed for only one wave) and
so do not contribute to the estimation of the correlation structure. The number of
pairs per superhousehold ranges from 1 to 4950 (= 0.5 × 100 × 99 as 100 is the
maximum cluster size).
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6. Simulation study.

6.1. Design. As discussed earlier, there may be considerable between-super-
household variation in the correlation structure ρk . This can lead to covariance
matrices with irregular structures that can be problematic to estimate [Dempster
(1972)]. We hence carry out a simulation study to assess the performance of the
GEE estimator across a range of complex correlation structures.

We generate BHPS-like data with complex dependence structures using a two-
stage approach. The first stage involves generating superhouseholds by sampling
the actual changes in household membership observed in the BHPS. This is done
by listing the superhouseholds constructed in Section 4.3 and selecting super-
households from this list. Once a superhousehold is selected, the time-varying
household structure of its members is fixed for the second stage of the simula-
tion. The second stage involves generating realisations of the outcome variable
using a data generating model (DGM) which respects the within-superhousehold
correlation structure.

For balanced designs, one superhousehold is selected and the clusters formed
by generating M realisations from the DGM described below. For unbalanced de-
signs, M superhouseholds are sampled with replacement from the 11,460 BHPS
superhouseholds in the analysis sample, and a realisation generated for each un-
der the DGM. The sampling of superhouseholds was repeated to generate each
replicate of the simulation. The DGM itself is a simplified version of the models
we fit in Section 7. For each correlation structure, it has a single parameter α1 for
within-individual correlations and three between-individual correlation parameters
for individuals i and i ′ at waves t and t ′ (t ≤ t ′): α2 if coresident at both t and t ′,
α3 if coresident at t but not t ′, and α4 if past coresidents at both t and t ′. As was
discussed in Section 4.3, it is unrealistic to generate zero correlations between in-
dividuals in the same superhousehold, so we also specify α5 to be the correlation
for future or never coresidents (set to 0.15 in the DGM).

The design matrix for the correlation model was formed from the observed de-
sign matrices for the selected superhousehold(s). The DGM for the mean model
includes an intercept, a dummy for female, and a linear effect of age (centred at 45
years), with associated parameters (β0, β1, β2). The mean structure was generated
using the observed values of these covariates for the person-wave observations in
the selected BHPS superhouseholds. The DGM for the residual variance or scale
function contains only an intercept term (γ ). The identity link was used for all three
submodels. All parameter values are based on the estimates obtained from fitting
the true model to the full BHPS sample with standardized gender-role attitudes as
the response.

The results for each scenario described below are based on 500 simulated
datasets. A series of models with different correlation structures was fitted to
each simulated data set, ranging from M1 (within-individual autocorrelation only)
through to the correct model (M4). Each fitted model includes an additional
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“other” correlation parameter ᾱ (which equals α5 under M4) for the complement of
the other indicators in the model (that is, 1 minus the sum of the other indicators).
This additional parameter is not of substantive interest, but avoids imposing any
zero constraints on the within-cluster correlations. The mean and scale functions
were correctly specified in all fitted models.

6.2. Results. We considered a number of balanced designs each based on
M = 5000 copies of one selected BHPS superhousehold (or M = 1000 copies
for larger superhouseholds). The simplest superhousehold contained a couple ob-
served together at all waves with no other adult coresidents, leading to a three-level
hierarchical structure. More complex and irregular superhousehold structures aris-
ing from multiple changes in household membership over the observation period
were also considered. For example, Supplementary Table S2 [Steele, Clarke and
Kuha (2019)] shows the results for a superhousehold containing 25 person-wave
observations from five individuals. For this and every other balanced design con-
sidered, the convergence rate was 100%, the implied fitted correlation matrix was
always positive definite, estimates and standard errors were unbiased, and the con-
fidence interval coverage probabilities were close to the nominal 95% level.

