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ABSTRACT 

Review of animal and epidemiological studies suggest that exposure to nitrates in drinking water 

is associated with thyroid disorders, including mild - to - moderate iodine deficiency; 

hyperthyroidism; hypothyroidism; thyroid hypertrophy (goitre) and thyroid cancer. However, the 

weight of evidence following a meta – analysis is strongest for goitre; weak for subclinical 

hypothyroidism and weakest for clinical hypothyroidism and hyperthyroidism (clinical and 

subclinical). The effect estimate for goitre is, OR = 3.13 (95%Cl: 2.35-4.16); I
2 

= 24.9%, p = 

0.28. Although causality was not firmly established between nitrates in drinking water and 

goitre, the risk assessment framework was used to estimate lifetime excess risk of thyroid cancer 

in East Anglia given widespread nitrate contamination of drinking water sources in the region. 

Thyroid cancer was used as a proxy for goitre given that malignancy can result from goitre 

which is usually benign and there is no register for goitre and/or benign thyroid tumours in the 

UK.   

Risk estimates suggests that 20 cases or 13 per cent of the 154 thyroid cancer cases calculated in 

a population of 2,849,918 in East Anglia in 2014, can be attributable to nitrates in drinking water 

and this would have been eliminated from the population if there was no nitrates in drinking 

water. The lifetime excess risk of thyroid cancer at nitrate levels below and equal to the drinking 

water standard of 50mg/l, is 0.02 – 0.28. This is above the range (1x10
-6

 to 1x10
-5

) considered 

negligible and suggests that the current drinking water standard for nitrates, originally set to 

protect against infantile methaemoglobinemia is unlikely to protect against thyroid cancer and 

warrants a review. The review should include a consideration of lowering the drinking water 

standard; reduction of nitrates in drinking water sources and/-or introducing iodine prophylaxis 

in the UK given that the effect of nitrates on the thyroid gland is dependent on the amount of 

dietary iodine intake. Although there were a lot of uncertainties and assumptions in the risk 

assessment process, the recommendation is based on the precautionary principle.  



7 

 

LIST OF TABLES  

 

Table 1: Summary of animal studies on thyroid disorders………………………………………..56 

 

Table 2:  Summary of epidemiological studies on thyroid disorders...............................................64 

 

Table 3: Nitrate levels in public and private water supplies and the approximate population 

served in East Anglia in 2001-2010 (Appendix 5)……..………………………..292 

 

Table 4:  Characteristics of respondents to questionnaire on water 

intake……………………………………………………………………………………139 

 

Table 5:   Contact rate (CR) calculation - amount of water intake by age 

group…………………………………………………………………………………...141 

 

Table 6:   Parameters used in calculating chronic daily (CDI) water   intake…………………….143  

 

Table 7:   Chronic daily intake of nitrates in drinking water……………………………………..145 

 

Table 8:   Number of private water supplies per region in England………………………...........148 

 

Table 9:   Risk estimates of thyroid cancer in East Anglia……………………………………….167  

 

Table 10:  Number of Private Water Supplies and thyroid cancer cases by region in 

England………………………………………………………………………………...177 

 

Table 11:  Overview of uncertainty………….. ……………………………………..…………….184 

 

 

 

 

 

 

 



8 

 

LIST OF FIGURES 

 

 

Figure 1:  Map showing the distribution of Private Water Supplies by 

region in England………………………………………………………………………...18 

 

Figure 2:  The nitrogen cycle …….……………………………………………………..................26 

 

Figure 3: Map showing Nitrate Vulnerable Zones in East of England……………………………30 

 

Figure 4: Relative contributions of surface water, groundwater and  

other sources of drinking water in EU14…………………………………………..........33 

 

Figure 5:  Percentage of rivers with high nitrate concentrations in  

England & Wales 1995-2005………………………………………………………........35 

 

Figure 6 Trend in groundwater nitrate concentrations in England and wales  

1980 – 2001……………………………………………………………………………..36 

 

Figure 7 PRISMA Flow Diagram ………………………………………………………..............54 

 

Figure 8 Forest Plot of clinical hyperthyroidism (random effect model)……………….. …........88 

 

Figure 9 Forest Plot for subclinical hyperthyroidism (random effect model)……………………89 

 

Figure10 Forest Plot for clinical hypothyroidism (random effect models)……………………….90 

 

Figure 11 Forest plot for subclinical hypothyroidism (random effect model)………………..........91 

 

Figure12 Forest plot for subclinical hypothyroidism (sensitivity analysis)……………………….92 

 

Figure13 Forest Plot for goiter (random effect models)…………………………………………..93 

Figure 14 Forest Plot for goiter (sensitivity analysis)…………………………………………........94 

Figure 15: Map of East Anglia……………………………………………………………………..115 

Figure 16: Map of nitrate vulnerable Zones in England………..………………………………….116 

Figure 17 Dose – response relationship between nitrates and goiter……………………………...124 

Figure 18 Map of England showing areas where more than 1% of population 

 do not have access to public supply..…………………………………………………..149 

 

 

 

 

 

 



9 

 

ACKNOWLEDGEMENT 

 

I am very grateful to God for the strength and resources to complete this study. I am grateful to 

my supervisors, Professor Ian Colbeck and Mr Allan Hildon for their support and guidance in 

completing this thesis. I also acknowledge the contributions and guidance of my previous 

supervisors, Dr Camilo Chinamasa and Dr Valarie Thurtle in the early stages of this study.  

 

Thanks to my director, Mr Phil Gore and former manager, Mr Tim Davidson for giving me time 

off work to undertaken this study and for allowing me to use nitrate data from private water 

supplies in Suffolk Coastal DC in this study. I am equally grateful to the Environmental Health 

Managers of Local Authorities in East Anglia for approving my request for data on nitrate 

concentrations in Private Water Supplies in their respective areas and for allowing me to use 

such data in this study.  

 

I also want to thank the Water Quality Manager of Essex & Suffolk Water; Cambridge Water; 

Tendering Hundred and Anglian Water Companies for providing nitrate concentration data in 

Public supply and the population served by their respective companies.  I am grateful to Bob 

Markall; Phil Hitchens and Claire Moody of Anglian Water for their insight on water supply 

zones and water ‘blending’ and for providing data and maps with population served per water 

supply zone.  I thank most sincerely Professor Graham Horgan and Dr Claus Meyer of the 

Biostatics Centre of the University of Aberdeen for their training and advice on meta-analysis. 

 

A special thanks to my wife and children for their understanding and support without which this 

study would have be more difficult.  

 



10 

 

DEDICATION 

 

Whatever you have learned or received or heard from me, or seen in me--put it into practice. 

And the God of peace will be with you.  

Philippians 4 v 9 (NIV) 

 

 

I dedicate this thesis to my wife and children. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



11 

 

GLOSSARY OF TERMS 

AF  Attributable Fraction  

ATSDR Agency for Toxic Substances and Disease Registry 

CDC  Centre for Disease Control 

CDI  Chronic Daily Intake  

CDSC  Communicable Disease Surveillance Centre  

CNS  Central Nervous System 

DEFRA Department of Environment, Food and Rural Affairs 

DoH  Department of Health 

DWI  Drinking Water Inspectorate 

EBD  Environmental Burden of Disease 

EBPH  Evidence Based Public Health 

EC  European Commission 

EEA  European Environment Agency 

EU   European Union 

EWG  Environmental Working Group 

Hb  Haemoglobin 

ICCIDD International Council for the Control of Iodine Deficiency Disorders 

IARC  International Agency for Research on Cancer 

JSNA  Joint Strategic Needs Assessment 

JHWS  Joint Health and Wellbeing Strategies 

MethHb Methaemoglobin 

NAS  National Academy of Science 

NHS  National Health Service 

NIS  Sodium Iodide Symporter 

NO  Nitric Oxide 

NOC  N-nitroso-compounds 

NRC  National Research Council 

NVZ  Nitrate Vulnerable Zone 



12 

 

OR  Odd Ratio 

PAF  Population Attributable Fraction 

PWS   Private Water Supplies 

RR  Relative Risk 

SGV  Soil Guideline Value 

UNICEF United Nations International Children Education Fund 

USEPA United States Environmental Protection Agency 

WHO   World Health Organisation 

WoE   Weight of Evidence 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



13 

 

CHAPTER ONE 

 

1.0 INTRODUCTION 

 

Water is regarded as the most important natural resource in the world and is essential for the 

sustenance of life on earth since without it, no life will exist (Tebbutt, 1998). Water has a wider 

influence on human health and well-being as both the quantity and quality of water available for 

drinking and sanitation are important in determining the health of individuals and whole 

communities (World Health Organization (WHO), 2011a). Access to adequate, safe and reliable 

water is therefore a major prerequisite for a healthy life (WHO, 2011b). Although water is 

essential for the existence of life, it also plays a role in disease transmission and prevention 

(WHO, 2011a). Failure to achieve high quality drinking water exposes the population 

(particularly young children, the elderly, the sick and those living in poor sanitary conditions) to 

the risk of water-related diseases (WHO, 2011a). Poor microbial water quality has been 

implicated in the spread of some important infectious and parasitic diseases such as cholera; 

typhoid; dysentery; diarrhoea; hepatitis; giardiasis; guinea worm and schistosomiasis (WHO, 

2011a). For example, diarrhoeal disease due to poor microbial water quality is a major public 

health issue worldwide and is reported to account for approximately 4.1 per cent of the total 

global burden of disease, resulting in about 1.8 million deaths annually (Pruss-Ustun & 

Corvalan, 2006; WHO, 2011c).  

 

The main objective in water quality control works is for public health protection from the 

incidence of waterborne diseases (Tebbutt, 1998) by supplying ‘wholesome’ water that meets 

WHO microbiological and chemical standards (Drinking Water Inspectorate (DWI), 2011). 

Although microbial contamination of drinking water is widespread and exposure to such water 
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and its attendant health consequences are well reported (Ritter et al, 2002), chemical 

contamination of drinking water sources is also a growing concern in many regions of the world 

(Ritter et al, 2002; WHO, 2011b). Like microbial contaminated water, exposure to chemical 

contaminated water can also adversely affect human health, although in general such effects tend 

to be chronic rather than acute unless a specific pollution event has occurred (WHO, 2011a). 

Chemical contaminants usually found in drinking water sources include nitrates, arsenic, 

mercury, fluoride etc. Whilst some of these chemicals are naturally occurring (e.g. nitrates, 

fluoride, arsenic), some can inadvertently be introduced into drinking water sources (e.g. nitrates, 

pesticides) by anthropogenic activities (e.g. agricultural activities) and are reported to pose 

significant health risks to human health (WHO, 2011a).  

 

In the United Kingdom (UK), although waterborne diseases due to microbial contamination of 

drinking water sources are no longer widespread in comparison to developing countries due to 

improved drinking water quality, chemical contamination of drinking water sources remains a 

public health challenge (DWI, 2011), and can place excessive burden on the health of the 

population and the health service (WHO, 2011a). Nitrates have been implicated in the 

deterioration of drinking water quality, especially groundwater in many parts of the UK in the 

last four to five decades (Environment Agency, 2011).  In many parts of the country, nitrate 

concentrations in excess of the WHO drinking water standard of 50mg/l have been reported in 

drinking water sources, particularly private wells and boreholes (Private Water Supplies (PWS) 

(Environment Agency, 2011).  

 

Exposure to nitrates in drinking water has long been associated with infantile 

methaemoglobinemia (blue-baby syndrome) (Comly 1945; 1987) and the current drinking water 

standard of 50mg/l was set by the WHO to protect infants from this disease (WHO 1958; 
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Environmental Working Group (EWG) 1996). No other health condition was considered in 

setting this standard or guideline value (EWG, 1996; Ward et al, 2005). Recently, the 

International Agency for Research on Cancer (IARC) classified nitrate and/-or nitrite as a 

probable human carcinogen (Group 2A) on the basis of limited evidence of carcinogenicity in 

humans but sufficient evidence of carcinogenicity in experimental animals (IARC, 2010). There 

have been reported cases of adverse reproductive outcomes, and diabetes as a result of nitrate 

exposure the drinking water (Ward et al, 1996; Weyer et al, 2001; DeRoos et al, 2003; Brender 

et al, 2004) (although no cause and effect relationship was firmly established) but the 

appropriateness of the current drinking water standard for nitrates in protecting against these 

potential health outcomes has not been previously evaluated. Experimental animal studies also 

suggest that exposure to nitrates can inhibit iodine uptake by the thyroid gland resulting in 

thyroid disorders (Bloomfield et al, 1961; 1962; Jahries et al, 1986), and the effect may not be 

different in humans (Ward et al, 2005).   

 

This study therefore aims to evaluate the relationship between exposure to nitrates in drinking 

water and thyroid disorders and to quantify any risk to the population in East Anglia. East Anglia 

is one of the Nitrate Vulnerable Zones (NVZ) in the UK where drinking water sources are 

known to be vulnerable to nitrate pollution (Department for environment, Food & Rural Affairs 

(DEFRA), 2006; 2009). The study was conducted following the United States National Academy 

of Sciences (NAS) risk assessment framework (National Research Council (NRC), 1983; 2008). 

The four stages of the risk assessment process are: hazard identification; dose-response (effect) 

evaluation; exposure (source, pathway) assessment; and risk characterisation (NRC, 1983; 2008; 

Ritter et al, 2002). Each of the four stages of risk assessment addresses different questions that 

can be used to determine any anti-thyroid effect of nitrates; the concentration of nitrates in 

drinking water in the study area; the frequency and magnitude of exposure in the population; the 
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most vulnerable groups in the population and excess risk of thyroid disorders in the population 

(if any risk exists).  

  

1.1 BACKGROUND TO THE STUDY 

 

Access to satisfactory (adequate, safe) drinking water is essential for health, a basic human right, 

and a major component of public health protection policy (WHO, 2011b). Inadequate or poor 

drinking water quality is among the world’s major causes of preventable morbidity and mortality 

(WHO, 2003a). Today, the vast majority of the population in the UK are served with high quality 

drinking water by statutory water undertakers (water companies). These public supplies which 

are abstracted from groundwater and surface water sources usually undergo physical treatment 

(e.g. reverse osmosis filtration) and chemical treatment (e.g. chlorination) with the aim of 

providing ‘wholesome’ water to the consumer that meets microbial and chemical standards as 

specified in the Water Supply (Water Quality) Regulations 2000 (amended in 2001). In England 

&Wales, the regulation of drinking water is by the Drinking Water Inspectorate (DWI) and the 

legislative and water quality control measures over public supplies have greatly reduced the 

incidence and or outbreak of waterborne diseases in the UK (DWI, 2011).  

 

However, not everybody in the UK is served by public water as there is the population whose 

only source of drinking water is from private well or borehole (Private Water Supplies) (DWI, 

2006; Environment Agency, 2006). A private water supply (PWS) is defined in Section 93 of the 

Water Industry Act 2003 as, “any supply of water provided otherwise than by a statutorily 

appointed water undertaker” (Water Act 2003). In other words, they are water supply which is 

not provided by water companies or licensees, but instead, they are the responsibility of the 

owners or users. The quality and safety of PWS is regulated by the PWS Regulation 2009 
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(previously PWS Regulations 1991) which implements the European Drinking Water Directive 

98/83/EC. Although the standards and principles of regulation of PWS are the same for public 

water, it has been recognised that these supplies are more likely to be of poor quality and as a 

result have been linked to illness more than public supplies (DWI, 2006). PWS vary in their 

nature and range from shallow wells or boreholes serving individual houses, to deeper boreholes 

serving multiple dwellings, hotels, businesses, holiday accommodations, leisure facilities and 

tourist campsites. Whilst the majority of these private wells or boreholes are known to serve 

households mostly located in remote parts of the country and far from the nearest public water 

supply, some can be found in large towns and cities serving factories, hotels, business parks, 

educational centres, visitor attractions and health care centres (DWI, 2006).  

 

According to DWI (2013), there are approximately 86,218 PWS in the UK serving a population 

of more than one million people. In England, DWI (2013) reported that there are about 44,546 

PWS (51.7 per cent of UK total) serving a resident population of about 872,746 (1.6 per cent of 

England population) and a further 7.8 million people exposed to them when travelling through or 

taking a holiday in more rural areas of the country or when attending festivals, shows or other 

events served by a temporary supply of water.  Figure 1 shows the distribution of PWS in 

England & Wales and suggest that the majority of these supplies are in the South West, North 

West, West Midlands, East of England (East Anglia), Yorkshire and Humberside (DWI, 2013). 

Generally, private wells are more susceptible to chemical and microbiological contamination 

because they are usually smaller; shallower; less well equipped; may not have any form of 

treatment (e.g. ultra-violet unit) and closer to sources of contamination when compared with 

public supply boreholes which are usually in deeper groundwater aquifers where contamination 

is less likely (US Geological Survey (USGS), 1996). Also PWS are subject to less strict 

regulation and surveillance than public supplies and therefore more likely to suffer water quality 
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failures (Natural Environment Research Council (NERC), 2002; Manassaram et al, 2006). Thus, 

the health of those consuming water from this type of water supply is potentially at risk from 

microbial and chemical contamination (Manassaram et al, 2006).  

 

Figure 1  
 

 

Map showing distribution of private water supplies by region in England (Source: DWI, 2013). 

 

 

 

 

Whilst improvements in the quality of public water supplies have greatly reduced the incidence 

of waterborne diseases, microbial and chemical contamination of PWS remain the major cause 
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of waterborne disease in the UK (DWI, 2011).  Although the quality of public water in England 

has improved over the years, the same cannot be said of PWS (DWI, 2014). For example whilst 

only about 0.03 per cent of public water failed to meet WHO microbial and chemical standards 

in 2013 (0.04 per cent in 2012), about 9.6 per cent of PWS in 2010 (7.5 per cent in 2013) failed 

to meet the WHO and European Union (EU) drinking water chemical standards (DWI, 2014). 

 

According to the DWI (2013), 782 failures were recorded in water samples collected from PWS 

in England across 21 chemical parameters measured against WHO and EU drinking water 

standards in England in 2012. Whilst nitrate accounted for 58 per cent of such failures, lead 

accounted for 8 per cent arsenic; fluoride and copper each accounted for 9 per cent failures. In 

2014, the main chemicals identified in failures to meet the drinking water standards were nitrate 

(56 per cent) and lead, (18 per cent). In the same year, 32 different pesticides were detected in 

PWS, of which 12 were approved for agriculture use in the UK (DWI, 2015). Like chemical 

contamination, microbial contamination also continue to pose a risk to water quality in PWS in 

England & Wales, with about 12.8 per cent of water samples containing Esherichia coli (E.coli) 

and 13.4 per cent containing Enterococci in 2014. The presence of these two micro-organisms in 

drinking water suggests that the water supply is contaminated with faecal matter and therefore 

contain disease pathogens (DWI, 2015). All these indicate the vulnerability of PWS to chemical 

and microbial contamination and highlight the need for public health protection from 

contaminants in these types of drinking water sources. Whilst more than 5 per cent of the 

resident population in East Anglia and parts of Devon have been reported to rely solely on PWS 

for their drinking water, DWI recommends that the safety of PWS should be an integral part of 

the affected Local Authority’s Public Health Protection Strategy (DWI, 2014). Unlike public 

water, monitoring of PWS in England and Wales to ensure wholesomeness is the responsibility 
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of Local Authority Environmental Health Officers as prescribed in the Private Water Supply 

Regulations 2009 (DWI, 2011).  

 

As part of the Environmental Health Team of Suffolk Coastal District Council, it is our 

responsibility to implement the PWS Regulation in order to ensure that water from such supply 

is ‘wholesome’ i.e. complies with the microbiological and chemical standards, equivalent to the 

Prescribed Concentrations or Values (PCVs) contained in the Water Supply (Water Quality) 

Regulations 2000. The PCVs contained in the Water Supply (Water Quality) Regulations 2000 

are derived from Annex 1 of European Drinking Water Directive 98/83/EC and are based on  

WHO Guidelines for drinking water quality’ (WHO, 2004b). The implementation of this 

legislation involves the collection of water samples from the water-taps of houses served by 

PWS and laboratory analysis for parameters such as coliform bacteria; turbidity; pH; heavy 

metals; nitrates; pesticides etc. 

 

Concern has been expressed in recent times by the population in Suffolk Coastal District Council 

served by PWS about the quality of their drinking water and the potential health impact that may 

be associated with exposure to nitrates in their drinking water. These concerns stem from high 

nitrate concentrations recorded in these supplies by the District Council in implementing the 

PWS Regulation 1991 (now PWS Regulation 2009). In some of these supplies, nitrate 

concentrations of 460mg/l, well in excess of the drinking water standard of 50mg/l have been 

recorded. The high concentration of nitrates recorded in these supplies prompted my Team in 

2005 to enquire from the Environmental Health Departments of other Local Authorities in East 

Anglia (Suffolk; Norfolk; Essex and Cambridgeshire) about the concentration of nitrates 

recorded in PWS in their respective areas. The result of this survey (unpublished) also showed 

high concentration of nitrates in PWS in these areas, indicating that nitrate contamination of 
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drinking water sources was widespread in East Anglia. High nitrate concentration in drinking 

water and its potential adverse health effects is a public concern and the current advice from the 

DWI and Public Health England to my team is to take a precautionary approach by taking 

enforcement action on PWS where nitrate concentrations greater than 100 mg/l are detected. 

Such enforcement action may require the installation of water filters to the water-taps of affected 

houses or service of Improvement Notices.  

 

1.2 RATIONALE FOR THE STUDY: NITRATE AND HUMAN HEALTH - 

CURRENT STATE OF KNOWLEDGE 

 

The only established human health effect associated with exposure to nitrate in drinking water is 

infantile methaemoglobinemia (blue-baby syndrome) (Comly 1945, 1987; WHO, 2006a). This 

condition is thought to result from bacterial reduction of ingested nitrate in the stomach to nitrite 

and then to nitric oxide or the acidification of nitrite to nitric oxide (Mcknight, 1999; Agency for 

Toxic Substances and Disease Registry (ATSDR), 2001; Bjorne, 2005). In the bloodstream, 

nitric oxide can oxidise haemoglobin (Hb) resulting in the formation of methaemoglobin 

(methHb) (Fan et al, 1987; Bruningfann & Kaneene 1993; Knobeloch et al, 2000; ATSDR, 

2001). MethHb is a type of Hb that has a reduced ability to transport oxygen (Jaffe, 1981; NRC, 

1995) and increased levels of methHb in the blood can greatly reduce the ability of the Hb to 

carry oxygen from the lungs to the tissues (Jaffe, 1981; NAS, 1995) resulting in 

methaemoglobinemia (Craun et al, 1981; Kross et al, 1992). The condition is characterised by 

cyanosis, anoxia, and irregular heartbeat and asphyxiation. The Central nervous system (CNS) 

effects range from mild dizziness and lethargy to convulsion in affected children (Knobeloch et 

al, 2000; ATSDR, 2001; Gupta et al, 2008). Cases of this condition have been reported in many 

countries of the world (including the UK) since its first diagnosis by Comly in 1945 (Ewing & 
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Mayon-White 1951; Shuval and Gruener, 1972; Knobeloch et al, 2000; Addiscott & Benjamin, 

2004), and the current drinking water standard or maximum contaminant level (MCL) of 50mg/l 

NO3 was set by WHO in 1958 (WHO, 1958) in order to protect infants from this condition 

(NAS, 1981; WHO, 1985a). No other health condition was considered (EWG, 1996; Ward et al, 

2005).  

 

Recently, IARC reported that, “ingested nitrate or nitrite under conditions that result in 

endogenous nitrosation is a probable human carcinogen” (IARC, 2010; pg. 39). This 

classification (Group 2A of IARC cancer classification) was on the basis of limited evidence of 

carcinogenicity in humans but sufficient evidence of carcinogenicity in experimental animals 

(IARC, 2010). The mechanism of carcinogenicity by nitrates according to IARC is bacteria 

reduction of nitrates to nitrites and/-or acidification of nitrites in the stomach to oxides of 

nitrogen including nitric oxide (NO).  NO can undergo nitrosation in the presence of amines 

and/-or amides in food (endogenous nitrosation) to from N-nitroso compounds (Walker, 1990; 

Bruning-Fann & Kaneene, 1993; IARC, 2010). Whilst the majority of N- nitroso compounds 

have been demonstrated to be carcinogenic and teratogenic to animals (NRC 1981; Bogovski & 

Bogovski 1981; Twort et al, 2000; ATSDR, 2001; Weyer, 2003; IARC,2010) some have been 

reported to be carcinogenic to human (ATSDR, 2001; Ward et al, 2005; Bjorne 2005; IARC, 

2010).   

 

Experimental animal studies suggest that exposure to nitrates can inhibit iodine uptake by the 

thyroid gland resulting in thyroid disorders (including thyroid cancer) (Bloomfield et al, 1961; 

1962; Alexander & Wolff, 1966; Jahreis et al, 1986; Hiasa et al, 1991; Capen, 1997 & 1998), 

however, possible anti-thyroid effects of nitrates on humans have not been previously evaluated. 

Given widespread nitrate contamination of drinking water sources in East Anglia and other 
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regions of the UK, there is a need to evaluate the relationship between nitrate exposure and 

thyroid disorders (including thyroid cancer) in humans and to quantify any risk in East Anglia. 

Also, there is a need to evaluate the appropriateness of the current drinking water standard for 

nitrates (50mg/l) designed to protect against methaemoglobinemia in protecting against thyroid 

disorders.  Nitrate contamination of drinking water and the potential for anti-thyroid effect is a 

public health issue (Ward et al, 2005) because thyroid hormones are essential for some biological 

functions such as neurological development; skeletal growth; metabolism and development of 

the cardiovascular system (Kirk, 2006; Miller et al, 2009) and any disruption of thyroid 

hormones production can result to adverse health consequences (Crofton, 2008).  In a 

symposium on Nitrogen and Human Health, Powlson et al (2008) called for an independent 

study to determine whether the current drinking water standard of 50mg/l NO3 is scientifically 

justified and/or whether it needs to be reviewed.  

 

It is against this background that this research is undertaken. The study was carried out following 

the risk assessment framework in order to provide evidence - based risk estimates for thyroid 

disorders in East Anglia following exposure to nitrates in drinking water. The study involved a 

systematic search and review of available epidemiological (including case - reports) and 

experimental animal studies for any evidence of thyroid disorders (including hypothyroidism, 

hyperthyroidism, goitre and thyroid cancer) due to exposure to nitrates in public and private 

water supplies and to quantify any excess risk in East Anglia. The study also assessed the extent 

to which the drinking water standard of 50mg/l NO3, designed to protect against infantile 

methaemoglobinemia is likely to protect against thyroid disorders. The findings of this study can 

contribute to the existing knowledge on the relationship between exposure to nitrates in drinking 

water and thyroid disorders and also to the debate on the current drinking water standard for 

nitrates. 
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1.3  OUTLINE OF THE THESIS 

 

This thesis consists of eight chapters of which this introduction is Chapter One. Chapter Two is 

an overview of nitrates and drinking water contamination. It also contains information on how 

nitrates can get into the body (routes of human exposure); what happens to it once inside the 

body (toxicokinetic) and what it does in the body (toxicodynamics).  Chapter Three is the 

literature review of available experimental animal and epidemiological studies of the anti-thyroid 

effect of nitrates with reference to PWS and public water. It also contains the result of meta –

analysis of relevenat studies as well as the weight of evidence (WoE) analysis. Chapter Four is 

the study methodology as well as the Aims and Objectives of the study.  

 

Chapter Five is the dose - response assessment between nitrates in drinking water and thyroid 

cancer. The dose-response assessment was conducted with epidemiological studies only. Chapter 

Six is the exposure assessment and data analysis and is aimed to determine the amount of water 

intake by individuals in the study population. Risk characterisation form Chapter Seven. This is 

the risk estimation stage and incorporates findings from the dose-response analysis and the 

exposure assessment. It also contains a summary of the uncertainties and assumptions in the risk 

estimates.  Chapter Eight contains a summary of the study findings, the discussion, conclusion 

and recommendations, including for further research.  
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CHAPTER TWO 

 

2.0 NITRATES AND DRINKING WATER CONTAMINATION: OVERVIEW 

 

2.1  INTRODUCTION 

 

Nitrates are freely available in the environment as inorganic ions and are part of the nitrogen 

cycle (ATSDR, 2001; WHO, 2004a; Manassaram et al, 2006). The nitrogen cycle (figure 2) 

involves the fixation or conversion of gaseous nitrogen present in the atmosphere (78 per cent) 

into forms usable to living organisms. The conversion of gaseous nitrogen to nitrate is mediated 

by free-living bacteria present in plants, soil and water in the presence of sufficient oxygen and 

to a lesser extent by lightning strikes (Bjorne, 2005). In any environment, nitrate is very stable as 

oxidised nitrogen and can be reduced to nitrites by microbes (WHO, 2004a). Although nitrate is 

chemically inert, nitrite is moderately reactive and can further be reduced to various compounds 

or oxidised to nitrate (WHO, 2004a). Nitrates are present in soils, in most waters and in plants 

(including vegetables).  Due to the stable nature of nitrate ions, most nitrogenous materials in the 

environment are easily converted to nitrates. Nitrate is mostly used in the manufacture of 

fertilisers, explosives and in certain pharmaceuticals. Also, nitrates can be used in the chemical 

industry as oxidising agents and in the food industry as a preservative (WHO, 1978; Bjorne, 

2005).  
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Figure 2 The Nitrogen cycle (Source: Nature Education (2010)).  

 

Anthropogenic activities are the major contributor of nitrates in drinking water sources. Such 

activities include the use of fertilisers in agricultural activities; sewage discharges; 

domestic/industrial waste disposal; and emissions from motor vehicles and industries (e.g. power 

stations). In soil, inorganic nitrogen can first be degraded to ammonia, nitrite and then to nitrate 

by microbial activities. Given that nitrate is very soluble in water, nitrates in the form of nitrogen 

based fertilisers applied to crops and not taken up by plants (excess fertiliser) can easily leach 

from soil to groundwater, removed by surface runoff to rivers or lakes or stored in the soil-water 

system resulting in the immediate or subsequent pollution of the water course (Van 

Duijvenboden et al, 1989; WHO, 2004a; Grizzetti et al, 2011).  

http://www.nature.com/scitable
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It is estimated that nitrogen losses from agricultural land account for about 61 per cent of nitrate 

which enters surface and groundwater water in England & Wales while sewage and other 

discharges (e.g. livestock production) account for the rest (Hunt et al, 2004; Environment 

Agency, 2007a). In England, the contribution from agriculture is about 59 per cent, sewage 32 

per cent, non- agricultural land and industry accounts for 9 per cent (Hunt et al, 2004). The 

contribution of agriculture to nitrates in drinking water is greater in more rural regions (e.g. 

South West, Severn Trent, East Anglia), and smaller in densely populated areas (e.g. Thames) 

(Hunt et al, 2004). There are two main reasons why agriculture is the major contributor to 

nitrates in drinking water. The first is the addition of nitrogen in the form of fertilisers to crops. 

The second reason is because agriculture is the dominant land use, with “managed agricultural 

land” (i.e. land which receives fertiliser or manures or is cultivated) occupying 61 per cent of the 

land area of England. A further 14 per cent of the land area is recorded as “rough grazing” (i.e. 

land which receives no fertiliser or manures) (Hunt et al, 2004; Lord et al, 2006).  

 

The concentration of nitrates in surface water and ground water as a result of leaching from 

agricultural land in England was 110mg/l and 160mg/l respectively between 2004 and 2006 (lord 

et al, 2006). Assuming the losses from agricultural land remained stable; it is predicted that the 

concentration of nitrates in groundwater may reach 200 mg/l in some regions of the UK in a few 

years (Croll and Hayes, 1988; Lord et al, 2006). There is a strong relationship between nitrate 

concentrations in groundwater, the amount of nitrogen fertilisers applied to farm land and excess 

nitrate leaching from farm land (Grizzetti et al, 2011). Higher concentrations of nitrates have 

been found in groundwater than in surface water (Hunt et al, 2004; Lord et al, 2006) and in 

sandy soil than in clay soil (Hunt et al, 2004; Lord et al, 2006; Gupta et al, 2008). In 

groundwater, the presence of nitrates can remain for a very long time even after leaching from 

soil or farmland has stopped (Spalding and Exner, 1993; USGS, 1999).  
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2.2 LEGISLATIVE FRAMEWORK FOR MANAGING WATER QUALITY 

 

In the UK, drinking water can be provided either by a statutory water undertaker (Water 

Company) or privately from private wells or boreholes (PWS). Water companies have a duty 

under the Water Supply (Water Quality) Regulation 2000 as amended and the Water Supply 

(Water quality) (Amendment) Regulation 2001; 2002; 2005; 2007) to supply water that is 

wholesome at the time of supply i.e. when water passes from the water company’s pipe into the 

consumer’s pipe. They are responsible for monitoring the quality of their supplies and are also 

required to make all sampling results available to the Drinking Water Inspectorate (DWI) and the 

general public via the public register (DWI, 2011).  

 

Private Water Supplies (PWS) on the other hand are supplies not provided by a water company 

(not connected to a mains pipe). In England & Wales, they are regulated by the Private Water 

Supply Regulation 2009 (previously PWS Regulation 1991). The Regulation (which transpose, 

implements and enforces the UK’s obligation under the revised Drinking Water (Council 

Directive 98/83/EC of November 3, 1998 on the quality of water intended for human 

consumption), places a duty on Local Authorities to carry out a risk assessment within five years 

(from 2009) and to monitor regularly all large and small supplies to ensure that they comply with 

specified standards. ‘Large’ supplies are supplies providing water of 10m
3
/day or more (serving 

50 or more persons) and/or part of a commercial or public activity (such as bed and breakfast 

establishments). ‘Small’ supplies provide water of less than 10m
3
/day (serving less than 50 

persons). PWS supplying single dwellings are exempt from the requirement (DWI 2010). 

According to Article 1 of the EU Directive, ‘the objective of this Directive shall be to protect 

human health from the adverse effects of any contamination of water intended for human 

consumption by ensuring that water is wholesome and clean’ (Council of the European Union, 
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pg34). Although PWS serving single dwellings are except from the 5 years risk assessment and 

monitoring requirements, Local Authorities are required by the regulation to carry out risk 

assessment and monitoring on such supplies only at the request of the owner and or user. The 

Regulation also specifies monitoring parameters (including nitrate and nitrite), frequency of 

monitoring, point of monitoring within premises and charging for monitoring. Where quality is 

found to be below standard, Local Authorities must ensure that necessary remedial actions 

(including prohibition or restriction of use) are taken to improve the supply (DEFRA, 2005;  

DWI, 2010).  

 

In order to address and/- or control the pollution of groundwater and surface water especially, 

that used for drinking water purposes from diffused and point sources, the European Union (EU) 

has enacted a number of legislations in the form of Directives to Member States for 

implementation. These Directives have included the Nitrates Directive (Directive 91/676/EEC); 

the Urban Waste Water Treatment Directive (Directive 91/271/EEC); the Industrial Emission 

Directive (Directive 96/61/EEC) and the Drinking Water Directive (Directive 98/83/EEC). Also 

there is the Water Framework Directive (WFD) (Directive 2000/60/EEC) which reinforces the 

Nitrate Directive and the Urban Water Directive and aims to limit the introduction of nutrients to 

all waters including inland, surface coastal waters and groundwater. The Groundwater Directive 

(Directive 2006/118/EEC) complements the WFD and is for the protection of aquifers from 

pollution. Whilst all these legislations were aimed at reducing the nutrient load to surface water, 

groundwater, coastal and marine waters, the most relevant Directives to this study are the 

Nitrates and Drinking Water Directive and the Drinking water Directive.   
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The Nitrates Directive aims to reduce nitrates from agricultural lands entering and polluting 

water courses and to prevent such pollution in the future. It requires Member States to designate 

as NVZs all land draining to waters that may be affected by nitrate pollution. Within a NVZ, 

mandatory restrictions are placed on the use of organic manures and inorganic fertilisers on 

agricultural land (Environment Agency, 2007a). These measures were expected to reduce nitrate 

concentrations in limestone and sandstone aquifers over time (Tebbutt, 1998). In implementing 

the Nitrates Directive; the UK government designated some land in different regions of the 

country as Nitrate Vulnerable Zones (NVZs). Figure 5 shows NVZs in England including the 

study area, East Anglia.  

 

Figure 3: Map showing Nitrate Vulnerable Zones in England (Source: DEFRA, 2009). 
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The map show that about 77 per cent of agricultural land in England has been designated as 

NVZs. Whilst about 22 per cent of land was  designated in 1996, a further 55 per cent was 

designated in 2002 (DEFRA, 2009). The NVZs included the majority of land in East Anglia 

(DEFRA, 2009), where land use other than for residential purposes is predominantly (>75 per 

cent) used for agriculture.  

 

2.3  NITRATE CONCENTRATIONS IN DRINKING WATER SOURCES IN THE UK 

 

Nitrates are naturally present in ground and surface water and depending on soil type, 

background levels are usually less than 10mg/l in groundwater and <5mg/l in surface water 

(Meybeck & Helmer, 1996; European Centre for Ecotoxicology and Toxicology of Chemicals 

(ECETOC), 1988). However, any exceedance of these levels is an indication of pollution from 

varying sources (WHO, 2004a). Nitrate contamination of water sources in the UK has increased 

since the 1950s due mainly to agricultural practices (especially the application of nitrogen based 

fertilisers or manure to crops) and other land uses in the catchment (Environment Agency, 

2007a), with annual average increases of about 0.7mg/l recorded in some surface water (Young 

& Morgan- Jones, 1980). Although the concentration of nitrate in surface water varies from day 

to day, high concentrations have been reported in dry areas or regions such as East Anglia when 

compared with wetter areas or regions.  This is because, in wetter areas, the rate of dilution is 

faster than in dry areas (Environment Agency, 2007). Nitrate concentration is also higher in 

arable areas (including East Anglia, the Midlands and Thames) than in grassland areas due to 

high rate of microbial degradation of nitrates (Environment Agency, 2007).  
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The Environment Agency conducted an assessment of nitrate concentrations in surface water and 

groundwater in England between 1999 and 2004 and reported that although concentrations had 

reduced in some areas, concentrations are still high in some areas or regions such as East Anglia 

(Environment Agency, 2007).  While data on nitrate concentrations in both surface water and 

groundwater showed that nitrates concentrations in surface water were higher compared to 

groundwater, the long time it takes for nitrates leaching from agricultural land to reach 

groundwater when compared with surface water may explain the reason. Although the mean 

concentration of nitrates in water in some regions was low, there were differences in 

concentration between sites in the same region and between regions (Environment Agency, 

2007).   

 

In the European Union (EU), groundwater accounts for the majority of drinking water in many 

EU15 countries and is the main source of drinking water in countries such as Austria, Denmark, 

Italy, Spain, Germany, France and the Netherlands while surface water is dominant in the UK, 

Finland, Czech, Estonia, Ireland and Portugal (European Commission, 2007). Data from the 

European Commission (2007) suggest that between 2002 and 2004 the contribution of surface 

water, groundwater and other (e.g. bottled water) to drinking water was 66; 33 and 4 per cent 

respectively. Figure 6 shows the contributions of surface water and groundwater to drinking 

water and the percentage of the population served in the EU14 between 2002 and 2004 

suggesting that groundwater contributed drinking water for less than 20 per cent of the 

population in the UK while surface water contributed drinking water for the majority of the 

population.  About one- third of these water sources are estimated to contain nitrates in excess of 

the drinking water standard of 50mg/l (European Commission, 2002; WHO, 2004b). According 

to data made available to the European Commission in compliance with the Drinking Water 

Directive 98/83/EEC which requires Member States to report on drinking water quality every 
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three years, nitrate was one of the parameters that usually failed to meet the required standard in 

the 2002-2004 assessment (European Commission, 2007).  

 

Figure 4: Relative Contribution of Surface Water, Groundwater, and other sources of 

Drinking Water in EU14. Source: European Commission, (2007) 

 

 

 

Although data on nitrate concentrations in drinking water made available to the European 

Commission only related to public supplies and from large supply zones serving more than 5000 

persons or producing over 1 million litres of water per day (European Commission, 2007), high 

nitrate concentrations were also been reported in small supplies (PWS) (where the mandatory 

reporting contained in the Drinking Water Directive does not apply) in the Netherlands, 

Belgium, Germany, UK, France, Denmark and Slovenia (Strebel et al, 1989; MAFF, 1992; 

Fried, 1991; Maticic, 1999; WHO 2004b), with levels in private wells about 10-15 times higher 

than the drinking water standard (Van Duijvenboden & Mattijesen, 1989). In Denmark, about 30 
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per cent of the population rely on PWS for their drinking water while the percentage in Austria, 

France, Germany and Ireland is about 25 per cent (European Commission, 2007). In the UK, 

about 1.6 per cent of the population in England is permanently served by PWS with a further 7.8 

million people occasionally exposed to water from PWS (DWI, 2013). These private-wells, 

which are mostly located in rural areas and areas of intensive agriculture and crop production, 

are sometimes shallow when compared to public supply boreholes and therefore more easily 

contaminated by nitrate and other water contaminants than public water supply boreholes which 

are usually located in deeper groundwater aquifers (USGS, 1996a; Maticic, 1999).  

 

In the EU27, Grizzetti et al, (2011) analysed European Commission data and estimated that 

about half of the population live in areas where nitrate concentration in both groundwater and 

surface water is higher than 25mg/l while about 20 per cent live in areas with levels higher than 

50mg/l. The data suggest that in the UK, about 38 per cent of the population live in areas with 

nitrate concentrations in drinking water of <25mg/l while about 22 per cent live in areas with 

>50mg/l. About 30 per cent of the population live in areas with 25-40mg/l while about 10 per 

cent live in areas with 40-50mg/l. In the Netherlands, only about 5 per cent of the population live 

in areas with nitrate concentration less than 25mg/l while about 52 per cent live in areas with 

nitrate levels in drinking water >50mg/l.  

 

2.4 TRENDS IN NITRATE CONCENTRATIONS IN THE UK 

 

Nitrate concentrations in surface water fluctuate from year to year and consequently, there is no 

clear national trend (Environment Agency, 2007). This fluctuation is mainly due to changes in 
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nitrogen input from agricultural activities; sewage treatment works and discharges from 

industries, as well as seasonal variations, with concentration higher in winter (due to high runoff 

after a dry summer when nitrogen has built up in the soil either from fertilisers or deposition 

from the air) and lower in summer. Analysis of nitrate concentrations in surface water in 

England &Wales by the Environment Agency between 1999 and 2004 showed that nitrate 

concentration was increasing in about 77 per cent of sites and decreasing in only about 23 per 

cent of the sites (Environment Agency, 2007), although this increasing and decreasing trend was 

only statistically significant in a few cases and this may be as a result of the short period of time 

over which the analysis took place. However, a look at a longer time period between 1995 and 

2005 (figure 8) shows that 28 per cent of rivers had high nitrate concentrations in 2005 (mean 

concentration >30mg/l), compared with 32 per cent in 2000 and 30 per cent in 1995 

(Environment Agency, 2007). A mean of 30mg/l was used as a basis for the assessment to 

indicate the potential for nitrate concentration to exceed the drinking water standard of 50mg/l at 

some time in the future (Environment Agency, 2007). Although these figures suggest a slight 

downward trend, they also indicate that there are variations between and within regions, as well 

as seasonal variations (Environment Agency, 2007).   

Figure 5:  Percentage of rivers with high nitrate concentration in England & Wales 1995-

2005 
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In a groundwater nitrate assessment, the Environment Agency (Environment Agency, 2007) 

observed a trend more rising than falling in groundwater monitoring points. According to the 

Agency, nitrate concentrations in groundwater depend on farming practices as well as the aquifer 

type (Environment Agency, 2007). While it may take decades for water to move through some 

aquifers with the result that pollution will remain in the aquifers for a long time, other aquifers 

respond more quickly and the retention time within the aquifer is shorter. Figure 8 represents 

data from the Environment Agency on groundwater nitrate concentrations in several aquifer 

types suggesting that nitrate levels in some groundwater had doubled since 1980 with the 

Triassic sandstone and Jurassic limestone nitrate concentrations rising well above the regulatory 

limit of 50 mg/l NO3 (DEFRA, 2004). It is estimated that about 45 per cent of groundwater in 

England is at the risk of nitrate contamination.  

Figure 6: Trends in groundwater nitrate concentrations in England and Wales, 1980-2001 

(Environment Agency, 2006). 

 

 

 

Nitrate contamination of groundwater is still a concern in Europe given that about two- thirds of 

Europe’s population rely on groundwater for their drinking water (Grizzetti et al, 2011). 
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According to data released by the European Commission (EC (2007) COM (2007) Report 120) 

in the implementation of the Nitrate Directive, about 17 per cent of wells in EU15 had nitrate 

concentrations above 50mg/l between 2000 & 2003.  In the same period, about 7 per cent of the 

stations had nitrate concentration between 40-50mg/l, while about 60 per cent had concentrations 

below 25mg/l. Although the figures suggest improving trends in about 30 per cent of the wells, 

concentration remained high in about 36 per cent of the wells (EC (2007) COM (2007) Report 

120). According to the report covering the period between 2004 to2007, nitrates concentration 

was still high in about 34 per cent of the wells, with about 15 per cent containing  nitrates above 

the drinking water standard of 50mg/l (European Commission (2010) COM (2010) Report 47).  

 

Despite efforts  by means of legislation and conventions to reduce nitrate contamination of 

drinking water in Europe, including the UK, the rising trend in nitrate pollution of drinking water 

sources (including groundwater and surface water) suggests that anthropogenic activities 

continues to impact on drinking water sources and will continue to do so in the future. The high 

but stable nitrate concentrations in Western Europe, the large reserves of nitrogen that have 

already built up in soil and aquifers and the potential for intensive agriculture and increased use 

of fertilisers in crop production in Eastern Europe in the coming years will likely remain a threat 

to water quality and it is not known how long it will take for drinking water quality to be restored 

in affected countries (Grizzetti et al, 2011). According to the UK Environment Agency, current 

legislations are unlikely to reverse past nitrate pollution or prevent the rising trends of nitrate 

concentrations in groundwater, and it is unlikely that reductions in nitrate concentrations in 

surface water will be achieved in the near future (Environment Agency, 2007a). Therefore it is 

necessary to assess the potential ecological and public health impact of rising trend in nitrate 

concentrations in drinking water sources in order to determine any mitigation measures that need 

to be put in place for public health protection.  
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2.5     ROUTES OF EXPOSURE 

 

Humans can be exposed to nitrates exogenously from dietary and drinking water sources. Whilst 

vegetables such as potatoes, lettuce, radishes, and spinach are the main sources of dietary nitrates 

(Chilvers et al, 1984; USEPA, 1987; ECETOC, 1988; WHO, 2004a), other dietary sources 

include cured meat, processed cereal products, some preservatives used in the food industry 

(WHO, 2004a), as well as the use of aluminium products in food preparation which can reduce 

nitrate to nitrite, leading to increased toxicity (WHO, 2004a). Although vegetables constitute the 

main source of nitrate exposure when nitrate concentrations in drinking water is below 50mg/l 

(IARC, 2010), drinking water can be a major source of nitrate exposure in areas where nitrate 

concentration are above the drinking water standards of 50mg/l (Chilvers et al, 1984; WHO, 

2004a), accounting for about 80 per cent of total nitrate intake especially for bottle-fed infants 

(Chilvers et al, 1984; WHO, 2004a). Although nitrate is not toxic per say, its reduction to nitrite 

and then to nitric oxide by bacteria present in the gastrointestinal tract results in its toxicity. 

