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Abstract

Initial screening experiments often leave some problems unresolved, adding follow-up

runs is needed to clarify the initial results. In this paper, a technique is developed to add

additional experimental runs to an initial supersaturated design. The added runs are gener-

ated with respect to the Bayesian Ds-optimality criterion and the procedure can incorporate

the model information from the initial design. After analysis of the initial experiment with

several methods, factors are classified into three groups: primary, secondary, and potential

according to the times that they have been identified. The focus is on those secondary factors

since they have been identified several times but not so many that experimenters are sure

that they are active, the proposed Bayesian Ds-optimal augmented design would minimize

the error variances of the parameter estimators of secondary factors. In addition, a blocking

factor will be involved to describe the mean shift between two stages. Simulation results

show that the method performs very well in certain settings.
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1 Introduction

Screening is the first phase of an experimental study on systems and simulation models.

Its purpose is to eliminate negligible factors so that efforts may be concentrated upon just

the important ones (active factors). Using a supersaturated design (SSD) whose run size is

not enough for estimating all the main effects may be considered when a large experiment is

infeasible in practice. SSDs were introduced by Box (1959), but not studied further until the

appearance of the work by Lin (1993) and Wu (1993). Many developments in the area have

taken place over the last two decades. For further details, please refer to Georgiou (2014),

Sun et al. (2011) and the references therein.

The analysis of SSDs is challenging due to the inherent non-full rank nature of the design

matrix and the fact that the columns of the model matrix are correlated. As a result, the

effects of different factors are aliased with one another making it very difficult to identify the

active factors correctly. Methods to overcome these problems include regression procedures,

such as forward selection (Westfall et al., 1998), stepwise and all-subsets regression (Abraham

et al., 1999), partial least squares methods (Zhang et al., 2007; Yin et al., 2013), shrinkage

methods, including SCAD (Li and Lin, 2002) and Dantzig selector (Phoa et al., 2009) and

Bayesian methods (Beattie et al., 2002; Chen et al., 2011, 2013; Huang et al., 2014). Readers

can refer to Salawu et al. (2015) and Georgiou (2014). However, different methods may give

different results and no method is infallible.

If we want to clarify or confirm initial results and guide the next phase of experimen-

tation, adding follow-up runs to the initial design is a useful way. As a matter of fact,

performing extra experimental runs is the only data-driven way to break confounding pat-

terns and to disentangle confounded effects. Suppose an SSD of n1 runs and k 2-level factors,

denoted by SSD(n1, k), has been run and now the experimenter can afford n2 more runs to

resolve ambiguities, the target is to find the best way to augment the original design to re-

duce uncertainty and get the most information out of the final SSD(n1 +n2, k). Gupta et al.

(2010) considered the problem for 2-level SSDs firstly: E(s2)-optimal designs (proposed by

Booth and Cox, 1962) are augmented with additional runs to create a new class of “extended

2



E(s2)-optimal” designs. Then Gupta et al. (2012) extended the method to s-level designs.

Suen and Das (2010) also used a similar approach to add or remove one row from an existing

E(s2)-optimal design to make a new E(s2)-optimal design. Qin et al. (2015) studied the

optimality of the extended design generated by adding few runs to an existing E(χ2)-optimal

mixed-level SSD and their paper covers the work of Gupta et al. (2010, 2012) as two special

cases. All of these methods, however, did not consider using the information from the initial

analysis and design when adding runs. Gutman et al. (2014) proposed an SSD augmentation

strategy using the Bayesian D-optimality criterion, they considered the information gained

from the initial design, SSD(n1, k), as a prior, and constructed the final SSD(n1 + n2, k) to

reduce the error variances of the parameter estimators under the Bayesian paradigm.

When adding runs to fractional factorial designs, two optimality criteria, D-optimality

and Ds-optimality, are often used. The Ds-optimal design approach would be applied if

the experimenters emphasize precise estimation for the “subset” of the experimental factors.

Kiefer and Wolfowitz (1961) defined a design as Ds-optimal if it minimizes the determinant

of the normalized covariance sub-matrix of estimators of the chosen model parameters while

treating the other parameters as nuisance parameters. The use of Ds-optimality designs

would result in increased power since the parameters of interest are estimated more precisely

(Atkinson and Donev, 1992; Casey et al., 2005). In this paper, we will combine the Ds-

optimality criterion with the Bayesian technique to propose an alternative approach, which

is different from the Bayesian D-optimal augmentation in two aspects: the principle of factor

classification and the optimal criterion.

The next section reviews the relevant background firstly, then we propose the new algo-

rithmic augmentation strategy for SSDs using information from the initial runs in Section 3.

Section 4 compares the performance of the Bayesian Ds-optimal augmented designs with the

Bayesian D-optimal augmented designs by several highlighting examples. Some concluding

remarks are provided in Section 5.
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2 Bayesian D-optimality and model selection methods

In this section, we briefly review the approach for developing augmenting Bayesian D-

optimal designs in the context of linear models and some model selection methods applied to

SSDs.

