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Abstract: Environment perception is important for collision-free motion planning of outdoor mobile
robots. This paper presents an adaptive obstacle detection method for outdoor mobile robots using
a single downward-looking LiDAR sensor. The method begins by extracting line segments from
the raw sensor data, and then estimates the height and the vector of the scanned road surface at
each moment. Subsequently, the segments are divided into either road ground or obstacles based on
the average height of each line segment and the deviation between the line segment and the road
vector estimated from the previous measurements. A series of experiments have been conducted in
several scenarios, including normal scenes and complex scenes. The experimental results show that
the proposed approach can accurately detect obstacles on roads and could effectively deal with the
different heights of obstacles in urban road environments.

Keywords: obstacle detection; outdoor mobile robot; LiDAR sensor; line segments; road height
and vector

1. Introduction

1.1. Motivation

With the rapid development of autonomous mobile robots used in outdoor environments such
as delivery robots, self-driving street transporters and other unmanned ground vehicles (UGVs),
the detection of traversable road regions and obstacles becomes an essential issue to guarantee their
safe navigation [1,2]. It is critical for autonomous mobile robots to accurately perceive and understand
the obstacles in front of them on the road surfaces when they are moving. Cameras were widely used
for detecting roads, lane marks, obstacles and objects [3,4]. The visual sensors are very effective in scene
understanding, but they are easily affected by light changes, and when it comes to complex shadows or
bad weather conditions, the detection accuracy will be greatly reduced [5]. Therefore, cameras usually
need to be combined with laser scanners to achieve high-accuracy information [6]. LiDAR sensors are
widely used to detect the objects and obstacles due to their good range resolution and high accuracy [7].
For small UGVs used in urban areas, two important aspects should be considered: one is that the
method of obstacle detection could be applicable to complex road environments, another is that
these small UGVs must not require costly sensors as an economical solution is very important for
their industrialization.
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1.2. Related Works

In general, LiDAR sensors can be divided into two versions, namely 2D LiDAR and 3D LiDAR.
3D versions can obtain much richer information about the environment surrounding a mobile
robot. Many object detection and classification applications have been done using 3D LiDAR [8–11].
Zermas et al. developed a 3D-LiDAR-based perception system for ground robots [12], which extracted
the ground surface in an iterative fashion using deterministically assigned seed points so that the
remaining non-ground points can be effectively clustered. In [13], they presented an algorithm for
segmentation of 3D point clouds by establishing a binary labeling of scanned points and estimated the
local ground plane to separate non-ground points, whereby the local ground plane was estimated by
applying 2D line extraction algorithms to the domain of unorganized 3D points. However, the data
obtained by 3D LiDAR is large and complicated, which results in more processing time. Moreover,
the cost of 3D LiDAR is too expensive to be acceptable for small unmanned vehicles, therefore,
2D LiDAR sensors have been widely used for obstacle detection and terrain classification, because of
their low cost.

Usually, a horizontally-looking 2D LiDAR mounted at a certain height on a mobile robot is used to
detect obstacles or to judge traversable/untraversable areas in its near front. A method was proposed
for dynamically detecting obstacles by using a horizontally-looking LiDAR based on an occupancy
grid map [14], where the historic information of the map is used to decide whether a cell is occupied
by a dynamic object. Chung et al. proposed an algorithm for detecting human legs and tracking
them with a single laser range finder. The human legs were detected by the application of a support
vector data description scheme and it tracked the leg positions according to an analysis of human
walking motion [15]. Arras, et al. also used 2D laser range data and applied the AdaBoost algorithm
for training a strong classifier to facilitate the detection of people [16]. However, these methods used
only level 2D information, a restriction that limits their use for security applications. Because only a
sliced sample of the world can be obtained in each scan, the obstacles that are lower than the scanning
height cannot be detected by horizontally-looking 2D LiDAR sensors.