Nitrite is rarely present in drinking water (WHO, 2004a), but when present, the concentration is 

usually below 3mg/lNO2
-
 and is an indication of bacterial contamination of drinking water in the 

distribution system (nitrite is produced from ammonia by ammonia- oxidising bacteria) due to 

inadequacies of the chloramination disinfection process (WHO, 2004a; Forman, 2004). 

Chloramination is the process of water treatment for public health protection where chlorine and 

a small amount of ammonia are added to drinking water at different times as disinfectants 

(USEPA, 2007).  

 

Air pollution can contribute to human exposure to nitrates. This can be from inhalation of 

cigarette smoke and car exhausts (Health Canada, 2013). Although air pollution can contribute to 
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nitrate exposure, its contribution is minute when compared with dietary and drinking water 

sources (WHO, 2004a). Therefore exposure through the oral route is very significant in the risk 

assessment of nitrates (Lunberg et al, 2004). There is no evidence of nitrate or nitrite exposure 

through the dermal routes (Health Canada, 2013). The effect of nitrate exposure is usually the 

same whether nitrate containing compounds are ingested, inhaled or produced endogenously 

(ATSDR, 2001).  

 

2.6 TOXICOKINETICS  

 

Toxicokinetics has to do with the movement of a toxicant around the body in the process of 

absorption, distribution, metabolism and elimination or excretion (Trush, 2008). In other words, 

it refers to what the body does to the toxicant at every stage of its movement and is indicated by 

the concentration of the toxicant in the plasma at various stages, leading to a biological effective 

dose of the toxicant at the end of the process (Trush, 2008).  

 

2.6.1 ABSORPTION AND DISTRIBUTION    

 

In humans, absorption of ingested nitrate takes place in the upper part of the small intestine from 

where it combines with endogenously synthesised nitrate in the bloodstream (Balish et al, 1981; 

Bartholomew & Hill, 1984; Bjorne, 2005). The background concentration of nitrate in the 

bloodstream is about 20-30µmol/l but this may increase 20-40 folds within 2 hours following 

exposure to nitrate from exogenous sources (Mcknight et al, 1997; Lundberg & Govoni, 2004). 
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Following ingestion, approximately 60-70 per cent of nitrates is excreted in urine in the first 24 

hours, while about 25 per cent is secreted in the saliva by blood active transport mechanism 

where about 5-10 per cent is reduced to nitrite by bacteria usually present at the back of the 

tongue (Spiegelhader et al, 1976; Duncan et al, 1995; Bjorne, 2005), but this value may be up to 

20% in some individuals (Spiejers & Brandt, 2003; Weitzberg & Lundberg, 1998) especially the 

elderly (Eisenbrand et al, 1980). Microbial reduction of nitrate to nitrite in the oral cavity is 

influenced by nutritional status, infection, temperature and age (Eisenbrand et al, 1980). From 

the oral cavity, nitrite and the remaining nitrate are then swallowed in saliva to enter the stomach 

(Lundberg & Weitzberg, 1998; WHO 2004a). The concentration of nitrate or nitrite in the saliva 

is related to the amount of nitrate ingested (Spiegelhader et al, 1976; Bartholomew & Hill 1984). 

Although the reduction of nitrate to nitrite can occur in other parts of the gastrointestinal tract, it 

does not usually occur in the stomach because of the presence of gastric acid (low pH) (Colbers 

et al, 1995). However in individuals with little or no gastric acid e.g. bottle fed infants or people 

with diarrhoea, bacteria colonisation of the stomach can occur leading to high pH and 

consequent reduction of nitrate to nitrite by micro-organisms (WHO, 2004a). Salivary secretion 

and reduction of nitrate to nitrite have also been reported in experimental animals like rats 

(Duncan et al, 1995) but the total nitrate reduction is less than that in humans (Health Canada, 

2013; WHO, 2004a).  

 

2.6.2 METABOLISM AND BIOTRANSFORMATION   

 

In the stomach and other acidic environments (like the ischemic heart; urine; mouth and skin), 

nitrite can acquire a proton (H
+
) to from nitrous acid (HNO2) which can subsequently yield 

various species of nitrogen compounds such as dinitrogen trioxide (N2O3), nitrogen dioxide 
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(NO2) and nitric oxide (NO) (Addiscott & Benjamin, 2004; Bjorne, 2005; Lundberg & 

Weitzberg, 2005). This process of acidification of nitrite to yield various species of nitrogen 

oxides is enzyme independent; however, the presence of reducing agents can favour the 

production of more NO (a less reactive nitrogen oxide) than NO2, N2O3, N2O5 (Bjorne 2005). 

According to Bjorne (2005), acidification of nitrite is a major source of nitric oxide in humans 

and can sometimes produce nitric oxides in excess of that required for the maintenance of normal 

biological cell functions. Apart from the acidification of nitrite to various species of nitrogen 

oxides, NO can also be produced at neutral pH by bacteria reduction of nitrite (Ohshima and 

Bartsch, 1994). 

 

2.6.3  ENDOGENOUS NITRATE SYNTHESIS 

 

Nitrate is also produced endogenously (Walker, 1995) and it is estimated that about 1mmol 

(62mg) of nitrate is produced endogenously by a healthy adult human per day (Wishnok et al, 

1995). The main pathway for endogenous nitrate synthesis is thought to be through the L-

arginine - nitric oxide (NO) pathway (Tjeert et al, 2003; Bjorne 2005; IARC, 2006). This process 

is mediated by the enzyme, nitric oxide synthase (NOS) in the presence of oxygen and is 

dependent on nicotinamide adenine dinucleotide phosphate (NADPH).  NOS is present not only 

in microphages and neutrophils but also in all mammalian cells including the epithelium of the 

gastric mucosa (Bjorne, 2005). This pathway involves the production of nitric oxide and L-

citrulline from the amino acid, L-arginine. This is then followed by the oxidation of nitric oxide 

(NO) to nitrogen dioxide (NO2) and dinitrogen trioxide (N2O3). N2O3 can react with water to 

yield nitrous acid (HNO2) which can dissociate to nitrite and H
+
.  Nitrite is easily oxidised to 

nitrate through reaction with the haemoglobin (Addiscott & Benjamin, 2004; IARC, 2010). The 
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excess nitrate detected in urine following exposure to low levels of nitrate or nitrite is suggests 

endogenous synthesis of nitrate (Leaf, 1989). Gastrointestinal infection, respiratory disease or 

inversion of the body by micro-organisms is reported to increase endogenous production of 

nitrates in order to protect the body from invading microbes (Green, 1981; Bartholomew & Hill, 

1984; Gangolli et al, 1994).  Thus in situations of low exogenous nitrate exposure, endogenous 

nitrate production are a major source of nitrates in the body (Mensinga et al, 2003). Although the 

toxicological consequences of endogenously produced nitrates are not yet known (Wishnok et al, 

1995), it however, makes nitrate risk assessment difficult (Spiejers, 1998; WHO 2004a).  

 

2.6.4 EXCRETION 

 

The half-life of nitrate in the body is about 5-7 hours (Green et al, 1981; Spiejers, 1998) and 

complete after 24hours (Bartholomew & Hill, 1984). Whilst the majority (60-70 per cent) of 

ingested nitrate is excreted in urine as nitrate, ammonia or urea,  approximately 1 per cent is 

excreted in faeces (Bartholomew & Hill, 1984; Gupta et al, 2008),  and the remainder is either 

excreted in sweat, exhaled in breath (L’hirondel & L’hirondel, 2002); Bjorne, 2005). 

Approximately 25% of nitrate is actively transported by the sodium/iodide symporter to saliva 

and breast milk (Wagner et al, 1983; Walker, 1999).  In infants, approximately 100 per cent of 

ingested nitrate is excreted in urine under normal conditions (Turek et al, 1980).  The half-life of 

nitrite is approximately 30 minutes in humans and as a result is not normally detected in body 

tissue or fluid after oral exposure (Kortboyer et al, 1997). Only a very small amount of nitrite is 

excreted in urine (WHO, 1985b; Speijers et al, 1989; Gupta et al, 2008) as a result of bacteria 

reduction of nitrate to nitrite in the urinary tract (Mensinga et al, 2003). The half-life of NOx is 

about 1-5 seconds due mainly to its rapid reaction with oxyhaemoglobin resulting in 
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methaemoglobin and oxidation to nitrate (Bjorne, 2005) and reaction with amines to form 

nitrosamines (Health Canada, 2013). 

 

2.7  TOXICODYNAMICS 

 

Toxicodynamics refers to the actions of a toxicant or their metabolite on biological systems as a 

result of the interaction of the biologically effective dose with a molecular target (Trush, 2008). 

The biological effect of nitrates (including its toxicity) is mediated by its metabolite NOx through 

the reduction of nitrates to nitrite and then to oxides of nitrogen including, NO (Addiscott & 

Benjamin, 2004; Bjorne, 2005). Nitric oxide is also known to be biologically active and can play 

a role in some biological functions (Jaffe, 1981; Hsia, 1998). Such functions include vasodilation 

(Bjorne, 2005), neurotransmission (Garthwaite, 1991), antimicrobial activity (Hibbs et al, 1987; 

Fang, 1997; Addiscott & Benjamin, 2004); immune regulation (Hibbs, 1991), vascular smooth 

muscle relaxation (Ignarro, 1989) and inhibition of platelet aggregation (Randomski et al, 1987; 

Bjorne, 2005). However, nitric oxides can also be toxic to cells (including tumour cells) if 

produced in large amount e.g. following ingestion of large amount of nitrates (Gupta et al, 1998) 

or if any of the cell protective mechanism is compromised (Sutton et al, 1976; Hsia, 1998; Al-

Sa’doni & Ferro, 2000).  NOx can also react with secondary and tertiary amines or amides such 

as nitrosamines and nitrosamides to from N-nitroso compounds (NOCs) (Butler and Williams, 

1993; Wink & Mitchell, 1998; Baker et al, 2004). The majority of N- nitroso compounds (about 

80 per cent) are carcinogenic to animals (Choi, 1985; De Roos, 2003; Gupta et al, 2008) while 

some are carcinogenic to humans (IARC, 1978). Endogenous nitrosation accounts for about 75 

per cent of the overall human exposure to N-nitroso- compounds while exogenously formed 
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NOCs found in preserved meat, fish, tobacco products and certain occupational exposures 

accounts for the rest (Tickner, 1997).  

 

Although methaemoglobinemia is outside the scope of this study, NOx is reported to be 

responsible for the oxidation of oxyhaemoglobin to methHb (Addiscott & Benjamin, 2004). Also 

the reaction of NO (at high concentration) with oxygen radicals (O2
-
) can result in the formation 

of peroxynitrite (ONOO
-
) (Addiscott & Benjamin, 2004; Al-Sa’doni & Ferro, 2000; Bjorne, 

2005). Peroxynitrite has been implicated in the oxidation of thiols; DNA damage (Gupta et al, 

1998; Bjorne, 2005); lipid peroxidation (Al-Sa’doni & Ferro, 2000), and mitochondria 

dysfunction (Gupta, 1998, Bjorne, 2005).  

 

2.7.1 MODE OF ACTION OF NITRATES ON THE THYROID GLAND 

 

The mode of action of nitrate on thyroid is reported to be through its ability to inhibit iodine 

uptake by binding to the sodium/ iodine symporter (NIS), a glycoprotein membrane located on 

the basal side of thyroid, resulting in decreased thyroid hormones (triiodothyronine (T3), 

thyroxine (T4)) production; and increased level of thyroid stimulating hormones (TSH) 

(Bloomfield et al, 1961 & 1962; Alexander & Wolff, 1966; Greer et al, 2002). Chronic 

stimulation of the thyroid gland to produce more hormones by the TSH in the event of low 

thyroid hormones can result to thyroid disorders, including hypothyroidism; increased thyroid 

volume; thyroid hypertrophy (goitre); hyperplasia; adenomas and carcinoma (Hiasa et al, 1991; 

Capen, 1997 & 1998). High TSH is a biomarker for hypothyroidism while altered T4 serum 

concentration is a biomarker for exposure to endocrine disrupting chemicals (De Vito et al, 1999; 
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Zoeller et al, 2007).  Whilst it is not known the level of thyroid hormones below which adverse 

thyroid effects can occur, available evidence suggests that the half- life of serum thyroid 

hormones (T4) in adult humans is 7-10days (Vulsma et al, 1989; Greer et al, 2002) and 

approximately 3days in infants (Vulsma et al, 1989). In rats, the half-life of thyroid hormones is 

approximately one day (Zoeller & Croffton, 2005). However, while adult humans are able to 

store several months’ worth of thyroid hormones to be used when there are shortages (Greer et 

al, 2002), it is estimated that infants can only store less than one day worth of thyroid hormones 

(Zoeller & Croffton, 2005). The short half –life of thyroid hormones in rats and infants implies 

that they require more iodine intake to produce more hormones. This therefore suggests that rat 

and infants and are more sensitive to iodine inhibitors than adult human (Health Canada, 2013). 

Although adult animals and humans can compensate for shortages of thyroid hormone  

production from their reserve if there are shortages of iodine uptake by the thyroid gland, 

however,  exposure to high levels of nitrates or nitrites; chronic exposure or combined exposure 

with other iodine disrupting chemicals, coupled with dietary iodine deficiency can also result in 

the rapid depletion or exhaustion of reserved thyroid hormones, resulting in hypothyroidism 

and/-or thyroid hypertrophy (goitre) (Health Canada, 2013). Hypothyroidism is also very 

common during pregnancy as it adds pressure on the thyroid gland (Aoki et al, 2007).   

 

The NIS is also present in other tissues like the mammary gland and acts as a source of iodine 

transport from mother to child during lactation (Kirk, 2006). Adequate thyroid hormone 

production is necessary for neurological development, skeletal growth and normal function of 

the pulmonary and cardiovascular systems; metabolism; kidney and serum lipids functions (Kirk 

2006; Miller et al, 2009).  Therefore, inadequate or insufficient thyroid hormones can result in 

developmental defects in animals and human as a result of decreased tissue T4 or T3 irrespective 

of the level of TSH (Crofton, 2008). Decreased thyroid hormones (even when clinical 
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hypothyroidism is not evident) and especially during critical or sensitive periods of development 

can result in impaired foetal development, reduced heart rate and body heat producing 

capabilities and reduced intelligent quotient (IQ) (Howdeshell, 2002; Kirk, 2006). Although 

disruption of thyroid hormone production can result in thyroid tumours and birth defects (Health 

Canada , 2013),  it is not well established if humans can get carcinoma from thyroid hormones 

deficiencies given that humans thyroid cells are less susceptible to the effects of TSH than rats 

(Crofton, 2008). Although other drinking water contaminants like perchlorate and thiocyanate 

can inhibit iodine uptake by the thyroid, the relative potency of perchlorate to inhibit radioactive 

iodine uptake has been found to be 15,30,240 times that of thiocyanate and nitrates respectively 

(Tonacchera et al, 2004). Based on the molar potencies, DeGroef et al (2006) suggested that 

thiocyanate and nitrate acquired through food and drinking water accounts for a much larger 

proportion of iodine uptake inhibition than perchlorate.  Although nitrate from food and drinking 

water are both reduced to nitrite and NO, nitrates from food sources including vegetables are 

unlikely to result in increased endogenous nitrosation because of the presence of antioxidants 

such as ascorbic acid (Vitamin C), alpha- tocopherol or other reducing agents normally present 

in vegetables and food which can inhibit endogenous nitrosation (Bartsch et al, 1988; IARC, 

2010). No association has been reported between dietary nitrate intake and human cancers and 

this has been attributed to the presence of antioxidants and nitrosation inhibitors normally 

present in vegetables and food (Boeing, 1991; Forman, 1987; Ward et al, 1996). NIS does not 

transport nitrite (Eskandari et al, 1997) suggesting that the toxicity or effect of nitrates on the 

thyroid gland is not mediated by nitrite 

 

However, exposure to elevated levels of nitrates in drinking water can result in increased 

production of nitrite and NOx (Cole & Brown, 1980) and increased endogenous nitrosation 

(Ward et al, 2005; Gupta et al, 2008,) due to the absence of antioxidants in drinking water 
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(IARC, 2010).  It has been reported that exposure to elevated levels of nitrate in drinking water 

above the drinking water standard (>50mg/l) is associated with the ability to nitrosate proline, a 

biomarker for endogenous nitrosation in urine (Moller et al, 1989; Mirvish et al, 1992); and 

increased concentration of N-nitroso compounds in faeces (Rowland et al, 1991; Chiu et al, 

2007). Below 50mg/l, no relationship between nitrate exposure and formation of NOCs was 

reported (Levallois et al, 2000). However, at 50mg/l, exposure can result in the formation of 

NOCs if nitrosatable compounds are also present (Vermeer et al, 1998). According to Shepherd 

(1995); WHO (1996b); endogenous nitrosation can occur in the gastric juice of humans mostly at 

low pH when either NO; NO2; N2O3 or N2O4 and nitrosatable compounds are present at the same 

time.  

 

Given that antioxidants are not normally present in drinking water (IARC, 2010) exposure to 

high concentrations of nitrates from this medium is a public health concern (Ward et al, 2005). 

This is because water is likely to be consumed without simultaneous exposure to antioxidants. It 

is for this reason that this study only evaluated exposure to nitrates from drinking water. 

According to IARC (2010), evaluation of nitrate exposure from food and drinking water can be 

conducted separately because of the presence of antioxidants in food which can inhibit 

nitrosation. Single medium risk assessment is justified if the levels of contaminants present in a 

medium exceeded the guideline value or when required by legislation (Davis & Klein, 1996; 

DEFRA, 2009).  
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2.8  SUMMARY 

 

Nitrate contamination of drinking water sources is widespread in parts of the UK especially in 

the South West; East Anglia and the Midlands.  Agricultural processes especially the application 

of fertilizers to crops is a major source of nitrate pollution of drinking water sources. Nitrate 

contamination of surface water and groundwater used for drinking is mainly due to human 

activities especially the use of nitrogen based fertilizers and manure in crop production. Nitrate 

concentrations in drinking water sources vary, but there is consistency in the relationship 

between nitrate concentrations and sources of water. Thus, higher nitrate concentrations have 

been found in groundwater than in surface water; in private water supplies than in public water; 

in shallow wells than in deeper wells; and in agricultural areas than urban areas. High nitrate 

concentrations especially in PWS is a public health issue because unlike public water, this type 

of supply are more susceptible to pollution because they well are not as deep as public water 

boreholes  and users of such water are more likely to be exposed to nitrates in drinking water 

above the WHO drinking water standard.  

 

Humans are exposed to nitrates from both exogenous and endogenous sources. Whilst the 

contribution of endogenously synthesised nitrate to the overall nitrate body burden is very small 

and may be toxicologically insignificant, exogenous sources are the main contributors of nitrate 

exposure to humans. Given that the biological effect of nitrates is mediated by nitric oxides 

(nitrates is reduced to nitrites and then to NO) and not nitrite as previously thought, exposure to 

high concentrations of nitrate in drinking water is associated with increased production of NO. 

Although NO can play a role in the maintenance of biological functions, it is also cytotoxic and 

can result in the inhibition of iodine uptake by the thyroid gland. This could result in in low 

production of thyroid hormones and increased production of TSH. Chronic stimulation of the 
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thyroid by TSH to produce more hormones in the event of shortages could result in 

hypothyroidism, increased thyroid volume, thyroid hypertrophy (goitre), hyperplasia and 

carcinoma. NO and other oxides of nitrogen such as N2O3; N205 and NO2 can also undergo 

nitrosation in the presence of secondary or tertiary amines or amides to form N-Nitroso-

compounds. Whilst the majority of NOCs are known animal carcinogens, some have been 

reported to be carcinogenic to humans.  

 

Although food, especially vegetables is the main source of exogenous nitrate exposure in 

humans, it is less likely to increase endogenous nitrosation because vegetables contain 

antioxidants e.g. vitamins C, E and alpha - tocopherol which can inhibit endogenous nitrosation. 

However, exposure to nitrates in drinking water could result in increased endogenous nitrosation 

since antioxidants are absent in water and water is more likely to be consumed without 

concomitant exposure to any antioxidant. Drinking water is therefore a major source of exposure 

to nitrates and a justification of the single medium risk assessment.    
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CHAPTER THREE 

 

3.0  LITERATURE REVIEW 

 

3.1 INTRODUCTION  

 

The purpose of this chapter is to systematically review the literature (epidemiological and 

experimental animal studies as well as case – reports) for evidence of thyroid disorders as a 

result of exposure to nitrates in drinking water. It involves characterising the nature of any 

disorder (e.g. hypothyroidism; hyperthyroidism; goitre; thyroid cancer) and the strength of any 

evidence of association and determining whether any association is causal. The Chapter therefore 

aims: 

 

 To review available epidemiological and experimental animal studies as well as case-

reports for evidence of thyroid disorders following exposure to nitrates in drinking water. 

 To characterise the mechanism of action of nitrates on the thyroid gland. 

 To characterise the nature of any disorder as well as the strength of any evidence of 

association. 

 To determine whether any association is causal. 

 

Systematic review is very important in healthcare and aims to provide information that can be 

used to bridge knowledge gaps and aid policy formulation, and may also form the basis for 

future research.  It is therefore important that the process is rigorous and follow prior planning 

and documentation of the methodology or protocol (Shamseer et al, 2015).  According to 

Shamseer et al, (2015), the reasons why a protocol for systematic review is important are:  
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 To enable other reviewers to replicate the review methods if necessary and to judge the 

validity of planned methods. 

 To prevent arbitrary decision making with respect to inclusion criteria and extraction of 

data. 

 To reduce duplication of efforts and enhance collaboration 

  

The PRISMA (Preferred Reporting Items for Systematic reviews and Meta-Analysis) framework 

has been designed and recommended for systematic review and meta-analysis. The PRISMA 

protocol (PRISMA-P) presents an explicit scientific road map of a planned systematic review. It 

details the rationale and planned methodological and analytical approach of the review (Moher et 

al, 2009; Shamseer et al, 2015). This review was conducted following the PRISMA framework.      

The literature reviewed in this thesis was obtained by a systematic search of the following online 

databases:  

 PubMed (www.ncbi.nlm.nih.gov) 

 Toxline (Toxline Database, National Library of Medicine, Bethesda, MD 

(www.toxnet.nlm.nih.gov) 

 ScienceDirect (www.sciencedirect.com) 

 ISI Web of Knowledge (www.isiknowledge.com) 

 Google Scholar (http://scholar.google.com)  

 

Given that the mode of action (section 2.7.1) suggest that exposure to nitrates can inhibit iodine 

uptake by the thyroid resulting decreased thyroid hormone production, hyperthyroidism, 

hyperthyroidism, thyroid hypertrophy (goitre) hyperplasia and carcinoma, the following key 

words were used: (“nitrates”) AND (“drinking water”) AND (“thyroid disease”) OR (“thyroid 

http://www.ncbi.nlm.nih.gov/
http://www.toxnet.nlm.nih.gov/
http://www.sciencedirect.com/
http://www.isiknowledge.com/
http://scholar.google.com/
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disorders”). Additional searches were also conducted using the search term: (“nitrates”) AND 

(“drinking water”) AND (“thyroid neoplasms”) OR (“thyroid cancer”) OR (“goitre”). Papers 

were obtained if they had nitrates; nitrite; drinking water and thyroid disorders (including thyroid 

cancer, hypothyroidism, hyperthyroidism and or goitre in their title or text). A sample of the 

search term and number of papers obtained through online search or databases is as in Appendix 

1. In addition, hand searches were also conducted on library resources for relevant papers, books, 

abstracts and conferences proceedings. Some papers were also obtained from the “grey” or 

“fugitive” literature and reviewed in order to reduce publication bias as well as improve the 

comprehensiveness of this review (McAuley et al, 2000). Bibliographies of papers retrieved 

were checked for relevant additional references and these were also obtained. The inclusion 

criteria included: 

 Animal studies demonstrating thyroid disorders following exposure to nitrates in drinking 

water. 

 Epidemiological studies (including case-control, cohort and ecological studies) 

investigating the relationship between exposures to nitrates in drinking water (including 

public and private water supply) and thyroid cancer, hypothyroidism, hyperthyroidism or 

goitre. 

 Studies estimating the risk of thyroid disorders with odds ratio (OR), relative risk (RR); 

standardised mortality ratio (SMR) and mean differences following exposure to drinking 

water nitrates. 

 

For some thyroid disorders, there may be no epidemiological studies.  However, if any disorders 

had been demonstrated in animal studies for which there are no epidemiological studies, it is 

generally reasonable to assume that there is a potential for that same effect to occur in humans 
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(Brown et al, 1996). Where epidemiological studies exist alongside experimental animal studies 

for any thyroid disorder, animal studies were used to support the epidemiological evidence.  

 

Following the PRISMA framework, a total of 349 articles were identified through database 

searches while nine papers were obtained through hand searches of library materials; books, 

conference papers and from bibliographies of other materials. In all, a total of 358 papers were 

obtained and after exclusion of duplicates, 326 papers in all were screened. Figure 7 represents 

the PRISMA flow diagram which explains the exclusion criteria and suggests that papers were 

excluded if thyroid disorders were not related with nitrate exposure. Also papers were excluded 

if exposure to nitrates in humans was not related to drinking water.   
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Figure 7:      PRISMA Flow Diagram 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Source: Moher et al, (2009)  

 

 

Records identified through data- 

base searching (n =349) 

Additional records identified 

through other sources (n =9) 

Records after duplicates removed (n =326) 

Records screened (n =326) 
Records excluded (n = 202) – 

thyroid diseases not related to 

nitrates or drinking water 

Full –text articles assessed for 

eligibility (n =124) 

Full-text articles excluded – 

nitrates exposure not related 

to drinking water (n =88) 

Studies included in qualitative 

synthesis (n =36) 

Animal studies (n =19) 

Epidemiological studies (n =17) 

 

 

 
Studies included in quantitative synthesis      

(Meta –analysis, n = 13) 

Hypothyroidism (clinical/subclinical, n =4) 

Hyperthyroidism (clinical/subclinical, n =2) 

Goitre/thyroid volume (n =7) 
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3.2 THYROID DISORDERS – REVIEW OF ANIMAL STUDIES. 

 

Experimental animal studies (Table 1) suggest that exposure to nitrates in drinking water can 

disrupt iodine uptake by the thyroid gland resulting in thyroid disorders (Bloomfield et al, 1961; 

1962; Alexander & Wolff, 1966; Jahreis et al, 1986). This stems from the ability of iodine 

inhibition agents, including perchlorate; thiocyanate and  nitrate ions to competitively inhibit 

iodine uptake by the thyroid gland by binding to the sodium – iodide symporter (NIS), a 

glycoprotein membrane located on the basal side of the thyroid which has been reported in 

animal studies to result in decreased thyroid hormones (triiodothyronine (T3), thyroxine (T4)) 

production; hypothyroidism and increased level of thyroid stimulating hormones (TSH) Chronic 

stimulation of the thyroid gland to produce more hormones by the TSH in the event of low levels 

of thyroid hormones has been shown to result in thyroid disease; hypertrophy; hyperplasia; 

adenomas and carcinoma (Hiasa et al, 1991; Capen, 1997 & 1998).  

 

Bloomfield et al (1961 and 1962) reported that exposure to elevated levels of nitrates in drinking 

water to rats and sheep can competitively inhibit iodine uptake by the thyroid gland and that 

about 1 per cent of dietary nitrate can inhibit iodine uptake by 30-50 per cent in rats. According 

to Lee et al (1970), exposure of high concentrations of nitrates to female rats resulted in 

decreased iodine uptake by the thyroid, hyperplasia, hypertrophy, follicular colloid depletion and 

increased thyroid weight in the presence of low dietary iodine intake. This suggests that low 

iodine intake can exacerbate the effect of nitrates on the thyroid gland 
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Table 1: Summary of Experimental Animal Studies 

 

 

Author(s) Animal Treatment (dose of nitrate or nitrite) Duration Outcome 

 

Bloomfield 

et al, (1961) 

 

 

Rats and 

sheep 

 

 

Diet containing 0.05, 0.1 and 2.5% 

potassium nitrate (approx.4, 8 and 200 

times that of ADI) 

 

30 days 

 

Reduced iodine 

uptake by the thyroid 

gland 

Bloomfield 

et al, (1962) 

 

 

Rat Two groups of 8 rats exposed to 

potassium nitrate in dietary. 

4 – 5.5 

weeks 

Reduced iodine 

uptake in 6-24hrs. 

Increased thyroid 

weight 

Lee et al, 

(1970). 

 

 

 

 

 

 

 

Female rats 

 

 

 

 

 

 

 

 

High-nitrogen-hay diet (40% hay from 

a plot treated with 450 kg 

nitrogen/hectare) and a low- nitrogen-

hay diet (40% hay from a plot treated 

with 34 kg nitrogen/ 

hectare) with three dietary iodine 

levels: 0.68 ppm (high), 0.23 ppm 

(medium) and 0.08 ppm (low). 

 

30days 

 

 

 

 

 

 

 

 

Weight of the 

thyroid gland, 

hyperplasia, 

hypertrophy and 

follicular colloid 

depletion in 

high dose of nitrate 

low level of 

iodine. 

Kelley et al, 

(1974) 

 

Mature 

breeding 

beagle dogs 

 

Drinking water containing 0, 300, 

600 and 1000 ppm sodium nitrate 

(approx.2.4, 4.8 and 8 times that of 

ADI) 

 

12days No change in thyroid 

morphology. No 

significant change in 

either T4 or T3 in 

any of the groups. 

Jahries et al, 

(1986)  

Piglets Diet containing 3% KNO3 compared 

to a free-nitrate diet 

6 weeks 

5 weeks Decreased thyroid 

hormone T4 &T3; 

decrease weight 

gain. 

 

Jahreis et al. 

(1991) 

Male and 

female 

rats 

 

Diet containing 3% KNO3 

(approx.240 times that of ADI) 

 

6 weeks  Decreased food 

intake by 23-28%, 

reduced body weight 

by 35-41%; reduce 

growth hormone and 

hypothyroidism 

Gatseva et 

al, 

(1996) 

Male rats Drinking water containing 50, 100 

and 500 mg/l nitrate (~1, 2, and 10 

times that of ADI 

6 months Hypertrophy of 

epithelial cells of 

thyroid gland 

follicles in dose of 

100 and 500 mg/l 

 

Zaki et al, 

(2004) 

 

 

 

 

 

 

Male rats Drinking water containing 50, 100, 

150, 500 mg/l potassium nitrate 

(approx.1, 

2, 3, 10 times that of ADI) 

 

5 months Decreased T4 &T3 

at dose of 150 & 500 

mg/L. Increased 

weight of the thyroid 

gland in a 

dose-dependent 

manner at doses of 

150& 500 mg/l. 
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Author(s) Animal Treatment (dose of nitrate or nitrite) Duration Outcome 

Tonacchera 

et al, (2004) 

Chinese 

hamster 

ovary cells 

Comparative iodine uptake inhibition 

by ClO4
-
 ; SCN & NO3. Potency of 

ClO4
-
 to inhibit iodine uptake was 

found to be 15, 30 and 240 times that 

of SCN
-
, I

-
 and NO3

-
 respectively 

- Iodine inhibition by 

nitrates  
 

Eskiocak et 

al, (2005). 

 

 

Male rats 

 

 

 

Drinking water containing 0, 50, 100, 

250, and 500 mg/l sodium nitrate 

(approx.1.2, 2.4, 6, and 12 times that 

of ADI) 

 

30 weeks 

 

 

 

Reduced iodine 

uptake. Reduced 

T4&T4 in dose of 

50,250 and 500 

mg/l. Increased 

thyroid gland weight 

in all doses. 

Histomorphological 

changes in the dose 

of 250 and 500 mg/l. 

Mukhopadh

y et al, 

(2005) 

 

 

 

Wistar rats 

 

 

 

 

 

Diet containing 3% KNO3compared 

with control (~240 times that of ADI) 

4 weeks. 

 

 

 

4weeks 

 

 

 

 

 

Increased TSH; 

reduced T3&T4 and 

body weight. 

Increased thyroid 

weight and increased 

UIC 

Kostogrys et 

al, (2006) 
 

Male 

Wistar rats 

24 male Wistar rats exposed to NaNO3 

in drinking water 

 

 
 

3 weeks Decreased T4; 

increased TSH. 

Thyroid hypertrophy 

and hyperplasia at 

300mg/lNaNO3. 

Hassan et al, 

(2008) 

 

 

Young (3-

weeks) and 

adult (12-

weeks) 

male rats 

Drinking water containing 100, 250, 

and 550 mg/l daily sodium nitrate 

(2.4, 5.9, and 13 times that of ADI) 

 

4 months Increased TSH; 

reduced T3&T4 and 

reduced body 

weight. Decreased 

serum level of 

protein. Increased 

urea and creatinine 

in serum and urine. 

El-Wakf et 

al, (2009) 

 

 

 

 

 

Male rats Young and adult male rats exposed to 

NaNO3 at 100; 150; 550mg/l levels in 

drinking water. 

4 months Increased TSH; 

reduced T3&T4 and 

reduced body 

weight. Decreased 

serum level of 

protein. Increased 

urea and creatinine 

in serum and urine. 

Hansen et al, 

(2009) 

 

 

 

 

 

 

 

 

 

Pregnant 

female rats 

 

 

 

 

 

 

 

 

 

Examination of endocrine disrupting 

effects of nitrates on male rat foetuses 

by exposing pregnant dams to nitrates 

at dose levels, 17.5; 50; 150; 450 and 

900mg/l from gestation day (GD) 7 to 

GD 21. 

 

 

 

 

 

21 days 

 

 

 

 

 

 

 

 

 

 

No anti-androgenic 

effect. No indication 

of prenatal exposure 

to nitrates on the 

thyroid axis of male 

foetuses 

 

 

 

 

 

Table1 (Continued): Summary of Experimental Animal Studies 
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Author(s) Animal Treatment (dose of nitrate or nitrite) 
 

Duration Outcome  

Oztasan, 

(2012) 

Sprague–

Dawley 

albino rats 

 

Drinking water containing 150 mg/l 

sodium nitrate (3.5 times that of ADI) 

- Reduced T3 but 

increased T4 

Ciji et al, 

(2013) 

 

Juvenile 

fishes 

(Labeo 

rohita) 

 

Exposure to 2 mg/l nitrite as sodium 

nitrite 

 

45 days  Decreased T4&T4; 

decreased body 

weight 

Freitag et al, 

(2015) 

 

 

 

 

Juvenile 

Atlantic 

salmon 

Salmosalar 

 

Drinking water containing 5.2, 10.3 

and 101.8 mg/l nitrate. 

 

 

 

 

27 days No change in levels 

of T3&T4. No 

change in body 

weight 

Freitag et al, 

(2016) 

Atlantic 

salmon 

embryos 

Nitrates in well water 3.76 to 

93.15mg/l NO3-N and thyroid of 

Atlantic salmon during embryonic 

development.  

- No effect on the 

thyroid of embryonic 

salmon  

 

 

In a study with nine piglets each in three groups, Jahries et al (1986) fed the first group with 3 

per cent potassium nitrate in food and drinking water; the second group diet had but without 

nitrate and the third group - ad libitum (without nitrate) for 5weeks. The authors reported mean 

weight of 242; 274; 393g respectively. Decreased T4 and T3 were also reported in the nitrate 

exposed group compared with the non- exposed group. Jahreis et al (1991) reported decreased 

growth releasing hormones, thyroidal iodine uptake as well as decreased T3 and T4 

concentrations when group of male and female rats were fed a diet containing 3 per cent 

potassium nitrate for 6 weeks. The exposed rats also experienced reduced food intake by 23-28 

per cent; decrease weight gain by 35-41% and hypothyroidism. Similarly, groups of rats exposed 

to nitrate contaminated water for 90 days reportedly showed hypertrophic changes in the thyroid 

gland (Knopp et al, 1983 cited by Van Maanen et al, 1994). Two different studies (Horing, 1985; 

Seffner, 1985 cited by Van Maanen et al, 1994) reported slight increase in thyroid weight; 

Table1 (Continued): Summary of Experimental Animal Studies 
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reduced uptake of 
131

I (radioiodine) and histological changes in the thyroid gland in rats 

following exposure of 0.04 - 40mg/l NO3 for 100 days. Although effects were reported at all 

dose levels, no evidence of a dose-response relationship was reported.  In a study with male 

wistar rats, Zaki et al (2004) reported that exposure to potassium nitrate (KNO3) in drinking 

water for five months resulted in altered thyroid hormone levels, histological modifications and 

increased thyroid weight. At 150mg/l KNO3 the decrease in the serum level of thyroid hormone 

T3 was 34% (p = <0.05) and 12% for T4 (the reduction between the thyroid hormones were not 

statistically significant).  At 500mg/l, the decreases in T3 &T4 levels were 44 per cent and 30 per 

cent respectively (p< 0.05). At exposure level of 100,150, 500mg/l, there was a dose dependent 

increase in thyroid weight (21 per cent, 45 per cent, 75 per cent respectively), p<0.05). Thyroid 

follicle size also increased at exposure level of 150 and 500mg/l. Although the study controlled 

for iodine, the observed effects according to the authors suggest that exposure to high levels of 

nitrate in drinking water can impair thyroid functions through the hypothalamus – pituitary –

thyroid (HPT) axis.  

 

The effect of chronic exposure to nitrates on thyroid function and morphology was further 

examined by Eskiocak et al (2005). In this study, five groups of 10 female Wistar rats (3-

6months old) were exposed to sodium nitrates (NaNO3) in drinking water at dose levels 0; 50; 

100; 250 and 500mg/l over a period of 30 weeks. Decreased radioiodine uptake was reported in 

the exposure group of 50mg/l but this was not statistically different from the control. However 

radioiodine uptake increased as nitrate dose increased to 250mg/l (p<0.05) and 500mg/l 

(p<0.01). Decreased thyroid hormones T3 (p<0.01), T4 (p<0.05) and increased TSH levels with 

evidence of hypothyroidism were observed in the 50, 250 and 500mg/l groups, but not in the 

100mg/l group where the total thyroxine level was observed to increase. The weight of the 

thyroid gland also increased in all the exposure groups compared to the control group. Also 
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histomorphological changes were observed in the 250 and 500mg/l exposure groups. This study 

though limited by lack of information on dietary iodine status is consistent with the findings by 

Zaki et al (2005) that exposure to high levels of nitrates affects thyroid function at the HPT axis. 

In a study with two groups (eight control, eight treated) of male Albino Sprague Dawley rats 

exposed to sodium nitrate in drinking water for 8 weeks, Oztasan (2012) reported that exposure 

to 150mg/l sodium nitrate resulted in increased thyroid hormone T4 and decreased T3 in the 

treated group (p<0.05) , while juvenile fish (Labeorohita) exposed to nitrite in drinking water for 

45 days showed 84.5 per cent and 94.06 per cent reduction in T3 and T4 respectively (Ciji et al, 

2013) indicating that exposure to nitrates in drinking water can influence thyroid function.   

 

Tonacchera et al (2004) evaluated the relative potency of the three most important environmental 

inhibitors of iodine uptake by the thyroid gland (perchlorate (ClO4
-
), thiocyanate (SCN

-
) and 

nitrate (NO3
-
). The evaluation involved exposing Chinese hamster ovary cells to varying 

concentrations of the three anions separately and in a mixture, and measurement of 
125

I
-
 

(radioiodide) uptake. The ability of ClO4
-
 to inhibit iodine uptake was found to be 15, 30 and 240 

times that of SCN
-
, I

-
 and NO3

-
 respectively.  Although this study suggests that nitrate is a less 

potent iodine inhibitor when compared with ClO4
- 

and SCN
-
, its effect on the thyroid gland 

(according to the authors) when present alone or in a mixture cannot be distinguished from the 

effect of either ClO4
-
 or SCN

-
 . Thus, the effect of nitrates on the thyroid gland which present in 

a mixture with other iodine inhibitors is additive, with no evidence of synergism or antagonism 

(Tonacchera et al, 2004). In rats, the effect of nitrates on the thyroid gland was evaluated with 

exposure to 3 per cent potassium nitrate (KNO3) in diet for four weeks (Mukhopadhyay et al, 

2005). When compared to the control group, the group of rats exposed to nitrates showed 

increased thyroid gland weight (p<0.001), reduced thyroid peroxidise activity (p<0.01), 

decreased serum T4 (p< 0.01) and T3 (p<0.001) levels. Also increased level of TSH (p<0.001) 
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was reported in the exposed group. Although the exposure duration was short, the development 

of hypothyroidism and enlarged thyroid gland is an indication of the possible goitrogenic effect 

of nitrate exposure. In a six-months continuous experiment with 48 viripotent white female rats, 

line "Vistar", divided into a control group and three experimental groups of 12 rats each, Gatseva 

et al (1996), reported microscopic changes in the thyroid gland; liver; kidneys; small and large 

intestines as well as the stomach of the animals that received drinking water containing 50, 100 

and 500 mg/dm
3
 of nitrates compared to the control group that received 7mg/dm

3
 nitrate in 

drinking water. 

 

Kostogrys et al (2006) reported decreased urinary iodine with increasing nitrate intake in a study 

in which 24 male Wistar rats were exposed to sodium nitrate in drinking water for three weeks. 

Despite the short exposure duration and the small number of animals in the study, decreased 

serum T4 hormone, increased serum TSH, thyroid follicular cell hyperplasia and hypertrophy 

were observed at the highest exposure level of 300mg/l. This study, according to the authors, 

demonstrates that nitrates can act as a goitrogen by inhibiting iodine uptake by the thyroid gland, 

affecting the thyroid-pituitary hormonal axis in a similar way to iodine deficiency. Also,  Hassan 

et al, (2008) and El-Wakf et al (2009) reported a dose dependent decrease in thyroid hormone T3 

and T4 when male rats aged 3 and 12 weeks were exposed to sodium nitrate in drinking water at 

varying concentrations (100; 150; 550mg/l). Increased level of TSH and consequent increase in 

the weight of the thyroid gland was also observed, indicating hypothyroidism. Reduced body 

weight was observed in the youngest animals (three weeks old) at all levels of sodium nitrate 

exposure while reduced weight gain was only observed in the older animals at the highest nitrate 

exposure level (550mg/l). According to the authors, the reduced weight gain may be attributed to 

the low serum total protein and protein fractions (albumin and globulin), as well as high level of 

urea and creatinine found in both serum and urine of all the exposure animals. This study 
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although limited by the short duration of exposure suggests that prolonged exposure to high 

levels of nitrate in drinking water can impair thyroid function in both young and older animals 

but the very young are generally more susceptible to the adverse effects of nitrate exposure.   

Although these studies have reported some form of thyroid dysfunction as a result of nitrate 

exposure, some studies have also reported negative findings. Kelly et al (1974) reported no 

difference in thyroid function measured by T3 and T4 levels in adult beagle dogs after receiving 

sodium nitrate in drinking water at 0, 300, 600 or 1000 mg/L for one year or in any puppies from 

the dams receiving the above doses. Hansen et al (2009) examined the endocrine-disrupting 

effects of nitrates on male rat foetuses by exposing pregnant dams to nitrates at dose levels, 17.5; 

50; 150; 450 and 900mg/l from gestation day (GD) 7 to GD 21. At GD21, foetuses were 

examined for anogenital distance, plasma thyroxine levels, testicular and plasma levels of 

testosterone and progesterone, testicular testosterone production and histopathology and 

endocrine disrupting effects. No anti-androgenic effect was reported. Also, there was no 

indication that prenatal exposure to nitrates affected the thyroid axis of male foetuses. However, 

the short duration of the study (GD 7-21) may have accounted for the result. Also, no significant 

effect on total serum levels of T3 and T4 was observed in 27 days exposure of Atlantic salmon to 

water containing 5.2, 10.3 or 101.8mg/l nitrate (Freitag et al, 2015). Similarly, Freitag et al 

(2016) reported that nitrates in drinking water did not affect the thyroid of Atlantic salmon 

during embryonic development. Nitrate in well water was 3.76-93.15mg/l NO3-N. 

 

Although the majority of animal studies (Bloomfield et al, 1961; 1962; Gatseva et al, 1996; Zaki 

et al, 2004; Tonacchera et al, 2004; Mukhopadhyay et al, 2005; Eskiocak et al, 2005; Kostogrys 

et al, 2006; Hassan et al (2008);  El-Wakf et al, 2009; Oztasan, 2012; Ciji et al, 2013) have 

reported thyroid disorders including hypothyroidism; decreased serum thyroid hormones (T3 and 

T4), thyroid peroxidase activity, increased levels of TSH; increased thyroid weight or volume, 
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thyroid hypertrophy and hyperplasia as  a result of exposure to nitrates in drinking water, the 

majority of the effects occurred at high nitrate concentrations. However, they demonstrate the 

role of nitrate exposure in altering thyroid functions through the HPT axis.   

 

3.3 THYROID DISORDERS - REVIEW OF EPIDEMIOLOGICAL STUDIES 

 

Epidemiological studies have also suggested that exposure to nitrates in drinking water may be 

related to thyroid disorders. This review updated review by IARC (2010); Health Canada (2013) 

and Bahadoran et al, (2015).  

 

A summary of the studies by author(s), year of study, study location and design as well as key 

findings is presented in Table 2.  

 

 

 

 

 

 

 

 

 

 

 

 

 



64 

 

Table 2:  Summary of Epidemiological Studies 

Author(s); 

year of 

study; 

location & 

study design 

Endpoint 

 

 

Nitrate 

levels in 

water 
 
(mg/l)       

Population 

 

RR/OR 

(95%Cl) 

Comments 

Van Maanen 

et al (1994); 

Cohort study; 

Netherlands 

 

Thyroid gland 

hypertrophy 

 

 

 

0.02-131 

 

60 women 

 

p<0.05 

 

Association with 

thyroid 

hypertrophy at 

>50mg/l.  

 

Gatseva et al 

(1997): Cross 

-sectional 

study, 

Bulgaria 

 

Goitre 

morbidity 

(children 3-

14yrs) 

70-90 

 

20-41 

(control) 

325 school 

children 

OR = 

6.11(3.02-

12.5), 

p<0.05. 