2.1 Bayesian D-optimality

Consider the linear model

y = β01n + β1x1 + · · ·+ βkxk + ε = Xβ + ε,

where y is an n×1 vector of observations, β0 is the intercept term, 1n is an n×1 column vector

with all elements unity, xi is an n×1 vector of settings for the ith factor, X is the n×p design

matrix with p = k+1, β is the p×1 vector of coefficients to be estimated, and ε ∼ N(0n, σ
2In)

is the noise vector, where 0n is an n × 1 column vector with all elements zero, and In is an

identity matrix of order n. In a two-level factorial design, each factor setting can be coded

as ±1 (or simply ±). Let the prior distribution of the parameters be β | σ2 ∼ N(β0, σ
2R−1),

where β0 is the mean of prior distribution for β, R is a prior covariance matrix, and the

conditional distribution of y given β be y | (β, σ2) ∼ N(Xβ, σ2In). Then the posterior

distribution for β given y is

β | y ∼ N(b, σ2(XTX +R)−1),

where b = (XTX +R)−1(XTy +Rβ0).

Let X1 be a model matrix corresponding to the initial n1 runs of an experiment with

response vector y1, and X2 be the additional n2 rows with response vector y2. That is

X =

 X1

X2

 , y =

 y1

y2

 .
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Once the data from the first stage have been collected, many different analysis methods can

be employed to identify active factors and the information from the analysis may be used

as a prior. Gutman et al. (2014) pointed out that the experimenter can classify a factor as

primary term (highlighted by an analysis method or many methods), secondary term (if there

is an indication the factor may be active, but it is not a predominant), or potential term (

with little evidence to suggest it is active). Then prior distributions would be assigned as

follows. Since the primary terms are likely to be active, their coefficients are specified to have

a diffuse prior variance tending to infinity (DuMouchel and Jones, 1994), which implies that

the primary terms are likely to be much different from zero. On the other hand, potential

terms are unlikely to have large effects, and it is proper to assume that they have a relative

small variance. For secondary terms, they may or may not be active, so their prior variances

should be finite, but larger than that for potential terms. We assume that the factors in X

have been reordered after the initial analysis: the intercept and the first p1 − 1 factors are

primary terms, the second p2 factors are potential terms, and the last p3 factors are secondary

terms, where p1 + p2 + p3 = p. Thus the prior covariance matrix R would be

R =


0p1×p1 0p1×p2 0p1×p3

0p2×p1 Ip2/τ
2 0p2×p3

0p3×p1 0p3×p2 Ip3/γ
2

 ,

where 0s×t is an s × t matrix with all elements zero, and τ < γ means the secondary terms

are more likely to be active than those potential terms. Using the prior information, the

augmented design SSD(n1+n2, k) is constructed to reduce the error variances of the parameter

estimators under the above Bayesian assumptions for the linear model, that is X2 is chosen

to maximize |XT
1 X1 +XT

2 X2 +R| to get a Bayesian D-optimal augmented SSD.

2.2 Model selection methods

We consider four analysis methods here: the half normal plot (Daniel, 1959), the least

absolute shrinkage and selection operator (LASSO) proposed by Tibshirani (1996), the s-
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moothly clipped absolute deviation (SCAD) by Fan and Li (2001), and the Dantzig selector

(DS) by Candes and Tao (2007).

The half normal plot visually screens factors whose effects seem larger than a random

noise. However, the method may fail to indicate any factor as significantly greater than the

experimental noise (Gupta et al., 2010), so here we list top bk/2c largest effects which are

more likely active than the others, here b·c is the rounding down operation.

The LASSO and SCAD are both members of the penalized least squares. A form of

penalized least squares is defined as

(y −Xβ)T (y −Xβ) +

k∑
j=0

pλ(|βj |),

where pλ(·) is a penalty function, and λ is a tuning parameter, which can be chosen by a

data-driven approach, such as cross-validation (CV) and generalized cross-validation (GCV).

The “l1 penalty” pλ(|β|) = λ|β| results in LASSO. Fan and Li (2001) pointed out that most

penalty functions do not simultaneously satisfy the mathematical conditions for unbiasedness,

sparsity, and continuity and they suggested using the SCAD penalty proposed by Fan (1997).

The first-order derivative of SCAD is defined by

p′λ(|β|) = λ{I(|β| ≤ λ) +
(aλ− |β|)+

(a− 1)λ
(|β| > λ)},

with a = 3.7 and pλ(0) = 0.

