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Many recent studies have focused on improving the performance of event-related

potential (ERP) based brain computer interfaces (BCIs). The use of a face pattern has

been shown to obtain high classification accuracies and information transfer rates (ITRs)

by evoking discriminative ERPs (N200 and N400) in addition to P300 potentials. Recently,

it has been proved that the performance of traditional P300-based BCIs could be

improved through a modification of the mismatch pattern. In this paper, a mismatch

inverted face pattern (MIF-pattern) was presented to improve the performance of the

inverted face pattern (IF-pattern), one of the state of the art patterns used in visual-based

BCI systems. Ten subjects attended in this experiment. The result showed that the

mismatch inverted face pattern could evoke significantly larger vertex positive potentials

(p< 0.05) and N400s (p< 0.05) compared to the inverted face pattern. The classification

accuracy (mean accuracy is 99.58%) and ITRs (mean bit rate is 27.88 bit/min) of the

mismatch inverted face pattern was significantly higher than that of the inverted face

pattern (p < 0.05).

Keywords: brain computer interface, P300, N400, face paradigm, online system

INTRODUCTION

Brain-computer interfaces (BCIs) are intended to help patients to communicate with other people
or control external devices through their brain activity (Wolpaw et al., 2000b; He et al., 2013).
Patients who suffer from Amyotrophic lateral stenosis (ALS) could be helped by this technology.
Scalp electroencephalography (EEG) is convenient in experimental setups. Therefore, it is widely
used and studied (Mak et al., 2011). Event-related potential (ERP) based BCI systems are amongst
the most commonly used BCIs and are often used for designing speller systems (Hwang et al., 2013;
Zhang D. et al., 2013).

The first P300-based speller system was presented and used a 6 × 6 stimuli matrix with 36
targets (Farwell and Donchin, 1988). The study showed the potential value of ERP-based BCIs
for designing speller systems. However, to overcome problems with the signal to noise ratio of
the ERP it was necessary to base control upon the construction of averaged trials, which decreased
the information transfer rates (ITRs) of the system (Wolpaw et al., 2002). Therefore, many studies
have focused on improving the performance of ERP-based BCIs in practical applications (Sellers
et al., 2006). Optimized classifiers were presented to improve the classification accuracy when only
a few trials were used for constructing the average ERP (Zhang Y. et al., 2013). Generic models,

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/editorialboard
http://dx.doi.org/10.3389/fnins.2016.00444
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2016.00444&domain=pdf&date_stamp=2016-10-07
http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive
https://creativecommons.org/licenses/by/4.0/
mailto:jinjingat@gmail.com
mailto:xywang@ecust.edu.cn
http://dx.doi.org/10.3389/fnins.2016.00444
http://journal.frontiersin.org/article/10.3389/fnins.2016.00444/abstract
http://loop.frontiersin.org/people/143026/overview
http://loop.frontiersin.org/people/275332/overview


Zhou et al. Optimized Mismatch Face Paradigm

using online training methods, were presented to decrease
the offline calibration time (Lu et al., 2009; Jin et al., 2013;
Tobias et al., 2013). In addition to the mathematic methods,
the paradigms used to evoke ERPs and stimulus patterns were
also studied to enhance the difference between target and non-
target trials. Martens et al. presented several P300-based BCI
systems using different target-to-target intervals (TTIs) to show
the refractory and overlap effects in ERPs (Martens et al., 2009).
Some work optimized the sequence of stimuli to avoid double
flashes, which decreased the repetition blindness and increased
the classification accuracy and ITRs (Jin et al., 2011b; Townsend
et al., 2012). Hong et al. reported that motion onset potentials
(the N200) evoked by moving targets could be used to improve
the performance of ERP-based BCIs (Hong et al., 2009). A
paradigm was designed to evoke both N200 and P300 to improve
the discrimination of target and non-target trials (Jin et al.,
2012). Finally, hybrid systems have also been proposed. For
example, Long et al. designed a BCI system using P300 andmotor
imagery for multi-degree control of a wheelchair (Long et al.,
2012) and Yin et al. combined P300 and steady-state visually
evoked potential (SSVEP) brain signals for a high-performance
BCI-based speller system (Yin et al., 2013, 2014, 2015).

