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Abstract

This paper tests whether it is possible to improve point, quantile and density forecasts of realised

volatility by conditioning on a set of predictive variables. We employ quantile autoregressive models

augmented with macroeconomic and financial variables. Complete subset combinations of both linear

and quantile forecasts enable us to efficiently summarise the information content in the candidate predic-

tors. Our findings suggest that no single variable is able to provide more information for the evolution

of the volatility distribution beyond that contained in its own past. The best performing variable is

the return on the stock market followed by the inflation rate. Our complete subset approach achieves

superior point, quantile and density predictive performance relative to the univariate models and the

autoregressive benchmark.
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1 Introduction

Forecasting future volatility is essential for asset allocation, pricing, portfolio and risk management. Both

the future level of volatility and its distribution play a central role in derivatives pricing, developing trading

strategies, pricing and trading volatility derivatives, hedging portfolios and quantifying the uncertainty

around the point forecast of volatility. A vast literature has investigated time variation in the level of

volatility and the linkages between volatility and macroeconomic and financial variables. Early contributions

include, among others, Schwert (1989) and Glosten et al. (1993) that find evidence of a significant link

between mainly interest rate variables and future market volatility. More recently, Paye (2012) tests whether

conditioning on macroeconomic variables can improve realised volatility forecasts and finds a link between

several variables and stock market volatility. Christiansen et al. (2012) employ a comprehensive set of macro-

finance variables to predict the realised volatility of four different asset classes: equities, commodities, foreign

exchange rates, and bonds. Using Bayesian estimation techniques the authors identify the variables that

are best in predicting realised volatility. By selecting the most important predictor variables, they find that

their forecast models beat autoregressive benchmarks although this performance varies across asset classes

and over time. Conrad and Loch (2015) confirm the counter-cyclical behaviour of stock market volatility

for a broad set of macroeconomic variables. Their findings suggest that long-term volatility is mainly driven

by information related to the current state of the economy, as well as to expectations regarding future

macroeconomic conditions. Finally, Mittnik et al. (2015) show that boosting techniques substantially

improve volatility forecasts for short- and long-run horizons and risk drivers affect future volatility in a

nonlinear fashion.

While the aforementioned studies focus on the link between several macroeconomic and financial variables

and the future level of volatility, little or no attention has been paid to the impact of these variables on

the future volatility distribution. This paper complements these recent studies by focusing on the ability

of macroeconomic and financial variables to provide superior quantile and density volatility forecasts. Our

framework is a purely out-of-sample one based on quantile forecast combinations. As we show, aggregating

these quantile forecasts can also provide us with accurate point volatility forecasts. In general, the forecasting

framework we adopt is rooted in quantile predictive regressions, which have attracted a vast amount of

attention since the seminal paper of Koenker and Bassett (1978).1

We assume that future volatility quantiles depend on their own lags and macroeconomic and financial

variables. By considering several conditional quantiles of future volatility, we allow for heterogeneous degrees

of persistence of realised volatility and asymmetric dynamic responses of macroeconomic and financial

variables at different parts of the distribution. For example, variables that are useful in predicting volatility

surges (right tail of the volatility distribution) might be useless in calm periods (low volatility) and vice

1Quantile regressions have been employed very recently in a forecasting context by Manzan and Zerom (2013), Meligkotsidou
et al.(2014a, 2014b), Manzan (2015), and Pedersen (2015).
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versa. Also the degree of volatility persistence can vary with the quantile to be predicted probably pointing

to higher persistence in turbulent periods. We focus on US stock market volatility and update the dataset

of Christiansen at al. (2012). Given the plethora of candidate predictors, a question that naturally arises

is how to select the variables to include in the forecasting model without losing any useful information.

The approach we follow belongs to the combination of forecasts literature. To allow for varying degrees of

persistence in the distribution of volatility, we extend the Complete Subset Regression (CSR) framework of

Elliott et al. (2013) to a Complete Subset (Quantile) AutoRegressive one, namely the CS(Q)AR approach.

In the complete subset regression framework, forecasts are formed by combining forecasts from all possible

linear or quantile regression models that keep the number of predictors fixed. This forecasting approach

exploits the benefits emerging from three strands of the literature on out-of-sample forecasting. First, the

quantile regression setting succeeds in producing accurate distribution, quantile and point forecasts (via

efficiently aggregating quantile forecasts). Second, model uncertainty and parameter instability is reduced

by employing quantile forecast combinations.2 Finally, employing the complete subset approach induces

shrinkage to the respective estimates and further helps reduce the effect of parameter estimation error.

To anticipate our key results, we find that no single variable is able to provide more information for

the evolution of the volatility distribution beyond that contained in its own past. The best performing

variable is the return on the stock market followed by the inflation rate. These variables along with the

T-bill are the ones that improve point volatility forecasts with an out-of-sample R2 greater than 2.33%. Our

CSQAR approach achieves superior quantile, density and point predictive performance relative to univariate

models and the CSAR approach. With respect to point forecasts, our quantile aggregation method can

lead to substantial improvements judging from the out-of-sample R2 values of about 9% relative to the

autoregressive benchmark.

The outline of the paper is as follows. Section 2 describes our CSAR and CSQAR forecasting approaches

and shows how point forecasts are generated via quantile forecast aggregation. Section 3 outlines the tests

of forecasting accuracy used to evaluate the quantile, distribution and point forecasting approaches. Section

4 presents our empirical findings and finally, Section 5 concludes.

2 Forecasting approaches

Our aim is to evaluate the information content of financial variables for different parts of the future dis-

tribution of realised volatility. In this section, we describe our methodology for efficiently aggregating this

information that leads to superior point, quantile and density forecasts.

2Timmermann (2006) provides a detailed review on forecast combination methodologies. See also Bates and Granger (1969)
and Rapach et al. (2010).
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2.1 Complete subset autoregressive approach (CSAR)

Suppose that we are interested in forecasting realised volatility, denoted by RVt, using a set of K predictive

variables. Since volatility is fairly persistent, any predictive model should include autoregressive terms.

We investigate whether there is additional predictive content of the macroeconomic and financial variables

that goes beyond the information contained in lagged volatility. To this end, we employ a set of predictive

autoregressive models of time-varying order qt, each including a subset of k predictors, k ≤ K.

First we consider all possible (K) predictive autoregressive models (AR(qt)) augmented with a single

predictor, i.e. k = 1, of the form

RVt+1 = αi +

qt∑
j=1

cijRVt−j+1 + βixit + εt+1, i = 1, . . . ,K, (1)

where RVt+1 is the observed realised volatility at time t + 1, RVt−j+1 is the observed realised volatility

at time t, t − 1, ..., t − qt + 1 and xit is the ith observed predictor at time t, i = 1, ...,K. The error terms

εt+1 are assumed to be independent with mean zero and variance σ2
i . The predictive autoregressive models

considered are estimated using the Maximum Likelihood (ML) approach under the assumption of a Gaussian

error distribution with mean zero and constant conditional variance, i.e. εt+1 | �t ∼ N(0, σ2
i ), where �t

denotes the information set at time t. To recursively select the optimal lag length (qt) over the out-of-sample

period, we employ the Bayesian Information Criterion (BIC) and model (1) without any candidate predictors

(βi = 0). Model (1) nests the benchmark AR(1) and AR(2) specifications employed in Christiansen et al.

(2012) and Paye (2012), respectively. Given the parametric distribution for the error terms, point, quantile

and distribution forecasts of RVt+1 are straightforward to construct.

When the number of candidate predictors is large, finding a parsimonious way to include all relevant

information in the forecasting model is challenging. Two broad approaches have been put forward in

the literature; namely combination of forecasts and combination of information. Combination of forecasts

combines forecasts generated from simple models each incorporating a part of the whole information set,

while combination of information brings the entire information set into one elaborate model to generate an

ultimate forecast (Huang and Lee, 2010; Panopoulou and Vrontos, 2015). The approach we follow belongs to

the combination of forecasts strand and was proposed by Elliott et al. (2013) and extended to accommodate

a large-dimensional set of predictors by Elliott et al. (2015).