The DS constitutes a popular shrinkage type of variable selection method, the estimator

β̂ is the solution to

min‖β̂‖1 subject to ‖XT (y −Xβ̂)‖∞ ≤ δ,

where ‖β̂‖1 =
∑k

j=0 |β̂j | is the l1 norm, ‖a‖∞ = max(|a0|, . . . , |ak|) is the l∞ norm, and δ is

a tuning constant. Phoa et al. (2009) used the DS procedure on SSDs, those factors whose

coefficient estimates are greater than γ are retained. In the simulations, we select γ to be

1/10 of the largest |β̂j | in the model and choose δ according to mAIC defined in Phoa et al.
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(2009).

In this paper, factors would be classified into primary, potential, secondary groups based

on their identified frequencies and the advices from experts and/or experimenters that would

have a prior claim on the classification. Without the advices, we specify a factor to the

primary group which is considered as active with a high possibility if its identified rate is

no less than 75%. Those factors that have not been identified by any method would be

classified into the potential group, and the other factors whose identified rates belong to

(0, 75%) constitute the secondary group. This principle is a rule of thumb, the threshold is

not immutable and can be adjusted according to the experiences and background knowledge.

The factors in the primary and potential groups are considered as active or inactive with a

high probability, so their active performances are relatively clear compared to the factors in

the secondary group which need more information to clarify.

Remark 1. It is particularly important to point out that the proposed procedure possesses

great flexibility, that means the practitioners can choose the type of analysis methods, the

number of analysis methods and the criteria for classifying factors in terms of their conve-

nience, preference, experience and so on. Here we just select four particular methods to show

how the proposed procedure is carried out.

3 Methodology

For traditional factorial designs, we often consider Ds-optimal and D-optimal design ap-

proach for follow-up experiments. If one is more interested in some parameters, i.e., a “subset”

of regression parameters needs more attention, then using the Ds-optimality criterion may be

a better choice. Therefore, for SSDs, we would combine the Ds-optimality criterion with the

Bayesian technique to give an alternative approach to the Bayesian D-optimal augmentation.
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3.1 Bayesian Ds-optimality

When analyzing the initial SSD, one may find that different analysis techniques may

identify different sets of active factors, so it is useful to consider the results of several analysis

methods (Lin, 1995). For those factors identified by one or more but not all methods applied,

it is hard to assert that they are active or inactive without further information. The following

example would illustrate some problems when analyzing SSDs.

Example 1. We use the SSD(7,15) presented in Gupta et al. (2010), four active factors are

chosen randomly, and responses would be generated from the equation

y = 5x3 − 10x7 + 2x12 + 8x14 + ε, ε ∼ N(07, I7).

In the model, there are two moderate effects, a large effect and a small one. The design

with responses is given in Table 1. The analysis is challenging since to consider four active

Table 1: E(s2)-optimal SSD(7, 15) presented in Gupta et al. (2010).

Run x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 y

1 −1 1 −1 −1 −1 −1 1 1 1 −1 −1 1 1 −1 −1 −21.473

2 −1 −1 −1 −1 1 −1 −1 1 −1 −1 −1 −1 −1 1 1 11.150

3 −1 1 1 −1 1 1 −1 1 −1 1 1 1 1 1 −1 25.483

4 1 −1 −1 1 −1 −1 −1 −1 −1 1 −1 1 1 1 −1 13.680

5 1 −1 −1 −1 1 1 1 −1 1 1 1 1 −1 −1 1 −22.300

6 −1 1 1 1 −1 −1 −1 −1 1 1 1 −1 −1 −1 1 2.377

7 1 −1 1 1 −1 1 1 1 1 −1 1 −1 1 1 1 0.265

factors may violate the principle of effect sparsity (Box and Meyer, 1986). Marley and Woods

(2010) pointed out that an SSD would likely to be successful under the following conditions,

the factor-to-run ratio is less than two and the number of runs should beyond three times

the number of active factors. Neither conditions holds for the example, however. All results

from the four methods introduced in Section 2.2 are given in Table 2, where the truly active

factors are marked with a superscript “a” and “active factors” identified are indicated with

a “•”.

From Table 2, we can find that each method gives a different result, these four methods
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Table 2: Analysis of initial SSD(7, 15) data.

Method x1 x2 xa
3 x4 x5 x6 xa

7 x8 x9 x10 x11 xa
12 x13 xa

14 x15

Half Normal • • • • • • •
LASSO • • • • • •
SCAD • • • •

DS • • • •

report nine factors of interest. According to the principle of the effect sparsity which tells

that in a large set of factors, relatively few are likely to be active, it is unlikely to assert that

there may have nine active factors. It is satisfying that the true active factors {3, 7, 14} have

been identified by all the four methods. It is disappointing that the active factor 12 has been

deemed as active by only one method (SCAD). In contrast, inactive factor 9 is identified by

three methods out of the four, it is not active at all. So it seems that for a factor, its identified

frequency cannot tell its significance exactly and one needs more information to clarify which

factors are active.

