
Abstract—A practical problem facing Infrastructure-as-a-
Service (IaaS) cloud users is how to minimize their costs by
choosing different pricing options based on their own demands.
Recently, cloud brokerage service is introduced to tackle this
problem. But due to the perishability of cloud resources, there
still exists a large amount of idle resource waste during the
reservation period of reserved instances. This idle resource waste
problem is challenging cloud broker when buying reserved
instances to accommodate users’ job requests. To solve this
challenge, we find that cloud users always have low priority jobs
(e.g., non latency-sensitive jobs) which can be delayed to utilize
these idle resources. With considering the priority of jobs, two
problems need to be solved. First, how can cloud broker leverage
jobs’ priorities to reserve resources for profit maximization?
Second, how to fairly price users’ job requests with different
priorities when previous studies either adopt pricing schemes
from IaaS clouds or just ignore the pricing issue. To solve
these problems, we first design a fair and priority aware pricing
scheme, PriorityPricing, for the broker which charges users with
different prices based on priorities. Then we propose three
dynamic algorithms for the broker to make resource reservations
with the objective of maximizing its profit. Experiments show
that the broker’s profit can be increased up to 2.5× than that
without considering priority for offline algorithm, and 3.7× for
online algorithm.

Index Terms—Brokerage; Priority; Fairness; Pricing; Resource
reservation;

I. INTRODUCTION

Infrastructure-as-a-service (IaaS) cloud providers, such as

Amazon EC2 [1], offer different pricing schemes to users at

different commitment levels. The most popular ones could

be pay-as-you-go (e.g., on-demand instance) and subscription

(e.g., reserved instance). The former one allows users to pay a

fixed price for instances or virtual machines (VMs) per billing

cycle without any commitments, while the latter one requires

users to pay a onetime upfront fee for a time period (e.g., one

month) [1], [2]. Normally, the price of reserved instance is

cheaper than that of on-demand instance in terms of billing

cycle, but it is not cost-effective if users only use reserved

instances for a short time. Thus, it is of great importance for

users to understand their demand pattern before they purchase

cloud resources, in order to save their cost or improve the

efficiency [3].

Therefore, how to choose the schemes at the cost-optimal

commitment level bothers cloud users and is of their best

interest. In order to solve this challenge, previous studies

[3], [4] have introduced a cloud brokerage service as the

intermediation layer between cloud providers and users, which

not only enables the broker to achieve profits, but also re-

duces cloud users’ cost. Cloud brokerage service provides a

connection between cloud users and providers by purchasing

resources from cloud providers and then delivering to users

with discounts. On one hand, broker needs to optimally reserve

resources from providers to satisfy all users’ job requests; on

the other hand, it needs to design proper pricing schemes to

attract cloud users.

With regard to resources reservation for the broker, existing

researches [3]–[6] have designed many methods to optimally

reserve resources from cloud providers, including offline meth-

ods [4], [6] that required perfect future demand information or

online ones [3] vice versa. However, these methods still incur

idle resource waste due to the reason that cloud resources are

inherently nonstorable and perishable [7]. That is to say, if

some of the purchased cloud resources are not sold out by the

broker at any time, then there will be some wastefulness of the

resource. For example, as shown in Fig. 1, if the broker has

purchased three reserved instances from time slots 1-8, then

time slot 1, 2, 5, 7, 8 for instance 3 and time slot 5 for instance

2 are wasted. Also, the broker can not guarantee services at

time slots 4 and 6 if they do not buy more instances. This

idle resource waste problem is challenging cloud broker when

buying reserved instances to accommodate cloud users.

In order to solve this challenge, we find that cloud

users always have latency-sensitive jobs (e.g., online game,

e-commence transaction) and non latency-sensitive jobs

(e.g., testing jobs, scientific computing) simultaneously. Non

latency-sensitive jobs can be delayed to the future to utilize

the wasted idle resources. For example, in Google cluster trace

[8], a lot of low priority jobs (i.e., non latency-sensitive jobs)

are requested by users. We have drawn Fig. 2 here to show

the number of jobs requested over 29 days in May, 2011. One

can see that there are a lot of low priority requests per hour.