Elliott et al. (2013) employ complete subset regressions (CSR) as a means of combining forecasts.

Specifically, for a given set of potential predictors, the authors propose combining forecasts from all possible

linear regressions that keep the number of predictors fixed. The authors show that while subset regression

combinations bear similarities to a complex version of shrinkage, they do not reduce to shrinking Ordinary

Least Squares (OLS) estimates. Rather the coefficient that controls shrinkage depends on all estimates,

the dimension of the subset and the number of included predictors. Only in the case of orthonormal
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regressors does subset regression reduce to ridge regression. Moreover, the amount of shrinkage imposed on

each coefficient differs with the coefficient at hand. More importantly, the authors show that in the case of

strongly correlated predictors, subset regression can remedy the omitted variable bias and improve forecasts.

We adapt the CSR framework to an autoregressive one and employ complete subset autoregressive

(CSAR) models. For the case of k = 1, all K available models given by Equation (1) are employed. For

k = 2, Equation (1) is augmented with a second variable and all bivariate models are employed. We proceed

in this way until k = K where only one K−variate model is employed, referred to in the literature as the

‘kitchen sink’ model (Goyal and Welch, 2008). The set of models for a fixed value of k is referred to as a

complete subset. Given that each subset produces nk,K = K!/((K − k)!k!) forecasts corresponding to the

alternative models employed, these need to be aggregated (combined) into a single forecast per subset. In

order to do so, we employ two combination schemes; an equally-weighted (EW) and a stochastic Bayesian

combination scheme3.

Since the forecasting performance of the CSAR approach clearly varies with each subset employed,

selecting the optimal value of k (k∗) is of utmost practical importance. We employ the likelihood-based

(Bayesian) methodology of Meligkotsidou et al. (2014b) and select the most probable value of k at each point

of time in the out of sample period based on the posterior probabilities of all values of k (k ∈ {1, 2, ...,K}).
Details of the algorithm are given in the Appendix.

2.2 Complete subset quantile autoregressive approach (CSQAR)

Similar to the CSAR approach, the baseline forecasting model we consider is the Quantile Autoregressive

(QAR) specification developed by Koenker and Xiao (2006) augmented with one of K candidate predictor

variables:

RVt+1 = α
(τ)
i +

q
(τ)
t∑

j=1

c
(τ)
ij RVt−j+1 + β

(τ)
i xit + εt+1, i = 1, . . . ,K, (2)

where τ ∈ (0, 1), α
(τ)
i , c

(τ)
ij , β

(τ)
i are quantile-varying parameters and q

(τ)
t is the lag order used to model the

τth quantile of realised volatility at time t, given the variable xit. The errors εt+1 are assumed independent

from an error distribution gτ (ε) with the τth quantile equal to 0, i.e.
∫ 0

−∞ gτ (ε)dε = τ . Model (2) suggests

that the τth quantile of RVt+1 given the past of realised volatility (RVt−j+1, j = 1, ..., q
(τ)
t ) and the candidate

predictor variable, xit, is Qτ (RVt+1|�t) = α
(τ)
i +

q
(τ)
t∑

j=1

c
(τ)
ij RVt−j+1+β

(τ)
i xit, where �t denotes the information

set at time t with all the parameters depending on τ .

The augmented QAR model is the direct analogue of the AR model (Equation (1)) employed for the

conditional mean. Since the response of past volatility realisations (c
(τ)
ij ) varies across quantiles, the model

3We thank an anonymous referee for suggesting this combination scheme. Details are given in the Appendix. For alternative
quantile combination schemes see Shan and Yang (2009) and Tsiotas (2015).
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allows for heterogeneous degrees of persistence of realised volatility at different parts of the distribution

and asymmetric dynamic responses. Moreover, the inclusion of the conditioning variables (xit) may not

only shift the location of the distribution of RVt+1, but also may alter the scale and shape of the condi-

tional distribution, capturing systematic influences of conditioning variables on the future realised volatility

distribution.

Estimators of the parameters of the quantile regressionmodels in (2), α̂i
(τ), ĉij

(τ), β̂
(τ)
i , can be obtained by

minimizing the sum
∑T−1

t=0 ρτ

(
RVt+1 − αi

(τ) −
q
(τ)
t∑

j=1

c
(τ)
ij RVt−j+1 − β

(τ)
i xit

)
, where ρτ (u) is the asymmetric

linear loss function, usually referred to as the check function,

ρτ (u) = u (τ − I(u < 0)) =
1

2
[|u|+ (2τ − 1)u] . (3)

In the symmetric case of the absolute loss function (τ = 1/2) we obtain estimators of the median predictive

regression models. For likelihood based inference, one may assume the asymmetric Laplace error distribution

(for details, see Yu and Moyeed, 2001, and Yu and Zhang, 2005) for model (2).4 The advantage of likelihood-

based inference is that it enables us to compare different quantile regression models, corresponding to

different subsets of predictors, using criteria based on the likelihood function, for example BIC. This further

enables us to establish an approach of selecting the best (in a likelihood based sense) complete subset on

the basis of which forecasts are formed. Similar to the CSAR approach, we employ the BIC criterion to

select the optimal lag length q
(τ)
t which is quantile- and time-varying.

Next, we focus on the complete subset framework, which we adapt for the QAR case and develop the

complete subset quantile autoregressive approach (CSQAR). Specifically, similar to the CSAR approach, for

each k and for each quantile of interest (τ), nk,K QAR models are run in order to predict the τth quantile

of the distribution of the next period’s realised volatility (RVt+1). Then we aggregate the information

contained in each of the subsets by combining the nk,K τth quantile forecasts. As with the CSAR approach,

we employ both the EW and the Bayesian combining schemes. Finally, for each quantile, τ, we select the

most probable value of the subset k and produce a quantile forecast at time t+ 1, R̂V t+1(τ), based on the

selected complete subset obtained by our the recursive algorithm outlined in the Appendix. This algorithm

selects the optimal subset k∗τ in a quantile-varying manner, based on the respective posterior probabilities

of all values of k (k ∈ {1, 2, ...,K}) for a set of quantiles.

2.3 Point forecasts via quantile forecast aggregation

While the QAR methodology described so far provides a direct way for forecasting the quantiles of interest

along with an approximate forecast distribution, forecasting the mean of future realised volatility is not

4A potential problem that may arise in small samples is the so-called quantile crossing, that is the estimated quantiles are
not guaranteed to be monotonic in τ . If this occurs, the recently developed approach of Chernozhukov et al. (2010) can be
employed to establish monotonicity of the estimated quantiles.
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trivial. For a given model specification or a given complete subset that has been used for producing quantile

forecasts, point forecasts can be constructed as weighted averages of a set of quantile forecasts (Meligkotsidou

et al. 2014a). The weights represent probabilities attached to different quantile forecasts, suggesting how

likely to predict the return at the next period each regression quantile is. More in detail, we employ standard

estimators with fixed, pre-specified weights of the form

R̂V t+1 =
∑
τ∈S

pτ R̂V
(τ)

t+1,
∑
τ∈S

pτ = 1,

where S denotes the set of quantiles that are aggregated, R̂V
(τ)

t+1 denotes the quantile forecasts associated

with the τth quantile and R̂V t+1 is the produced point forecast.

