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Abstract

Video data is the largest type of traffic in the Internet, currently responsible for over
72% of the total traffic, with over 883 PB of data per month in 2016 [1]. Large scale
CDN solutions [2–5] are available that offer a variety of distributed hosting platforms
for the purpose of transmitting video over IP. However, the Internet Protocol (IP) pro-
tocol, unlike Information Centric Networking (ICN) protocol implementations, does not
provide an any-cast architecture from which a CDN would greatly benefit. In this thesis
we introduce a novel cache eviction strategy called “Bubble,” as well as two variants of
Bubble, that can be applied to any-cast protocols to aid in optimising video delivery.
Bubble, Bubble-LRU and Bubble-Insert were found to greatly reduce the quantity of
video associated traffic observed in cache enabled networks. Additionally, analysis on
two British Telecom (BT) provided video popularity distributions leveraging Kullback-
Leibler and Pearson Chi-Squared testing methods was performed. This was done to
assess which model, Zipf or Zipf-Mandelbrot, is best suited to replicate video popular-
ity distributions and the results of these tests conclude that Zipf-Mandelbrot is the most
appropriate model to replicate video popularity distributions. The work concludes that
the novel cache eviction algorithms introduced in this thesis provide an efficient caching
mechanism for future content delivery networks and that the modelled Zipf-Mandelbrot
distribution is a better method for simulating the performance of caching algorithms.
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1
Introduction to Thesis

Video On Demand is vastly expansive and makes up a large quantity of the total traffic

on the internet. Global IP video traffic is predicted to constitute 82% of all consumer

internet traffic by 2020, up from 70% in 2015 [6] and 72% in 2016 which equates to

approximately 883 PB per month [1]. As Video on Demand becomes increasingly more

prevalent the research community has sought ways to alleviate the strain video request

and data delivery has on a network. To contribute to this effort, a great understanding

of Video request data is required, as well as strategies as to how one may achieve

alleviation of strain of video data on a network.

1
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1.1 Thesis Motivation and Contribution

As previously stated in the introduction of this Chapter, Video has become a dominant

source of traffic on the Internet. This Thesis aims to provide analysis of video request

data, as well as introduce methods one can use to achieve a reduction in video traffic on

a network without penalties to performance or quality, using technologies that leverage

caching in nodal computer networks.

Video Request Data is complex and intricate and is responsible for a tremendous

amount of strain on most consumer-facing network infrastructures. If a naive perspec-

tive were to be presented, the total amount of requests made to a Video Distribution

Platform can be equated and used to assess how many video objects are delivered to

users from a Video Delivery System. This approach appears to be the most intuitive

method of observing video traffic. However, it does not include important details such as

segmentation, the distributed Content Delivery Network (CDN) servers, and the routing

that occurs to ensure that the video data reaches the distributed users. Observations of

video popularity distributions [7–18] are typically made over time and then concluded

to be such. This means that the items measured are frequently introduced before the

observations start or remain to receive requests after the observations end, meaning that

data is often incomplete. Although not all these errors in observation are addressed and

tackled with structurally better observations in this Thesis due to a limited dataset, a

new video request generator is proposed in an effort to encompass and overcome ob-

served shortcomings in other simulation environments and observed data-sets that are

available today, which bear the constraints that those who came before were subjected

to during development. The request generator provides a request generation platform

that accounts for changing popularity in items over time with the introduction of decay

and a changing data-set over time that retires items and introduces new ones.

Video Request Data is often measured through the popularity index of each of the
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items observed in the system. This popularity distribution has caused discussion in the

research community [14] largely due to the lack of data currently available to researchers.

Additionally, the methods of analysing video request distributions appear overly sim-

plified, often using a see-by-eye test to describe two sets of data, one generated and one

observed, side-by-side to be similar enough to consider them approximately equal. In

this Thesis, two individual VoD data-sets provided by British Telecom (BT), the sponsor

of this Philosophiae Doctor (PhD) and Thesis, aid to help us discover which popularity

distribution suggested in the research community shares the greatest resemblance to

real video request data. A number of different analytical tests and simulations were

performed to rule out bias as to what generated popularity distribution best matches

the video request data of a real VoD platform. The tests used were a combination of

Pearson Chi-Squared, Pearson Correlation Coefficient and Kullback-Leibler which indi-

vidually provided a method to confirm what model was more appropriate in replicating

an existing data-set. The models considered as appropriate replications models for the

BT data-sets were the Zipf-Mandelbrot model and the Zipf-Like model. To conclude,

Zipf-Mandelbrot was demonstrated to be more appropriate for modelling a video re-

quest distribution such as the observed video request distributions provided by BT.

The technologies used to currently distribute video content are large scale CDNs.

Websites such as YouTube [19], owned by Google, house their own CDN infrastructure

however most VoD providers use CDN services offered by companies such as Akamai [3],

Cloud Flare [4] and Microsoft Azure [5]. These providers deliver content to consumers

in a quick and secure manner by delivering data from a server local to the user. A CDN

provider, such as Microsoft Azure, outsources traffic managing to a Traffic Manager to

assure a server that is local to the user, responds to the user request. Other services

may distribute their servers and hand off the forwarding of requests to a local server to

Domain Name System (DNS), forwarding [2] solutions implemented by companies such

as Microsoft. Akamai handles load balancing by using a combination of application

layer awareness and DNS forwarding. All these methods are used to ensure users are
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served data locally to their own physical location, a challenge not handled by the clas-

sic IP infrastructure, but by the application layer and network layer in the case of the

Akamai infrastructure and their Modern Load Balancing examples. This innovation in

load balancing and traffic management demonstrated in Azure and Akamai, addition-

ally demonstrates the constraints inherent to the current infrastructure of the Internet.

Many of the mentioned constraints of distributed servers providing the same content in

different geo-locations can be solved with modern alternatives to IP and Transmission

Control Protocol (TCP)/User Datagram Protocol (UDP) with an any-cast architecture

such as ICN. These architectures are introduced and discussed in the Thesis and, ad-

ditionally enable the possibility of seamless distributed networks and enable caching

functionality.

Caching is often suggested as a method of reducing traffic associated with frequently

requested objects on a network, as well as frequently performed operations in a pro-

cessor. It also helps alleviate the amount of operations required and optimises the

performance of many hardware and software infrastructures. Caching can also be lever-

aged specifically to alleviate a network of a large quantity of traffic when applied to

video delivery, as video request data exhibits repetitive behaviours as the frequency of

requests for items is often heavily skewed, majoritively only towards a small subset of

items [9, 10, 12], favouring local storage as being able to cache frequently requested ob-

jects. This Thesis introduces cache eviction algorithms that can be applied to a cache

enabled network. The eviction algorithms are a method of caching that operate with

no knowledge of the network and its state, but rather operate in an inexpensive manner

that, in some scenarios, rivals the more well known cache eviction algorithms; namely

LRU and LFU.

The algorithm introduced in this Thesis is the Bubble cache eviction algorithm. A

patent application was submitted by BT and later rejected on the premise that prior

art [20] was found to contain a switching mechanism similar to the mechanism used in
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the Bubble algorithm. The creating and submitting of the patent application to the

European Patent Office took upwards of a year, thus delaying the option to submit a

publication introducing the Bubble algorithm to the wider research community.

1.2 Thesis Outline

This Thesis is structured in the manner one may assume to follow when aiming to

improve video delivery over a cache enabled network.

Chapter 2 introduces technologies and methods associated with caching and video

delivery systems. A number of different aspects of video delivery will be explored such

as; the year of observation, user counts, requests per day, requests per user, locations

of observation and the number of unique videos; all within diverse VoD systems. Iden-

tifying these characteristics as well as other areas of research that impact local caching

and the technologies associated with such systems will also be explored here.

Chapter 3 addresses the shortage in evaluation of video-focused consumption mod-

els. While there has been conjecture that Zipf-Mandelbrot is a good model, this work

shows, through empirical data, that consumption patterns do indeed comply to this

distribution. This is achieved by analysing two example, large-scale, empirical datasets,

provided by BT, as well as using synthetically generated consumption data, following

Zipf and Zipf-Mandelbrot distributions. These models include standard testing meth-

ods such as; Pearson chi-square, Pearson’s correlation-coefficient, as well KL divergence.

This Thesis’ study demonstrates that Zipf-Mandelbrot better fits realistic consumption

data than the previously most widely considered model, the Zipf-like distribution. Fur-

thermore, the study shows that the expected behaviour of cache-enabled video delivery

systems is closer to that of the empirical dataset when using the Zipf-Mandelbrot model

than the Zipf-like model.

Chapter 4 assesses video delivery systems closely to outline the required data to

more closely simulate a video delivery system. This chapter introduces a method by
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which one can create pseudo-real requests that demonstrate time based characteristics

in an effort to achieve a greater understanding of the effects of video decay, introduction

and removal. This additionally aids in concluding that the current method of observing

video request data is flawed as the passage of time over the period of observation can

have many effects on the popularity distributions experienced.

In Chapter 5 a novel eviction algorithm is introduced. The algorithm is called the

Bubble cache eviction algorithm, which is in reference to the Bubble sort algorithm, [21]

which it resembles in some of its behaviours. The introduction of Bubble, together with

the introductions of variations of Bubble, are intended to provide an alternative set of al-

gorithms to the known cache eviction algorithms such as LRU, FIFO, Random (RAND)

and LFU. Investigated in this chapter is the Bubble algorithm and its variations and

the results one can expect in a variety of simulated VoD systems, as well as analysis

investigating the effectiveness of the introduced algorithms.



2
Background Research

VoD systems vary and are diverse in characteristics and behaviours [9,10,14,17,18,22].

The years of observation, user counts, requests per day, requests per user, locations of

observation and the number of unique videos are the gross level of varying character-

istics when expressing the diversity of VoD systems currently live. Identifying these

characteristics as well as other areas of research that impact local caching and the tech-

nologies associated with such systems will be explored in this Chapter. An additional

focus of the study is that of technologies that would provide a platform from which video

delivery could be seen to express a lesser strain with the option of localised caching,

currently not natively possible in IP.

7
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2.1 Video Delivery System Characteristics

2.1.1 Video Segmentation in the context of caching

Caching whole, uninterrupted multimedia objects can be very inefficient in network

caching. This is due to the size of the multimedia objects and the sections of the

multimedia objects that are consumed by the end-users. Video files could reach the size

of a number of gigabytes and a large number of consumers may only watch the first 1
4

of video. A method to avoid unnecessary latency and storage of multimedia objects is

through segmentation. Segmentation suggests splitting the original multimedia objects

into a number of smaller objects which are stored and treated as unique objects in the

cache-enabled system/network. A number of varying strategies have been developed

in an effort to minimise the latency experienced on a network and reduce the quantity

of resources occupied in, for example, a cache of limited size. Key indicators were:

Byte-hit ratio, deduction of requests with delayed start.

2.1.1.1 Fixed Segmentation

Fixed Segmentation splits the multimedia objects into a multitude of fractions evenly

distributed to fill segments homogeneously. The fixed segmentation method has one

clear benefit over Pyramid and Skyscraper segmentation regimes as it does not require

segments to be valued separately. A cache eviction algorithm does not require knowledge

of the size of the segment to increase the byte-hit ratio and performance of a cache, as

would be required for Pyramid and Skyscraper segmentation schemes.

2.1.1.2 Pyramid Segmentation [23]

Pyramid segmentation postulates that the start of the multimedia object will most

likely be requested and will remain most popular. The parts following the start are

increasingly less important and thus kept in larger segments. The segments start at a

fixed size at the beginning, exponentially increasing in size. This way the last half of

the multimedia object can be removed with one single action. The first parts of the
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Figure 2.1: Segmentation of a video according to the Pyramid segmentation regimen

video will be segmented to be easily interchangeable in a cache. Np
i denotes the size of

segment i of a multimedia object under the pyramid segmentation regimen. Assume b

is a constant and b > 1.