Therefore, as shown in Fig. 1, if non latency-sensitive jobs

happen to appear in time slots 4 and 6, they probably can be
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Fig. 1: Reserved instances reser-
vation against time. The black
line denotes the requested instance
number and the red dashed line
denotes the purchased reserved in-
stances. The blue block means the
unsatisfied demand.
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Fig. 2: The request curves of differ-
ent priorities in Google cluster trace.
Different prioritized request groups
occupy different proportions. Job re-
quests in Infrastructure group have
the highest priority while Gratis vice
versa.

delayed to execute in the future time, i.e., time slots 5 and 7 in

instance 3. By delay scheduling the low priority requests, the

purchased instances can be fully utilized and broker’s profit

can be increased considering the priority of requests. Hence,

in this paper, we will take advantage of jobs’ priority to design

new algorithms to maximize the profit of cloud broker.

After the broker has reserved resources from cloud provi-

ders, the next step is to price the resources to users. Pricing is

one of the most critical component of cloud computing since

it can directly influence the revenue of cloud providers/brokers

and the budget of customers [9]–[11]. However, most previous

researches about brokerage service mainly focus on designing

resource reservation approaches from providers, while seldom

consider the pricing schemes for users [3], [4]. In this paper,

we notice that priority is of huge benefit for broker’s resources

reservation, because low priority jobs can be delayed to the

future. Accordingly, we need to design a priority aware pricing

for the broker.

Since low priority jobs may be delayed to utilize the idle

resource by the broker, it is unfair to charge low priority

jobs just the same as high priority ones. While for the same

low priority job request, the pricing needs to charge less if

the job has been delayed longer. To guarantee the pricing

fairness, we design a fair and priority aware pricing scheme

for the broker, called PriorityPricing, which charges users with

different prices based on priorities.

The main contributions of this paper are as follows,

• By analyzing the widely used Google cluster trace [8], we

find that cloud users’ jobs always have different priorities

and low priority jobs can be preempted by high priority

ones. This priority characteristic can be applied into the

resource reservation of cloud broker to reduce the cost.

• We propose the first priority aware pricing scheme, Pri-

orityPricing, for the broker which has been ignored by

previous work. Meanwhile, the proposed pricing attracts

cloud users to trade with cloud broker by fairly charging

job requests based on priorities.

• We design resource reservation algorithms with consid-

ering the priority of users’ requests to solve the idle

resource waste problem for the broker. The algorithms

significantly reduce the reservation cost to satisfy all

users’ requests thus increase the profit of broker.

• We evaluate the effectiveness of proposed algorithms by

conducting simulations with a 1-month Google trace. The

results have shown that broker’s profit can be increased up

to 2.5× than that without considering priority for offline

algorithm, and 3.7× for online algorithm.

The organization of this paper is as follows. We first

briefly review the classic IaaS pricing schemes and brokerage

services, then analyze the priority of Google trace in Sec. II.

We design our PriorityPricing scheme for the broker in Sec.

III and formulate the broker’s profit problem in Sec. IV. In

Sec. V, we describe our algorithms and complexity. In Sec.

VI, we evaluate our solution. The related work is discussed in

Sec. VII. Finally, we conclude the paper and future work in

Sec. VIII.

II. BACKGROUND AND MOTIVATION

In this section, we first analyze classic cloud pricing

schemes and explain the break-even point between on-demand

and reserved instances. Then we introduce the brokerage

service which can provide cloud users more flexible resources.

After that, we take an analysis about the Google cluster trace

to show the importance of priority.

A. Existing Classic Pricing Schemes

IaaS clouds typically provide multiple pricing schemes

to cloud users, including on-demand, reserved, and other

instances [1], [2]. On-demand instances require users to pay

a fixed price per billing cycle without any commitments. In

Amazon EC2 [1], for example, users pay $0.026 per hour for a

t2.small instance in US East (N. Virginia). Formally, we denote

the hourly price as P for the on-demand instance, which costs

Ph when running for h hours.

In another pricing scheme, reserved instances require users

to pay a onetime upfront fee for one time period (e.g., one

month or one year). During the reservation period, the usage

is either charged with a discount rate or free. In common, the

cost of reserved instances is fixed [2]. Formally, we denote the

upfront fee as γ and the reservation period as τ , for a certain

type of reserved instance1.

Individual users cannot utilize the discount of reserved

instances sufficiently. Actually, there exists a break-even point

[3], [12] at which the cost is identical with running an on-

demand and a reserved instance. We can image that an on-

demand instance costs Ph for running the workload with

h hours while for a reserved instance, the cost will be γ.

Intuitively, there is no difference to the user when Ph = γ
thus we have the break-even point hb = γ/P . It is cost-

effective to reserve an instance if and only if its usage during

the reservation period is beyond the break-even point hb.

