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1 Analysis of events leading to household change in BHPS

Table S1 shows the events occuring between two annual waves that lead to a change in adult
coresidents. An event may occur to any individual in the household, and events are not
mutually exclusive. The occurrence of events cannot be inferred for all households because
not all individuals are in sample households at t+ 1 (due to household attrition or individuals
moving to non-sample households).

Table S1: Distribution of adults present at t and t+1 by experience of events leading to change
in adult coresidents (n = 204, 367 person-wave observations).

Experience event
Yes No Unknown

% n % n % n

Union dissolution 1.85 3787 97.1 200,091 0.24 490
Union formation 3.45 7053 92.4 188,729 4.20 8585
Child or parent leavesa 4.50 9191 93.5 191,061 2.01 4116
Child or parent joinsb 0.74 1518 94.9 193,975 4.34 8875
Other family member leavesc 3.50 7159 96.3 196,888 0.16 321
Other family member joinsd 0.50 1026 95.1 194,318 4.42 9024
Unrelated adult leavese 1.25 2559 98.7 201,801 0.00 8
Unrelated adult joinsf 1.08 2212 94.8 193,705 4.14 8451

Change in any adultg 12.72 25,986 87.3 178,382 � �
aE.g. a child leaves the parental home or a parent moves out (e.g. following union
dissolution or an elderly parent's move into care or death); bE.g. a child returns to
the parental home or an older parent moves in with a child; cA family member other
than a partner, child or parent, e.g. a grandparent's move into residential care or death;
dE.g. a grandparent moving in; eUsually arises when unrelated sharers at t are no longer
coresident at t + 1, which commonly co-occurs with a new unrelated sharer moving in;
fUsually when an unrelated sharer or lodger at t is replaced by another at t+1; gChanges
may be due to one or more of the above types of event, or some other event.
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2 Construction of superhouseholds in BHPS

The superhouseholds at wave t are constructed using the cross-sectional household identi�er at
each wave s (HIDs) for s = 1, . . . , t and the longitudinal person identi�ers (PID) for all adult
residents. Super-households are formed using annual data, not only the waves for which the
response variable (gender role attitudes) was available. Information for all household members
in participating households is used, regardless of whether they were respondents.

Denote by SHIDt the superhousehold identi�er at wave t. The process begins by setting
SHID1 = HID1. At any subsequent wave t > 1, we de�ne a new entrant as a person who joins
the study for the �rst time at t, including children who become adults (and therefore eligible
respondents). An individual who was in a sample household at any previous wave is referred
to as an `old' sample member. At each wave, new entrants are �agged and the PIDs of each
individual's coresidents are stored. For individuals with the same coresidents at t and t − 1,
SHIDt = SHIDt−1. Other households can be classi�ed into four types: (i) a subset of a wave
t− 1 household with no additional members; (ii) a wave t− 1 household (or subset) with the
addition of old sample members and possibly new entrants; (iii) a wave t − 1 household (or
subset) with the addition of new entrants only; and (iv) a new household, i.e. one composed
entirely of new entrants. Examples of type (ii) households are children returning to the parental
home or former partners reuniting.

For types (i)-(iii), we can further classify households according to whether any departing
member(s) left the sample or joined another sample household at t. If the departing coresidents
from types (i) and (iii) left the sample, then we set SHIDt = SHIDt−1 for all household
members at t who were also present at t− 1, and assign the same value of SHIDt to any new
entrants in type (iii) households. For households of type (i) and (iii) whose departing members
joined another sample household at t, there is a merger of wave t− 1 superhouseholds. These
households must be considered together with type (ii) households when determining SHIDt

because the departing members appear in type (ii) households at t.
For all individuals in type (i)-(iii) households, we must ensure that SHIDt takes the same

value for individuals who are coresident at t or who are linked indirectly through their current
or past coresidents at t. This value is selected from the values of SHIDt−1 among all coresidents
at t, for example the minimum. Finally, for individuals in new (type (iv)) households we set
SHIDt = max(SHIDt−1)+m form = 1, . . . ,Mt whereMt is the total number of new households
at t.

The model described in Section 4 uses clusters de�ned by the superhousehold identi�er at
the �nal wave T . For individuals who were no longer sample members at T , SHIDt for the
wave of last residence in a participating household is carried forward to T .