Np
i =


1, if i = 0

(b− 1)b(i−1), if i > 0

(2.1)

b decides the segment size increase with each i + 1. Figure 2.1 shows an example

pyramid segmentation structure where b = 2, as shown in Equation 2.1. Each box in

Figure 2.1 indicates an equal sized fraction of the original multimedia object.

2.1.1.3 Skyscraper Segmentation [24]

A criticism of pyramid segmentation is that some segments grow to be very large. This

may be detrimental to caches and user devices, such as set-up boxes, as storage is limited.

A suggested solution to this problem is skyscraper segmentation which, as pyramid

segmentation, increases the size of each subsequent segment, but more gradually. Np
i

denotes the segment size of segment i of a multimedia object under the Skyscraper

regimen.
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Figure 2.2: Segmentation of a video according to the Skyscraper segmentation regimen

Np
i =


1, if i = 0, 1, , n

(b− 1)b

(
i

(n+1)

)
−1

if i > n

(2.2)

b and n decide the segment size increase with each i+1 in a sky scraper segmentation

scheme, such as is described in Equation 2.2. Figure 2.2 shows an example skyscraper

segmentation structure with b = 2. Each box in Figure 2.1 indicates an equal size

fraction of the original multimedia object. Each row symbolises a single chunk on data

that may be cached. n reduces the exponential increase that we experience in the

pyramid segmentation scheme visible as repeating segment sizes for not just the first

number of segments.

The reduction in segment size means local storage devices and network storage
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devices can more easily handle the larger segments when storage is of limited capacity.

2.1.1.4 Cache Admission Policy for Segmentation [23]

A cache admission policy can be used, before object submission to a cache to function, as

a pre-selection process. A Cache Admission Policy would be required for a segmentation

scheme, such as Pyramid or Skyscraper segmentation schemes, as not each segment can

be considered equally due to the range in size of each segment. Segment i should

only replace segment j in a cache if i experiences a greater byte-hit ratio in the cache

than j in the same time frame. This may be possible to determine in a Perfect Least

Frequently Used (Perfect-LFU) enabled cache as the total requests for items not cached

are recorded and considered when selecting items for caching, however most other cache

eviction algorithms would be challenged to account for varying segment size.

2.1.2 Media and WWW Popularity Distributions

Many online media types have been identified to follow the same or similar trends in the

frequency of requests. The objects have many different formats from Hypertext Markup

Language (HTML) pages to images or videos. A number of studies have described a

Zipf-like distribution to be a very closely fitting distribution to most generalised content

observed through proxy servers available on the World Wide Web [25–28]. A simple see-

by-eye test indeed confirms that a Zipf-like distribution can be observed in the recorded

proxy data as show in Figures 2.3 [25], 2.4 and 2.5.

Almeida et al. [25] does suggest a Zipf distribution can be considered present, as

is illustrated in Figure 2.3, as the data is shown on a log-log scale to be depicted

as an almost straight line, which is a Zipf-like property. Almeida et al. [25] subjects

the original data to a cache which measures cache-hit ratio by arbitrarily selecting

objects for request according to the popularity distribution observed in the Boston

University (BU) servers. The same test is performed for the Zipf distribution as items

are arbitrarily selected with probabilities decided by the generated Zipf distribution.
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Figure 2.3: Zipf a = 1. Zipf Law Applied
to Web Documents

Figure 2.4: Miss rate for a Zipf-based
synthetic workload and for an actual

trace

Figure 2.4 illustrates the cache-hit ratios observed for a range of cache sizes. In a

scenario where each distribution can be considered equal, the two lines for each Zipf

and the BU trace would sit exactly atop each other, however, it is clear that the two

observed cache-hit ratios are indeed different. The Zipf-based model is shown to be

nearly 33% less likely to receive a cache hit rate with a cache size of 400 than the

original BU dataset that is suggested to be an accurate hit-rate.

Breslau et al. [26] performed a fitting using the MatLabs curve fitting tool, excluding

the top 100 items. The top 100 times are arguably the most influential items in the

distribution as they are responsible for the 52% of requests of all the documents. The

most probable reason for excluding the 100 most popular documents when fitting is due

to the erratic nature of the most popular documents. Breslau et al. [26] do indicate that

Zipf is indeed a model that closely resembles the original proxy popularity distribution

which includes the 100 most frequently requested items as is illustrated in the graph

Figure 2.5 [26].

Cunha et al. [27], illustrated in Figure 2.6 [27], Perform R-Squared testing to confirm

that a Zipf Distribution is present in the observed object request distribution. The

results suggest an exact fit to a Zipf-like distribution with a value of 1.00. The objects

observed are categorised into a number of different groups such as, HTML, Images,

Sound, Video, Text, Formatted Documents, Archive and other files. Image files are the

great majority of requests, a result of many images contained in a single HTML file.
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Figure 2.5: Zipf = 0.66 0̃.83 Web Caching and Zipf-like Distributions: Evidence and
Implications

Figure 2.6: Zipf a=1, Characteristics of WWW client-based traces
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Figure 2.7: The Rank vs Rating of videos in the Netflix system pre-2006

2.1.2.1 Video Popularity Distributions

There seems to be majority consensus [7–18,29,30] that Zipf-like distributions are most

representative of VoD systems. The main consensus originates from the observations

first performed on general online systems and not exclusively video systems [25], [27], [31]

which was later applied to VoD, assuming the two are interchangeable in regards to

the observed popularity distributions. A number of studies [12, 16, 17] have expressed

caution assuming that the popularity distribution of video content is Zipf-like, due

to the heavy tail and the flat head seen on a log-log scale. Cha et al. [17] suggest

that perhaps the truncation of the heavy tail is caused by the system implementation

(Netflix [32]), which does not make niche content easily accessible. However, analysis

of other studies [9,10,14,18,22] show that the truncated tail, and the flat head, appear

in many other VoD systems thus opening up discussion on what model can be used

to represent VoD popularity distributions accurately. Just as the Zipf-Mandelbrot and

Zipf-like power-law distributions are frequently considered an appropriate model for

video request data, a log-normal distribution may provide an equally appropriate model.

The log-normal distribution has frequently demonstrated to be almost the same as

power-law models [17,33,34].



Chapter 2. Background Research 15

Figure 2.8: UGC video request data. Views vs. Video Rank

Alternatively, Tang et al. [14] suggests that Zipf-Mandelbrot represents VoD pop-

ularity distributions more accurately, which have also been witnessed in comparable

systems, such as P2P [15]. This trend may not be exclusive to video content but rather

general multimedia-based content [12]; thereby, showing Zipf-Mandelbrot to be emerg-

ing as an alternative distribution model for describing general multimedia-based content

(including video), as opposite to the conventional Zipf model. Though there is evidence

that Zipf-Mandelbrot demonstrates to be an appropriate alternative to Zipf-like when

modelling the popularity distributions seen on VoD systems, the evidence is limited as

it largely has been researched to model multimedia systems which show resemblance to

VoD instead of pure VoD systems.

2.1.2.2 User Generated Content (UGC) Videos

User Generated Content (UGC) is a large section of the total video traffic with the emer-

gence of large UGC video delivery platforms such as YouTube, Daum, Vimeo, Vine and

many more. UGC is content that is generated and consumed by a large amount of

producers and consumers and typically contains videos which are more ephemeral, un-

predictable and numerous [33]. UGC is very diverse and thus creates an environment

where individuals will choose to watch a more diverse group of videos which is unlike

previous Video Delivery Systems such as traditional television where focus of a large

group of viewers was decided by a small group of TV channels, keeping focus towards

a smaller sections and variation of video content.
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Video popularity distributions experienced in UGC systems, such as the one shown

in Figure 2.8 [33], demonstrates a longer tail and a smaller set of extremely popular

videos relative to the total number of videos. In a Zipf-Like distribution this would

appear as a distribution with α > 0.8 such as an alpha variable as suggested in [25]

and [26].

2.1.3 Video Popularity Decay

Video Popularity Decay has been discussed about in a range of research [16, 35–37],

however it appears to rarely be quantified or analysed beyond the effects of the specific

tests performed by the researchers in question. Additional to the lack of analysis of

video decay, is the frequent omission of growth of popularity of video objects.

The subject of decay is discussed by Gummadi et al. [16] in the context of a peer-

to-peer system called “Kazaa” in a rather poor manner as items larger than 100 MB

are declared to experience a larger amount of request for items older than one month

by 72% and items smaller than 10 MB are declared to experience a larger amount of

requests towards items older than one month but by only 52% with the omission of

medium sized items. The decay here is for multimedia items, not exclusively VoD,

which causes some doubt as to how much this data resembles exclusively VoD data. It

may well be possible that the majority of items observed are not video, dictating the

decay-rate experienced by items in the system.

The subject of decay is also discussed by Li et al. [36] and Chen at al. [38] appear

to agree that within their observed datasets that the initial day of observations see the

videos decrease in popularity by 20%, and again decrease by 20% 9 days later. This

observation is based in video request data that is explicitly not UGC on both Peer-to-

Peer (P2P) based systems, as well as CDN run systems, such as Hulu and PPLive. Li

et al. [36] appear to consider items once they are stored on the cloud device and then

observed the decreasing popularity. This comes after a video is identified as popular

enough to be submitted to the cloud, which may see a large part of the item’s lifetime
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be omitted (an hour minimum due to design), as the time before the item became pop-

ular it was not yet considered for measurement of popularity, especially considering the

initial surge in popularity.

Chen et al. [39] follow the lifetime of video items in a system which includes the

decay. The observation is made in a VoD service run by Tencent, which is one of the

largest VoD services in China. It provides video to an active user base of over 50 million

people. For the purpose of measuring video decay, videos are separated into categories,

easily distinguishable by key characteristics (Movies, Music Videos, TV content, News

and Sports), for which each category has a total decay rate measured over the duration

of 7 days. The observations made suggest that most categories appear to see a great

quantity of requests on the day of release, as well as the day following. After this period

all categories see a drastic decrease in popularity, with the exception of the “Movies”

category which appears to see a peak in interest on the third day the item is in the

system. It is unclear if items on day 0 (the initial day of release) were in the system

for the entirety of it, or just the later section of the day. This additional bit of missing

information would point out if the items, almost immediately after release, start seeing

a decreasing request rate or if this happens, as suggested by Chen et al., on the second

day in the system. The conclusive statement by Chen et al. [39] is that video items

in their infancy receive a great amount of promotion, mainly on the front-page of the

VoD application, which may be the primary reason for the popularity received by these

newly introduced video items.

Avramova et al. [37] provide a close look at the decay of video popularity of primarily

video items which have already achieved a great deal of popularity by their submission to

the top 50, list on their respective platforms, such as YouTube (US and JP platforms),

IMDB rental records, and “Uitzending Gemist(.nl)” which is a Dutch TV catch-up

service. Once submitted to the top 50 the items were observed for a minimum of 30

days. The observations concluded that it is primarily the UGC that sees a thick tail in

the observed decay curve which can be described as a power-law distribution. All other
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VoD System Nr. of Observed Entries τ α β

YouTube (Japan & USA) ≤ 160 ≤ 20 ≈ 0 0.5

UitZending Gemist ≤ 42 ≥ 10 ≈ 106 0.5

IMDB ≤ 18 ≥ 10 ≈ 106 0.5

Table 2.1: Results gathered by Avramova et al. The results are approximated from
the graphs in the publication which can be factored in to the simulator

traces, described as TV catch-up services, appear to follow a more drastic decrease over

time described as following exponential decay. The formula used by Avramova et al. [37]

to plot the decay in the form of a Cumulative Distribution Function (CDF) experienced

by video items in all systems is as shown in Equation 2.3

Ik(t) = ρk

1−

1 +

(
β

−1
αk − 1

)
(t−Θk)

τk


−αk (2.3)

In Equation 2.3 [37] τ describes the time it takes for a fraction 1 − β of the total

view count to accumulate. ∆t describes the time at which the item is observed and Θ

describes the time of entry in the system. α is the important variable to consider as

it is the variables that is form-determining in the function. If α is large, the function

produces an exponential curve which would see the item gain the majority of its requests

in the beginning of its existence. If α is small, the function produces a power-law curve

which would see the item remain relevant for an extended period of time, with a small

amount of popularity remaining throughout the item’s existence.