A downward-looking 2D LiDAR sensor can obtain more information about the road surface and
detect frontal obstacles better than a horizontally-looking LiDAR sensor. It can recognize traversable
road regions, obstacles with different height and other impassable areas such as holes and ditches.
The famous Stanley autonomous driving car, which won the DARPA Grand Challenge, collected a
scanned 3-D point cloud using downward-looking LiDAR sensors [17]. Qin, et al., used two 2D
LiDAR sensors with different tilt-down angles to scan the frontal ground [18], but their methods for
obstacles detection were not given. Lee and Oh proposed an approach for traversable region extraction
in indoor/outdoor environments [19]. A quantized digital elevation map was firstly created using
a grayscale reconstruction, and then the traversable region extraction was implemented with the
histogram and edge information of this map. They adopted different classification methods to analyze
the geographical features of different scenes, but did not discuss the conversion between different
schemes under the environment changes.

Usually, terrain classification and obstacle extraction procedures are based on the heights of
the area contained in a digital elevation model, or use other derived models such as slopes and
gradients [20,21]. Andersen, et al. proposed an algorithm for terrain classification that fused
four distinctly different classifiers, i.e., raw height, step size, slope and roughness [22]. However,
the terrain classifiers were all done on raw point statistics and the noise points were not considered.
Zhang combined prior knowledge of the minimal width of roads and local-extreme-signal detection
filter for separating the road segments and road-edge points, then the road-edges points were projected
to the ground plane for further estimating the curb position [23]. Han, et al. presented a method to
classify the extracted line segments into road and obstacles and the estimation of the roll and pitch
angles of the sensor relative to the scanning road surfaces were used in this process [24]. In their
approach, the change of roll and pitch of line segments were firstly used for judging obstacles and
the criterion of road width was applied for selecting line segments corresponding to traversable or
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un-traversable roads. Finally, the obstacle height was used for making sure that the obstacle line
segments were extracted exactly.

Wijesoma et al. used a tilted 2D laser range finder to detect road curbs [25]. In this approach,
the extracted curbs were tracked with a Kalman filter using successive scans and the prior knowledge
assumptions was used for finding the right curbs. Liu et al. created a local digital elevation map
with the average height of points in voxels. Candidate road curbs were extracted based on the height
variance and slope of two adjacent voxels [26]. Although these algorithms use downward-looking
LiDAR sensors and have achieved some good experimental results, they do not deal with complex
curved slopes and are poorly suited for changing road conditions, such as sloping roads with sharp
turns. Table 1 provides an overview of the major terrain classification and obstacle extraction algorithms
described in the aforementioned works.

Table 1. An overview of related works.

Reference Sensor Method Advantages Disadvantages

Zermas et al. [12] 3D LiDAR Iterative fashion
using seed points Rich information

of obstacles
Expensive and height
processing time

Himmelsbach et al. [13] 3D LiDAR Establishing
binary labeling

Chen et al. [14] Horizontally-
looking 2D LiDAR

Based on occupancy
grid map Simple principle

The obstacles that are
lower than the scanning
height can not be detectedChung et al. [15] Horizontally-

looking 2D LiDAR
Support vector
data description

No geometric assumption
and the robust tracking of
dynamic object

Lee et al. [19] Downward-
looking 2D LiDAR

Quantized digital
elevation map and
grayscale reconstruction

Data processing by using
existing image
processing techniques

Not discuss the conversion
between different scene

Andersen et al. [22] Downward-
looking 2D LiDAR

Terrain classification
based on derived models Convenient and direct Poorly suited to the

changing conditions

Liu et al. [26] Downward-
looking 2D LiDAR

Dynamic digital
elevation map

Adaptive curb
model selection

Not discuss complex
road conditions

In many cases, the extracted features are more useful and effective than raw data. The detected
straight lines and corners are used to match with the global straight lines and corners to get the
robot position and orientation values [27]. Three geometric primitives, lines, circles and ellipses,
were discussed for 2D segmentation [28]. Zhao, et al. presented a prediction-based geometrical
feature extraction approach which worked independent of any prior knowledge of the environment
to detect line and circle features from 2D laser scanner data [29]. Among these geometric primitives,
line extraction is the simplest one owe to its simplicity and easy implementation. A method based on
scan lines was reported to extract road marking [30], in which the road points were separated from the
raw point clouds using the seed road points by moving least squares line fitting. The method of total
least squares to fit a line was discussed in [31]. Sarkar et al. proposed an offline method to build maps
of indoor environments by using line segments extracted from laser range data [32]. Several algorithms
had been proposed for extracting line segments from 2D LiDAR data, Improved Successive Edge
Following algorithm [33], Recursive Line Extraction algorithm [34] and qualitative and quantitative
comparisons had been applied using different methods include Line Tracking, Iterative End-Point Fit
(IEPF) and Split and Merge Fuzzy algorithms [35], IEPF is used in this paper, because it is simple and
efficient. In these algorithms, obstacles were referred to objects above the road surface. The heights of
the detected objects were determined for obstacles avoidance.