The �le superhhID.do contains annotated Stata syntax for constructing superhousehold
identi�ers. The input data is available to registered users of the UK Data Service (study
number 5151): discover.ukdataservice.ac.uk
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3 Example of a superhousehold

Figure S1: An example of a large superhousehold de�ned by individuals included in the BHPS over
17 annual waves (1991-2008). Each row of the table represents an individual and each column a survey
wave. Each individual's gender (M(ale) or F(emale)) and age are listed under the wave where they
are �rst included in the panel, and again (with the age updated) under Wave 17 (if they are still in
the panel). The numbers in parentheses are labels for distinct households, with the same number used
as long as the household has exactly the same members (observations for the same household are also
highlighted with the same colour, but the same colour may be used for several di�erent households).

The kinds of individual and household histories that can be captured by a long-term panel
study like BHPS are illustrated with the example of a particularly large superhousehold in
Figure S1. This superhousehold consists of the members of a single household in wave 1,
consisting of a male-female couple and their four children aged 6-18 (household (1), shown in
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yellow under wave 1) and other individuals who are connected with them directly or indirectly
by subsequent coresidence. For example, consider the eldest child in the original household, a
man aged 18 (�M1� under wave 1). In wave 2 he leaves household (1) and forms a household
(3) with a woman aged 18 and their child aged 1. In wave 6 a baby girl is born to them,
de�ning a new household (6). In wave 7 the man leaves this household and returns to reside
with his parents and one brother who remains living with them (household 7). In wave 8 the
man forms a new household (11) with a woman aged 27 and their child. In wave 11 another
child is born (new household 21), and in wave 15 the man's son from household (3), now aged
14, joins his current household (25), which remains in this composition up to wave 17.

4 Additional simulation results

Table S2 shows results from one of the balanced designs considered. A description of the design
and details of the data generating model (DGM) can be found in Section 6.1 of the paper.

Table S3 accompanies Table 1 in the paper. The design and DGM are described in Section
6.1 of the paper. Table S3 shows the results for the unbalanced design with M = 5000 super-
households for replicates where the �tted model did not converge. Summary statistics were
calculated for estimates at iteration 25. We �nd a small bias for the parameter estimates, but a
large positive bias for the standard errors. Inspecting the trace of the parameter estimates for
these replicates reveals small oscillations in the mean parameters (especially β0 and β1), and
in some cases γ, but that all of the correlation parameters converge quickly. The lower conver-
gence rate for M4 compared with M3 suggests a lack of information about the α4 parameter
(the correlation between past coresidents). It is possible that there is a penalty for increasing
the complexity of the correlation matrix, where inferences about rare between-individual cor-
relations are made at the cost of less accurate ones for the other parameters. We investigated
this by repeating the study using samples of 10,000 superhouseholds rather than 5000, but this
had little impact on the results when convergence was not achieved (see Table S4).

As discussed in Section 4.3 of the paper, imposing zero constraints on correlations is unde-
sirable and doing so will lead to sparse superhousehold correlation matrices. For the unbalanced
design, the estimator shows a very high chance of nonconvergence when the `other' parameter
(ᾱ) is excluded from the �tted models: the convergence rate decreases to 23% for M2, 33% for
M3 and 20% for M4. (The convergence rates are even lower when α5 is set to zero in the DGM.)
Furthermore, inspection of the nonconvergence cases reveals extreme oscillation in estimates
of β0, β1 and the residual variance γ across iterations, possibly leading to large mean and
empirical standard errors for these parameters. However, excluding ᾱ from the misspeci�ed
M1 does not result in any deterioration in performance; this is expected because setting ᾱ = 0
corresponds to the standard practice of ignoring any between-person correlation in applications
of GEE to repeated measures data. More generally, we �nd that ᾱ is also unnecessary for any
of the balanced designs considered. The convergence problems reported above are con�ned
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to models with any nonzero between-person correlation �tted to unbalanced superhousehold
structures.

Table S2: Simulation results from 500 replicates of a balanced design with M=1000 super-
households containing 25 person-wave observations from 5 individuals.