1In this paper, we target at broker’s profit maximization with on-demand
and reserved instances. Increasing broker’s profit by using spot instance is
included in our future work.
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Fig. 3: The overview of cloud service
broker model


�
�

��
�

��

����

�����������������������
������������������!�������������
������"������������������������������

����
�
�

��
�

��

������#�������������$��������!�������������
������"����������&�������������������

'

'

!�

Fig. 4: Illustration of Alg. 1

B. Cloud Brokerage Service

In order to fully utilize the benefits of different pricing

schemes while go beyond the limitations, cloud brokerage

service has been introduced recently [3], [4]. Cloud broker

connects both cloud users and providers, which means that it

not only optimally purchases resources from multiple provi-

ders, but also resells the resources to users, just as shown in

Fig. 3. Previous works mainly focus on when and how many

resources the broker should purchase from providers. But none

of them notice that cloud users’ jobs always have different

priorities and low priority jobs can be delayed to the future.

Meanwhile, they either adopt the pricing from IaaS clouds or

just ignore it. This motivates us to design a priority aware
pricing scheme between cloud users and the broker.

C. Analysis of Google Cluster Trace

In cloud computing environment, jobs from different users

always have different priorities and jobs from the same user

also may have different priorities [13]. We take the widely

used trace from Google [8] as an example. The jobs in google

have a broad range of priorities, numbered from 0 to 11, which

can be classified into five groups, i.e., gratis (0-1), other (2-8),

production (9), monitoring (10), and infrastructure (11). High

values mean high priority jobs, while low priority jobs can be

delayed by high priority jobs [8], [13]. We plot the number

and percentage of requests with different priorities in Fig. 2.

It can be seen from the the figure that different priority

requests occupy different proportions of the total requests. The

infrastructure and monitoring groups have very few requests

with 4.59% and 0.51% of the total requests respectively. The

production and other groups (other inferred as batch jobs [13])

occupy the majority of requests with 36.52% and 25.82%

respectively. Surprisingly, the gratis group, i.e., the lowest

priority, occupies a large proportion of the total requests with

32.56% of the total requests. Interestingly, the trace providers

indicate that the resources used by job requests in the gratis
group are generally not charged [13], so that they can be

delayed by any other high priority requests. This motivates
us to design priority aware resource reservation algorithms to
reduce cost for the broker.

Note that in this paper, we only consider two types of pri-

orities, i.e., the low priority (the gratis group and other group)

and the high priority (the rest groups) and design priority

aware cost-effective algorithms for the resource reservations in

the following parts. Actually, our model can be easily extended

for more fine-grained types of priorities in the future work.

III. PRIORITY AWARE PRICING SCHEME:

PRIORITYPRICING

In this section, we design a fair and priority aware pricing,

called PriorityPricing, between cloud users and the broker.

After that, we model the cost for each cloud user under our

PriorityPricing.

A. PriorityPricing

Suppose U cloud users U � {1, 2, · · · , U} would submit

their job requests to the broker for virtual machine resources.

In this paper, a discrete time slotted system has been applied

[14], [15], in which the length of a time slot can be set as the

same as a billing cycle (e.g., one hour in Amazon EC2 [1]).

At each time slot t, user i requests di(t) instances1. Also, the

user will set the priority for their requests by paying different

prices. As shown in Fig. 3, the broker will allocate immediate
instances to the user for high priority requests, and charge

instances with a high price ph. However, for low priority

requests, the broker will allocate instances to the user when

idle reserved instances are existed, i.e., delayed instances. In

this case, the low priority requests may be executed after

delaying x time slots by the brokerage. As a result, the broker

will charge the delayed instances with a low price pl.
With regard to the delay time of different prioritized re-

quests, the PriorityPricing is formulated as follows:

p(x) = − P

dmax
x+ P (1)

where x denotes the time slots delayed for the low priority

request and dmax denotes the maximum delay tolerated by

low priority requests. As mentioned in Sec. II-A, we use the

on-demand price P for the price of high priority requests2.

For example, the broker allocates immediate instances for

users’ high priority requests, then the delayed time equals

to zero. That is, x = 0 and ph = p(x) = p(0) = P .

While for a specific low priority request Q0, if the broker

executes it after time delay x0, then the price for this request

is pl = p(x0) = − P
dmax

x0 + P . Specifically, dmax guar-

antees no requests will be delayed for an indefinite amount

of time. Meanwhile, the broker will allocate an on-demand

instances once an request has been delayed time dmax. That

is, pl = p(dmax) = − P
dmax

dmax + P = 0 when x equals

to dmax. In this way, no job requests would be starving in

the proposed broker model. Furthermore, the parameter dmax

allows us to reply to different types of jobs. Since different

types of jobs may have different sensitivities for the delay, we

can change the value of dmax accordingly.