Strong association 

with goitre in both 

boys & girls 

Gatseva et al, 

(1998): Cross 

-sectional 

study; 

Bulgaria. 

 

 

Goitre  

incidence in 

children (6-

14yrs)  

 

1990-1996 

63-69 

 

 

(control) 

15-24 

359 school 

children 

OR = 

2.11(95%Cl: 

1.31-3.39), 

p<0.05. 

 

 

High incidence of 

goitre in high 

nitrate area. 

Statistically 

significant 

difference in 

goitre incidence 

btw the exposed & 

control group. 

Vladeva et al, 

(2000); 

Comparative 

analysis; 

Bulgaria 

Comparative 

analysis  of 

studies on 

goitre 1995-

1998 in two 

villages 

- School 

children 

OR = 3.97 

(2.41-7.03), 

p<0.05.  

 

OR = 1.97 

(1.42-2.74), 

p <0.05 

Significant 

association with 

goitre. Decreased 

prevalence btw 

1995 &1998 

 

 

Hampel et al, 

(2003); 

Germany 

 

 

 

Prevalence of 

goitre and 

thyroid nodule. 

Nitrate 

level in 

urine 

3059 

healthy 

adults (18-

70 yrs. old) 

r = 0.18, p 

<0.01 

No correlation 

with thyroid size 

at 55.2mg/nitrate 

in urine. Weak 

correlation above 

60mg/nitrate in 

urine 

Gatseva & 

Agriova 

(2005): 

Cross-

sectional 

study, 

Bulgaria 

Goitre in 

school children 

(11-14yrs) 

 

 

10-95 177 school 

children 

OR = 8.1 

(1.67-39.7) 

 

P = 0.004 

 

OR = 

4.61(1.52-

13.96) 

Strong positive 

association with 

iodine deficiency. 

 

Strong association 

with goitre  

Tajtakova et 

al (2006): 

cohort study, 

Slovakia. 

Increased 

thyroid vol. in 

school children 

(10-13yrs old).   

51-274 324  HNA 

 

764 LNA 

(School  

children). 

P <0.03 Increased 

frequency of 

thyroid volume 

and subclinical 

hypothyroidism. 
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Author(s); 

year of 

study; 

location & 

study design 

Endpoint 

 
 

Nitrate 

levels in 

water 
 
(mg/l)       
 

Population 
 

RR/OR 

(95%Cl) 
 

Comments 

Hunault et al, 

(2007); 

Randomised 

controlled 

non-

inferiority 

trial; 

Netherlands 

Thyroid 

function after 

sub-chronic 

exposure to 

nitrates. 

15mg/kg 

sodium 

nitrate & 

distilled 

water 

20 (men 

and 

women) 

131
 I- uptake  

35.% (-0.5-

7.3)- 

exposed 

 

4.8%-1.4-

11.0 

(control) 

No significant 

anti-thyroid effect 

of nitrates on 

humans 

 

 

Radikova et 

al 

2008.Cohort 

study, 

Slovakia 

 

Increased 

thyroid 

volume/ 

disorder 

 

51-274 

 

324 HNA 

 

764 LNA 

p<0.03 Increased thyroid 

volume/subclinical 

hypothyroidism 

 

Gatseva  & 

Argirova 

(2008a) 

Cross-

sectional 

study, 

Bulgaria 

 

Goitre 

prevalence in 

pregnant 

women and 

children (3-

6yrs) 

 

 

8-93     

 

 

 

26 pregnant 

women 

 

 

 

 

 

50 children 

 

 

(Pregnant 

women) 

OR = 5.29 

(1.0 - 27.94),              

p=0.045 

 

 

Children 

 OR =  2.33 

(0.85-6.41) 

   

P =0.14 

 

Positive 

association with 

goitre with 

increasing NO3 

level 

 

 

 

 

Gatseva  & 

Argirova  

(2008b) 

Cross-

sectional 

study, 

Bulgaria 

 

Goitre 

prevalence in 

school children 

7-14yrs  

 

8-75 156 OR = 3.01 

(1.29-7.027) 

 

P= 0.0105 

 

Positive 

association with 

goitre 

 

Below et 

al,(2008); 

cross-

sectional 

study; 

Pomerania; 

Germany 

Influence of  

nitrate on 

thyroid volume 

 

 

 

Mean 

urinary 

nitrate 

level 

53.1mg/l. 

 

 

 

 

 

3772 

men/women 

(20-79yrs 

old). 

P <0.05    

 

 

 

 

 

P = 0.67               

Difference in 

thyroid vol. btw 

low &high urinary 

nitrate. 

 

 

No statistically 

significant 

association with 

goitre when 

adjusted for age, 

sex, BMI & 

smoking habit. 

 

Table 2(continued):  Summary of Epidemiological Studies 
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Author(s); 

year of 

study; 

location & 

study design 

Endpoint 

 

 

Nitrate 

levels in 

water 
 
(mg/l)       
 

Population 

 
RR/OR 

(95%Cl) 
 

Comments 

Blount et al, 

(2010); 

prospective 

study; USA 

Sodium/iodide 

inhibitors 

across the 

placenta 
 

Geometric 

mean of 

NO3 in 

maternal 

urine 

47900µg/l 

150 women - No iodine 

transport 

inhibition across 

the placenta by 

NO3 

Ward et al 

(2010): 

Cohort 

study, Iowa 

USA 

 

 

 

 

Thyroid cancer 

incidence.  

 

1.6 

3.7 

7.6 

10.8 

 

 

 

21, 977 

(women, 

aged 55-69) 

 

 

 

 

 

RR = 2.2   

(0.83-5.76)             

p = 0.02 at  

10.8mg/lNO3 

 

 

RR = 2.6   

(1.09-6.19)  

at  

≥22mg/l for 

≥5yrs. 

P=0.040 

 

Increased risk of 

thyroid cancer 

with nitrate level 

of 10.8mg/l NO3.  

 

Association with 

thyroid cancer at 

≥22mg/l for ≥5yrs  

No association 

with hyper -or 

hypothyroidism 

Kilfoy et al 

(2012): 

Cohort study, 

Pennsylvania, 

USA 

Thyroid health  

 

 

<28.6 

 

>28.6 

 

2543 

1336 (f) 

1207(m) 

 

 

 

 

 

 

 

OR = 0.95 

(0.27-3.28) 

P = 0.45 

 

OR = 0.86 

(0.39-1.91) 

 

OR = 0.89 

(0.52-1.52) 

 

 

OR = 1.60 

(1.11-2.32) 

No significant 

association with 

clinical or 

subclinical 

hyperthyroidism 

in men & women. 

 

No association 

with clinical 

hypothyroidism in 

men or women. 

Slight association 

with subclinical 

hypothyroidism in 

women but not in 

men. 

Drozd et al, 

(2015); 

analytical 

study; 

Belarus 

Thyroid post –

Chernobyl 

paediatrics 

cancer 

incidence 

40-185 Children 

<18yrs 

P = 0.30 

 

 

 

P = 0.004 

No association 

with thyroid 

cancer. Risk of 

thyroid cancer by 

radiation modified 

by high nitrate 

exposure. 

Mehrnejat et 

al, (2015); 

descriptive 

analytical 

study; 

Ishafan; Iran. 

667 infants 

diagnosed 

Congenital 

hypothyroidism 

2010-2013 

29 - 36 275, 485 

infants 

p = 0.39 

 

 

No statistically 

significant 

association with 

nitrate 

 

 

Table 2(continued):  Summary of Epidemiological Studies 
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In a cross-sectional study in the Netherlands, Van Maanen et al, (1994) evaluated the effect of 

consuming nitrate contaminated water on the thyroid gland in a population of 60 females aged 

40-53 years who had no disease, did not use medication, were not pregnant and had no outdoor 

jobs. The women were divided into four groups with two groups exposed to low (0.02mg/l, n= 

21) and medium (17.5mg/l, n= 23) concentration of nitrates in tap-water and two groups exposed 

to medium (22±10mg/l, n = 6) and high (131±76mg/l, n = 10) concentration of nitrate in well-

water. The result of the investigation showed that as the rate of consumption of water containing 

nitrate increased, the concentration of urinary and salivary nitrate also increased. Also, increased 

thyroid volume (hypertrophy) was reported among the group exposed to high nitrate 

concentration (>50mg/l) in drinking water compared to the low and the two medium exposure 

groups. This finding according to the authors suggests that a competitive interaction between 

nitrates and iodine resulted in decreased iodine uptake by the thyroid and consequent 

enlargement of the thyroid gland. Although there was no difference in thyroid volume between 

the low and the medium tap-water exposure groups or between the low and the medium well-

water exposure groups, there was a positive correlation between nitrate concentration in drinking 

water and thyroid volume. However, the thyroid hypertrophy observed was associated with low 

TSH levels in serum and high thyroxine (T4) levels in the high nitrate (>50mg/l) exposure group 

compared to the medium exposure groups indicating the occurrence of hyperthyroidism. 

Although iodine intake in the study groups was optimal, about 43 per cent of the study 

population showed a moderate iodine deficiency. A moderate iodine deficiency can increase the 

ability of nitrates in drinking water to competitively inhibit iodine uptake by the thyroid gland 

even when nitrate concentration in drinking water is <50mg/l (Horing et al, 1988 cited by Van 

Maanen et al, 1994). Although nitrate concentration in the medium tap-water exposure group 

was lowered from 32mg/l to 17.5mg/l about 1-5years prior to the commencement of the study 

which resulted in a lower mean intake of nitrate in drinking water, the mean urinary nitrate 
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excretion in this group was of the same order of magnitude as before it was lowered. This, 

according to the authors suggests that the rate of elimination of nitrates from the body is very 

low after a prolonged exposure to high nitrate concentrations. The finding of thyroid hypertrophy 

(goitre) in this study is consistent with a previous study in the Netherlands (Horing et al, 1988 

cited in Van Maanen et al, 1994) which reported increased goitre cases in a group of 12-15 year 

old females on an iodine deficient diet exposed to 22.5mg/l nitrate in drinking water compared to 

a group exposed to 7.5mg/l. This study is however limited by the fact that there was no 

indication whether other iodine inhibitors such perchlorate and thiocyanate which can have 

similar effect on the thyroid gland were controlled in the study thereby making it difficult to 

conclude that the effect reported was due to nitrates alone. However, even when present in a 

mixture with other iodine inhibitors, nitrates can competitively (in a dose additive fashion) 

inhibit iodine uptake by the thyroid gland with no evidence of synergism or antagonism 

(Tonacchera et al, 2004). 

 

In Bulgaria, Gatseva et al (1997) reported an investigation of goitre morbidity in 1995 among 

177children 3 -14 years (98boys; 79girls) from the village of Karadzhalov in the district of 

Plovdiv.  Nitrate concentration in drinking water was 70-90mg/l between 1990 -1994. Goitre 

data was compared with that of 148 children (77 boys; 71 girls) of the same age group from the 

village of Tatarevo (control) in the same district with nitrate concentration of 20-41mg/l in 

drinking water. In all, 325 children were involved in the study and the two villages had been 

included in the anti - goitre (iodine) prophylaxis programme in the country prior to the study. 

Information on nitrate concentration in drinking water was obtained from the district’s water 

Institute of Hygiene and Epidemiology. The result of the investigation showed a statistically 

significant association with goitre in children living in the high nitrate level village (62/177) 

compared to children (12/148) living in the control village, OR = 6.11(95%Cl: 3.02-12.5), 
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p<0.05. Among boys, the association with goitre (28/98) was statistically significant in the high 

nitrate village (p<0.05) when compared with boys (0/77) in the control village. Statistical 

significant association was also reported in girls (34/79) in the high nitrate village compared with 

12/71 in the control village, OR = 3.7 (95%Cl: 1.63-8.59), p<0.05). When this study was 

repeated in 1998 with 136 children from the experimental village and 93 children from the same 

control village, the association with goitre in the children was not statistically significant, OR = 

2.06 (95%Cl: 0.89-4.84), p>0.05. In a comparative analysis of the 1995 and 1998 studies, 

(Vladeva et al, 2000) reported that although there was a decrease in the incidence of goitre in 

1998 i.e. reduced OR from 6.11 in 1995 to 2.06 in 1998, the association with goitre in the 

children aged 3-14years in the two studies between 1995 and 1998 (when summed up) was 

statistically significant, OR = 3.97 (95%Cl: 2.41-7.03), p<0.05.  Among boys, the OR decreased 

to 2.25 in 1998 and in the exposed girls it decreased from 3.71 in 1995 to 2.02 in 1998. 

However, when the OR in the two studies were summed up, the association with goitre in the 

boys was statistically significant, OR = 8.27(95%Cl: 3.11-32.19), p< 0.05, and also statistically 

significant in the girls, OR = 3.0 (95%Cl: 1.57-5.95), p<0.05. This also suggests that the 

prevalence of goitre was higher in the boys than in the girls.  

 

In a similar study in 1995, Gatseva et al, (1998) investigated the incidence of goitre among 181 

children 6-14 years (83 girls and 98 boys) from the village of Ivailo, a region of Pazardjik where 

nitrate concentrations in drinking water were above the WHO drinking water standard (range 64-

69mg/l) during 1990 -1994. The goitre data was compared with those of 178 children (91girls & 

87 boys) of the same age group from the control village of Mokrishte in the same region where 

nitrate concentration in drinking water in the same period, 1990-1994 was 15-24mg/l. In all, 

thyroid status of a total of 359 children was examined in the study. The result of the investigation 

showed that 74/181or 40.9% (38 girls and 36 boys) of children who lived in the high nitrate 
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exposure village had goitre compared to 44/178 or 24.7% (30 girls and 14 boys) of the children 

who lived in the control village. The association with goitre was statistically significant, OR = 

2.11(95%Cl: 1.31-3.39), p<0.05. The association was statistically significant in the boys, OR = 

3.3 (95%Cl: 1.42-6.52), p<0.05 but not significant in the girls, OR = 1.72 (95%Cl: 0.89-3.33), 

p>0.05. Although iodine content of drinking water in both villages was low (0.9mg/dm
3 

in Ivailo 

and 1.0mg/dm
3 

in Mokrishte), other drinking water contaminants that may be associated with 

goitre were also low and within the drinking water standard, suggesting a role for nitrates in 

goitrogenesis. When this study was repeated in 1998 but this time with 444 children (252 from 

Ivailo and 192 from Mokrishte), the association with goitre was still statistically significant, OR 

= 1.84 (95%Cl: 1.15-2.96). Across the genders, the association was neither statistically 

significant in the boys, OR = 1.90 (95%Cl: 0.99-2.73), p>0.05 nor in the girls, OR = 1.85 

(95%Cl: 0.94-3.67), p>0.05.  

 

A comparative analysis of the 1995 and 1998 studies, (Vladeva et al, 2000) suggests that, 

although there was a decrease in the prevalence of goitre in the villages in 1998 i.e. a decreased 

OR from 2.11 in 1995 to 1.84 in 1998, the association with goitre amongst the children in the 

two studies between 1995 and 1998 (when summed up) was statistically significant, OR = 1.97 

(95%Cl; 1.42-2.74), p<0.05.  In boys, whilst there was a decreased in OR from 3.03 in 1995 to 

1.90 in 1998, the association with goitre in the two studies was statistically significant when 

summed up, OR = 2.34 (95%Cl: 1.43-3.89), p<0.05. Although there was no statistically 

significant difference in goitre in the girls (OR = 1.72 in 1995 and 1.85 in 1998), the association 

with goitre in the two studies was statistically significant when summed up, OR = 1.78 (95%Cl: 

1.12-2.84), p<0.05. This study, as in the first pair of villages also suggests that the prevalence of 

goitre was higher in boys than in the girls. The reason for the decreased goitre trend between 

1995 and 1998 in the two pairs of villages as noted by the authors was due to improved iodine 
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prophylaxis in the villages between 1995 and 1998.  According to the authors, increased iodine 

prophylaxis from the weekly recommended dose to 1mg for children 3-10years and 2mg for 

children 11-14 years can decrease the ability of nitrates in inhibiting iodine uptake by the thyroid 

gland and influence goitre prevalence in a population.     

 

Also in Bulgaria, Gatseva & Argirova (2005) in a cross-sectional study investigated the iodine 

status of 63 school children (aged 11-14) in the villages of Chenogorovo and 114 school children 

of same age in the village of Parvenez.  Nitrate concentration in drinking during the participants’ 

childhood (1983-2005) was 95mg/l in Chenogorovo and 10mg/l in the control village, Parvenez. 

The result of the investigation showed that exposure to nitrates in drinking water was 

significantly associated with iodine deficiency in the children from the village with the highest 

nitrate level in drinking water, compared to the group living in the low nitrate level area, OR = 

8.15 (95% Cl: 1.67 – 39.67), p = 0.004. The association was statistically significant among 

exposed girls, OR = 9.26 (95% Cl: 1.06-80.25), p = 0.04, but not statistically significant among 

the exposed boys, OR = 5.8 (95%Cl: 0.49 - 67.50), p = 0.18 due probably to sample size. A 

clinical examination of the thyroid status also revealed that 17.5 per cent or 11/63 of the children 

in the high nitrate exposure group had grade goitre (diffused goitre grade 1 with hyperplasia) 

compared to 4.40 per cent or 5/114 of the children in the control village. This finding also 

showed that there was a statistically significant difference in goitre between the exposed children 

and the unexposed children (p<0.05).  Although, iodine intake was slightly higher in the control 

village than in the experimental village, iodine status of participants in the two villages was 

optimum and in accordance with International Council for the Control of Iodine Deficiency 

Disorders (ICCIDD) criteria (ICCIDD/WHO/UNICEF, 2001; 2007).  However, goitre frequency 

in the exposed group was related with mild iodine deficiency. Iodine deficiency is determined by 

measuring urinary iodine concentration (UIC) in an individual as follows: severe iodine 
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deficiency (<20µg/l); moderate iodine deficiency (20-49µg/l); mild iodine deficiency (50-

99µg/l); optimum iodine intake (100-199 µg/l); 200-299 µg/l – more than adequate and >300µg/l 

– excessive iodine intake (ICCIDD/WHO/UNICEF/, 2001; 2007).  

  

Gatseva & Argirova (2008a) investigated the risk of thyroid dysfunction among pregnant women 

(17-37 years old) and children 3-6 years old from the village of Chenogorovo, with nitrate 

concentration in drinking water was 93mg/l and the village of Parvenez (control) with nitrate 

level in drinking water 8mg/l. The number of pregnant women involved in the study was 26 from 

the high nitrate village and 22 from the low nitrate village (48 pregnant women in total). 

Although all the women reported using iodised salt in the years preceding the investigation, 

iodine deficiency was reported in 19.2 per cent or 5/26 of the women from the high nitrate 

village while 4.5 per cent (1/22) from the low nitrate village had iodine deficiency. There was no 

statistically significant difference in iodine deficiency between the two groups (p>0.5). Also 

goitre was reported in 9/26 or 34.6 per cent of the pregnant women from the high nitrate village 

while in the low nitrate village, goitre was reported in 9.09 per cent or (2/22) of the pregnant 

women. The association with goitre was not statistically significant, OR = 5.3(95%Cl: 1.0-

27.94), p = 0.04. Whilst the majority of the goitre cases were defused (goitre Grade 1), only one 

woman from the high nitrate exposure group had goitre Grade II, an indication of moderate 

iodine deficiency.  In the children (50 from the village of Chenogorovo and 49 from Parvenez), 

iodine deficiency was reported in 22 per cent or 11/50 of the children from the high nitrate 

village compared to 10.2 per cent or 5/49 from the low nitrate village although all the children 

were reported to have used iodized salt in the years preceding the investigation. Also goitre was 

reported in 28 per cent or 14/50 of the children from the high nitrate village while 14.3 per cent 

or 7/49 was reported from the low nitrate village although the association was not statistically 

significant, OR = 2.3; (95%Cl: 0.85-6.4), p = 0.14. This study according to the authors, suggests 
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that exposure to high levels of nitrate in drinking water is a risk factor for iodine deficiency and 

goitre and highlight the need for adequate iodine intake by pregnant women and children who 

are more vulnerable to the effects of iodine deficiency. The study also found excessive iodised 

salt intake amongst pregnant women and children and highlights the need for adequate control of 

iodine prophylaxis in iodine deficient areas and the development of healthy nutrition especially 

among pregnant women and children who are more vulnerable to excessive iodine intake. 

Excessive iodine intake is associated with the hyperthyroidism and autoimmune diseases 

(Delange et al, 1999; Zimmermann et al, 2005).     

 

In another study, Gatseva & Argirova (2008b) examined iodine status and goitre prevalence in 

319 school children aged 7-14years (156 school children from the village of Ivailo and 163 

school children from the control village of Parvenez) with nitrate levels 75mg/l and 8mg/l 

respectively. A clinical examination of the thyroid showed that 13.5 per cent or 21/156 of the 

children from the high exposure village had goitre while 4.9 per cent or 8/163 of the children 

from the low nitrate village had goitre. The association with goitre was statistically significant, 

OR = 3.0; (95% Cl: 1.3-7.0), p = 0.015. Although the children from the two villages had used 

iodised salt in the years preceding the study and iodine status was considered optimum in the 

population, mild iodine deficiency was recorded in the children from the high nitrate village. 

Whilst the goitre observed in both groups were diffused (goitre grade I), only two girls from the 

high exposure village had goitre grade II, an indication of moderate iodine deficiency. As in 

Gatseva & Argirova (2008a), the study also found excessive iodised salt intake in some of the 

children which is a risk factor for thyroid diseases. The high nitrate village (Ivailo) was in the 

same village as in Gatseva et al (1998) but given that there was about a 10 year gap between the 

studies, this suggests that the population of children involved in the two studies was different. 

Also the fact that nitrate concentration in Ivialo was between 64-69mg/l in 1995 (Gatseva et al, 
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1998) and 75mg/l in 2008 (Gatseva & Argirova, 2008b) and between 8-10mg/l in the control 

village of Parvenez (Gatseva & Argirova, 2005; 2008a&b) suggests that once in groundwater, 

nitrate pollution can persist for a long time. In groundwater, nitrates can remain for a long time 

even with when leaching from soil or farmland has stopped (Spalding & Exner 1993; United 

States Geological Society (USGS), 1999).  

 

The result of the Bulgarian studies are consistent with the finding by Van Maanen et al (1994) 

that exposure to more than 50mg/l of nitrates in drinking water is associated with iodine 

deficiency, increased thyroid volume and hypertrophy (goitre). Whilst all the children in the 

various villages and their families had used iodised salt in the 10 years preceding the study and 

therefore have optimal nutritional iodine intake, the continued prevalence of goitre in some parts 

of Bulgaria with elevated concentration of nitrates in drinking water sources suggest that nitrates 

may be interfering with iodine uptake by the thyroid gland in the population exposed to such 

water. According to Mukhopadhay et al (2005), the persistence of residual goitre in some 

countries that have successfully implemented iodine prophylaxis (e.g. salt iodization) may be 

due to the goitrogenic and anti-thyroidal activities of nitrate exposure.  

 

The Bulgarian studies are strengthened by clinical examination of the thyroid status of 

participants in each study and evaluation of iodine concentration in urine (ioduria) in accordance 

with ICCIDD /WHO recommendations and criteria (ICCIDD/WHO/UNICEF, 2001). Possible 

confounding factors such as perchlorate and thiocyanate exposure were accounted for and ruled 

out as a possible cause of the iodine deficiency or goitre reported in the population. While 

perchlorate and thiocyanate have been reported to inhibit iodine uptake by the thyroid gland 

(Tonacchera et al, 2004; Eskiocak et al, 2005; De Groef et al, 2006), the authors reported that 

perchlorate is rarely encountered in drinking water in Bulgaria and therefore not routinely 
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monitored. However, the level of perchlorate in water samples in the study areas was below 

laboratory detection limit, thus leaving nitrate as a major risk factor for iodine deficiency and 

goitre in the area. Cigarette smoke and vegetables consumption are major sources of thiocyanate 

exposure in humans (De Groef et al, 2006) but given that children aged 3-14 years are unlikely 

to be engaged in smoking this suggests that the prevalence of goitre in the study areas is unlikely 

to be as a result of thiocyanate exposure. Although there was no information on the smoking 

habits of any of the pregnant women in Gatseva & Argirova, (2008a), pregnancy puts pressure 

on the thyroid gland (Aoki et al, 2007), and is known to lead to increased iodine depletion in the 

thyroid gland (Gatseva & Argirova, 2008b). Although vegetables are a major source of 

thiocyanate exposure, cooking reduces the bioavailability of thiocyanate in vegetables (Bruce et 

al, 2004).  However, whether present alone, or in a mixture with perchlorate and thiocyanate, 

nitrates can competitively (additively) inhibit iodine uptake by the thyroid gland with no 

evidence of synergism or antagonism with the other anions (Tonacchera et al, 2004; Braverman 

et al, 2005).  According to USEPA (1986; 2000b), the effect of chemicals in a mixture with 

similar mode of action is additive. This view is supported by the International Programme on 

Chemical Safety (IPCS) (2002); Daston et al (2003); Crofton et al (2005).  

 

The Bulgarian studies are however limited by exposure misclassification bias as nitrate 

concentrations in drinking water in the study regions were average nitrate concentrations 

obtained from records of the Regional Inspectorate for Pollution and Public Health Protection. 

There was no individual exposure assessment. No measurement of nitrate concentrations in tap - 

water at the place of residence or the amount of tap - water intake by the children or pregnant 

women as the average nitrate concentrations obtained from the regional water inspectorate was 

used to infer individual exposure. Also, there was no assessment of the amount of water drank 

away from home or the use of water from multiple sources e.g. well-water or bottled water. Error 
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in the measurement of nitrate concentrations in drinking water by the regional water inspectorate 

(either due to equipment error or human error); use of average nitrate concentrations from public 

records as proxy for individual exposure and lack of individual exposure assessment can result in 

non-differential exposure misclassification bias (random error) in the relative risk estimates.  

Misclassification refers to the classification of an individual, a value or an attribute into a 

category other than that to which it should be assigned (Hennekens & Buring, 1987).  

Misclassification of exposure or disease status can be differential or non-differential (Hennekens 

& Buring, 1987; Kirkwood & Sterne, 2003). While differential misclassification (non-random 

error) occurs when the proportions of subjects misclassified differ between the study groups; 

non-differential misclassification (random error) occurs when classification of disease status or 

exposure occurs equally in all study groups being compared (Hennekens & Buring, 1987; 

Kirkwood & Sterne, 2003). There are two types of error associated with non-differential 

exposure misclassification, Classical and Berkson error. While classical error arises when a 

quantity is measured by some device and one measurement from repeated measurements which 

vary around the ‘true value’ is used as a proxy for the average; Berkson error arises when the 

‘measured value’ (group’s average) is assigned to individuals in the study group as a ‘true value’ 

of exposure in place of individual values (Armstrong, 1998; Heid et al, 2004). The effect of 

classical error is such that it can bias risk estimates (RR; OR etc.) towards the null (no 

association) (Zeger et al, 2000; Heid et al, 2004; Goldman et al, 2011). In other words, it 

attenuates risk estimates (Armstrong, 1998; Goldman et al, 2011), making it most likely that the 

true effect of exposure is greater than that estimated (Armstrong, 1998).  Berkson error on the 

other hand does not bias risk estimates (Zeger et al, 2000; Goldman et al, 2011) provided the true 

dose -response is linear (Heid et al, 2004). According to Armstrong (1998), Berkson error does 

not bias linear regression coefficient, and causes little or no bias in logistic or log linear 

regression coefficients.  However, a typical Berkson error reduces the power of a study 
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(Armstrong, 1998; Zeger et al, 2000; Heid et al, 2004; Goldman et al, 2011), making it more 

likely that real associations are not detected (Armstrong, 1998). Given that the Bulgarian studies 

are ecological in design, they were affected by both Classical and Berkson errors. 

Misclassification of exposure is unavoidable in ecological studies (Heid et al, 2004) and has long 

been a major limitation of epidemiological studies of disease and the environment (Zeger et al, 

2000). Non-differential misclassification (Classical and Berkson errors) diminishes study power 

(the chance that a study will find a significant association if one is truly present) (Armstrong, 

1998) and this may explain the lack of statistical significance in the reported association between 

nitrates in drinking water and iodine deficiency in boys (Gatseva & Argirova, 2005) and 

pregnant women (Gatseva & Argirova, 2008a). While increasing sample size does not reduce 

misclassification bias, but can increase the study power; correcting for exposure 

misclassification bias is sometimes possible by having more accurate exposure data (Armstrong, 

1998).  Despite the bias in relative risk estimates and power loss, the p- values obtained with the 

usual methods on data subject to non-differential misclassification (random error) are valid 

(Armstrong, 1998).  

 

In Slovakia, Tajtakova et al (2006); Radikova et al (2008) compared thyroid volume of 324 

school children (aged 10-13) from a high nitrate area (HNA)  with 51-274mg/l in drinking water 

and that of 764 school children of same age group from two low nitrate areas (LNA) with nitrate 

level in drinking water less than 2mg/l. The study reported that among the 10years old children, 

higher thyroid volume was observed in 28/117 in HNA and 22/236 in the LNA. Among the 13 

year olds increased thyroid volume was observed in 96/207 in the HNA and 108/528 in the LNA. 

Analysis of blood samples collected from the 324 children from the HNA and 100 from the LNA 

showed no difference in total thyroxine (T4 and T3) levels between the two groups. However, 

increased levels of TSH and anti-thyroid peroxidase antibodies were observed in 13/324 children 
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and in 8/324 children respectively in the HNA while no such increase of TSH (0/100) or anti-

TPO (0/100) were reported in the LNA. The increased TSH level(>4.0Mu/L) was associated 

with subclinical hypothyroidism  causing the authors to conclude that long term exposure to high 

nitrate levels in drinking water is associated with increased thyroid volume, increased TSH 

levels, signs of subclinical hypothyroidism and positive anti – thyroid peroxidase. Although 

information on possible confounding factors was not provided, the result of these two studies is 

consistent with the Bulgarian studies in that exposure to nitrates in drinking water is associated 

with thyroid hypertrophy.  As in the Bulgarian studies, these two studies are limited by exposure 

misclassification bias given that there was no information on amount of tap water drunk. 

 

In Germany, Hampel et al, (2003) examined the correlation between urinary nitrate levels and 

the prevalence of goitre or nodules (corrected for urinary iodide levels) in 3059 clinically healthy 

adults (18–70 years; both sexes). Median urinary nitrate level was 55.2 mg nitrate per gram 

creatinine, (men = 61.5 and women 51.5 mg nitrate per gram creatinine, p = < 0.03) and was not 

correlated with thyroid size or nodules. However, the authors reported a weak correlation 

between nitrate level in urine and thyroid size (r = 0.18, P <0.05) in 71 adults with decreased 

iodide in urine (p = < 50 μg/g creatinine).  Further, there was a weak correlation between urinary 

nitrate concentrations above 60 mg nitrate per gram creatinine in1166 adults and thyroid size (r = 

0.18; P < 0.01). Given that this study was published in German, the only English translation of 

the abstract did not state the source of nitrate exposure (diet, drinking water or both) and if from 

drinking water, the concentration of nitrates in the water was also not stated.  

 

In a cross-sectional study also in Germany, Below et al (2008) analysed the influence of nitrate 

exposure from different sources on the thyroid volume of 3772 adults (20–79 years old; 1971 

men, and 1802 women) in a previously iodine deficient area. The study measured mean urinary 
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nitrate concentrations as an estimate of nitrate exposure from various sources and reported mean 

urinary nitrate concentration of 53mg/L and 69mg/l (75th percentile) indicating a significant 

dietary nitrate exposure in the entire population. The study result showed a statistically 

significant difference in thyroid volume between persons with and without high urine nitrate 

level (p = <0.05), but when adjusted for age; sex and possible confounding; no difference in 

thyroid volume was observed (p = 0.47).  Although the proportion of participants with goitre in 

the high urine nitrate (115 ± 2.2 mg/L) group was 35.5 per cent and the proportion in the normal 

urine nitrate (32 ± 0.2 mg/L) was 34.7 per cent, the association with goitre was not statistically 

significant (P = 0.69) even when adjusted for age; sex; smoking and body mass index. Although 

nitrate levels in drinking water serving the region were reported as 2.5-10mg/l, the proportion of 

goitre as a result of nitrates exposure in drinking water was not stated. Although the authors 

stated that the study population had sufficient iodine intake through iodine supplementation, no 

measurement of urinary iodine was reported; in addition, no measurements of thyroid hormone 

levels were made.  

 

 

In a randomised controlled non-inferiority trial, Hunault et al (2007) reported no significant anti-

thyroid effect in humans following exposure of 15 mg/kg sodium nitrate in drinking water for 28 

days. This study involved 10 individuals who received 15mg/l sodium nitrate and 10 individuals 

who received distilled water only. Both groups followed an iodide restricted and low-nitrate diet 

prior to and during the study period and this was verified through measurement of urinary iodine 

and plasma nitrate levels. At the end of the study period (day 28) plasma nitrate concentration 

differed by 27mg/kg between the treated and control groups. At (day 29), no significant effects 

on thyroidal uptake and thyroid hormone (T3, rT3, T4, TSH) plasma concentration were 

observed.  The study concluded that no significant effects on thyroidal 
131

I uptake and thyroid 

hormones plasma concentrations were observed after sub-chronic exposition to 15 mg/kg sodium 
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nitrate among humans. The study according to the authors was limited by small sample size, 

short exposure duration and the use of low nitrate dose when compared with dose normally used 

in clinical studies for potential therapeutic benefits. The author however, suggested future studies 

with longer exposure period and use of higher doses of nitrates.  

 

Iodine is vital in the growth and development of the unborn child (Blazer et al, 2003) and iodine 

deficiency during pregnancy can affect the development of important organs in the foetus, 

especially the brain (Haddow et al, 1999; Blazer et al, 2003). It has been reported that the sodium 

- iodide symporter (NIS) is present in the placenta (Dohan & Carrasco, 2003) and provides a 

pathway for iodine to reach the foetus in the womb (Logothetopoulus & Scott 1956 cited in 

Blount et al, 2009).  Some studies have suggested that nitrates, nitrites and NOCs can cross the 

placenta (Shuval and Gruener 1972; Fan et al 1987; Bruningfann and Kaneene, 1993, Ward et al, 

2005) and induce mutations in the foetus (Inui et al, 1979) and this raises the possibility for the 

disruption of iodine transport to the developing foetus.  However, Blount et al (2009) in a study 

of perinatal exposure to the three most important iodine inhibitors (perchlorate, thiocyanate and 

nitrate) to mothers and their new babies reported no evidence of iodine transport inhibition 

across the placenta by nitrates or either of the other two anions.  

 

In a case – control study of a cohort of  21,977 women (aged 55-69) in Iowa, USA, whose source 

of drinking water is from various sources including PWS (n = 5,436); public supply (n = 16,043) 

and bottled water (n = 440), Ward et al (2010) reported very little evidence of association 

between nitrates in PWS and thyroid cancer. The association was not statistically significant, RR 

= 1.13; (95%Cl: 0.83 - 3.66).  The risk of hypothyroidism and /- or hyperthyroidism was 

reported to be low in the exposed group. Nitrate concentration in PWS (private wells) was 
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assumed to be ≥50mg/l although no measurements were recorded. Among women who used 

public water, the risk of thyroid cancer increased with increasing nitrate concentration. At nitrate 

concentrations of >10.8mg/l (NO3
-
), the risk of thyroid cancer was 2.2 folds higher in the 

exposed group than in the control, RR = 2.2 (95%Cl: 0.83-5.76), p = 0.02 when compared to 

women in the lowest exposure level (<1.6mg/l) where there was no association. The risk of 

hypothyroidism (OR = 0.98; 95%Cl: 0.86-1.11), p = 0.81 and hyperthyroidism (OR = 0.98; 

95%Cl: 0.79-1.21), p = 0.88 at nitrate concentrations >10.8mg/l were lower in the exposed group 

compared to the control group. However, the risk of thyroid cancer increased 2.6 folds among 

women exposed to >22.5mg/l NO3
-
 in public water for ≥5years, RR = 2.6 (95%Cl: 1.1-6.2), p = 

0.04. At nitrate concentration >22.5mg/l for >5years, the risk hypothyroidism was a little higher 

(6%) in the exposed group, than in the control, OR = 1.06 (95%Cl: 0.93-1.20), p = 0.47 while 

there was no difference in risk for hyperthyroidism between the exposed and the control groups, 

OR = 1.01 (95%Cl: 0.82-1.26), p = 0.88. The association with thyroid cancer following chronic 

exposure of nitrates at concentration >22.5mg/l for ≥5years is consistent with the report that 

chronic exposure to nitrates can result in increased production of TSH which could lead to 

thyroid hypertrophy, hyperplasia, adenomas and carcinoma (Hiasa et al, 1991; Capen, 1992 & 

1997).  However, in a study of paediatric cancer in Belarus post the 1986 Chernobyl nuclear 

accident, Drozd et al (2015) reported that whilst radiation exposure was associated with thyroid 

cancer in children (p = 0.03), exposure to nitrates in drinking water (particularly well water) was 

not associated with thyroid cancer (p = 0.30).  Nitrate concentration in well water in the two 

areas studied was 40-185 mg/l. However, simultaneous exposure to radiation and high 

concentration of nitrate in drinking water was reported to increase the risk of developing thyroid 

cancer  (p = 0.004), suggesting that nitrate can modify the risk of thyroid cancer following 

radiation exposure. The investigation also reported that concurrent exposure to radiation and 

nitrates in drinking water did not confound each other. The findings of this study are consistent 
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with previous findings that nitrate ions when present with other anions with the same mode of 

action can competitively inhibit iodine uptake by the thyroid with no evidence of synergism or 

antagonism (Tonacchera et al, 2004; Braverman et al, 2005) and also consistent with the findings 

that the effect of chemicals in a mixture with similar mode of action is additive (International 

Programme on Chemical Safety (IPCS), 2002; Daston et al, 2003; Crofton et al, 2005). 

 

A major limitation of the Iowa study according to the authors is lack of individual exposure 

assessment as average nitrate concentrations in drinking water at the place of residence on 

diagnosis was used to determine exposure.  There was no assessment of the amount of tap - 

water drunk or of women who used water from multiple sources, for example, bottled water or 

drank water from outside the home.  Use of average nitrate levels in tap-water at the place of 

residence at the time of cancer diagnosis or mortality to estimate past exposure and lack of 

individual exposure assessment can lead to non-differential exposure misclassification bias 

(Berkson error). Non-differential misclassification (Berkson and Classical errors) diminishes 

study power (the chance that a study will find significant association if one is truly present) 

(Armstrong, 1998) and this may have been the reason for the loss of statistical power among 

women exposed to >10.8mg/l (NO3
-
) where the risk of thyroid cancer increased 2.2 folds (RR = 

2.2 (95%Cl: 0.83-5.76)), p = 0.02. However, despite the bias in the risk estimates (classical 

error) and power loss (Berkson error), the p-value obtained in the usual method on data subject 

to non-differential exposure misclassification bias (random error) is valid (Armstrong, 1998). 

While increasing the sample size does not reduce the bias in the relative risk, it can increase the 

study power (Armstrong, 1998). However, the bias was reduced by excluding women who 

reported cancer at the 1986 baseline; those exposed to water from multiple sources and women 

who had used their public supply or well for ≤10years.  Despite the aforementioned limitations, 

this study according to the authors is strengthened by the prospective nature of the study design, 

complete ascertainment of the cancer register in Iowa, low population mobility and information 
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on potential confounder e.g. smoking.  Although other potential water contaminants such as 

perchlorate and pesticides were not evaluated in the study, a prior survey of water sources in 

Iowa showed that perchlorate is not common in the area (Weyer et al, 2009).   

 

Kilfoy et al, (2012) evaluated the relationship between nitrates in drinking water and prevalence 

of thyroid health in the Old Order Amish community in Pennsylvania USA (aged 18 years and 

above). The study involved 1,336 females and 1,207 males (2,543 people in all). The 

concentration of nitrates in well water ranged from 1.54 - 72.2mg/l NO3
-
, with a median level of 

28.6mg/l NO3
-
. The investigation reported that exposure to nitrates in private wells was 

associated with increased TSH level and subclinical hypothyroidism in men and women, OR = 

1.32; (95 % Cl: 1.0 - 1.75) at nitrate concentration greater than 28.6mg/l. The association with 

subclinical hypothyroidism was statistically significant only in women, OR = 1.60; (95%Cl: 

1.11-2.32), no association was reported in men, OR = 0.98; (95%Cl: 0.63-1.52). There was no 

statistically significant association with clinical hyperthyroidism in men, OR = 1.85; (95%Cl: 

0.17-20.7), no association with clinical hyperthyroidism in women, OR = 0.70; (95%Cl: 0.16-

3.15).  There was no association with subclinical hyperthyroidism either in men or women, OR = 

0.86, (95%Cl: 0.39-1.91). The increased TSH and evidence of subclinical hypothyroidism 

reported in women in this study is consistent with the increased TSH and subclinical 

hypothyroidism reported in school children from a high nitrate area in Slovakia (Tajtakova et al, 

2006; Radikova et al, 2008).  Given that men can consume more water than women (NAS, 

2004), the reason for increased TSH and higher prevalence of thyroid disease in women than in 

men was not explained but pregnancy and obesity can affect the level of TSH in women (Kilfoy 

et al, 2012) and this suggests that women may be more sensitive to the effects of thyroid iodine 

inhibitors (Hollowell et al, 2002).  This study is strengthened by measurement of the level of 

TSH in individual serum samples.  This method, according to the authors is regarded as a more 



84 

 

accurate and reliable way of measuring thyroid hormone levels and thyroid disease than self-

reporting of thyroid disease. However, the study is limited by lack of individual exposure 

assessment as the source of water to the residence was not determined, neither was the amount of 

tap-water intake.  Although the source of water was assumed to be from private wells at the 

place of residence as there were no public water supply serving the area, it is possible that there 

may be residents who may be consuming bottled or filtered water e.g. reverse osmosis. Use of 

alternative water source according to the authors can result in exposure misclassification bias. 

Furthermore, lack of information on the residential history of the study population could have an 

effect on the results.  This is because people could change their place of residence and could as a 

result be exposed to a different water quality. However, it was reported that the Amish 

community has a very stable residential history especially the men and if women changed their 

residences, they only move from their family home to their marital home but remained in the 

same locality (McKnight et al, 1999), and were therefore likely to use water of similar quality.  

 

In a study of congenital hypothyroidism among infants in Ishafan province, Iran, Mehrnejat et al, 

(2015) reported no statistically significant association between nitrate concentrations in drinking 

water (29-36mg/l) with congenial hypothyroidism (p = 0.39) in some towns in the Province. 

 

3.4  DISCUSSION 

 

Result of epidemiological studies on thyroid disorders as a result of exposure to nitrates in 

drinking (Van Maanen et al, 1994; Gatseva et al, 1997; 1998 ; Vladeva et al, 2000; Hampel et al, 

2003; Gatseva & Argirova 2005; 2008a & b; Tajtakova et al, 2006; Hunault et al, 2007; 

Radikova et al, 2008; Below et al, 2008; Blount et al, 2009; Ward et al, 2010; Kilfoy et al, 2012; 

Drozd et al, 2015; Mehrnejat et al, 2015) are conflicting. The conflicting results may be due to 
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differences in nitrate concentrations in drinking water across the studies; differences in 

individual exposure levels; differences in exposure to other risk factors of thyroid disorders; 

individual variability; differences in iodine status in the study population; differences in the 

definition of low and high exposure concentrations across the studies. However, there is a 

convergence on moderate – to - mild iodine deficiency (Van Maanen et al, 1994; Gatseva & 

Argirova 2005; 2008a & b); hypothyroidism (Tajtakova et al, 2006; Radikova et al, 2008; Ward 

et al, 2010; Kilfoy et al, 2012) and thyroid hypertrophy (goitre) (Van Maanen et al, 1994; 

Gatseva et al, 1997 & 1998; Hampel et al, 2003; Gatseva & Argirova 2005; 2008a & b; Below et 

al, 2008; Tajtakova et al, 2006; Radikova et al, 2008) due to reproducibility or consistency 

across these studies. 

 

3.4.1  META - ANALYSIS 

 

In order to further evaluate the relationship between exposure to nitrates in drinking water and 

thyroid disorders, meta-analysis was conducted.  Based on availability of data, the analysis was 

conducted on the following outcomes: clinical and subclinical hypothyroidism (Tajtakova et al, 

2006; Radikova et al, 2008; Ward et al, 2010; Kilfoy et al, 2012); clinical and subclinical 

hyperthyroidism (Ward et al, 2010; Kilfoy et al, 2012) and goitre (Gatseva et al, 1997 & 1998; 

Gatseva & Argirova 2005; 2008a & b; Tajtakova et al, 2006; Radikova et al, 2008).  

 

Meta- analysis is the statistical analysis of a collection of individual studies for the purpose of 

integrating the findings in order to arrive at a conclusion about that body of research (Glass 

1976).  It is conducted to assess the strength of evidence present about a disease or treatment 

with the aim of determining whether or not an effect exists as well as whether the effect is 

positive or negative. The outcome of a meta-analysis provides a more precise estimate of the 
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effect of a treatment or risk factors of a disease than individual studies contributing to the pooled 

analysis; answers questions not posed by the individual studies; settles controversies arising from 

conflicting studies and generates new hypotheses. Also, it identifies sources of variation in 

responses i.e. examines the heterogeneity between the studies included in the analysis (Haidich, 

2010). Heterogeneity refers to the variation in study outcomes between studies (Higgins & 

Thompson, 2002; Higgins et al, 2003). 

 

The meta-analysis was conducted in ‘R’ – software (version 3.3.2 of 31 October 2016). ‘R’ is a 

free, open-source and powerful statistical environment for data manipulation, calculation and 

graphical display.  RStudio is a user-friendly tool for running analyses using ‘R’. Both R and 

RStudio are free to use and very popular (Kovalchik, 2013). The Fixed effect and random effect 

models were ran to test for variations across the studies (heterogeneity). The fixed effect model 

assume that the only source of variation in the observed outcomes is that occurring within the 

study (the effect occurring in each study is the same) i.e. there are no differences in the 

underlying study population; no differences in subjects selection criteria and that treatments are 

applied in the same way (Stangl & Berry, 2003; Haidich, 2010). The random effect model 

however, assumes that a distribution of effects exist resulting in heterogeneity among study 

results (Stangl & Berry, 2003; Haidich, 2010). In other words, it assumes that the effect being 

estimated in the different studies are not identical, but follow some distribution (Deeks et al, 

2011).  

 

Given the assumption in the ‘fixed effect model’ that the effect of interest is the same in all 

studies is not usually the case; the model is not considered appropriate when heterogeneity exists 

in the result of studies included in the meta-analysis (Haidich, 2010). Therefore only the ‘random 



87 

 

effect model’ is presented in this study because of methodological differences across studies; 

differences in the level of nitrates in each study; individual variability; differences in individual 

exposure levels and differences in exposure to other risk factors of thyroid disorders. The 

random effect model is considered more appropriate because of differences that exist in the 

studies (Haidich, 2010).  