1.3. The proposed Approach

In order to improve the applicability for complex road environments, this paper proposes a new
obstacles detection method by using a single downward-looking 2D LiDAR sensor. The method
is mainly depends on the line segments extraction from the LiDAR data, as well as the adaptive



Sensors 2018, 18, 1749 4 of 18

estimation of the height and vector of the scanned road surface. Our approach is novel in terms of the
following three aspects in comparison with other existing methods based on 2D LiDAR:

(1) Most previous studies did not deal with complex slopes and are poorly suited to different road
conditions only using road height estimation. In order to improve the accuracy, we define the road
vectors to well reflect the real situation of a road. We divide the line segments into ground and
obstacle sections based on the average height of each line segment and the deviation of the line
segment from the scanned road vector estimated from the previous measurements. By combining
the height and the vector of the scanned road, our method can adapt to different road conditions.

(2) The estimated road height and road vector in our method can vary with the changing road
conditions, which improves the adaptivity of our method. The most recent characteristics of
the road can be learnt by estimating the height and the vector a set of past scanned laser data,
and then used for separation of obstacles at the next moment. The entire process is conducted
iteratively so that a self-supervised learning system is realized to cope with uphill road, downhill
road and sloping road.

(3) We need not measure or estimate the roll and pitch angles of the LiDAR. During the whole
design and application process, only the 2D planar position information and the steering
angle of the robot are used, but we can also detect the road conditions and obstacles whether
the robot is on an uphill road or a downhill road. The whole structure is simple and the
algorithms are low time-consuming and applicable to small unmanned vehicles effectively in
urban outdoor environments.

The rest of this paper is organized as follows: Section 2 presents the definitions of the system
coordinates used in this work. The method for extracting line segments from the scanned points is
illustrated in Section 3. Section 4 describes our new algorithms used for obstacle detection based on
the height estimation and vector extraction of each scanned road surface. Several typical experiments
are conducted and the results are analyzed in Section 5. Finally, a brief conclusion and future work
suggestions are given in Section 6.

2. Definitions of System Coordinates

As shown in Figure 1a, the laser scanner is tilted at angle α down towards the ground. We define
the laser frame FL(OL, θ, l, XL, YL) (OL is the laser emission point). The scan starts at direction θmin = θ1

and stops at θmax = θN (Figure 1b) with a given angular resolution ∆θ = θj − θj−1. The robot frame
is defined as FR(OR, XR, YR, ZR) (OR is the point of contact between the rear wheel and the ground).
The world frame is defined as FW(OW , XW , YW , ZW) (OW is the rear wheel position point at the initial
moment t0). FL, FR, FW are shown with blue, red and green, respectively.
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Figure 1. Definitions of the system coordinates. (a) Coordinate system; (b) Laser polar coordinate system.

The 2D pose vector of the mobile robot is (xti , yti , βti ), where (xti , yti ), βti are the position
and heading angle of mobile robot in the world coordinate system at time ti. Many researchers
use odometers or IMUs to get robot position information, which have some measurement errors.
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In our method, we have performed some filtering to reduce the errors which may be caused by tire
deformation or tire slip. As shown in Figure 2, because we only detect obstacles in the area Aij ahead
of the robot (scanned for time ti to tj) and not pay attention to the scanned road where the robot has
passed, the accumulation errors of odometer in the time span between ti and ti is small and can be
ignored. We define the data of a 2D LiDAR scan at time ti as:

PL
ti
=
{(

θij, lij, xL
ij, yL

ij

)}
1 ≤ j ≤ N (1)

xL
ij = lij cos θij, yL

ij = lij sin θij (2)

where
(
θij, lij

)
are the polar coordinates of the current j-th point in FL, θij represents the angle and lij

is the distance of this point, and
(

xL
ij, yL

ij

)
is its Cartesian coordinates in FL. i represents the current

time ti. The conversion from the laser Cartesian coordinate system to the global Cartesian coordinate
system is written as follows:  xR

ij
yR

ij
zR

ij

 = RR
ti
·

 xL
ij

yL
ij
0

+

 ∆X
0

∆H

 (3)

 xW
ij

yW
ij

zW
ij

 = RW
ti
·

 xR
ij

yR
ij

zR
ij

+

 xti

yti

0

 (4)

where
(

xW
ij , yW

ij , zW
ij

)
and

(
xR

ij , yR
ij , zR

ij

)
respectively represent the coordinates in FR and the global

coordinates of the current j-th point in FW . RR
ti

is the rotation transformation matrix from FL to FR,
and RW

ti
is the rotation transformation matrix from FR to FW .
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3. Scan Segmentation and Line Extraction

Scan segmentation is the first step for a robot to detect its environment, which divides the scanned
points, and then uses linear segments to fit them. Each line segment will be classified as obstacle
segment or pavement segment. The range data received from 2D LiDAR at ti are in polar coordinate
form. All points are in a plane and each point has its own index number (ij), and their coordinates(
θij, lij

)
or
(

xL
ij, yL

ij

)
are two-dimensional in FL. The processing in FL is much faster than in the 3D

coordinates
(

xW
ij , yW

ij , zW
ij

)
in FW . For this reason, the scan extraction has been done in laser coordinates.

After segmentation, each line is converted to the FW using Equations (3) and (4) according to the
indices of its first and last points.

3.1. Breakpoint Detection

A rupture point indicates the discontinuity or break in a series of points. Breakpoint detection
is an important task for scan segmentation, and in a real environment, such a discontinuity always
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occurs where an obstacle appears. According to Equation (1), an initial segmentation for PL
ti

can be
defined as:

SiT = {(θik, lik), nT < k < nT+1}, 1 < T < m (5)

The point cloud is separated into m parts. The traditional method of segmentation is to separate
the point cloud with a constant threshold Dth. However, it is difficult to determine the threshold,
and the fixed threshold is less flexible. In the Adaptive Breakpoint Detector (ABD) [35], an adaptive
threshold is adopted as:

Dth = lij·
sin(∆θ)

sin(λ− ∆θ)
+ 3σl (6)

where λ is an auxiliary parameter and σl is a residual variance to encompass the stochastic behavior of
the sequence scanned points PL

ti
and the related noise associated to lij. This threshold depends on the

range scan distance lij, which is more flexible than a constant threshold and can be used in various
situations for breakpoint detection.

The preliminary fragment and breakpoint detection is defined as follows:

pi(j+1) ∈
{

SiT i f ‖pi(j+1) − pij‖ < Dth

Si(T+1) pij, pi(j+1) → breakpointselse
(7)

where pij is the j-th scanned point at ti, ‖pi(j+1) − pij‖ is the Euclidean distance between two
consecutive scanned points pi(j+1) and pij.

3.2. Line Extraction

Each point segment SiT with points less than κ is deleted to make sure that no error points
are included in the segments. Then the IEPF algorithm [35] is used for separation of line extracted
segments as shown in Figure 3. Finally, we get h lines at the global coordinate system by using
Equation (8) below:

Lti = {li1, . . . , lih}, lit =
{(

xW
k , yW

k , zW
k

)
, sit < k < eit

}
, 1 < t < h (8)

where sit, eit are the order of the starting point and the end point of lit.
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After the segmentation algorithm, a complete sequence of the scanned points
(

PL
ti

)
becomes a

pair of tth values {(sit, eit)} which represent both end points of each line.
For each line, we extract its properties as follows:

T =
(

hit, SpW
it , EpW

it , SpL
it, EpL

it,
→
v it, lenit

)
(9)

hit: The average height of lit. hit = mean
{(

zW
k
)
, sit < k < eit

}
SpW

it : The starting point of lit in FW . SpW
it =

(
xW

sit
, yW

sit
, zW

sit

)
EpW

it : The end point of lit in FW . EpW
it =

(
xW

eit
, yW

eit
, zW

eit

)



Sensors 2018, 18, 1749 7 of 18

SpL
it: The starting point of lit in FL. SpL

it =
(

xL
sit

, yL
sit

)
EpL

it: The end point of lit in FL. EpL
it =

(
xL

eit
, yL

eit

)
→
v it: The vector of lit.