Remarks: An intuition of the PriorityPricing is that we

set a fixed price P for job requests from all users. Once a

low priority job has been delayed for time x, we will give

1In this paper, we only consider one type of instance. Our model can
easily extend to the multiple types (e.g., j types) of instances by extending
the di(t) to dij(t).

2For high priority jobs, it is reasonable for users to use on-demand
instances with guaranteed availability [16].



some compensation P
dmax

x to the user accordingly. Since cloud

computing is an economically-oriented computing paradigm,

pricing fairness, including personal fairness and social fairness,

needs to be considered when designing a pricing scheme [5],

[17]. Personal fairness means that the price is reasonable

or low enough for customers while social fairness means

that the price charges the same financial cost for the same

service among all users. PriorityPricing satisfies both kinds of

fairnesses. First, PriorityPricing charges all users with prices

which are below or equal to on-demand price. It is subjective

and reasonable to cloud users. Hence, PriorityPricing satisfies

the personal fairness. Second, PriorityPricing will charge the

same price for the same service (P for high priority requests

with no delay and p(x) for low priority requests with the same

delay x). While for requests with different delay, requests with

longer delay need to pay smaller price. Hence, PriorityPricing

also satisfies the social fairness.

B. Cloud Users’ Cost Under PriorityPricing

Under the PriorityPricing, suppose cloud user i requires

instance di(t) including dhi (t) instances for user’s high pri-

ority jobs and dli(t) for low priority jobs at each time slot

t = 0, 1, · · · . For each user i, the cost needed under the

PriorityPricing can be given as follows,

Ci =

T∑

t=0

di(t)∑

j=1

p(x(j)) (2)

where T is the total time slots and x(j) means the delay time

incurred by the broker for the j-th job request from user i at

time slot t, 0 ≤ x(j) ≤ dmax. Hence,
∑di(t)

j=1 p(x(j)) denotes

the cost for all job requests for user i at time t. Then for cloud

broker, the revenue gained from all cloud users can be given

as

CRevenue =

U∑

i=1

Ci (3)

Obviously, broker’s profit can be computed by subtracting

the cost for purchasing proper instances from the revenue

CRevenue gained from users. In the next subsection, we

will model the resource reservation problem and then try to

maximize the profit of the broker.

IV. RESOURCE RESERVATION MODEL

After that, we model the resource reservation problem

between cloud providers and the broker with considering the

priority. Our main objective is to maximize the broker’s profit

while satisfying users’ demands.

A. The Reservation Problem between Broker and Provider

At each time t = 0, 1, · · · , users send the requests to the

broker and the broker needs to purchase reserved instances

r(t) and on-demand instances o(t) to accommodate the high

priority demands dh(t) which cannot be deferred to the future.

On the other hand, the unsatisfied low priority demands dl(t)
can be delayed to the future when reserved instances are idle.

We denote n(t) as the active reserved instances at time t. Then

one can have,

n(t) =
t∑

i=t−τ+1

r(i) (4)

where τ denotes the reservation period of reserved instances

and the reserved instances purchased after time t− τ +1 still

remain active at time t. Apparently, more on-demand instances

(dh(t) − n(t))+ are needed at time t for the broker, where

x+ = max{0, x}. Obviously, the broker needs to satisfy the

high priority job requests dh(t) at every time t:
o(t) + n(t) ≥ dh(t) (5)

After making reservation decision, we have W (t) low

priority demands accumulated at time t as follows:

W (t) = ((W (t− 1) + dl(t)− (o(t) + n(t)− dh(t)))+ (6)

where W (t− 1) is the low priority requests remained before

time t and dl(t) is the low priority requests arrived at time

t. Thus W (t − 1) + dl(t) denotes the low priority requests

needed to be processed at time t. o(t) + n(t)− dh(t) denotes

the low priority demands completed at time t. For simplicity,

we set W (t) = 0 for t ≤ 0.