However, we can still get some useful information from the table, for example, factors

{3, 7, 9, 14} may be very likely active since they have been selected as significant by all (or

almost all) the methods. On the other hand, factors {1, 2, 5, 6, 8, 11} may be less likely

active because they have not been identified by any method. For factors {4, 10, 12, 13, 15},

it is not clear whether they are active or not because they have been identified by only

some methods, perhaps some are active and some are not. Based on these results, we can

classify all factors into three groups: primary factors {3, 7, 9, 14} which are very likely to be

active, potential factors {1, 2, 5, 6, 8, 11} which are likely to be inactive, and secondary factors

{4, 10, 12, 13, 15} which cannot be asserted now and need further information to clarify. Such

classification results may be used as prior information for further exploration.

For the situation in Example 1, the immediate concern may be to resolve ambiguities,

that is we want to confirm which factors in {4, 10, 12, 13, 15} are active and which are not.

Adding new runs to the original experiment can provide the necessary information to answer

the question. Inspired by the Ds-optimality, we are more interested in those secondary terms

and want to have an accurate estimate of their regression coefficients which can be achieved
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by minimizing the variances of these regression coefficients.

Assume we have classified factors into primary, potential, secondary groups and reordered

them after the analysis of initial design. The primary and potential factors compose a new

set “pnp” group since their active performances are relatively clear. Let

X = (Xpnp,Xsec) =

 X1,pnp X1,sec

X2,pnp X2,sec

 ,

where Xpnp = (Xpri,Xpot) includes the intercept, p1 − 1 primary terms and p2 potential

terms, Xsec denotes the p3 secondary factors. Then we have

XTX = (Xpnp,Xsec)
T (Xpnp,Xsec) =

 XT
pnpXpnp XT

pnpXsec

XT
secXpnp XT

secXsec

 .

According to the partition structure, similarly we have

R =

 Rd

Rsec

 ,

where

Rpnp =

 0p1×p1 0p1×p2

0p2×p1 Ip2/τ
2

 ,

and Rsec = Ip3/γ
2. Thus the posterior variance for β can be rewritten as

σ2(XTX +R)−1 = σ2

 XT
pnpXpnp +Rpnp XT

pnpXsec

XT
secXpnp XT

secXsec +Rsec


−1

,

so the lower right p3 × p3 submatrix of (XTX +R)−1 can be shown to be

[
XT

secXsec +Rsec −XT
secXpnp(XT

pnpXpnp +Rpnp)−1XT
pnpXsec

]−1
.
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According to the Ds-optimality, the best choice of X2 is one that maximizes

|XT
secXsec +Rsec −XT

secXpnp(XT
pnpXpnp +Rpnp)−1XT

pnpXsec|, (1)

where

XT
secXsec = XT

1,secX1,sec +XT
2,secX2,sec,

XT
secXpnp = XT

1,secX1,pnp +XT
2,secX2,pnp,

XT
pnpXpnp = XT

1,pnpX1,pnp +XT
2,pnpX2,pnp.

Similar to Gutman et al. (2014), the final design can be called the Bayesian Ds-optimal

augmented design.

In fact, for Bayesian D-optimality, maximizing |XTX +R| is in some sense equivalent

to minimizing the correlations between all factors under some prior information which is

referred by the matrix R. In addition, with the knowledge of the block matrix, we have

|XTX+R| = |XT
pnpXpnp+Rpnp|·|XT

secXsec+Rsec−XT
secXpnp(XT

pnpXpnp+Rpnp)−1XT
pnpXsec|,

which is Eq.(1) multiplied by |XT
pnpXpnp+Rpnp|. Thus for Bayesian Ds-optimality, it focuses

more attention on the correlations involving secondary factors, the benefit is the reduction in

correlation relating to secondary terms and that would make picking out active factors from

the secondary set be easier.

3.2 Adding a blocking factor

In practice, there could be a long period of time between the original experiment and the

follow up experiment. So it is common to observe a shift in average responses between the

two experiments (Goos et al., 2011). Therefore it would be better to add a term, a blocking
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factor xp+1, to capture this potential shift in the mean response,

y = Xβ + xp+1δ + ε, (2)

where the parameter δ represents the shift in responses, and the factor xp+1 is a 2-level factor

that takes the value +1 for all the runs in the original experiment and −1 for all the runs in

the follow-up experiment. In general, we call the parameter δ a blocking effect.

For the original experiment, the new model matrix is (X1,1n1), we know that the first

column of X1 is equal to 1n1 , thus the blocking effect is confounded with the intercept. If

we have run the follow-up experiments, then the new complete model matrix is

Xc =

 X1 1n1

X2 −1n2

 .

Let the prior distribution of the parameters be βc | σ2 ∼ N(βc0, σ
2R−1c ), where βc =

(βT , δ)T , Rc is a prior variance with

Rc =

 R 0p

0Tp 1/ξ2

 .