→
v it = EpW

it − SpW
it

lenit: The length of lit. lenit = ‖EpL
it − SpL

it‖

4. Obstacles Detection Algorithms

The main content of obstacle detection is to divide the line segments into either obstacles or

road sections. For this purpose, the height (height(ti)) and the vector
(→

V ti

)
of each scanned road

surface are estimated and extracted so that pavement information can be effectively obtained. Then,
the obstacles and the road surfaces can be separated base on these two parameters.

Figure 4 shows the obstacle detection process, in which Figure 4a is the actual moving surface
of the robot. Since no sensor is used to get the pitch and roll data of the robot relative to the world
coordinate system, we only use a 2D pose vector (xti , yti , βti ) of the mobile robot in the algorithms.
The mobile robot is equivalent to moving on a hypothetical plane shown in Figure 4b. The dashed red
line corresponds to the scanned road surface, although it is not the same as the actual moving surface.
This still can reflect the real situation of the obstacles on pavement.
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4.1. Road Height Estimation

When the mobile robot is moving forward, we estimate the height of the scanned road surface
for each scan. This is extremely important for the mobile robot to identify obstacles on the pavement.
We assume that the mobile robot usually begins moving on a flat road and no obstacles are in front
of it. Therefore, the height hight(t0) of the scanned road surface corresponding to the first scan
(at initial time t0) can be derived from the average height of the laser points belong to central range
(e.g., from 75◦ to 105◦). This range corresponds exactly to the front of the robot. For ti > t0, the data
from wider range (e.g., from 30◦ to 150◦) are used to assess the height(ti), where most of the points in
this scanned area are belong to ground. We need to filter out some obstacle points that may exist to get
a more accurate height.

Since the height of the ground surface does not change suddenly, the height
(

zW
ij

)
of each point in

the selected range is compared with the height of the scanned road estimated before. If the difference
between a point’s height and the estimated height exceeds a threshold δth, then this point will be
removed. After filtering all obstacle points in this range, the height of this scan is calculated based on
the remaining points. The estimated height varies with the different road conditions, it improves the
adaptability of the whole algorithm. Algorithm 1 describes the algorithm proposed for assessing the
height of the scanned road surface.
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Algorithm 1: Height assessment of the scanned road surface.

INPUT: all point pij in range of (30◦~150◦) and ti.
OUTPUT: height(ti)

Ω = ∅ (set Ω inital value is null set)
01 if ti = t0

02 hight (ti) = average
(

zW
ij ( f rom 75◦ to 105◦)

)
03 else
04 for all point pij in range of (30◦~150◦)
05 i f abs(zW

ij − hight(ti−1)) < δth

06 Ω = Ω ∪ zW
ij

07 end
08 end
09 end
10 height(ti) = average(Ω)

return height (ti)

4.2. Road Vector Extraction

In order to enhance the robustness and classification performance of the whole method, the vector
→
V ti corresponding to the current scan is extracted by the line segments which are separated from
the scanned points. It can be used for better fitting the road information. As the road is continuous,

it will not change drastically in one scanning period.
→
V ti−1 obtained at the previous moment can be

used to approximate the currently scanned road surface. By using this feature, the obstacles could be
reliably detected.

Since the robot is originally moving on an unobstructed road, the main line segments

corresponding to the first frame can be approximated to the scanned road surface. Let
→
V t0 be the

longest line of the first scan:
→
V t0 =

→
v t∗ , t∗ = max(lenit) (10)

When ti > t0, we use the line segment set RLi of the current scan, obtained in Section 4.3

(Algorithm 3), to get
→
V ti after filtering the line segments.

Each extracted line segment in RLi has two attributes: direction angle and length. A line used to
fit the vector of the scanned road surface should have low deviation of direction angle ϑit Equation (11)

relative to
→
V ti−1 :

ϑit = arccos

 →
v it·
→
V ti−1

‖→v it‖·‖
→
V ti−1‖

 (11)

The line segment that is longer than a minimum line length Lmin is more suitable for fitting the
road vector. Moreover, a line segment is removed from RLi if its deviation of direction angle is bigger
than its maximum threshold φmax or its length is shorter than Lmin. This criterion can effectively filter
out some noisy lines caused by LiDAR and the robot localization, which leads to more accurate result
and faster computation.