Then, the cost for purchasing instances from the cloud

provider can be given as r(t)γ+o(t)P while the total revenue

gained from cloud users is CRevenue. Thus the total profit of

the broker can be given as

CProfit = CRevenue −
T∑

i=1

(r(t)γ + o(t)P ) (7)

The broker will try to make dynamic reservation decisions

to maximize its profit as follows:

P : max
r(t),o(t)

CProfit (8)

s.t. (5)
Problem (P) is an integer programming problem and may

be solved by exhaustion research. Previous work [3], [18]

derived the optimal solution for a simpler problem without

considering the priority feature via dynamic programming, but

it still needs to reduce the curse of dimensionality [19]. Hence,

the dynamic programming algorithms to our problem suffer

from more serious problem [19]. In this paper, we design the

approximate algorithms to work out Problem (P).

V. PRIORITY AWARE COST-EFFECTIVE RESERVATION

ALGORITHM

In this section, we first design two offline algorithms with

considering priority, i.e, period decision algorithm (PDA) and

greedy decision algorithm (GDA) to solve Problem (P) with

the help of predicted demand information. For the offline

algorithms, we assume that the future demand information

can be achieved or accurately predicted. After that, we will

relax this assumption and design an online decision algorithm
(ODA) to solve Problem (P) without any future information

as a prior.

A. Periodic Decision Algorithm (PDA)

In this part, we first design a heuristic algorithm that pur-

chases reserved instances periodically. The whole time period



T can be divided into M time intervals {Ii, 0 ≤ i ≤ T/τ} with

the same length as the reservation period τ . We will make a

reservation decision at the beginning of each interval. For each

interval, we first check the usage of the high priority demand

dh(t) and the low priority demand dl(t), then we decide how

many reserved instances the broker needs to purchase for the

next time period from i ∗ τ to i ∗ τ + τ − 1. We start by

purchasing one reserved instance for the broker, then check

the relations between the utilization and break-even point for

the reserved instance. Recall the break-even point in Sec. II-A,

the purchased reserved instance has been utilized effectively

if and only if its utilization during the reservation period is

beyond the break-even point hb. If the reserved instance has

been used effectively, we repeat to purchase a new reserved

instance. Once the utilization of the reserved instance is below

the break-even point, we stop the reserved instance purchasing.

The pseudo-code of PDA has been presented in Alg. 1.

Algorithm 1 Periodic Decision Algorithm (PDA)
Input: The high priority demand dh(t) and low priority demand dl(t) for
time t in time interval i, i = 0, 1, · · · , T/τ .
Output: Reserved instance r(t) at the beginning of the reservation interval
i, t = i ∗ τ .

1: Let y(i) be the number of reserved instances at the beginning of this
interval Ii and ul be the utilization of level y(i) in interval i, initially,
y(i) = 0, ul = τ

2: while ul > hb do
3: y(i) = y(i) + 1 /*Purchasing a new reserved instance.*/
4: ul = τ
5: for t = i ∗ τ to i ∗ τ + τ − 1 do
6: if d(t) +W (t) < y(i) then
7: ul = ul − 1, o(t) = 0 and W (t) = 0
8: /*Using all previous low priority demands to fill the idle reserved

instances, idle reserved instances still exist at time t.*/
9: else

10: o(t) = (dh(t)− x(i))+

11: /*On-demand instances o(t) are needed when high priority
demands are unsatisfied .*/

12: W (t) = (W (t)− (x(t) + o(t)− d(t)))+

13: /*Using partial previous low priority demands to fill the idle
reserved instances, no idle reserved instance exists at time t.*/

14: end if
15: end for
16: end while
17: r(t) = y(i) /*Reserve y(i) reserved instances at the beginning of interval

i, i.e., t = i ∗ τ*/

We also use Fig. 4 to illustrate Alg. 1. The second figure in

Fig. 4 shows the amounts of accumulated low priority demands

and purchased on-demand instances.

Algorithm Complexity: In Alg. 1, for each interval, we

need to check the entire period for every purchasing reserved

instance. The time complexity for each interval is O(Dτ),
where D denotes the maximum demand during the interval.

Therefore, the complexity for the whole algorithm is O(DT ).

B. Greedy Decision Algorithm (GDA)

The PDA only makes the reservation decisions for each

intervals once. In this part, we propose a greedy algorithm

(GDA) which can make reservation decisions at any time slot.

It is obviously that GDA has better performance than PDA

but incurs more time complexity. We summarize the GDA as

Alg. 2.