We now turn to the unbalanced case. Table 1 shows the results for replicates
where the fitted model converged (determined by the difference between succes-

TABLE 1
Simulation results for an unbalanced design with r = 500 replicates of M = 5000 superhouseholds
selected with replacement from the BHPS data. Results are shown for the rC replicates for which

convergence was achieved

Mean function Scale Correlation function

β0 β1 β2 γ α1 α2 α3 α4

True −0.1 0.25 −0.015 0.9 0.6 0.3 0.2 0.2
M2 (rC = 323)

Mean −0.100 0.249 −0.015 0.899 0.599 0.296 – –
Mean SE 0.016 0.017 0.001 0.011 0.009 0.014 – –
SD 0.013 0.014 0.000 0.011 0.009 0.015 – –
95% coverage 0.960 0.957 0.954 0.947 0.935 0.913 – –

M3 (rC = 465)
Mean −0.099 0.249 −0.015 0.900 0.600 0.299 0.202 –
Mean SE 0.012 0.013 0.000 0.011 0.009 0.014 0.019 –
SD 0.012 0.013 0.000 0.011 0.010 0.015 0.020 –
95% coverage 0.951 0.951 0.957 0.955 0.935 0.914 0.938 –

M4 (rC = 390)
Mean −0.100 0.249 −0.015 0.899 0.599 0.298 0.202 0.200
Mean SE 0.012 0.013 0.000 0.011 0.009 0.014 0.019 0.027
SD 0.013 0.014 0.000 0.011 0.009 0.015 0.020 0.029
95% coverage 0.949 0.959 0.949 0.954 0.941 0.921 0.926 0.921
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sive iterations being less than 0.001 for every parameter). The estimator and stan-
dard error are almost unbiased with good confidence interval coverage. However,
nonconvergence is possible even if the correct model (M4) is specified (increasing
the maximum number of iterations from 25 to 50 does not improve the conver-
gence rate). Model M1 always converges because of its simple correlation struc-
ture. When convergence was not achieved, there was a small bias for the parameter
estimates, but a large positive bias for the standard errors [see Supplementary Ta-
ble S3, Steele, Clarke and Kuha (2019)]. As discussed in Section 4.3, imposing
zero constraints on correlations is undesirable and doing so will lead to sparse su-
perhousehold correlation matrices. For the unbalanced design, the estimator shows
a very high chance of nonconvergence when the “other” parameter (ᾱ) is excluded
from fitted models M2–M4. Further discussion of the simulation results can be
found in the Supplementary Materials [Steele, Clarke and Kuha (2019)].

As noted in Section 4.4, the fitted correlation matrix implied by the GEE esti-
mates of α may not be positive definite. To explore how often this might occur in
practice, we computed the number of superhouseholds with a nonpositive definite
correlation matrix for M1–M4 for the first 50 replicates of the unbalanced design
with 5000 superhouseholds. (For replicates where a model did not converge, the
correlation matrices after 25 iterations were used.) The fitted correlation matri-
ces are always positive definite for M1. For the other models, the final estimates
of α sometimes imply a nonpositive definite correlation matrix, but in each case
this affected only a small number of superhouseholds. The proportion of super-
households with a nonpositive definite matrix for replicates where convergence
was achieved ranges from 0% to 4.3% for M2, 0% to 2.3% for M3 and 0% to
1.5% for M4, and there is no discernible effect on the performance of the GEE
estimator for any parameter (Table 1). When a model did not converge, the maxi-
mum proportions increase to 7.3%, 3.2% and 5.5% for M2–M4, so there is a weak
association between nonconvergence and nonpositive definite correlation matrices
and both problems can arise even when the model is correctly specified (M4).

7. Application: Association structure of gender role attitudes in Britain.

7.1. Research questions. The application is a longitudinal analysis of gen-
der role attitudes (GRA) using data from BHPS, with a focus on the association
structure of coresidents’ attitudes. Previous research on GRA has used longitudi-
nal models that either ignore household effects [[e.g., Berridge, Penn and Gan-
jali (2009)] or studied only the cross-sectional similarity between spouses [e.g.,
Brynin, Longhi and Martínez Pérez (2008)]. We allow for temporal changes in a
person’s coresidents, and exploit the panel design to investigate questions about
the nature of between-individual correlation before, during and after coresidence.
We also extend earlier analyses of couple concordance by including all adults in a
household and testing for differences in the between-individual correlation among
family and unrelated dyads. The analysis considers the following specific research
questions:
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(i) What is the extent of the correlation between coresidents at a given wave
t and across waves t �= t ′? Cross-wave correlations during coresidence may be
explained by the presence of shared unmeasured time-invariant influences on at-
titudes, or the causal effect of one individual’s attitudes on another’s that persists
over time.