2.2 Any-cast protocols/systems

IP is the current protocol used exclusively on the internet at the Open Systems Inter-

connection (OSI) [40] network layer protocol. It provides a location based method of

accessing machines and was designed between the 1960s and 70s. The problem IP aimed

to resolve was the sharing of resources over a distance between machines. The method

used to retrieve resources was to reach a machine in a specific location to then request
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the resource, creating a location based request methodology. The internet in current

days sees less interest in the physical location from which the content originates, but

rather the content itself irrespective of the origin. In the current architecture of the

internet we see a need for any-cast algorithms which do not discriminate based on the

location of data, but instead focuses on the proximity of the data required. Any-cast

functions on the premise that requests can originate from many or one source and be

satisfied by many or one single source on the network. An architecture such as the

ICN model has been conceived to provide a method of delivering requested data objects

without emphasising on the location of the data. ICN functions at layer 3.5 of the OSI

depending on the implementation.

2.2.1 ICN Implementations

There are a number of projects and exemplar implementations of ICN such as; Data-

Orientated Network Architecture (DONA) [41], Publish-Subscribe Internet Technology

(PURSUIT) [42, 43], Scalable & Adaptive Internet soLutions (SAIL) [44], COntent

Mediator architecture for content-aware nETworks (COMET) [44] and Content Centric

Networking (CCN), a US funded project that later became Networking Named Content

(NDN). All of these architectures follow an ICN architecture of which the PURSUIT

implementation is used in this Thesis to aid in assessing effectiveness of caches as the

ICN architecture is uniquely able to utilise caches in an a manner considerate of the

location of the content. Reed et al. [42] describes the PURSUIT the publish-subscribe

Internet routing paradigm that is based on the Publish-Subscribe Internet Routing

Paradigm (PSIRP) architecture which Fotiou et al. [45] and Trossen et al. [46] describe

in further detail. In ICN the location is decoupled from the object, making it possible

to request the object and route it in a matter different from the currently internet.

One method used in the CCN architecture uses a Uniform Resource Locator (URL)

referring to an object. The URL is closely bound to the location of the system on

which the object is stored and made available from. Many implementations of ICN

still use IP as an underlying model, however implementations have been developed
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with an alternative forwarding model leveraging bloom Filters (Bloom Filters (BF))

[42, 47] which makes a source routing approach possible. The PSIRP model allows the

PURSUIT implementation to leverage in-network caching, multi-party communication

through replication, and an interaction model that decouples sender and receiver.

An example implementation of ICN may see an architecture where subscriptions of

users are handled by a Rendezvous (replacing the previously mentioned requirement of

a URL seen in CCN) which functions as the system linking Subscriber and Publisher

when a match is possible - this implementation is seen in the PURSUIT project. Once

matched, the Rendezvous forwards the information of the object and location of both

Subscriber and Publisher to the Topology Manager which generates a BF which contains

the instructions the Publisher can use to forward the object to the Subscriber. The BF

is sent from the Topology Manager to the Publisher which can forward the object

accordingly. In this example it can be seen that, as objects are forwarded along the

network, a caching node may choose to store the requested object and make it available;

ready for any future requests of that object to spare network resources in the future.

The process through which an object is forwarded from an original publisher would not

differ if the object was forwarded by a caching node in its stead from the perspective of

a Subscriber or the Rendezvous.

2.3 Cache Conscious Routing Strategies

For the purpose of testing the behaviour of the different popularity distributions four

routing strategies were selected based on the performance gained and their individual

diversity and functional differences. Routing strategies dictate the flow of traffic in

a network with focus on cache storage and reducing total traffic on the network. The

strategies available are numerous and a few of them are introduced and discussed below:

2.3.1 Cache Less for More (CL4M)

Cache less for more [48] considers centrality to decide where along the request path

items should be cached. Caching at nodes only with the highest betweenness centrality
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means the cached items are not replicated unnecessarily to all nodes on the request path

and have an increased chance of residing on a node which requests are likely to pass

over.

2.3.2 Leave Copy Down (LCD)

Leave Copy Down [49] routing strategy works on the basis that items are replicated

towards the edge of the network from the original source of the requested items. Items

are replicated towards the requester one level down with each request. This process

gradually pushes frequently requested items towards the outer edges of the network.

2.3.3 Probabilistic Caching (ProbCache)

Probabilistic caching [50] places items on the path between source and requester based

on a number of characteristics of the path. ProbCache is an algorithm that considers

caching capabilities and content capacity, path lengths, and multiplexes content flows

accordingly.

2.3.4 Leave Copy Everywhere (LCE)

When an object is requested in a Leave Copy Everywhere (LCE) implemented network

it is stored on each cache enabled node over which it is sent.

2.3.5 Hash-routing

The hash routing strategy [51] requires each cache enabled node on the network to

implement a hash function. The hash of the content transmitted is mapped to a specific

node with the same hash. The node to which the content is mapped to is the only

node on the network able to cache that content. This means in some implementation

of Hash-Routing objects are not forwarded along the shortest path to the subscriber,

but instead forwarded to the cache enabled node. In some instances it is forwarded to

the cache enabled node as well as to the subscriber. This method of caching avoids

replication of items in the network.
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2.3.5.1 Hash Hybrid Symmetrical-Multicast Routing

The Hash routing strategies [51] are based on the idea of hashing items and mapping

them to caches in the network. This method of caching may mean caching items off

their original path of requests but avoids item replication on the network. A copy will

always be sent to the designated cache if the item does not yet exist on the relevant

cache enabled node. The decision whether the item should be sent from the cache or

the original source to the requester depends on the total path length between the two

sources of the item and the original requester.

2.4 Cache Eviction Algorithms

Cache eviction policies dictate the content of the storage devices on which they are

implemented. The storage device would, in most scenarios, be located on an interme-

diate link somewhere on a network. Cache enabled network devices select content that

is requested and sent along the path on which they are located for storing. End de-

vices may request data items located on the cache enabled network devices instead of

content servers as content servers may be considerably further removed on the network

than cache enabled devices with the same desired content. Depending on what cache

eviction algorithm is implemented, a number of different actions can be taken by the

cache in order to attempt to maintain the items in the cache that will receive the largest

amount of requests in the future, thus reducing the traffic downstream from the caching

device to the best potential. Four opportunistic cache eviction policies were considered

for measuring the performance differences between Zipf and Zipf-Mandelbrot.

2.4.1 LRU

The items in Least Recently Used (LRU) that experience eviction are those which were

requested least recently. Every requested item is added to the cache or, if already

present in the cache, noted to be the most recently requested item. The operational
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cost of LRU is O(1).

2.4.2 LFU

The items in Least Frequently Used (LFU) that experience eviction are the ones with

the smallest request count. Items are added by removing the items in the cache with

the smallest number of observed requests. Item request counts are reduced every n

number of requests to make old items available for eviction. LFU has a slightly higher

operational cost of O(c) where c represents the cache size when replacing items in the

cache. A simple search is O(1).

2.4.3 RANDOM

The random cache eviction policy evicts random items to make space for new items.

This policy does not consider the frequency of requests of items held in the cache and

does no prioritization of any items. Random has an operational cost of O(1).

2.4.4 FIFO

First in First out (FIFO) works by arranging items in an ordered list and evicting

items from the bottom and adding them on the top. FIFO and LRU share a very

similar method of selecting items for eviction. FIFO does not move items to the top

of the cache if they are located in the cache when requested, unlike LRU. FIFO has an

operational cost of O(1).

2.4.5 Most Recently Used (MRU)

The Most Recently Used (MRU) eviction algorithm works under the assumption that

once an item has been requested, it is unlikely to be requested again, removing it when

another one is added.
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2.5 Icarus (ICN Simulator)

An ICN simulation environment has been created by Saino et al. [51]. The Icarus

simulation environment is a publicly-available, Python-based tool for simulating caching

behaviour on an ICN network. The popularity distribution of the items populating the

system can be changed to reflect the desired system behaviour. Icarus enables the

possibility of implementing a number of routing strategies which dictate the flow of

data with the intention to populate caches in the network in the most efficient manner

thus reducing the total amount of traffic on the network. Icarus also allows for any

topology to be implemented. The results acquired are measurements of; average cache

hit ratio, average path stretch and latency experienced on the network.

2.6 Conclusions and Scope

To conclude, the topic of video request is vast. Especially when technologies able to

achieve greater network performance when applied to VoD are brought into focus. To

limit the scope of this Thesis to an achievable goal, the main interests and conclusions

to be taken from this brief introduction of technologies above will be as follows:

1. Variable size segmentation cannot be applied in combination with caches without

a method of appropriately weighing the historic request frequency of items, thus

excluding the possibility of applying the simple, and often used, cache eviction

algorithms such as LRU and FIFO. For this reason the “Fixed” segmentation

policy will be applied throughout this Thesis to create opportunities to cache

using a more vast array of simple cache eviction algorithm. Any cache-specific

research containing variable length segmentation, such as pyramid segmentation

and skyscraper segmentation will be considered out of scope for this Thesis and

the research contained.

2. Video popularity distributions are a point of discussion in the research community

in regards to what popularity distribution, namely Zipf or Zipf-Mandelbrot, is to

be considered a superior distribution for modelling video popularity data. This
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Thesis will regard video popularity distributions to be a primary focus of study

with special attention to the discussion surrounding video request data and the

methods used to analyse which model is best to consider for the most approximate

replication of real VoD data. Additional potential distributions, such as the log-

normal distribution, will be considered outside of the scope of this Thesis.

3. Additionally to Video Popularity, other characteristics of video will be discussed

but not analysed in the same detail as the video popularity models. This is due

to the lack of available data for such analysis. However, data from the limited

existing sources will be combined in an effort to provide a pseudo-realistic request

simulation environment for the purpose of simulating request data to be as encom-

passing of all known variable characteristics as possible. This work will require

leaps of judgement due to the restrictive nature surrounding the details of the

characteristics involved.

4. As a method to reduce video delivery strain on a network, caching has been

brought forward as a possible solution. Caching, though possible, is restricted in

present day IP infrastructures, thus creating the need for alternative infrastruc-

tures to enable and support a cache-enabled network. Any-cast protocols such as

CCN and ICN provide such an environment. For this reason these technologies

will be brought into focus in this Thesis with a primary focus of cache implemen-

tation and development of cache eviction algorithms. A simulation environment

of an ICN cache enabled network is available (Icarus [43]) and will be utilised

throughout this Thesis to develop and test novel cache eviction algorithms.



3
Video Popularity Distribution Analysis

Global IP video traffic is predicted to constitute 82% of all consumer internet traffic

by 2020, up from 70% in 2015 [6]. Innovation to reduce the costs of video streaming

are therefore necessary and are being developed. Some examples are distributed server

farms and video compression techniques, for which most solutions require simulations

to stipulate just how effective one may presume specific solutions to be. Simulation

data such as total video request distributions may for some VoD hosting platforms be

accessible, however this is not so for most. Identifying key characteristics will open up

the ability to simulate and reconstruct video request behaviour to more people, creating

further opportunity for innovation. The goal of this Chapter is to identify the video

request distribution of a VoD system for the purpose of reconstruction. To achieve this,

two models are analysed to conclude that a specific model, with the required parameters,

would be the best suited model to closely recreate the empirical dataset.

26
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3.1 Introduction

Accurate modelling of video consumption patterns is a key factor in providing efficient

utilisation of network resource. However, the lack of publicly available consumption

data has meant that video consumption models have not been put under scrutiny and,

instead have assumed to follow the same model, namely Zipf, as many other Internet

services have; such as the World Wide Web, news feeds and email [26,52]. Existing re-

search has provided extensive testing that shows Zipf-like distribution to be sufficiently

accurate for modelling such services [26, 52, 53]. However, the same cannot be said for

video consumption models. In fact, various observations have shown that Zipf-like dis-

tributions may not be the best model for describing the popularity distribution of video

consumption patterns, hence, Zipf-Mandelbrot may be a better fit.