For the remaining line segments, their starting points SpL
it and end points EpL

it are extracted to
Θ. The points are finally fitted into a straight line using the least square method. For this line, we

choose two endpoints pL
1 , pL

2 and convert them to FW , so that we can get
→
V ti . The estimated vector can

well describe different road conditions including the sloping road and enhances the robustness of our
method. The algorithm for extracting the vector of scanned road surface is described in Algorithm 2.
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Algorithm 2: Extract the vector of scanned road surface.

INPUT: road line segments sets RLi, ϑit and ti.

OUTPUT:
→
V ti

Θ = ∅ (set Θ inital value is null set)
01 i f ti = t0

02 t∗ = max(lenit)

03
→
V ti =

→
v t∗

04 else
05 f or all lit in RLi
06 i f ϑit < φmax and lenit > Lmin
07 Θ = Θ ∪

{
SpL

it, EpL
it
}

08 end
09 end
10 Get â, b̂ using the least square f rom Θ
11 choose two endpoints pL

1 , pL
2 f rom line : y = âx + b̂

12 Convert pL
1 , pL

2 to FW combining(3), and get pW
1 , pW

2

13
→
V ti = pW

2 − pW
1

14 end

return
→
V ti

4.3. Obstacle Extraction

Obstacle extraction is mainly based on two features: the average height of each line segment and
the deviation of the line segment from the vector of the scanned road surface extracted. In many cases,
obstacles are the objects and road edges that are higher than ground—thus the obstacle segments are
usually the lines which deviate from the road surface.

Before obstacle extraction, some noisy segments need to be filtered and eliminated, which are
grouped together by a number of points, like dirty spots. Only a threshold lmin can be used to filter
them out. For each obstacle line, its hit should be bigger than a minimum threshold ξh, but the line
segments whose hit are larger than ξh may not be obstacle line segments.

For example, when the mobile robot is running on a flat road, its laser has been scanned to

the ramp of uphill road. So, we need to consider using the deviation between lit and
→
V ti−1 to make

judgments. Here, the distances between the endpoints of line segment lit and the road vector
→
V ti−1 ,

i.e., D
(

SpW
it ,
→
V ti−1

)
and D

(
EpW

it ,
→
V ti−1

)
, are calculated. As long as one of these two distances is

greater than a minimal deviation value ξi, the line segment will be treated as an obstacle line segment.
The detailed algorithm for obstacles extraction is described as Algorithm 3.

In Algorithm 3, OLi, RLi denote the obstacle and the road line segment sets at current time ti
respectively. For ξi, it is expressed by the following formula:

ξi = ∆t×Vi + 3ς (12)

where ∆t = ti+1 − ti is the scanning interval of the LiDAR sensor, Vi is the current speed of the robot
and ς is deviation.
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Algorithm 3: Obstacles extraction.

INPUT: the average height of line hij,
→
V ti−1 and ti.

OUTPUT: OLi and RLi
OLi = RLi = ∅
01 when ti > t0

02 i f lenit > lmin

03 i f
∣∣∣hij

∣∣∣ > ξh

04 i f D
(

SpW
it ,
→
V ti−1

)
> ξi or D

(
EpW

it ,
→
V ti−1

)
> ξi

05 OLi = OLi ∪ lij
06 end
07 RLi = RLi ∪ lij
08 end
09 RLi = RLi ∪ lij
10 end
11 end
return OLi and RLi

5. Experimental Results

To verify the effectiveness of our obstacles detection method, a series of experiments are
implemented in urban outdoor environments using a ‘Pioneer3’ mobile robot (Figure 5), which is
equipped with a Sick LMS111 LiDAR; The algorithms are tested using Matlab running on an Intel(R)
Core(TM) i5-3470 computer. During the experiments, only the 2D planar position information and
the steering angle of the robot are used, which are recorded from the odometer localization of the
‘Pioneer3’. The configuration parameters of the LiDAR sensor in the obstacles detection process are
given in Table 2.
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Table 2. Configuration Parameters for LiDAR Sensor.