Mean function Scale Correlation function

β0 β1 β2 γ α1 α2 α3 α4

True -0.1 0.25 -0.015 0.9 0.6 0.3 0.2 0.2
M1
Mean -0.100 0.249 -0.015 0.900 0.599 � � �
Mean SE 0.023 0.018 0.001 0.015 0.011 � � �
SD 0.023 0.017 0.001 0.015 0.011 � � �
95% coverage 0.958 0.962 0.958 0.946 0.952 � � �

M2
Mean -0.100 0.250 -0.015 0.900 0.599 0.301 � �
Mean SE 0.023 0.017 0.001 0.015 0.011 0.014 � �
SD 0.022 0.016 0.001 0.015 0.011 0.013 � �
95% coverage 0.960 0.960 0.946 0.946 0.952 0.948 � �

M3
Mean -0.100 0.250 -0.015 0.900 0.599 0.301 0.199 �
Mean SE 0.023 0.017 0.001 0.015 0.011 0.014 0.017 �
SD 0.022 0.016 0.001 0.015 0.011 0.013 0.018 �
95% coverage 0.962 0.960 0.948 0.946 0.952 0.950 0.952 �

M4
Mean -0.100 0.250 -0.015 0.900 0.599 0.301 0.199 0.201
Mean SE 0.023 0.017 0.001 0.015 0.011 0.014 0.017 0.021
SD 0.022 0.016 0.001 0.015 0.011 0.013 0.018 0.020
95% coverage 0.958 0.960 0.948 0.946 0.952 0.948 0.952 0.954

Notes:

(a) The correlation between observations from future and never coresidents (α5) is 0.15 in the data generating
model. In models M2-M4, an `other' correlation parameter is estimated, de�ned as the coe�cient of 1
minus the sum of the indicator variables included in the �tted correlation model.

(b) The 300 pairwise observations in the design matrix for each superhousehold, 63 are from the same person,
and therefore contribute to the estimation of α1; 46, 22 and 32 pairs contribute to the estimation of the
between-person correlations α2, α3 and α4 respectively, while the estimation of the `other' parameter α5 is
based on the remaining 137 pairs of future or never coresidents.
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Table S3: Simulation results for an unbalanced design withM = 5000 superhouseholds selected
with replacement from the BHPS data. Results are shown for the rNC out of 500 replicates
for which convergence was not achieved after 25 iterations.

Mean function Scale Correlation function

β0 β1 β2 γ α1 α2 α3 α4

True -0.1 0.25 -0.015 0.9 0.6 0.3 0.2 0.2
M2 (rNC = 177)
Mean -0.099 0.240 -0.016 1.004 0.605 0.305 � �
Mean SE 0.042 0.055 0.002 0.032 0.009 0.016 � �
SD 0.096 0.285 0.015 1.232 0.026 0.021 � �

M3 (rNC = 35)
Mean -0.095 0.248 -0.015 0.902 0.599 0.304 0.177 �
Mean SE 0.028 0.255 0.002 0.011 0.010 0.014 0.024 �
SD 0.023 0.045 0.002 0.010 0.009 0.016 0.019 �

M4 (rNC = 110)
Mean -0.103 0.258 -0.015 0.908 0.603 0.304 0.191 0.200
Mean SE 0.028 0.034 0.001 0.011 0.009 0.015 0.020 0.028
SD 0.040 0.100 0.003 0.045 0.012 0.017 0.020 0.031

5 Positive de�nite correlation matrices

As noted in Section 4.4 of the paper, the GEE2 estimator does not constrain the �tted corre-
lation matrix to be positive de�nite. This section provides a further discussion of alternative
approaches that might be taken.

Within the GEE framework, quasi least squares regression can be used to ensure the �tted
correlation matrix is feasible in the sense of being positive de�nite (Chaganty, 1997). However,
the analyst must derive bounds for the correlations based on the structure imposed on the
correlation matrix. Bounds have been derived for a range of longitudinal and nested structures
(Shults and Hilbe, 2014), but in our case the feasible parameter space cannot easily be calcu-
lated because it would be the intersection of the di�erent feasible parameter spaces for each
superhousehold, none of which will have a regular time-ordered structure.

Other approaches are based on maximum likelihood estimation of joint mean-covariance
models. These approaches fall into two groups which can be described thus: modi�ed algo-
rithms to minimize the log-likelihood that ensure the covariance/correlation matrix at each
iteration remains positive de�nite (e.g. Jennrich and Schluchter, 1986); and a reparameteriza-
tion of the covariance-matrix model such that the parameter space is unconstrained and all
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Table S4: Simulation results for an unbalanced design with r = 500 replicates of M = 10, 000
superhouseholds selected with replacement from the BHPS data. Results are presented sepa-
rately for the rC replicates for which the model converged and the rNC replicates for which
convergence was not achieved after 25 iterations.