Kaufmannn et al. first used images of faces as stimuli, and
showed that they could be used to obtain high classification
accuracies with both healthy and disabled BCI users with high
ITRs (Kaufmann et al., 2011, 2013). The facial expression change
paradigm has also been demonstrated to evoke discriminative
ERPs and obtained equally high classification accuracies as the
face pattern (Jin et al., 2014b).

It was reported that the inverted face pattern could evoke a
large N170, a vertex positive potential (VPP), and yield better
performance than the face pattern (Zhang et al., 2012). In their
work, seven volunteers participated in the experiment in which
eight targets were presented on screen, and nine patterns were
compared: an upright face, inverted face, upright eyeless face,
inverted eyeless face, upright eye, inverted eye, upright object,
inverted object, and highlight icon. The online ITR of the invert
face pattern were the best among them and had significantly
longer latencies before the N170 and VPP. The N170 and VPP
are sensitive to configural processing (Gruss et al., 2012).

It was reported that traditional P300-based BCIs could be
improved significantly through a modification of the mismatch
paradigm (Jin et al., 2014a, 2015). Ten subjects were paid
to participate in the experiment. The character “D” was the
deviant stimulus and the character “S” was the standard stimulus.
The modified mismatch paradigm could evoke significantly
larger N200 and N400 ERPs compared to the traditional P300
paradigm. Based on previous studies, inverted and upright
face images with different expressions were used to design
the mismatch inverted face pattern (MIF-pattern). The visual
stimulus modality elicits a visual mismatch negativity (vMMN).
Consistent with the auditory MMN, the vMMN elicits an N200
(Kimura et al., 2008, 2010a). The vMMN with emotional faces
can also elicit an N400 (Bobes et al., 2000).

The face stimuli contained more configural information than
the character stimuli. A natural question is whether the invited
face pattern could be used in the vMMN pattern. This study tries

to explore the possibility of improving the vMMN pattern by
combining it with the inverted face pattern. Our hypotheses are
that the mismatch negative face pattern (MIF-pattern) will evoke
significantly larger N200 andN400 amplitudes and that this could
be used to obtain significantly higher classification accuracies
and ITRs compared to the inverted face pattern (IF-pattern).
In this paper, second section is the Methods and Materials,
which introduce the experiment and method used in this study.
Third section is the Result which shows the performance of the
presented paradigm. Fourth section is the Discussion and fifth
section is the Conclusion.

METHODS AND MATERIALS

Participants
Ten healthy participants (7 male and 3 female, aged 23–25, mean
23.6) were paid for participated in the study. Four participants
did not have any experience with BCI. All the participants were
asked to remain relaxed during data acquisition. All subjects
were informed and signed a written consent form prior to this
experiment, and were paid 50 RMB for their participation in each
session.

The participants were seated ∼85 cm in the front of a
computer monitor, which was 30 cm long by 48m wide. The
display presented to the participants is shown in Figures 1, 2.
Twelve items were presented in a 3 × 4 arrangement. The
participants’ task was to focus their attention on the desired item
in the matrix and count the number of times the face appeared
directly above the item. The participants were trained simply
to guide them as to how to do the tasks before they began the
experiment.

Experiment Setup, Off-, and Online
Protocols
EEG signals were recorded with a g.HIamp and a g.EEGcap
(Guger Technologies, Graz, Austria), band pass filtered between
0.1 and 60Hz, notch filtered at 50 Hz and sampled at 512 Hz.
Fourteen active electrodes were used, as shown in Figure 3. The
right mastoid electrode served as the reference, and the ground
electrode was placed on the forehead (FPz).