Assume the conditional distribution is y | (βc, σ
2) ∼ N(Xcβc, σ

2In1+n2), then posterior

distribution for βc given y is βc | y ∼ N(bc, σ
2(XT

c Xc + Rc)
−1), where bc = (XT

c Xc +

Rc)
−1(XT

c y +Rcβc0) and

XT
c Xc =

 XT
1 X1 +XT

2 X2 XT
1 1n1 −XT

2 1n2

1Tn1
X1 − 1Tn2

X2 n1 + n2

 .

Similar to the Bayesian D-optimal designs, if we aim to reduce the error variances of the

parameter estimators, Var(bc) = σ2(XT
c Xc +Rc)

−1, the optimal augmented SSDs should be
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constructed to maximize

|XT
c Xc +Rc| =

∣∣∣∣∣∣∣
XT

1 X1 +XT
2 X2 +R XT

1 1n1 −XT
2 1n2 + 0p

1Tn1
X1 − 1Tn2

X2 + 0Tp n1 + n2 + 1/ξ2

∣∣∣∣∣∣∣ .
Thus, in term of the Bayesian D-optimality, we would maximize

∣∣∣∣XT
1 X1 +XT

2 X2 +R− 1

n1 + n2 + 1/ξ2
(XT

1 1n1 −XT
2 1n2)(1Tn1

X1 − 1Tn2
X2)

∣∣∣∣ , (3)

to get X2 generally, since |XT
c Xc+Rc| equals Eq.(3) multiplied by (n1+n2+1/ξ2) according

to properties of the block matrix.

When analyzing the augmented design, the blocking factor would be classified as a

secondary term since one cannot detect the blocking effect with the initial design and we are

not sure if there is a mean shift between the two experiments. This is different with Jones

et al. (2008) where they designated the blocking factor as a primary effect. For convenience,

we would set ξ2 = γ2 here. It is easy to consider the Bayesian Ds-optimal augmented SSDs

since we just need to put the blocking factor into the secondary group with an appropriate

adjustment for X and R.

A coordinate-exchange algorithm would be used to construct the optimal augmented

SSDs here, more detailed discussion of the algorithm can be found in Goos et al. (2011).

Example 2. To visually display how a neglected active blocking factor affect the augment-

ed design and the factors’ identification, consider the SSD(7,15) in Table 1 with responses

generated from the equation

y∗ = 5x3 − 10x7 + 2x12 + 8x14 + δx16 + ε, ε ∼ N(07, I7), (4)

where x16 = 1 for the first seven runs and x16 = −1 for the added n2 runs, and δ denotes

the blocking effect. Note that the y∗ in Eq. (4) is a little different from that of Example 1

because we have added a blocking factor here to describe the mean shift between two stages.

However the factors picked out would not change since the mean shift and the former intercept
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are confounded as a new intercept parameter when analyzing the initial design SSD(7,15).

The factors have been classified into three groups: primary factors 3,7,9,14, potential factors

1,2,5,6,8,11, and the others are secondary factors.

All examples in this paper use γ2 = 100 and τ2 = 5, the same with that of Gutman

et al. (2014). Based on the classification, we use the coordinate-exchange algorithm with

2000 initial random designs to add n2 = 4 runs under the Bayesian Ds-optimality, and the

setting for the number of initial random designs comes from the simulation discussed later.

Ignoring or considering the blocking effect, we get two Bayesian Ds-optimal augmented de-

signs: SSD(11, 15)1 whose added runs are given in the upper part of Table 3 and SSD(11, 15)2

whose added runs are in the lower part of Table 3. Note that for both augmented SSDs, all

settings are the same in the progress of constructing the optimal follow-up runs except that

the blocking factor, x16 = (1, 1, 1, 1, 1, 1, 1,−1,−1,−1,−1)′, has been put in the secondary

group for the latter.

Table 3: Additional 4 Bayesian Ds-optimal runs for the SSD(7, 15).

Run x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 y∗

8 1 1 1 1 −1 1 −1 −1 −1 −1 1 1 −1 1 1 20.190

Ignoring 9 1 −1 −1 1 1 1 1 −1 −1 1 1 −1 −1 −1 −1 −29.880

blocking 10 1 1 1 −1 −1 1 −1 −1 1 −1 1 −1 −1 1 −1 16.751

11 1 1 1 −1 −1 1 −1 −1 −1 1 1 −1 1 1 1 18.222

8 1 −1 1 1 −1 1 1 1 −1 −1 1 1 −1 1 1 2.176

Considering 9 1 −1 1 −1 −1 1 1 1 1 1 1 −1 −1 1 −1 −2.441

blocking 10 −1 1 −1 −1 −1 −1 1 1 −1 1 −1 −1 1 −1 1 −28.052

11 −1 −1 −1 1 1 −1 −1 1 1 1 −1 1 1 1 1 10.244

Figure 1 shows the correlation maps for both SSD(11,15)’s. In the figure, “Vi” means

the ith factor for i = 1, . . . , 15 and “block” denotes the blocking factor, in addition, a light

color represents a weak correlation between factors, while a black color represents a high

correlation. To make the graphical representation clear, the diagonal elements have been

set to blank in the figure though their values should be 1. The marked square box in the

diagram corresponds to the “pnp” group including primary and potential factors, secondary

and blocking factors stand back, the order is the same with the above. Such an arrangement
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(a) SSD(11, 15)1 (b) SSD(11, 15)2

Figure 1: Correlation maps for both augmented SSD(11,15)’s

is made for displaying the correlations among two classes of factors.