Algorithm 2 Greedy Decision Algorithm (GDA)
Input: The high priority demand dh(t) and low priority demand dl(t) at each
time t
Output: Reserved instances r(t) and on-demand instances o(t) at each time
t

1: for t = 0 to T do
2: for i = t to t+ τ − 1 do
3: n(i) =

∑i
j=i−τ+1 r(j)

4: end for
5: Let g(i) = (dh(i)− n(i))+ for all i = t, t+ 1, · · · , t+ τ − 1
6: Take g(t), · · · , g(t + τ − 1) as the input and run Alg. 1. Let r(t)

equals the output of Alg. 1
7: n(t) = n(t− 1) + r(t)
8: o(t) = (dh(t)− n(t))+

9: end for

In GDA, at each time t, we first calculate the active reserved

instances in the following reservation period τ , i.e., n(i), i =
t, t+1, · · · , t+ τ −1 (line 2-4). Then we get the gap between

the high priority demands dh(t) and the remain active reserved

instances n(i), i.e., g(i) = (dh(i)−n(i))+, i = t, t+1, · · · , t−
τ +1 (line 5). At last, we run Alg. 1 with g(i) as input to get

the number of reserved instances r(t). After that, we can get

the number of on-demand instances o(t) (line 8). Clearly, the

time complexity of Alg. 2 at each time t is the same as Alg.

1.

C. Online Reservation Algorithm (ODA)

The above PDA and GDA can only apply to the situation

where the future information can be obtained or predicted.

However in reality, the future information is always not

acquirable. Also, it is not easy to predict the demand in cloud

data centers, as workload in cloud has higher variances [20]

compared with that in traditional grids and high performance

computing (HPC) systems. Therefore, we design another ODA

algorithm to solve the problem (P) that future information

is not available. In this case, ODA decides the number of

reserved intances r(t) only based on historical information

g(t − τ + 1), · · · , g(t) in the past reservation period, where

g(i) = (dh(i)− n(i))+ for all i = t− τ +1, t− τ + 2, · · · , t.
This is similar to the online deterministic algorithm of the ski-

rental problem [21]. Also, our instance reservation problem

can be reduced to the ski-rental problem with the assumption

that there is only one instance at a time [3].

The historical information g(t−τ+1), · · · , g(t) denotes the

reservation gap between high priority demand dh(i) and the

number of reservation n(i). One can run Alg. 1 to get r(t) with

input from these g(i) (line 3). Meanwhile, we need to update

the remain active reserved instance for both past reservation

period and future reservation period, i.e., n(i) = n(i) + r(t)
for all i = t − τ + 1, · · · , t + τ − 1 (line 4). After that, at

time i, the unsatisfied high priority demand will be filled by

purchasing on-demand instances (line 5). We summarize the

details of ODA in Alg. 3 and it has the same time complexity

as Alg. 2

VI. PERFORMANCE EVALUATION

In this section, we conduct simulations based on a real-

world Google trace [8] to first evaluate the efficiency of our



Algorithm 3 Online Decision Algorithm (ODA)
Input: The history of high priority demand dh(i) and low priority demand
dl(i) before time t, i = 0, 1, · · · , t
Output: Reserved instances r(t) and on-demand instances o(t) at each time
t

1: for t = 0 to T do
2: Let g(i) = (dh(i)− n(i))+ for all i = t− τ + 1, · · · , t
3: Take g(t − τ + 1), · · · , g(t) as the input and run Alg. 1. Let r(t)

equals the output of Alg. 1
4: Update n(i) = n(i) + r(t) for all i = t− τ + 1, · · · , t+ τ − 1
5: o(t) = (dh(t)− n(t))+

6: end for

PriorityPricing in Sec. VI-B, and then evaluate the perfor-

mance of the PDA, GDA, and ODA algorithms in Sec. VI-C.

A. Dataset Preprocessing and Experimental Setting

Since no public IaaS clouds have released their workload

traces so far [10], public cloud traces are often confidential.

We leverage the widely used Google cluster trace [8] in the

experiment. Google cluster trace consists about 370,000 jobs

owned by 933 users running across over 12,000 hosts. More

than 4,000 applications such as MapReduce and machine

learning programs exist in the datacenter. Moreover, every job

may have variable tasks that have different priorities ranged

from 0 to 11, and also there are over 40 million tasks in the

trace.

In the simulation, with regard to the resource reservation

pricing from cloud providers for the broker, we apply the

pricing from Amazon EC2 with hourly price for on-demand

instance and the All Upfront option for reserved instance [1].

Since Google trace only spans about one month, we set the

reservation period for reserved instance as one week, i.e.,

τ = 168 hours, and a 50% discount compared with on-demand

instance, which is a common pricing scheme in most IaaS

clouds [1], [2]. Specifically, we set the P = $0.026 as the

hourly price of t2.small on-demand instance in EC2 [1] and the

upfront fee for a reserved instance is γ = P ∗τ ∗50% = $2.184
per week. For the priority aware pricing (PriorityPricing)

between cloud users and the broker, we set the maximum delay

dmax = τ .