We consider Tukey’s (1977) trimean and the Gastwirth (1966) three-quantile estimator given, respec-

tively, by the following formulae

FW1: R̂V t+1 = 0.25R̂V
(0.25)

t+1 + 0.50R̂V
(0.50)

t+1 + 0.25R̂V
(0.75)

t+1 , (4)

FW2: R̂V t+1 = 0.30R̂V
(1/3)

t+1 + 0.40R̂V
(0.50)

t+1 + 0.30R̂V
(2/3)

t+1 . (5)

In order to attach more weight on extreme positive and negative events, we also use the five-quantile

estimator, suggested by Judge et al. (1988)

FW3: R̂V t+1 = 0.05R̂V
(0.10)

t+1 + 0.25R̂V
(0.25)

t+1 + 0.40R̂V
(0.50)

t+1 + 0.25R̂V
(0.75)

t+1 + 0.05R̂V
(0.90)

t+1 . (6)

3 Measuring Forecast Accuracy

In this section, we describe the criteria we employ to evaluate realised volatility forecasts. First, we focus on

point forecasts constructed either directly (CSAR approach) or indirectly via aggregating quantile forecasts

(CSQAR approach); then we focus on quantile and density forecasts. We divide the total sample of T

observations into an in-sample portion of the first T0 observations and an out-of-sample portion of P =

T − T0 observations used for forecasting. Out-of-sample forecasts are generated by continuously updating

the estimation window, i.e. following a recursive (expanding) scheme, by adding one observation to the

estimation sample at each step. As such, the coefficients in any predictive model employed are re-estimated

after each step of the recursion. Proceeding in this way through the end of the out-of-sample period, we

generate a series of P out-of-sample forecasts for the realised volatility
{
R̂V i,t+1

}T−1

t=T0

.
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3.1 Point forecast accuracy

Consistent with the existing literature and since volatility is persistent, the natural benchmark forecasting

model is the AR(1) model. To disentangle the relevant importance of the autoregressive part of the model

vs the inclusion of candidate predictors, we also employ an AR(qt) model as a benchmark. In this case,

the volatility forecast coincides with the forecast in the autoregressive model (1) when no predictor is

included, i.e. k = 0. As a measure of forecast accuracy, we employ the out-of-sample R2 computed

as R2
OS = 1 − MSFEi

MSFE0
, where MSFEi is the Mean Square Forecast Error associated with each of our

competing models and specifications and MSFE0 is the respective value for the benchmark model, both

computed over the out-of-sample period. Positive values are associated with superior forecasting ability of

our proposed model/specification. To evaluate the statistical significance of our conditional mean forecasts

relative to the benchmark, we employ the Clark and West (2007) (CW) approximate normal test, which is

an adjusted version of the Diebold and Mariano (1995) and West (1996) statistic. The test, in conjunction

with the standard normal distribution, generates asymptotically valid inferences when comparing forecasts

from nested linear models.5

3.2 Quantile forecast accuracy

While MSFE is an appropriate loss function for the evaluation of point (conditional mean) forecasts, it is

not valid and informative for the evaluation of quantile forecasts. As proposed by Gneiting and Raftery

(2007) and Gneiting and Ranjan (2011), the same loss function, i.e. the asymmetric linear loss function

given by Equation (3) should be employed in both model estimation and forecast evaluation. Following

Manzan (2015), we evaluate quantile forecasts using the quantile score (QS). The QS function focuses on

a specific quantile τ and provides a local evaluation of the forecasts. The QS for the τth quantile forecast

of model/specification i is given by

QSi
t+1|t(τ) =

[
RVt+1 − R̂V

(τ)

i,t+1

] [
τ − I(RVt+1 − R̂V

(τ)

i,t+1 < 0)

]
, (7)

where I denotes the indicator function that takes the value of 1 if the argument is true and zero otherwise,

RVt+1 is the actual realisation of volatility at time t + 1, and R̂V
(τ)

i,t+1 is the related forecast for quantile

τ . This scoring rule is defined in negative orientation coinciding with the notion of a loss function, so that

when comparing two models, we prefer the one with the lowest score.

To evaluate the hypothesis of equal forecast accuracy of the quantile forecasts, we consider the approach

proposed by Amisano and Giacomini (2007) and Giacomini and White (2006). Specifically, we employ the

5When comparing the aggregated quantile forecasts, we no longer have a nested environment. To this end, we also evaluate
our forecasts on the basis of the Diebold and Mariano (1995) test.
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test statistic

t =
QSi(τ) −QS0(τ)

σ̂
, (8)

where QSi(τ), QS0(τ) denote the averages over the out-of-sample period of the quantile scores for a given

quantile τ for the proposed model/ specification i relative to the benchmark model score and σ̂ denotes

the heteroscedasticity and autocorrelation consistent (HAC) standard error estimator of the quantile score

difference.6 Assuming suitable regularity conditions, the statistic t is asymptotically standard normal under

the null hypothesis of vanishing expected score differentials. In the case of rejection, model i is preferred to

the benchmark if t is negative, and the benchmark model is preferred if t is positive.

3.3 Density forecast accuracy

The entire volatility density is not readily available from a quantile regression approach. However, it can

be approximated by interpolating a set of volatility quantile forecasts. Such a method does not require a

distributional assumption for the innovations of the conditional quantiles. To evaluate the performance of a

model to forecast an area of the distribution, we employ the Weighted Quantile Score (WQS). The WQS

is constructed by integrating the QS (given by Equation (7)) across τ with the score multiplied by a weight

function that focuses on the specific part of the distribution as follows:

WQSi
t+1|t =

∫ 1

0

QSi
t+1|t(τ)ω(τ)dτ,

where ω(τ) denotes a weight function in the unit interval.7 This accommodates the forecaster’s interest

to evaluate specific areas of the distribution. For example, a trader or a risk manager might be interested

in the left/right tail of the realised volatility distribution, rather than a specific quantile. We employ four

weight functions which are of particular interest: (1) WQS1 : ω(τ) = 1 which provides an overall evaluation

of the forecast distribution since it is a uniform weight, (2) WQS2 : ω(τ) = τ(1 − τ), which puts relative

more weight in the middle of the distribution, (3) WQS3 : ω(τ) = (1 − τ)2, which assigns more weight to

the left tail of the distribution; and (4) WQS4 : ω(τ) = τ2, which puts more weight on the right tail. In

a similar vein, we perform tests of equal forecasting ability on the basis of Weighted Quantile Scores by

replacing QS in Equation (8) with WQS.

Furthermore, to evaluate the performance of a model to forecast the entire distribution, we calculate the

mean log predictive scores (MLPS) of candidate models and test for equal predictive accuracy by means of

the Diebold and Mariano statistic. The test statistic is defined to be negatively oriented, i.e. a candidate

model is preferred to the benchmark if the statistic is significantly negative.

6Since we focus on one step ahead forecasts, HAC adjustment is not necessary.
7In our forecasting experiment, we replace the continuous version of WQS with a discrete version summing over the quantiles

of interest.
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4 Empirical findings

4.1 Data and forecast construction

The data we employ comprises the ‘long’ (updated to December 2015) sample of Christiansen et al. (2012)

who provide a detailed description of transformations and datasources. The variable of interest is the realised

volatility (RV ) of the S&P 500 index, defined as the square root of the realised variance, computed as the

sum of squared intra-period (daily) returns, i.e.

RVt =

√√√√Mt∑
j=1

r2t;j ,

where rt;j is the jth daily continuously compounded stock market return in month t and Mt denotes the

number of trading days during month t. As the number of intra-period observations becomes large, realised

volatility is an accurate proxy for the true, but latent, integrated volatility (Andersen et al., 2003, 2006).

Figure 1 plots the analysed realised volatility series. It can be seen that the series is highly variable with

periods of high volatility corresponding to a number of financial crises.