Both Bayesian Ds-optimal augmented designs behave similarly for the experimental fac-

tors. For each SSD, it is apparent that the color in the marked box is darker than in the

other area, so correlations among factors in the “pnp” group are relatively stronger than

those involving secondary factors, thereby increasing the likelihood for an active factor to

be identified from the secondary group. This performance coincides considerably with the

explantation given at the end of Section 3.1.

The last columns in the maps display differently, the color of SSD(11, 15)2 is much lighter,

which means smaller correlations between the blocking factor and the other experimental

factors. For SSD(11, 15)1, three factors, x1, x6, x13, are the most relevant to the blocking

factor and their absolute values of correlation coefficients are all 0.5714, the high correlations

will make them to be incorrectly identified as active easily when the blocking effect is truly

active, see the following Table 4. However. for SSD(11, 15)2, only factor x7 has a relatively

large correlation with the blocking factor and the correlation coefficient is −0.3105.

Consider there is a moderate blocking effect, say δ = 4. Now the present responses y∗

for the initial design SSD(7,15) are the sum of δ and y in Table 1. For the added runs,
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their responses are generated from Eq.(4) and listed in Table 3. Four methods introduced in

Section 2.2 are used to identify the active effects for both augmented SSDs and the results

are displayed in Table 4. For SSD(11, 15)1, two different ways of dealing with the blocking

effect are considered: ignoring or including it in the model, so the first two parts in Table 4

are both for SSD(11, 15)1.

Table 4: Analysis of y∗ on the Bayesian Ds-optimal augmented SSD(11, 15).

Design Blocking Method x1 x2 x
a
3 x4 x5 x6 x

a
7 x8 x9 x10 x11 x

a
12 x13 x

a
14 x15 block

SSD(11,15)1 Ignoring LASSO • • • • • •
SCAD • • • • • • •

DS • • • • • •
Half Normal • • • • • • •

Including LASSO • • • • • • • • •
SCAD • • • • •

DS • • • • •
Half Normal • • • • • • •

SSD(11,15)2 LASSO • • • • •
SCAD • • • • •

DS • • • • •
Half Normal • • • • • • •

Firstly, all active factors are identified by at least three out of four methods successfully,

especially for SSD(11, 15)2, each active factor can be identified by four methods. If the

blocking effect is included in the model, both SSDs can identify the blocking effect though

the blocking factor is not considered when constructing the follow-up runs for SSD(11, 15)1.

However, for SSD(11, 15)1, some inactive factors have also been incorrectly picked up as active

factors by at least one analysis method. Ignoring the blocking effect when modeling the data

will produce a higher Type I error than including it in the model. Furthermore, even we

include the blocking effect in the model, the performance of SSD(11, 15)1 is still not so good

as the SSD(11, 15)2 in terms of the analysis results because of the high correlations between

the experimental factors and the blocking factor in SSD(11, 15)1. So if a truly active blocking

factor is not taken into account when constructing the follow-up runs, there may be relatively

large correlations between the experimental factors and the blocking factor in the augmented

SSDs and this point will result in a high type I error. For example, for SSD(11, 15)1, the

16



inactive factors x1 has been selected as active incorrectly by three out of four methods, note

the correlation coefficient between it and the blocking factor is 0.5714, another correlated

inactive factor x13 has also been selected as active by two methods.

4 Simulation studies and results

In the section, simulations are carried out to study the performance of two classes of

augmented Bayesian D-optimal and Bayesian Ds-optimal SSDs, some comparisons are also

made.

4.1 Features varied

We vary the following simulation settings in our study.

1. Factor-to-run ratios in the SSDs. Three choices of decreasing difficulty would be used:

SSD(7,15), SSD(8,13) and SSD(9,12), with the ratios varying from 2.14 to 1.33. Three

initial SSDs are all E(s2)-optimal designs, where the first two come from Gutman et

al. (2014) and the last one is constructed using the nonorthogonal array algorithm of

Nguyen (1996) in Gendex (http://www.designcomputing.net/gendex/). The reason

to consider such SSDs with few runs is that the commonly used methods do not perform

well for these designs, so there may be an urgent need to add trials to clarify which

factors are active.