Mean function Scale Correlation function

β0 β1 β2 γ α1 α2 α3 α4

True -0.1 0.25 -0.015 0.9 0.6 0.3 0.2 0.2
Converged
M2 (rC = 338)
Mean -0.099 0.248 -0.015 0.901 0.601 0.299 � �
Mean SE 0.034 0.040 0.002 0.009 0.007 0.010 � �
SD 0.040 0.065 0.001 0.022 0.009 0.014 � �
95% coverage 0.920 0.896 0.914 0.944 0.932 0.920 � �

M3 (rC = 477)
Mean -0.100 0.250 -0.015 0.900 0.600 0.300 0.201 �
Mean SE 0.009 0.009 0.000 0.008 0.006 0.010 0.014 �
SD 0.008 0.010 0.000 0.008 0.007 0.010 0.015 �
95% coverage 0.943 0.939 0.960 0.954 0.939 0.935 0.939 �

M4 (rC = 401)
Mean -0.100 0.249 -0.015 0.900 0.600 0.299 0.201 0.202
Mean SE 0.009 0.010 0.000 0.008 0.006 0.010 0.014 0.020
SD 0.010 0.014 0.000 0.008 0.006 0.011 0.015 0.022
95% coverage 0.950 0.925 0.945 0.953 0.943 0.925 0.948 0.930

Nonconverged
M2 (rNC = 162)
Mean -0.102 0.259 -0.015 0.903 0.600 0.299 � �
Mean SE 0.087 0.107 0.002 0.008 0.006 0.010 � �
SD 0.039 0.088 0.002 0.024 0.010 0.013 � �

M3 (rNC = 23)
Mean -0.100 0.252 -0.015 0.902 0.600 0.302 0.194 �
Mean SE 0.009 0.009 0.000 0.008 0.006 0.010 0.014 �
SD 0.012 0.017 0.001 0.007 0.006 0.010 0.010 �

M4 (rNC = 99)
Mean -0.099 0.249 -0.015 0.901 0.600 0.302 0.197 0.200
Mean SE 0.053 0.033 0.003 0.008 0.007 0.011 0.014 0.020
SD 0.029 0.034 0.001 0.009 0.007 0.009 0.014 0.022

parameter values correspond to positive de�nite matrices. However, the implementation of
these approaches to date has been con�ned to longitudinal and simple multivariate structures
where the covariance matrix has the same form across clusters. Examples of reparameterization
methods include the modi�ed Cholesky decomposition of the inverse covariance matrix devel-
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oped by Pourahmadi (1999), and the matrix-logarithm model of Chiu et al. (1996). The latter
of these is potentially general enough for our purposes but presents substantial computational
challenges, and has been criticized because its parameters are not straightforward to interpret;
this last point is particularly important here because the correlations are of substantive inter-
est. More recently, Gneiting (2002) proposed a �exible family of positive de�nite covariance
models which are characterized by monotonic functions of the spatial and temporal distance
between observations, but not all covariances between individuals within a superhousehold (for
example, by relationship type) can be represented in terms of distance.

We therefore used GEE2 and investigated this issue empirically in the simulation study and
in the application to gender role attitudes. We found that non-positive de�nite matrices were
rare in the simulations (see Section 6.2), and did not arise at all in our data analysis (Section
7.3). Nevertheless, this does not rule out their occurring in other applications. We argue that
when using this approach the analyst's focus will be on the estimates of the population-level
correlation parameters, rather than the correlation matrix itself. The estimated correlations
can be constrained to lie in the valid (−1, 1) range by using a hyperbolic tangent link function.
Additionally constraining the correlation matrix to be positive de�nite may lead to improved
performance of the GEE estimator. Further work in this area could thus focus, for example,
on post-estimation smoothing of the �tted correlation matrix (Schwertman and Allen, 1979),
or developing a constrained �tting routine (possibly with the maximum-likelihood framework)
(Jennrich and Schluchter, 1986). However, none of these approaches is trivial and would add
considerable computational burden.