(ii) Does between-individual correlation in GRA continue after coresidence
has ended? A decay in correlation with duration since the end of coresidence would
be expected if similarity in GRA is largely due to reciprocal influences during
coresidence.

(iii) How does the correlation in GRA differ for couples, other family dyads and
unrelated sharers? Parent–child correlation is most likely explained by an influence
of the parent on the child, while for unrelated dyads homophily (nonrandom sort-
ing) and reciprocal influences may both play a role.

(iv) How do between-individual correlations change after accounting for indi-
vidual and household covariates in the model for mean attitudes?

7.2. Specification of the within-cluster correlation structure. We consider
models of the form (7)–(9) with identity links for the mean, variance and corre-
lation functions. The model for the mean includes the individual and household
characteristics described in Section 5.2. Although the general model of (8) allows
the scale φk to depend on covariates, we assume a constant residual variance. In
this section we set out the specification of the correlation structure, and the indi-
cators that form the design matrix X3k in (9), to investigate questions (i) to (iii)
above.

The within-person autocorrelations are assumed to have a Toeplitz structure,
starting with a separate parameter for each lag t ′ − t (for t < t ′), measured in
two-year intervals:

ρtik,t ′ik = αW
t ′−t , t ′ − t = 1,2, . . . ,8.

Next, we specify the between-person correlations for current, past and future
coresidents. For individuals i and i ′ in the same superhousehold k, we allow the
correlation between their responses at waves t and t ′ to depend on their coresidence
status at each wave. For t ≤ t ′, we can distinguish the four situations described
below, which are illustrated in Figure 2 for individuals (A,C,D) from Figure 1.

(a) Coresident at t and t ′. Assuming a Toeplitz structure gives

ρtik,t ′i′k = αB
1,t ′−t , t ′ − t = 0,1, . . . ,8.

For the example in Figure 1, the set of person-wave observations (ti, t ′i ′) with
this property is {(1A,1B), (1A,1C), (1B,1C), (2B,2C), (3A,3D), (3C,3E)}.
We investigate question (i) by testing whether αB

1,0 = 0 and considering the change
in the correlation with t ′ − t .
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FIG. 2. Classification of between-individual correlations at waves t and t ′ (t ≤ t ′) by coresidence
status for individuals A, C and D of Figure 1. Dashed borders indicate coresidence at that wave, and
paths represent one correlation of each of the following types: (a) coresident at t and t ′, (b) coresident
at t but not t ′, (c) past coresidents, and (d) future coresidents at t .

For pairs where at least one of t and t ′ is after or before the period of coresi-
dence, additive adjustments are made to αB

1,t ′−t as described below. This param-
eterisation differs from that used in the simulation study where the correlations
according to coresidence status at t and t ′ were estimated directly. A more gen-
eral parameterisation is necessary when the linear predictor for the correlation is
extended to allow correlations to vary across more than one dimension.

(b) Coresident at t but no longer at t ′.

ρtik,t ′i′k = αB
1,t ′−t + αB

2 , t ′ − t = 0,1, . . . ,8,

where we expect αB
2 < 0 if the correlation is lower when i and i′ are coresident at

only t relative to (a) when coresident at both t and t ′. In Figure 1, pairs with this
property are {(1A,2B), (1A,2C), (1A,3C), (1C,2A), (1C,3A)}.

(c) Past coresidents: last coresident at s < t ≤ t ′.

ρtik,t ′i′k = αB
1,t ′−t + αB

3,t−s, t − s = 1,2, . . . ,

where we expect αB
3,t−s < 0 for all t − s and |αB

3,1| < |αB
3,2| < · · · , that is, the

correlation is reduced when i and i′ are no longer coresident relative to when
they were coresident, and the correlation decreases as t − s increases. This applies
to pairs {(2A,2B), (2A,2C), (2A,3C), (2C,3A)}. Investigation of question (ii)
involves tests of αB

2 = 0 and exploring the change in αB
3,t−s with t − s.