The danger of simply assuming a Zipf-like distribution for video consumption, with-

out supporting evidence, is that the resultant model may not be sufficiently represen-

tative of the user demands. Assuming a badly fitting model may lead to sub-optimal

design choices in areas such as service planning/provisioning, utilization of network re-

sources, accommodation of Service Level Agreement (SLA)s. A video caching system is

one example where accurate video consumption models have significant impact on the

network performance [14, 54, 55]. Such systems need to accommodate different types

of video services, such as: VoD, Live streaming and UGC which in some cases follow

vastly varying distribution models.

VoD has been argued to follow a Zipf-like consumption pattern [9,10,12]. However,

the observed distribution of data shows a curvature on the log-log scale, which suggests

a possible alternative model, namely Zipf-Mandelbrot [56]. Similar observation can be

made for UGC consumption patterns [17]. This deviation may increase in the future

of the Internet, with the rapid growth of user demands, the widening variety of the

offered video services and the expected innovation in Internet architectures, such as
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ICN [42,50,57].

This Chapter addresses the shortage in evaluation of video-focused consumption

models. While there heve been hints that Zipf-Mandelbrot is a good model, this work

shows – through empirical data – that consumption patterns do indeed comply to this

distribution. This is achieved by analysing an example large-scale empirical dataset,

provided by BT , as well as using synthetically generated consumption data, following

Zipf and Zipf-Mandelbrot distributions. These models include standard testing methods

such as; Pearson chi-square, Pearson’s correlation-coefficient, as well KL divergence.

Our study demonstrates that Zipf-Mandelbrot better fits realistic consumption data

than the previously widely used model: The Zipf-like distribution. Furthermore, this

study shows that the expected behaviour of cache-enabled video delivery systems is

closer to that of the empirical dataset when using the Zipf-Mandelbrot model than the

Zipf-like model.

3.2 Video Popularity Metrics

VoD systems vary in a number of ways. A summary that highlights the diversity of

VoD systems previously investigated can be found in Table 3.1. Table 3.1 is comprised

of a number of VoD system characteristics described in a number of publications. The

years of observation, user counts, requests per day, requests per user, locations of obser-

vation and the number of unique videos are the gross level of features when expressing

the diversity of VoD systems currently live. It may be assumed that the diversity of

VoD systems impacts the Video Popularity Distribution, however, evidence shows that

although the individual parameters may vary from one system to another, there is a

commonality in the type of distribution. A good example is that presented by Cha et

al. [17] in the case of Netflix [32]. The Netflix search algorithm had a sampling bias that

impacted the popularity distribution, however, inspection [17] of the popularity distri-

bution would suggest a Zipf-Mandelbrot distribution is present. When inspection of all

popularity distributions of systems listen in Table 3.1 it appears that the popularity
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References Systems Users Days Requests Unique Videos/Segments

System 1 * 870 666074 2999
[14]

System 2 * 630 14489 412

[10] 150000 219 21498338 7036

North 24059 21 1159676 536616
[9]

South 9762 28 615166 336257

[22] 20000 61 25000 1200

BIBS * 110 ≈ 6 ∗ 104 1506
[9]

eTeach 280 32 ≈ 2 ∗ 104 73

BT TV catch-up ≈ 105 7 ≈ 3 ∗ 105 ≈ 2500

BT VoD ≈ 105 7 ≈ 3 ∗ 105 ≈ 11000

Table 3.1: Published statistics from VoD and UGC systems + BT provided statistics

distributions, though not the same in each example, show clear trends despite the di-

versity of each system and its observation. Here, a clear distinction was made between a

number of consumption systems: linear, which broadcast video services; TV-catchup, a

form of VoD where content is typically time-limited and introduced in conjunction with

linear TV ; and, VoD-time-unlimited (VoDu), which includes systems such as Netflix,

where a catalogue is maintained over a relatively long time.

The BT data-sets are compared and contrasted in Table 3.1 against a range of other

VoD systems which all have been observed between 2000 and 2012 with a variety of

properties.

3.2.1 Existing Popularity Distribution Models

Currently, there is no agreement on one popularity distribution model that would fit

all video delivery systems; however, the general consensus appears to be that content,

regardless of type, system and time of observation, still follows a Zipf-like distribu-

tion [9, 10].

A number of studies [12, 16, 17] have expressed caution assuming that the popularity

distribution of video content is Zipf-like, due to the heavy tail and the flat head seen

on a log-log scale. Cha et al. [17] suggest that perhaps the truncation of the heavy

tail is caused by the system implementation, which does not make niche content easily
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accessible. However, analysis of other studies [9,10,14,18,22] shows that the truncated

tail, and the flat head, appear in many other VoD systems.

Alternatively, Tang et al. [14] suggests that Zipf-Mandelbrot represents VoD popularity

distributions more accurately, which have also been witnessed in comparable systems,

such as P2P [58]. This trend may not be exclusive to video content; but rather gen-

eral multimedia-based content [16]; thereby, showing Zipf-Mandelbrot to be emerging

as an alternative distribution model for describing general multimedia-based content

(including video), as opposite to the conventional Zipf model.

3.2.1.1 The Pareto Principle

The Pareto principle, not to be confused with the Pareto Law, is used to describe a

scenario were 20% of the categories in a probability distribution hold 80% of the chance

of occurrence. The Pareto Principle has been observed a number of times to be present

in VoD video request data [10,17,33] however, the significance of this finding is debatable

and may be seen as anecdotal. For the purpose of completeness, the Pareto Principle

will be addressed in Chapter 3.4.1.1 in relation with the BT provided empirical data-

sets.

3.2.2 Candidate Models for Popularity

The two models considered for replication of the user request data are Zipf [59] and

Zipf-Mandelbrot [56]. The Zipf distribution is a discrete power-law distribution first

used in linguistics to model the frequency of used words. Zipf-Mandelbrot is Zipf with

an extra variable which creates the flat head section of the distribution and also was

first applied to research and modelling in linguistics.

P (i) =
C

(i+ V )α
(3.1)

C = 1/

N∑
j=1

1

j + V

α

(3.2)
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The Zipf and Zipf-Mandelbrot distributions are modelled using Equation 3.2 and

Equation 3.1. α determines the skew of the Zipf/Zipf-Mandelbrot distribution. ν deter-

mines the flatness at the top of the distribution and thus the curve of the distribution

and is often called the Plateau factor. When ν is equal to 0 and α = 1, the distribu-

tion obeys Zipf’s law. The normalization fraction, C, ensures that the probability mass

function P (i) sums to unity over the range [1, N ]. Strictly a Zipf distribution is where

ν = 0 and α = 1. If α 6= 1 and ν = 0 P (i) may be termed as Zipf-like; however, here,

for brevity P (i) will be simply called a Zipf distribution. P (i) does not converge for

α ≤ 1, however, with a finite number of items P (i) is determinable, but we note that

with smaller α , the tail of the distribution becomes more important.

Figures 3.2 and 3.3 demonstrate the flatness of the top of the distribution of the real

user VoD and TV catch-up request data on a log-log scale for each item in the online

video delivery system.

3.2.3 Fitting Models and Problem Description

Currently, there is no agreement on one popularity distribution model to fit all video

delivery systems. In the following section two methods are suggested for fitting a model

to an empirical video data-set, each with strengths and weaknesses. The methods sug-

gested for fitting use KL and PCS respectively to find a sufficiently good fit to the

presented empirical data. Additionally to the two methods suggested for determining

likeness between the empirical data and the suggested model, a correlation measuring

method called the Pearson Correlation Coefficient is used to confirm correlation be-

tween the empirical data-sets and the suggested best fitting models. The strengths and

weaknesses of all methods of testing mentioned are discussed in the following Chapters.

Let Θ = {θ1, θ2, . . . , θN} be the probability of occurrence of N items following a

known, discrete, probability distribution model; and, let Φ(. . .) = {φ1, φ2, . . . , φN} be

the probability of occurrences of the same N items but according to a parametrized

probability distribution model that is used to approximate Θ. The elements of Φ and Θ

are strictly ordered from the highest probability to the lowest and the position of each
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item is termed its rank (i.e. 1, . . . , N). This Thesis will be concerned with measuring

the difference between the distributions and determining what it means in terms of

applying video consumption patterns to systems such as caching algorithms. Choosing

an appropriate distribution model, Θ, can be a notoriously difficult task, however, once

a suitable distribution model has been selected Φ may provide a sufficiently similar

substitute for Θ.

In addition to using KL as a method to measure “goodness-of-fit”, KL presents a

method by which the maximum cache miss can be estimated assuming a clairvoyant

cache eviction algorithm is adopted. The method will give additional evidence, beside

the traditional KL divergence, a measurement of behavioural prediction of a simulation

environment where a video item popularity distribution affects the outcome which, in

this implementation, is video caching miss/hit ratio.

3.2.3.1 Pearson Chi-Squared testing model

The standard use of the Pearson Chi-Squared test is used to determine if two sets of

observed data are likely to originate from the same source by chance. The “goodness-

of-fit” is expressed by a p-value produced by the test which determines the probability

of the two sets originating from the same source. Here it will be used to find the closest

fitting model, as illustrated in Figure 3.1, which utilizes the Pearson Chi-Squared test

to quantify the “goodness-of-fit” of each model (i.e. Zipf and Zipf-Mandelbrot (Φ)) in

describing an example empirical dataset (Θ) in an unconventional manner. The source

of the distributions, Zipf and Zipf-Mandelbrot, is not the same as the empirical dataset,

thus the Pearson Chi-Squared test, in its original form, will determine the two sets to

be different (produce a p-value that is significantly low) if the datasets drawn from each

probability distribution are of significantly large size. The key lies in the tests’ manner

of dealing with a small data-set, as it will then produce a large p-value for two sets,

concluding the two sets may originate from the same source due to a limited amount of

data.

An example case would be in the following two scenarios; first, one may test to see
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if on a non-biased flip, a coin lands face up 49% of the time; secondly, a test to see if a

during a non-biased flip, a coin lands face up 20% of the time. As one may conclude,

it is more likely that the first test is harder to disprove, as it requires a significantly

higher quantity of coin flips if you want to conclude beyond a 95% certainty that this

statement incorrect. This is also reflected in the Pearson Chi-Squared test, as the second

test would produce a p-value of less than 0.05 with fewer flips than the test which sees if

a non-bias coin flip lands face up 49% of the time. For this reason, it may be concluded

that a distribution of 49% − 51% shares a greater “likeness” to a 50% − 50% coin flip

than a 20% − 80% coin flip. This method of finding the distribution with the greatest

“likeness” re-purposes the Pearson Chi-Squared test to relatively compare datasets to

an empirical dataset. This will become evident in the results in Section 3.4.2.1.

To determine if a single model is a superior model to reproduce an empirical prob-

ability distribution Θ the Pearson Chi-Squared, is used. From each model, a large

quantity of Probability Density Function (PDF)s Φ are produced with a range of pa-

rameters specifically chosen for their resemblance to the empirical PDF Θ. From each

of the PDFs Φ a number of datasets are produced. The datasets are a number of occur-

rences, each category listed in the PDFs, from which they are generated increasing in

quantity. The datasets are directly compared to Θ using the Pearson Chi-Squared test

to produce a p-value. As the generated datasets submitted to the Pearson Chi-Squared

test from a specific PDF Φ increase in size the p-values, resulting from the test will

decrease, deducing a gradually less likely probability of each of the datasets originating

from the same source. Once the p-value drops below a previously specified value, the

size of the dataset produced from a single PDF Φ is recorded as the representative

“goodness-of-fit” value of that PDF Φ, before moving onto the next selected PDF Φ

and repeating the process. Once all the selected PDFs Φ from all the specified models

have been tested, the best “goodness-of-fit” can be deduced. Each dataset generated

from a specific PDF may vary slightly, which is why for each size of dataset, the test was

repeated a number of times and an average p-value was recorded as the representative

of that test. The above mentioned process is more clearly described in Figure 3.1.
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Figure 3.1: Model for performing the Pearson Chi-Squared Testing for deciding a
superior fitting Model and permutation of Model.