[FIGURE 1 AROUND HERE]

Our forecasting experiment is conducted on a monthly basis and data span 1926:12 to 2015:12. The

out-of-sample forecast evaluation period starts in January 1937, so the first estimation window, which is

continuously updated consists of 120 observations. Following Christiansen et al. (2012), we rely on a set

of 13 macroeconomic and financial predictive variables. Specifically, we consider stock valuation ratios

such as the dividend price ratio (DP) and the earnings-price ratio (EP), commonly considered in predictive

regressions for stock returns. To capture the leverage effect suggesting that negative returns are associated

with higher subsequent volatility, we include lagged equity market returns (MKT). We also include the

Fama and French (1993) risk factors, i.e. the size factor (SMB), the value factor (HML) and a short-

term reversal factor (STR) which is related to market volatility and distress. Turning to interest-rate/

bond related variables, we employ five variables ranging from short-term government rates to long-term

government bond yields and returns along with their spreads. These are the Treasury bill rate (TB), the

interest rate on a three-month Treasury bill; Long-term return (LTR), the return on long-term government

bonds; Term spread (TMS), the difference between the long-term yield and the Treasury bill rate; Relative

T-bill rate (RTB), the difference between the T-bill rate and its 12-month moving average and Relative

Bond rate (RBR), the difference between LTR and its 12 month moving average. To proxy for credit risk,

which tends to be higher in situations where leverage rises and should influence volatility, we rely on the

yield spread between BAA and AAA rated bonds, i.e. the default spread (DEF). Finally, to capture the

overall macroeconomic environment, we employ the inflation rate, INF, monthly growth rate of CPI (all

urban consumers).
9



4.2 Point forecasts

First, we discuss the out-of-sample performance of point forecasts obtained by univariate linear and quantile

autoregressive models employing Equations (1) and (2) and one predictor at a time.8 Table 1, Panel A (Col-

umn 1) presents the R2
OS statistics of all linear univariate models relative to the AR(1) benchmark model.

Positive values of R2
OS indicate superior forecasting performance of the predictive models with respect to

the AR(1) forecasts. The statistical significance of the corresponding forecasts is assessed by using the Clark

and West (2007) MSFE-adjusted statistic (reported in Panel B of Table 1). Our findings suggest that all

variables significantly outperform the predictions of the AR(1) model with varying degrees of outperfor-

mance though. Equity market returns, inflation and the Treasury bill rate emerge as the most powerful

predictors as improvements in R2
OS range from 5.98% to 7.76%. Our point volatility forecasts constructed

via quantile forecast aggregation (Equations (4) -(6)), reported in columns 2-4, point to significant forecast

improvements. The respective R2
OS are greater than 6.2% and reach 12.5% for MKT and the FW1 weighting

method. All aggregation methods perform equally well, with FW1 being the most accurate, by a narrow

margin though.

[TABLE 1 AROUND HERE]

Panels C and D of Table 1 report our findings with respect to the AR(q) benchmark. In this way, we reveal

the forecasting ability of predictors after we have taken into account the past history of realised volatility.

Consequently and contrary to the AR(1) case, only a few variables significantly outperform the predictions

of the AR(q) model (Panel C, Column 1) when the simple linear model is employed. Specifically, positive

and significant R2
OS are associated with the three best performing predictors of the AR(1) benchmark;

namely MKT, INF and TB. More importantly, our quantile aggregated forecasts (FW1-FW3, Columns 2-4)

outperform the benchmark irrespective of the candidate predictor employed. Forecast improvements range

from 2.58% for DEF and FW2 to over 9% for MKT and FW1.

Next, we evaluate the ability of the equally weighted CSAR approach to provide more accurate point

forecasts relative to both the AR(1) and AR(q) benchmark. Column 1 of Panels E and F report the related

R2
OS values with respect to the AR(1) and AR(q) benchmarks (all of which are significant). The first

cell of each panel corresponds to the combinations of single-variable models (k = 1) associated with the

approach followed by Rapach et al. (2010). Interestingly, our results corroborate the existing literature

on the increased benefits of forecast combinations. A sizable improvement of 4.78% and 1.08% over the

benchmark AR(1) and AR(q), respectively, is evident. Focusing on forecasts produced by subset linear

regressions for various values of k, we note that as we increase the number of subsets (k) the subset linear

regression with k ≥ 2 generates larger R2
OS values than the case of k = 1. In more detail, R2

OS is maximised

8Note that, since volatility can not be negative, all negative mean and quantile forecasts obtained by our predictive models
are set to zero.
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at k = 7 reaching the value of 9.71% (over the AR(1) benchmark) suggesting that averaging over all seven-

variate models is optimal. Increasing k further leads to a deterioration in forecasting performance with a

value of 5.25% for the Kitchen Sink model (k = 13). This predictive performance depends on the choice

of the value of k. Therefore, we employ our algorithm in order to produce ‘optimal forecasts’, i.e. identify

the best subset for each point of the out of sample period. The last two lines of Panels E and F report the

related R2
OS values along with the CW t-statistic. Our results suggest that our likelihood-based approach

to selecting k in real time is extremely successful, since the value of R2
OS obtained is equal to 7.95% and

significant. With respect to the alternative AR(q) benchmark, our findings, reported in Panel F, remain

qualitatively similar.

We now turn our attention to evaluating the forecasting performance of the equally weighted CSQAR

approach. Columns 2-4 (Table 1, Panel E) report our findings for the three weighting schemes (FW1-

FW3) relative to the AR(1) benchmark respectively, while Columns 2-4 (Panel F) correspond to the AR(q)

benchmark. Our results indicate that the point forecasts generated via the CSQAR approach are superior

to the linear ones. For example, averaging across k−variate quantile models generates R2
OS values that are

greater than 8.59% as opposed to 4.78% for the k−variate linear models relative to the AR(1) benchmark.

The FW3 weighting scheme is the one that emerges as superior judging from the higher R2
OS values in

the majority of subsets. This superior performance stems from the fact that this method utilises a finer

grid of quantiles and puts weights on the extreme 10% and 90% quantiles and as a result approximates the

future realised volatility density more efficiently. Finally, it is evident that our algorithm is successful in

identifying the best subset for each quantile and time period resulting in R2
OS values that range between

9.98% to 10.52%. Our findings are qualitatively similar when we employ the AR(q) benchmark.

Turning to the Bayesian combination scheme, Panels G and H (Table 1) report the related R2
OS values.

Overall our findings suggest that this combination scheme further improves point forecast accuracy. For

example, our likelihood-based approach to selecting k results in R2
OS that range between 10.03% to 12.78%

relative to the AR(1) benchmark. Comparing the two combination schemes we observe that the Bayesian

combination scheme improves equally weighted forecasts by more than 2%.

To shed light on the success of our algorithm, we plot in Figure 2 the selected values of k for both

the CSAR (Panel A) and CSQAR (Panels B-H) approaches, under the prior distribution specified in the

Appendix (with π=1/2). The proposed algorithm is flexible enough to allow for variability of the selected

k across quantiles and, therefore, information on the best complete subset for each quantile of the volatility

distribution can be incorporated within our approach. It is evident that for the CSAR approach the most

frequently selected subset is the one corresponding to four-variate models. More importantly, the selected

value of k varies across quantiles. In general, larger values of k are selected for the upper quantiles (τ=0.75

and τ=0.90). For this part of the distribution, the most frequently selected subsets are those of k = 5 to

k = 7. For the central and lower quantiles, our algorithm tends to choose values of k between 3 and 5.

11



[FIGURE 2 AROUND HERE]

To further assess the performance of our CSQAR forecasts over time, Figure 3 plots the cumulative

squared forecast error differences between the optimal CSQAR approaches (EW and Bayesian) and the

AR(q) benchmark (Panels (a) and (c)), and the optimal CSAR (EW and Bayesian) benchmarks (Panels

(b) and (d)). An increase in the line indicates a better performance of the proposed methodology over

the respective benchmark. The figure confirms graphically the improved forecasting performance of our

approach which is particularly positive around the period of 1987 crash and relatively stable in the more

recent time period. It further illustrates the superiority of the Bayesian combination scheme for constructing

point volatility forecasts.