6 Data structures and model estimation in R

In this section, we describe the required data structures for the mean and correlation models,
and provide R code for model estimation using geepack (Højsgaard et al., 2006).

6.1 Data structures

The input data for the mean model, eq.(7) in the paper, is in person-wave format with observa-
tions sorted by the superhousehold identi�er. The data extractA below shows the observations
for individuals in one superhousehold. The variables are: superhousehold ID at wave 17, the
�nal measurement occasion (shid17), cross-wave person ID (pid), wave and the standardised
gender role attitudes response (y). (Note that the response is only available at odd waves.)

Observations have been sorted by pid within superhouseholds, but they could have been
sorted by wave. The order is unimportant, but it must be consistent with the pairwise �le for
the correlation model (see below).

shid17=8 contains 7 observations from 4 individuals. The �rst three are observed at waves
1 and 3, while the fourth enters at wave 3.
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A: mean model

+----------------------------------+

| shid17 pid wave y |

|----------------------------------|

| 8 10020179 1 1.92 |

| 8 10020179 3 -0.81 |

|----------------------------------|

| 8 10020209 1 0.85 |

| 8 10020209 3 0.23 |

|----------------------------------|

| 8 10020233 1 2.26 |

| 8 10020233 3 2.35 |

|----------------------------------|

| 8 30007569 3 0.24 |

+----------------------------------+

We now illustrate the required data structure for the correlation model, eq. (9). The data
extract in B below consists of all pairs of observations from A. geepack requires the upper
diagonal of the matrix formed by taking each pair of observations inA, within superhouseholds.
For example, the �rst 6 observations in B are formed by pairing the �rst observation in A with
each other observation in turn. The �rst observation in the pair is identi�ed by pid1 and
wave1, while the second is identi�ed by pid2 and wave2. Data structure B can be obtained
using the joinby command in Stata.

Data extract B also includes two indicator variables that characterise the pairs, as examples
of possible covariates in X3k of eq. (9). The variable samepid identi�es a pair of observations
from the same person at di�erent waves, while corescc identi�es a pair of coresidents at the
same wave.
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B: correlation model

+------------------------------------------------------------------+

| shid17 pid1 wave1 pid2 wave2 samepid corescc |

|------------------------------------------------------------------|

| 8 10020179 1 10020179 3 1 0 |

| 8 10020179 1 10020209 1 0 1 |

| 8 10020179 1 10020209 3 0 1 |

| 8 10020179 1 10020233 1 0 1 |

| 8 10020179 1 10020233 3 0 1 |

| 8 10020179 1 30007569 3 0 0 |

| 8 10020179 3 10020209 1 0 1 |

| 8 10020179 3 10020209 3 0 1 |

| 8 10020179 3 10020233 1 0 1 |

| 8 10020179 3 10020233 3 0 1 |

| 8 10020179 3 30007569 3 0 1 |

|------------------------------------------------------------------|

| 8 10020209 1 10020209 3 1 0 |

| 8 10020209 1 10020233 1 0 1 |

| 8 10020209 1 10020233 3 0 1 |

| 8 10020209 1 30007569 3 0 0 |

| 8 10020209 3 10020233 1 0 1 |

| 8 10020209 3 10020233 3 0 1 |

| 8 10020209 3 30007569 3 0 1 |

|------------------------------------------------------------------|

| 8 10020233 1 10020233 3 1 0 |

| 8 10020233 1 30007569 3 0 0 |

| 8 10020233 3 30007569 3 0 1 |

+------------------------------------------------------------------+

10



6.2 Code for model estimation in R

The following R code speci�es a simple marginal model, using data structures A and B as
inputs.

##Declare data files for mean and correlation models

##Assumes R objects with the same structure as A and B above

mean.dat <- A

cor.dat <- B

##Design matrix for correlation model

#Fit 3 correlation parameters:

#(i) within person (samepid),

#(ii) between coresidents at same wave, i.e. t=t' (corescc)

#(iii) non-zero correlation for all other pairs within a superhousehold (other)

x3 <- subset(cor.dat, select=c(samepid,corescc))

x3$other <- 1-rowSums(x3)

##Specify marginal model for response y (intercept only in mean model)

model <- geeglm(y ~ 1, data=mean.dat, id=shid17, corstr="userdefined", zcor=x3)

summary(model)
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