1: E = NormalisedEmpiricalDistribution
2: for δ ∈ PermutationsofModel do
3: p = 0
4: largestM = 0
5: M = 100
6: while p < 0.05 do
7: M = M + 10
8: for i ∈ 1 : 100 do
9: Eset = sample(M,E)

10: Zset = sample(M,D)
11: p = p+ PCS(Zset, Eset)
12: end for
13: p = p÷ 100
14: if M > largestM then
15: BestDist = δ
16: end if
17: end while
18: end for
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The tests were constructed in a manner that would repeat the Pearson Chi-squared

test incrementally increasing the number of sample requests used to generate the data-

sets compared. To avoid false positives, forty data-sets were generated with this method

and subsequently tested. The average was calculated to represent the p-value used to

consider the “goodness-of-fit”. The data-set of the models that has p > 0.05 for a larger

quantity of samples in their data-sets is considered to have a greater likeness to the

empirical data.

The final test enters a single permutation (distribution) of each respective model

that was found to be the best representative of their respective model and compares

the numbers of samples for which the p > 0.05 remained for the largest set of samples.

The results of this final comparison present a winning model which could be consid-

ered a superior model through which to generate a pseudo-realistic VoD popularity

distribution.

note: The p value chosen for the Pearson Chi-Squared test (0.05 in the case above)

is arbitrary. It can be changed and is to not influential as to which distribution is found

to hold the best “goodness-of-fit”. p is preferred to be of a low value as the purpose

of the test is to disprove the null hypothesis, the high confidence in disproving the

null hypothesis with a p < 0.05 can be considered to be more in-line with the original

purpose of the test.

3.2.3.2 Pearson Correlation Coefficient

The Pearson Correlation Coefficient is used to confirm the results deduced by the tests

performed using KL and PCS with a measurement of the correlation between the re-

spective distributions found to hold the greatest “goodness-of-fit” measurements. The

Pearson Correlation Coefficient cannot be used to decide a distribution model to have

great likeness but can assist in confirming correlation between two separate distribu-

tions. The resulting distributions of the KL and PCS tests will be presented in a Q - Q

plot against the empirical data to represent a visual representation for the correlation

PCC confirmed.
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3.2.3.3 Kullback-Leibler Divergence

A common metric of the difference between two distributions is the Kullback-Liebler

divergence, I(Θ‖Φ), [60] which is defined as:

I(Θ‖Φ) =
N∑
i=1

Φi log(Φi/Θi) (3.3)

I can be interpreted in a number of ways. This Thesis will interpret it as the measure

of surprisal [61], measured in bits. Specifically, the surprisal, I, is the log-odd ratio

that the a priori belief of a process thought to obey Φ is actually found to obey the a

posterior distribution Θ. I can be measured in bits, nats or other units depending on

the choice of logarithm, in this Thesis, the natural logarithm will be used as it avoids

adjustment terms later on.

In other words, the value given by KL divergence is the logarithmic difference be-

tween the probabilities Θ and Φ, where starting probabilities are presumed Θ.

3.2.4 Cache Miss Error Ratio Calculation using KL

Additionally to finding the model to which empirical video request date coheres it is

considered important to see if, outside of standard empirical measurement techniques,

behaviours expected from video simulation environments testing cache eviction policy

performance reflects the findings of the empirical measurements. A simulator, such as

the one suggested, is found in Chapter 3.4.3. Additionally to this simulator, an empirical

measurement of probability of cache miss ratio is introduced to further substantiate the

findings using KL.

Singularly, KL can aid in determining the cache miss error if applied correctly.

Assuming KL to be defined as in Section 3.2.3.3 the divergence I is a result from infor-

mation theory that can be related to probability theory through an inequality termed

Pinsker’s inequality, which was later refined independently by Csiszár, Kemperman, and

Kullback [62]:

V (Θ,Φ) ≤ 2I(Θ‖Φ) (3.4)
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where V (Θ,Φ) is the total variation between Θ and Φ. For a discrete probability

distribution with finite support over N -items:

V (Θ,Φ)2 =

N∑
i=1

|θi − φi| (3.5)

It can now be seen how the divergence I between a parametrized approximation

Φ, for an actual distribution Θ, can be used to predict useful results when applied to

caching; for example the error in the cache-hit ratio when analysing a caching system for

video distribution. Before deriving the result that determines the error, the following

lemma which considers a discrete probability distribution P = {p1, . . . , pN} where events

are combined as a single event to form a new probability distribution denoted as P{α,Ω} =

{p1, . . . {pα + . . . + pΩ}, . . . pN} is needed. Note that α and Ω may be selected from

any point in P and that multiple ranges of events could be combined and denoted as

P{α,κ}{ρ,Γ}.

Lemma 1. I(Θ{α,Ω}‖Φ{α,Ω}) ≤ I(Θ‖Φ)

Proof. The proof will use Jensen’s inequality [63]:

f

(∑
i

aixi

)
≤
∑
i

aif(xi)

where the convex function is defined as f(x) = x log(x) and
∑

i ai =
∑

i∈{α...Ω}
Φi
φ = 1

if ϕ =
∑

i∈{α...Ω} φi such that Jensen’s inequality holds. By setting xi = θi
φi

it can be

found that

f

 ∑
i∈{α...Ω}

φi
ϕ

θi
φi

 ≤ ∑
i∈{α...Ω}

φi
ϕ
f

(
θi
φi

)

Dropping the limits {α . . .Ω} from summations for brevity, substituting for the function

f and using
∑

i∈{α...Ω} θi = ϑ gives
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∑
i

φj
ϕ

θj
φj

log

∑
j

φj
ϕ

θj
φj

 ≤∑
i

φi
ϕ

θi
φi

log

(
θi
φi

)

ϑ log
ϑ

ϕ
≤
∑
i

θi log

(
θi
φi

)

Noting that the two sides of the inequality contribute to the following formulations of

the respective Kullback-Leibler divergences

I(Θ‖Φ) =
∑

i∈{α...Ω}

θi log

(
θi
φi

)
+

∑
i∈{1...N | i/∈{α...Ω}}

θi log

(
θi
φi

)

and

I(Θ{α,Ω}‖Φ{α,Ω}) =ϑ log
ϑ

ϕ
+∑

i∈{1...N | i/∈{α...Ω}}

θi log

(
θi
φi

)

completes the proof.

Consider an idealised cache that holds the top C items and when Φ is invariant.

Definition 1. The actual cache hit ratio from the system obeying the distribution Φ is

h =
∑C

i=1 φi whereas the estimated ratio according to the approximated distribution Θ

is h′ =
∑C

i=1 θi.

The following lemma can then be constructed.

Lemma 2. The absolute error in the estimate of the cache hit ratio |h− h′| is bound

by the Kullback-Leibler divergence with the relationship:

∣∣h− h′∣∣ ≤√1
2I(Θ‖Φ)

Proof. The proof of the Lemma follows directly from Pinsker’s inequality [62] for two



Chapter 3. Video Popularity Distribution Analysis 39

discrete distributions P = {pi . . . pN} and Q = {qi . . . qN} each with the same finite

support over N items: (
N∑
i=1

|pi − qi|

)2

≤ 2I(P‖Q)

Consider that the actual distributions of cache-hit/cache-miss is given by the two value

distribution Θ{1...C}{C+1...N} and likewise the estimated distribution is Φ{1...C}{C+1...N}

according to the earlier defined notation such that h = Θ{1...C} and h′ = Φ{1...C}.

Applying Pinsker’s inequality above gives:

(∣∣h− h′∣∣+
∣∣(1− h)− (1− h′)

∣∣)2 ≤ I(Θ{1...C}{C+1...N}‖Φ{1...C}{C+1...N})

Applying Lemma 1 and rearranging the left hand side gives:

(
2
∣∣h− h′∣∣)2 ≤ I(Θ{1...C}{C+1...N}‖Φ{1...C}{C+1...N}) ≤ I(Θ‖Φ)

and the proof is complete.

3.3 Application in Video Delivery Systems

Example environments for which knowledge of the popularity distribution for a video

delivery system is useful are plentiful. Any simulation of video delivery may choose to

apply the video popularity distribution when testing any number of properties such as:

capacity of links or servers, load balancing, HTTP or DNS redirection [64,65] and many

more.

One area where the popularity distribution of the input data influences the perfor-

mance of a system is in cache enabled distributed networks. Content Centric Networking

(CCN) [57] and Information Centric Networking (ICN) [44] provide us with protocols

on which caching is possible and on which we can implement a Video Delivery Systems.

The CCN and ICN protocols can be simulated to show caching metrics to reveal differ-

ences in performance under a variation of circumstances, thus providing a perfect way to

demonstrate the behaviour of the system with input data following different popularity



Chapter 3. Video Popularity Distribution Analysis 40

distributions.

The motivation for identifying the best method of generating a realistic request

frequency distribution for video delivery systems is to enable the possibility to achieve

accurate system request behaviour in video request simulation/modelling. One example

is to simulate the reduction of traffic on a network through the implementation of local

caching on, for example, an Information Centric Networking (ICN) network such for the

simulator named “Icarus” developed by Saino et al. [51]. Cache Eviction algorithms may

perform differently when subjected to a Zipf-like request frequency distribution instead

of Zipf-Mandelbrot distribution (both modelled to closely resemble the original request

distribution) and thus could possibly identify inaccurate results should one distribution

be selected for simulation over another.

3.4 Tests and Evaluation

3.4.1 Empirical Data

The BT provided popularity distributions shown in Figures 3.2 and 3.3 are observed

request distributions which are labelled as “real”. A week of observations make up

the TV catch-up and VoD data. There are two types of video delivery systems as

shown. The two unique systems provide a contrast in request behaviour that will aid in

confirming if video request distributions can be accurately modelled and to what extent

modelling of video request distributions can be considered accurate.

The TV catch-up and VoD systems have key differences in the method they function.

Some of these differences are: Lifetime of videos - The TV catch-up system holds videos

for thirty days and was monitored for the duration of seven days. Every 24 hours a 30th

of the total amount of videos is gradually removed and an equal amount of videos are

introduced back into the system. The VoD system holds videos for an undetermined

amount of time. Method of selection - TV catch-up videos are also selected on the

grounds that they were previously broadcast on TV. This entails that some items only

hold relevance for a day (e.g. news items) and others may remain popular throughout
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the week (e.g. popular TV shows). All items remain on the system all thirty days

regardless of their type. VoD holds specifically videos that are likely to be requested

frequently. The type of videos requested would hold a more constant request rate which

is not dependent on their time of entry into the system.

3.4.1.1 Pareto Principle

The Pareto principle is often quoted with respect to popularity of video watching pat-

terns and thus is briefly analysed here for the data obtained for this study. In the case of

TV catch-up, data reveals that the Pareto Principle applies as 20% of the most popular

videos make up 83% of the total number of requests in the TV catch-up observations.

This matches work by others [10,14,22] who also found that the video request matches

the Pareto Principle. Cha et al. [17] considered user generated content (UGC) and Yu

at al. [10] considered data which is Video on Demand (VoD). Due to the different nature

of the systems in question the Pareto Principle does apply to all with small variations.

The UGC VoD system in [17] is more extreme with 10% of videos receiving nearly 80%

of the total number of requests. The nature of UGC means that there are more videos

and therefore, in proportion, fewer popular videos. While the Pareto principle has seen

widespread adoption as an approximate benchmark it is not, in itself, detailed enough

to be used for accurate models. Consequently, this Thesis will look to more detailed

modelling.