Parameter Description Value

α titled down angle 8◦

θmin start scanning angle 15◦

θmax stop scanning angle 165◦

∆θ angular resolution 0.5◦

5.1. Parameters Analysis and Turning

In the proposed obstacles detection method, there are some parameters should be determined.
The value of parameters λ and σl are referenced from [35]. The parameter κ represents the minimum
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number of point in each segment SiT and can be used for removing error points from the segments. A
small value should be set for lmin to eliminate the noisy segments. The height threshold of point δth is
used to look for scanned points which belong to the road surface, and the height of the scanned road
can be estimated from these points. This value is determined by the minimal height of obstacle we
want to detect. In the process of vector extraction, the threshold φmax and Lmin are used to find for line
segments which belong to road surface. A bigger φmax and a small Lmin may result in more points in
Θ, but the accuracy of the estimated vector may be reduced. A small φmax and a bigger Lmin may lead
to no points in the current Θ and make the current vector extraction fail. The threshold ξh is used for
obstacles extraction, its value should match δth. And the value of ς must be smaller than the chassis
height and travel capacity of the mobile robot.

After a large number of tests, the parameters of the algorithms were carefully turned, their value
shown in Table 3. In the practical application, these parameters need not to be changed once they were
determined by test experiments.

Table 3. Parameters for Obstacle Detection.

Parameter Description Value

λ auxiliary parameter 10◦

σl residual variance 0.02 m
κ the minimum number of point 8

δth height threshold of point 0.15 m
φmax direction angle threshold 15◦

Lmin length threshold of line 0.4 m
lmin segment threshold of noise 0.0001 m
ξh height threshold of line 0.14 m
ς deviation 0.2 m

5.2. Application Tests in Most Common Road Environment

Our testing was conducted within the two outdoor environments shown in Figures 6 and 7.
As can be seen, Figure 6 shows the scene of a normal road where the mobile robot was moving forward.
At the right of the road, there is a flower bed, two cars parked on side, as well as few bicycles. In the
middle of the road, two pedestrians and a box stood there, some road blocks on the left. On both sides
of the road, there are other tall obstacles, such as buildings. Figure 7 shows the scene of a school gate,
where the robot was moving along the right side of the road (nearby the flower bed) and turned right
to enter the school gate. From this picture, we can see that the right shoulder of the road is impassable,
and there are obstacles with different height on both side of the campus gate.
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For Scene 1 (Figure 6), 1140 frames of LiDAR scanning data are obtained with the movement of
the robot, and the laser-point cloud data are displayed in X-Y plane.Sensors 2018, 18, x 12 of 18 
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of Scene 2 are shown in Figure 9. Note that Figure 9a is the results of obstacles detection, in which the 
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Figure 7. Scene 2—school gate.

Figure 8 shows the detection results of Scene 1. More specifically, Figure 8a shows the results of
obstacles detection, where the blue line represents the track of the mobile robot, which is recorded
from the odometer localization of the robot. Red points represent the obstacles and gray areas are the
travelable area. Furthermore, it can be seen clearly in Figure 8b that the flower bed on the right is
marked as ‘1’ and the cars on the right have been detected and marked as ‘2’ and ‘3’. The box is marked
as ‘4’ and the two people in the middle of the road are detected as ‘5’ and ‘6’. Moreover, ‘7’‘8’‘9’‘10’ are
the road blocks on the left. The road surface and obstacles on both sides have been detected too.
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objects which are detected.

For the Scene 2 (Figure 7), 1350 frames of LiDAR scanning data were obtained when the mobile
robot was moving, and the laser-point cloud data are displayed in X-Y plane. The detection results
of Scene 2 are shown in Figure 9. Note that Figure 9a is the results of obstacles detection, in which
the blue line represents the track of the mobile robot, red points represent the obstacles and the gray
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area is the travelable area. As shown in Figure 9b, the green rectangle area ‘1’ marks the detected right
shoulder of the road, and Areas ‘2’ and ‘3’ are the obstacles on both sides of the gate.Sensors 2018, 18, x 13 of 18 
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5.3. Application Tests in Rare Complex Road Environment

Scene 1 and Scene 2 are relatively simple. In order to test our method, the mobile robot operates
in a complex environment. As shown in Figure 10, the path contains a curve and a downhill, and the
road surface is sloped. The mobile robot started from the position at the yellow rectangle and followed
the blue path to move forward. For Scene 3 (Figure 10), 2500 frames of LiDAR scanning data were
obtained when the mobile robot was moving. Figure 11 shows the detection results of Scene 3.