 

A forest plot shows effect size and precision and is regarded as the most common way to report 

meta-analysis. Also, it identifies the pattern across effects as well as helping to spot large 

variations in effect (Kovalchik, 2013). Check for heterogeneity was performed using the I-

squared (I
2
) in order to quantify the inconsistency across studies and to assess the impact of 

heterogeneity on the effect estimates. I-squared describes the percentage of variation across 

studies that are due to heterogeneity rather than chance (Higgins & Thompson 2002; Higgins et 

al, 2003). According to Higgins & Thompson (2002), the interpretation of I-squared is as 

follows: 

 

 0% to 40% - low (might be unimportant). 

 30% to 60% - may represent moderate heterogeneity. 

 50% to 90% - may represent substantial heterogeneity. 

 75% to 100% - considerable heterogeneity. 

 

The p- value in also included in the forest plot to test whether any heterogeneity is statistically 

significant or not (Higgins et al, 2003).  A p- value of 0.10, rather than the conventional level of 

0.05, is sometimes used to determine statistical significance. A low p- value (p<0.10) provides 

evidence of heterogeneity of intervention effects or variation in effect estimates beyond chance 

while a high p-value (p>0.10) suggest a no-significant heterogeneity (Higgins et al, 2003).   
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Figure 8 is the forest plot (random effects model) on clinical hyperthyroidism from two studies 

(Ward et al, 2010; Kilfoy et al, 2012) and shows an effect estimate, OR = 0.97; (95%Cl: 0.79 -

1.19). This suggest that the risk of this outcome is only 3 per cent (i.e.1- 0.97)*100) lower in the 

exposed group than the control group and the result is not statistically significant.  In other 

words, there is very little difference in effect between the exposed and non-exposed groups. The 

analysis also shows no evidence of heterogeneity between the studies, I
2
 = 0%; (p = 0.79).  

 

Figure 8: Forest Plot of Clinical Hyperthyroidism (random effects model) 

 

 

 

Lack of evidence of heterogeneity is not evidence of homogeneity and may be that the test has 

low power to detect heterogeneity due to the small number of studies in the analysis (Higgins et 

al, 2003). While a statistically significant result may indicate a problem of heterogeneity, a non-

significant result must not be taken as evidence of no heterogeneity (Higgins et al, 2003).  It may 

be that the test for heterogeneity has low power (when studies have small sample size or when 

the number of studies are small) to detect heterogeneity when it exist. When there are many 
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studies in a meta-analysis, the test has high power to detect the smallest amount of heterogeneity 

(Higgins et al, 2003).  The result of this analysis is consistent with that of Bahadoran et al, 

(2015) which reported that the effect of nitrates in drinking water on clinical hyperthyroidism is 

lower (2 per cent) in the exposed group than in the control group, OR = 0.98; (95%Cl: 0.79 - 

1.21).  

 

SUBCLINICAL HYPERTHYROIDSIM 

 

Figure 9 is the forest plot of subclinical hyperthyroidism which also suggests that the effect of 

nitrates is 3 per cent lower in the exposed group than the control, OR= 0.97; (95%Cl: 0.79; 1.18). 

There is no evidence of heterogeneity, I
2
 =0%; p = 0.77 due to the low power of the test as a 

result of the small number of studies in the analysis. More studies are required in order to clarify 

the relationship between nitrates in drinking water and hyperthyroidism and any heterogeneity 

between the studies. 

Figure 9: Forest Plot Subclinical Hyperthyroidism 
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CLINICAL HYPOTHYROIDISM 

 

The forest plot (figure 10) shows that there was no difference in the risk of clinical 

hypothyroidism between the exposed group (men and women) and the control group and the 

result is not statistically significant, OR = 1.01; (95%Cl: 0.91-1.13). However, the risk of clinical 

hypothyroidism is 9% higher in the exposed men (OR = 1.09: (95%Cl: 0.48-2.48) than in women 

(OR=1.01:95%Cl; 0.91-1.13). There is no evidence of statistically significant heterogeneity (I
2
 = 

0%, p = 0.88) due to the small number of studies in the analysis. This result is also consistent 

with the meta-analysis by Bahadoran et al, (2015). 

 

Figure 10:  Forest plot for clinical hypothyroidism 
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SUBCLINICAL HYPOTHYROIDISM 

 

Figure 11 shows the forest plot for subclinical hypothyroidism in the random effect model, OR = 

1.23; (95%Cl: 0.90-1.69); which suggests that the risk of this outcome is 23% higher in the 

exposed group (children, adult men and women) than in the control group.  

 

Figure 11: Forest Plot of Subclinical Hypothyroidism 

 

 

The risk is however 8.7 times higher in children, (OR=8.71:95%Cl: 0.51-147.85) than in adults 

(men and women) although the result is not statistically significant. Between men and women, 

the effect of subclinical hypothyroidism was slightly higher in women (OR= 1.25) compared to 

men (OR =1.12). The large effect in children suggests that children are more susceptible to 

subclinical hypothyroidism than adults as a result of exposure to nitrates in drinking water. There 

is substantial statistically significant heterogeneity in the studies (I
2
 = 64.1%; p = 0.04) due 

probably to the inclusion of studies on children and adult males & females in the same analysis. 

However, when the study on children was excluded in a sensitivity analysis (figure 12), the risk 
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of subclinical hypothyroidism in the exposed adult males and females was 19% higher in the 

exposed than in the control group, OR = 1.19; (95%Cl: 0.89 -1.60) and not statistically 

significant. However, the level of heterogeneity remained substantial and statistically significant, 

I
2
 = 68%; p = 0.04.  The substantial heterogeneity may be due to differences in the sample size 

between the two studies. 

 

Figure 12:  Sensitivity Analysis of Subclinical Hypothyroidism 

 

 

 

 

The funnel plot is used to evaluate the potential for bias in selecting studies for meta-analysis 

given that sometimes large and positive studies or results are published in preference to small or 

negative studies and it is an important part of any meta- analysis (Haidich, 2010). If publication 

bias is not present, the plot is expected to have a symmetrical inverted funnel shape with large 

studies (which tend to have lower standard error) clustering closer to the effect estimate and 

smaller studies (with higher standard error) scattered on both sides of the larger studies (Light & 
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Pillemer, 1984; Haidich, 2010). However, due to the small number of studies, funnel plots may 

not provide any useful information (Haidich, 2010) but are however presented Appendix 2.    

 

THYROID HYPERTROPHY (GOITRE) 

 

Figure 13 shows the forest plot (random effect model) of subgroups from seven studies for goitre 

(Gatseva et al, 1997 & 1998; Gatseva & Argirova 2005; 2008a & b; Tajtakova et al, 2006; 

Radikova et al, 2008). The result shows that the risk of goitre is, OR = 3.13; (95%Cl: 2.35 - 

4.16). This suggests that the risk of goitre is 3.13 times higher in the exposed group than in the 

control group, the result is statistically significant. The test for heterogeneity (I
2
 = 25%; p = 0.24) 

suggests that heterogeneity across the studies is low (<30%) and not significant in accordance 

with the Higgins & Thompson (2002) interpretation.  

 

Figure 13: Goitre forest plot 
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The analysis on thyroid hypertrophy (goitre) included studies on pregnant women and children in 

the same analysis.  However, in a sensitivity analysis which excluded pregnant women from the 

analysis (figure 14), the effect estimates was, OR = 3.10; (95%Cl: 2.28 - 4.21) and also 

statistically significant. This suggests that the risk of goitre is 3.10 times higher in the exposed 

children than the control group.  Heterogeneity (I
2 

= 33.8%; p = 0.18) is low and not significant. 

The marginal difference (0.03 or 3 per cent) in the effect estimates between the analysis which 

included pregnant women and the one that excluded pregnant women suggests that children and 

pregnant women can be analysed together. The large relative risk (odds ratio) in children (OR = 

6.11 & 4.61) and pregnant women (OR = 5.29) suggests that the risk of goitre is higher in 

children, (especially infants) and pregnant women.  

 

Figure 14: Sensitivity Analysis on Goitre 
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Due to insufficient data, meta- analysis on iodine deficiency and thyroid cancer as a result of 

exposure to nitrates in drinking water could not be conducted.  However, Bahadoran et al (2015) 

conducted a meta- analysis on thyroid cancer following exposure to nitrates from diet (including 

drinking water) and reported that the risk of thyroid cancer was 36% higher in the exposed group 

than in the control groups, RR= 1.36; (95%Cl: 0.67-2.75). The association was however not 

statistically significant. Although the result of meta-analysis on clinical hyperthyroidism and 

clinical hypothyroidism are consistent with that of Bahadoran et al (2015), they were unable to 

conduct a meta- analysis on thyroid hypertrophy (goitre) citing lack of data. This may be due to 

the ecological nature of available studies on goitre. Although this kind of studies are prone to 

bias; chance and confounding factors (IARC, 2010), the IARC has relied on them in its 

classification of arsenic in drinking water as a carcinogen (IARC, 2004).  

 

3.4.2  WEIGHT OF THE EVIDENCE (WoE) ASSESSMENT 

 

Result of meta- analysis suggest that the effect estimates following exposure to nitrates in 

drinking water is strongest for thyroid hypertrophy (goitre) (OR = 3.13); weak for subclinical 

hypothyroidism (OR = 1.23) and weakest for clinical hypothyroidism (OR = 1.01) and 

hyperthyroidism (clinical or subclinical, OR = 0.97). Although causality has not been established 

between any of these outcomes and exposure to nitrates in drinking water, the Hill Criteria can 

be used to assess whether the association is causal (WHO, 1999). The Hill criteria (Hill 1965) as 

enumerated in Box 1 are widely used and still remain the best available criteria for causal 

inference (WHO, 1999; Swaen & van Amelsvoort, 2009).  

 

The strength of the association i.e. the large relative risk on goitre (expressed as odds ratio) (OR 

= 3.13) following meta-analysis and the statistically significant association suggests that the 
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association is unlikely to be due to chance.  Although a statistically significant association does 

not rule out chance as a possible reason for the association, such an explanation is however, 

unlikely (Hennekens & Buring, 1987). 

 

BOX 1   HILL CRITERIA ON CAUSAL INFERENCE 

 

 

1. Strength of the association - the stronger the association the more likely that the association is 

causal. 

2. Consistency - if more studies find similar results, the more likely it is that the association is 

causal. 

3. Specificity - a specific exposure should exert a specific effect (there are causal associations 

that are not specific). 

4. Temporality - the causal exposure should precede the caused disease in time. 

5. Biological gradient or dose-response - If a dose- response is seen, it is more likely that the 

association is causal. 

6. Plausibility - depends on the current knowledge of the aetiology of the disease. For instance, 

is it known that the agent or metabolite reaches the target organ, are studies in animal models 

positive? 

7. Coherence - refers to other observed biological effects possibly relevant in the aetiological 

pathway that make a causal association more likely, for example, histological changes in the 

target organ. 

8. Experimental evidence - if the disease rates go down after the causal agent has been 

eliminated, it is support for a causal association. 

9. Analogy - if a similar agent exerts similar effects, it is more likely that the association is 

causal. 

     Source: Swaen & van Amelsvoort (2009). 
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Whilst the majority of the studies, especially the Bulgarian studies ruled out possible 

confounding factors e.g. perchlorate and thiocyanate as a reason for the association, evidence of 

dose-response relationship reported in the studies suggest that exposure to nitrates in drinking 

water is a risk factor for goitre. The large relative risk (odds ratio) especially in children 

(including infants) and pregnant women further suggests that the effect of nitrates in drinking 

water is more profound in children and pregnant women living in iodine deficient areas. This 

finding is consistent with the WHO epidemiological review (Health Canada, 2013) which 

reported that the anti-thyroid effect of nitrates is mostly related to exposure in drinking water 

rather than diet. The effect is however, more profound if there is iodine deficiency but weak if 

there is adequate nutritional iodine intake i.e. determined by urinary iodine excretion of 150-

300µg/day (Health Canada, 2013). The goitrogenic effect of nitrates is more pronounced when 

there is insufficient dietary iodine intake (van Maanen et al, 1994; Tonacchera et al, 2004). 

According to van Maanen et al (1994) and Tonacchera et al (2004), chronic exposure to nitrates 

in drinking water below the drinking water standard of 50mg/l can result in the enlargement of 

the thyroid gland and goitre if there is insufficient dietary iodine intake. Also, even under normal 

dietary iodine intake, exposure to elevated levels of nitrates (≥50mg/l) in drinking water can 

result in decreased iodine uptake by the thyroid gland, resulting in thyroid hypertrophy (goitre) 

and hyperplasia (van Maanen et al, 1994; Tonacchera et al, 2004; Tajtakova et al, 2006). 

 

Although meta-analysis on iodine deficiency has not been possible due to insufficient data, the 

evidence of iodine deficiency in children (Gatseva & Argirova, 2008a&b); pregnant women 

(Gatseva & Argirova, 2008a) and women aged 40-53years (Van Maanen et al, 1994), large 

relative risk (odds ratio) in children (OR = 8.15) (Gatseva & Argirova, 2005) and the evidence of 

dose-response in all the studies suggest that children and pregnant women are vulnerable to 

iodine inhibition as a result of  exposure to nitrates in drinking water.  Infants are more sensitive 
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to iodine inhibitors than adults and therefore require more iodine intake in order to produce more 

thyroid hormones during shortages (Health Canada, 2013). This is because of the short half-life 

of thyroid hormones in infants (approximately 3 days) (Vulsma et al, 1989) and their inability to 

store thyroid hormones for more than a day for use during shortages like in adults (Zoeller & 

Crofton 2005).   

 

Although the effect estimates for hypothyroidism (clinical or subclinical) is weak, the large 

relative risk (odds ratio) for subclinical hypothyroidism in children (OR = 8.71) in Tajtakova et 

al, (2006) and Radikova et al, (2008) suggests that children especially infants are more sensitive 

to this outcome than adults.  Although the number of studies on hypothyroidism (clinical or 

subclinical) is too few to enable a firm conclusion to be drawn, the evidence is supported by 

result of animal studies (Hassan et al, 2008; El-Wakf et al, 2009).  Subclinical hypothyroidism 

especially during critical or sensitive periods of development can result in impaired foetal 

development, reduced heart rate and body heat producing capabilities and reduced intelligent 

quotient (IQ) (Howdeshell, 2002; Kirk, 2006).  High TSH is a biomarker for hypothyroidism (De 

vito et al, 1999; Zoeller et al, 2007). Although hypothyroidism is very common during 

pregnancy because pregnancy puts pressure on the thyroid gland (Aoki et al, 2007), 

epidemiological evidence for subclinical hypothyroidism and thyroid hypertrophy (goitre) is 

biologically plausible and supported by result of animal studies (Wyngaarden et al, 1953; 

Bloomfield et al, 1960; Gatseva et al, 1996; Zaki et al, 2004; Tonacchera et al, 2004; 

Mukhopadhyay et al, 2005; Eskiocak et al, 2005; Kostogrys et al, 2006; El-Wakf et al, 2009; 

Oztasan, 2012; Ciji et al, 2013).  Although goitre reported by Van Maanen et al, (1994) was 

associated with hyperthyroidism (low serum TSH), this has not been supported by another study.  
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The evidence for hypothyroidism (subclinical) and thyroid hypertrophy (goitre) as a result of 

exposure to nitrates in drinking water is consistent with the mechanism of action of nitrates on 

the thyroid gland. The mechanism stems from the ability of nitrate and /-or its metabolite, nitric 

oxide to inhibit iodine uptake by the thyroid gland resulting in iodine deficiency; decreased 

thyroid hormone (T3 & T4) production and increased level of serum TSH (Alexander & Wolff, 

1966; Greer et al, 2002). Chronic stimulation of the thyroid gland by TSH to produce more 

hormones in the event of low serum thyroid hormones has been reported in animal studies to 

result in thyroid diseases including; thyroid hypertrophy; hyperplasia; adenomas and carcinoma 

(Hiasa et al, 1991; Capen, 1997 & 1998).  

 

Although only two epidemiological studies (Ward et al, 2010; Drozd et al, 2015) were found to 

have evaluated the relationship between exposure to nitrates in drinking water and thyroid cancer 

but with conflicting results, Bahadoran et al (2015) conducted a meta-analysis on thyroid cancer 

following exposure to nitrates from diet (including drinking water) and reported a weak, and 

non- statistically significant association, RR= 1.36; (95%Cl: 0.67-2.75). The potential for thyroid 

cancer is biologically plausible given that chronic stimulation of the thyroid gland by TSH to 

produce more thyroid hormones during thyroid hormones deficiency can result in thyroid 

hypertrophy (goitre), hyperplasia, adenomas and carcinomas in animal studies (Hiasa et al, 1991; 

Capen, 1992; 1997).  Although thyroid hormones deficiencies can play a role in thyroid tumour 

production in animals (Kanno et al, 1990; Hiasa et al, 1991; Capen, 1992 & 1997; Crofton 2008) 

and humans  (Crofton 2008; Health Canada 2013) , the role of thyroid hormones deficiencies in 

thyroid cancer aetiology in humans is not well defined (Schnieder & Brenner, 2003; Croften, 

2008).  While decreased thyroid hormones (T4&T3) can result in a number of adverse effects, 

including thyroid tumour and birth defects, it is not clear if humans can get thyroid carcinoma in 

the same way as rodents because humans are less susceptible to the effect of TSH on thyroid 
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cells (Croften, 2008), although there is the potential for any adverse effect in animals to also 

occur in humans (Brown et al, 1996).  Nitrates can however, undergo endogenous nitrosation 

endogenous with amines and amides in food to form N-nitroso compounds (Walker 1990; 

Bruning-Fann & Kaneene, 1993). The majority of N- nitroso compounds (NOCs) have been 

reported to induce cancer in animals, including fish, reptiles and five species of primate 

(Montesano and Bartsch, 1976; Gangolli et al., 1994; Brown, 1999; Vermeer and Van Maanen, 

2001).  In humans, NOCs is reported to be associated with cancer in the stomach, liver, kidney, 

oesophagus, oral and nasal cavities, lung, trachea, urinary bladder, pancreas, thyroid and the 

nervous system (Mirvish, 1991&1995 NRC 1981; Bogovski & Bogovski 1981; Twort et al, 

2000; ASTDR, 2001; Weyer, 2003; IARC, 2010). Although it is difficult to prove causality 

firmly from epidemiological studies due to the observational nature of these type of studies 

(Wakefield & McElvenny, 2007; Swaen & van Amelsvoort, 2009), however, the strength of the 

association between nitrates in drinking water and goitre; the consistency of the study results in 

animal and human studies; evidence of dose-response; biological plausibility and coherence 

suggests that nitrates in drinking water is a risk factor for goitre. Although all the nine criteria are 

important, the most important ones included, strength of the association; consistency of results; 

dose-response; biological plausibility (USEPA, 2005; Wakefield & McElvenny, 2007) and 

coherence (USEPA, 2005). Although causality has not been firmly established, this finding can 

be used by policy makers to formulate public health policies or direct intervention programmes 

in order to protect the public from the anti-thyroidal effects of nitrates in drinking water.   

 

The Hill criteria are not only used in the field of epidemiology, but also in the field of toxicology 

(Guzelian et al, 2005) and have been adopted by the International Agency for Research on 

Cancer (IARC) in the evaluation of the carcinogenicity of various chemicals and substances 

(Swaen & van Amelsvoort, 2009), including nitrates (IARC, 2010).  Also, they have been 
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adopted by the USEPA and Health Canada in the weight of evidence assessment of various 

chemicals and substances (USEPA, 2005, Health Canada, 1994). Although the Hill criteria are 

widely used, some authors (Lanes & Poole, 1984; Kundi, 2006) have criticised over - reliance on 

these set of criteria in assessing the weight of evidence for association between exposure and 

disease. According to Kundi (2006), over-reliance on these set of criteria could result in ignoring 

public health intervention programmes on the argument that the available evidence does not 

fulfil the criteria and proposed that assessment of causal inference should be based on prior 

knowledge from epidemiological, animal and in- vitro studies. This cautious note from Kundi 

(2006) is consistent with the view earlier expressed by Hill (1965) and as cited by Phillips & 

Goodman, (2004) and Rothman & Greenland, (2005), that, there are no ‘hard-and-fast rules of 

evidence by which to judge causation’, and emphasized that that the nine ‘view points’ were 

neither necessary nor sufficient to establish causation. Although Rothman & Greenland, (2005); 

Kundi (2006) and Swaen & van Amelsvoort, (2009) agree that the Hill Criteria still remain an 

essential components for causal inference, there is still a debate on the weight that should be 

given to each of the nine criteria and as a result, attempting to prove causality firmly or 

conclusively using this set of criteria is difficult (Swaen & van Amelsvoort, 2009).  

 

3.4.3 GAPS IN THE LITERATURE 

 

While the majority of epidemiological studies on nitrates in drinking water and thyroid disorders 

are ecological and have been conducted with nitrate data from public supply, well designed 

epidemiological studies are required with nitrate data from PWS where the risk of thyroid 

disorder (goitre) may be higher give that the level of nitrates in PWS is usually higher than in 

public water. Also, more studies are required on hypothyroidism; hyperthyroidism and thyroid 

cancer as the number of studies on these outcomes are currently too few to enable a reasonable 
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conclusion to be drawn. In the majority of the studies, there was no individual exposure 

assessment as nitrate levels in drinking water were obtained from records of Regional 

Inspectorate for water or Public Health Protection Board and used as a proxy for individual 

exposure.  There was no measurement of nitrate levels in tap - water at the places of residence or 

the amount of tap - water intake by the cases and/-or control.  More studies with individual 

exposure assessment are required to determine the level of nitrates in drinking water at the place 

of residence of the cases and control groups and the amount of individual tap-water intake per 

day. Although causality has not been firmly established between exposure to nitrates in drinking 

water and goitre, the risk assessment framework can be used to estimate lifetime excess risk of 

goitre in East Anglia given widespread nitrate contamination of drinking water, particularly in 

PWS in the region.  

 

3.5  CONCLUSION 

 

Review of animal and epidemiological studies suggests that exposure to nitrates in drinking 

water is associated with moderate - to - mild iodine deficiency; hypothyroidism; hyperthyroidism 

and goitre. Following a meta- analysis, the weight of evidence is strongest for thyroid 

hypertrophy or goitre (effect estimate, OR = 3.13); weak for subclinical hypothyroidism (OR = 

1.23) and weakest for clinical hypothyroidism and hyperthyroidism (clinical and subclinical). 

The effect estimates shows that the risk of goitre is more than 3times higher in the exposed group 

than control group and suggest that exposure to nitrates in drinking water is a risk factor for 

goitre. While the goitrogenic effect of nitrates is more on children and women, especially 

pregnant women, the effect of subclinical hypothyroidism is also more on children (particularly 

infants) than adults.  Although the majority of the anti - thyroid effects of nitrates was reported at 

nitrates levels equals to or greater than the drinking water standard of 50mg/l, some of the effects 
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also occurred at nitrate concentrations below 50mg/l. The effect of nitrates on the thyroid gland 

is strong if there is dietary iodine deficiency and weak if dietary iodine intake is optimal.  Infants 

are more sensitive to iodine inhibitors (including nitrate) than adults and therefore require more 

iodine intake in order to produce more thyroid hormones during shortages. This is because of the 

short half-life of thyroid hormones in infants (approximately 3 days) and their inability to store 

thyroid hormones for more than a day for use during shortages like in adults. Although the 

number of studies on hypothyroidism (clinical or subclinical) is too few to enable a firm 

conclusion to be drawn, the evidence for subclinical hypothyroidism is supported by result of 

animal studies.  

 

The mechanism of nitrates on the thyroid gland stems from the ability of nitrate ions to inhibit 

iodine uptake by the thyroid gland by binding to the sodium – iodide symporter (NIS) on the 

surface of the thyroid follicles resulting in a decreased in the amount of iodine available in the 

thyroid gland and consequently resulting in decreased thyroid hormones (triiodothyronine (T3), 

thyroxine (T4)) production; hypothyroidism and increased level of thyroid stimulating hormones 

(TSH).  Chronic stimulation of the thyroid gland to produce more hormones by the TSH during 

shortages can result in thyroid hypertrophy (goitre); hyperplasia and carcinoma. Although the 

number of studies are too few to enable a meta- analysis on thyroid carcinoma, the relationship 

between nitrate exposure and thyroid cancer is biologically plausible and may be attributed to the 

ability of nitrate metabolite (NOx) to react with amines or amides (nitrosation) in food e.g. red 

meat to form NOCs. The majority of NOCs are associated with cancer at various organ sites 

including the thyroid in animals and humans. Although exposure to nitrates in drinking water in 

the presence of nitrosation precursors can promote the production of NOCs and cancer, intake of 

antioxidants e.g. vitamin C can inhibit the production of NOCs and the induction of cancer. Also 

adequate intake of iodine can counteract the effect of nitrates on the thyroid.  
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CHAPTER FOUR 

 

4.0     RESEARCH METHODOLOGY 

 

4.1     AIMS AND OBJECTIVES 

 

The aim of this study is to evaluate the relationship between exposure to nitrates in drinking 

water and thyroid disorders with reference to Private Water Supplies (PWS) and public water 

supplies and to quantify any risk in East Anglia, UK.  

The specific objectives are: 

 

1. Hazard Identification. 

 To review available case-reports, epidemiological and experimental animal studies for 

any evidence of thyroid disorders (including hypothyroidism; hyperthyroidism; thyroid 

hypertrophy; goitre; hyperplasia; carcinoma etc.) following exposure to nitrates in 

drinking water. 

 To characterise the route(s) of exposure to nitrates. 

 To characterise the mechanism of action of nitrates on the thyroid gland. 

 To characterise the strength of any association between nitrate exposure in drinking water 

and any thyroid disorders. 

 To determine whether any association is causal. 
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2.  Dose - Response Assessment. 

 To describe the relationship between exposure to nitrate in drinking water and thyroid 

hypertrophy (goitre) from epidemiological studies.  

 To describe the shape of the dose-response curve (linear or non-linear). 

 To determine the effect of nitrate exposure on the thyroid gland at low- dose. 

 To synthesise the evidence. 

  

3      Exposure Assessment 

 To estimate the concentration of nitrates in public water and PWS in East Anglia by 

collecting and analysing data on nitrate concentrations from water companies and Local 

Authorities respectively. 

 To determine the magnitude, frequency and duration of exposure to nitrates in drinking 

water. 

 To determine the amount of tap-water intake by the population in the area administered 

by Suffolk Coastal District Council. 

 To determine whether there is any difference in the amount of tap-water intake between 

public water and PWS users. 

 

4     Risk Characterisation 

 To estimate the population attributable faction (PAF) or lifetime excess risk of goitre in 

East Anglia following exposure to nitrates in drinking water by integrating information 

from dose - response analysis and exposure assessment. 

 To characterise the strength and limitations of the study. 

 To characterise uncertainties associated with the risk estimates. 
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 To evaluate the appropriateness of the current nitrate drinking water standard of 50mg/l 

(set to protect against infantile methaemoglobinemia) in protecting against thyroid 

hypertrophy (goitre). 

 

4.2               QUANTITATIVE RISK ASSESSMENT 

 

Risk assessment is defined as the process of using all available scientific information to 

determine the ability of a chemical or substance to cause adverse health effect following 

exposure to an individual or a population (National Research Council (NRC) 1983; 2008). In 

other words, it is essentially the collection and evaluation of all relevant information about the 

potential health effect of a substance or agent in a specific situation in a logical and objective 

manner. The main objective of human health risk assessment is to determine evidence –based 

action that may be necessary for public health protection from substances, agents or 

developmental projects that may have the potential to affect health (Brownson et al 1999; 

Environmental Heath Standing Committee (enHealth), 2004). It is a means of evaluating public 

health evidence in order to determine when public health action is required (Brownson et al, 

1999).  It involves the evaluation of the nature and magnitude of adverse health outcomes from 

past exposures and prediction or estimation of the outcome from future exposures (United States 

Environmental Protection Agency (USEPA, 1990a). In the regulatory context, the process can be 

used to approve new chemicals or substances prior to marketing or release into the environment 

and the re-evaluation of existing substances (Clegg et al, 1996). The output of the risk 

assessment exercise provides evidence that can be used to make a decision on how best to 

manage the risk (Spickett et al, 2006). The four stages of risk assessment are hazard 

identification; dose - response evaluation; exposure assessment and risk characterisation.   
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 HAZARD IDENTIFICATION 

 

This objective has been completed (Chapter Three, pgs. 50-102).  It involved a review of animal 

and epidemiological studies for any evidence of thyroid disorders. It also involved characterising 

the route(s) of exposure; the biological properties (including toxicokinetics and toxicodynamics) 

of nitrates as well as the nature and strength of any evidence of association and determining 

whether any association is causal. A review of animal and epidemiological studies suggests that 

exposure to nitrates in drinking water is associated with moderate - to - mild iodine deficiency; 

hypothyroidism; hyperthyroidism; goitre and thyroid cancer.  However, following a meta - 

analysis, the weight of evidence is strongest for goitre (effect estimate, OR = 3.13); weak for 

subclinical hypothyroidism (OR = 1.23) and weakest for clinical hypothyroidism and 

hyperthyroidism (clinical and subclinical). Although causality was not firmly established, the 

risk assessment framework can be used to determine any excess risk of goitre in East Anglia 

following widespread nitrate contamination of drinking water sources.  Hazard identification is 

the first stage in the risk assessment process and is used to determine (on the basis of available 

data, including animal and epidemiological studies as well as case-reports) whether a substance 

or an agent has the ability to cause or result in increase in adverse health effect following 

exposure to an individual or a population (Abernathy and Roberts, 1994).  

 

 DOSE – RESPONSE ASSESSMENT 

  

The relationship (linear or non- linear) between exposure to nitrates in drinking water at various 

doses and any effect on the thyroid gland will be determined. Also the effects of exposure to 

nitrates on the thyroid gland at low doses (i.e. doses below the lowest observed adverse effect 

level reported in epidemiological studies) will be examined. Dose-response evaluation examines 
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the relationship between exposure of an agent or substance and the incidence of adverse health 

effects in an exposed population. In other words, it is the quantitative assessment of the 

relationship between exposure of an agent and a health outcome from a given set of data and a 

prediction from the data of future effects (Roberts and Abernathy 1996).  

 

 EXPOSURE ASSESSMENT 

 

Exposure assessment is the process of determining the magnitude, frequency and duration of 

exposure of a substance or an agent to an individual or population (Gerba, 1996; Ball, 2006). 

Also, it involves the determination of the route of exposure, the size, composition and 

characteristics of the exposed population as well as the determination of the most sensitive 

subgroup (Roberts & Abernathy, 1996; Sand, 2005). Exposure can be measured directly or 

indirectly. Direct measurement involves either measuring exposure concentrations of a substance 

to a target individual at the point and time of contact; biological monitoring or the use of a 

biomarker (Ott et al, 2007). Whilst point of contact approaches indicate the total concentration 

reaching the target individual; biological monitoring or the use of biomarkers indicate the 

concentration of the substance within the body after the exposure has taken place (Ott et al, 

2007). Although the direct approach gives a more accurate exposure data, it is invasive, 

expensive to conduct and may not always be feasible especially in a population exposure study 

(Ott et al, 2007).  An indirect approach, on the other hand, can be conducted quantitatively 

and/or qualitatively (Sand, 2005; Ball, 2006) and involves measuring the concentration of the 

substance or chemical in an environmental medium (e.g. air, water, food or soil) in order to 

predict the exposure distribution within the population (Ott et al, 2007). Whilst this approach is 

more cost effective and less invasive to the population than the direct approach, the results are 

sometimes subject to error as it does not consider whether actual exposure took place. Also there 
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may be some error in the measured concentration of the substance or chemical in the exposure 

medium (Ott et al, 2007).  

 

This assessment followed the indirect approach. It was conducted quantitatively and involved 

collection of data on nitrate concentrations in drinking water (public and private water supplies) 

from water companies and local authorities in East Anglia. Information on the amount of tap-

water intake by the population in the region was obtained via a questionnaire administered on 

some randomly selected households in the region.  

 

 RISK CHARACTERISATION 

 

Risk characterisation is the final step in the risk assessment process. It combines information 

from dose-response and exposure assessment in order to quantitatively estimate the health risks 

of a substance or agent in a population. It involves a description of the nature, extent, and 

severity of risks and making a conclusion as to whether exposure to a substance or agent is 

associated with any increase in the incidence of a health effect or a level of exposure could be 

identified that is considered tolerable (USEPA, 1986; Roberts & Abernathy, 1996). Here, any 

assumptions or uncertainties associated with the risk estimates are characterised.  

 

4.3 DISCUSSION 

 

Risk assessment provides an understanding of the sources and pathways of contaminants in the 

environment which is an important step in addressing (and reducing) uncertainty associated with 

estimating the likelihood of exposure to such contaminants in the environment (Ritter et al, 

2002).  A good understanding of the sources and pathways of contaminants “strengthens our 
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ability to quantify effects through accurate measurement and testing or to predict the likelihood 

of effects based on empirical models” (Ritter et al, 2002: pg.1). Therefore, understanding the 

source(s), concentration and exposure pathway of nitrates in drinking water and estimating the 

risk of thyroid disorders in East Anglia not only forms the basis of risk characterisation, but also 

provides information that may be used by policy makers like DEFRA and DWI in articulating 

regulatory and other risk management options aimed at improving water quality and protection 

of public health. The information may also be useful to the Environment Agency in the 

regulation and processing of licences for drinking water abstraction especially for private use.  

Risk assessment is a useful tool in public health decision making and is widely used 

internationally in expressing risk and making regulatory decisions on a number of chemicals and 

environmental contaminants such as pesticides, heavy metals, poly-aromatic hydrocarbons 

(NRC, 1983 & 2008; Ritter et al, 2002).  It has been used by WHO, USEPA, the European 

Environment Agency (EEA) and numerous regulatory agencies and public health institutions 

around the world in the management of air and drinking water quality as well as in contaminated 

land management (NRC, 2008). The process has also been used in many OECD (Organisation 

for Economic Co-operation and Development) countries to set environmental priorities, to guide 

legislation, choose regulatory and risk management options and perform cost-benefit analysis 

(World Bank, 1998). In the UK, risk assessment has been used to set emission targets (from 

motor vehicles and or industries) for air quality management; Soil Guideline Values (SGVs) for 

contaminated land management and regulation of pesticides (DEFRA, 2009). 

 

Although risk assessment has over the years been used as a tool in evidence - based public health 

decision making especially in expressing risks (Ritter et al, 2002); setting environmental 

standards or guideline values; regulation of hazardous chemicals, substances and or practices and 

articulating risk management options (Briggs, 2008; NRC, 2008), concerns have been expressed 
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about its continued use in public health decision making (Silbergeld, 1993; Montague, 2004; 

Michaels, 2008). These concerns stem from the length of time it takes to complete the risk 

assessment of some chemicals or practices (up to 10 years or more in some cases); lack of 

relevant data; uncertainties associated with available data and the science underlying the process 

(NRC, 2008). Also there is the issue of lack of stakeholder’s involvement in the risk assessment 

of substances or practices designed to address public concerns, which could lead to lack of 

confidence in risk management options. To address these concerns, USEPA in collaboration with 

the NRC set up a committee in 2007 to come up with ways to improve risk assessment in order 

to make the process more useful and acceptable to policy makers, risk managers and 

stakeholders (NRC, 2008). Although the committee recommended improvements in the 

approaches used in risk assessment and the science underlying it, as well as its utility, they 

however advocated for the retention of the risk assessment concept in policy decision making 

especially in public health protection. They also recommended that the process should not be 

seen as end itself but as means of evaluating various risk management options (NRC, 2008; 

Levy, 2009).  

 

4.3.1 EVIDENCE - BASED PUBLIC HEALTH (EBPH) 

 

The goal of public health is to create conducive environment or conditions in which people can 

be healthy ‘in order to advance the society’s collective interest in promoting and preserving good 

health’ (Institute of Medicine (IOM), 1988). In other words, public health is about “doing 

whatever it takes to prevent unnecessary disease, disability or premature death” (Petersen & 

Alexander 2002.pg 2). There is no doubt that advances in public health in the last three-four 

decades have contributed to gains in life expectancy and improvements in the air we breathe, the 

water we drink and the food we eat (Petersen & Alexander, 2002). Also, they have contributed to 
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improvements in sewage treatment and disposal; reductions in tobacco use; injury prevention; 

control of infectious diseases through immunisation and other interventions aimed at public 

health protection (United States Centre for Disease Control (CDC), 1993a; Petersen & 

Alexander, 2002).  However, in spite of these achievements, humanity continues to experience 

many public health challenges and in order to continue to adequately address these challenges, 

evidence- based strategies are required in public health policy decision making.  

 

The principle of using evidence - based public health (EBPH) in decision making has emerged in 

recent times as a standard public health practice (Brownson et al, 1999; 2009). EBPH is defined 

as, “the use of scientific evidence and data in the development, implementation, and evaluation 

of effective programs and policies in public health” (Brownson et al, 1999 pg. 87).  According to 

Hess (2014. pg1117), “it is a process whereby evidence related to the nature and magnitude of 

public health problems and interventions to address them is systematically assembled, evaluated, 

and integrated into public health decision making”. The first step in the process of EBPH is 

‘problem assessment’ or ‘needs assessment’ (Hess et al, 2014). Needs assessment aims to 

identify the public health concerns or ‘needs’ of a population and determine how best to meet 

those needs, using available information and data. A “need” is a discrepancy or gap between 

“what is” and “what should be” (Office of Migrant Education (OME), 2001.pg2). According to 

Wright & Cave (2013), needs assessment is a systematic method of identifying the public health 

and/or social care needs of a population and making recommendations for changes to meet those 

needs. It is the process of using data and the opinions of stakeholders to establish a consensus on 

public health concerns or priorities, as well as the most cost-effective way to address those needs 

(Petersen & Alexander, 2002). A ‘Need’ could be perceived, expressed or relative (Bradshaw, 

1972; Kettner et al, 2008). Whilst perceived ‘Need’ relate to what people think about their needs 

(which may vary between individuals); expressed ‘Need’ relate to the number of people who 
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have sought help or information about their needs (thus translating feelings into action); relative 

Need is concerned with equity, taking into consideration variations in population (Bradshaw, 

1972; Kettner et al, 2008).  

 

According to Brownson et al (1999), tools used in EBPH to determine public health actions 

include risk assessment; economic evaluation; public health surveillance and expert panel 

consensus conference reports. This may involve a meta-analysis (quantitative integration) of 

individual study results and cost- benefit analysis of any risk management options. EBPH has 

been used to develop strategies for climate change adaptation (Hess et al, 2014); injuries in the 

U.S military (Jones et al, 2010); physical inactivity in Europe (Cavill et al, 2006); and low level 

of health literacy among mothers (Levandowski et al, 2006). Although there is still a debate 

about EBPH in concept and applicability as critics have suggested that it can be used as a 

justification for taking no action and/-or to cut public health budgets (Coburn & Poland, 1996; 

Poland et al, 1998; Nadav & Dani, 2006), it is widely recognised and still used in public health 

decision making (Brownson et al, 2009; 2013). 

 

4.3.2    PUBLIC HEALTH STRATEGY IN ENGLAND 

 

EBPH is at the centre of the new public health strategy in England. The White Paper, Healthy 

Lives, Healthy People (Department of  Health (DoH), 2010a), published  by the government  in  

2010 set out a framework for a Public Health Strategy for England which focused on three major 

areas:- health protection; health improvement; and the quality of health services provision. It 

followed the earlier White Paper, published in July 2010 (DoH, 2010b), which focused 

predominantly on the wider issues of health and social care. The document which emphasised 

individual responsibility for heath also acknowledged the implications of wider social, economic 
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and environmental factors on health and well-being. The Public Health White Paper embraced a 

number of principles and focuses emphasis on professional leadership and the use of evidence in 

determining health issues and the best way to address those issues (evidence - based public 

health).  

 

EBPH is also at the centre of the Health and Social Care Act (2012) which amended the Local 

Government and Public Involvement in Health Act (2007). The ‘Act’ which required the 

production of local Joint Strategic Needs Assessments (JSNAs) and Joint Health and Wellbeing 

Strategies (JHWSs) aimed to “develop local evidence - based priorities for commissioning which 

will improve the public’s health and reduce inequalities. Their output, in the form of evidence 

and analysis of ‘Needs’ and agreed priorities will be used to help determine which actions Local 

Authorities, the local National Health Service (NHS) and other partners will take to meet health 

and social care needs and to address wider determinants that impact on health and well-being” 

(DoH 2012.pg4). The Government in setting out this strategy believed that the previous approach 

and system in public health was not seizing available opportunities for better health in order to 

reduce inequalities in health. Therefore a new approach was required that would empower local 

communities, enable professional freedom and unleash new ideas based on the evidence of what 

works, while ensuring that the country remains resilient to and mitigates against current and 

future health threats. Localism is at the centre of the Public Health Strategy which transferred 

Public Health Departments from Primary Care trusts (PCTs) to Local Governments in 2013. 

Given the susceptibility of PWS to chemical and microbial contamination, the DWI 

recommended that the safety of PWS should be incorporated into each Local Authority’s Public 

Health Strategy DWI (2014) in order to protect the population from health threats posed by 

contaminants in drinking water. 
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4.4  DESCRIPTION OF THE STUDY AREA 

 

East Anglia (Figure 15) is regarded as the second largest region in England. It borders London in 

the south, the Midlands in the west and remote coastal and rural areas in the north and east. The 

region covers an area of 19,120 km
2
 with a population of about 5.8 million in 2011 (Office of 

National Statistics (ONS) 2013). Six counties (Bedfordshire; Cambridgeshire; Essex; 

Hertfordshire; Norfolk and Suffolk) and four unitary authorities (Luton; Peterborough; 

Southend-on- Sea and Thurrock) make up the region.  

 

Figure 15:  Map of England depicting East Anglia (Source: EEDA 2009) 

 

 

 

 

 

 

 

 

 

 

 

 

There are 44 District and Borough Councils in the region. Land use other than residential is 

predominantly agricultural (over 75 per cent of the land is used for agriculture). East Anglia is 

one of the Nitrate Vulnerable Zones (NVZs) of the UK. The region was designated a NVZ 

(figure 16) by the UK Government in compliance with European Union (EU) Nitrate Directive 
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91/676/EEC, aimed at reducing nitrate pollution of controlled waters (including drinking water 

sources) from agricultural land (DEFRA 2005).  

 

Figure 16 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

About 77 percent of agricultural land in England was designated NVZs in 1996 & 2002 (DEFRA 

2004; 2009) the majority of which, is in East Anglia (DEFRA 2005, Davies 2000). The region is 

also considered to be one of the driest parts of the UK, with winter rainfall as little as 150mm 

(Davies 2000). Thus, nitrate leaching of as little as 15kg/ha could result in nitrate concentrations 

in drinking water sources in breach of the EU limit due to little or no dilution (Davies 2000). 

Four water companies (Anglian Water; Essex & Suffolk; Cambridge; and Affinity formerly 

Tendring Hundred) supply the majority of the population with drinking water while the 
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remaining population, located in mostly rural parts of the region obtain their drinking water from 

private water sources e.g. wells and boreholes (DWI 2004).  

 

4.5  SOURCES OF DATA: DATA COLLECTION 

 

4.5.1      WATER COMPANIES (PUBLIC WATER SUPPLY) 

 

Data on nitrate concentrations in public water supply (for exposure assessment) was collected 

from all four water companies serving the region. This was done via a letter (Appendix 3) sent to 

the Water Quality Manager of each of the water companies in the region in October 2010 

requesting information on nitrate levels in drinking water recorded in their various areas of 

operation in the previous 10 years. Also requested was information on drinking water source 

(groundwater or surface water); number of samples taken each year and the number of people 

served in each water supply zone. Water supply zones are operational areas of a given population 

within a water company’s operational boundary and each zone may be served with water from a 

particular treatment works or reservoir. However, in certain circumstances, a water zone may 

receive water from more than one reservoir or source in a year.  

 

It must be noted that nitrate data on public supply water provided to DWI by water companies as 

required by the legislation are only compliance data (50mg/l NO3) and does not give the actual 

nitrate level in water sources before blending. The process of blending as practised by water 

companies involves mixing water with elevated nitrate levels and water with low nitrate levels in 
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order to achieve the drinking water standard of 50mg/l. However, for the purposes of this study, 

actual nitrate concentration in water sources (before blending) was collected from water 

companies, as this gives a clearer picture of the concentration of nitrates in drinking water in 

East Anglia.  

 

4.5.2     LOCAL AUTHORITIES  

 

Data on nitrates levels in PWS was collected from Local Authorities in East Anglia following a 

letter and a questionnaire (Appendix 4) sent to the Environmental Health Manager of each of the 

44 Local Authorities in East Anglia. The questionnaire asked for information on the number of 

PWS in their area; nitrate levels recorded in each supply and the number of households served. 

The number of households served by each PWS enables the number of people in the household 

to be estimated. According to the UK 2011 census statistics, the average number of people per 

household in the UK is 2.3; in England (including East Anglia) the average is 2.5 people per 

household (ONS, 2013).  

 

Table 3 (Appendix 5) shows the average nitrate concentration recorded in public water supply 

and PWS in East Anglia as provided by Water Companies and Local Authorities and the 

population served. Whilst Anglian Water (the dominant water company in the region) provided 

data from 2001 to 2010 (part), the other three companies provided data from 2000 to 2009. The 

data shows that the average nitrate concentration recorded by water companies in the region in 

the 10 years ranged from <0.1-to- 56.4mg/l and the total population served in the same period 

were 2,836,408.  
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Of the 44 Local Authorities contacted for nitrate concentration in PWS, 36 (82 per cent) 

completed and returned their questionnaire. Of the 36 Local Authorities that completed and 

returned their questionnaires, six indicated that they had no private water supplies in their areas, 

leaving the number of Local Authorities with relevant data to 30(68 per cent). Whilst data on the 

concentration of nitrates in PWS in the region ranged from 0.3 -to- 466.6mg/l, the number of 

people served was 13,510. Thus, the total number of people in the exposure assessment was 

2,849,918 (public water users 2,836,408; PWS users 13,510). 

 

4.5.3    DATA ON TAP - WATER INTAKE 

 

Data on the amount of tap-water intake per day by individuals in the study area was obtained via 

a questionnaire (Appendix 6) sent to 100 residential addresses in Suffolk Coastal District 

Council. 50 copies of the questionnaire were sent to residential addresses with known public 

water supply and 50 copies were sent to residential addresses with known PWS. All the 

residential addresses were selected at random. 