[FIGURE 3 AROUND HERE]

Overall, our findings are in line with Paye (2012) and Christiansen et al. (2012) who find improved fore-

casting benefits for realised volatility when employing macro-finance variables. Specifically, Paye’s (2012)

findings are similar to ours as the author also finds that individual forecasts rarely outperform an AR(2)

benchmark while simple combination schemes are consistently successful. In a similar vein, Christiansen

et al. (2012) account for model uncertainty by employing Bayesian techniques and find that their fore-

casting models beat the AR benchmarks. In our study, we also take into account predictor uncertainty in

both a linear and quantile regression framework but focus more on uncertainty stemming from subset se-

lection. Moreover, the flexibility of our approach combined with information from the whole future realised

distribution leads to superior forecasts compared with the aforementioned studies.

4.3 Quantile forecasts

In this subsection, we evaluate the forecasting performance of our CSQAR approach relative to the AR(q)

and the QAR(q) benchmarks. Our aim is to reveal whether our flexible approach of aggregating predictor

information across quantiles is successful and to provide a guidance for selecting the best subset for each

quantile of interest via our algorithm.

[TABLE 2 AROUND HERE]

Table 2 (Panel A) reports the Quantile Score test statistics for the null hypothesis of equal quantile

forecast accuracy of the augmented QAR models relative to the benchmark AR(q). Quantiles of the AR(q)

model are calculated assuming a Gaussian distribution with zero mean and constant conditional variance

via Equation (1), where βi = 0. The quantiles of interest are the ones employed in the point forecast

aggregation, i.e. τ ∈ {0.10, 0.25, 1/3, 0.50, 2/3, 0.75, 0.90} . The most important finding that emerges is that

the augmented QAR models are more accurate than the AR(q) benchmark. In more detail, forecast accuracy,

judged by the statistical significance of the QS tests, is more pronounced for the left tail (τ = 0.10, τ = 0.25)
12



and the central to right tail part (τ = 2/3, τ = 0.75) of the realised volatility distribution. The central

to left tail part (τ = 1/3, τ = 0.50) and the 0.90 quantile of the realised volatility distribution is the one

exhibiting the weakest statistical significance. Overall, our findings suggest that quantile forecasting models

can produce more accurate forecasts of the realised volatility future quantiles.

However, the results reported so far do not reveal any information on the ability of specific predictors

to beat the simple QAR model. Panel B of Table 2 reports the related findings. Quite interestingly, no

predictor succeeds in improving forecasts for all the quantiles of the distribution considered. Similarly

to the linear case, the most useful predictor is MKT and to a lesser extent INF. Specifically, MKT can

improve forecasts in all parts of the distribution with the exception of the lower left tail. With respect

to INF, significant forecasting improvements are apparent for the right part of the distribution. The poor

forecasting performance of individual predictors seeks for a way to aggregate predictor information and

produce superior point and quantile forecasts. As we show our CSQAR approach can offer a leeway to this

issue.

Table 2 (Panel C) reports the QS test statistics for the null hypothesis of equal quantile forecast accuracy

of the EW CSQAR models relative to the AR(q) benchmark. Several findings emerge from this compari-

son. First, irrespective of the subset employed, our EW CSQAR significantly outperforms the benchmark

suggesting that the normality assumption fails to capture the characteristics of the future realised volatility

distribution. Second, judging from the values of the test statistics, significance is more pronounced in the

left tail (τ = 0.10, τ = 0.25) and the central to right tail part (τ = 2/3, τ = 0.75). The least significant values

are associated with the right tail (τ = 0.90) and the central quantiles of τ = 1/3 and τ = 0.50. This finding

suggests that, although surges in volatility are difficult to forecast, the EW CSQAR adequately captures

high future volatility realisations. Third, the best subset, as shown by the lowest t-statistics, varies across

quantiles. For example, for the left tail (τ = 0.10), the best subsets are the two- and three-variate ones, while

this increases to five-variate models for the right tail quantiles. Finally, our algorithm succeeds in identifying

the best subset in a time-varying and quantile-varying manner particularly well, since its performance is

always close to the best subset. Our findings with respect to the Bayesian CSQAR approach, reported in

Panel E, are qualitatively similar.

Next, we focus on the forecasting benefits of the EW CSQAR approach relative to the QAR one. Our

findings (Table 2, Panel D) suggest that, depending on the quantile of interest, superiority of the EW

CSQAR approach is evident for subsets lower than k = 9. Especially for the left tail (τ = 0.10), this

approach leads to statistically superior forecasts for subsets of less than 6 variables. On the other hand, for

the right part of the distribution, improved forecasting performance of the EW CSQAR approach is evident

for all subsets containing fewer than 10 variables. More importantly, our algorithm succeeds in selecting

the optimal value of k since it produces more accurate forecasts than the simple QAR approach in all cases.

However, focusing on the Bayesian approach, Panel F, our findings suggest that this approach produces
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superior forecasts for more central quantiles ranging from τ = 0.25 to τ = 0.75.

4.4 Density forecasts

We now compare the ability of our approach to produce superior distributional forecasts relative to the

simple QAR model. Table 3 reports the related findings. Panel A focuses on the individual predictors and

Panels B and C on our EW and Bayesian CSQAR approaches, respectively. The first four columns of each

panel report the test statistics of the Weighted Quantile Scores, which test for equal forecasting ability for a

particular part of the distribution. The last column reports the MLPS t-statistics.9 Similar to the findings

reported so far and based on the WQS statistics, only MKT and INF produce superior density forecasts.

However, the MLPS t-statistic also points to improved density forecasts for the TB as well. Turning to the

EW and Bayesian CSQAR approaches, the WQS tests show significant improvements in all parts of the

distribution for subsets lower than k = 5. With respect to MLPS, we may note that superiority of EW

(Bayesian) approach is evident for subsets lower than k = 5(K = 1). More importantly, the density forecasts

obtained from our algorithm for selecting the optimal value of k provide highly significant improvement with

respect to the QAR model according to the WQS statistics. However, the MPLS statistics are significant

only for the EW combination scheme.

[TABLE 3 AROUND HERE]

Our findings have important implications for several empirical finance areas, such as risk management,

asset allocation, pricing, and trading strategies. In all the aforementioned areas, constructing accurate

point volatility forecasts is crucial. For example, pricing equity derivatives, developing equity derivative

trading strategies and measuring portfolio risk require reliable volatility forecasts. The recent financial

crisis has highlighted the importance of being able to anticipate changes in volatility. From a regulatory

perspective, volatility predictions are important when projecting risk measures, such as portfolio Value

at Risk or Expected Shortfall, stress-testing and the design of risk mitigation strategies. Furthermore,

our approach that also allows for volatility quantile and density forecasting is important for trading/pricing

volatility derivatives, designing volatility hedges for portfolios, and in general assessing investment decisions.

4.5 Robustness checks

In this section, we conduct a series of robustness tests. First, we consider two alternative out-of-sample

periods corresponding to two different initialisation out-of-sample dates, namely January 1957 and January

1977. These periods coincide with the ones considered by Christiansen et al. (2012). Second, we address

the issue of the logarithmic transformation of RV. Specifically, we examine the impact this transformation

9Please note that the WQS t-statistics are calculated from the seven quantile scores corresponding to the quantiles used in
the point forecast construction. For calculating the MLPS t-statistics, a finer grid of quantiles (τ ∈ {0.10, 0.15, ..., 0.85, 0.90})
is employed to provide a better density approximation.
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has on our findings. Finally, we consider a number of alternative combination schemes to produce point

forecasts from quantile forecasts. The robustness results are qualitatively similar and are not reported for

reasons of space.10

5 Conclusions

In this study we propose a quantile forecast combination approach to realised volatility prediction. The

aim of our analysis is to construct point, quantile and density forecasts of realised volatility, which take

into account the benefits emerging from the subset framework, the quantile regression framework and the

information given by the potential predictors. We analyse the US stock market volatility series, assuming

that quantiles of future volatility depend on their own lags and macroeconomic and financial variables. We

consider several conditional quantiles of future volatility and allow for heterogeneous degrees of persistence of

realised volatility and asymmetric dynamic responses of macroeconomic and financial variables at different

parts of the distribution. To allow for varying degrees of persistence in the distribution of volatility, we

extend the Complete Subset Regression (CSR) framework of Elliott et al. (2013) to a Complete Subset

(Quantile) AutoRegressive one (CSQAR approach). The results of our study are very promising. Our

findings suggest that no single variable is able to provide more information for the evolution of the volatility

distribution beyond that contained in its own past. On the other hand, our CSQAR approach achieves

superior point, quantile and density predictive performance relative to univariate models and the CSAR

approach.