3.4.2 Finding Resembling Zipf & Zipf-Mandelbrot Distributions

The fitting method proposed suggests selecting multiple models with multiple param-

eters (Φ), to be measured directly in relation to an unknown discrete popularity dis-

tribution (Θ) to receive a goodness-of-fit measurement. To find the superior model to

represent the unknown probability distribution a single candidate from each model is

to be compared. The candidate distribution suggested from each model will represent

the distribution that holds the greatest likeness (P ) to said model. Zipf and Zipf-

Mandelbrot are the models selected for comparison, thus many permutations of each
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Figure 3.3: PCS Fitting results Popularity
Distributions Zipf, Zipf-Mandalbrot and

TV catch-up Empirical Data-sets

model are compared to the unknown discrete popularity distributions provided by BT.

Two methods of comparing are presented and are discussed in detail in Chapter

3.2.3. The methods use PCS and KL respectively.

3.4.2.1 Pearson Chi-Squared Fitting

The Pearson Chi-Squared fitting method incrementally increases the size M of sample-

set θ according to a probability distribution from a known model Θ which is, with

each incrementation, subjected to the Pearson Chi-Squared test in conjunction with a

sample-set drawn from the unknown probability distribution Φ. The null hypothesis in

the Pearson Chi-Squared test assume the tested distributions are of the same source

and share a common model. If the the Pearson Chi-Squared tests returns p < 0.05, the

null hypothesis can be rejected - indicating the two sample sets do not originate from

the same probability distribution with a confidence interval of 95%. The sample-set θ

for which the null hypothesis is rejected with the largest sample-size is considered the

superior fit within the given model Θ.

The algorithm by which a Zipf-like and Zipf-Mandelbrot distribution can be selected

to model the empirical data iteratively fits a large range of permutations of each model

using the Pearson Chi-Squared test and conclude to have the greatest resemblance to

the empirical data-set. The Pearson Chi-Squared test provides a measurement of the
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probability of difference observed in two distributions by chance. This means increasing

the number of samples taken according to each popularity distribution will provide a

measurement of how likely it is that the two compared sample-sets are generated from

the same probability values. As the sample-sets increase, the Pearson Chi-Squared test

will increasingly consider the probability of the two sample-sets to be less likely to have

originated from the same probability, thus more likely to dispel the null hypothesis.

As Zipf-like and Zipf-Mandelbrot distribution will not exactly replicate the empirical

data-sets, the test provides us with a method by which the distribution showing the

greatest resemblance to the empirical data will dispel the null hypothesis with the

largest sample-set. (The testing model can be found in Chapter 3.2.3.1)

α = 0.5, 0.51, 0.52, 0.53, . . . , A (3.6)

ν = 0, 1, 2, 3, . . . , V (3.7)

A large set of Zipf-like and Zipf-Mandelbrot distributions are generated (permuta-

tions of the models) applying a large set of α and ν variables to the Zipf-like function

and Zipf-Mandelbrot function as presented in the Equations 3.6 and 3.7. The size of

the data-sets, N , should be equal to the length of the empirical data-set for each indi-

vidual PCS test performed. For each distribution generated the PCS test will confirm

the sample-size required for which the chosen distribution of the model can no longer

uphold the null hypothesis. The Zipf-like and Zipf-Mandelbrot distributions for which

the null hypothesis was not rejected for the greatest sample size M are declared the

best Θ, Zipf-like and Zipf-Mandelbrot in this particular representation, distributions of

the empirical data.

The resulting Zipf-like and Zipf-Mandelbrot distributions are shown in Table 3.2

to illustrate the resemblance between the empirical data-set and the candidate dis-

tributions. Table 3.2 contrasts the results for the model “Zipf” to the model “Zipf-

Mandelbrot”. The quantity of requests required to dispel the null hypothesis for Zipf

in contrast to the quantity required for Zipf-Mandelbrot is very large, thus presenting
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Model Optimised Values Requests

TV Catch-up Zipf α = 0.905 2400
TV Catch-up Zipf-Mandelbrot α = 1.52, ν = 26 22300

VoD Zipf α = 0.765 12050
VoD Zipf-Mandelbrot α = 1.34, ν = 158 76200

Table 3.2: Pearson Chi-Squared optimised result correlation between Zipf-like &
Zipf-Mandelbrot
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Figure 3.4: P values as occurrences increase | TV catch-up data-set (the parameter
named “Variable” in this figure is a place-holder for ν)

great evidence of a superior model to which the empirical data conforms.

The p value to determine when the null hypothesis could be rejected was set at

p < 0.05. This value can be arbitrarily chosen but more specifically was picked as

p < 0.05 is frequently considered to a confidence level sufficiently low to reject the null

hypothesis in many testing environments where the Pearson Chi-Squared test can be

applied. To illustrate the insignificance of choosing a different p value where 1 > p > 0

can be seen in Figure 3.4.

The contrasting request quantities for Zipf can be seen in Figures 3.7 and 3.5 and

for Zipf-Mandelbrot in Figures 3.6 and 3.8. Each point in the graph/grid presented

represents a single permutation of each respective model (Zipf & Zipf-Mandelbrot) and

at which request quantity of requests the PCS fitting technique produced a p-value less

than 0.05. The result from each model found to be the best suited matches to the

empirical data-sets were plotted in Figures 3.2 and 3.3 to provide a visual perspective

to confirm the method.
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Figure 3.5: Fitting TV Catch-up to Zipf using Pearson Chi-Squared. Each point
represents the point at which the p-value returned by the Pearson Chi-Squared fell

below 0.05 as requests increased.

Figure 3.6: Fitting TV Catch-up to the Zipf-Mandelbrot model using Pearson
Chi-Squared. Each point represents the point at which the p-value returned by the
Pearson Chi-Squared fell below 0.05 as requests increased. (the parameter named

“Variable” in this figure is a place-holder for ν)
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VoD vs Zipf

0

2500

5000

7500

10000

12500

0.6 0.8 1.0

Exponent

R
eq

ue
st

s

Figure 3.7: Fitting VoD to Zipf using Pearson Chi-Squared. Each point represents the
point at which the p-value returned by the Pearson Chi-Squared fell below 0.05 as

requests increased.

Figure 3.8: Fitting VoD to the Zipf-Mandelbrot model using Pearson Chi-Squared.
Each point represents the point at which the p-value returned by the Pearson

Chi-Squared fell below 0.05 as requests increased. (the parameter named “Variable” in
this figure is a place-holder for ν)
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Figure 3.10: KL Fitting results including:
Popularity Distributions Zipf,

Zipf-Mandalbrot and TV catch-up
Empirical Data-sets

A gradient ascent fitting method was initially considered for the purpose of finding

the best results, however the PCS results are such that the gradient ascent process can

transverse to a local maxima. For this reason a more general approach was taken by

which a large range of variables were submitted to the PCS test from which the best

results were recorded.

3.4.2.2 Kullback-Leibler Fitting

Kullback-Leibler (KL) provides a method of finding the expected divergence between

two normalised distribution when assuming Φ represents Θ as described in Section

3.2.3.3. The error is represented in the number of bits required to code Θ assuming Φ

is the information representing Θ. The measured KL values do not represent a “true

metric”. However, they do quantify a distance between two distributions, thus providing

a relative measurement of error for two contrasting distributions (Φ) in relation to

empirical data-sets(Θ). KL Divergence is presented as shown in Equation 3.8.

I(Θ‖Φ) =
N∑
i=1

Φi log(Φi/Θi) (3.8)

KL is applied to many permutations of each model in question. The resulting values

KL produces are so that the smallest value is equal to the smallest error, thus providing
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Figure 3.11: Fitting results for TV Catch-up to Zipf using Kullback-Leibler. The
KullBack-Leibler value is plotted for when Θ and Φ were directly compared using a

varying α variable.
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Figure 3.12: Fitting results for VoD to Zipf using Kullback-Leibler. The
KullBack-Leibler value is plotted for when Θ and Φ were directly compared using a

varying α variable.

the superior fit. Concluding this, the results were as illustrated in the Figure 3.11,

Figure 3.12, Figure 3.13 and Figure 3.14 with each point in the figures representing an

individual permutation of the model listed in the titles of the figures. The two models

Zipf and Zipf-Mandelbrot were each applied to the empirical BT data-sets VoD and TV

catch-up to find the best model for each set of data.

The KL results found to represent the empirical data best, to the largest degree, can

be found in Table 3.3. The results indicate a preference for Zipf over Zipf-Mandelbrot

considering both TV catch-up and VoD as each set produces a largely decreased KL

value.

To illustrate the variance of the distributions with the lowest KL value of each respective
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Figure 3.13: Fitting results for TV Catch-up to Zipf-Mandelbrot using
Kullback-Leibler. The KullBack-Leibler value is plotted for when Θ and Φ were

directly compared using varying α and ν variables (the parameter named “Variable”
in this figure is a place-holder for ν).

Figure 3.14: Fitting results for VoD to Zipf-Mandelbrot using Kullback-Leibler. The
KullBack-Leibler value is plotted for when Θ and Φ were directly compared using

varying α and ν variables (the parameter named “Variable” in this figure is a
place-holder for ν).
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Divergence of
Model Optimised Values Divergence top 50% of content

TV Catch-up Zipf α = 0.900 0.125 0.0745
TV Catch-up Zipf-Mandelbrot α = 1.42, var = 23 0.0215 0.0120

VoD Zipf α = 0.765 0.103 0.0610
VoD Zipf-Mandelbrot α = 1.20, var = 111 0.0230 0.0166

Table 3.3: Kullback-Leiber optimised result correlation between Zipf-like &
Zipf-Mandelbrot

model against TV catch-up and VoD in Figures 3.9 and 3.10. This figure shows the

likeness shared between Zipf, Zipf-Mandelbrot and the empirical data-sets on a log-log

scale. The measurements KL provides would suggest the Zipf and Zipf-Mandelbrot

distributions are the distributions with the least amount of error if they were to be a

representation of the empirical data provided (VoD and TV catch-up).

3.4.2.3 Pearson Correlation Coefficient (PCC)

The Pearson Correlation Coefficient provides a measurement of the correction between

two sets of variables. The correlation expected to confirm if the Zipf-Mandelbrot or Zipf

distributions correspond closely to the empirical data would be of a positive number

close to 1 (a positive correlation). The distribution which most closely resembles the

empirical data for both VoD and TV-catch up is considered a superior fit over its

counterpart.

The Zipf and Zipf-Mandelbrot distributions subjected to the Pearson Correlation

Coefficient test were those produced in the Pearson Chi-squared and KL based tests.

The Pearson Chi-Squared test provides a method of producing an empirical measure-

ment of closeness, fit for permutations within the bounds of the models provided. The

KL based test provides a method similar to the PCS based test using the KL divergence

results.

It is important to note the Pearson Correlation Coefficient does not provide a method

of exactly matching two distributions, but instead confirming that the two distributions

change in a relatively consistent and similar manner.
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Figure 3.15: Q - Q plot including: contrasts Popularity Distributions Zipf,
Zipf-Mandalbrot vs. TV catch-up Empirical Data-set
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TV

Test Correlation K-transform P-value

Zipf KL 0.8575074 0.847 - 0.867 < 2.2−16

Zipf-M KL 0.9851084 0.984 - 0.986 < 2.2−16

Zipf PCS 0.8551071 0.844 - 0.865 < 2.2−16

Zipf-M PCS 0.9845072 0.983 0.986 < 2.2−16

Table 3.4: TV Catch-up PCC comparison between Zipf-like & Zipf-Mandelbrot

3.4.2.4 TV Catch-Up

The correlation can be considered highly positive as values in Table 3.4 demonstrate

when comparing the TV catch-up popularity distribution and the Zipf-Mandelbrot, as

the Zipf distributions, in the results from the KL based analysis, as well as the results

from the PCS based analysis. The P-value is used to determine a large enough test

group to consider the results valid. ≈ 2500 elements represent a significantly large num-

ber of elements to validate the value produced correlation tests.