To evaluate the performance of the proposed algorithms,

we first introduce some benchmark algorithms as follows.

The first benchmark algorithm is All-On-Demand, in which

users never purchase reserved instances but run all their

jobs with on-demand instances. It is simple and common for

latency-sensitive workloads users [22]. The second algorithm

is All-Reserved algorithm, where users only purchase reserved

instances. Obviously, the cost for All-On-Demand with broker

is the same to one without broker. Also, the cost is the same no

matter we have considered the priority or not. Hence, we can

set the cost for All-On-Demand as the baseline and normalize

the cost incurred by other algorithms to the cost for All-On-
Demand, i.e., the cost for All-On-Demand is 1 in the following

experiments. Therefore, we omit the results of All-On-Demand
algorithm.

B. Efficiency of PriorityPricing

Cloud users can either purchase cloud resources from cloud

providers directly or trade with cloud brokers for some mutual

benefits [3]. In Sec. III, we have designed a PriorityPricing

for our brokerage service, which charges users’ high priority

requests with a high price and a low price for the low priority

requests.

In order to evaluate the efficiency of the proposed pricing,

we compare cloud users’ cost under our brokerage service

to the cost purchased from cloud provider directly. When

trading with the proposed brokerage service, cloud users will

be charged by the proposed PriorityPricing. While trading with

the cloud provider directly, we apply our designed algorithms

for each individual users, namely, PDA (Alg. 1), GDA (Alg.

2), and ODA (Alg. 3), together with the benchmark algorithms,

i.e., All-On-Demand and All-Reserved. As mentioned in Sec.

VI-A, we normalized the cost incurred by other algorithms to

cost for All-On-Demand. Hence, the cost for All-On-Demand

is 1 and omitted. For each algorithm, we obtain the cost for

individual users with and without considering the priority,

respectively. We draw the cost CDF of individual users in

Fig. 5.

We observe several findings in Fig. 5. First, when trading

with the provider directly for all users, the cost considering

priority is no more than the cost without considering priority.

That means the idle resource waste problem can be alleviated

by considering the priority feature no matter what reservation

approaches have used. Second, more than 70% of users can

achieve cost saving under our PriorityPricing. The reason is

that these users have both high and low priority job requests

while low priority requests are charged with a low price in

our brokerage service. Third, with considering the priority of

users’ job requests, both offline algorithms (PDA and GDA)

and online algorithm (ODA) can hugely reduce users’ cost. At

last, for ODA, the majority of users need to pay more even

with considering the priority compared with our PriorityPric-

ing. Hence, cloud users would prefer to trade with our broker

rather than trade with resources from cloud providers directly.

All these findings validate the attractiveness of the proposed

PriorityPricing scheme.

In order to further illustrate the cost saving for each in-

dividual user, we plot the saving percentage CDF of users

with priority consideration for different algorithms in Fig. 6.

We see that more than 40% of users can achieve cost saving

due to priority for both PDA and GDA algorithms. While for

ODA algorithm, there exist 50% users can gain cost saving

due to priority. The reason is that ODA algorithm makes

reservation decision without future information, which leads

to large idle resources waste. Hence, by considering priority

of users’ job requests, more users under ODA can gain cost

saving than that under PDA and GDA algorithms. However,

even though the future knowledge has been given as a prior for

offline algorithms (i.e., PDA and GDA), cost saving still can

be achieved by considering priortiy. This phenomenon proves

the effectiveness of priority consideration.
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Fig. 5: The cost CDF of users with and without considering the priority under different algorithms. PriorityPricing means users’ cost are charged by our
priority aware pricing.
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C. Evaluations of Priority Aware Resource Reservation Ap-
proaches

In this part, we first evaluate the cost saving simply brought

by cloud broker for cloud users, without considering the

priority of job requests. By doing so, we find that the cost

with brokerage service still incurs high cost for both offline

and online algorithms. Then, we will evaluate the cost of the

broker considering the priority. Finally, we will evaluate the

broker’s profit under our PriorityPricing.

In order to evaluate the cost saving simply brought by cloud

broker. We compare the aggregate costs for all users without

broker and the cost for broker. For the former one, we first

evaluate the cost to purchase resources from provider directly

for each individual user and then sum up those costs. The

comparison result is plotted in Fig. 8.