Appendix. Bayesian weighting scheme and algorithm for selecting k

Here we describe the likelihood-based method used for obtaining the Bayesian weighting scheme and for

selecting k in real time. Under the Bayesian approach to inference, uncertainty about any quantity of interest

is represented by probability distributions. In regression variable selection problems there is uncertainty

about the model specification. In our setting, it is also of particular interest to quantify the uncertainty

about the complete subset that will be used for predicting either the mean or the quantiles of realised

volatility at each time point in the out-of-sample period, indexed by t+1. To this end, within our approach

we need to compute the posterior probabilities of different model specifications as well as of all values of k

(k ∈ {1, 2, ...,K}), based on the data up to time t, select the most probable value of k and produce a point

or quantile forecast at time t+ 1, based on the selected complete subset.

In a Bayesian context, the random quantities of interest are the model specifications, representing the

set of predictors included in the jth model and denoted by mj , j = 1, ...,M, M =
K∑
i=1

ni,K , the value of k

and the totality of the model parameters, denoted by θmj . After specifying appropriate prior distributions

10This set of results are available from authors upon request.
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for these quantities, P (mj), P (k|mj) and f(θmj |mj , k), their joint posterior distribution is given by

f(mj , k, θmj |RV1:t) ∝ P (mj)P (k|mj)f(θmj |mj , k)L(RV1:t|mj , k, θmj),

where L(RV1:t|mj , k, θmj ) is the likelihood of the data up to time t under model specification mj . This is the

normal likelihood under the CSAR approach and the quantile specific Laplace likelihood under the CSQAR

approach. Dependence on the set of predictors has been suppressed for simplicity. The posterior probability

of a particular model specification conditional on the value of k is given by

P (mj |k,RV1:t) ∝ P (mj)P (k|mj)

∫
f(θmj |mj , k)L(RV1:t|mj , k, θmj)dθmj .

These posterior probabilities are used as the respective Bayesian weights within our combination scheme.

The weights are obtained by dividing the right-hand side of the above equation by the sum of all these

quantities for the model specifications belonging to the same subset (k). Moreover, the marginal posterior

distribution of k, is obtained as

P (k|RV1:t) ∝
M∑
j=1

P (mj)P (k|mj)

∫
f(θmj |mj , k)L(RV1:t|mj , k, θmj )dθmj .

The integral
∫
f(θmj |mj , k)L(RV1:t|mj , k, θmj )d θmj is the marginal likelihood of the data under the linear

or quantile regression with k predictors and model specification mj , i.e. L(RV1:t|mj , k). In this paper, we

estimate the marginal likelihood by the BIC approximation which is given by

L̂(RV1:t|mj , k) = exp{L(RV1:t|mj , k, θ̂mj)− k ln(t)/2},

where θ̂mj denotes the ML estimate of θmj . Alternatively, the marginal likelihood of quantile regression

models can be estimated by Laplace approximation, while for linear regression models it can be computed

analytically.

The prior specification we consider is the following. The prior probability of the jth model is taken to

be P (mj) = πkj (1− π)K−kj , where π is the prior probability of including a predictor in the model, which is

taken fixed and prespecified, and kj is the number of predictors included in model mj . We set π equal to 1/2,

thus reflecting prior ignorance about the number of predictors required to capture the volatility dynamics.

The prior probability of k given the model specification mj is then P (k|mj) = 1, if kj = k, and P (k|mj) = 0,

otherwise. This prior structure leads to the joint prior of k,mj being P (k,mj) = πkj (1 − π)K−kj I(kj = k)

and to the natural Binomial (K,π) marginal prior on k. Then, the marginal posterior distribution of k, is

given by

P (k|RV1:t) ∝ πk(1 − π)K−k
M∑
j=1

L̂(RV1:t|mj , k)I(kj = k).
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Table 1. Performance of univariate AR, QAR, CSAR and CSQAR point forecasts

Panel A. R2
OS of AR and QAR vs. AR(1) benchmark Panel B. CW t − stats of AR and QAR

Predictor Linear FW1 FW2 FW3 Linear FW1 FW2 FW3
DP 1.58 7.78 7.72 7.53 2.28 2.96 3.07 2.92
EP 3.93 7.77 7.33 7.83 2.67 3.03 3.07 3.01
MKT 7.76 12.52 11.82 12.31 3.59 3.75 3.80 3.74
DEF 1.93 6.50 6.22 6.60 2.14 2.93 2.89 2.90
HML 3.43 7.83 7.31 7.78 2.45 3.06 3.07 3.02
INF 5.98 10.61 10.50 10.52 3.15 3.63 3.64 3.58
LTR 3.03 8.09 7.71 7.92 2.33 3.09 3.16 3.05
RBR 3.74 8.07 7.92 7.94 2.49 3.09 3.13 3.06
RTB 3.15 7.59 7.39 7.55 2.36 3.03 3.09 3.01
SMB 2.98 7.66 7.54 7.60 2.31 3.01 3.04 2.98
STR 3.22 7.90 7.87 7.80 2.41 3.08 3.13 3.01
TB 6.50 8.84 8.33 8.92 3.16 3.31 3.33 3.29
TMS 3.77 8.32 7.78 8.21 2.60 3.11 3.10 3.08

Panel C. R2
OS of AR and QAR vs. AR(q) benchmark Panel D. CW t − stats of AR and QAR

Predictor Linear FW1 FW2 FW3 Linear FW1 FW2 FW3

DP -2.24 4.20 4.14 3.94 -0.63 3.57 3.66 3.54
EP 0.20 4.18 3.73 4.25 1.53 3.67 3.59 3.76
MKT 4.18 9.12 8.39 8.90 5.67 5.90 5.68 6.25
DEF -1.88 2.87 2.58 2.97 -1.71 3.22 3.07 3.24
HML -0.32 4.25 3.71 4.20 -1.17 3.78 3.64 3.82
INF 2.33 7.13 7.02 7.04 4.25 5.27 5.07 5.43
LTR -0.74 4.52 4.12 4.35 -2.08 3.87 3.83 3.89
RBR 0.01 4.50 4.35 4.37 0.82 3.94 3.85 4.00
RTB -0.61 4.00 3.80 3.96 -0.26 3.65 3.57 3.71
SMB -0.79 4.08 3.95 4.02 -0.93 3.60 3.48 3.64
STR -0.53 4.33 4.30 4.22 -1.29 3.76 3.78 3.73
TB 2.87 5.30 4.77 5.39 4.15 4.30 4.20 4.39
TMS 0.03 4.76 4.19 4.64 1.30 3.89 3.68 3.95