A female face (actress Freema Agyeman) was selected for
use in this study, the face figures were obtained from a video
of emotional research. Faces with negative and positive valence
were used to evoke ERPs. In the IF-pattern, the inverted face
with negative valence (i.e., the deviant stimulus), was presented
above one of the 12 items (Figure 1B). The MIF-pattern was
similar to the IF-pattern, with one exception. When the inverted
face appeared above one of the items, gray faces with positive
emotions (the standard stimulus) appeared above other 11 items
(Figure 1C). In other words, the background of the stimulus
was the flicking gray faces in the MIF-pattern. The gray face
was replaced by an inverted woman’s face, which was used
as the stimulus in the MIF-pattern (see Figure 2). Several
standard stimuli (flicking gray faces) appeared before the deviant
stimuli (an inverted woman’s face), thereby producing a “visual
mismatch.” The inter-stimulus-interval (ISI) of the stimulus was
100ms and the stimulus onset asynchrony (SOA) was 300ms in
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FIGURE 1 | The interface that was shown to the participants. (A) The matrix without stimuli. (B) An example of the stimulus in the IF-pattern. (C) An example of

the stimulus in the MIF-pattern. The feedback appeared at the top of the screen during online sessions.

FIGURE 2 | The figure demonstrates what participants saw in one item. There were several standard stimuli (at least six) between two deviant stimuli.

both patterns, which was the same for the flicking background
used in the MIF-pattern.

It was reported that there should be more than four standard
stimuli before the deviant stimuli to evoke clear mismatch
negative potentials (Kimura et al., 2006). One of the stimuli was
shown in Figure 2. Items 1–6 were in group 1, the others 6 stimuli
(items 7–12) were in group 2. The stimuli order of items 1–6 was
randomized and the order of items 7–12 was also randomized.
The strategy used was to flash the items in group 1 randomly and
then flash the items in group 2 randomly in each trial. All the 12
items in group 1 and 2 were flashed once in each trial. In this
way, only a subset of items in group 1 in the first trial did not
meet the standard stimulus number before the deviant stimulus
was presented.

Participants had to complete two offline phases (3 offline
runs per phase) for two patterns, after which there were two
online runs. Each offline run contained 5 trial-blocks, that each
contained 16 trials, and each online run contained 24 trial-blocks
(the targets were items 1–12). The number of trials per trial-
block was variable in the online phase, as described in Section
Adaptive System Settings. Before one trial-block, a green box
was briefly displayed to indicated the target item of the trial-
block. A 2-min break was given to participants between two runs.
The runs of patterns were presented in the same order as those

in the offline phase, and the order was counterbalanced over
participants. Participants completed all experiment stages in 2 h.

Feature Extraction Procedure
The first 800ms of EEG data after each stimulus presentation
were used to extract features from the 14 EEG channels (shown in
Figure 3). EEG data was filtered into the range 0.1–30Hz using a
third order Butterworth band pass filter. After filtering, the data
were down-sampled from 512 to 73 Hz by selecting every seventh
sample. So the size of the feature vector for one stimulus was
14× 58 (14 channels by 58 time points).

The Information Transfer Rates (IRTs)
The bit rate is the measure of ITRs we used. Both speed and
accuracy affect the bit rate (Wolpaw et al., 2000a). Bit rate is
define as

Br =

[

log2 N + P log2 P + (1 − P) log2

(

1− P

N − 1

)]

/(
60

T × AVT
) (1)

where Br denotes the bit rate, N denotes the number of targets,
and P denotes the accuracy. T denotes the time (in seconds) for
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a trial to complete. AVT denotes the number of trials used to
construct the average used in each trial-block for each participant;
In this studyN is set to 12, T is set to 3.6 s (12 stimuli and the SOA
is 0.3 s).

Classification Scheme
The classifier used in this study was a Bayesian Linear
Discriminant Analysis (BLDA) classifier, which may be seen as
an extension of Fisher’s Linear Discriminant Analysis (FLDA;
Penney et al., 2001; Hoffmann et al., 2008).

The classification rule is defined as,

m = β (β XXT
+ I

′

(α))
−1

Xt (2)

y = m′x (3)

where m is the discriminant vector used for the classification, and
y is the output of the classifier. X denotes the matrix, each column
of which contains a feature vector, and t denotes the regression
targets. The value of t is set to N/N1 for class 1, and −N/N2 for
class−1 (where N1 and N2 are the number of features from class
1 and class −1, and N is the sum of N1 + N2). The two hyper
parameters α and β are the inverse variance of prior distribution
and noise. They can be determined with an iterative method.

Features acquired from offline data were used to train the
classifier and resulted in the classifier model. The data sets used
to train the classifier model contained 240 target stimuli and 2640
non-target stimuli per participant.