2. Experimental scenarios. We vary the number and magnitude of active factors over

three scenarios. Specifically, the magnitude of the regression coefficient for each of the

a active factors and one blocking factor is drawn from N(µ, 1), with different scenarios

of :

(1) a = 3, µ = 5; (2) a = 4, µ = 4; (3) a = 5, µ = 3.

3. Design augmenting criteria. Here we include the Bayesian D-optimal and the new

Bayesian Ds-optimal augmented SSDs.
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4. The number of added runs n2. We choose to add n2 = 2, 3, . . . , k+1−n1 follow-up runs,

the augmented design would not be supersaturated any more when n2 > k + 1− n1.

5. The Bayesian D-optimal and Bayesian Ds-optimal augmented SSDs are all generated

using coordinate-exchange algorithm with M random starts.

We have made a number of simulations to find how many random-start designs would

present an optimal or near optimal augmented SSDs, i.e., the values of the optimal criterion

in Eq.(1) (or Eq.(3)) would have no or very small difference. As expected, an appropriate

choice is related to the number of added runs, the number of factors, and the classification

of factors. For instance, in Example 2, when one run is added, 50 random starts are enough

to give a Bayesian Ds-optimal augmented SSD(7+1,15) since the results with M = 50 and

the results with M = 500 are the same. However, when adding n2 = 3 runs, there are some

differences in the values of criterion (1), even we choose 100 random starts. A large number

of simulations show that the the criterion value is relatively stable only when M is around or

above 1000. As the number of added runs increases, the value of Eq.(1) increases gradually,

meanwhile, much more start designs are needed to get an optimal or near optimal augmented

SSD. However, in general, when n2 is larger, even if the values of Eq.(1) (or Eq.(3)) are

slightly different for two augmented SSDs, the impact on the latter data analysis is very

small. Thus we set M = dn2/2e ∗ 1000, where d·e is for rounding up, and it would present a

near optimal augmented SSD based on our simulation results.

In each of the 1000 iterations:

1. Among the 2nd, 3rd, . . ., k+1th columns of X, a columns are randomly assigned as the

active experimental factors. Their coefficients β and the coefficient δ for the blocking

factor are obtained by sampling from N(µ, 1) and randomly assigning signs (+ or −).

2. For simplicity, the remaining k−a columns (inactive effects) are assigned to be exactly

zero.

3. The response vector is generated from the model in Eq.(2) with error ε ∼ N(0n1 , In1).

4. All factors would be classified into their appropriate groups in terms of the classifying
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principle after being analyzed by four model selection methods introduced in Section

2.2. The blocking factor is assigned as secondary term.

5. Add n2 runs by maximizing the objective functions in Eq.(1) and Eq.(3) to get the

Bayesian Ds-optimal and the Bayesian D-optimal augmented SSDs respectively.

6. Generate the new responses for the added n2 runs. Analyze the final augmented SSDs

with four model selection methods. Then those factors (identified as active by at least

three methods here) classified into the primary group are the declared “active” factors

now.

4.2 Simulation results for augmenting SSDs

Three different criteria similar to Marley and Woods (2010) would be used to assess the

performance of the augmented designs.

Power: The average proportion of active factors classified into the primary group.

Type I error: The average proportion of the inactive factors classified into the primary

group.

Coverage: The average proportion of times that all the truly active effects are classified

into the primary group.

Clearly, Power and Coverage are the-larger-the-better, and Type I error is the-smaller-the-

better. Figures 2–4 show the Power, Type I error and Coverage for three SSDs, respectively.

For the SSD(7 + n2,15), Figure 2 shows the dominance of the Bayesian Ds-optimal

augmented SSDs with regard to Power, where the superiority is particularly evident when

adding fewer runs. For example, in the first scenario, a = 3, µ = 5, when n2 = 2, the difference

of Power between the two classes of augmented SSDs is close to 0.1, however the difference

is very small when adding eight runs. Also, the Bayesian Ds-optimal augmented SSDs have

slightly higher coverage proportions. Note that two classes of augmenting strategies have

similar performance with respect to Type I error. Thus Bayesian Ds-optimality criterion
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Figure 2: Performance for two classes of augmented SSD(7 + n2,15)’s

is recommended if one can afford few runs because it would produce a more economical

augmented SSD with a good performance.

Not surprisingly, as the number of adding runs increases, both classes of the augmented

designs perform well. Generally, when adding the same runs, the augmented SSDs have

consistently worse performance for harder scenarios in terms of all three measures. Note

that for both classes of augmented SSDs, we have low coverage proportions relative to the

good performance on the Power. This means some small effects may not be identified though

multiple runs have been added. In fact, most of the missing active factors are the members

that cannot be identified by any method for the initial designs. So for those small effects

which cannot be selected as active by at least one of four methods applied, to identify all of

them is still difficult even adding much more runs.