 

Suffolk Coastal District Council is one of the Local Authorities in East Anglia. It covers an area 

of about 320 square miles and had a population of about 124,700 in 2011(ONS 2013). The 

district is predominantly rural and land use other than residential is predominantly for 

agricultural and horticulture. Two water companies, Anglian Water and Essex & Suffolk Water 

supply the majority of the district’s drinking water and there are about 350 private water supply 

locations, serving about 652 houses in the district. These supplies are covered by The Private 
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Water Supply Regulation (2009). The district was selected for this survey because records of 

PWS including their locations, the concentration of nitrates in these supplies and the addresses 

served are well maintained and therefore it was more convenient to administer the questionnaire 

to the households. The use of a questionnaire in collecting information on tap-water intake has 

been validated by Kaur et al (2004) and Mons et al (2007) and has been judged to have a higher 

response rate than diaries (Kaur et al 2004).  

 

4.6  ETHICAL APPROVAL 

 

Ethical approval was sought and obtained in September 2010 (Appendix 7) from the ethics 

committee of the School of Health and Human Sciences, University of Essex before the data 

collection exercise. Also approved by the Ethics Committee was the questionnaire used to obtain 

information on tap-water intake from the population in Suffolk Coastal District Council 

(Appendix 6).  Permission was also sought and obtained from the Principal Environmental 

Health Officer, Suffolk Coastal District Council for the use of their nitrate data from PWS and 

before administering the questionnaire on the residents. No ethical approval was required by the 

water companies as the Water Supply (Water Quality) Regulations 2000 (as amended) have 

provisions for a public register. To maintain confidentiality, no individual names were collected 

as part of the data collection exercise. Although addresses and postcodes were required for the 

questionnaires to be sent and for follow – ups, these were kept securely locked in a filing cabinet 

and were not published as part of this study.   
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4.7  SUMMARY 

 

Risk assessment is a valuable tool in evidence - based public health decision making and has 

been used over the years to determine actions aimed at public health protection, including 

regulation of hazardous chemicals, substances or practices that may affect human health. The 

four stages of the process (hazard identification; dose response assessment, exposure assessment 

and risk characterisation) address different questions that can be used to estimate excess risk of 

goitre in East Anglia as a result of exposure to nitrates in drinking water. Although risk 

assessment has been criticised as sometimes not being able to meet the needs of risk managers or 

policy makers, it still remain a very important tool in EBPH in formulating public health policy.  
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CHAPTER   FIVE 

 

5.0       DOSE-RESPONSE ASSESSMENT 

 

5.1  INTRODUCTION 

 

The purpose of dose – response assessment is to determine the relationship between exposure to 

a substance or chemical and a health outcome (Ball, 2006). In other words, it is a determination 

of the level of effect a substance would have on a particular organ at different doses of exposure. 

Given that the weight of evidence assessment suggests that exposure to nitrates in drinking water 

is strongest for thyroid hypertrophy (goitre), this outcome was selected for dose- response 

assessment in order to quantitatively estimate the excess risk in East Anglia. Dose-response 

relationship on thyroid hypertrophy (goitre) was conducted with epidemiological data only.  

 

Although epidemiological and experimental animal studies can be used in hazard identification 

and dose - response assessment (World Bank Group, 1998; IRR 2003), epidemiological data, 

when available, is more relevant than animal data and therefore preferred in dose-response 

assessment (Smith, 1988; IARC, 1994; Hertz – Picciotto, 1995; Shore, 1995; Samet et al, 1998; 

World Bank Group, 1998; IRR, 2003). This is because, the level of uncertainty or magnitude of 

error in risk estimates derived from epidemiological data is far lower than that derived from 

animal data (Smith, 1988). According to Hertz - Picciotto (1995) and Samet et al (1998), 

uncertainties associated with extrapolation from animals to humans are larger when compared 
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with intra - human extrapolation. Also, whilst exposure experience by animals is a poor 

representation of human exposure, the context of exposure also differs between animals and 

humans. Another reason is that genetic diversity and variability in humans is better represented 

in human studies than in animal studies (Hertz – Picciotto, 1995). However, the use of 

epidemiological data in dose - response assessment has been criticised by various authors 

(Occupational Safety and Health Administration (OSHA), 1980; Doll, 1985; USEPA, 1986; 

Wartenberg & Simon, 1995). This is because epidemiological studies are judged to be of lower 

sensitivity and of low statistical power (Doll, 1985; Wartenberg & Simon, 1995); limited by 

exposure misclassification bias or confounding factors; and failure to provide a controlled, 

randomised, experimental situation compared to animal data (OSHA, 1980; USEPA, 1986). 

Although the USA National Research Council in its commentary on air pollutants (NRC, 1994) 

gave preference to toxicological data in dose-response assessment because of the cost of 

conducting epidemiological research and the conflicting nature of epidemiological study results, 

epidemiological data has been used in a number of cases to identify hazards and establish dose – 

response relationship as in the case of radon gas exposure and lung cancer; asbestos and 

mesothelioma of the lungs; vinyl chloride and angiosarcoma of the liver; smoking (active and 

passive) and lung cancer (Samet et al, 1998). According to Hertz - Picciotto (1995: pg. 486), 

“when studies of sufficient quality are available for humans and animals, human data are 

preferable as a basis for extrapolation”.  However, when adequate epidemiological data is not 

available, animal data can be used in dose-response assessment if such studies demonstrate 

adverse health effects (IARC, 1994; Hertz – Picciotto, 1995). 
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5.2 DOSE - RESPONSE ANALYSIS 

 

Dose-response assessment involved fitting a regression line to epidemiological data in Gatseva et 

al, 1997 & 1998; Gatseva & Argirova 2005; 2008a & b; Tajtakova et al (2006); Radikova et al 

(2008) and the relationship between nitrate doses and the odds ratio (response) described. Figure 

17 shows the relationship between nitrate doses in drinking water and thyroid hypertrophy 

(goitre) in exposed individuals in the epidemiological studies. The assessment was conducted 

using the LINEST function in Microsoft Excel. Whilst the x-axis represents the doses of nitrate 

in drinking water in the study areas, the y-axis represents the response, i.e. relative risk expressed 

as odds ratio (OR). The intercept was set at 1 to suggest that for zero dose, the risk is 1. The 

regression obtained was y = 0.0347x +1.  The value of R
2
 is 0.833.  A comparison of the figures 

with SPSS analysis gave identical values but also some additional information. This showed that 

the independent variable (dose) statistically significantly predicts the dependent variable, F (1, 5) 

= 24.970, p < .004. 

Figure 17: Dose- Response Relationship between Nitrates and Thyroid Hypertrophy 

(Goitre). 
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Whilst figure 17 represents the effect of nitrates in drinking water on the thyroid gland in some 

individuals within the range of doses reported in epidemiological studies in the study areas, it 

does not show the effect of nitrates at doses below the lowest observed adverse effect level 

(LOAEL) i.e. below 69mg/l and this can be extrapolated in order to estimate the risk of the goitre 

in the entire dose range.  Low – dose extrapolation is important as it allows for risk estimation in 

the entire dose range of exposure of a substance in a population (Shepard et al, 1987). 

 

5.3  LOW- DOSE EXTRAPOLATION 

 

In order to extrapolate the effects of nitrates in drinking water on the thyroid from the high doses 

reported in the epidemiological studies to low - doses, a distinction must be made between 

substances exhibiting threshold or non - threshold effects. For some substances e.g. non-

carcinogenic, where it is assumed that a threshold dose exists, below which, there is no 

appreciable toxic effect i.e. there is a range of exposure doses that can be tolerated by an 

organism without the expression of observable toxic effect, the no-observed adverse effect level 

(NOAEL) and reference dose (RfD) approach can be used to extrapolate risks from the high 

exposure doses to low exposure doses (Barnes & Dourson, 1988; Gerba 1996). The threshold 

dose is represented by the RfD and doses below or equal to the RfD are considered not to have 

appreciable health risks, while doses above the RfD are assumed to have some health risks 

(USEPA, 1990a; WHO, 1994). The RfD is the dose of a substance per unit body weight per day 

(mg/kg-bw/day) that is unlikely to pose appreciable risk to humans including the most sensitive 

group e.g. children and the elderly (Barnes & Dourson, 1988; Gerba 1996). It is estimated by 

applying uncertainty factors to the no-observed adverse effect level (NOAEL) or the lowest 

observed adverse effect level (LOAEL) where the former cannot be easily defined (Barnes & 
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Dourson, 1988). Whilst the NOAEL is the highest dose at which there is no adverse effect, the 

LOAEL is the lowest dose at which health effects begin to manifest (Barnes & Dourson, 1988). 

However, for some substances e.g. carcinogens, it is assumed that no threshold exists (i.e. it is 

assumed that there is the likelihood of some risk at every exposure dose), a mathematical model 

can be used in low - dose extrapolation of non-threshold substances (USEPA, 1990a; WHO, 

1994).   

 

Given that nitrate is known to be produced endogenously for some biological activities (Jaffe, 

1981; Walker 1995; Hsia, 1998) such as antimicrobial activity (Hibbs et al, 1987; Fang, 1997; 

Addiscott & Benjamin, 2004); vasodilation (Bjorne, 2005); neurotransmission (Garthwaite, 

1991); immune regulation (Hibbs, 1991), any threshold would already has been exceeded for 

these effects to occur. Therefore the effect of exogenous nitrate exposure via drinking water 

which have been reported to increase the concentration of endogenously produced nitrate as well 

as its toxicity (Berger et al 1997, Gupta et al 1998) suggest a non- threshold effect. As noted by 

Welshons et al (2003), “exogenous chemicals (e.g. endocrine disruption chemicals (EDCs) 

modulate a system that is physiologically active and thus is already above threshold, 

contradicting the traditional toxicological assumption of threshold for endocrine responses to 

toxic chemicals such as EDCs”. The ability of nitrates in drinking water to inhibit iodine uptake 

by the thyroid gland by binding to the sodium - iodide symporter on the surface of the thyroid 

gland resulting in low thyroid hormone production; hypothyroidism or goitre (Alexander & 

Wolff, 1966; van Maanen et al, 1994; Tonacchera et al, 2004) suggests that nitrates is an 

endocrine disruptor. Given that the effect of nitrates is mediated by its metabolite, NOx and not 

nitrite as previously thought (Addiscott & Benjamin, 2004), and the fact that NOx is capable of 

exerting endocrine activity (Bryan et al, 2007; Elrod et al, 2008; Ghasemi & Zahedias, 2011)  
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further supports the endocrine disrupting potentials of nitrates. There is no threshold for EDCs 

(Sheehan & vom Saal, 1997; Crews et al, 2000). 

 

Mathematical models are usually used in low - dose extrapolation of non-threshold substances 

because of difficulties in describing the shape of the dose-response curve (linear, sublinear or 

supralinear) and estimating risks at low - doses (USEPA, 1989 and 2005; IRR, 2003; Ball, 2006). 

Although extrapolation from high exposure doses of chemicals usually used in animal studies or 

observed in epidemiological studies to low doses in order to establish a ‘safe dose’ for humans 

has been criticised (Brown & Salmon 1996) especially for EDCs (Sheehan et al, 1999; Welshons 

et al, 2003; vom Saal et al, 1997; Vandenberg et al, 2012), no alternative method has been 

proposed. Whilst it is neither the aim nor the objective of this study to establish a ‘safe dose’ for 

nitrates in drinking water, low - dose extrapolation using a mathematical model can be used to 

quantitatively estimate the excess risk of goitre in East Anglia, following exposure to nitrates in 

drinking water. Although no particular model has been identified as the most suited for low – 

dose extrapolation of non- threshold substances (Paustenbach, 1989; Sand 2005) since each 

model can provide varying results in the low dose range (Krewski & van Ryzin 1981), it has 

been suggested that models that incorporate a linear relationship between the lowest observed 

dose and the zero-dose are preferred (Paustenbach, 1989; USEPA, 1989; Sand, 2005; USEPA, 

2005). 

 

Given that figure 17 suggest that the independent variable (dose) statistically significantly 

predicts the dependent variable, OR, (F (1, 5) = 24.970, p < .004, the equation of the regression 

line can be used in the low- dose extrapolation of the risk of goitre from the LOAEL. 
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y = mx +1                                           (Equation 1) 

Where: 

y   = relative risk (RR) 

m = slope of the dose – response line (slope factor (q1
*
)) 

x = chronic daily intake (CDI) nitrate dose in drinking water 

1 = a parameter that describes the background risk 

 

The slope of the regression line (0.0347) will be applied to the daily dose (chronic daily intake) 

of nitrates in drinking water in the population in East Anglia in order to estimate the risk (unit 

risk or risk per specific dose) of goitre.  The slope of the dose-response curve is called the 

potency factor (PF) or the slope factor (q1
*
) (Gerba, 1996; Roberts & Abernathy, 1996). The 

slope factor or potency factor is the risk produced by a lifetime average dose of 1mg of a 

chemical or substance per kilogram body weight per day (USEPA, 1990; Gerba, 1996). The 

slope factor (q1
*
) is usually incorporated in a selected model in order to estimate quantitatively 

the RR or probability of cancer risk per specific dose (risk specific dose (RSD)) of the exposure 

substance (USEPA 1986; 1989). This is done by multiplying the slope factor (q1
*
)

 
with the 

chronic daily intake of the chemical (Roberts & Abernathy, 1996). Chronic daily intake (CDI) is 

defined as intake of a chemical over an average time of 70 years (lifetime), expressed in mg/kg-

bw/day (Roberts & Abernathy, 1996; USEPA, 1989).  
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The slope factor derived from epidemiological studies (source populations) will be applied to the 

CDI in order to derive the RR of thyroid hypertrophy (goitre) in the target population (East 

Anglia). The slope factor derived from epidemiological studies (source population) where data is 

available can be applied to a different (target) population lacking their own data in order to 

estimate the health risks of a substance or an agent (Steenland &Armstrong, 2006; World Bank 

Group, 1998). This approach usually referred to as ‘benefit transfer’ (World Bank Group, 1998) 

has been used by Romieu et al (1990) to estimate the health effects of air pollutant (total 

suspended particulates (TSP) in Latin America where few epidemiological studies exist and the 

dose-response function has been calculated from epidemiological studies (found in the literature) 

conducted elsewhere on TSP. Although this practice can provide a rough estimate of risks, it can 

also introduce uncertainties in the risk estimates if there are significant differences in exposure 

prevalence, age composition of the exposed individuals, and individual variability between the 

‘source’ population and the ‘target’ population (World Bank Group, 1998). However, given 

widespread nitrate contamination of drinking water sources in East Anglia; paucity of published 

epidemiological studies on the effects of nitrates on the thyroid gland in the UK (including East 

Anglia); similarities in exposure prevalence and age composition of exposed individuals between 

the ‘source’ population and the ‘target’ population in East Anglia, there is the rationale for this 

approach (benefit transfer) to be used to estimate the risk of goitre in East Anglia following 

exposure to nitrates in drinking water. 

 

5.4 DISCUSSION 

 

Dose-response relationship (figure 17) shows the effect of nitrates on the thyroid gland at 

different doses in a study population and suggests that the effect of nitrates on the thyroid at a 
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given dose or set of doses cannot be used to predict the effect of other doses hence the basis for 

extrapolation from the LOAEL (69mg/l) in order to estimate effects at low doses. The concept of 

low - dose effects has elicited considerable debate amongst researchers in recent years 

(Vandenberg et al, 2012, Fagin, 2012). The debate stems from the suggestion by some 

researchers (Vom Saal et al, 2007; Crain et al, 2007; Richter et al, 2007; Wetherill et al, 2007; 

Keri et al, 2007; Vandenberg et al, 2009; Vandenberg et al, 2012) that substances or chemicals 

with known endocrine disrupting capabilities or potentials can have effects on biological systems 

at low doses which can result in some disease conditions in humans and that the effects of these 

chemicals at high doses cannot be used to predict effects at low doses. Also, they suggested that 

non - monotonic dose-response relationship (NMDRs) (where response or effect increases and 

decreases as dose increases) are to be expected for some toxic chemicals (Kohn & Melnick, 

2002; Conolly & Lutz, 2004) including endocrine disrupting chemicals (vom Saal et al, 1997; 

Welshons et al, 1999; Birnbaum 2012; Vanderberg et al 2012). Endocrine disrupting chemicals 

(EDCs) or endocrine disruptors is defined as a substance or mixture that alters the function(s) of 

the endocrine system and consequently cause adverse effects in an intact organism or its progeny 

or (sub) populations (IPCS/WHO, 2002). On the other hand low - dose effects, is defined in the 

USA National Toxicological Program (NTP, 2001) report, as “any biological changes occurring 

in the range of typical human exposures or occurring at doses lower than those typically used in 

standard testing protocols” (Melnick et al,2002.pg 427).  Also, it has been defined as a dose or 

doses below the lowest dose at which a biological change (or damage) for a specific chemical 

has been measured in the past, i.e. any dose below the lowest observed effect level or lowest 

observed adverse effect level (LOAEL), or a dose administered to an animal that produces blood 

concentrations of that chemical in the range of what has been measured in the general human 

population (NTP 2001; Welshson et al, 2006). Adverse effect is defined by IPCS/WHO (2004) 

as impairment of functional capacity in an organism or impairment of capacity to compensate for 
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additional stress or increased susceptibility to the harmful effects of other environmental 

influences due to changes in morphology, physiology, growth, reproduction, development or 

lifespan of the organism. According to Vandenberg et al (2012), in a system that exhibits a non-

monotonic dose response curve (especially an EDC), knowledge of the effect of one dose, or 

multiple doses, does not allow for assumptions to be made about the effects of other doses. The 

implications of this in regulatory toxicology is that the effect at high doses cannot be used to 

predict effect at low doses and any ‘safe dose’ determined from high doses does not guarantee 

safety at lower untested doses.  

 

The low - dose effect hypothesis has been based on the evidence that natural endogenous 

hormones act at very low concentrations and that certain chemicals e.g. EDCs, which mimic 

natural hormones act at similar concentrations (Soto et al, 1994; Soto et al, 1995; Nagel et al, 

1999; Welshons et al, 2003; Wozniak et al, 2005; Kochukov et al, 2009; Alyea & Watson, 2009; 

Vandenberg et al, 2012), suggesting that exposure to low - doses of these chemicals can 

contribute to some adverse health conditions in human population (Birnbaum, 2012). This could 

have implications for the current practice in risk assessment and regulatory toxicology where it is 

assumed that a threshold dose exist for these substances, below which, there is no observable or 

appreciable health risks. Although NMDR is regarded as a general biological phenomenon 

(Stebbing, 1982; Conolly & Lutz, 2004), opponents of the low - dose effect concept (Kyl et al, 

2008; Ryan et al, 2010) have argued that whilst NMDR can exist for some chemicals, no adverse 

health effects have conclusively been linked to exposures to toxic chemicals at low - doses and 

that the current methods in regulatory toxicology and risk assessment are robust enough to 

protect against any health effects at low - doses (Kyl et al, 2008, Ryan et al, 2010). They also 

argued that, rather than adverse effects, low- dose of some toxic chemicals have demonstrated 

evidence of beneficial effects (hormesis) (Calabrese and Baldwin, 2001a) and can stimulate 
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some physiological processes such as growth and reproduction, whereas high doses have the 

opposite effect (Luckey 1975; 1980). NMDR has not been established for nitrates.  However, 

exposure to low doses of endocrine disruptors have been linked to diseases such as obesity 

(Carwile & Michels, 2011; Hatch et al, 2010); diabetes (Grun, 2010); cancer (Soto & 

Sonnenschein, 2010); cardiovascular diseases (Akinbami 2010); reproductive and developmental 

disorders (Stillerman et al, 2008; Meeker & Stapleton, 2010); immune dysfunction (Miyashita et 

al, 2011) and neurobehavioral disorders (Swan et al, 2010).  

 

In a workshop on low dose effects and non-monotonic dose - responses in relation to EDCs 

organised by the European Commission’s Joint Research Centre (JRC) and the US National 

Institute of Environmental Health Science (NIEHS) in September 2012 in Berlin, Germany, 

participants agreed that NMDR exists for some chemicals and substances including EDCs over a 

certain dose range but there was no consensus on their toxicological consequences or 

implications in risk assessment. Although there was also a consensus that the definition of ‘low 

dose’ and ‘adverse effect’ need to be clarified, there was no consensus on whether EDCs should 

be treated as having a threshold or non - threshold effect. However, in a personal communication 

with some of the workshop presenters such as Peter Korytar (DG, EU Commission on 

Environment); Tryrone Hayes (University of California, Berkeley); Ana Soto and Linda 

Vandenberg (Tufts University), there was the view that the principles of endocrinology; mode of 

action of natural endogenous hormones and EDCs can be used to make a judgement as to 

whether EDCs exhibit a threshold or non- threshold effect (Personal Communication). 

According to Sheehan & vom Saal (1997) and Crews et al (2000), there is no threshold for 

EDCs. This observation may apply to nitrates based on their endocrine disrupting capabilities.   
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The assumption of linearity in the extrapolation of nitrates from the LOAEL to low-doses in 

order to estimate the excess risk of goitre in East Anglia is supported by the mechanism of 

nitrates on the thyroid gland. This stems from the ability of nitrate ions to inhibit iodine uptake 

by the thyroid gland by binding to the sodium – iodide symporter (NIS) on the surface of the 

thyroid follicles, resulting in iodine deficiency; low thyroid hormones production; increased 

thyroid volume; thyroid hypertrophy or goitre (Bloomfield et al, 1961 and 1962; Alexander & 

Wolff, 1966). According to the USA Environmental Protection Agency (USEPA), linearity at 

low- dose is to be assumed for substances whose toxicity is mediated by binding to a receptor 

(USEPA, 2000).  

 

Given that the effect of nitrates on the thyroid gland when present in a mixture with other iodine 

inhibitors such as perchlorate and thiocyanate is additive, with no evidence of synergism or 

antagonism (Tonacchera et al, 2004), the assumption of linearity at low dose is consistent with 

the suggestion that the effect of substances e.g. genotoxic carcinogens that act in a dose-additive 

fashion is linear at low dose (California Department of Health Services 1986; USEPA, 1986; 

2000). According to Crump et al (1976), any exposure affecting an already on-going process will 

lead to linearity at low dose. This hypothesis of ‘additivity to background’ was the basis for the 

justification of linear low - dose extrapolation of cancer risks for carcinogens and “if 

carcinogenesis by an external agent acts additively with any already on-going process, then 

under almost any model, the response will be linear at low dose” (Conolly & Lutz, 2004, pg. 

155).  This assumption is widely accepted (Krewski et al, 1995; Conolly & Lutz, 2004) given 

that DNA damage is sometimes unavoidable (Gupta & Lutz, 1999).  
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The assumption of linearity between the lowest observed effect levels (LOEL) or dose and the 

zero dose is further supported by receptor – ligand binding kinetics as explained in Welshons et 

al (2003). According to the authors, at low - doses, the relationship between a toxicant or 

hormone and its target receptor is linear and also results in a linear response or effect. But when 

the dose increases, the relationship between a receptor and a ligand as well as response or effect 

is nonlinear (Welshons et al, 2003).  As noted by Conolly & Lutz (2004: pg.155), “the first 

interaction of a toxic agent and its primary biological target molecule follows the law of mass 

action, which results in a linear dose – response relationship; therefore, a linear default 

extrapolation at low - dose appears appropriate”. 

 

5.5 CONCLUSION 

 

Animal and epidemiological data can be used in dose – response assessment but epidemiological 

data is preferred when available. This is because, the level of uncertainty or magnitude of error 

in risk estimates derived from epidemiological data is far less than that derived from animal data.  

Also, whilst exposure experience by animals is a poor representation of human exposure, the 

context of exposure also differs between animals and humans. Another reason is that genetic 

diversity and variability in humans is better represented in human studies than in animal studies.  

 

The ability of nitrates in drinking water to disrupt iodine intake by the thyroid resulting in 

increased thyroid volume or thyroid hypertrophy (goitre) suggests that nitrates is an endocrine 

disruptor. The effect of nitrate exposure at various doses in the dose - response relationship 

suggests that the effect of nitrates on the thyroid gland at a given dose or set of doses cannot be 

used to predict effect at other doses.  In other words, the effect of nitrates at high doses cannot be 
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used to assume or predict effect at low doses and this has to be extrapolated in order to estimate 

effects in the low - dose range.  Although it is not known if nitrates exhibit a NMDR, the 

endocrine disruption capabilities suggest there may be no threshold dose for nitrates and any 

‘safe dose’ set or predicted  from effects at high dose may be misleading. There may be no 

threshold for substances whose mode of action is by binding to a receptor, such as nitrates. 

 

The linear model can be used in low - dose extrapolation because nitrate doses (independent 

variable) statistically significantly predicts the dependent variable (i.e. relative risk, expressed as 

odds ratio).  Also the assumption of linearity at low- dose is consistent with the mechanism of 

nitrates on the thyroid gland through disruption of iodine uptake. The assumption of linearity at 

low dose is further supported by the ability of nitrates to act in a dose additive fashion when 

present in a mixture with other endocrine disruptors. Low- dose extrapolation is important in risk 

estimation because it allows for comprehensive risk estimation across the entire dose range 

recorded or measured in a population. However, these are a lot of uncertainties in extrapolation 

outside the range of data.  
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CHAPTER SIX   

  

6.0    EXPOSURE ASSESSMENT 

 

An important step in assessing the risk of thyroid hypertrophy (goitre) in East Anglia as a result 

of exposure to nitrates in drinking water is to determine the concentration of nitrates in drinking 

water and the population exposed.  It also it involves a determination of the amount of tap- water 

intake by individuals in the region. As stated in Section 4.5, information on nitrates 

concentration in public and private water supplies was collected from water companies and 

Local Authorities (respectively) in East Anglia whilst the amount of water intake was determined 

via a questionnaire sent to a subset of the population (Suffolk Coastal District Council).   

 

6.1  DATA ANALYSIS 

 

Table 3 (Appendix 5) shows the concentration of nitrates in drinking water in East Anglia which 

suggest that the concentration in public water ranged from <0.1 to 56.4 mg/l NO3
-
 while the 

range in PWS was 0.3to 466 mg/lNO3
-
. This covered a total population of 2,849,918. In order to 

determine the daily dose of nitrate intake (chronic daily intake (CDI)) over a lifetime of 70years, 

the general formula (Equation 2) for estimating chemical intake as formulated by the USEPA 

(1989b) was used. 
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𝑪𝑫𝑰 =  
𝐶×𝐶𝑅×𝐸𝐹×𝐸𝐷

𝐵𝑊×𝐴𝑇
                          𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 2 

                                                                                                              

Where:  

CDI =  Chronic Daily Intake (mg/kg of body weight per day). 

C =  Average concentration of chemical (nitrate) in water during exposure  

         period (mg/l). 

CR =  Contact rate or the amount of contaminated medium (water)       

  contacted per unit of time (litres/day). 

EF =  Exposure frequency (days per year). 

ED =  Exposure duration (no of years of exposure). 

BW =  Body weight (kg). 

AT =   Averaging time (period over which the exposure is averaged –  

  year/days).    

                                              

This formulae, which is applicable to any length of exposure (e.g. sub-chronic or chronic) and 

with modifications to any route of exposure (Davis & Klein, 1996) has been used by the USA 

Environmental Protection Agency (USEPA) in the exposure assessment of contaminants from 

the Superfund sites (USEPA, 1989b). However, before using Equation 2, the contact rate (CR) 

has to be first determined. The contact rate is the amount of tap-water intake per day by 

individuals in the study population, usually expressed in (L/day).  
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6.1.1 CALCULATING THE AMOUNT OF WATER INTAKE (CONTACT 

RATE) 

 

Information on the amount of tap-water intake in the study area was collected from residents in 

Suffolk Coastal District Council via a questionnaire (Appendix 4). The questionnaire asked 

participants to indicate the number of cups of tap-water, including for cold drinks (e.g. squash) 

and hot drinks (tea, coffee, hot chocolate) drunk each day at home. They were asked to express 

their daily intake of water as number of glasses (200 ml) or mugs (250 ml) per day. The number 

of glasses or mugs of water consumed each day in millilitres were later converted to litres (1000 

ml is equivalent to 1L). The use of number of glasses or mugs as a measure to assess the volume 

of water consumed is considered the best way of estimating the amount of tap-water intake 

(DWI, 1996; Robertson et al, 2000; Gofti-Laroche et al, 2001; Dagendorf, 2003; Westrell et al, 

2004; Mons et al, 2007) and is close to the everyday habit of the consumer (Mons et al, 2007). 

This method, however, does not take into account non-glass consumption of water such as ice-

cubes, tooth brushing, taking medication or the use of glasses or mugs of different sizes. Non-

glass consumption of water or use of glasses or mugs of different size can result in exposure 

misclassification bias (Mons et al, 2007).  

 

Of the 100 addresses contacted for information on tap-water intake, 67 (67 per cent) completed 

and returned their questionnaires. Out of the 67 addresses that returned their completed 

questionnaire, 41(61per cent) were from households served by PWS while 26(39 per cent) were 

from households served by public water supply. This is however not surprising given the earlier 

interest shown on the research by people on PWS (personal discussion). The total number of 

people living in the 67 addresses that completed the questionnaire was estimated to be 168. 
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While 65(38.7 per cent) people lived in households served by public water supply, 103(61.3 per 

cent) lived in household served by PWS. Table 4 shows the characteristics of the respondents 

and the type of water consumed.  

 

Table 4: Characteristics of Respondents 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Age 

Group 

Households on Public 

Supply  

Households on PWS    

No. of tap -

water users   

No of 

bottled 

water users 

No. of tap - 

water users 

No. of 

Bottled 

water 

users 

Total    

0-5 1 1 - 8 10 

6-10 3 2 9 1 15 

11-15 6 - 12 - 18 

16-20 3 - 5 - 8 

21-25 4 - 4 - 8 

26-30 4 - 4 - 8 

31-35 6 - 6 3 15 

36-40 5 2 6 2 15 

41-45 4 - 8 - 12 

46-50 5 - 8 - 13 

51-55 5 - 7 - 12 

56-60 9 - 11 - 20 

>65 5 - 9 - 14 

Total 60        5  89     14 168 

SEX      

Male 23    - 48       6 77   

Female 37    5 41       8 91    
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Of the 65 people served by public supply, 60 reported drinking tap-water while 5 drank bottled 

water. In households served by PWS, of the 103 occupants, 89 indicated drinking tap- water 

while 14 drank bottled water.  Of the 60 people who drank tap-water in households served by 

public supply, 23 were males while 37 were females. Among the 89 people that drank tap – 

water in households served by PWS were 48 males and 41 females. Of the 14 people who used 

bottled water in the households served by PWS, five were females aged 31-40 years while the 

rest (nine) were infants and children aged 0-10 years. Only two females aged 36-40 used bottled 

water in households served by public supply. 

 

6.2  RESULT 

 

Table 5 shows the amount of tap-water intake (contact rate) by the population in Suffolk Coastal 

area. Given that the amount of water intake per body weight of an individual changes over a 

lifetime (70years), a lifetime was divided into five periods: infant (≤1year); child (1-6years); 

child (7-12years); adolescent (13-18yrs); adults (19-70 years) (USEPA 1989b; Covello & 

Merkhofer, 1993).  
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Table 5: Amount of Water Intake (Contact Rate) by Age Group. 

 

 

 

 

 

 

 

 

 

 

 

 

Analysis of tap-water intake rate by respondents to the questionnaire according to the five age 

periods indicates that infants (≤ 1yr) in households served by public water supply consumed 

about 5 glasses of tap-water per day, equivalent to 1000ml or 1 L per day while those on PWS 

consumed about 4.5 glasses (900ml or 0.90 L/day). For children 1-6 years served by public 

water, intake rate was 5 glasses (1000ml or 1 L) while those on PWS consumed about 5.5 glasses 

(1100ml or 1.10 L). Children 7-12 years on public supply consumed 5.5 glasses (1100ml or 1.10 

L) while those on PWS consumed 5 glasses (1000ml or 1 L). The rate of consumption for 

adolescents (13-18 years) and adults (19-70 years) served by public supply were 3.5 mugs 

Age Public 

supply 

(litre) 

PWS 

(litre) 

Average 

tap-water 

intake 

(litre) 

Infants  (≤1 year) 1.00 0.90 0.95 

Child (1-6 years) 1.00 1.10 1.05 

Child (7-12 years) 1.10 0.90 1.00 

Adolescent (13-18 

years) 

0.875 0.75 

 

0.8 

 

Adult (19-70 years) 1.13  1.25 1.2 

T- Test    

Mean 1.021 0.98  

Standard Deviation 0.1004 0.1956  

95%CI:  

(-0.1193, 0.2013) 

T- statistic = 0.417, 

p>0.05 
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(875ml or 0.875 L/day) and 4-5 mugs (11250ml or 1.125 L/day) respectively. For those on PWS 

the rate was 3 mugs (750 ml or 0.75 L/day) and 4-6 mugs (1250 ml or 1.25 L/day) respectively. 

On average, the intake rate for infants was 0.95 L/day; child 1.05 L/day; child 1.0 L/day; 

adolescent 0.8 L/day and adults 1.2 L/day.   

 

Although infants (≤1yr) and children (7-12 years) served by public supply consumed slightly 

more water than their counterparts served by PWS, and whereas child (1-6yrs) and adults served 

by PWS consumed slightly more water than their counterparts on public supply, a T-test 

statistical analysis (Table 5) shows that there was no statistically significant difference in tap- 

water intake between public water supply and PWS users.   Table 6 shows the parameters and 

assumption used in calculating the CDI. Given that individual body weight changes over a 

lifetime (USEPA,1989b; Covello & Merkhofer,1993), and following USEPA exposure 

assessment guidelines (USEPA, 1997), average body weights of 9.5kg; 15kg; 28kg; 53kg and 

65kg for infants; children  (1-6 years); children (7-12 years); adolescents and adults respectively 

for both male and female were used to calculate CDI.   
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Table 6:  Parameters and Assumption for Calculating CDI. 

 

 

Parameters 

Infant 

(≤1yr) 

Child 

(1-6yrs) 

Child  

(7-12yrs) 

Adolescent 

(13-18yrs) 

 

Adult  

(19-70yrs) 

Contact Rate (CR) 0.95 L 1.05 L 1.00 L 0.80 L 1.20 L 

Exposure Frequency (CF) 365days 365days 365days 365 days 365 days 

Exposure Duration (ED) 1yr 5yrs 6yrs 6yrs 52yrs 

Body Weight (BW) 9.5 kg 15 kg 28kg 53kg 65kg 

Averaging Time (AT) 1yrs 5yrs 6yrs 6yrs 52yrs 

 

Exposure duration (ED) is usually over a lifetime (70 years) by convention for carcinogens 

(USEPA, 1989b; Gerba, 1996). Given that tap-water intake changes with age, body weight, diet 

and climate (Gerba, 1996), ED was divided according to the five age periods (1 year for infants; 

5 years for children 1-6years; ; 6 years for children 7-12 years; 6 years for adolescents and 52 

years for adults) to reflect lifetime exposure. For Averaging Time (AT), the default assumption 

for carcinogens is 70 years (USEPA, 1989) and this was also divided according to the five age 

periods to reflect a lifetime. The exposure frequency (EF) is number of days in a year (365 days 

per year). The CDI for each of the five age periods was calculated by substituting the figures in 

table 6 in equation 2 and then summing as in Equation 3 to give the total CDI for each of the 

exposure categories as presented in Table 7.   
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Equation 3:  

 

CDI =  

𝑪 𝒙 𝑪𝑹 𝒙 𝑬𝑭 𝒙 𝑬𝑫

𝑩𝑾 𝒙 𝑨𝑻
 𝒊𝒏𝒇𝒂𝒏𝒕 (≤ 𝟏𝒚𝒓) +

𝑪𝒙 𝑪𝑹 𝒙𝑬𝑭𝒙𝑬𝑫

𝑩𝑾 𝒙 𝑨𝑻
 (𝒄𝒉𝒊𝒍𝒅 𝟏 − 𝟔 𝒚𝒓𝒔) +

𝑪 𝒙 𝑪𝑹 𝒙 𝑬𝑭 𝒙 𝑬𝑫

𝑩𝑾 𝒙 𝑨𝑻
 (𝒄𝒉𝒊𝒍𝒅 𝟕 − 𝟏𝟐 𝒚𝒓𝒔)  

 

+
𝑪 𝒙 𝑪𝑹 𝒙 𝑬𝑭 𝒙 𝑬𝑫 

𝑩𝑾 𝒙 𝑨𝑻
 (𝒂𝒅𝒐𝒍𝒆𝒔𝒄𝒆𝒏𝒕 𝟏𝟑 − 𝟏𝟖𝒚𝒓𝒔) +

𝑪 𝒙 𝑪𝑹 𝒙 𝑬𝑭 𝒙 𝑬𝑫 

𝑩𝑾 𝒙 𝑨𝑻
 (𝒂𝒅𝒖𝒍𝒕 𝟏𝟗 − 𝟕𝟎𝒚𝒓𝒔)           

 

Table 7:  Chronic Daily Intake (CDI) of Nitrate in drinking water by Age Group 

 

 
Nitrate 

level 

(mg/l) 

 

Mean 

Level 

(C) 

 

                              CDI (mg/kg/day) 

 ≤1yr     1-6yrs 7-12yrs 13-18yrs 19-70yrs Total  

0-5 2.5 0.25 0.20 0.09 0.04 0.05 0.63 

6-10 8 0.80 0.56 0.30 0.12 0.15 1.93 

11-15 13 1.30 0.91 0.46 0.19 0.24 3.10 

16-20 18 1.80 1.26 0.64 0.27 0.33 4.30 

21-25 23 1.90 1.61 0.82 0.35 0.42 5.10 

26-30 28 2.80 1.96 1.00 0.40 0.52 6.68 

31-35 33 3.30 2.31 1.18 0.50 0.61 7.90 

36-40 38 3.80 2.66 1.36 0.60 0.70 9.12 

41-45 43 4.30 3.01 1.53 0.65 0.79 10.28 

46-50 48 4.80 3.36 1.71 0.72 0.89 11.48 

51-55 53 5.30 3.71 1.90 0.80 0.97 12.68 

56-60 58 5.80 4.06 2.07 0.87 1.10 13.90 

61-65 63 6.30 4.41 2.25 0.95 1.20 15.11 

66-70 68 6.80 4.76 2.43 1.03 1.25 16.27 

71-75 

 

73 

 

7.30 5.11 2.61 1.10 1.35 17.47 
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Nitrate 

level 

(mg/l) 

Mean 

Level 

(C) 

                            CDI (mg/kg/day) 

≤1yr     1-6yrs 7-12yrs 13-18yrs 19-70yrs Total 

76-80 78 7.80 5.46 2.78 1.18 1.44 18.66 

81-85 83 8.30 5.81 2.96 1.25 1.50 19.82 

86-90 88 8.80 6.16 3.14 1.33 1.62 21.05 

91-95 93 9.30 6.51 3.32 1.40 1.70 22.23 

96-100 98 9.80 6.86 3.50 1.48 1.80 23.44 

101-105 103 10.30 7.20 3.68 1.55 1.90 24.63 

106-110 108 10.80 7.56 3.86 1.63 1.99 25.84 

111-115 113 11.30 7.91 4.03 1.70 2.10 27.04 

116-120 118 11.80 8.26 4.21 1.78 2.17 28.22 

121-125 123 12.30 8.61 4.39 1.86 2.30 29.46 

126-130 128 12.80 8.96 4.57 1.93 2.36 30.62 

131-135 133 13.30 9.31 4.75 2.00 2.45 31.81 

136-140 138 13.80 9.66 5.00 2.08 2.50 33.04 

141-145 143 14.30 10.01 5.11 2.15 2.60 34.17 

146-150 148 14.80 10.36 5.28 2.23 2.70 35.37 

151-155 153 15.30 10.71 5.46 2.31 2.80 36.58 

156-160 158 15.80 11.06 5.64 2.38 2.90 37.78 

161-165 163 16.30 11.41 5.82 2.46 3.00 38.99 

166-170 168 16.80 11.76 6.00 2.53 3.10 40.19 

171-175 173 - - - - - - 

176-180 178 17.80 12.46 6.36 2.70 3.30 42.62 

181-185 183 18.30 12.81 6.53 2.76 3.40 43.80 

186-190 188 18.80 13.16 6.71 2.84 3.50 45.01 

191-195 193 - - - - - - 

196-200 198 19.80 13.86 7.07 3.00 3.65 47.38 

201-205 203 20.30 14.21 7.25 3.06 3.70 48.52 

Table 7 (Continued): Chronic Daily Intake (CDI) of Nitrate in drinking 

water by Age Group. 
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Abbreviation: 

CDI = chronic daily intake 

Mg/kg/day = milligram per kilogram per day 

Yrs = years 

The CDI is incorporated into Equation 1 in the risk characterisation stage to estimate the unit risk 

of goitre in each nitrate exposure category. 

Nitrate 

level 

(mg/l) 

Mean 

Level 

(C) 

                           CDI (mg/kg/day) 

≤1yr   1-6yrs 7-12yrs 13-18yrs 19-70yrs Total 

206-210 208 20.80 14.56 7.43 3.14 3.80 49.73 

211-215 213 21.30 14.91 7.61 3.21 3.90 50.93 

216-220 218 21.80 15.26 7.78 3.30 4.00 52.14 

221-225 223 - - - - - - 

226-230 228 22.80 15.96 8.14 3.44 4.20 54.54 

231-235 233 23.30 16.31 8.15 3.52 4.30 55.58 

236-240 238 23.80 16.60 8.50 3.59 4.40 56.89 

241-245 243 - - - - - - 

246-250 248 24.80 17.36 8.86 3.74 4.60 59.36 

276-280 278 27.80 19.46 10.00 4.20 5.10 66.56 

281-285 283 - - - - - - 

286-290 288 28.80 20.16 10.29 4.45 5.30 69.00 

316-320 318 31.80 22.26 11.36 4.80 5.90 76.12 

376-380 378 37.80 26.46 13.50 5.71 6.97 90.44 

386-390 388 38.80 27.16 13.86 5.86 7.20 92.88 

416-420 418 41.80 29.26 14.93 6.31 7.70 100.00 

431-435 433 43.30 30.31 15.46 6.53 8.00 103.60 

466-470 468 46.80 32.76 16.71 7.06 8.64 111.97 

Table 7 (Continued): Chronic Daily Intake (CDI) of Nitrate in drinking 

water by Age Group. 
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6.3  DISCUSSION 

 

 Analysis of nitrate data from public water and PWS in East Anglia shows that higher nitrate 

levels are encountered in PWS than in public water supplies. The high nitrate levels in PWS may 

be due to their susceptibility to pollution as the boreholes or wells are usually shallower when 

compared to public supply boreholes which are usually located in deep chalk and therefore not 

readily affected by pollution or weather patterns (DWI, 2013). Although nitrate concentration 

was higher in PWS than in public supply, the number of people served by PWS and therefore 

exposed to high nitrate concentrations as captured in this exposure assessment were far less than 

the number of people served by public water (see Table 6). In England, whilst there are about 

44,546 PWS locations (52 per cent of UK total), the number of people served is 872,746 or 1.6 

per cent of the total population of 53,012,456 (DWI, 2013). Although South West England has a 

higher number of PWS (15,309) compared to East of England including East Anglia (5,285), the 

population served by PWS was higher (380,652) than that of South West England (58,256) 

(DWI, 2013). This suggests that the population in East of England, including East Anglia is more 

exposed to water from private sources in England. Table 8 shows the number of PWS and the 

population served per regions in England.  
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Table 8   Number of PWS per region in England (DWI, 2014) 

 

 

 

 

 

 

 

 

 

According to DWI (2014), there are about 77 Local Authorities in England where more than 

1per cent of the resident population only relies on PWS for their drinking water. In Cumbria, 

Yorkshire, East Anglia and parts of Devon, DWI (2014) reported that more than 5 per cent of the 

resident population relies on PWS for their drinking water and therefore recommended that, “the 

safety of PWS should feature as an explicit component of the Local Authority’s public health 

protection strategy” (DWI 2014 pg. 8). They also recommended that such Local Authorities “use 

the population-based risk information of the Inspectorate to ensure that the risk management of 

PWS is prioritised within the Authority’s health protection strategy” and that “all local health 

protection strategies should in future reference the local figure for access to a reliable supply of 

water” (ibid, pp. 8 & 9). Figure 18 shows areas in England (including East Anglia) where more 

than one per cent of the population do not have access to water from public supply and therefore 

rely on PWS.  

Region No of PWS No. of people 

served 

East Midlands 1,581 39,569 

West Midlands 6,595 32,032 

East of England 5,285 380,652 

North East England 1,891 5,334 

North West England 6,144 104,437 

Yorkshire/Humberside 5,051 121,538 

London & South East 2,690 130,928 

South West England 15,309 58,256 

Total  44,546 872,746 
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Figure 18: 

 

 

 

Although nitrate concentrations in PWS are higher than in public water, a survey of the drinking 

water habits of the population in Suffolk Coastal area revealed that in households served by 

PWS, no child in the age group 0-5 years was served with water from PWS. Whilst the reason 

for this is not clear, a possible explanation may be due to the Advice Notes (Appendix 8) issued  

by the Council’s Environmental Health Officers, the Health Protection Agency (now Public 
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Health England) and midwives to expectant mothers in households served by private water 

supplies on the association between nitrates in drinking water and infantile 

methaemoglobinemia; and the need to use alternative sources of drinking water especially in 

preparing infant formula if nitrates are found to be above 50mg/l in PWS. This may explain why 

bottled water usage was higher by infants in households served by PWS than in those served by 

public water. Although three women aged 31to 40 years served by PWS also used bottled water, 

it was not certain if these women were pregnant at the time of this survey or preferred bottled 

water as this information was not collected. Although there is no statistically significant 

difference in tap-water consumption between public water and PWS users (p>0.05), on average, 

infants and children ≤1 to 6yrs had a higher tap-water intake per day than adolescents (0.8L). 

The reasons for this may be because of the fluid based nature of the infant diet especially those 

aged 0-2years and the amount of water used in reconstituting infant’s formula. Whilst the 

majority of tap-water intake by adults was associated with hot drinks e.g. coffee, tea, and hot 

chocolate, the fact that this survey was conducted during the autumn and winter months may 

have influenced the amount of tap-water intake for hot drinks.  Although the majority of the 

children’s tap- water intake was associated with squash drinks, their low tap-water intake when 

compared to the adults may be because of their preference for fizzy drinks or drinking away 

from home (e.g. school).  

 

The amount of tap-water consumed in this population (0.8 - 1.2L/day) compares with the 

average daily water consumption of 0.10L - 1.55L/day reported by Mons et al (2007). Also, it 

compares with the levels of water intake reported in the rest of the UK population where an 

average consumer has been reported to consume about 1.14 L tap-water per day (DWI 1996); 

0.70 - 1.9L/day (Hunter et al, 2004); 0.9-1.3L/day (Hopkin & Ellis; 1980). In Canada, EHD 

(1981) reported tap-water consumption rate of 0.57-0.66 L/day for children aged <3years; 
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0.88L/day for 3-5 years old and 1.14L/day for 6-17 years old children. The amount of tap-water 

intake in the USA for children aged 11-19 years was 0.44L/day (USEPA, 2000).  