More specifically, Figure 11a shows the outlines of the cars and all vehicles have been detected, and
Figure 11b shows some obstacle blocks identified as 1©– 3© being detected, which were the pedestrians
passed in front of the mobile robot. A green rectangle in Figure 10 was falsely detected as obstacles as
this area is inclined and cannot be detected. Nevertheless, the un-detected obstacle area on the right
side was far from the track of the robot and had no disturbance to the movement of the robot.

The estimated height varies with the different road conditions and the estimated vector can well
describe different road conditions including some rare complex road environments such as scene
3, they improve the adaptability and robustness of the whole algorithm. However, the detection
results of Scene 3 using only the estimated height or the estimated vector are shown in Figure 12.
A large sum of road area in blue boxes are detected mistakenly as obstacles in Figure 12a using only
the estimated vector. And as shown in Figure 12b, there are two areas marked with green boxes on
sloping road area are detected mistakenly as obstacles when only the estimated height is used in the
Algorithm 3. So from the Figures 11 and 12, we can see that the estimated height of road can handle
most of the road conditions except sloping road. However, the estimated vector can deal with sloping
condition effectively. Therefore, both jointly applied to obstacle extraction to improve the accuracy of
the detection.
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To compare our method with other existing methods, the obstacles in scene 1 and scene 3 were
also extracted using Blas’ method [18]. In Blas’ method, the obstacles were extracted using a combined
classifier fused four salient features, i.e., terrain height, terrain slope, increments in terrain height,
and variance in height across the terrain. The obstacles extracted by Blas’ method are illustrated in
Figure 13. Figure 13a is the result of scene 1, although all the obstacles were detected, many noise
spots were not removed, because of his method is based on raw point. There are three areas marked
with blue boxes on sloping and downhill road are detected mistakenly as obstacles as shown in
Figure 13b. It can be seen that Blas’ method cannot be applied to complex environments such as
Scene 3. In contrast, our proposed method can adapt to different and changing road conditions, as the
estimated road height and road vector can vary with the changing road conditions, and improves
its adaptivity.
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Figure 14 shows a comparison of the computing time used in Scene 3 between our method and
Blas’ method. The average and the worst computational time of our method are about 6.06 ms and
2.62 ms, respectively. The average execution time of Blas’ method is about 8.67 ms, which is higher
than the worst computational time of our method. The proposed method can be used to real-time
process of mobile LiDAR point clouds for obstacles detecting.
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6. Conclusions

This paper presents a new approach on the detection of road and obstacles using a single
downward-looking 2D LiDAR, which is a very effective and economic solution for unmanned ground
vehicles in urban environments. Although it has some limitations in distinguishing dynamic obstacles
such as pedestrians, the proposed method shows a stable performance in detecting passable road
and static obstacles of different height. The main contribution of our research is that the height and
the vector of scanned road surface are estimated iteratively for each frame, and both jointly applied
to classify the extracted line segments into road and obstacle line segments. Therefore, our method
can detect passable roads and static obstacles at different height and effectively handle the changes
of road conditions, e.g. uphill road, downhill road or sloping road. Only the 2D planar position
and the steering angle of the robot are used during the whole design and application. The proposed
method was tested in both normal scenes and complex scenes. The experimental results show that
the proposed algorithms outperform existing methods. All the parameters of our algorithms were
empirically turned by simple experiments.

The proposed method has some limitations in distinguishing dynamic obstacles such as
pedestrians. In the future woke, we would research about the determination of adaptive threshold
based on the calibration parameters of LiDAR, robot and the input of demand. Moreover, to overcome
the limitations in distinguishing dynamic obstacles, we plan to conduct further research on how to
reduce the impacts of the appeared dynamic obstacles to enhance the detection accuracy by using both
2D LiDAR and camera-based target recognition.
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