(d) Future coresidents at t , current or past coresidents at t ′. To allow for the
possibility that individuals with similar attitudes may select into coresidence, the
correlation function for individuals who live together after t is

ρtik,t ′i′k = αB
1,t ′−t + αB

4 , t ′ − t = 0,1, . . . ,8.
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If individuals influence each other’s attitudes during coresidence, we expect
αB

4 < 0 while αB
1,t ′−t + αB

4 > 0 would be consistent with homophily. For the
example in Figure 1, at t = 1,2 individuals A and C are future partners of D
and E who enter at t = 3, and pairs contributing to the estimation of αB

4 are
{(1A,3D), (2A,3D), (1C,3E), (2C,3E)}. Due to the design of BHPS, it is ex-
tremely rare for future coresidents to both be observed prior to living together, and
thus for both t and t ′ to be before coresidence.

The elements of X3k which define the above correlation structure can be ex-
pressed respectively in terms of the household and superhousehold coresidence
indicators ct (i, i

′) from (4) and Ct(i, i
′) from (10) (see Table 2).

In addition to the indicators of coresidence status, we examine question (iii)
by defining indicators for the relationship between individuals i and i ′ (couple,
parent–child, other family or unrelated) with coefficient vector αB

5 . Table 3 shows
the distribution of pairs of person-wave observations according to the timing of t

and t ′ with respect to the period of coresidence and, among pairs contributed by
ever coresidents, the distribution by their relationship.

7.3. Model selection. As research questions (i)–(iii) in Section 7.1 are con-
cerned with the unconditional correlations in GRA among coresidents, our model-
ing strategy was to first build the correlation structure with only an intercept term
in the mean function μk before adding covariates to investigate question (iv).

TABLE 2
Within-superhousehold parameters and their corresponding indicator variables for residual
correlations between person-wave observations for individuals i and i′ at occasions t ≤ t ′

α Covariates in x3,tik,t ′i′k Description

αW
1l I(i = i′) I(t ′ − t = l) Within person

l = 1,2, . . .

αB
1l I(i �= i′)ct (i, i

′)ct ′(i, i′) I(t ′ − t = l) Coresident at both
l = 0,1, . . . t and t ′

αB
2 I(i �= i′) ct (i, i

′) {1 − ct ′(i, i′)} Coresident at t but
not t ′

αB
3l I(i �= i′) {1 − ct (i, i

′)} {1 − ct ′(i, i′)} Not coresident at t

×Cs(i, i
′) I(t − s = l) or t ′ but were co-

l = 1,2, . . . resident at s < t

αB
4 I(i �= i′) {1 − ct (i, i

′)}Ct ′(i, i′) Not coresident at t ,
only at or after t ′
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TABLE 3
Classification of person-wave pairs within superhouseholds by coresidence status and relationship

type for occasions t ≤ t ′

Number of pairs Percent

Coresidence status at occasions t and t ′ (n = 891,951)
Same person (t �= t ′) 256,505 28.8
Never coresident during observation period 139,712 15.7
Future coresidents at t ; current or past at t ′ 28,302 3.2
Current coresidents at both t and t ′ 272,229 30.5
Current coresidents at one wave, previous at other 102,683 11.5
Previous coresidents at both t and t ′ 95,520 10.4

Relationship type among coresidents (n = 495,734)
Partners 228,462 46.1
Parent–child 192,852 38.9
Other family 48,963 9.9
Unrelated 25,457 5.1

The correlation model was built gradually, introducing and testing the param-
eters described in Section 7.2. For all fitted models convergence was achieved
and the implied correlation matrix was positive definite for every superhousehold.
The initial correlation structure ρk allowed for within-person autocorrelation and
between-person correlation for any pair of individuals who lived together during
the observation period. A simplified Toeplitz structure was fitted to allow ρtik,t ′ik
to depend on lag t ′ − t , with equal correlation assumed for grouped lags 1, 2–3,
4–6 and 7–8 (measured in 2-year intervals). A Wald test of the equality of the four
within-person correlation parameters indicated strong evidence of autocorrelation
(X2 = 306.9, df = 3).