 

Although the amount of tap-water consumption in the population compares with the rest of the 

UK population and other countries, several factors are known to influence water consumption. 

They include diet, regional climate, temperature, season, age, bodyweight, gender, physical 

activity, cultural differences, and employment status (Haring et al, 1979; Hopkin & Ellis, 1980; 

EHD, 1981; Gerba, 1996; Shimokura et al, 1998; Kaur et al, 2004). Whilst the influence of each 

of these factors on water consumption may be contradictory (Mons et al, 2007), higher water 

consumption has been reported among people who are involved in heavy physical work than 

those who are not extremely active during their work (Toth et al, 1977; EHD, 1981).  Although 

tap-water intake outside the home was not considered in this survey, available evidence suggest 

that 63-67 per cent of all tap-water intake take places at home (Shimokura et al, 1998; Kaur et al, 

2004). The influence of gender and employment status on tap-water intake was not an objective 

of this survey and therefore was not considered. However, available evidence suggests that 

employment status has a stronger influence on tap-water intake than gender (Shimokura et al, 

1998). While women who are employed part-time or unemployed are reported to consume more 

tap-water (probably for hot drinks) at home than men, employed men are reported to consume 

more tap-water outside the home, the majority of which are for hot drinks (Shimokura et al, 

1998). According to EHD (1981), people who were extremely active during their work or in their 

spare time consumed 1.72L and 1.57L/day respectively while those who were not active during 

their work or in their spare time consumed 1.30L and 1.35L/day respectively.  
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Analysis of the chronic daily intake (CDI) of nitrates in drinking water shows that nitrate body 

burden increases with increasing concentration in drinking water (See Table 7). It also shows 

that nitrate body burden was higher in infants (≤1year); and children (1-6years) and (7-12 years) 

than in adolescents and adults even when they consumed the same or lesser amount of water. For 

example, at the drinking water standard of 50mg/l NO3
-
, nitrate body burden for infants ≤1year 

was calculated as 4.8 mg/kg/day; 3.36kg/mg/day for a child 1-6years; 1.71mg/kg/day for a child 

7-12years; 0.72 mg/kg/day for adolescents and 0.89mg/kg/day for adults (19-70yrs). Also at 

100mg/l, the body burden for infants; children (1-6 years); children (7-12 years); adolescent and 

adults are 9.8; 6.86; 3.50; 1.48 and 1.8mg/kg/day respectively. These figures suggest that nitrate 

body burden is more on infants and children 1-6years is more than five times that of adolescents 

and adults and twice that of children 7-12 years and this further suggests that infants and children 

are more vulnerable to nitrate contaminated drinking water than adolescents and adults. The 

reason for this may be because of the small body weight of infants and children relative to that of 

adolescents and adults.  

 

6.3.1 RISK ASSESSMENT BASED LEGISLATION FOR PRIVATE WATER 

SUPPLIES 

 

The concept of risk assessment has long existed in various forms and has been used to drive 

legislation for public health protection (NRC, 1983, 2008; Ritter et al, 2002; Ball, 2006). Under 

the WHO Guidelines for Drinking Water Quality, risk assessment is central in the Water Safety 

Plan (designed for safeguarding the health of the water the consumers) (WHO, 2004) and has 

been used to assess the microbial and chemical safety of drinking water quality (Mons et al, 

2007). However, the EU Directive 98/83/EC on drinking water quality does not require risk 
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assessment and therefore this did not drive its inclusion in the UK PWS Regulation (2009). Its 

inclusion in this piece of legislation, according to DEFRA, was driven by the WHO Water Safety 

Plan and the methodology developed by the drinking water regulator in Scotland (personal 

communication). The WHO Water Safety Plan which aims to provide a comprehensive risk-

based approach to drinking water quality management requires the development of a thorough 

understanding of the supply process, from source to tap, and the implementation of measures to 

identify and mitigate the risk associated with contamination; reduced inefficiency and/or failure 

of treatment; deterioration of quality or contamination in distribution on consumer premises 

(Chartered Institution of Water and Environmental Management (CIWEM), 2004; WHO, 2009).  

 

The Private Water Supply Regulation (2009) which came into force in England &Wales in 

January 1, 2010 requires Local Authorities to within 5 years; carry out a risk assessment of all 

large and small PWS (except supplies serving single dwellings) in their area to determine if it 

poses a potential danger to human health and if so, to take action to safeguard public health in 

the short term and to improve the supply in the long term. Although the purpose of the PWS 

Regulation is to create a national record of all PWS to enable effective public health protection, 

and to enable the UK government provide data to the EU Commission in compliance with the 

Drinking Water Directive (DWI, 2013), DEFRA consider the risk assessment based approach in 

the legislation as a means of overcoming the limitations of sampling PWS at very low 

frequencies as was the case in the earlier version of the PWS Regulation (Personal 

Communication). Also it is a means of overcoming the problems that are sometimes encountered 

by Local Authorities where a PWS may be found to comply with the regulation in all parameters 

in dry weather but fail to comply after a period of rain (Personal Communication).  
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In compliance with the regulation, and by 2012, about 96% of all local authorities in England & 

Wales had provided information on their PWS (name, location, size, purpose, type) for the 

purposes of the national records, progress on the risk assessment side of the regulation has not 

been impressive (DWI, 2013). According to the DWI (2013), only 17 per cent of all PWS in 

England and 27 per cent in Wales had been risk assessed by the end of 2012. The majority of the 

PWS so far risk assessed were however commercial supplies or large supplies serving food 

premises (48 per cent); public buildings (48 per cent); tourism and leisure centres (39 per cent). 

These figures compare favourably with the 2011 figures i.e. food premises (36 per cent), public 

buildings (26 per cent), tourism and leisure (22 per cent). Although it is not known if this risk 

assessment based legislation will lead to improvements in the quality of the large and small PWS 

in the long run, available evidence however suggest that slight improvements have been recorded 

in these supplies (DWI, 2013). For example in 2012, 7.5 per cent of tests failed to meet the 

drinking water standards compared to 9.6 per cent test failures in 2010. Also in 2012, local 

authorities served 412 Improvement or Restriction Notices on PWS identified as posing potential 

danger to human health. This is more than the 237 such notices served in 2011 (DWI 2013). In 

addition, 17 notices were served in 2012 for either insufficient or unwholesome PWS as against 

15 of such notices served in 2011 (DWI, 2013).  

 

Whilst the EU Directive 98/83/EC applies to large supplies i.e. all private water supplies 

providing water of 10m
3
/day or more (serving 50 or more persons) and /or part of a commercial 

or public activity (such as bed & breakfast establishments), it does not apply to small supplies 

(supplies providing water of less than 10m
3
/day or serving less than 50 persons) unless they are 

part of a commercial or public activity. But in implementing the Directive through the Private 

Water Supplies Regulation 2009, the UK government thought it wise to apply this Directive to 

small supplies (except supplies that serve single dwellings) on the argument that, “the people 
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consuming water and food prepared with water derived from these small supplies are entitled to 

the same level of health protection as the people served by large supplies and public water” 

(DWI 2010, p.8). But given that 58 per cent of the 44,546 PWS in England serve single 

dwellings, the exclusion of these supplies from the 5 years mandatory risk assessment and 

monitoring regime as provided in the legislation could put the health of people (especially 

infants and children) living in such single dwellings at risk of nitrates and other drinking water 

contaminants. Although the Regulations require Local Authorities to record the locations of this 

type of supply, they are not required to carry out risk assessment and monitoring unless 

requested to do so by the owner or user, or if the supply comes to the attention of the 

Environmental Health Officer for some other reason, such as change of ownership or use.  

 

Whilst the Regulation may in the long term lead to improvements in the quality of large and 

small PWS, it is not yet clear how it could lead to improvements in those small supplies serving 

single dwellings given the non-mandatory risk assessment and monitoring regime as it applies to 

these supplies. Although it is not clear why the regulation excluded this type of supply from the 

mandatory risk assessment and monitoring regime, a possible explanation may be along the lines 

of the view expressed by Reacher et al (1999), that this type of supply is not large enough to 

pose a substantial risk to public health. However, given that about 60,000 people in England 

alone live in 25,956 single domestic dwelling served by PWS (DWI 2013), the exclusion of these 

supplies from the mandatory risk assessment could put the health of people living in such 

dwellings at risk of nitrate pollution, thus leaving this area of public health still determined more 

by local policy rather than legislation. 
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6.4      CONCLUSION 

 

Nitrate contamination of drinking water is widespread in the UK, including East Anglia. 

Although the quality of public water has greatly improved in the UK in recent years, the same 

could not be said of PWS. Higher nitrate levels had been found in PWS than public water, but 

the number of people regularly exposed to PWS in their homes is far less than the number of 

people exposed to public water. However, many more people are exposed to high nitrate levels 

in PWS in their places of work or business, or while attending leisure events; staying in hotels; 

or bed & breakfast accommodations served by PWS. Although South West England has the 

highest number of PWS compared to other regions of England, more people are exposed to PWS 

in east of England including East Anglia than in other regions. Whilst there is no statistically 

significant difference in tap-water consumption between PWS and public water users, the 

average amount of tap-water consumed in the study population was 0.95 L (infants ≤ 1year); 

1.05 L (child, 1-6 years); 1.00 L (child, 7-12 years); 0.8 L (adolescent 13-18years) and 1.2 L 

(adults, 19-70 years). Nitrate body burden was found to be higher in infants and children than in 

adolescents and adults even when they drank the same or lesser amount of water. This suggests 

that infants and children may be more vulnerable to nitrate contaminated drinking water. The 

high nitrate body burden on infants and children may be due to their small body weight relative 

to the adults.  

 

Whilst the new PWS Regulation may in the long term lead to improvement in large and small 

PWS, it is not clear whether such improvement could be achieved in the small supplies that serve 

single dwellings which are currently exempt from the 5 years mandatory risk assessment regime. 

Given that the responsibility for the safety and quality of this type of supply lies with the owner 
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or user, and that risk assessment and monitoring is at the discretion of the Local Authority, 

achieving the desired improvement in water quality may be difficult. This is because in the 

current economic climate where every Local Authority is plagued by resource issues, they may 

not have the capacity to risk assess this type of supply even when requested to do so by the 

owner or user. Another important factor that may stand in the way of intervention in this area of 

public health is the attitude of the people who own these supplies. It is usually difficult to 

convince PWS owners of the need to install an appropriate treatment system even given that the 

PWS could easily be contaminated.  Also, it can be very difficult to persuade people that there is 

a contamination problem in a supply that presents a potential health risk when the owner 

explains “they have drank the water all their lives and have never been ill”. Even serving an 

Improvement Notice where such supplies are identified as posing a potential danger to human 

health or the quality of water is unwholesome may be seen as ‘intrusion by the state’.  

 

Given that the majority of the PWS in East Anglia (and other regions of the UK) serve single 

dwellings and the fact that this type of supply is more susceptible to microbial and chemical 

contamination, the government could extend the mandatory risk assessment and monitoring 

regime to these small supplies on the same argument that people consuming water and food 

prepared with water derived from these small supplies are entitled to the same level of health 

protection as the people served by large PWS and public water. This will ensure the 

wholesomeness of water from these supplies and also protect the health of the people served by 

these supplies from chemical and microbial contaminated drinking water. 
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CHAPTER SEVEN 

 

7.0  RISK CHARACTERISATION 

 

7.1  INTRODUCTION 

 

Risk characterisation is the last stage of the risk assessment process and involves integrating 

information from dose-response analysis and exposure assessment in order to estimate excess 

risk of a disease risk factor in individuals or a population (Robert & Abernathy 1996; Ball 2006). 

Also, it involves the characterisation of the strengths, limitations and uncertainties inherent in the 

risk estimates. It provides information that can be used by policy makers to inform risk 

management or regulatory options (Robert & Abernathy 1996; Ball 2006), taking into 

consideration social, political and economic issues as well as engineering problems inherent in 

any proposed solution (Gerba, 1996). The results of risk characterisation can be used to target 

prevention and remediation or control efforts in areas, sources or situations where the greatest 

risk reduction can be achieved with the available resources (Gerba, 1996).  

 

The purpose of this chapter therefore is: 

  

 To estimate the excess risk of thyroid hypertrophy (goitre) in East Anglia as a result of 

exposure to nitrates in drinking water by integrating information from dose - response 

analysis and exposure assessment. 

 To characterise the strength and limitations of the study. 

 To characterise uncertainties associated with the risk estimates. 
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 To evaluate the appropriateness of the current nitrate drinking water standard of 50mg/l 

(set to protect against infantile methaemoglobinemia) in protecting against thyroid 

hypertrophy, taking into account nitrate exposure from other sources. 

 

The concept of excess risk or attributable fraction (AF) was first proposed by Levin in 1953 

(Levin, 1953). It is defined as the proportion of disease cases in a population over a specified 

period of time that can be attributed to a risk factor (Levin, 1953; Hennekens & Buring, 1987; 

Rockhill et al, 1998; Rosen, 2013); assuming exposure to the risk factor is causally related to the 

health outcome (Rockhill et al, 1998). In other words, it is the proportion of disease cases in a 

population that can be prevented if exposure to the risk factor is eliminated (Hennekens & 

Buring, 1987; Rockhill et al, 1998), while distributions of other risk factors (to the health 

outcome) in the population remain unchanged (Rockhill et al, 1998). The term attributable 

fraction is sometimes referred to as population attributable fraction (PAF); population 

attributable risk (PAR); population attributable risk proportion; excess risk or fraction; 

etiological fraction and incidence density fraction (IDF) (Rockhill et al, 1998; US Department of 

Health and Human Services (USDHHS), 2004; Rosen, 2013), however, the terms PAF or excess 

risk are more appropriate (Greenland & Robin, 1988; Rockhill et al, 1998) and therefore 

preferred in this study.  

 

PAF combines relative risk and the prevalence of exposure to measure the public health burden 

of a risk factor by estimating the proportion of cases of a disease that would not have occurred if 

exposure was eliminated and is widely used in public health policy to set priorities for action and 

in planning public health interventions (Nothridge, 1995; Rowe et al, 2004; Steenland & 

Armstrong, 2006). It has been used to estimate the number and or the percentage of cancers 

attributable to lifestyle and environmental factors, including tobacco smoking (Parkin, 2011a & 
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b) and alcohol consumption in the UK (Parkin, 2011c). Also, it has been used to quantify the 

health damage attributable to tobacco use (Rosen, 2013); occupational exposures (Steenland & 

Armstrong, 2006) and the health benefits or risk of physical activity (Macera & Powell, 2001).  

 

The World Health Organisation in 2003 published an introduction to the methodology for 

assessing the environmental burden of diseases (EBD) (WHO, 2003) as part of their global 

burden of disease (GBD) work (Murray & Lopez, 1996). The report gave the background to and 

a description of the general methods developed for quantifying the health impact (whether 

disease, injury or other health conditions) attributable to a particular environmental risk at a 

population level. This methodology which is essentially based on calculating the PAF aims to 

provide a means to help policy makers prioritise public health policies and actions directed at 

preventing or reducing the health impact of environmental risks; identifying high-risk groups in 

the population and also estimating the health gains intervention can bring (Ormandy & 

Braubach, 2011). It also aims to raise awareness and strengthen institutional capacity for 

reducing the impact of environmental health risks on the population (WHO, 2003). This 

methodology has been used in quantifying the health impact of some housing risks, such as 

indoor radon and lung cancer (Zeeb, 2011) and household crowding and tuberculosis (Baker et 

al, 2011) in Europe. Although various methods can be used in quantifying the burden of disease 

attributable to specific exposures or risk factors, while the majority of these methods have been 

based on decades of observation of the exposed group and mathematical models (United States 

Department of Health & Human Sciences (USDHHS), 2004; Rosen, 2013), calculating the PAF 

or excess risk is a more popular method and is widely used (WHO, 2003; USDHHS, 2004).  
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7.2  INTEGRATING DOSE-RESPONSE AND EXPOSURE ASSESSMENTS 

 

7.2.1 DOSE-RESPONSE ANALYSIS 

 

Equation 1 (first outlined in section 5.3) combines the slope of the regression from dose – 

response assessment with the chronic daily intake (CDI) of nitrates in drinking water (equation 3, 

section 6.2) in order to determine the relative risk (RR) of thyroid hypertrophy (goitre) in each 

exposure category. 

 

y   = mx+1               Equation 1                         

 

Where: 

y   = Relative Risk (RR) 

m = slope of the dose-response (slope factor) = 0.0347mg/kg-bw/day. 

x = chronic daily intake (CDI) of nitrates in drinking water in East Anglia (exposure 

assessment). 

1 = a parameter that describes the background risk. 

 

7.2.2  EXPOSURE ASSESSMENT 

 

The CDI was calculated as in Equation 3 (section 6.2) for each age group and summed to 

represent CDI over a life time of 70 years. 
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(Equation 3) 

CDI =  

𝑪 𝒙 𝑪𝑹 𝒙 𝑬𝑭 𝒙 𝑬𝑫

𝑩𝑾 𝒙 𝑨𝑻
 𝒊𝒏𝒇𝒂𝒏𝒕 (≤ 𝟏𝒚𝒓) +

𝑪𝒙 𝑪𝑹 𝒙𝑬𝑭𝒙𝑬𝑫

𝑩𝑾 𝒙 𝑨𝑻
 (𝒄𝒉𝒊𝒍𝒅 𝟏 − 𝟔 𝒚𝒓𝒔) +

𝑪 𝒙 𝑪𝑹 𝒙 𝑬𝑭 𝒙 𝑬𝑫

𝑩𝑾 𝒙 𝑨𝑻
 (𝒄𝒉𝒊𝒍𝒅 𝟕 − 𝟏𝟐 𝒚𝒓𝒔)  

 

+
𝑪 𝒙 𝑪𝑹 𝒙 𝑬𝑭 𝒙 𝑬𝑫 

𝑩𝑾 𝒙 𝑨𝑻
 (𝒂𝒅𝒐𝒍𝒆𝒔𝒄𝒆𝒏𝒕 𝟏𝟑 − 𝟏𝟖𝒚𝒓𝒔) +

𝑪 𝒙 𝑪𝑹 𝒙 𝑬𝑭 𝒙 𝑬𝑫 

𝑩𝑾 𝒙 𝑨𝑻
 (𝒂𝒅𝒖𝒍𝒕 𝟏𝟗 − 𝟕𝟎𝒚𝒓𝒔)           

 

Given that there is no register for goitre (benign thyroid tumour) in the UK, it was not possible to 

estimate the incidence of benign thyroid tumour in the population and as a result, thyroid cancer 

was used as a proxy for goitre given that thyroid cancer incidence is well reported in the UK. 

There is a close link between benign and malignant tumours (Leux & Guenel, 2010). According 

to Franceschi et al (1999), the existence of goitre or nodule of the thyroid is associated with 

excess risk of thyroid cancer. Some non-cancerous (benign) conditions of the thyroid such as 

nodules (adenomas); enlarged thyroid (goitre); and inflammation of the thyroid (thyroiditis) can 

increase the risk of thyroid cancer (Cancer Research UK, 2014). Benign thyroid tumours may 

share common aetiological factors with malignant tumours and can be seen as precancerous 

lesion (Leux & Guenel, 2010). According to Rahman et al (2010) 13 or 8.2 per cent of 160 goitre 

cases reported in a hospital in Nigeria were malignant. Also in Kano State, Nigeria, 24 or 15 per 

cent of 160 goitre cases were cancerous (Edino et al, 2010). 

 

In order to calculate the excess risk or PAF for thyroid cancer, information on thyroid cancer 

incidence in East Anglia was obtained from the Office of National Statistics (ONS).  In this 

context, PAF represents the proportion of thyroid cancer cases in East Anglia that can be 

attributed to exposure to nitrates in drinking water and thus could be prevented if the exposures 

were eliminated; assuming that exposure to nitrates in drinking water is causally related to 
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thyroid cancer. Given that the latent period or the interval between exposure and development of 

cancer is not known, it was assumed that this would be 10 years or more (Parkin 2011a) and 

thus, the number of thyroid cancer cases expected in East Anglia in 2014 was calculated, having 

obtained data on nitrate concentrations in drinking water from 2001 to 2010 as already stated in 

section 4.5. Cancer incidence statistics for 2014 is the latest data published by ONS (2016). 

 

Calculating PAF therefore relied on the following information: 

 

 Dose-response relationship - The slope factor (q1
*
) 0.0347mg/kg-bw/day, derived in 

section 5.3. 

 Exposure assessment - The concentration of nitrates in drinking water in East Anglia, the 

population served and the chronic daily intake (CDI) of nitrates derived in section 6.2. 

 The crude incidence rate for thyroid cancer in England in 2014 - obtained from the Office 

of National Statistics (ONS). The crude incidence rate is the simplest method of 

comparing cases or deaths accounting for population size only (Cancer Research, UK, 

2016). 

 Data on age-group thyroid cancer incidence obtained from the Office of National 

Statistics (ONS).   

 

The first step in PAF calculation involved deriving the relative risk of thyroid cancer for each 

nitrate exposure category. This was done by integrating the slope factor (q1
*
) and the CDI (x) 

using the linear non-threshold (LNT) model (Equation 1) as already described in Section 

5.3,pg124. 
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Given that the PAF does not depend entirely on the relative risk (RR) due to exposure but also 

on the fraction of the population exposed and the prevalence of the risk factor in the population 

(Steenland & Armstrong, 2006), the general formula for PAF is as shown in equation 4. 

 

Equation 4 

 

𝑷𝑨𝑭 =  
𝒑(𝑹𝑹−𝟏)

𝒑(𝑹𝑹−𝟏)+𝟏
     

 

Where:  

p = proportion of the population exposed to nitrates in drinking water. 

RR = the risk of thyroid cancer. 

 

Given that the entire population in East Anglia is exposed to nitrates in drinking water (albeit at 

different concentrations), this reduces the formula to equation 5 and this was used in this study 

to, first, calculate the AF. 

 

Equation 5 

 

𝐴𝐹 =
𝑅𝑅𝑐−1

𝑅𝑅𝑐
    

 

Where: 

RRc is the (adjusted) relative risk for each exposure category - (C)  

 

Equation 5 is used in PAF calculation because it accounts for uncertainties inherent in cause and 

effect relationships and therefore produces internally valid estimates of AF unlike equation 4 
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which is not valid in the presence of uncertainties (Miettinen, 1974; Rockhill et al, 1998). Also, 

it is used when there is partitioning or categorisation of exposure in the population and the use of 

adjusted relative risks in calculating AF (Rockhill et al, 1998) as was the case in this study. As 

noted by Rockhill et al (1998), PAF can be quantitatively partitioned or distributed into exposure 

– category - specific attributable fraction and then summed as the overall PAF. The exposure – 

category - specific attributable fraction termed the ‘distributive property’ (Miettinen, 1974; 

Wacholder et al, 1994) is defined as, “the fraction of total disease risk in the population that 

would be eliminated if persons in only that specific- exposure- category were to be shifted to the 

unexposed group” (Rockhill  et al, 1998:pg16).  

 

Thyroid cancer cases in East Anglia was calculated by dividing the number of people in each 

exposure category by 100,000 and then multiplying by the crude rate of thyroid cancer for 2014. 

The crude rate of thyroid cancer in 2014 was 5.4 cases per 100,000 (Cancer Research UK, 2014). 

The PAF for each exposure category was obtained by multiplying the number of thyroid cancer 

cases by the AF in that exposure category and then summing to give the overall PAF. 

 

PAF can be expressed as a percentage using equation 6. 

 

𝑃𝐴𝐹% =  
𝑃𝐴𝐹

𝑁𝑜 𝑜𝑓 𝑐𝑎𝑠𝑒𝑠
 ×  100              Equation 6  

 

7.3  RESULT 

 

Table 9 shows the risk estimates of thyroid cancer in East Anglia. It shows for each exposure 

category the mean nitrate concentration in drinking water in East Anglia; the CDI of nitrates over 

a lifetime by individuals in the population; the relative risk of thyroid cancer and the excess risk 
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(AF). Also, it shows the population in each exposure category as obtained from water companies 

and Local Authorities; the number of thyroid cancer cases calculated for a population of 

2,849,918 in East Anglia and the corresponding PAF due to chronic exposure to nitrates in 

drinking between 2001 and 2010. The crude rate for thyroid cancer (5.4 cases per 100,000) for 

2014 was used in the calculation of PAF because that is the latest thyroid cancer statistics 

published by the Office of National Statistics (ONS, 2016; Cancer Research UK, 2016). 
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Table 9: Thyroid Cancer Risk Estimates. 

Nitrate 

level 

(mg/l) 

 

Mean  

level  

(mg/l) 

 

   (C) 

 

  CDI  

(mg/kg-

bw/ day) 

    (X) 

RR= 

mx+1 𝑅𝑅 − 1

𝑅𝑅
 

   AF 

 

 

Population 

   (P) 
𝑝

100,000
 × 5.4 

No of Cases of 

thyroid cancer 

 

    PAF=   

 

AF x No of 

cases. 

𝑃𝐴𝐹

𝑁𝑜 𝑜𝑓 𝑐𝑎𝑠𝑒𝑠
𝑥100 

    PAF %= 

 

0-5 2.5 0.63 1.02 0.02 680,638 36.75 0.74 2 

6-10 8 1.93 1.07 0.06 141,636 7.65 0.46 6 

11-15 13 3.10 1.10 0.09 517,546 27.95 2.50 9 

16-20 18 4.30 1.14 0.12 150,578 8.13 0.97 12 

21-25 23 5.10 1.18 0.15 150,454 8.12 1.22 15 

26-30 28 6.68 1.23 0.18 301,845 16.30 2.93 18 

31-35 33 7.90 1.27 0.21 367,132 19.82 4.16 21 

36-40 38 9.12 1.32 0.24 464,704 25.09 6.02 24 

41-45 43 10.28 1.36 0.26 47,673 2.574 0.67 26 

46-50 48 11.48 1.40 0.28 23,574 1.273 0.36 28 

51-55 53 12.68 1.43 0.30 540 0.029 8.7x10-3 30 

56-60 58 13.90 1.48 0.34 336 0.018 6.1x10-3 34 

61-65 63 15.11 1.52 0.34 330 0.017 5.8x10-3 34 

66-70 68 16.27 1.56 0.38 210 0.011 4.2x10-3 38 

71-75 73 17.47 1.60 0.39 108 5.8x10-3 2.27x10-3 39 

76-80 78 18.66 1.65 0.41 246 0.013 5.4x10-3 41 

81-85 83 19.82 1.69 0.42 174 9.4x10-3 3.95x10-3 42 

86-90 88 21.05 1.73 0.43 138 7.4x10-3 3.2x10-3 43 

91-95 93 22.23 1.77 0.45 174 9.4x10-3 4.22x10-3 45 

96-100 98 23.44 1.81 0.46 312 0.017 7.8x10-3 46 

101-105 103 24.63 1.85 0.47 354 0.019 8.9x10-3 47 

106-110 108 25.84 1.90 0.48 258 0.014 6.7x10-3 48 

111-115 113 27.04 1.94 0.49 54 2.9x10-3 1.43x10-3 49 

116-120 118 28.22 1.98 0.50 114 6.1x10-3 3.08x10-3 50 

121-125 123 29.46 2.02 0.51 42 2.3x10-3 1.17x10-3 51 

126-130 128 30.62 2.06 0.52 66 3.6x10-3 1.87x10-3 52 

131-135 133 31.81 2.10 0.53 42 2.3x10-3 1.22x10-3 53 

136-140 138 33.04 2.15 0.54 72 3.9x10-3 2.11x10-3 54 

141-145 143 34.17 2.18 0.55 54 2.9x10-3 1.6x10-3 55 

146-150 148 35.37 2.33 0.56 102 5.5x10-3 3.1x10-3 56 

151-155 153 36.58 2.27 0.57 18 9.7x10-4 5.53x10-4 57 

156-160 158 37.78 2.31 0.57 42 2.3x10-3 1.31x10-3 57 

161-165 163 38.99 2.35 0.57 12 6.5x10-4 3.71x10-4 57 
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Abbreviation: 

CDI = chronic daily intake. 

RR = relative risk. 

AF = attributable fraction. 

PAF = population attributable fraction. 

Mg/kgbw/day = miligram per kilogram bodyweight per day. 

 

 

Nitrate 

level 

(mg/l) 

 

Mean  

level  

(mg/l) 

 

   (C) 

 

CDI  

(mg/kg-

bw/ day) 

    (X 

RR 

mx+1 𝑅𝑅 − 1

𝑅𝑅
 

   AF 

 

Population 

   (P) 
𝑝

100,000
 × 5.4 

No of Cases of 

thyroid cancer 

 

PAF   

 

AF x No of 

cases. 

𝑃𝐴𝐹

𝑁𝑜 𝑜𝑓 𝑐𝑎𝑠𝑒𝑠
𝑥100 

PAF % 

 

166-170 168  

40.19 

 

2.39 

 

0.58 

 

18 

 

9.7x10-4 

 

5.63x10-4 

 

58 

171-175 173 - - - - - - - 

176-180 178 42.62 2.48 0.60 30 1.6x10-3 9.6x10-4 60 

181-185 183 43.80 2.52 0.60 6 3.24x10-4 1.94x10-4 60 

186-190 188 45.01 2.56 0.61 30 1.6x10-3 9.8x10-4 61 

191-195 193 - - - - - - - 

196-200 198 47.38 2.64 0.62 108 5.8x10-3 3.6x10-3 62 

201-205 203 48.52 2.68 0.63 36 1.9x10-3 1.2x10-3 63 

206-210 208 49.73 2.72 0.63 54 2.9x10-3 1.83x10-3 63 

211-215 213 50.93 2.77 0.64 66 3.6x10-3 2.3x10-3 64 

216-220 218 52.14 2.81 0.64 6 3.24x10-4 2.07x10-4 64 

221-225 223 - - - - - - - 

226-230 228 54.54 2.89 0.65 30 1.6x10-3 1.04x10-3 65 

231-235 233 55.58 2.93 0.66 6 3.24x10-3 2.14x10-3 66 

236-240 238 56.89 2.97 0.66 24 1.3x10-3 8.58x10-4 66 

241-245 243 - - - - - - - 

246-250 248 59.36 3.06 0.67 6 3.24x10-4 2.17x10-4 67 

276-280 278 66.56 3.31 0.70 12 6.48x10-4 4.54x10-4 70 

281-285 283 - - - - - - - 

286-290 288 69.00 3.39 0.70 12 6.48x10-4 4.54x10-4 70 

316-320 318 76.12 3.64 0.72 6 3.24x10-4 2.33x10-4 72 

376-380 378 90.44 4.14 0.76 6 3.24x10-4 2.46x10-4 76 

386-390 388 92.88 4.22 0.76 18 9.7x10-4 7.4x10-4 76 

416-420 418 100.00 4.47 0.78 24 1.3x10-3 1.014x10-3 78 

431-435 433 103.60 4.57 0.78 6 3.24x10-4 2.53x10-4 78 

466-470 468 111.97 4.88 0.79 6 

 

3.24x10-4 2.56x10-4 79 

Total     2,849,918 154 20 13 

Table 9 (Continued): Thyroid Cancer Risk Estimates. 



169 

 

 

The result of the risk estimates suggests that the relative risk (RR) of thyroid cancer increases as 

nitrate concentrations in drinking water increases and is greater than one ( >1) in each exposure 

category.  As the RR increases, the AF also increases and approaches its maximum value of one. 

The AF can range from a minimum value of zero to a maximum value of one (Rosen, 2013).   

The result also suggest that of the 154 thyroid cancer cases calculated in a population of 

2,849,918 in East Anglia, exposure to nitrates in drinking water (within the nitrate dose range 

encountered in drinking water in the region) is attributable to 20 cases or 13 per cent of the 

thyroid cancer cases and this would have been eliminated if there were no nitrate exposures in 

drinking water in the region.  The 154 thyroid cancer cases are within the 320 cases reported for 

East of England (including East Anglia) for 2014 (ONS, 2016).  Assuming ‘low dose’ as defined 

by USA National Toxicological Program (NTP, 2001) is the dose range below the LOAEL (i.e. 

69mg/l as reported in the epidemiological studies), lifetime excess risk of thyroid cancer ranged 

from 0.02 to 0.38 (2 per cent to 38 per cent).  Also, assuming ‘low dose’ is a dose range below 

the drinking water standard of 50mg/l, the excess lifetime risk is between 0.02 to 0.28 (2 to 28 

per cent). The lifetime excess risk of thyroid cancer in the population in East Anglia within the 

dose range of nitrates (<2 to 95mg/l, excluding the outlier of 274mg/l) reported in the 

epidemiological studies (source populations) is 0.02 - 0.45 (2 - 45 per cent).  

 

The increasing PAF% with increasing nitrate concentration indicates that exposure to nitrate 

doses at and below the drinking water standard of 50mg/l was attributable to 2 per cent to 28 per 

cent of the lifetime excess risk of thyroid cancer and this could have been eliminated if there was 

no exposure to nitrates in drinking water at this dose range. At nitrate doses greater than 50mg/l 

(>50mg/l), the lifetime excess was 30 per cent to 79 per cent and this could have been eliminated 

if there was no exposure to nitrates in drinking water at this dose range. As noted by Rockhill et 
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al, (1998), the PAF will increase with increasing exposure provided each exposure category has 

a RR >1.  Although the excess lifetime risk of thyroid cancer by individuals in the study 

population is lower at nitrate levels below the drinking water standard, the number of thyroid 

cancer cases was higher when compared with the number of cases in the exposure categories 

above the drinking water standard where the excess risk was much higher.  The reason for this 

may be because there were more people in the exposure categories below the drinking water 

standard of 50mg/l than in the exposure categories above the drinking water standard. While 

nitrate concentration in public water is much lower than in PWS, the population using public 

water is far higher than those on PWS and as a result, there were more people in the exposure 

category below the drinking water standard and therefore at a lower risk of thyroid cancer than 

those above the standard where the risk of thyroid cancer was much higher. The majority of the 

population in the lower exposure categories are public water users whilst the majority on the 

higher exposure categories are PWS users.  But given that a population with many individuals at 

small risk cannot be distinguished from one with few individuals at high risk (Grau et al, 2010), 

the relative risk can be very important in any intervention and/or in designing public health 

policy (Walter, 1976; Wacholder et al, 1994). Whilst the RR increases with increasing nitrate 

concentration, a relative risk >1 in all the exposure categories suggest that exposure to nitrates in 

drinking water is associated with thyroid cancer and both PWS and public water users are at the 

risk of thyroid cancer although the risk is higher in the former than in the latter. This implies that 

the current policy in the UK as contained in the PWS Regulation (2009) where PWS serving 

single dwellings are exempt from the mandatory risk assessment which applies to all other 

category of PWS may put the health of the people living in such single dwellings at risk of 

thyroid disorders including thyroid cancer and therefore warrant a review.  
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Although the public health or societal impact of an exposure does not depend only on the 

magnitude of the relative risk, but also on the prevalence of the risk factor in the population 

(Macera & Powell, 2001), widespread contamination of drinking water sources by nitrates in the 

study population and the risk of thyroid cancer at exposure levels below and above the drinking 

water standard of 50mg/l suggest that everybody in the study population is exposed to nitrates in 

drinking water, albeit at different doses. The risk of thyroid disorders including thyroid cancer at 

nitrate doses below and above the drinking water standard supports the assumption of a non- 

threshold for nitrates and also supports the low-dose effect hypothesis. Prolonged exposure to 

nitrates in drinking water can result in iodine deficiency and decreased iodine uptake by the 

thyroid (Tonacchera et al, 2004). Even in the presence of sufficient iodine intake, prolonged 

exposure to nitrates in drinking water above the drinking water standard of 50mg/l can result in 

thyroid disorders including thyroid hypertrophy (goitre) and hyperplasia. However, even when 

nitrate concentration is below the drinking water standard, prolonged exposure can also result in 

thyroid disorders including goitre if there is insufficient iodine intake (van Maanen et al, 1994). 

Elimination of nitrates from the body is low following prolonged exposure to high 

concentrations of nitrates (van Maanen et al, 1994). 

 

Appendix 9 shows the excess risk of thyroid cancer in the different age groups and suggest that 

the excess risk of thyroid cancer below and equal to the drinking water standard in infants is 

9.9x10
-3 

to 0.14; children (1-6 years) is 9.9x10
-3

 to 0.11; children (7-12 years) is 0 to 0.06; 

adolescents (13 – 18 years) is 0 to 0.02; adults 0 to 0.03.  Above the drinking water standard and 

within the nitrate dose range reported in East Anglia, the excess risk of thyroid cancer in the 

different age groups is 0.15 to 0.62 (infants); 0.11 to 0.53 (children 1- 6 years); 0.06 to 0.37 

(children 7-12 years); 0.03-0.19 (adolescents); 0.03 to 0.23 (adults).  Although the excess risk of 

thyroid cancer below and above the drinking water standard is higher in infants and children than 
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in adolescents and adults and consistent with the observation in the exposure assessment (Section 

6.1.1) that nitrate body burden is higher in infants and children than in adolescents and adults, 

none of the children aged 0-5 years were served with tap-water from PWS in households where 

the source of drinking water is PWS (Table 4, Section 6.1.1).    

 

7.4  DISCUSSION 

 

Risk estimates suggest that of the 154 thyroid cancer cases calculated for East Anglia in 2014, 

the lifetime excess risk as a result of exposure to nitrates in drinking water was 20 cases or 13 

per cent and this could have been eliminated if there were no nitrates in drinking water.  At 

nitrate levels at or below the WHO/EU drinking water standards of 50mg/l, the lifetime excess 

risk of thyroid cancer is 0.02 to 0.28. Health Canada (2013) estimated lifetime excess risk of 

cancer from endogenous nitrosation of nitrosodimethylamine (NDMA) in the stomach after 

exposure to nitrates in drinking water at the USA/Canada drinking water standard of 45mg/l and 

reported excess risk of 1.6x10
-6

. This is above the range of 1x10
-6

 to 1x10
-5

 considered to be 

negligible by Health Canada (Health Canada, 2013). Although the lifetime excess risk of 0.02 to 

0.28 (2- 28 per cent) for thyroid cancer at the WHO/EU drinking water standard of 50mg/l is 

higher than in the Canadian study, it must be noted that whilst the Canadian study was based on 

the mechanism of endogenous nitrosation between nitrates and amines and or amides 

(nitrosatable precursors) in the stomach resulting in the formation of carcinogenic N-nitroso - 

compounds, this study is based on the thyroid gland iodine uptake inhibition mechanism.  

 

The finding that the excess risk of thyroid cancer is higher in infants and children than 

adolescents and adults is consistent with the finding in the exposure assessment (Section 6.1.1) 

that nitrate body burden is more on infants and children than adults. The high nitrate body 
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burden in infants and children is also consistent with the view that infants are more sensitive to 

the effect of nitrates in drinking water than adults (Gatseva & Argirova, 2005; 2008a&b).  

Infants and children are more sensitive to the effects of iodine inhibitors than adults (Tajtakova 

et al, 2006; Radikova et al, 2008; Health Canada,  2013) and therefore require more iodine intake 

in order to produce more thyroid hormones during shortages (Health Canada, 2013).  Although 

the excess risk of thyroid cancer at nitrate levels below and above the drinking water standard is 

higher in infants and children than in adolescents and adults, none of the children aged 0-5 years 

in the study area were served with tap-water from PWS in households where the source of 

drinking water is usually PWS (Table 4). This may be due to the Advice Notes (Appendix 8) 

issued by the Council’s Environmental Health Officers; the Health Protection Agency (now 

Public Health England) and Midwives to expectant mothers and mothers with younger children 

in households served by PWS on the association between nitrates in drinking water and infantile 

methaemoglobinemia; and the need to use alternative sources of drinking water especially in 

preparing infant formula if nitrates are found to be above 50mg/l in PWS.  While children in 

households served by PWS used tap-water from the age of 6years (no other source of water was 

indicated in the questionnaire), children in households served by public water used tap-water 

from <1year. The ONS in its cancer records for 2014 for England (the latest thyroid cancer 

records) reported no thyroid cancer cases in children less than one year (<1 year). Only three 

thyroid cancer cases were recorded in children 1- 9 years and these cases were in females only 

(ONS, 2016).  Cases of thyroid cancer increased from age 10-14years and above according to 

ONS (2016).  

 

In the UK, thyroid cancer incidence rate has increased by 149 per cent since the late 1970s. The 

increase is larger in females (164 per cent) than in males (152 per cent) (Cancer Research UK, 

2016). Over the last decade, thyroid cancer incidence rate have increased by more than two-



174 

 

thirds (71 per cent) in the UK, and includes similar increases in females (73 per cent) and males 

(70 per cent).  Between 2014 & 2035 thyroid cancer is projected to rise by 74 per cent in the UK 

i.e. 11 cases per 100,000. It is projected that 1 in 480 men and 1 in 180 women may be 

diagnosed with thyroid cancer during their lifetime in the UK (Cancer Research UK, 2016). In 

England, the number of thyroid cancer cases in 2014 was 2,941 (male =826; female = 2115) 

(Cancer Research UK, 2016).  A breakdown of these cases in regions (Figure 10) shows that 

East of England, (including East Anglia) was among the regions with higher incidence rates 

(320) in 2014. The highest incidences rate was reported in the Northwest (442); London (483) 

and the Southeast (348). The incidence in Yorkshire & Humber was 300; West Midlands (298), 

East Midlands (219); Southwest (256) while the least, 129 was recorded in the Northeast (ONS, 

2014).  

 

The increasing thyroid cancer incidence in the UK is also reported in the rest of the European 

Union. According to Cancer research UK (2014), about 33,600 new cases of thyroid cancer were 

diagnosed in the 27 countries of the Union (EU-27) in 2008 with the highest incidence rate (18.6 

per 100,000) reported among females in France. The lowest incidence rate was in Greece, 3.3 per 

100,000. The age- standardisation rate in the UK was however lower than the EU average 

(Cancer Research UK, 2014). Around the world, thyroid cancer cases occur more in females 

aged 15-44 than in any other age group (Ferlay et al, 2008). The highest incidence rate has been 

reported in North America among females in whiles the lowest incidence was recorded in Africa, 

with about 1.2 cases per 100,000 females reported in middle Africa (Ferlay et al, 2008). 

 

While the reasons for the large increases in thyroid cancer especially in females are unclear, 

Davies & Welch (2006); Olaleve et al (2011) have suggested that the increased incidence tend to 

reflect better detection of subclinical disease rather than a true increase in incidence. However, 
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Chen et al (2009) and Aschebrook-Kilfoy et al (2011) were of the opinion that improved and 

increased diagnostic activity cannot completely explain the increase in rates. While the only 

established risk factor for thyroid cancer is exposure to iodising radiation especially in childhood 

(Ron et al, 1995), pre-existing thyroid disorders including goitre or benign thyroid adenoma 

(Franceschi et al, 1999), family history, especially in first degree relatives (Nose , 2010) have 

been reported as risk factors of thyroid cancer. According to Zhao et al (2012); Bloomberg et al 

(2012) and Enewold et al (2009), risk factors such as use of medical diagnostic radiation; 

obesity; changes in the pattern of iodine fortification of salt; and other unknown risk factors may 

be contributing to the increased thyroid cancer rate.  Also, genetic and environmental factors 

have also been implicated in the aetiology of thyroid cancer (Balasurbramaniam et al, 2012).  

However, the findings that the lifetime excess risk of thyroid cancer (0.02 to 0.28) at nitrate 

levels below and equal to the drinking water standards of 50mg/l is above the range (1x10
-6

 to 

1x10
-5

) considered negligible by Health Canada suggests that exposure to nitrates in drinking 

water is a risk factor for thyroid cancer and highlights the public health implications of exposure 

to nitrates in drinking water. Some environmental factors that have been linked with thyroid 

cancer included diet, tobacco use, alcohol intake (Ron & Schneider, 2006) and nitrate exposures 

(Pellegritti et al, 2013).  As reported by Peterson et al (2012), apart from iodine deficiency, 

dietary factors that interfere with iodine uptake and production of thyroid hormones can have 

effect on thyroid cancer risks. Similarly, certain environmental pollutants such as nitrate 

exposures that can compete with iodine uptake by the thyroid gland are potential thyroid 

function disruptors and carcinogens (Pellegritti et al, 2013). Although a number of 

environmental contaminants can interfere with thyroid hormone function resulting in goitre, 

benign nodules and cancer, some of these pollutants which occur in water, air or food could act 

competitively or in synergy to induce thyroid disease (Leux & Guenel, 2010). As noted by 

Mukhopadhyay et al (2005) and Gatseva & Argirova (2008b), the persistence of residual goitre 
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in some countries despite the successful implementation of salt iodization programmes suggests 

that nitrates in drinking water may be interfering with iodine uptake by the thyroid gland. In a 

cumulative risk assessment of the three most important iodine inhibitors found in drinking water 

(thiocyanate, perchlorate and nitrate) using the perchlorate equivalent concentration (PEC) ratio 

of 1: 15: 240 or 1: 8: 150 for Cl04
-
 : SCN

-
 : NO3

-
 , De Groef et al, (2006) reported that exposure 

to nitrates at the drinking water standard of 50mg/l, induced iodine inhibition 12times greater 

than perchlorate at its recommended standard of 0.007mg/kg/day (equivalent to 24.5ppb). 

Similarly, in Belgium, De Groef et al, (2006) also reported that exposure to 12.3mg/lNO3
- 

(equivalent to 82ppb perchlorate) and <2µg/l CN
-
 (equivalent to <0.23ppb perchlorate) will 

induce iodine inhibition 3-times greater than that of perchlorate at the recommended RfD. 

Therefore, if an adult consumed about 2L of such water per day (assuming it contained 

perchlorate at the RfD of 24.5ppb), nitrates would be contributing about 77 per cent of the total 

iodine inhibition while 23 per cent would be contributed by perchlorate (De Groef et al, 2006). 

These findings suggest that lowering the level of nitrate exposure in drinking water is a more 

effective approach to lowering exposure to iodine inhibition load.  

 

Although higher nitrate levels have been found in PWS than in public supply, a comparison of 

thyroid cancer incidence in England in 2014 and the number of PWS in the regions Table 10 

indicate that regions with high levels of thyroid cancer cases such as London/Southeast; 

Northwest; East (including East Anglia); Yorkshire & Humber and the West Midland also have 

high number of PWS, according to the PWS records for 2013 (DWI 2013). Although the 

Southwest has the highest number of PWS, the number of thyroid cancer cases was lower than in 

the Northwest or East (including East Anglia). Given that nitrate levels in PWS are usually 

higher than in public water, it is not known if there are clusters of thyroid disorders including 
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thyroid cancers cancer in regions of the UK with high number of PWS and this should be 

investigated.  