To further illustrate the likeness of the distributions, they were plotted on opposing

axis (Q-Q plot) in Figures 3.16 and 3.15. A line was drawn through the centre of Figures

3.16 and 3.15 with equal X Y values to give a good correlation reference point when

inspecting correlation values. The correlation is plotted on a log-log scale to illustrate

the distribution of popularity. The figure illustrates that Zipf-like, though sharing sim-

ilar likeness to the real data, does not match the real popularity distribution as well as

the Zipf-Mandelbrot representation which is particularly obvious when inspecting the

tail of each figure. Another apparent difference is the difference of the most popular

items between the Zipf-like distribution and the real data. The Zipf-Mandelbrot has a

much greater likeness when considering popular items.

3.4.2.5 Video On Demand

The correlation can be considered highly positive as values in Table 3.4 demonstrate

when comparing the VoD popularity distribution and the Zipf-Mandelbrot, as the Zipf

distributions, in the results from the KL based analysis, as well as the results from the
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VoD

Test Correlation K-transform P-value

Zipf KL 0.8645955 0.860 - 0.869 < 2.2−16

Zipf-M KL 0.9334864 0.931 - 0.935 < 2.2−16

Zipf PCS 0.8645955 0.863 - 0.872 < 2.2−16

Zipf-M PCS 0.9243367 0.922 - 0.927 < 2.2−16

Table 3.5: VoD PCC comparison between Zipf-like & Zipf-Mandelbrot

PCS based analysis. The P-value is used to determine if a large enough test group is

used to consider the results valid. VoD contains ≈ 11000 elements which is a signifi-

cantly large number to validate the correlation test.

Figure 3.16 illustrates a log-log Q-Q plot representing the correlation between the

VoD generated Zipf and Zipf-Mandelbrot data-set and the Empirical data-set. A per-

fect correlation would be identifiable if the two quantiles were identical (represented

with a straight line between the y and x axis). Figure 3.16 has been included to show

that Zipf, even though it has similar likeness to the real data, does not match the real

popularity distribution as well as the Zipf-Mandelbrot representation. The most no-

table difference when comparing Zipf and Zipf-Mandelbrot against the real VoD data

is that Zipf-Mandelbrot contains a great likeness in the main body of the distribution.

When plotted on a Q-Q log-log scale, the most frequently requested items in the Zipf

distribution are much unlike the real data. The Zipf-Mandelbrot distribution achieves

a much greater likeness in the most frequently requested portion with the exception of

the two items most frequently requested items.

3.4.2.6 PCC Evaluation

The PCC test provides a metric to suggest if two PDFs share a high correlation, sug-

gesting the two data-sets change in a similar manner. PCC is not designed to confirm if

two sets of data originate from the same source, however it does show if the sources are

related. This means if a strong correlation can be considered present, a greater likeness
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can also be considered in combination with other tests.

The main interest in the PCC test is to detect if there is a greater correlation to be

obtained between two models. The models for consideration are Zipf-Mandelbrot and

Zipf. To detect a correlation PCC has been applied to the best results from each model

(Zipf and Zipf-Mandelbrot) from the PCS and KL based tests performed in Chapters

3.4.2.1 and 3.4.2.2.

The results from the TV catch-up and VoD PCC tests are in Table 3.4 and 3.5 from

which the conclusion can be drawn that the Zipf-Mandelbrot model shares a greater

correlation to the empirical data, for the case of TV catch-up and VoD, than Zipf by a

factor of ≈ 1.1. An increased correlation of ≈ 0.1 can indeed be considered significant

and thus provides an indication as to which model shares greater likeness to the empirical

data.

3.4.3 Network Caching Simulation Environment (Icarus)

The video popularity distribution of a system can have detrimental impact on a number

of performance aspects of a CDN. Poor planning using an incorrect video popularity dis-

tribution can lead to sub-optimal design choices in areas, such as service planning/pro-

visioning, utilization of network resources, accommodation of SLAs. One area where

using an incorrect model to imitate video request behaviour can have adverse effects is

cache-enabled networks such as those that can be set-up and launched using ICN. To

achieve a measurement of the variance in a cache enabled system between empirical data

and a theorised model thought to imitate the empirical data would provide a method

of confirming likeness.

One ICN simulation environment has been created by Saino et al. [51]. The Icarus

simulation environment is a publicly-available, Python-based tool for simulating caching

behaviour on an ICN network. The popularity distribution of the items populating the

system can be changed to reflect the desired system behaviour. Icarus enables the possi-

bility of implementing a number of routing strategies which dictate the flow of data with

the intention to populate caches in the network in the most efficient manner thus reduc-
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ing the total amount of traffic on the network. Icarus also allows for any topology to

be implemented. The network topology used for the simulations is GEANT [66] (Euro-

pean academic network). More topologies were initially submitted; however topologies

GARR [67], GEANT [66], TISCALI [68] and WIDE [69] produced insignificantly differ-

ent results and thus were omitted. The results acquired are measurements of; average

cache hit ratio, average path stretch and latency experienced on the network. All of

the acquired measurements were compared to point out differences in behaviour for the

submitted video request distributions. A number of popularity metrics will be sub-

jected to testing with regards to request behaviour however, the simulations will not

include details such as; item popularity decay over time, item removal over time and

introduction of new items. Instead a static workload will be subjected for testing.

The method to predicting the cache miss ratio proposed in Chapter 3.2.4 will be

additionally shown side-by-side to the Icarus results as to further substantiate the corre-

lation between the finding of the empirical measurements using PCS and KL in relations

to which model may be most closely associated to the empirical data-sets.

3.4.3.1 KL Predicted Cache Miss Ratio

As described in Chapter 3.2.4 it is achievable to estimate the cache-miss bound relative

to the original data when submitting the generated probability distribution, as well as

the original empirical data, to the KL divergence test.

The absolute error in the estimate of the cache hit ratio |h− h′| is bounded by the

Kullback-Leibler divergence with the relationship:

∣∣h− h′∣∣ ≤√1
2I(Θ‖Φ)

The results for the VoD and TV catch-up empirical data-sets can be found in Table

3.3. As the Icarus experiments will not experience cache sizes C to increase beyond 50%

of the size of total items N , the normalised top 50% of the empirical data to the top

50% of the generated probability distribution can be applied to achieve a more narrow

bound cache error prediction.
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Note: The results assume a clairvoyant cache. This is not simulated in using the

Icarus environment, thus assuming strict boundaries would be incorrect.

3.4.3.2 Expected results beyond KL

It can be speculated that the Zipf-like distribution receives a lower mean hit-rate and

a higher average path stretch due to fewer popular items having an elevated amount of

requests when compared to the Zipf-Mandelbrot distribution which sees fewer requests

towards the tail section of the Zipf-like curve but more requests towards the middle of

the distribution. This, it could be argued, may not hold true for when the cache size is

small. Zipf sees the most popular items receive a tremendous amount of requests where

Zipf-Mandelbrot has a number of items that are the most popular, almost, collectively.

With this similarity in popular items, it may mean that the caches fail to retain the

single most popular items in the cache but instead keep changing the items in the cache

in an effort to retain popular items which could lead to a low cache hit ratio and there-

fore a higher average path stretch. This may never transpire as the cache may never

be small enough in quantity for the top select few items of Zipf to exceed the top few

items of Zipf-Mandelbrot.

3.4.3.3 KL Zipf & Zipf-Mandelbrot models vs. Empirical data-sets

The empirical data-sets for VoD and TV catch-up were admitted to the Icarus simulation

environment as well as the theorised models thought to imitate the empirical data

according to the KL divergence results listed in Table 3.3. The quantity of unique items

in the Icarus simulation was set to be equal to the quantity of unique items found in

the empirical distributions (≈ 11000 & ≈ 2500).

The topology chosen in the simulations was GEANT [66]. The Routing strategies

adopted were “Cache less for more” [48], “Hybrid Symmetrical Hash” [51], “Leave Copy

Down” [49] and “Probabilistic Caching” [51] which are representative of the best cache

routing strategies implemented in Icarus. The average of all routing strategies makes up
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Figure 3.17: Icarus: Average Cache Hit
Ratio for the BT TV dataset and the KL

determined, closely matched, Zipf and
Zipf-Mandelbrot distributions
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Figure 3.18: Icarus: Average Cache Hit
Ratio for the BT VoD dataset and the KL

determined, closely matched, Zipf and
Zipf-Mandelbrot distributions
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Figure 3.19: Icarus: Average Latency for
the BT TV dataset and the KL

determined, closely matched, Zipf and
Zipf-Mandelbrot distributions

VoD

40

50

60

70

80

0.002 0.008 0.032 0.128 0.512

Cache Size relative to total nr items

M
ea

n 
La

te
nc

y

Distribution
VoD KL Zipf
VoD KL Zipf−M
VoD System Data

Figure 3.20: Icarus: Average Latency for
the BT VoD dataset and the KL

determined, closely matched, Zipf and
Zipf-Mandelbrot distributions
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Figure 3.21: Icarus: Average Path Stretch
results for the BT TV dataset and the KL

determined, closely matched, Zipf and
Zipf-Mandelbrot distributions
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Figure 3.22: Icarus: Average Path Stretch
results for the BT VoD dataset and the

KL determined, closely matched, Zipf and
Zipf-Mandelbrot distributions
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the results displayed and presented. Ten cache sizes were chosen to test the probability

distribution’s differences for which the range is displayed in Equation 3.9.

2[0,1,2...,9]

1000
[11000, 2500] (3.9)

Three measurements were obtained from each test with insights into the performance

that can be expected from each of the 2 sets of 3 probability distributions tested. The

measurements are Average Latency, Average Path Stretch and Average Cache Hit-Ratio.

The Average Cache Hit-Ratio results regarding the Empirical TV and VoD Datasets,

as well as the KL deduced, best matching, Zipf and Zipf-Mandelbrot distributions can

be found in Figures 3.17 and 3.18. The figures show, in the grey areas, the cache-miss

hit ratios estimated per the method suggested in Chapter 3.2.4. Primarily it shows

the estimated cache-hit ratio boundaries that can be expected for the Zipf and Zipf-

Mandelbrot distributions in comparison to the cache-hit ratio that can be expected from

a clairvoyant cache given the empirical probability distribution. The cache-hit error that

could be expected from each Zipf and Zipf-Mandelbrot was calculated as stipulated in

Equation 3.4.3.1. The darker, inner boundary estimating the cache-hit ratio relative to

the empirical data cache-hit ratio if Figures 3.17 and 3.18 belong to the distribution

found to produce the lowest KL value relative to the empirical dataset which was the

Zipf-Mandelbrot distribution. The lighter, outer boundary estimating the cache-hit

ratio relative to the empirical data cache-hit ratio belongs to the distribution found

to produce the higher KL value relative to the empirical dataset which was the Zipf

distribution. From the boundaries that give the estimated cache-hit ratio, as shown

in the Figures illustrating cache-hit ratio, it is possible to surmise that, though the

boundaries are broad, the cache-hit ratio boundaries for the given results are accurately

estimated to be within the boundaries set.

The difference in cache-hit ratio for each individual model and the empirical data-

set is shown in Table 3.6. The Total Average is not a measurement to take a final

conclusion from as the cache-hit ratios measured, in relation to the empirical cache-hit

ratio results, overlap on occasion and there are only ten points of measurement, meaning
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Empirical and Model — Mean Absolute Deviation

VoD TV Catch-up
Cache Size Zipf Zipf-Mandelbrot Zipf Zipf-Mandelbrot

0.001 0.0189 0.0034 0.0352 0.0027

0.002 0.0194 0.0031 0.0380 0.0034

0.004 0.0260 0.0043 0.0384 0.0044

0.008 0.0370 0.0050 0.0391 0.0008

0.016 0.0415 0.0036 0.0394 0.0062

0.032 0.0379 0.0002 0.0366 0.0021

0.064 0.0052 0.0074 0.0147 0.0128

0.128 0.0211 0.0043 0.0200 0.0070

0.256 0.0605 0.0007 0.0509 0.0101

0.512 0.0363 0.0050 0.0729 0.0061

Total Mean 0.0304 0.0037 0.0385 0.0056

Table 3.6: Difference between Cache-Hit Ratios relative to Empirical Results in test
where Zipf and Zipf-Mandelbrot models were selected based on a “goodness-of-fit”

produced in KL

a single low value may be over represented in the Total average value. The trend visible

in Figures 3.17 and 3.18 where Zipf-Mandelbrot appears to follow a more closely related

cache hit ratio over Zipf, together with a lower than Zipf Total Average cache hit ratio

for Zipf-Mandelbrot in both scenarios, may leave one to conclude Zipf-Mandelbrot to

be more closely associated with the empirical data for both TV catch-up and the VoD

empirical sets than Zipf.