For a pair of responses Ytik and Yt ′i′k for individuals i and i ′ who were ever
observed as coresidents, a simplification of the correlation structure defined by
(a)–(d) of Section 7.2 was fitted to examine how the between-individual correla-
tion depended on whether t and t ′ were before, during or after coresidence, with
a separate parameter for the situation where t was during and t ′ after coresidence.
Compared to when t and t ′ are both during coresidence, the correlation is signif-
icantly lower when one or both of t and t ′ is after (X2 = 64.8, df = 1) or before
(X2 = 22.2, df = 1) coresidence.

Three generalisations to this basic correlation structure were then considered in
turn. First, to investigate question (i), ρtik,t ′i′k was permitted to depend on t ′ − t for
individuals i and i ′ who lived together at any time during the observation period,
assuming a Toeplitz structure with separate correlation parameters for grouped
lags 0, 1–2, 3–5 and 6–8. [The fitted parameters are αB

1,t ′−t in (a) of Section 7.2.]

There was strong evidence of coresident autocorrelation (X2 = 32.5, df = 3). The
second extension, to explore question (ii), was to allow the correlation among past
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coresidents to depend on the time since they last lived together s (αB
3,t−s in (c)).

However, there was little indication of this form of time dependency (X2 = 1.8, df
= 2, p = 0.407), possibly because of measurement error in the duration t − s due
to gaps in coresidence histories resulting from household nonresponse. The model
was therefore simplified to include a single parameter to differentiate past and cur-
rent coresidents. Finally, we investigated question (iii) by allowing ρtik,t ′i′k to de-
pend on whether i and i′ were a couple, parent and child, other family relations or
unrelated (parameters αB

5 ). There was strong evidence that the between-coresident
correlation varies according to relationship type (X2 = 142.0, df = 3). There was
no evidence that the effect of relationship type depends on the timing of t and t ′
relative to the period of coresidence.

7.4. Results. The estimates for the selected correlation structure are shown in
Table 4. The model also includes a parameter for the marginal correlation between
responses for individuals in a superhousehold who never lived together, but who

TABLE 4
Analysis of gender role attitudes: estimates of correlation parameters for observations at occasions
t and t ′ (t ≤ t ′) within superhouseholds before and after including covariates in the mean function

Mean: intercept Mean: covariates

Correlation parameter (α) Est. (SE) Est. (SE)

Within-person by lag∗ t ′ − t

1 (αW
1 ) 0.693 (0.005) 0.667 (0.005)

2-3 (αW
2 ) 0.642 (0.006) 0.616 (0.007)

4–6 (αW
4 ) 0.578 (0.010) 0.557 (0.010)

7–8 (αW
7 ) 0.512 (0.014) 0.490 (0.015)

Between coresident
Intercept (αB

1,0)† 0.384 (0.009) 0.368 (0.010)
Lag∗ t ′ − t (ref = 0)

1–2 (αB
1,1) −0.020 (0.004) −0.017 (0.004)

3–5 (αB
1,3) −0.042 (0.007) −0.030 (0.007)

6–8 (αB
1,6) −0.064 (0.011) −0.044 (0.011)

Past: coresident at t but not t ′ (αB
2 ) −0.025 (0.014) −0.050 (0.013)

Past: last coresident before t (αB
3 ) −0.062 (0.018) −0.072 (0.017)

Future: coresident only after t (αB
4 ) −0.088 (0.017) −0.120 (0.018)

Relationship type (ref = couple)
Parent–child (αB

5,2) −0.184 (0.016) −0.107 (0.014)

Other family (αB
5,3) −0.096 (0.022) −0.169 (0.020)

Unrelated (αB
5,4) −0.011 (0.046) −0.163 (0.035)

Standard errors in parentheses; ∗Lags t ′ − t are in 2-year intervals because Yti is measured every two

years; † Intercept parameter is the correlation for observations on a couple at t = t ′.
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were nevertheless linked through their respective coresidents. This parameter was
included primarily to aid convergence and is therefore not shown in Table 4, but
its estimate is small and positive (0.123, SE = 0.026). In our parameterisation αB

1,0
is the coefficient of an indicator of ever coresidence over the whole observation
period and represents the intercept in the correlation function for coresidents. All
other coefficients are interpreted as contrasts with the reference case of a couple at
t = t ′.