Table 10: Number of PWS (2013) and thyroid cancer cases by Region in England (2014)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7.4.1  PUBLIC HEALTH IMPLICATIONS 

 

The public health implications of exposure to nitrates in drinking water stems from the ability of 

nitrates to inhibit iodine supply to the thyroid gland by competitively binding to the sodium 

(Na
+
)/iodide (I

-
) symporter (NIS) on the surface of the thyroid follicle, thus resulting in iodine 

REGION No of PWS 

(2013) 

Thyroid cancer 

cases (2014) 

North East 1891 129 

North West 6144 442 

Yorkshire/Humber 5051 300 

East Midlands 1581 219 

West Midlands 6595 298 

East of England 5285 320 

London/South East 2690 977 

South West 15,309 256 

Total 44,546 2941 
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deficiency (Jahreis et al, 1986; Dohan et al, 2003; Tonacchera et al, 2004; Braverman et al, 2005; 

Ward et al, 2010; Wilson, 2010).  The NIS is a protein membrane that mediates the transport of 

iodine from the blood into the thyroid (Wilson, 2010). Whilst iodine, which is obtained primarily 

from diet (Brantsaeter et al, 2013), plays a crucial role in the synthesis of thyroid hormones, 

thyroxine (T4) and triiodothyronine (T3) and constitutes about 65 per cent and 59 per cent of their 

respective weight (Andersson et al, 2007a); prolonged exposure to nitrates in drinking water can 

lower the total iodine uptake (TIU) by the thyroid gland resulting in decreased production of 

thyroxine (T4) and triiodothyronine (T3) (Tonacchera et al, 2004; Wilson, 2010). Thyroid 

hormones regulate metabolic processes in most cells as well as play a role in the growth and 

development of most organs especially the brain early in life. Therefore, iodine inhibition during 

foetal development and in the first two to three years of life that results in decreased synthesis of 

thyroid hormones can lead to hypothyroidism and brain damage (Andersson et al, 2007a); the 

clinical consequence of which will be irreversible mental retardation (Delange, 2001).  

 

The ability of nitrates to inhibit iodine uptake by the thyroid gland appears to be influenced by 

the amount of dietary iodine intake.  Prior to 1930s, iodine deficiency and goitre were endemic 

in parts of the UK (Phillips, 1997). However, the addition of iodine to cattle feed to increase 

milk production which incidentally led to increased iodine concentration in milk and dairy 

products and the policy of successive governments since the 1940s of encouraging milk 

consumption especially among school-age children led to the eradication of iodine deficiency 

disorders (IDD) in what was described as “an unplanned and accidental public health triumph” 

(Phillips 1997: p.391).  However, recent studies suggest that iodine deficiency has re-emerged in 

the UK, especially among schoolgirls (Vanderpump et al, 2011; Vanderpump, 2012; Andersson 

et al, 2012; UNICEF, 2012; Pearce et al, 2013); women of child-bearing age and pregnant 

women (Kibridge et al, 2004; Bath et al, 2008; Pearce et al, 2010; Pearce et al, 2013; Bath et al, 
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2013). The UK was seventh among the top ten iodine deficient countries in 2011 based on a 

national median urinary iodine of <100µg/l among school-age children (Andersson et al, 2012). 

While the reason for the re-emergence of iodine deficiency is unclear, Vanderpump et al (2011) 

and Vanderpump (2012) suggest that the re-emergence of iodine deficiency may be due to the 

decline in milk consumption by the population. Milk contributes about 41per cent of the total 

iodine intake in the UK (Food Standards Agency, 2008) and the concentration of iodine in milk 

in the UK has remained unchanged (Vanderpump et al, 2011). Although the decline in milk 

consumption may well be a factor in iodine deficiency in the UK, the findings from this study 

that nitrates in drinking water is a risk factor for goitre and risk of thyroid cancer through the 

mechanism of iodine uptake inhibition by the thyroid gland cannot be ignored given widespread 

nitrate contamination of drinking water sources in the UK and in many countries of the world. 

This raises some public health concerns especially for pregnant women and children who are 

more sensitive to nitrates exposures. According to Wilson (2010), the thyroid is less able to 

tolerate high exposure to iodine inhibitors (e.g. nitrates) in the presence of decreased dietary 

iodine intake.  In other words, the body’s ability to cope with exposure to iodine inhibitors 

decreases rapidly as iodine intake decreases. Adequate iodine intake is therefore critical in the 

public health implications of nitrate exposure (Wilson, 2010).  However, given that “dietary 

iodine intake is entirely opportunistic in the absence of iodine supplementation” (Smyth et al, 

2013: pg1), iodine supplementation in the form of salt iodization (addition of iodine to salt) 

under the universal salt iodisation (USI) programme have been adopted to eradicate endemic 

iodine deficiency and goitre by countries such as the United States (Pearce et al, 2004); 

Switzerland (Andersson et al, 2010); Australia and New Zealand (Mackerras & Eastman, 2012; 

DePaoli et al, 2012), Denmark (Rasmussen et al, 2008), Belgium (Vandevijvere  et al, 2012), 

Switzerland (Andersson et al, 2010) and Norway (Brantsaeter et al, 2013). Also in countries such 

as the USA and Switzerland which are considered to be iodine sufficient, household iodised salt, 



180 

 

iodised bread and milk are the major dietary sources of iodine (Caldwell et al, 2011; Hadilman et 

al, 2005). No salt iodisation programme has ever been undertaken in the UK (Philip, 1997; 

Vanderpump et al, 2011; Bath et al, 2013) as the iodine content of milk alone was judged to be 

almost sufficient to meet the recommended daily iodine requirement of 150µg/day (Phillips, 

1997; Vanderpump, 2012). Household iodised salt is rarely available to purchase and few 

manufacturers, if any, use iodised salt in the manufacture of food .e.g. bread (Lazarus & Smyth, 

2008).  However, the decline in milk consumption in the UK (European Commission cited by 

Vanderpump et al, 2011) and the evidence from this study that exposure to nitrates in drinking 

water is a risk factor for goitre and thyroid cancer are of significant public health importance. 

The findings provides information that can be used by policy makers to review the current policy 

on iodine prophylaxis e.g. salt iodisation and iodine supplementation in the UK, and supports the 

call by Vanderpump et al (2011: pg. 2011), “for a comprehensive survey of the UK iodine status 

and the urgent need for the implementation of iodine prophylaxis”. Given that no national survey 

has been undertaken since the 1940s to monitor the iodine status of the UK population 

(Vanderpump et al, 2011; Bath et al, 2013); this review will help to put iodine back on the public 

health agenda. As noted by Bath et al (2013: pg. 336), “iodine has not been part of the UK public 

health agenda for the past 50 years; guidelines on iodine requirement during pregnancy and 

lactation are out dated; advice to pregnant women has not included information about iodine 

intake and monitoring of iodine status in the UK population has been absent”. According to 

Vanderpump (2012: pg.3), “if we wish government to consider iodine prophylaxis to offset the 

adverse effect of iodine deficiency, data is required to provide reassurance that at the population 

level, the benefits far outweigh any disadvantages”.   

 

While improving nutritional iodine intake is an important public health issue, it is an incomplete 

response to the adverse effects of exposure to nitrate contaminated drinking water. The evidence 
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that nitrate is a risk factor of thyroid disorders, especially goitre and the findings of thyroid 

cancer cases at nitrate levels below and equal to the drinking water standard of 50mg/lNO3, 

suggests that the current drinking water standard of 50mg/lNO3, originally set to protect against 

infantile methaemoglobinemia, is unlikely to protect against thyroid disorders including goitre 

and warrants a review. The review should include a consideration of setting the drinking water 

standard as low as reasonably practicable (ALARP) in order to decrease exposure to this 

ubiquitous iodine inhibitor and to protect the health of the public, especially pregnant women 

and infants from iodine inhibition and its consequences. Also, it will help to protect the health of 

the population whose source of drinking water is from PWS where nitrate concentrations are 

higher compared with public water supplies. The ALARP principle has been adopted for non-

threshold substances to diminish minimal risks (DEFRA & Environment Agency, 2002). 

Although nitrate is a weak iodine inhibitor compared to perchlorate and thiocyanate (Braverman 

et al, 2005; Wilson, 2010), human exposure to nitrate is far greater than perchlorate and 

thiocyanate, and accounts for the majority of the body’s total iodine inhibition load in adults, 

foetuses and infants (Wilson 2010). Therefore, “lowering the public’s nitrate exposure provides a 

more meaningful opportunity to lowering the public’s iodine inhibition load and risk” (Wilson 

2010: pg182).  

  

7.5  UNCERTAINTIES AND LIMITATIONS OF THE STUDY  

 

This study is limited by assumptions and uncertainties and as a result may not have predicted the 

excess risk of thyroid cancer with certainty. It is important therefore that uncertainties associated 

with the risk estimates are characterised, understood and recognised in any policy decision. Risk 

assessment and the science underlying its assumptions have uncertainties and are therefore not 

able to predict risk with certainty (Tukker, 2002; Gochfeld, 2003; USEPA, 2004). Uncertainty is 
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defined as lack of precise knowledge of what the truth is (USEPA, 2004; Bois et al, 2006) and a 

discussion of uncertainty inherent in the risk assessment process is necessary for a better 

understanding of the implications and limitations of the study findings (USEPA, 1992). 

Characterisation or assessment of uncertainty aims to identify the sources of uncertainty, 

understand and quantify them and devise ways of reducing it (Bios et al, 2006, Van Asselt et al, 

2001). The results of such assessment can contribute to a discussion on the quality of 

information underpinning a policy decision, determine the extent of intervention necessary and 

help allocate resources for monitoring and or further research (USEPA, 2004; Von Krauss & 

Martuzzi, 2006) and this therefore a very essential step in decision-making (USEPA, 2004; Bois 

et al, 2001). According to Walker et al (2003), uncertainty can be considered as a two 

dimensional concept, consisting of location and level. Whilst the location of uncertainty refers to 

where uncertainty manifest in the risk assessment process, the level of uncertainty refers to the 

degree of severity of uncertainty characterising the risk assessment process as seen by the 

decision-maker (Van der Sluijs et al, 2003; Von Krauss & Martuzzi, 2006).  

 

Uncertainty in risk assessment can be assessed qualitatively; quantitatively or both (USEPA 

1992, 2004, IRR 2005b, Van Asselt et al 2001, Van der Sluijs et al 2003). Whilst the qualitative 

approach involves characterising the location and sources of uncertainty as well as estimating the 

level or severity, the quantitative approach aims to evaluate the extent to which a particular 

uncertainty impacts on the risk estimates (Van Asselt et al, 2001; USEPA, 1992 & 2004). In this 

study, uncertainty associated with the risk estimates was only assessed qualitatively as presented 

in Table 11 below. The assessment was carried out following the Walker & Harremoes (W&H) 

framework as described by Van der Sluijs et al (2003); Janseen et al (2005) and Von Krauss & 

Martuzzi (2006). This framework has been adopted by the Netherlands Environmental 

Assessment Agency (MNP/RIVM, Guidance for Uncertainty Assessment and Communication) 
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(Van der Sluijs et al, 2003; Janssen et al, 2005) and has been applied in the risk assessment of 

Genetically Modified Crops (Von Krauss 2005) and the health impact assessment of particulate 

matter (Petersen et al, 2006). It was also proposed in the Integrated Assessment of Health Risks 

of Environmental Stressors in Europe (INTARESE) (Von Krauss and Martuzi 2006). Van 

Grinsven et al, (2010) have conducted a qualitative uncertainty assessment of colon cancer risk 

as result of exposure to nitrates in drinking water.    

 

The assessment (Table 11) shows that there are uncertainties in the hazard identification, dose - 

response, exposure assessment stages of the risk assessment which may have affected the risk 

estimates. Uncertainty in risk characterisation is as a result of uncertainties in the preceding 

stages of the risk assessment. Also, there are uncertainties in the risk estimates as a result of 

variability. Variability refers to inter-and-intra individual differences inherent in a study 

population (USEPA, 2004). These differences include age, gender, height, genetic variations, 

social economic status, body weight etc. It also includes differences in exposure and sensitivity 

evident in a population. 
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Table 11   OVERVIEW OF UNCERTAINTY 

SOURCES/LOCATION 

OF UNCERTAINTY 

                        EVALUATION 

Hazard Identification Inconsistency in the epidemiological studies used in deriving the risk 

estimates. The inconsistency may be due to:  

 Differences in the study design 

 Differences in the concentration of nitrates in drinking water.  

 Differences in the duration of exposure to nitrates. 

 Differences in exposure to other risk factors. 

 Individual variability.  

 Assumption of causality between nitrates and goitre.  

Dose-Response 

Relationship 
 Assumption of low dose linearity (model uncertainty). 

 Assumption of linearity at high dose 

 Assumption of non-threshold effect between nitrates and 

goitre 

 Different definitions of low dose. 

Exposure Assessment Nitrate concentration data used in the exposure assessment as obtained 

from water companies and Local Authorities may be a source of error 

in the risk estimates. This may be due to: 

 Sampling, measurement or recording error by water 

companies. 

 Sampling or water sample collection (PWS) error by Local 

Authority Environmental Health Officers. 

 Error in laboratory analysis of water samples by water 

companies or Local Authorities 

 Misclassification of exposure (incorrectly assigning PWS 

users as public supply users or vice versa).  

 Seasonal variations in nitrate levels in drinking water sources. 
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SOURCES/LOCATION 

OF UNCERTAINTY 

                      EVALUATION 

Variability  Differences in life style, genetic make- up, body weight, age, 

sex, etc. 

 Differences in individual exposure to nitrates (amount of tap-

water intake). 

 Differences in individual sensitivity to nitrate exposure. 

Risk Characterisation  Uncertainty in risk characterisation is a sum of uncertainties in 

the hazard identification, does-response & exposure 

assessment.  

 Use of thyroid cancer as a proxy for goitre was unavoidable 

given that there is no register for goitre cases in the UK. 

 

 

While the level of uncertainty ranges from what is ‘known with certainty to what is unknown’, 

assessing uncertainty qualitatively provides an overview of where the  most policy relevant 

uncertainty is located and can help to determine where elaborate uncertainty assessment is 

required (Petersen et al, 2006). The assessment suggests that the most policy relevant 

uncertainties are located at the hazard identification and exposure assessment stages. While 

uncertainties as a result of inconsistent epidemiological studies; water sampling or nitrate 

measurement error by water companies or local authorities; error in laboratory analysis of water 

samples or exposure misclassification can further be analysed quantitatively to determine the 

impact of each of these uncertain factors on the risk estimates, well designed  epidemiological 

studies can help to reduce the levels of inconsistency in future studies on the health effect of 

nitrates in drinking water. Improved nitrate data collation and laboratory analysis of water 

samples can help to reduce uncertainty at the exposure assessment stage. Model uncertainty and 

seasonal variations on the other hand cannot be quantified or reduced, but need to be recognised 

Table 11 (Continued): OVERVIEW OF UNCERTAINTY 
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and taken into consideration in any policy decision involving these risk estimates. Also, 

variability which is an attribute of nature cannot be reduced by collection of additional data or 

analysis (USEPA, 2004) but need to be taken into consideration in any policy decision.  

 

Model uncertainties are due to the inability of the linear non-threshold model to correctly 

describe the mechanism or mode of action of nitrates on the thyroid (especially at low dose) 

leading to thyroid disorders, including thyroid cancer. The inability of mathematical models 

which are sometimes used in risk assessment in the form of equations to correctly describe a real 

situation is as a result of limited knowledge of the toxicokinetics and/ or toxicodynamics of an 

agent leading to a health effect (Finkel, 1990; Morgan & Henrion, 1990; USEPA, 2004; Von 

Krauss & Martuzzi, 2006). Limited knowledge is not the absence of knowledge but imperfect 

knowledge of the causal relationship underlying a health outcome (Bois et al, 2006), and is 

usually due to the state of our knowledge rather than the fault of the risk assessor (Van Asselt et 

al, 2001).  

 

Despite the uncertainties associated with the risk estimates as outlined above, this study is 

strengthened by the use of actual nitrate concentrations in public supplies and PWS from the 

study area in the exposure assessment.  Also, the use of data on the amount of tap-water intake 

obtained directly from individuals in the study area (including those on PWS) in the exposure 

assessment further strengthens the findings of the study. 

 

7.6  CONCLUSION 

 

Although the weight of evidence assessment suggests that exposure to nitrates in drinking water 

is strongly associated with goitre, thyroid cancer was used as a proxy for goitre in the risk 
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estimates because there is no register of benign thyroid tumour in the UK. There is a close link 

between benign and malignant tumours as they share common aetiological factors. Also, the 

existence of a goitre or nodule of the thyroid is associated with excess risk of thyroid cancer.  

Cases of malignancy can develop from goitre which is usually benign. 

 

Risk estimates suggest that 20 cases or 13 per cent of the 154 thyroid cancer cases calculated for 

East Anglia in 2014 could be attributable to exposure to nitrates in drinking water and this could 

have been eliminated if there were no nitrates in drinking water.  At nitrate levels below and 

equal to the WHO/EU drinking water standards of 50mg/l, the lifetime excess risk of thyroid 

cancer is 0.02 to 0.28. This is above the range considered as negligible by Health Canada. The 

risk of thyroid cancer at nitrate levels below and above the drinking water standard suggests that 

there is no threshold for nitrate exposures on the thyroid gland and supports the low-dose effect 

hypothesis. Although the excess risk of thyroid cancer is higher amongst PWS users than public 

water users, the number of public water users is far higher than the number of PWS users.  East 

Anglia is one of the regions in the UK with high number of PWS as well as high incidence rate 

of thyroid cancer according to 2014 cancer records but it is not known if there are thyroid cancer 

clusters in this region or other regions of the UK with high number of PWS and high numbers of 

thyroid cancer cases.  This warrants further investigation. The implications of the risk of thyroid 

cancer and nitrate levels below and equal to the drinking water standard is that the current 

drinking water standard of 50mg/l, originally set to protect against infantile 

methaemoglobinemia (blue - baby syndrome), is unlikely to protect against thyroid cancer and 

warrants a review.  Although nitrate is a weak iodine inhibitor when compared to other iodine 

inhibition anions such as perchlorate or  thiocyanate, human exposure to nitrates is far greater 

than perchlorate or thiocyanate and accounts for the majority of the body’s total iodine inhibition 

load in adults, foetuses and infants. Therefore the review of the current drinking water standard 
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should include a consideration of lowering the standard in order to decrease exposure to this 

ubiquitous drinking water contaminant and protect public health, especially for infants, children 

and pregnant women who are more sensitive to nitrate exposure. Also, it will help to protect the 

health of the population whose source of drinking water is from private water supplies where 

nitrate concentrations are higher, than in public water. Lowering nitrate exposure in drinking 

water is a more effective approach to lowering the body’s iodine inhibition load.  

  

The public health implications of exposure to nitrates in drinking water stems from the ability of 

nitrates to interfere with iodine uptake by the thyroid gland resulting in iodine deficiency; low 

thyroid hormone production; goitre and in some cases, thyroid cancer. Thyroid hormones play an 

important role in growth and development early in life and iodine inhibition that occurs during 

foetal development and in the first three years of life can result in irreversible brain damage.  

 

The UK is one of the top ten iodine deficient countries in the world.  Iodine deficiency in the UK 

is classed as moderate -to -mild and is based on median urinary iodine concentration of <100µg/l 

among school-age children. Although decline in milk consumption has been suggested as a 

possible reason for the deficiency, exposure to nitrates in drinking water may be a risk factor 

given the capability of nitrates to disrupt iodine uptake by the thyroid gland and widespread 

nitrate contamination of drinking water, especially PWS.  

 

The ability of nitrates to inhibit iodine uptake by the thyroid gland resulting in thyroid disorders, 

including goitre and possibly thyroid cancer appears to be influenced by the amount of dietary 

iodine intake. Given that chronic exposure to low - dose of nitrates (<50mg/l) can result in 

thyroid disorders if there is severe iodine deficiency, chronic exposure to elevated levels of 

nitrate can also result in thyroid disorders (goitre) even when iodine intake is sufficient. This 

may be due to the poor elimination of nitrates from the body after prolonged exposure to 
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elevated levels of nitrates. This may explain the persistence of goitre in some countries that have 

successfully implemented iodine prophylaxis in the population e.g. salt iodization programmes. 

Given that the effect of nitrates on the thyroid gland is moderated by iodine, adequate dietary 

iodine intake is therefore critical in public health protection from the adverse effects of nitrates 

since the ability of the body to cope with iodine inhibitors decreases as iodine intake decreases. 

But given that reliance on dietary iodine intake alone cannot guarantee adequate supply of iodine 

to the body, iodine prophylaxis in the form of salt iodisation, iodised bread, iodised oil etc. has 

been adopted by many countries to eradicate endemic iodine deficiency and goitre. No iodine 

prophylaxis programme, for example, salt iodisation programme has ever been carried out in the 

UK, but in the face of declining milk consumption by the population and widespread nitrate 

contamination of drinking water sources, iodine prophylaxis in the form of salt iodisation or 

other iodine supplements can be used to address the adverse effect of nitrate exposure in the UK.  

 

 

 

 

 

 

 

 

 

 

 

 

 



190 

 

CHAPTER EIGHT 

 

8.0. DISCUSSION, CONCLUSION AND RECOMMENDATIONS FOR FURTHER 

STUDIES 

 

The main aim of this study was to determine the nature of any thyroid disorders resulting from 

exposure to nitrates in drinking water with reference to public and private water supplies and to 

quantify the risk in East Anglia. This chapter discusses the relationship between the study 

findings and previous work detailed in the literature review; the study objectives and any new 

research appearing since the study began. It also addresses the implications of the research 

findings on prevailing public health policy as it relates to exposure to nitrates in drinking water 

and recommends areas for further studies.  The IARC in 2010 classified ingested nitrate and 

nitrite as a probable human carcinogen (Group 2A cancer classification) on the basis of 

insufficient human evidence but sufficient evidence from experimental animal studies. This 

classification formed the basis of this study given widespread nitrate contamination of drinking 

water sources in some regions of the UK including East Anglia. The study followed the risk 

assessment framework. Quantitative risk assessment provides evidence - based risk estimates 

(evidence –based public health) for thyroid disorders due to nitrates exposures in drinking water 

which can inform policy decision making. 

 

Access to drinking water that is wholesome (clean, adequate, safe) is essential for health, a basic 

human rights and a major component of public health policy. The study objectives therefore 

included a review of published epidemiological and experimental animal studies and case-reports 

for evidence of thyroid disorders as a result of exposure to nitrates in drinking water; to describe 

any evidence of association; to determine if any association is causal and to describe the 
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mechanism of action of nitrates on the thyroid gland. Also, it aimed to determine the 

concentration of nitrates in drinking water in the study area (East Anglia, UK); the frequency and 

magnitude of exposure as well as the amount of tap-water intake by the population. It concludes 

by evaluating the appropriateness of the current drinking water standard of 50mg/l (originally set 

to protect against infantile methaemoglobinemia) in protecting against thyroid disorders. What 

follows are the most significant findings from the study and the most probable conclusions in my 

opinion. 

 

8.1 SUMMARY OF THE FINDINGS 

 

1. HAZARD IDENTIFICATION 

 

There is widespread contamination of drinking water sources especially PWS in some regions of 

the UK including East Anglia.  A review of animal and epidemiological studies suggests that 

exposure to nitrates in drinking water is associated with moderate - to - mild iodine deficiency; 

hypothyroidism; hyperthyroidism; goitre and thyroid cancer.  However, following a meta - 

analysis, the weight of evidence is strongest for goitre (effect estimate, OR = 3.13); weak for 

subclinical hypothyroidism (OR = 1.23) and weakest for clinical hypothyroidism and 

hyperthyroidism (clinical and subclinical).  The effect estimates shows that the risk of goitre is 

more than 3 times higher in the exposed group than control group and suggest that exposure to 

nitrates in drinking water is a risk factor for goitre. The goitrogenic effect is mostly related to 

nitrate levels equal to or greater than 50mg/l (≥50mg/l) in the event of moderate - to - mild 

iodine deficiency.  In a review, WHO (2011), reported that the anti-thyroid effect of nitrates is 

mostly related to exposure in drinking water rather than diet. The effect is more profound if there 
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is iodine deficiency but weak if there is adequate nutritional iodine intake i.e. iodine intake 

determined by urinary iodine excretion of 150-300µg/day (WHO, 2011). 

 

While the result of meta-analyses on clinical hyperthyroidism and clinical hypothyroidism are 

consistent with that of Bahadoran et al (2015), they were unable to conduct a meta- analysis on 

goitre citing lack of data. This may be due to the cross – sectional nature of the studies on goitre. 

Although there was insufficient data for a meta-analyses on moderate - to - mild iodine 

deficiency and thyroid cancer, the evidence is consistent with the mechanism of action of nitrates 

which stems from the ability of nitrate ions to inhibit iodine uptake by the thyroid gland by 

binding to the sodium – iodide symporter (NIS) on the surface of the thyroid follicles resulting in 

iodine deficiency, low thyroid hormone production and high TSH production. Chronic 

stimulation of the thyroid gland by TSH to produce more hormones in the event of low thyroid 

hormones could result in thyroid hypertrophy (goitre), hyperplasia, adenomas and carcinoma 

(Hiasa et al, 1991; Capen 1992; 1997). Although the results of the only two studies thyroid 

cancer are contradictory, there was insufficient data for a meta- analysis on this outcome. 

However, Bahadoran et al (2015) conducted a meta- analysis on thyroid cancer following 

exposure to nitrates from diet (including drinking) and reported a non-statistically significant 

association, RR= 1.36, (95%Cl: 0.67-2.75). The potential for thyroid cancer as a result of 

exposure to nitrates in drinking water is biologically plausible given that there is a close link 

between benign and malignant tumour as the two shares a common aetiological factor (Leux & 

Guenel, 2010).  Although the mechanism of iodine inhibition in the aetiology of thyroid tumour 

is established in animals (Kanno et al, 1990; Hiasa et al, 1991; Capen, 1992; 1997), the same 

cannot be said for humans (Schnieder & Brenner, 2003; Croften, 2008). However, 

hypothyroidism is reported to be associated with increased risk of thyroid cancer in humans 

(Balasubramaniam et al, 2012). While TSH is a known risk factor for thyroid nodules, continued 
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TSH stimulation of the thyroid to produce more hormones in the event of thyroid hormone 

shortages is reported to be associated with initiation and/- or promotion of thyroid carcinoma in 

humans (Johklass et al, 2008).  Endogenous nitrosation which can result in the production of 

carcinogenic NOCs may be a mechanism for nitrate carcinogenicity in humans (IARC, 2010). 

NOCs have been reported to induce cancer at various organ sites (including the thyroid) in 

animals (Bogovski & Bogovski, 1981) and in humans (ASTDR, 2001; Weyer, 2003).   

 

Although a cause - and- effect relationship has not been firmly established between nitrates in 

drinking water and goitre, the risk assessment framework can be used to estimate the lifetime 

excess risk of this outcome in East Anglian given widespread nitrate contamination of drinking 

water sources in the region.  

 

2. DOSE - RESPONSE ASSESSMENT 

 

A linear model is assumed for the relationship between nitrates in drinking water and goitre 

given that the effect of nitrates on the thyroid gland increases as dose increases and is judged to 

be best suited to describing the effect of nitrates on the thyroid gland at low dose.  Low – dose 

extrapolation is important as it allows for risk estimation in the entire dose range of exposure of a 

substance in a population (Shepard et al, 1987).  The ability of nitrates to disrupt iodine uptake 

by the thyroid gland resulting in low thyroid hormone production and thyroid hypertrophy 

(goitre) (Bloomfield et al, 196; 1962; Alexander & Wolff, 1966) suggests that nitrate is an 

endocrine disruptor.  Given that the effect of nitrates is mediated by its metabolite, NOx and not 

nitrite as previously thought (Addiscott & Benjamin, 2004), and the fact that NOx is capable of 

exerting endocrine activity (Bryan et al, 2007; Elrod et al, 2008; Ghasemi & Zahedias, 2011)  

further supports the endocrine disrupting potentials of nitrates. There is no threshold for EDCs 
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(Sheehan & vom Saal, 1997; Crews et al, 2000).  According to the USEPA, linearity at low- dose 

is to be assumed for substances whose toxicity is mediated by binding to a receptor (USEPA, 

2000).  

 

Given that nitrate is produced endogenously for some biological activities (Jaffe, 1981; Walker 

1995; Hsia, 1998) such as antimicrobial activity (Hibbs et al, 1987; Fang, 1997; Addiscott & 

Benjamin, 2004), vasodilation (Bjorne, 2005), neurotransmission (Garthwaite, 1991), or immune 

regulation (Hibbs, 1991), any threshold would already have been exceeded for these effects to 

occur. Therefore exogenous nitrate exposure via drinking water which is reported to increase the 

concentration of endogenously produced nitrate as well as its toxicity (Berger et al 1997, Gupta 

et al 1998) suggests that there may be no threshold for nitrates especially on the thyroid gland. 

There is no threshold for EDCs (Sheehan & vom Saal, 1997; Crews et al, 2000) and nitrates as 

an endocrine disruptor may not be different. As noted by Welshons et al (2003), exogenous 

chemicals (e.g. EDCs) can influence a process that is already ongoing and thus is already above 

threshold, therefore there may be no threshold for toxic chemicals like EDCs. The linear model 

is recommended for low – dose extrapolation of non- threshold substances (Paustenbach, 1989; 

USEPA, 1989). It has been suggested that some substances, including EDCs, whose mechanism 

of action or toxicity is mediated by binding to a receptor can exhibit a non-monotonic dose- 

response relationship, (NMDR) where response (effect) increases and decreases as dose 

increases (Welshons et al (2003);Vandenberg et al, 2012). It is not known if nitrates can exhibit a 

NMDR and this warrants further investigation.  
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3. EXPOSURE ASSESSMENT 

 

Higher nitrate concentrations have been found in PWS than in public water in the UK but the 

number of people exposed to PWS is far less than those exposed to public water. Although the 

Southwest England has the highest number of PWS in England, East Anglia has the highest 

number of people exposed to PWS. On average, the amount of tap-water intake in the study area 

was 0.95 L/day for infants (≤ 1 year); 1.05 L/day for children (1-6years); 1.0 L/day for children 

(7-12years); 0.8 L/day for adolescents (13-18years) and 1.2 L/day for adults (19-70years).  

Although there is no statistically significant difference in tap - water intake between PWS and 

public water users in the age groups, the average range of tap - water intake in this study area 

(0.8 - 1.2L/day) compares with the amount of tap-water intake reported in the rest of the UK 

population where an average consumer has been reported to consume about 1.14 L tap-water per 

day (DWI 1996); 0.70 - 1.9 L/day (Hunter et al, 2004); 0.9-1.3 L/day (Hopkin & Ellis; 1980); 

0.10 L - 1.55 L/day (Mons et al, 2007), and also compares with the amount of 0.77 L - 1.44 

L/day reported by Kaur et al (2004) among pregnant women in the UK.   

 

Nitrate body burden was found to be higher in infants and children than in adults even when they 

consume the same or lesser amount of water. For example, at the drinking water standard of 

50mg/l NO3
-
, nitrate body burden on infants was calculated as 4.8 mg/kg/day; 3.36 mg/kg/day 

for children (1-6 years); 1.71 mg/kg/day for children (7-12years); 0.72mg/kg/day for adolescents 

and 0.89 mg/kg/day for adults (19-70yrs). This suggests that nitrate body burden on infants was 

five times that of adults.  For children (1-6years) the body burden was more than three times that 

of adults.  At exposure concentration of 100mg/l NO3, the body burden figures for infants, 

children (1-6years), children (7-12years), adolescents and adults were 9.8; 6.7; 3.5; 1.5 and 1.8 

mg/kg/day respectively. This also suggest that nitrate body burden on infants is five times that of 
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adults. For children (1-6 years) the burden is also three times that of adults. The reason for the 

increased nitrate burden on infants and children relative to adults may be because of the small 

body weight of children compared to the adults. This suggests that infants and children are more 

sensitive to nitrate exposure in drinking water.  

 

4. RISK CHARACTERISATION 

 

The result of meta-analysis suggest that exposure to nitrates in drinking water is a risk factor for 

thyroid hypertrophy (goitre). Given that there is no register f or goitre in the UK, thyroid cancer 

was used as a proxy for goitre in the risk estimation. There is a close link between benign and 

malignant tumours as they share common aetiological factors (Leux & Guenel, 2010).  Risk 

estimates suggest that the excess risk of thyroid cancer at nitrate levels below or equal to the 

drinking water standard of 50mg/l is 0.02 - 0.28.  This is above the range (1x10
-6

 to 1x10
-5

) 

considered as negligible by Health Canada (Health Canada, 2013).  At the LOAEL of 69mg/l, 

the excess risk is 0.38.  Assuming the linear model also applies to doses above 95mg/l (highest 

exposure dose in the source population), the population excess risk of thyroid cancer within the 

entire dose range of nitrates recorded in drinking water in East Anglia is 20 cases (13 per cent) 

out of the 154 cases calculated in a population of about 2.8million in 2014 and this is the number 

(20 cases) of thyroid cancer cases that would have been eliminated from the population in 2014 

if there was no nitrates exposure in drinking water. The number of thyroid cancer cases reported 

for East of England (including East Anglia) in 2014 was 320 (ONS, 2016).  High nitrate 

concentrations have been found in PWS than in public water, but the number of people in the 

study area exposed to PWS and therefore at a high risk of thyroid cancer is far less than the 

number of people exposed to public water where the risk is low. Although the risk of thyroid 
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cancer is higher among PWS users, it is not known if there are thyroid cancer clusters in East 

Anglia or other regions of the UK with high number of PWS. 

 

The risk of thyroid cancer at low-doses i.e. below 50mg/l (drinking water standard) or below the 

LOAEL (69mg/l) supports the low-dose effect hypothesis and suggests that there is no threshold 

dose for nitrates on the thyroid gland. According to Vom Saal et al (2007) and Vandenberg et al 

(2012), substances or chemicals with known endocrine disrupting capabilities or potentials can 

have effects on biological systems at low doses which may result in some disease conditions in 

humans and the effect of these chemicals at high doses cannot be used to predict effects at low 

doses. The finding that there is no threshold dose for nitrates is consistent with reports by Berger 

et al (1997) and Gupta et al (1998), that exogenous nitrates via drinking water can increase the 

biological activity (including toxicity) of endogenously produced nitrate and as a result any 

threshold would already have been exceeded for this to occur, therefore there is no threshold for 

nitrates exposure.  Also, as noted by Welshons et al (2003), exogenous chemicals (e.g. EDCs) 

can influence a process that is already ongoing and thus is already above threshold. This 

therefore contradicts the traditional toxicological assumption of threshold for endocrine 

responses to toxic chemicals like EDCs. There is no threshold for EDCs (Sheehan & vom Saal, 

1997; Crews et al, 2000).  

 

8.2 DISCUSSION 

 

There is widespread nitrate contamination of drinking water sources especially PWS in some 

regions of the UK including East Anglia.  In East Anglia, while the concentration of nitrates in 

public water between 2001 to 2010 was <0.1to 56.4mg/l, the concentration in PWS was 0.3 to 

466mg/l. High nitrate levels have been found in PWS than in public supply especially in 
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agricultural areas due to the application of nitrogen based fertilizers to farm land and leaching of 

excess fertilizers to ground and surface water (DWI, 2016). PWS boreholes are more susceptible 

to contamination than public water boreholes because they are shallower compared to public 

water boreholes which are deeper.  There is a strong relationship between nitrate concentrations 

in groundwater, the amount of nitrogen fertilisers applied to farm land and excess nitrate 

leaching from farm land (Grizzetti et al, 2011).  Higher concentrations of nitrates have been 

found in groundwater than in surface water (Hunt et al, 2004; Lord et al, 2006) and in sandy soil 

than in clay soil (Hunt et al, 2004; Lord et al, 2006; Gupta et al, 2008). In groundwater, the 

presence of nitrates can remain for a very long time even after leaching from soil or farmland has 

stopped (Spalding and Exner, 1993; USGS, 1999).  

 

Following a meta-analysis, there is a strong association between exposure to nitrates in drinking 

water and goitre. The relationship between exposure to nitrates in drinking water and goitre is 

linear and suggests that the risk of goitre increases as nitrate exposure increases. The risk of 

nitrate is more profound if there is decreased dietary iodine intake. Given that there is no register 

of goitre or benign thyroid tumour in the UK, thyroid cancer was used as a proxy for goitre in 

risk estimation. There is a close link between benign and malignant tumours as they share 

common aetiological factors (Leux & Guenel, 2010).  Risk estimates suggests that the excess 

risk of thyroid cancer within the entire dose range of nitrates recorded in drinking water in East 

Anglia is 20 cases or 13 per cent of the 154 cases calculated in a population of more than 

2.8million in 2014 and this is the number (20 cases) of thyroid cancer cases that would have 

been eliminated from the population in 2014 if there was no exposure to nitrates in drinking 

water. At nitrate concentration below and equal to the drinking water standard of 50mg/l, 

lifetime excess risk of thyroid cancer is 0.02 - 0.28. This is above the range (1x10
-6

 to 1x10
-5

) 

considered as negligible by Health Canada (Health Canada, 2013). The excess risk of thyroid 
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cancer below and equal to the drinking water standard suggest that the relationship between 

nitrates and thyroid cancer is non-threshold. This suggests that every exposure to nitrates has 

some degree of effect on the thyroid gland. Given that nitrate is known to be produced 

endogenously for some biological activities (Jaffe, 1981; Walker 1995; Hsia, 1998) such as 

antimicrobial activity (Hibbs et al, 1987; Fang, 1997; Addiscott & Benjamin, 2004); vasodilation 

(Bjorne, 2005); neurotransmission (Garthwaite, 1991); immune regulation (Hibbs, 1991), any 

threshold would already has been exceeded for these effects to occur. Therefore the effect of 

exogenous nitrate exposure via drinking water which have been reported to increase the 

concentration of endogenously produced nitrate as well as its toxicity (Berger et al 1997, Gupta 

et al 1998) suggest a non- threshold effect.  Although, there is no difference in tap- water intake 

between PWS and pubic water users in East Anglia, the amount of tap-water intake in the region 

is 0.8 to 1.2L/day. This is consistent with the amount of tap-water intake reported in the rest of 

the UK, 1.14 L tap-water per day (DWI 1996); 0.70 - 1.9 L/day (Hunter et al, 2004); 0.9-1.3 

L/day (Hopkin & Ellis; 1980); 0.10 L - 1.55 L/day (Mons et al, 2007). On average, the amount of 

tap-water intake in the study area was 0.95 L/day for infants (≤ 1 year); 1.05 L/day for children 

(1-6years); 1.0 L/day for children (7-12years); 0.8 L/day for adolescents (13-18years) and 1.2 

L/day for adults (19-70years).  While nitrate body burden was found to be higher in infants and 

children than in adults even when they consume the same or lesser amount of water, none of the 

children aged 0-5 years in the study area were served with tap-water from PWS in households 

where the source of drinking water is usually PWS. This suggests that the marginal risk of 

thyroid cancer recorded in this age group may be related to exposure to nitrates from public 

water only. The ONS in its cancer records for 2014 for England (the latest thyroid cancer 

records) reported no thyroid cancer cases in children less than one year (<1 year). Only three 

thyroid cancer cases were recorded in children 1- 9 years and these cases were in females only 
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(ONS, 2016).  Cases of thyroid cancer increased from age 10-14years and above according to 

ONS (2016).  

 

The UK cancer statistics 2014 (ONS, 2016) suggest that thyroid cancer is the 19
th

 most common 

cancer in males and the 16
th

 most common cancer in females. In both sexes, it is the 19
th

 most 

common cancer in the UK and accounted to about 1 per cent of all new cancer cases in 2014. In 

2012, thyroid cancer was the 20
th

 most common cancer in the UK and there is evidence of 

increasing incidence of the disease (Cancer Research UK, 2014; 2016). While increased 

detection of very small tumours due to widespread use of ultrasound; changes in thyroid cancer 

risk factors such as obesity and exposure to medical radiation may be contributory factors in the 

increasing thyroid cancer incidence, the finding from this study that exposure to nitrates in 

drinking water can result in excess risk of thyroid cancer especially in the event of moderate - to 

- mild iodine deficiency is consistent with the view that some environmental factors including 

diet, tobacco use, alcohol intake (Ron & Schneider, 2006) and nitrates(Pellegritti et al, 2013)  

may be contributing to the increasing thyroid cancer incidence. The continued prevalence of 

goitre in some iodine replete countries suggests that nitrate may be interfering with iodine uptake 

by the thyroid gland (Mukhopadhay et al, 2005). This highlights the need for a consideration of 

nitrate exposure as a risk factor for goitre and thyroid cancer in any public healthy strategy 

aimed at reducing the incidence of thyroid cancer in the UK. Such a strategy should include a 

well-designed epidemiological study to clarify the role of nitrate exposure in thyroid cancer with 

particular focus on PWS where the risk of thyroid cancer is higher than in public water supplies. 

The findings of a strong association with goitre in the meta-analysis and excess risk of thyroid 

cancer in the risk estimates support the recommendation by DWI (2014) for the inclusion of the 

safety of PWS in the Local Authority public health protection strategy especially in areas like 

East Anglia where more than 5per cent of the population rely on PWS for their drinking water. 



201 

 

In my view, the inclusion should be extended to all NVZs particularly those with PWS. Local 

authority health strategy is a requirement of the Health and Social Care Act (2012) which 

amended the Local Government and Public Involvement in Health Act (2007) which aimed to 

identify health needs and priorities in local areas and determine the required action to meet those 

needs in an evidence – based way (evidence –based public health).   

 

Despite the increasing thyroid cancer incidence rate in the UK since the mid -1970s, the 

mortality rate from thyroid cancer has decreased and is now stable (Cancer Research UK, 2014). 

For example, between 1971-1973 and 2010-2012, the decline was 32 per cent in males and 58 

per cent in females. In 2012, thyroid cancer accounted for 0.2 per cent of all cancer deaths in 

both males and females in the UK. The total number of thyroid cancer death in that year was 373 

of which143 (38 per cent) were males and 230 (62 per cent) were females, giving male: female 

ratio of 6:10. The crude mortality rate was 0.5 thyroid cancer deaths for every 100,000 males and 

0.7 thyroid cancer deaths for every 100,000 females (Cancer Research UK, 2014). The decline in 

mortality rate may be attributed to early diagnosis and treatment (Cancer Research UK, 2014). In 

Europe, whilst the incidence rate of thyroid has also increased in the last few decades, the 

mortality rate is stable at 0.4 per cent in 2012 (Cancer Research UK, 2014). In the USA, while 

the incidence rate increased by 5 per cent each year between 2002 and 2012; the mortality rate 

remained stable at 0.5 cases per 100,000 persons (The surveillance Epidemiology and End Result 

(SEER) Program of the National Cancer Institute, 2012). Unlike breast, colon-rectum, lung and 

prostate cancer whose mortality rate has declined in the USA in the last two decades, thyroid 

cancer mortality rate has not decreased despite early diagnosis and very effective treatment 

(SEER, 2012; Pellegriti et al, 2013). Absence of mortality decrease in spite of early diagnosis 

and treatment supports the evidence of increasing thyroid cancer incidence rate (Pellegriti et al, 

2013).  
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8.2.1 IMPLICATIONS ON PUBLIC HEALTH POLICY 

 

Although there are considerable uncertainties associated with the risk estimates derived in this 

study, the risk of thyroid cancer at nitrate doses below the WHO drinking water standard has 

implications on the current public health policy on nitrates in drinking water. The implication is 

that the current WHO and EU drinking water standard of 50mg/l NO3
-
, originally set to protect 

against infantile methaemoglobinemia is unlikely to protect against thyroid disorders including 

thyroid cancer and warrants a review by policy makers in order to protect public health. In a 

symposium on drinking water nitrate and health, the International Society for Environmental 

Epidemiology (ISEE) (2004), concluded that “the role for nitrate as a risk factor for cancer and 

adverse reproductive outcome must be thoroughly explored before changes to nitrate water 

quality standards are considered” (Ward et al, 2005: pg.1613). Similarly, the need for measures 

to reduce drinking water nitrate concentrations was recognised at a symposium in 2005 on 

Nitrogen Cycle and Human Health, although there was no consensus on the health risks of 

nitrates (van Grinsven et al, 2006). However, the findings from this study adds to the growing 

body of evidence that nitrate is a risk factor for thyroid cancer and supports the call for a review 

of the current drinking water standard for nitrates.   

 

The findings from this study also have implications for EU policy on drinking water especially 

the EU Drinking Water Directive 98/83/EC and the UK PWS Regulation (2009). As already 

discussed in section 6.3.1, the EU drinking water directive as it relates to PWS only applies to 

large supplies i.e. all private water supplies providing water of 10m
3
/day or more (serving 50 or 

more persons) and /or part of a commercial or public activity (such as bed and breakfast 

establishments). It does not apply to small supplies (supplies providing water of less than 

10m
3
/day or serving less than 50 persons) unless they are part of a commercial or public activity. 
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However, the UK government in implementing the Directive through the Private Water Supplies 

Regulation 2009 (previously PWS 1991) thought it wise to apply this Directive to small supplies 

(except those serving single dwellings) on the argument that, “the people consuming water and 

food prepared with water derived from these small supplies are entitled to the same level of 

health protection as the people served by large supplies and public water supplies” (DWI 2010, 

pg8). But given that 58 per cent of the 44,546 PWS in England serve single dwellings, the 

exclusion of this category of PWS from the mandatory risk assessment and monitoring regime as 

provided in the legislation can have implications on the health of the population (especially 

infants, children and pregnant women) living in such dwelling, putting them at risk of thyroid 

disorders (including thyroid cancer). These legislations therefore warrant a review.  