In the online phase, single trials were classified immediately
after the data was completely acquired (800ms after the onset
of the last stimulus in a trial). The 12 classifier outputs, one per
output per stimulus, were summed over trials. The stimulus with
the maximum summed output was considered to be the target.

FIGURE 3 | The 16 electrodes used in this study.

Adaptive System Settings
The number of trials per trial-block was automatically selected
during the online runs (Jin et al., 2011a). In the online
experiment, the system obtained a detected target by using
the classifier after each trial. In the first trial, the stimulus
whose features obtained the highest classifier score in the trial
was regarded as the detected target. For subsequent trials, the
classifier scores of the stimuli in that trial were averaged with
the classifier scores of the corresponding stimuli in the previous
trials. The highest averaged classifier score indicated the detected
target of that trial. If the two successive detected stimuli were the
same, the corresponding item was regarded as the correct target
and shown on the top of the screen. Then, the participant could
move on to attempt to select the next character.

RESULTS

The Online Performance
Table 1 shows the online classification accuracy, bit rate, and
average number of trials used per participant.

These data were statistically tested for normality (One-Sample
Kolmogorov Smirnov test) and sphericity (Mauchly’s test). Since
the classification accuracy was not normally distributed, a non-
parametric Kendall test was used to test the differences in
classification accuracies between the SF and MIF patterns.
The classification accuracy of the MIF-pattern was significantly
higher than that of the IF-pattern (p < 0.05). Paired samples
t-tests were used to test the differences between the MIF- and
IF-patterns in terms of bit rates. The ITRs (Wolpaw et al., 2002)
of the MIF-pattern were significantly higher than that of the
IF-pattern (t =−2.7, p < 0.05).

ERP
Figure 4 shows the amplitude of the grand averaged ERP from
target flashes across all participants. The baseline was extracted
from 100 ms before each deviant stimulus. The N200 ERP

TABLE 1 | The classification accuracy, trials used to construct the

average, and ITRs during online experiments.

Participants Acc (%) AVT ITR (bit/min)

IF-P MIF-P IF-P MIF-P IF-P MIF-P

S1 95.83 100.0 2.17 2.29 24.55 26.07

S2 91.67 100.0 2.38 2.21 20.23 27.06

S3 95.83 100.0 2.33 2.08 22.79 28.68

S4 100.0 100.0 2.04 2.08 29.27 28.68

S5 100.0 100.0 2.21 2.13 27.06 28.12

S6 100.0 100.0 2.00 2.00 29.87 29.87

S7 100.0 100.0 2.00 2.00 29.87 29.87

S8 87.5 95.83 2.38 2.29 18.31 23.21

S9 100.0 100.0 2.17 2.08 27.58 28.68

S10 100.0 100.0 2.21 2.17 27.06 27.58

Avg 97.08 99.58 2.19 2.13 25.66 27.78

Acc, classification accuracy; AVT, Trials for constructing the average used in each

trial-block per participant; RBR, raw bit rate; IF-P, IF-pattern; MIF-P, MIF-pattern.
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FIGURE 4 | The grand average ERPs of deviant stimuli for the IF and MIF patterns. Four ERPs recorded during presentation of the MIF-pattern are displayed.

on channel P8 (Czigler et al., 2006; Folstein and Van Petten,
2008; Kimura et al., 2010a; Czigler, 2014), the VPP on channel
Cz (Jeffreys, 1989), the P300 ERP on channel Pz (He et al.,
2013), and the N400 ERP on channel Cz (Duncan et al.,
2009) were selected to analyze the effect on the amplitude
between two paradigms. The adaptive mean method (Clayson
et al., 2013) was used to measure the peak amplitude of
the ERPs. The average 25 ms pre-peak to 25ms post peak
amplitudes were extracted around the most positive or negative
peaks between 100 and 300ms (peak negative, N200), 200–350
(peak positive, VPP), 301–500ms (peak positive, P300), and
401–800ms (peak negative, N400). The results showed that there
were no significant differences between the IF and MIF patterns
in VPP (t = 0.4269, P > 0.05) and P300 (t = 0.7578, P > 0.05)
amplitudes. The amplitudes of the N200 (t = 0.0242, P < 0.05)
and N400 (t = 0.0222, P < 0.05) of the MIF-pattern were

significantly higher than those recorded during the IF-pattern
(see Figure 5).