In line with questions (i)–(iii), we begin with an interpretation of the uncondi-
tional correlations from the model with only an intercept in the mean function. As
expected, the within-person correlation ρtik,t ′ik decreases with t ′ − t . The cores-
ident correlation was modeled as a linear additive function of indicator variables
for grouped t ′ − t , relationship type and past or future coresidence.

In answer to question (i), there is substantial contemporaneous correlation be-
tween the attitudes of coresidents (estimated as 0.384 for couples). Although the
negative estimates of (αB

1,1, α
B
1,3, α

B
1,6) imply that the between coresident corre-

lation declines with increasing t ′ − t , the decrease is small so there is strong
evidence of cross-wave correlation. Among couples, for example, the correla-
tion between observations that are the maximum 16 years apart is estimated as
0.384 − 0.064 = 0.320. The persistence of the correlation suggests that there are
time-invariant characteristics, such as similar social backgrounds and values, that
affect the attitudes of both coresidents across time. Another possible source of the
cross-time correlation is a “memory” effect whereby one individual’s attitude at t

continues to influence the other’s at t ′.
Turning to question (ii) we find that, compared to current coresidents, the

between-individual correlation is lower when at least one time point in the pair
is after the end of coresidence. However, as noted earlier, it does not depend on
the time since last coresidence. There is also a small reduction in the correlation
when t is prior to coresidence, but it remains nonnegligible which provides some
support for homophily.

The magnitude of the correlation between coresidents depends strongly on their
relationship [question (iii)]. The estimates of (αB

5,2, α
B
5,3, α

B
5,4) indicate that the cor-

relation is highest for spouses and lowest for parent–child pairs. Table 4 also shows
estimates of the residual correlation parameters after adjusting for the effects of
various individual and household characteristics on mean attitudes [question (iv)].
The most notable change is in the correlations by relationship type. For coresidents
at t = t ′, the parent–child correlation increases from 0.20 to 0.26, while the corre-
lations between other family members and unrelated household members decrease
from 0.29 to 0.20 and from 0.37 to 0.20 respectively. Further investigation reveals
that these changes in correlations are explained by the inclusion of individual age
in the mean function. Parent–child pairs are the most heterogeneous in age, and so
failure to control for age has a masking effect on the correlation. In contrast, the
correlation between the attitudes of individuals in other family member (mainly
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TABLE 5
Analysis of gender role attitudes: covariate effects on standardized attitudes. Higher values of the

response indicate more egalitarian attitudes

Variable Est. (SE) Percent/Mean (SD)∗

Female 0.226 (0.008) 54.5%
Age in years (centred at 45) −0.015 (0.0004) 1.07 (17.82)
Marital status (ref = married)

Cohabiting 0.083 (0.012) 10.8%
Widowed 0.082 (0.016) 7.6%
Separated/divorced 0.064 (0.014) 7.4%
Never married 0.120 (0.013) 17.9%

Highest academic qualification (ref = none)
Below degree level 0.054 (0.012) 54.5%
Degree 0.144 (0.017) 12.1%

Housing tenure (ref = owned outright)
Owned with mortgage 0.044 (0.009) 46.4%
Social rent −0.007 (0.013) 18.3%
Private rent 0.035 (0.013) 9.0%

Survey year (in 2-year intervals) 0.013 (0.001) –
Constant −0.342 (0.015) –

Standard errors in parentheses; ∗Descriptive statistics show the distribution of each covariate across
n = 106,060 person-waves: percentages for categorical variables and mean (SD) for continuous vari-
able age.

sibling) and unrelated pairs is partly explained by their similarity in age. Covari-
ates also account for part of the correlation between past and future coresidents.

Parameter estimates for the mean function are given in Table 5. The follow-
ing individual characteristics are associated with more egalitarian gender role at-
titudes: female gender, younger age, marital status other than marriage (or same-
sex civil partnership) and higher levels of education. There is also evidence that
attitudes have become less traditional over time. Housing tenure is included, to-
gether with education, as a proxy for socioeconomic position. Individuals living
in a house that is owned outright have on average more traditional attitudes than
homeowners with a mortgage or renters.