 

Although the lifetime excess risk of 0.02 to 0.28 in this study at nitrate level ≤ 50mg/l relates to a 

moderate – to –mild iodine deficient population, the risk estimates may be higher in a population 

where iodine deficiency is severe. In countries such as the USA where about 22 per cent of 

private wells and 3 per cent of public wells in agricultural areas contain nitrates in excess of the 

USEPA drinking water standard of 45mg/l (US Geological Society cited in van Grinsven et al, 

2006) and where about 15-20 per cent of households or about 15 million people obtain their 

drinking water from unregulated private well or borehole (USEPA cited in Rogan & Brady 

2009), the findings from this study could have implications on public health protection policies  

and therefore warrant a review. In the USA, the Federal drinking water standard of 45mg/l NO3 

(10mg/l N03-N) only applies to public water supply; it does not apply to PWS (US GAO, 1997; 

Knobeloch, 2000). Although nitrate concentration in UK drinking water may be low when 

compared with other countries in Europe; the USA and developing countries, the findings from 

this study however highlight the potential health loss from exposure to nitrate in drinking water 

and the potential benefits of preventive measures.  
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In a discussion with two officials of Anglian Water Company while collecting data for this study 

(Personal Communication), it was noted that removing nitrate-ions from drinking water in order 

to comply with the current drinking water standard is expensive and adds to the operational costs 

of water companies. They suggested that raising the standard to about 100mg/l would reduce 

their operational cost and save their customers a lot of money on their water bill. This view has 

also been expressed (although in relation to infantile methaemoglobinemia) by L’hirondel et al, 

2006), who argued that, “the societal costs of complying with the current MCL are growing, 

especially in rural communities least economically capable of shouldering the high cost per 

person of nitrate-ion removal” and suggested that “raising the drinking water standard for 

nitrates to 20ppm nitrate as nitrogen (equivalent to 88mg/lNO3
-
) would relieve many rural 

communities of a significant economic burden without adding appreciably to any known health 

risks” (L’hirondel et al, 2006: pg.459). However, given that risk estimates from this study 

suggest that the excess risk of thyroid cancer at nitrate level of 88mg/l (the level suggested by 

L’hirondel et al, 2006) is 0.43 or 43 per cent and at 100mg/l (the level suggested by Anglian 

Water) the risk is 0.46 or 46 per cent, raising the drinking water standard to either of these levels 

will pose significant risks to public health. The European Economic Community (EEC) proposed 

a maximum contaminant level (MCL) of 25mg/l (EEC, 1980; WHO, 1985b). This value has 

been reported as the critical concentration for adverse health effects of nitrate in drinking water 

(De Roos et al, 2003; Gulis et al, 2002).  While at 25mg/l, the lifetime excess risk of thyroid 

cancer from this study is 0.15 or 15 per cent, a consideration of the EEC MCL may be a way 

forward.  

 

While it is neither the aim nor the objective of this study to set a new drinking water standard for 

nitrates, a review of the current drinking water standard is necessary in view of the evidence 

from this study that the lifetime excess risk of thyroid cancer following exposure to nitrates in 
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drinking water below and equal to the drinking water standard of 50mg/l, is 0.02 to 0.28 (2 to 28 

per cent). This is above the range (1x10
-6

 to 1x10
-5

) considered negligible by Health Canada 

(Health Canada, 2013) and suggests that the current drinking water standard for nitrates, 

originally set to protect against infantile methaemoglobinemia is unlikely to protect against 

thyroid cancer. However, any downward review should also include a strategy to ensure that 

iodine intake in the population is optimum given that chronic exposure to low doses of nitrates in 

drinking water can result in thyroid disorders including goitre and malignant tumours in the 

event of iodine deficiency.  Iodine is vital in the growth and development of the unborn child 

(Blazer et al, 2003) and iodine inhibition during pregnancy can affect the development of 

important organs in the foetus, especially the brain (Haddow et al, 1999; Blazer et al, 2003).  

 

The suggestion that nitrates in drinking water can play a role in some reproductive and 

developmental outcomes including birth defects (Dorsch et al, 1984; Scragg et al, 1992; Croen  

et al, 2001), spontaneous abortion and stillbirth (Gelperin et al, 1975; Super et al, 1981; 

Aschengrau 1989; 1993; CDC, 1996); intra-uterine growth retardation and low birthweight 

(Tabacova et al, 1997;1998; Bukowski et al, 2001) may be as a result of iodine uptake inhibition 

by the thyroid gland and consequent low thyroid hormone production and this highlights the 

importance of optimum iodine intake in a population. However, further studies are needed to 

evaluate the relationship between exposures to nitrates in drinking water and adverse 

reproductive and developmental outcomes. Although infantile methaemoglobinemia is beyond 

the scope of this study, a review of the drinking water standard is important given that cases of 

this disease have been reported at nitrate levels below the drinking water standard of 50mg/l 

(Simon, 1962 cited in EWG (1996); Sattlemacher, 1964 cited in EWG (1996); Morbidity and 

mortality Weekly Report (MMWR), 1993). This information was not taken into consideration in 
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the various reviews of the drinking water standard by the USEPA (Carson, 1987) and the 

National Academy of Science (NAS, 1995).  

 

8.2.2 REDUCTION OF NITRATE CONCENTRATIONS IN DRINKING WATER: 

COST - BENEFIT ANALYSIS 

 

Reductions in nitrate concentration can be achieved in the short term by point- of- use or point- 

of- entry treatment. A point-of-use treatment involves the installation of a device, such as a filter 

at the point of entry of water to the household. It may be installed at the water supply tap or 

plumbed-in to the water supply pipe (Scottish Executive, 2006). These devices are usually used 

for the treatment of small volumes of water used for drinking or cooking. Devices used in the 

treatment of nitrate contaminated drinking water included reverse osmosis filters and anion 

exchange filters.  

 Reverse osmosis filters employ reverse osmosis process in the removal of mostly organic 

and inorganic (e.g. nitrates) contaminants from drinking water.  

 Anion exchange filters uses the anion or the cation exchange method to remove 

contaminants from drinking water and is best suited for the removal of nitrates from 

drinking water.  

A reverse osmosis filter can waste a lot of water.  It can also reduce water hardness and alkalinity 

to unacceptable levels. Anion exchange filters on the other hand require ‘regeneration’ and the 

softened water could contain elevated levels of sodium. In terms of cost, the reverse osmosis 

filter is medium- to- high; the anion exchange is low- to -medium, making the anion exchange 

filter the most popular filter used in short term nitrate treatment of drinking water in households 

(Scottish Executive, 2006). 
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In the long term, the most effective ways of reducing nitrate concentrations in drinking water are 

blending or mixing nitrate contaminated water with nitrate - free water; biochemical water 

treatment and installation of deeper water abstraction wells (Van Grinsven et al, 2010). While 

data is scarce on the cost of these measures and the potential benefits, available data suggests 

that the annual cost (in Euros €) of blending and biochemical treatment is €0.50/person/year in 

the UK and the Netherlands (when abstracting from a pre-existing well), with a potential health 

benefit of €0.70/person/year and €1.30/person/year for the UK and Netherlands respectively 

(Pretty et al, 2003; Van Beek et al, 2006 cited in Van Grinsven et al, 2010). The cost in Austria 

and Germany was €3.00/person/year when abstracting from a pre-existing well with a potential 

health benefit of €3.00/person/year and €5.00/person/year respectively (Ademsan et al, 2002 

cited in Van Grinsven et al, 2010; Brandt 2002 cited in Van Grinsven et al, 2010). The cost of 

blending and treatment including installation of new boreholes or well was €15.00/person/year in 

the USA (Van Grinsven et al, 2010). Given persistent nitrate failures in drinking water especially 

PWS in many parts of East Anglia, it is not known whether this data on potential health gains 

will persuade some individuals and water companies to invest in water treatment and/- or new 

infrastructure (e.g. deeper wells) as the cost may initially appear to be higher than the potential 

health gains. While some residents in a Local Authority with high nitrate concentrations in their 

PWS have rejected (for unspecified personal reasons) advice from environmental health officers 

to connect to public supplies, some have expressed willingness to connect to the public supply 

where nitrate concentrations are much lower, but unfortunately the cost of this undertaking is 

prohibitive, as some houses are located too far from the nearest public water supply location and 

the Water Companies concerned were not willing to bear the cost of the connection. While 

people have often made enquiries about grants to enable them connect to the public supply, no 

such grant is currently available. The government could through the Water Companies or Local 

Authorities make such grants available to enable those willing to migrate from PWS (where 
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nitrate levels are sometimes high) to a public supply to be able to do so. The willingness to a 

connect to public supply in order to have access to drinking water with low nitrates 

concentrations below the WHO drinking water standard is consistent with earlier findings by 

Hanley (1990) that households in East Anglia in 1989 expressed willingness to pay for drinking 

water with nitrate concentrations not exceeding the EU drinking water standard.   

 

The use of manure and fertilisers in crop production is a major source of nitrates in ground and 

surface water especially in agricultural areas such as East Anglia and reduction in the quantity of 

fertilisers and manure applied to crops is critical in reducing the concentration of nitrates in 

drinking water. The aim of such reduction to prevent excess fertilizers not used up by crops from 

leaching into groundwater and surface water used for drinking water and is the objective of the 

EU Nitrate Directive 91/676/EEC. However, despite measures in place to reduce excessive input 

of fertilizers to crops especially in farm lands near to water courses, drinking water sources in 

most European countries (including the UK) have continued to experience excessive nitrate 

pollution (Grizzetti et al, 2011). Van Grinsven et al (2010) estimated that the health cost 

associated with nitrates leaching to water sources is €0.15/kg of N-fertilizer while the net benefit 

of fertilizer use is €1.8/kg of N-fertilizer. This suggests that the health cost of fertilizer leaching 

into drinking water sources reduced the net benefit of fertiliser use in crop production by about 

10 per cent. In some countries in north-western Europe where crop yield is reported to be close 

to their maximum or in southern and eastern Europe where yields are limited by water shortages, 

the health cost associated with nitrate leaching estimated as €0.5/kg/N-fertiliser is almost the 

same as the net benefit (€0.6/kg/N-fertiliser) of fertiliser use (Van Grinsven et al, 2010). This 

suggests that reductions in the quantity of fertilizers applied to crops would help to reduce the 

health costs of leaching and maximise the net benefits of fertilizer use. While nitrate 

concentrations in aquifers in some western European countries has not decreased but are rather 
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stable, there are concerns that concentrations in Eastern European countries will continue to 

increase as these countries intensify agricultural activities and fertiliser use (Grizzetti et al, 

2011). While agricultural practices and other anthropogenic activities will continue to impact on 

drinking water sources in Europe even in the coming years, it is not known what and how long it 

will take to restore the quality of European waters (Grizzetti et al, 2011).  

 

Given widespread nitrate contamination of drinking water especially PWS in parts of the UK and 

the EU, the potential for widespread exposure in the population makes the review of the drinking 

water standard an imperative for public health protection. In a review of data from 12 of the 15 

oldest EU Member States in the course of implementing the EU Drinking Water Directive 

98/83/EC, van Grinsven et al (2006) and van Grinsven et al, (2010) estimated that about 23 

million people (6.5 per cent of the total population) who obtained their drinking water from 

groundwater are exposed to drinking water with nitrate concentration exceeding 25mg/l. About  

8 million people (3 per cent) of this population are exposed to groundwater with nitrate 

concentration exceeding the drinking water standard of 50mg/l, about 5 per cent were exposed to 

groundwater with nitrate concentrations exceeding 25mg/l. When this data from groundwater 

was combined with data from European surface water and population density, it was estimated 

that about half of the EU27 population live in areas with nitrate concentrations higher than 

25mg/lNO3 while about one fifth (20 per cent) live in areas with concentrations higher than 

50mg/lNO3, although there may be country variations (Grizzetti, 2011).  

 

Although causality has not been firmly established in this study between exposure to nitrates in 

drinking water and thyroid disorders including thyroid cancer, the need for a review of the 

current drinking water standard is based on the precautionary principle. The precautionary 

principle states that, “when an activity raises threats of harm to human health or the environment, 
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precautionary measures should be taken even if some cause and effect relationship are not fully 

established scientifically” (Wingspread Conference 1998). As noted by Hill (1965), lack of 

consensus or perfect evidence of causality “does not confer upon us a freedom to ignore the 

knowledge we already have, or to postpone the action that it appears to demand at a given time” 

(Hill 1965: p300). The precautionary principle has been proposed as an approach in public health 

decision making in the face of uncertainty (O’Riordan & Cameron, 1994; Kriebel et al, 2001; 

Gochfeld, 2003; USEPA, 2004). It is used to articulate public health policy or take regulatory 

action in the absence of conclusive scientific evidence demonstrating harm (O’Riordan & 

Cameron, 1994; Massachusetts Precautionary Principle Project (MPPP) 1999; Neutra & 

Delpizzo, 2002; Pless, 2003; Gochfeld 2003). The approach encourages taking measures or 

actions, including interim actions for public health protection before additional information 

becomes available (Kriebel et al, 2001; Gochfeld 2003). The alternative to taking action, ‘more 

research’, or “wait- and- see” anticipates conclusive scientific evidence for causality which may 

take some considerable time to be produced and may therefore delay action when the 

consequences of inaction or delay may be serious (Gochfeld, 2003). Although the precautionary 

principle concept has been criticised because of variability in interpretation, it offers the 

prospects of real progress towards improved public health decision-making (Sexton, 2006).  

 

While low dietary iodine intake can exacerbate the effect of nitrates on the thyroid gland, iodine 

prophylaxis in the form of salt iodisation or use of iodised salt in bread making can help to 

maintain adequate iodine in the body. But, as noted by Wilson (2010), lowering the 

concentration of nitrates in drinking water is a more effective approach in combating the effect 

of human exposure to iodine inhibitors than increasing total iodine intake. However, given that 

the cost of salt iodisation in order to deal with the effects of iodine deficiency (US$ 0.02 - 

€0.05/child/year) is less than the cost of water treatment and blending (€0.5 - €3.00/person/year) 
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to ensure that nitrates in drinking water does not exceed 25mg/l, the health benefits of both 

measures outweigh their costs and can be integrated into any public health policy on nitrates, 

especially in areas where there is widespread nitrate pollution of drinking water and the potential 

for chronic exposure. While it is beyond the scope of this study to estimate the economic loss 

from thyroid cancer as a result of exposure to nitrates in drinking water, Van Grinsven et al 

(2010) estimated that a 3per cent rise in colon cancer incidence as a result of exposure to nitrates 

in drinking water above 25mg/l corresponds to an economic loss of €2.90/person/year. Assuming 

the economic loss of colon cancer also applies to other types of cancer like thyroid cancer, then 

the 13 per cent excess thyroid cancer cases in East Anglia attributed to exposure to nitrates in 

drinking water will correspond to an economic loss of €12.60/person/year; this could be  

eliminated if there were no nitrates in drinking water.   

 

8.3 CONCLUSION 

 

Exposure to nitrates in drinking water is associated with the risk of thyroid cancer. Of the 154 

thyroid cancer cases calculated for East Anglia in 2014 from a population of 2,849,918; the 

excess risk is 20 cases (13 per cent) and this would have been eliminated if there was no 

exposure to nitrates in drinking water. The number of thyroid cancer recorded in East of England 

(including East Anglia) by ONS in 2014 was 320. At nitrate levels below and equal to the 

drinking water standard of 50mg/l, the lifetime excess risk was 0.02 to 0.28. This is above the 

range considered negligible by Health Canada. The public health policy implication of this 

finding is that the current drinking water standard of 50mg/l, originally set to protect against 

infantile methaemoglobinemia is unlikely to protect against thyroid cancer and warrant a 

downward review. Also, the EU Drinking Water Directive 98/83/EC which excluded small PWS 

and the UK PWS Regulation 2009 which excluded small PWS serving single dwellings from the 
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mandatory risk assessment which applies to large supplies warrant a review given that the risk of 

thyroid cancer is higher among PWS users where nitrate levels are higher. Given that 58 per cent 

of the 44,546 PWS in England serving single dwellings are excluded from the five years 

mandatory risk assessment and monitoring regime as provided in the PWS Regulation (2009), a 

review of this policy is necessary in order to protect the health of the public in such households 

from the risk of thyroid cancer. Any downward review should also include a strategy to ensure 

that iodine intake in the population is optimum given that chronic exposure to low doses of 

nitrates in drinking water can result in thyroid disorders including goitre and thyroid cancer in 

the event of dietary iodine deficiency. In countries such as the USA where PWS are not 

regulated (the drinking water standard of 45mg/l only applies to public supplies), a review of this 

policy is very important given that the risk of thyroid cancer and thyroid disorders is higher 

among PWS users than public supply users. Also, in developing countries where PWS are 

unregulated, the evidence of thyroid cancer risk from this study as a result of nitrate exposure in 

drinking water can help to bring this category of supplies into the public health agenda.  

 

A review of the current policy on nitrate should include a consideration of lowering the drinking 

water standards. While it is neither the aim nor the objective of this study to set a new drinking 

water standard for nitrates, the EEC recommended guideline value or MCL is 25mg/l may be a 

way forward. This value, which has been reported as the critical concentration for adverse health 

effects for nitrate and below which, the risk of thyroid cancer is low, is associated with lifetime 

excess risk of 0.15 or 15%. Reduction of nitrate concentrations in drinking water can be achieved 

by blending nitrate contaminated water with nitrate free water; biochemical treatment of water 

and/or reducing the amount of fertilisers or manure applied to crops. Reduction in the amount of 

fertilisers or manure applied to crops can help prevent leaching of excess fertilisers to ground or 

surface waters used for drinking water purposes and this is the objective of the EU Nitrate 
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Directive. Whilst the health benefits of blending and biochemical treatment to prevent nitrate 

concentrations exceeding 25mg/l in drinking water have been judged to far outweigh the cost, 

the health cost associated with nitrate leaching to drinking water sources can impact on the net 

benefit of fertiliser use for crop production.  

 

The health impact of the 13 per cent excess thyroid cancer cases attributed to nitrates in drinking 

water in the study population could translate to an economic loss of €12.60/person/year. While 

the cost of salt iodisation to deal with the effects of iodine inhibition is less than that of water 

blending to reduce nitrate concentration in drinking water, both measures can be incorporated in 

any public health policy designed to reduce the health impact of nitrate exposure. This is 

important because of the evidence of the persistence of goitre in some countries that have 

successfully implemented salt iodisation.  Iodisation of salt is safe, simple, cheap, self- financing 

and cost - effective and there is no significant price differential between iodised and non-iodised 

salt. It has the benefit of improving maternal iodine status and cognitive function in new born 

babies and school-age children as well as school performance. Also, there are benefits in terms 

of goitre prevalence and hyperthyroidism; and it provides alternative sources of iodine to people 

who may be intolerant or allergic to dairy milk. However, a national survey of iodine status of 

the UK population is necessary before the implementation of any iodine prophylaxis programme 

given that the evidence of moderate –to mild iodine deficiency in the UK is only based on 

studies on children of school age. This is important in order to avoid the risk of iodine induced 

hyperthyroidism as a result of excess iodine intake. Given that iodine is essential for the 

maintenance and outcome of pregnancy, women of child-bearing age should be encouraged to 

take vitamins fortified with iodine if they are planning on getting pregnant. Also, iodine fortified 

vitamins must be made essential for pregnant and lactating women in order to improve the 

outcome of pregnancy and improve cognitive function in new-born babies. 
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Although causality was not firmly established between nitrate exposure in drinking water and 

thyroid cancer, a role for nitrates in the aetiology of thyroid disorders including goitre and 

thyroid cancer is biologically plausible and the measures outlined in this study to mitigate the 

health impact of nitrates following exposure in drinking water can help to improve the health of 

the public as a precaution. While the results of epidemiological studies on thyroid disorders 

including thyroid cancer are inconsistent, more and improved epidemiological studies are 

necessary in order to clarify the possible role of nitrates in thyroid cancer aetiology given the 

increasing incidence of the disease in the UK and other countries around the world without an 

identifiable cause.  

  

8.4    RECOMMENDATIONS 

 

 Review the current drinking water standard for nitrates and consider lowering the 

standard in view of the evidence of risk of thyroid cancer at nitrates concentration below 

and equal to 50mg/l. 

   

 Evaluate existing and new water treatment technologies for nitrates in drinking water 

with a view to effective removal of nitrate ions from drinking water. 

 

 Review EU Directive 98/83/EC on the quality of water used for human consumption 

with a view to extending the Directive to all PWS irrespective of the size and the number 

of people served. 
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 Review the UK Private Water Supply Regulation (2009) and extend the 5 years 

compulsory risk assessment and monitoring regime to all PWS including those serving 

single dwellings, given that this type of supply constitutes the majority of PWS in the 

UK but they are currently exempt from the compulsory risk assessment and monitoring 

regime that applies to all other supplies. 

 

 A survey of the iodine status of the UK population especially in regions such as East 

Anglia where there is widespread nitrate contamination of drinking water sources. Given 

that no national survey has been undertaken to monitor the iodine status of the UK 

population since the 1940s, the survey will help to bring iodine back on to the public 

health agenda and encourage consideration the implementation of iodine prophylaxis in 

the population.  

 

 Advice to pregnant women and lactating mothers (especially those served by PWS) 

should include information on the adverse health effects of nitrates in drinking water and 

the need to avoid water with high concentration of nitrates during critical periods.  

 

8.5  FURTHER RESEARCH 

 

 Well-designed epidemiological studies are required to clarify the role of nitrates in 

drinking water and thyroid cancer. The studies should focus more on PWS given the 

vulnerability of this type of drinking water sources to nitrate contamination. Such studies 

should consider the amount of iodine intake in the study population; the actual nitrate 

concentration in the drinking water and the amount of tap-water intake per day. Also, the 

study should include population with long- term exposure including those on public 
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supplies. Drinking water contaminants that occur alongside nitrates e.g. perchlorate, 

thiocyanate and pesticides should also be evaluated. 

 

  Studies are required to investigate whether there are thyroid cancer clusters in regions of 

the UK where there are high numbers of PWS. 

 

 Further investigation is required to confirm the relationship between nitrates in drinking 

water and thyroid disorders, including thyroid cancer. Such studies should determine 

whether the relationship is threshold or non-threshold; monotonic or non- monotonic. 

 

 Studies are required on the economic loss from thyroid cancer including the cost of 

treatment.  

 

 Studies are required on the reproductive and developmental outcomes as a result of 

exposure to nitrates in drinking water.  Such studies should evaluate the relationship 

between exposure to nitrates in drinking water and preterm birth; spontaneous abortions; 

intrauterine growth retardation; malformations of the central nervous system and low 

birthweight.  
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Appendix 1: Database Search Terms  
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Appendix 2: Funnel Plots 

 

Clinical hyperthyroidism 

 

 

Subclinical hyperthyroidism 
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Clinical hypothyroidism 

 

 

 

Funnel plot subclinical hypothyroidism 

 

 

 

 

Appendix 2 (Continued): Funnel Plots 
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Funnel Plot - Goitre 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix 2 (Continued): Funnel Plots 
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APPENDIX 3:  Letter to Water Companies requesting nitrate data in public water. 

 

Suffolk Coastal District Council 

Melton Hill, Woodbridge, Suffolk IP12 1AU 

Tel: (01394) 383789 

Fax: (01394) 385100 

Minicom: (01394) 444211 

DX: Woodbridge 41400 

Website: www.suffolkcoastal.gov.uk 

 

 

The Water Quality Manager 

(Water Company Name) 

Please ask for: G.N.Onuoha 

Direct Dial:01394 444267  

Email: George.onuoha@eastsuffolk.gov.uk 

Our Ref: 

Your Ref: 

 

  

 1 August 2010 

Dear Sir/Madam 

WATER SUPPLY (WATER QUALITY) REGULATIONS 2000: PERMISSION TO USE NITRATE DATA 

FROM YOUR WATER COMPANY FOR MY PhD RESEARCH PROJECT.  

 

I work for Suffolk Coastal District Council (Environmental Health Section) and I am currently undertaking a study 

on the quantitative risk assessment of exposure to nitrates in drinking water and adverse human health outcomes in 

East Anglia. This study is being undertaken at the School of Health & Human Sciences, University of Essex as part 

of my PhD. 

I am at the data collection stage of the research project and I am to obtain information from Water Companies in 

East Anglia on nitrate levels in drinking water sources. 

I would be most grateful if you could assist me with information on nitrate levels in your water zone for the last 10 

years. The following information is required; water source type (e.g. groundwater, surface water etc); number of 

samples taken each year, raw nitrate levels before blending (minimum and maximum levels is acceptable) and the 

postcode of the areas supplied.  

 Please note that any data supplied will be taken as consent to use your data for the purposes of this research project 

only, and be assured that any information provided will be treated with absolute confidentiality and anonymity such 

that no particular individual or Water Company will be identified.   

Thank you very much for your time and I look forward to hearing from you. 

Yours faithfully, Mr George Onuoha 
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Appendix 4: Letter and Questionnaire to Local Authority Environmental Health  

Suffolk Coastal District Council 

Melton Hill, Woodbridge, Suffolk IP12 1AU 

Tel: (01394) 383789 

Fax: (01394) 385100 

Minicom: (01394) 444211 

DX: Woodbridge 41400 

Website: www.suffolkcoastal.gov.uk 

 

 

Head of Environmental Health 

(Local Authority Name) 

 

Please ask for: G.N.Onuoha 

Direct Dial:01394 444267  

Email: environment@eastsuffolk.gov.uk 

Our Ref: 

Your Ref: 

1 August 2010  

  

  

Dear Sir/Madam 

PRIVATE WATER SUPPLIES: PERMISSION TO USE NITRATE DATA FROM YOUR LOCAL 

AUTHORITY FOR MY PhD RESEARCH PROJECT 

I work for Suffolk Coastal District Council (Environmental Health Team) and I am currently undertaking a study on 

the quantitative risk assessment of exposure to nitrates in drinking water and adverse human health outcomes in East 

Anglia.  This study is being undertaken at the School of Health & Human Sciences, University of Essex as part of 

my PhD. I am at the data collection stage of the research project and I am to obtain information from local 

authorities in East Anglia on the level of nitrates in PWS in their areas.  

I would be most grateful if you could spare a few minutes of your time to assist me with this data collection exercise 

by completing the attached questionnaire. The questionnaire is very brief and I have enclosed a self-addressed 

envelope for its return at your earliest convenience.  

Please note that by completing this questionnaire, you give consent to use data for the purposes of this research 

project only, and be assured that any information provided will be treated with absolute confidentiality and 

anonymity such that no particular individual/s or local authority will be identified.   

Thank you very much for your time and I look forward to hearing from you. 

Yours faithfully, Mr George Onuoha 

Encs 
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NITRATES QUESTIONNAIRE 

 

1. Do you have any private water supplies (PWS) in your authority? 

 

YES (If yes, please answer questions 2-4)  NO (If No, please return questionnaire in the SAE)

  

2. How many PWS are there in your authority? (an estimate will be acceptable if the actual number is not readily 

available) 

 

3. Are there any PWS in your area with nitrate levels above the standard set in Schedule 1 of the Private Water 

Supplies Regulations 2009 - (50mg/l)? 

 

Yes   No 

4. What are the levels of nitrates in PWS in your authority? (Please state the number of samples in each category). 

 

Level (mg/l) Number 

<50  

50-100 

 

 

101-200  

201-300  

 

>300  

 

CONSENT FORM 

I give consent to use this data for the purposes of this research project only. 

Signed……………………………..Date……………………………. 

Local authority Name: 

Tel No: 

Email: 

Would you like to know the outcome of the study when finished? 

Yes   No 

Thank you very much for your time. 

George Onuoha 

Email:gnonuo@essex.ac.uk 

Tel. 079 3285 8382 

Appendix 4(continued): Letter and Questionnaire to Local Authority 

Environmental Health. 
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Appendix 5 (Table 3):  Nitrate levels in public and private water supplies and the 

approximate population served in East Anglia in 2001-2010 

 

 Nitrate 

levels 

(mg/l) 

Mean level 

     (mg/l) 

     

 

                 Population (P) 

Mains PWS Total (P) 

0-5 2.5 677, 884 2754 680,638 

6-10 8 140, 586 1050 141,636 

11-15 13 516, 772 774 517,546 

16-20 18 149, 432 1146 150,578 

21-25 23 149, 848 606 150,454 

26-30 28 301, 299 546 301,845 

31-35 33 366, 586 372 367,132 

36-40 38 464, 380 324 464,704 

41-45 43 47, 121 552 47,673 

46-50 48 22, 500 1074 23,574 

51-55 53 - 540 540 

56-60 58 - 336 336 

61-65 63 - 330 330 

66-70 68 - 210 210 

71-75 73 - 108 108 

76-80 78 - 246 246 

81-85 83 - 174 174 

86-90 88 - 138 138 

91-95 93 - 174 174 

96-100 98 - 312 312 

101-105 103 - 354 354 

106-110 108 - 258 258 

111-115 113 - 54 54 
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Nitrate 

levels 

(mg/l) 

 

Mean level 

     (mg/l) 

 

 

Population (P) 

 

 

 

 

Mains PWS Total (P) 

116-120 118 - 114 114 

121-125 123 - 42 42 

126-130 128 - 66 66 

131-135 133 - 42 42 

136-140 138 - 72 72 

141-145 143 - 54 54 

146-150 148 - 102 102 

151-155 153 - 18 18 

156-160 158 - 42 42 

161-165 163 - 12 12 

166-170 168 - 18 18 

171-175 173 - - - 

176-180 178 - 30 30 

181-185 183 - 6 6 

186-190 188 - 30 30 

191-195 193 - - - 

196-200 198 - 108 108 

201-205 203 - 36 36 

206-210 208 - 54 54 

211-215 213 - 66 66 

216-220 218 - 6 6 

Appendix 5; Table 3 (continued): Nitrate levels in public and private water 

supplies and the approximate population served in East Anglia in 2001-2010. 
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Nitrate 

levels 

(mg/l) 

 

Mean level 

     (mg/l) 

 

Population (P) 

Mains PWS Total (P) 

221-225 223 - - - 

226-230 228 - 30 30 

231-235 233 - 6 6 

236-240 238 - 24 24 

241-245 243 - - - 

246-250 248 - 6 6 

276-280 278 - 12 12 

281-285 283 - - - 

286-290 288 - 12 12 

316-320 318 - 6 6 

376-380 378 - 6 6 

386-390 388 - 18 18 

416-420 418 - 24 24 

431-435 433 - 6 6 

466-470 468 - 6 6 

Total  2,836,408 13,510 2,849,918 

Appendix 5, Table 3(continued): Nitrate levels in public and private water 

supplies and the approximate population served in East Anglia in 2001-

2010. 
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APPENDIX 6: LETTER TO RESIDENTS AND QUESTIONNAIRE 

Suffolk Coastal District Council 

Melton Hill, Woodbridge, Suffolk IP12 1AU 

Tel: (01394) 383789 

Fax: (01394) 385100 

Minicom: (01394) 444211 

DX: Woodbridge 41400 

Website: www.suffolkcoastal.gov.uk 

 

(Resident Address) 

 

 1 August 2010 

  

  

  

Dear Resident 

You are being invited to take part in a research study on the Quantitative risk assessment of 

exposure to nitrates in drinking water and adverse human health outcomes by completing the 

attached questionnaire. This study is being undertaken at the School of Health & Human Sciences, 

University of Essex as part of my PhD. Before you decide whether or not to take part, please take 

time to read the following information. It explains why and how the research is being done. 

Aim of the study 

Currently the only known human health effect associated with consumption of nitrates in drinking 

water is infantile methaemoglobinemia (Blue-baby syndrome) and the current drinking water 

standard of 50mg/l has been set to protect infants against this disease. However, the 

appropriateness of this standard in protecting against other potential health outcomes and the 

magnitude of risk (if any) posed by this drinking water contaminant has not been previously 

evaluated. This study therefore proposes to determine whether there is any health risk (apart from 

blue–baby syndrome) associated with exposure to nitrates in drinking water, and to quantify the risk 

(if any). 

Questionnaire  

The questionnaire is very short and should take about 5 minutes to complete. It seeks to gather 

information on the amount of tap-water intake among residents in Suffolk Coastal District Council. 

The questionnaire does not require any personal details. All data will be stored, analysed and 

reported in compliance with the Data Protection Act 1998. 
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If you decide to participate, please complete and return the questionnaire in the envelope provided 

(no stamp is required). Please note that return of the completed questionnaire will be taken as your 

consent to use the information provided for the purposes of this study only.  

If you do not wish to take part in this study, please tick the box below and return the questionnaire 

in the envelope provided. 

 

  

 

Should you wish to discuss this or require further information, please do not hesitate to contact me 

at the above address or with the following email address:  gnonuo@essex.ac.uk 

Thank you very much for your time.   

George Onuoha 

PhD Candidate in Public Health, University of Essex 

 

Questionnaire on the amount of tap-water intake by residents in Suffolk Coastal District 

Council. 

1. Age  
 

Person 1 Person 2 Person 3 Person  4 

 

Person 5 Person 6 

 

 

 

     

 

2. Sex 
 

Person 1 Person 2 Person 3 Person 4 Person 5 Person 6 

 

 

     

 

 

3. What is the source of the water supply to your home?(Please tick one box) 
 

a) Private well/borehole  
  

b) Public (mains) water      

 

 

APPENDIX 6 (continued): LETTER TO RESIDENTS AND QUESTIONNAIRE 

 

mailto:gnonuo@essex.ac.uk
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4. On average, how much tap-water do you drink each day? (as we only need an 
estimate, please write down the number of standard size glasses or mugs drank each 
day, including for hot and cold drinks) 

 

 

 

 

5. On average, how much bottled water do you drink each day? (including for cold and 
hot drinks) 

 

 

 

 

CONSENT FORM 

1. I confirm that I have read and understand the invitation letter dated 1 August, 2010, for this study and have 

had the opportunity to ask questions. 

2. I understand that my participation is voluntary and that I am free to withdraw at any time, without giving 

any reason, without my legal rights being affected. 

3. I understand that my responses will be recorded and may be analysed by responsible individuals from the 

University of Essex for the purposes of this research project only. I give permission for these individuals to 

have access to my recorded responses. 

4. I give consent to use this data for the purposes of this research project. 

 

Signed…………………………………… Date……………………… 

 

Thank you very much for your time. 

George Onuoha 

Email: gnonuo@essex.ac.uk 

 

 

 

 

 

Person 1 Person 2 Person 3 Person 4 Person 5 Person 6 

 

 

     

Person 1 Person 2 Person 3 Person 4 Person 5 Person 6 
 

 

 

 

    

APPENDIX 6 (continued): LETTER TO RESIDENTS AND QUESTIONNAIRE 
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APPENDIX 7:  ETHICAL APPROVAL 

 

 

 

 

 

 

 

 

 



299 

 

Appendix 8: Health Protection Agency (Public Health England) Advice Note on Nitrates 

in drinking water. 
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Appendix 9: Table on Excess Risk of Thyroid Cancer by Age groups in East Anglia 

Nitrate 

levels 

(mg/l) 

 

Mean 

level  

  ( C ) 

 

Infant ≤1yr     Children 1-6yrs Children 7-12yrs 

 CDI 

 

RR= 

mx+1 𝑅𝑅 − 1

𝑅𝑅
 

AR CDI 

 

RR= 

mx+1 𝑅𝑅 − 1

𝑅𝑅
 

AR CDI 

 

RR= 

mx+1 𝑅𝑅 − 1

𝑅𝑅
 

AR 

0-5 2.5 0.25 1.01 9.9x 10
-3 

0.20 1.01 9.9x10
-3 

0.09 1.00 0 

6-10 8 0.80 1.03 0.03 0.56 1.02 0.02 0.30 1.01 9.9x10
-3

 

11-15 13 1.30 1.04 0.04 0.91 1.03 0.03 0.46 1.01 9.9x10
-3

 

16-20 18 1.80 1.06 0.06 1.26 1.04 0.04 0.64 1.02 0.02 

21-25 23 1.90 1.06 0.06 1.61 1.05 0.05 0.82 1.03 0.03 

26-30 28 2.80 1.10 0.09 1.96 1.07 0.06 1.00 1.03 0.04 

31-35 33 3.30 1.11 0.10 2.31 1.08 0.07 1.18 0.04 0.05 

36-40 38 3.80 1.13 0.11 2.66 1.09 0.08 1.36 1.05 0.05 

41-45 43 4.30 1.15 0.13 3.01 1.10 0.09 1.53 1.05 0.06 

46-50 48 4.80 1.17 0.14 3.36 1.12 0.11 1.71 1.06 0.06 

51-55 53 5.30 1.18 0.15 3.71 1.13 0.11 1.90 1.06 0.06 

56-60 58 5.80 1.20 0.17 4.06 1.14 0.12 2.07 1.07 0.07 

61-65 63 6.30 1.22 0.18 4.41 1.15 0.13 2.25 1.08 0.07 

66-70 68 6.80 1.23 0.19 4.76 1.16 0.14 2.43 1.08 0.08 

71-75 73 7.30 1.25 0.20 5.11 1.18 0.15 2.61 1.09 0.09 

76-80 78 7.80 1.27 0.21 5.46 1.19 0.16 2.78 1.10 0.09 

81-85 83 8.30 1.29 0.22 5.81 1.20 0.17 2.96 1.10 0.10 

86-90 88 8.80 1.30 0.23 6.16 1.21 0.17 3.14 1.11 0.10 

91-95 93 9.30 1.32 0.24 6.51 1.22 0.18 3.32 1.11 0.11 

96-100 98 9.80 1.34 0.25 6.86 1.24 0.19 3.50 1.12 0.11 

101-105 103 10.30 1.36 0.26 7.20 1.25 0.20 3.68 1.13 0.11 

106-110 108 10.80 .37 0.27 7.56 1.26 0.21 3.86 1.13 0.12 

111-115 113 11.30 1.39 0.28 7.91 1.27 0.21 4.03 1.14 0.13 

116-120 118 11.80 1.41 0.29 8.26 1.29 0.22 4.21 1.15 0.13 

121-125 123 12.30 143 0.30 8.61 1.30 0.23 4.39 1.15 0.14 

126-130 128 12.80 1.44 0.30 8.96 1.31 0.24 4.57 1.16 0.14 

131-135 133 13.30 1.46 0.31 9.31 1.32 0.24 4.75 1.16 0.14 

136-140 138 13.80 1.48 0.32 9.66 1.33 0.25 5.00 1.17 0.15 

141-145 143 14.30 1.50 0.33 10.01 1.35 0.26 5.11 1.18 0.15 

146-150 148 14.80 1.51 0.34 10.36 1.36 0.26 5.28 1.18 0.16 

151-155 153 15.30 1.53 0.35 10.71 1.37 0.27 5.46 1.19 0.16 

156-160 158 15.80 1.55 0.35 11.06 1.38 0.27 5.64 1.19 0.16 
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Nitrate 

levels 

(mg/l) 

 

Mean 

level  

  ( C ) 

 

Infant ≤1yr     Children 1-6yrs Children 7-12yrs 

CDI 

 

RR= 

mx+1 𝑅𝑅 − 1

𝑅𝑅
 

AR= CDI 

 

RR= 

mx+1 𝑅𝑅 − 1

𝑅𝑅
 

AR= CDI 

 

RR= 

mx+1 𝑅𝑅 − 1

𝑅𝑅
 

AR= 

161-165 163  

16.30 

 

1.56 

 

0.36 

 

11.41 

 

1.39 

 

0.28 

 

5.82 

 

1.20 

 

0.17 

166-170 168 16.80 1.58 0.37 11.76 1.41 0.29 6.00 1.21 0.17 

171-175 173 - - - - - - - - - 

176-180 178 17.80 1.62 0.38 12.46 1.43 0.30 6.36 1.22 0.18 

181-185 183 18.30 1.63 0.39 12.81 1.44 0.30 6.53 1.23 0.19 

186-190 188 18.80 1.65 0.39 13.16 1.46 0.31 6.71 1.23 0.19 

191-195 193 - - - - - - - - - 

196-200 198 19.80 1.69 0.41 13.86 1.48 0.32 7.07 1.24 0.19 

201-205 203 20.30 1.70 0.41 14.21 1.49 0.33 7.25 1.25 0.20 

206-210 208 20.80 1.72 0.41 14.56 1.50 0.33 7.43 1.26 0.21 

211-215 213 21.30 1.74 0.42 14.91 1.52 0.33 7.61 1.26 0.21 

216-220 218 21.80 1.76 0.43 15.26 1.53 0.34 7.78 1.27 0.21 

221-225 223 - - - - -  - - - 

226-230 228 22.80 1.79 0.44 15.96 1.55 0.35 8.14 1.28 0.22 

231-235 233 23.30 1.81 0.45 16.31 1.56 0.35 8.15 1.28 0.22 

236-240 238 23.80 1.82 0.45 16.60 1.58 0.36 8.50 1.29 0.22 

241-245 243 - - - - -  - - - 

246-250 248 24.80 1.86 0.46 17.36 1.60 0.37 8.86 1.31 0.24 

276-280 278 27.80 1.96 0.49 19.46 1.67 0.40 10.00 1.35 0.26 

281-285 283 - - - - - - - - - 

286-290 288 28.80 2.00 0.50 20.16 1.70 0.41 10.29 1.36 0.26 

316-320 318 31.80 2.10 0.52 22.26 1.77 0.43 11.36 1.39 0.28 

376-380 378 37.80 2.31 0.57 26.46 1.92 0.48 13.50 1.47 0.32 

386-390 388 38.80 2.35 0.57 27.16 1.94 0.48 13.86 1.48 0.32 

416-420 418 41.80 2.45 0.59 29.26 2.01 0.50 14.93 1.52 0.34 

431-435 433 43.30 2.50 0.60 30.31 2.05 0.51 15.46 1.54 0.35 

466-470 468 46.80 2.62 0.62 32.76 2.14 0.53 16.71 1.58 0.37 

Appendix 9(continued): Table on Excess Risk of Thyroid Cancer by Age groups 

in East Anglia. 
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Appendix 9: Table on Excess Risk of Thyroid Cancer by Age groups in East Anglia 

Nitrate 

level 

(mg/l) 

 

Mean 

level   

(C) 

 

Adolescents (13-18yrs) Adults (19-70yrs) 

CDI 

 

RR= 

mx+1 𝑅𝑅 − 1

𝑅𝑅
 

AR= CDI 

 

RR= 

mx+1 𝑅𝑅 − 1

𝑅𝑅
 

AR= 

0-5 2.5 0.04 1.00 0 0.05 1.00 0 

6-10 8 0.12 1.00 0 0.15 1.00 0 

11-15 13 0.19 1.01 9.9x10
-3

 0.24 1.01 9.9x10
-3

 

16-20 18 0.27 1.01 9.9x10
-3

 0.33 1.01 9.9x10
-3

 

21-25 23 0.35 1.01 9.9x10
-3

 0.42 1.01 9.9x10
-3

 

26-30 28 0.40 1.01 9.9x10
-3 

0.52 1.01 0.02 

31-35 33 0.50 1.02 0.20 0.61 1.02 0.02 

36-40 38 0.60 1.02 0.02 0.70 1.02 0.02 

41-45 43 0.65 1.02 0.02 0.79 1.02 0.03 

46-50 48 0.72 102 0.03 0.89 1.03 0.03 

51-55 53 0.80 1.03 0.03 0.97 1.03 0.03 

56-60 58 0.87 1.03 0.03 1.10 1.03 0.04 

61-65 63 0.95 1.03 0.04 1.20 1.04 0.04 

66-70 68 1.03 1.03 0.04 1.25 1.04 0.04 

71-75 73 1.10 1.04 0.04 1.35 1.04 0.05 

76-80 78 1.18 1.04 0.05 1.44 1.05 0.05 

81-85 83 1.25 1.04 0.05 1.50 1.05 0.05 

86-90 88 1.33 1.05 0.05 1.62 1.05 0.06 

91-95 93 1.40 1.05 0.05 1.70 1.06 0.06 

96-100 98 1.48 1.05 0.06 1.80 1.06 0.06 

101-105 103 1.55 1.05 0.06 1.90 1.06 0.06 

106-110 108 1.63 1.06 0.06 1.99 1.06 0.07 

111-115 113 1.70 1.06 0.06 2.10 1.07 0.07 

116-120 118 1.78 1.06 0.06 2.17 1.07 0.07 

121-125 123 1.86 1.06 0.06 2.30 1.08 0.08 

126-130 128 1.93 1.06 0.06 2.36 1.08 0.08 

131-135 133 2.00 1.06 0.06 2.45 1.08 0.08 

136-140 138 2.08 10.7 0.06 2.50 1.09 0.08 

141-145 143 2.15 1.07 0.06 2.60 1.09 0.08 

146-150 148 2.23 1.08 0.07 2.70 1.09 0.08 
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Nitrate 

level 

(mg/l) 

 

Mean 

level   

(C) 

 

Adolescents (13-18yrs) Adults (19-70yrs) 

CDI 

 

RR= 

mx+1 𝑅𝑅 − 1

𝑅𝑅
 

AR= CDI 

 

RR= 

mx+1 𝑅𝑅 − 1

𝑅𝑅
 

AR= 

151-155 153 2.31 1.08 0.07 2.80 1.10 0.09 

156-160 158 2.38 1.08 0.07 2.90 1.10 0.09 

161-165 163 2.46 1.08 0.07 3.00 1.10 0.09 

166-170 168 2.53 1.09 0.08 3.10 1.11 0.10 

171-175 173 - - - - - - 

176-180 178 2.70 1.09 0.08 3.30 1.11 0.10 

181-185 183 2.76 1.09 0.08 3.40 1.12 0.11 

186-190 188 2.84 1.10 0.09 3.50 1.12 0.11 

191-195 193 - - - - - - 

196-200 198 3.00 1.10 0.09 3.65 1.13 0.11 

201-205 203 3.06 1.11 0.10 3.70 1.13 0.11 

206-210 208 3.14 1.11 0.10 3.80 1.13 0.11 

211-215 213 3.21 1.11 0.10 3.90 1.13 0.11 

216-220 218 3.30 1.11 0.10 4.00 1.14 0.12 

221-225 223 - - - - - - 

226-230 228 3.44 1.12 0.10 4.20 1.14 0.12 

231-235 233 3.52 1.12 0.11 4.30 1.15 0.13 

236-240 238 3.59 1.12 0.11 4.40 1.15 0.13 

241-245 243 - - - - - - 

246-250 248 3.74 1.13 0.11 4.60 1.16 0.14 

276-280 278 4.20 1.14 0.11 5.10 1.18 0.15 

281-285 283 - - - - - - 

286-290 288 4.45 1.15 0.13 5.30 1.18 0.15 

316-320 318 4.80 1.17 0.14 5.90 1.20 0.17 

376-380 378 5.71 1.20 0.17 6.97 1.24 0.19 

386-390 388 5.86 1.20 0.17 7.20 1.25 0.20 
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Abbreviation: 

CDI = chronic daily intake. 

RR = relative risk. 

AF = attributable fraction. 

PAF = population attributable fraction. 

Mg/kgbw/day = miligram per kilogram bodyweight per day. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Nitrate 

level 

(mg/l) 

 

Mean 

level   

(C) 

 

Adolescents (13-18yrs) Adults (19-70yrs) 

CDI 

 

RR= 

mx+1 𝑅𝑅 − 1

𝑅𝑅
 

AR= CDI  RR= 

mx+1 
𝑅𝑅 − 1

𝑅𝑅
 

AR  

416-420 418 6.31 1.22 0.18 7.70 1.27 0.21 

431-435 433 6.53 1.23 0.19 8.00 1.27 0.21 

466-470 468 7.06 1.24 0.19 8.64 1.30 0.23 

Appendix 9 (continued): Table on Excess Risk of Thyroid Cancer by Age groups 

in East Anglia. 

 