As can be seen from Fig. 8, without brokerage service, the

All-Reserved algorithm will incur about 2.5× cost compared

with the All-On-Demand strategy. This is because the All-
Reserved algorithm will purchase reserved instance for any

arrival job requests and cause large amount of idle resource

waste. But the cost can be largely reduced by using the bro-

kerage service. Also, under both offline and online algorithms,

the broker will reduce the total cost. But broker still needs a

very high cost (about 75% of the cost with All-On-Demand)

under online algorithm (ODA). That is because ODA makes

reservation decision without any future knowledge. One can

alleviate this problem by considering job requests’ priority.

From the result in Fig. 8 we can see, there still exist many

idle resource waste for the cloud broker which proves the

existence of the problem presented in Fig. 1. As expected, the

broker can fully utilize these idle resource waste by consider-

ing the priority. We will evaluate the broker’s cost under two

different scenarios, i.e., with and without considering priority,

respectively.

Fig. 9 plots the total cost with and without considering

priority for the broker under different algorithms respectively.

From Fig. 9, we see that the total cost for all algorithms

considering priority are less than 60%, which means more

than 40% cost saving gained compared with All-On-Demand
algorithm. Especially, for GDA algorithm, the incurred cost

considering priority is only 51.05% compared to All-On-
Demand, which almost reaches the maximum discount (i.e.,

50%) of reserved instance in our evaluation.

With implementing our PriorityPricing between cloud bro-

ker and users, the broker can gain profit considering the

priority. In Fig. 10, we plot the broker’s profit with and

without considering the priority respectively under different

algorithms. From Fig. 10, we can see that the broker cannot

achieve any profit if ODA is used without considering priority.

The reason is that our PriorityPricing charges low priority

requests with a low price while ODA algorithm without

considering the priority cannot utilize the idle resource by

delaying the low priority job requests. Hence, it would incur

more cost to purchase resource from the provider than that

gained from cloud users. By considering the priority of users’

requests, the broker’s profit can be increased up to 1.34×
(2.5×) than that without considering priority for PDA (GDA)

algorithm, and 3.7× for ODA algorithm.

VII. RELATED WORK

In this paper, we design a priority aware pricing and

three dynamic resource reservation algorithms for the broker



considering the priority. So our related work includes cloud

brokerage and cloud pricing schemes.

A. Cloud Brokerage Service

Brokerage service has been introduced to the cloud com-

puting in both industry and academia in recent years [3], [4],

[23]. In industry, a SaaS-based cloud management company,

called RightScale, manages cloud resource from other IaaS

clouds [22] and receives several millions investments in both

2008 and 2010.

In academia, some studies [3], [4], [23] provide a connection

between multiple cloud providers and cloud users. A similar

work to the resource reservation algorithms in our work is

proposed in [3], in which a brokerage service is used to serve

cloud users by aggregating reserved and on-demand instances.

The main difference between these work and our work is two-

fold. First, we leverage the priority of job requests to solve the

idle resource waste problem for the broker, thus profit achieved

by the broker. Second, we design a fair and priority pricing

between the broker and cloud users, which has been ignored

in previous work.

B. Cloud Pricing Schemes

Though very few researches focus on the pricing for cloud

brokerage service, the design of pricing for cloud computing

is a very hot topic [7], [10], [11], [15]. For example, we design

a fine-grained pricing for IaaS cloud to solve the partial usage

waste problem caused by existing coarse-grained pricing in

cloud markets [10]. The proposed priority aware pricing in

this paper is complementary to these studies in cloud pricing

and we mainly focus on the pricing for cloud brokerage which

has been ignored before. A similar work to the priority aware

pricing for brokerage service in our work is proposed in

[5]. Aazam et al [5] propose a relinquish probability based

pricing which charges a high price if a user would give up

the resources in next time period. While in this paper, we

notice that priority is of huge benefit for broker’s resources

reservation. Accordingly, we design a fair and priority aware

pricing for the broker.

VIII. CONCLUSION

In this paper, we propose cloud brokerage services con-

sidering both pricing scheme with cloud users and reservation

methods with cloud providers, in which two types of priorities

are utilized to design the priority aware pricing (i.e., Priori-

tyPricing) and priority based reservation algorithms. Priority

has been ignored in previous brokerage works while it can be

used to largely increase broker’s profit. The reason is that low

priority requests can be delayed to the future to fully utilize the

purchased reserved instances so that cost saving is gained. To

evaluate the proposed pricing scheme and reservation methods,

we conduct simulations by using a large-scale real-world trace.
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