8. Discussion. Household panel surveys offer the potential to learn about the
nature of the associations among the outcomes of people who share a household.
Longitudinal data on individuals and their households permit separation of within-
individual and between-individual within-household variability, and investigation
of between-individual correlations across time and after coresidence ends. How-
ever, previous research has been unable to investigate these questions because of
challenges arising from changes in household composition. While multiple mem-
bership multilevel models appeared a promising way forward, we have demon-
strated these impose strong and unrealistic assumptions on the between-individual



MODELING WITHIN-HOUSEHOLD ASSOCIATIONS 389

association structure. We instead proposed a flexible marginal modeling approach
where the correlation between a pair of person-wave observations is modeled di-
rectly as a function of characteristics of the pair. In our analysis of gender role
attitudes, we considered the effects of coresidence status at each wave and the re-
lationship between the individuals. Examples of other possible covariates include
the age of one member of the pair and their age difference, their gender composi-
tion, and their religion.

Household panel surveys provide only limited information for disentangling ho-
mophily and causal effects of coresidence as explanations for between-coresident
associations. To explore homophily requires data on individual outcomes before
they become coresidents but, in common with other household panels, the design
of BHPS does not allow us to observe pairs of individuals prior to living together,
so our estimate of the correlation between “future” coresidents is based on pairs
where one observation is before and the other during the period of coresidence.
Data on the duration of coresidence are required to investigate causal effects of
coresidence, where a pattern of increasing correlation with duration would sug-
gest a (reciprocal) influence of one individual on the other. Coresidence histories
in BHPS are left-truncated, although for couples it is possible to infer duration of
coresidence from retrospective union histories.

The proposed method can be applied to any household panel survey, many
of which have a similar design to BHPS with individuals and their coresidents
tracked over time. Longitudinal individual and household data are also available
from some national population registers. More generally, clusters with a network
structure arise in cross-sectional and longitudinal studies of peer group effects, and
marginal models offer a flexible way of studying the dependency in behavioural
and educational outcomes for members of the same network. Examples of potential
applications include longitudinal analyses of risk-taking among friendship groups
[Pearson and West (2003)] and happiness in family, friend and coworker networks
[Fowler and Christakis (2008)]. Beyond the social sciences, examples of evolving
networks can be found in studies of animal populations. In veterinary epidemiol-
ogy, for example, movement of cattle between herds leads to a network structure
where animals who have shared contact are members of the same network and may
have correlated disease risks.

A potential disadvantage of GEE2 is that it has a higher chance of nonconver-
gence than GEE1 when estimating models with the same mean structure [Hardin
and Hilbe (2013), page 152; Ziegler, Kastner and Blettner (1998)]. In our simula-
tion study, we found that GEE2 performed well for balanced designs, but noncon-
vergence was an issue when superhousehold clusters were highly unbalanced. The
convergence rate and behaviour of the estimator was much improved by fitting an
additional correlation parameter to capture all between-individual correlations that
are not of direct scientific interest, rather than constraining these to be zero. Fol-
lowing this strategy, no convergence problems were encountered for the models
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considered in our application. Alternative approaches to estimating marginal mod-
els where the association structure is of interest are pairwise likelihood (PL) [Kuk
and Nott (2000)] or a hybrid of GEE1 for the mean parameters and PL for the as-
sociation parameters [Kuk (2007)]. The GEE1-PL hybrid is highly flexible, avoids
inversion of large cluster-specific covariance matrices, and yields robust estimates
of the mean parameters when the association structure is misspecified.
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SUPPLEMENTARY MATERIAL

Supplementary information, analysis and code (DOI: 10.1214/18-AOAS
1189SUPP; .zip). The supplement includes descriptive analysis of events lead-
ing to household change, further details on superhouseholds, Stata code for the
construction of superhousehold IDs, additional simulation results, a discussion on
positive definite correlation matrices, details on data structures and model estima-
tion in R using geepack.
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