Panel E. R2
OS of EW CSAR and EW CSQAR vs. AR(1) Panel F. R2

OS of EW CSAR and EW CSQAR vs. AR(q)

k CSAR FW1 FW2 FW3 CSAR FW1 FW2 FW3

1 4.78 8.91 8.59 8.83 1.08 5.37 5.04 5.29
2 5.90 9.47 9.17 9.46 2.24 5.96 5.65 5.95
3 7.02 9.94 9.67 9.99 3.41 6.44 6.16 6.50
4 8.04 10.36 10.11 10.48 4.47 6.88 6.62 7.00
5 8.87 10.72 10.48 10.89 5.34 7.25 7.00 7.43
6 9.44 10.98 10.76 11.20 5.93 7.53 7.30 7.75
7 9.71 11.17 10.93 11.42 6.21 7.72 7.47 7.98
8 9.69 11.26 11.00 11.54 6.18 7.82 7.54 8.10
9 9.39 11.29 10.96 11.59 5.87 7.85 7.50 8.15
10 8.86 11.30 10.86 11.61 5.32 7.86 7.40 8.18
11 8.07 11.32 10.76 11.63 4.50 7.88 7.30 8.20
12 6.93 11.38 10.58 11.68 3.31 7.94 7.11 8.25
13 5.25 11.25 10.09 11.51 1.57 7.81 6.59 8.08

k∗ 7.95 10.31 9.98 10.52 4.38 6.83 6.49 7.05
CW 3.36 3.40 3.42 3.41 5.50 4.67 4.54 4.90

Panel G. R2
OS of Bayesian CSAR and CSQAR vs. AR(1) Panel H. R2

OS of Bayesian CSAR and CSQAR vs. AR(q)

k CSAR FW1 FW2 FW3 CSAR FW1 FW2 FW3

1 9.18 11.52 11.05 11.41 5.66 8.08 7.60 7.97
2 10.61 12.25 12.10 12.43 7.14 8.84 8.68 9.03
3 11.73 12.73 12.47 12.87 8.30 9.34 9.07 9.49
4 11.28 12.83 12.60 12.93 7.83 9.45 9.21 9.55
5 10.45 12.68 12.36 12.69 6.98 9.29 8.96 9.30
6 9.30 12.44 12.08 12.51 5.78 9.04 8.67 9.11
7 8.49 12.25 11.71 12.36 4.94 8.85 8.29 8.96
8 7.81 11.94 11.40 12.09 4.23 8.52 7.96 8.67
9 7.23 11.69 11.11 11.89 3.63 8.26 7.66 8.47
10 6.73 11.58 10.88 11.81 3.11 8.15 7.42 8.39
11 6.27 11.57 10.79 11.82 2.63 8.14 7.33 8.40
12 5.79 11.51 10.55 11.76 2.13 8.08 7.08 8.33
13 5.25 11.25 10.09 11.51 1.57 7.81 6.59 8.08

k∗ 10.03 12.74 12.34 12.78 6.54 9.35 8.94 9.39
CW 5.01 4.04 4.11 4.08 7.54 5.99 6.02 6.23

The Table reports the out-of-sample R2 statistic of the univariate linear autoregressive model (AR), the
quantile autoregressive models (QAR), the complete subset autoregressive models (CSAR) and the complete
subset quantile autoregressive models (CSQAR, Equally Weighted, EW, and Bayesian weighting schemes)
with respect to the AR(1) and AR(q) benchmark models for the out-of-sample period 1937:1-2015:12. Sta-
tistical significance for the R2

OS statistic is based on the Clark and West (2007) out-of-sample t-statistic
(CW ).
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Table 2. Performance of univariate quantile models and CSQAR approach (quantile forecasts)

Panel A. Univariate models vs. AR(q) benchmark Panel B. Univariate models vs. QAR(q) benchmark

Predictor 0.10 0.25 1/3 0.50 2/3 0.75 0.90 0.10 0.25 1/3 0.5 2/3 0.75 0.90
DP -15.46 -9.45 -4.57 -6.56 -9.27 -9.93 -5.22 1.55 -0.36 1.29 1.34 0.84 0.91 0.69
EP -15.51 -9.86 -4.88 -6.74 -9.26 -10.03 -5.48 0.36 -0.63 1.74 0.64 0.76 0.18 -1.10
MKT -15.75 -10.99 -6.71 -8.37 -10.88 -11.40 -6.02 -0.21 -4.43 -2.67 -2.95 -3.07 -3.48 -1.68
DEF -14.91 -9.68 -5.05 -6.41 -8.91 -9.59 -4.98 0.77 0.19 0.94 0.64 1.22 0.08 -0.39
HML -14.97 -9.92 -5.34 -7.08 -9.03 -9.71 -5.08 -0.56 -0.55 1.71 -0.19 0.88 0.01 -1.69
INF -15.20 -10.49 -5.90 -7.72 -9.89 -10.50 -5.92 -0.87 -1.86 -1.13 -1.82 -1.86 -2.17 -2.48
LTR -15.17 -10.08 -5.32 -6.90 -9.04 -9.43 -4.36 0.85 -0.56 1.33 -0.27 0.99 0.90 1.99
RBR -16.03 -9.95 -5.35 -6.98 -9.09 -9.91 -4.68 -0.56 -1.20 1.32 -0.15 0.83 -0.39 0.53
RTB -15.47 -9.81 -5.27 -6.51 -8.54 -9.01 -4.72 1.79 -0.54 0.92 0.42 0.74 0.96 0.44
SMB -15.36 -9.79 -5.18 -6.67 -8.54 -8.97 -4.57 1.41 -0.76 0.85 0.43 1.06 1.19 0.88
STR -15.25 -9.88 -5.31 -7.04 -9.10 -9.39 -4.72 0.51 -0.52 0.49 -0.34 0.39 0.41 0.33
TB -14.96 -10.08 -5.21 -6.64 -9.03 -9.60 -5.25 -1.82 -1.43 -0.74 -0.56 -0.16 -0.35 -0.49
TMS -15.03 -10.09 -5.45 -6.92 -9.08 -9.32 -4.66 -0.21 -1.49 -0.04 -0.00 0.62 0.00 0.23

Panel C. EW CSQAR vs. AR(q) benchmark Panel D. EW CSQAR vs. QAR(q) benchmark

k 0.10 0.25 1/3 0.50 2/3 0.75 0.90 0.10 0.25 1/3 0.5 2/3 0.75 0.90

1 -15.97 -10.49 -5.96 -7.66 -9.64 -10.34 -5.38 -3.99 -4.13 -2.83 -2.96 -1.66 -2.95 -2.34
2 -16.10 -10.78 -6.34 -7.90 -9.94 -10.53 -5.62 -3.75 -4.58 -3.67 -3.60 -2.34 -3.07 -2.59
3 -16.10 -10.95 -6.59 -7.93 -10.18 -10.68 -5.79 -3.12 -4.42 -3.80 -3.58 -2.73 -3.15 -2.63
4 -16.08 -11.03 -6.69 -7.85 -10.34 -10.79 -5.89 -2.63 -4.12 -3.64 -3.43 -2.95 -3.25 -2.64
5 -16.01 -11.03 -6.66 -7.66 -10.40 -10.82 -5.90 -2.15 -3.80 -3.34 -3.15 -3.00 -3.29 -2.57
6 -15.91 -10.94 -6.53 -7.43 -10.35 -10.77 -5.83 -1.76 -3.46 -3.02 -2.88 -2.96 -3.22 -2.43
7 -15.73 -10.73 -6.33 -7.14 -10.20 -10.62 -5.68 -1.37 -3.03 -2.69 -2.55 -2.81 -3.06 -2.24
8 -15.45 -10.43 -6.06 -6.82 -9.95 -10.40 -5.53 -0.93 -2.59 -2.33 -2.13 -2.58 -2.83 -2.08
9 -15.09 -10.06 -5.68 -6.49 -9.65 -10.12 -5.41 -0.46 -2.14 -1.86 -1.74 -2.30 -2.54 -1.98
10 -14.61 -9.66 -5.24 -6.14 -9.31 -9.84 -5.31 0.05 -1.65 -1.33 -1.33 -1.99 -2.27 -1.88
11 -14.07 -9.23 -4.76 -5.80 -8.97 -9.53 -5.11 0.56 -1.14 -0.77 -0.91 -1.63 -1.92 -1.62
12 -13.43 -8.75 -4.16 -5.46 -8.48 -9.16 -4.82 1.10 -0.64 -0.02 -0.52 -0.99 -1.49 -1.23
13 -12.31 -8.04 -3.24 -4.99 -7.79 -8.37 -4.17 1.66 0.21 1.14 -0.05 -0.10 -0.54 -0.40

k∗ -16.05 -10.81 -6.49 -7.81 -10.43 -10.84 -5.49 -2.66 -3.83 -3.46 -3.16 -2.88 -3.15 -1.94