For two classes of SSD(8+n2,13), Figure 3 shows that the Bayesian Ds-optimal criterion

leads to a bit higher Power and Coverage although the differences are not large. Also, the

comparisons indicate that the Bayesian Ds-optimal augmented SSDs have little lower Type

I error rates. For the third scenario, it seems that the Bayesian Ds-optimal augmented SSDs

perform better than the Bayesian D-optimal augmented SSDs in terms of the three measures.

In addition, the last scenario clearly has the worst performance comparing to the first two
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Figure 3: Performance for two classes of augmented SSD(8 + n2,13)’s

Figure 4: Performance for two classes of augmented SSD(9 + n2,12)’s

scenarios. Note that for SSD(7+n2,15), the settings of the three scenarios have some impacts

on the performance, but not so large as that for SSD(8 + n2,13). Based on the simulations

for SSD(7 + n2,15) and SSD(8 + n2,13), it seems that the Bayesian Ds-optimal augmenting

criterion tends to produce designs with higher Power and Coverage, and lower Type I error

rates for the hard settings.
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For the SSD(9 + n2,12), two classes of augmented SSDs perform well as expected since

the analysis of initial design can present a good classification for the factors, that is about

50% active factors are specified to the primary group and only about 10% active factors are

incorrectly classified into the potential group. Here, the Bayesian Ds-optimal augmented

SSDs do not outperform the Bayesian D-optimal augmented SSDs any more, i.e., two classes

of augmentation methods present similar results in terms of the three evaluation measures.

Through the above simulations, we know that for the initial SSDs with high factor-to-

run ratios, the identification results from various methods are different. When adding fewer

runs are considered, employing the Bayesian Ds-optimal augmented design would be a better

choice. Even the factor-to-run ratio is not very high, if there are great differences in the

results of various methods for the initial SSDs, this performance suggests us that the number

of active factors may be a litter large or there are some small effects, the Bayesian Ds-optimal

augmented design should be the preference too.

Remark 2. When adding follow-up experiments, the practitioners are very concerned about

the practical question, given n1 what will be an ideal value for n2? For traditional SSDs,

Marley and Woods (2010) concluded that the number of all runs should be at least three

times the number of active effects. However, it is not easy to answer this question for the

augmented SSDs since it would involve the objective of experiment, the correlations in the

initial design model, the complexity of the model and so on. In our simulation, we have

considered all the values of n2 ∈ {2, . . . , k + 1 − n1}, though not all results are presented

for SSD(7,15) since Figure 2 can still clearly show the trend of increasing or decreasing for

the three measures. We find that for initial SSDs with moderate factor-to-run ratios, such

as SSD(9,12) and SSD(8,13), adding n2 = k + 1 − n1 runs is enough to present a good

augmented SSD if the model does not include many small active effects. When an SSD with

a high factor-to-run ratio is used in the first stage experiment, difficulty to identify those

relatively small effects would result in an inaccurate factor classification and eventually lead

to a bad result, though the result is somewhat meaningful. In general, the purpose of using

an SSD is just to find the important factors.
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5 Concluding remarks

SSDs are typically employed to screen a few factors from many candidates and they

have great potential to aid in discoveries in a resource-efficient manner. However, screening

experiments often leave some questions unanswered and adding new runs to the original

experiment should allow us to clear up our uncertainty. In this paper, we have presented the

Bayesian Ds-optimality to add runs to existing SSDs by using information from the initial

experiment. The simulation studies in Section 4 indicate that the augmentation strategy

performs well, especially when we have a proper prior classification for the factors, most of

the active factors and the mean shift can be identified with adding a few runs. Even for those

challenging settings, the factor classification is not so accurate because of the complicated

confounding pattern in the initial design, the analysis results of the final augmented SSDs

are still pretty good, and the Bayesian Ds-optimal augmenting criterion tends to produce

designs with higher Power and Coverage, and lower Type I error rates than the Bayesian

D-optimal augmenting criterion.

Ruggoo and Vandebroek (2004) pointed out the Bayesian D-D optimal designs coming

from two-stage procedures perform more robust and better in comparison to its unique stage

competitors, the classical one-stage D-optimal and the one-stage Bayesian D-optimal designs.

For an augmented SSD, since the added design is generated from the Bayesian Ds(or D)-

optimal procedure that incorporates the improved model knowledge from the first stage and

the experts’ advice, we may expect such an augmented SSD would be superior in performance

to the classical one stage SSDs in some situations and this is also our future work.

There are still some limitations of our simulation studies, more variable selection methods

and designs should be considered, it is possible that classification results from much more

analysis strategies may be more accurate, and then improve the efficiency of the Bayesian

Ds-optimal augmented SSDs in identifying active factors.

In the literature, most of the SSDs are for main effects only models. However, studies

are needed to construct SSDs for the estimation of factor interactions.
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