Figure 6 shows the grand averaged r-squared values of the
ERPs and the topographic maps of the N200, VPP, P300, and
N400 components.

DISCUSSIONS

In this paper, the mismatch inverted face pattern (MIF-
pattern) was presented to improve the performance of the
inverted face pattern (IF-pattern) based BCIs. The online
results showed that the classification accuracies and ITRs
achieved with the MIF-pattern were significantly higher
than those achieved with the IF-pattern (p < 0.05). Two
of the participants obtained 100% classification accuracies
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FIGURE 5 | The amplitudes of N200, VPP, P300, and N400 ERPs per

participant. “STD” denotes the standard deviation.

with both patterns, other participants obtained higher
classification accuracies with the MIF-pattern compared to
the IF-pattern.

The face patterns evoked large N200 and N400 ERPs. A
mismatch negativity (MMN) was elicited when a stimulus was
incongruent with the sensory memory trace of a standard
stimulus (Näätänen, 1992; Kimura et al., 2010b; Kimura, 2012).
The visual MMN was elicited in response to a stimulus
that was preceded by four or more repetitions of the other

stimuli, while it was not elicited in response to a stimulus
that was preceded by one, two, or three repetitions of
the other stimuli (Kimura et al., 2006). In order to evoke
a stable mismatch negative potential, the trials with <4
standard stimuli before the deviant stimuli were decreased
with the method used in this study (See Section Experiment
Setup, Off-, and Online Protocols). Table 1 showed that high
classification accuracies could be obtained from these single
trials with four or more standard stimuli before the deviant
stimuli.

The ERP data showed that a visual MMN was elicited by
a stimulus that was incongruent with the sensory memory
trace of a standard stimulus which was consistent with the
MMN literature (Näätänen, 1992; Kimura et al., 2010b; Kimura,
2012). It was reported that the MMN will not be elicited
without establishing a predictive model of the standard stimulus
(Squires et al., 1975). In this paper, the presentations of the
standard (upright face) stimulus at the target location established
a predictive model of the standard stimulus, and the model
was disrupted by presentations of the target (inverted face)
stimulus. It was shown that N200 amplitude of the MI-F
pattern was significantly larger than the N200 of the IF-pattern
(p < 0.05). In this experiment, we had no a priori reason to
expect significantly larger N400s in the MI-F pattern. However,
the N400 recorded during the MIF-pattern was significantly
larger than during the IF-pattern (p < 0.05; see Figure 5). A
possible explanation is that theMI-F pattern produced a coherent
pattern that provided a clear mismatch of shape, which did
not exist in the IF-pattern (Wang et al., 2004; Szűcs et al.,
2007).

Zhang et al. designed a BCI based on inverted faces
(Zhang et al., 2012). In their study, the averaged online
ITR reached 38.7 bits/min, which was higher than that of
MIF-pattern (27.78 bits/min). However, the averaged accuracy
achieved with the MIF-pattern (99.58%) was a lot higher
than the (88.7%) in Zhang’s work. It is noteworthy that
the condition was different between Zhang’s work and this
work. For example, the SOA in our study was 300ms, but it
was 180 ms in Zhang’s work. Furthermore, more targets (12
targets) were used in this study compared to Zhang’s work
(8 targets). So the comparison of two studies is not trivial.
The vMMN BCI was similar with this work (Jin et al., 2015).
The online accuracy in that work was 97.5% and the ITR
was 25.1 bit/min. Thus, the performance of that system was
lower than our present work and our work has improved
the BCI.

CONCLUSIONS

In this paper, a mismatch inverted face (MIF)-pattern was
presented and evaluated to assess its effect on the performance
of ERP-based BCIs. The results show that the MIF-pattern
yielded better performance compared to the inverted face (IF)-
pattern in terms of classification accuracy and ITRs. This work
also has the potential application. For example, when patients
suffering from ALS reach an advanced stage, they lose the
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FIGURE 6 | The r-squared values averaged over participants using offline data.

ability to move or speak. The BCI speller would help them

“talk” to others. So, in our further work, we will verify our

study on patients and add more targets to build a speller
system.
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