Panel E. Bayesian CSQAR vs. AR(q) benchmark Panel F. Bayesian CSQAR vs. QAR(q) benchmark

k 0.10 0.25 1/3 0.50 2/3 0.75 0.90 0.10 0.25 1/3 0.5 2/3 0.75 0.90

1 -15.00 -10.86 -6.73 -8.35 -9.99 -9.98 -5.78 -1.90 -2.99 -2.50 -3.37 -2.48 -1.61 -1.27
2 -15.71 -10.66 -6.01 -7.68 -10.67 -10.48 -5.80 -1.49 -2.71 -2.46 -2.94 -2.93 -2.33 -1.63
3 -15.40 -10.26 -5.98 -7.54 -10.45 -10.43 -5.50 -1.12 -2.44 -2.26 -2.95 -2.81 -2.23 -1.37
4 -14.89 -10.06 -5.72 -7.17 -10.45 -10.22 -4.80 -0.49 -2.30 -1.98 -2.50 -2.64 -2.01 -0.78
5 -14.58 -9.86 -5.48 -6.79 -10.17 -9.96 -4.20 -0.00 -2.02 -1.66 -2.07 -2.33 -1.97 -0.37
6 -14.55 -9.58 -5.19 -6.44 -9.87 -9.82 -4.35 0.22 -1.69 -1.33 -1.66 -2.14 -1.94 -0.70
7 -14.35 -9.29 -4.89 -6.14 -9.57 -9.70 -4.58 0.46 -1.34 -1.00 -1.35 -1.87 -1.98 -1.01
8 -14.09 -9.09 -4.64 -5.90 -9.26 -9.45 -4.46 0.68 -1.13 -0.72 -1.10 -1.60 -1.81 -0.85
9 -13.83 -8.91 -4.43 -5.70 -8.91 -9.18 -4.26 0.84 -0.96 -0.47 -0.89 -1.34 -1.58 -0.59
10 -13.56 -8.71 -4.26 -5.55 -8.60 -9.02 -4.11 1.01 -0.75 -0.23 -0.70 -1.09 -1.43 -0.39
11 -13.28 -8.51 -4.07 -5.45 -8.33 -8.84 -4.14 1.19 -0.50 0.03 -0.57 -0.80 -1.22 -0.40
12 -12.92 -8.32 -3.74 -5.27 -8.05 -8.65 -4.16 1.45 -0.24 0.45 -0.37 -0.45 -0.93 -0.39
13 -12.31 -8.04 -3.24 -4.99 -7.79 -8.37 -4.17 1.66 0.21 1.14 -0.05 -0.10 -0.54 -0.40

k∗ -14.88 -9.94 -5.78 -7.27 -10.11 -10.19 -4.43 -0.32 -2.11 -2.03 -2.58 -2.21 -2.01 -0.70

The Table reports the Quantile Score t-statistics for the null hypothesis of equal predictive ability of the
univariate QAR models, Equally Weighted (EW) and Bayesian Combination schemes relative to the AR(q)
and QAR(q) benchmark models for the out-of-sample period 1937:1-2015:12. Values less than -1.645 indicate
that the proposed model outperforms the benchmark one, at the 5% level.
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Table 3. Performance of univariate quantile models and CSQAR approach (density forecasts)

Panel A. Univariate models vs. QAR(q) benchmark Panel B. EW CSQAR vs. QAR(q) benchmark Panel C. Bayesian CSQAR vs. QAR(q) benchmark

Predictor WQS1 WQS2 WQS3 WQS4 MLPS k WQS1 WQS2 WQS3 WQS4 MLPS k WQS1 WQS2 WQS3 WQS4 MLPS
DP 1.33 1.28 1.13 1.26 -1.06 1 -6.82 -6.46 -6.39 -5.19 -2.08 1 -3.86 -3.90 -3.55 -2.93 -2.29
EP 0.45 0.81 0.54 -0.21 -0.54 2 -5.99 -5.75 -5.77 -4.76 -2.34 2 -3.62 -3.69 -3.02 -3.07 -0.52
MKT -4.12 -4.13 -3.69 -3.72 -2.39 3 -5.45 -5.29 -5.14 -4.51 -2.44 3 -3.15 -3.29 -2.69 -2.66 -1.55
DEF 0.90 0.98 0.90 0.55 1.99 4 -5.05 -4.93 -4.61 -4.33 -2.18 4 -2.62 -2.82 -2.23 -2.16 -0.89
HML -0.04 0.33 -0.08 -0.31 1.04 5 -4.62 -4.53 -4.07 -4.10 -1.90 5 -2.15 -2.38 -1.77 -1.75 0.10
INF -2.76 -2.59 -2.25 -2.77 -1.68 6 -4.20 -4.13 -3.58 -3.82 -0.94 6 -1.95 -2.10 -1.41 -1.80 0.18
LTR 1.81 1.48 0.63 2.14 0.62 7 -3.71 -3.67 -3.08 -3.44 -0.82 7 -1.76 -1.84 -1.06 -1.82 -0.21
RBR 0.21 0.20 -0.37 0.37 -0.97 8 -3.21 -3.18 -2.54 -3.07 -0.61 8 -1.45 -1.53 -0.75 -1.57 0.57
RTB 1.02 0.94 1.11 0.91 1.28 9 -2.71 -2.67 -1.98 -2.72 -0.20 9 -1.14 -1.23 -0.50 -1.27 1.44
SMB 1.20 1.10 0.87 1.30 2.43 10 -2.20 -2.17 -1.39 -2.39 0.50 10 -0.86 -0.96 -0.25 -1.02 1.55
STR 0.41 0.31 0.14 0.48 0.76 11 -1.63 -1.61 -0.77 -1.95 0.75 11 -0.61 -0.70 0.02 -0.85 1.47
TB -1.12 -0.98 -1.50 -0.60 -1.95 12 -0.94 -0.92 -0.09 -1.37 1.31 12 -0.27 -0.34 0.39 -0.62 1.59
TMS 0.01 0.04 -0.54 0.31 1.28 13 0.20 0.16 0.92 -0.33 1.86 13 0.20 0.16 0.92 -0.33 1.86

k∗ -4.50 -4.55 -4.52 -3.52 -1.86 k∗ -2.45 -2.67 -2.10 -1.97 -0.35

The Table reports the Weighted Quantile Score and MLPS t-statistics for the null hypothesis of equal predictive ability of the univariate QAR models, the
EW and Bayesian CSQAR approaches relative to the QAR(q) benchmark for the out-of-sample period 1937:1-2015:12. Values less than -1.645 indicate that the
proposed model outperforms the benchmark one at 5% level.
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Figure 1: Plot of the realised volatility series.

22



1940 1950 1960 1970 1980 1990 2000 2010
0

1

2

3

4

5

6

7

8

9

10
Panel A: CSAR

1940 1950 1960 1970 1980 1990 2000 2010
0

1

2

3

4

5

6

7

8

9

10
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Panel C: CSQAR τ=0.25
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Figure 2: Selection of optimal subset (k∗) over the out-of-sample period.
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Figure 3: Cumulative sum of forecasts squared errors of (a) the optimal EW CSQAR forecasts vs the AR(q)
benchmark, (b) the optimal EW CSQAR forecasts vs the optimal EW CSAR forecasts, (c) the optimal
Bayesian CSQAR forecasts vs the AR(q) benchmark and (d) the optimal Bayesian CSQAR forecasts vs the
optimal Bayesian CSAR forecasts over the out-of-sample period.
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