The Figures 3.19, 3.20 and 3.21, 3.22 show Latency and Path Stretch, respectively.

They both demonstrate trends in network performance as subjected to the model repre-

sentatives chosen, using KL fitting, which are Zipf and Zipf-Mandelbrot with a variety

of cache sizes. The key performance indicator is the proximity to the empirical data

latency and path stretch performance lines for each model, which for Zipf-Mandelbrot

is hard to distinguish as it appears plotted extremely close to the empirical dataset as

to be on top of the empirical dataset latency and path stretch performance lines. For

this reason one may assume, as was assumed for the results found in terms of cache-hit

ratio in the previous paragraph, the Zipf-Mandelbrot distribution is a more appropriate

replacement for the Empirical data-sets over Zipf.
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3.4.3.4 PCS Zipf & Zipf-Mandelbrot models vs. Empirical data-sets

The empirical data-sets for VoD and TV catch-up were introduced into the Icarus

simulation environment as well as the theorised models thought to imitate the empirical

data according to the PCS results listed in Table 3.2. The quantity of unique items in

the Icarus simulation was set to be equal to the quantity of unique items found in the

empirical distributions (≈ 11000 & ≈ 2500).

The topology chosen in the simulations was GEANT [66]. The Routing strategies

adopted were “Cache less for more” [48], “Hybrid Symmetrical Hash” [51], “Leave Copy

Down” [49] and “Probabilistic Caching” [51] which are representative of the best cache

routing strategies implemented in Icarus. The average of all routing strategies makes up

the results displayed and presented. The ten cache sizes chosen to test the probability

distributions differences for which the range of which is displayed in Equation 3.9.

Three measurements were obtained from each test with insights into the performed

that can be expected from each of the 2 sets of 3 probability distributions tested. The

measurements are Average Path Stretch, Average Cache Hit-Ratio and Average Latency

which aims to capture the delay experienced when content is traversing the network.

The Average Cache Hit Ratio results regarding the Empirical TV and VoD Datasets,

as well as the PCS deduced, best matching, Zipf and Zipf-Mandelbrot distributions can

be found in Figures 3.23 and 3.24. The figures show, in the grey areas, the cache-miss

hit ratios estimated as per the method suggested in Chapter 3.2.4. Primarily it shows

the estimated cache-hit ratio boundaries that can be expected for the Zipf and Zipf-

Mandelbrot distributions in comparison to the cache-hit ratio that can be expected from

a clairvoyant cache given the empirical probability distribution. The KL values are those

given by subjecting the PCS found best representatives from each model in relation to

the empirical datasets to the KL divergence test as stipulated in Equation 3.4.3.1. The

darker, inner boundary estimating the cache-hit ratio relative to the empirical data

cache-hit ratio if Figures 3.23 and 3.24 belongs to the distribution found to produce

the lowest KL value relative to the empirical dataset which was the Zipf-Mandelbrot

distribution. The lighter, outer boundary estimating the cache-hit ratio relative to the
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Figure 3.23: Icarus: Average Cache Hit
Ratio for the BT TV dataset and the PCS

determined, closely matched, Zipf and
Zipf-Mandelbrot distributions
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Figure 3.24: Icarus: Average Cache Hit
Ratio for the BT VoD dataset and the
PCS determined, closely matched, Zipf

and Zipf-Mandelbrot distributions

TV

30

40

50

60

70

80

0.002 0.008 0.032 0.128 0.512

Cache Size relative to total nr items

M
ea

n 
La

te
nc

y

Distribution
TV Pearson Zipf
TV Pearson Zipf−M
TV System Data

Figure 3.25: Icarus: Average Latency for
the BT TV dataset and the PCS

determined, closely matched, Zipf and
Zipf-Mandelbrot distributions
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Figure 3.26: Icarus: Average Latency for
the BT VoD dataset and the PCS

determined, closely matched, Zipf and
Zipf-Mandelbrot distributions
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Figure 3.27: Icarus: Average Path Stretch
results for the BT TV dataset and the
PCS determined, closely matched, Zipf

and Zipf-Mandelbrot distributions
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Figure 3.28: Icarus: Average Path Stretch
results for the BT VoD dataset and the
PCS determined, closely matched, Zipf

and Zipf-Mandelbrot distributions
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Empirical and Model — Mean Absolute Deviation

VoD TV Catch-up
Cache Size Zipf Zipf-Mandelbrot Zipf Zipf-Mandelbrot

0.001 0.0189 0.0035 0.0353 0.0039

0.002 0.0194 0.0029 0.0392 0.0046

0.004 0.0260 0.0037 0.0423 0.0032

0.008 0.0370 0.0036 0.0447 0.0034

0.016 0.0415 0.0006 0.0467 0.0059

0.032 0.0379 0.0054 0.0438 0.0166

0.064 0.0052 0.0257 0.0092 0.0394

0.128 0.0211 0.0142 0.0238 0.0274

0.256 0.0605 0.0254 0.0442 0.0382

0.512 0.0363 0.0277 0.0663 0.0320

Total Mean 0.0304 0.0113 0.0395 0.0175

Table 3.7: Difference between Cache-Hit Ratios relative to Empirical Results in test
where Zipf and Zipf-Mandelbrot models were selected based on a “goodness-of-fit”

produced in PCS

empirical data cache-hit ratio belongs to the distribution found to produce the higher

KL value relative to the empirical dataset which was the Zipf distribution. From the

boundaries that give the estimated cache-hit ratio, as shown in the Figures illustrating

cache-hit ratio, it is possible to surmise that, though the boundaries are broad, the

cache-hit ratio boundaries for the given results are accurately estimated to be within

the limits’ set.

The difference in cache-hit ratio for each individual model and the empirical data-

set is shown in Table 3.7. The Total Average is not a measurement to draw a final

conclusion from as the cache-hit ratios measured, in relation to the empirical cache-hit

ratio results, overlap on occasion and there are only ten points of measurement, meaning

a single low value may be over represented in the Total average value. The trend visible

in Figures 3.17 and 3.18 where Zipf-Mandelbrot appears to follow a more closely related

cache hit ratio over Zipf, together with a lower than Zipf Total Average cache hit ratio

for Zipf-Mandelbrot in both scenarios, may leave one to conclude Zipf-Mandelbrot to

be more closely associated with the empirical data for both TV catch-up and the VoD

empirical sets than Zipf.

The Figures 3.25, 3.26 and 3.27, 3.28 show Latency and Path Stretch, respectively.
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They both demonstrate trends in network performance as subjected to the model repre-

sentatives chosen, using PCS fitting, which are Zipf and Zipf-Mandelbrot with a variety

of cache sizes. The key performance indicator is the proximity to the empirical data la-

tency and path stretch performance lines for each model. It would appear that, regarding

the lower cache sizes, Zipf-Mandelbrot closely resembles the Cache Hit Ratio observed

by the empirical data-sets. As the cache sizes grow, the Zipf and Zipf-Mandelbrot Dis-

tribution appear to stray from the observed Average Latency and Average Path Stretch

of the empirical datasets, however, the proximity of Zipf-Mandelbrot throughout the

larger cache sizes is still more closely associated to Zipf. For this reason one may as-

sume, as was assumed for the results found in terms of cache-hit ratio in the previous

paragraph, the Zipf-Mandelbrot distribution is a more appropriate replacement for the

Empirical data-sets over Zipf.

3.4.3.5 Conclusion Icarus KL vs. PCS

In Sections 3.4.2.1 and 3.4.2.2 permutations of the models Zipf and Zipf-Mandelbrot

were deduced to be the distribution Φ that shared the greatest “goodness-of-fit” in re-

lation to the empirical video popularity distributionΘ. The aforementioned Zipf and

Zipf-Mandelbrot distributions Φ were subjected to the Icarus ICN cache-enabled net-

work to determine if their behaviour would vary from the behaviour one may experience

when the empirical VoD and TV catch-up distributions are subjected to the Icarus sim-

ulation environment. The key characteristics measured were average latency, average

path stretch and average cache-hit ratio. The figures for the Cache-Hit Ratios for both

the PCS and KL chosen Zipf and Zipf-Mandelbrot distributions Φ are assessed in re-

lation to the empirical request distributions in Tables 3.6 and 3.7 and in Figures 3.23,

3.17 and 3.24, 3.18. The results of Tables 3.6 and 3.7 are repeated in Table 3.8 which

shows a much closer Total Average in the for the Zipf and Zipf-Mandelbrot distributions

produced by the KL fitting method over the PCS fitting method. Finally the Mean Ab-

solute Deviation produced by the Zipf-Mandelbrot tests appears to be lower than the

Zipf Mean Absolute Deviation results for both the KL and PCS deduced representa-
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Mean Absolute Deviation VoD TV Catch-up
Empirical and Models Zipf Zipf-Mandelbrot Zipf Zipf-Mandelbrot

Mean Absolute Deviation KL 0.0304 0.0037 0.0385 0.0056

Mean Absolute Deviation PCS 0.0304 0.0113 0.0395 0.0175

Table 3.8: Total Average Difference between Cache-Hit Ratios relative to Empirical
Results in test where Zipf and Zipf-Mandelbrot models were selected based on a

11goodness-of-fit” produced in PCS and KL matching processes

tives for each model, concluding Zipf-Mandelbrot to be a more suitable substitute for

the empirical dataset Θ.

3.4.4 Conclusion

In this Chapter we set out to identify whether the Zipf model or Zipf-Mandelbrot model

shares a greater likeness to VoD observed request distributions. Two empirical VoD

request distributions were supplied by BT to aid in identifying the most appropriate

model. The methods used for measuring were Pearson Chi-Squared and KullBack-

Leibler which each provided a best representative distribution of each model tested.

Each representative was compared using the “goodness-of-fit” measurement produced

by each tests. Each method of testing used deduced that Zipf-Mandelbrot is indeed a

better representative than Zipf in relations to the VoD and TV catch-up video request

distributions.

Additionally to the KL and PCS methods of testing and comparing, an ICN simula-

tion environment with cache enabled nodes was used to measure the network behaviour

of the empirical data in relation to the KL and PCS deduced best representative dis-

tributions from each model. The outcome from these tests highlights the measured

characteristics (average latency, average path stretch and average cache-hit ratio) from

the Zipf-Mandelbrot distributions share a greater likeness to the empirical VoD request

distributions’ measured characteristics when compared to the Zipf distributions. Con-

cluding, Zipf-Mandelbrot from more closely modelled, the empirical data in terms of

expected network behaviour in an ICN cache enabled network.



4
VoD Request Simulation Environment

A pseudo-realistic video request generator would provide valuable insight into video

delivery systems. The target of identifying the spectrum of parameters required to sim-

ulate such an environment applying pseudo-realistic parameters that would accurately

estimate the request behaviour for a specific demographic is challenging. The parame-

ters can be identified in video delivery systems currently already deployed or through

surveys of a specific area / groups identified as the target audience. The parameters

would include such things as: the quantity of videos at any time; lifetime of videos on

your system; decay of video popularity of your system; distribution of video popularity;

daily / weekly distribution of request relative to time of day and the number of total

active users of your system. These are just some of the variables that go into generating

realistic user requests. This Chapter sets out to design and implement such a VoD

request generator accounting for all the above parameters.

65
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4.1 Introduction & Motivation

The ability to simulate video requests with reasonable accuracy would provide an asset

to the Video on Demand market that has become the majority of internet traffic in

present days [1,6]. A video request simulator would equip video content providers with

a tool to predict, and thus resolve, networking and application platform issues before

they arise when the cause of the issues stem from the design of the system in question.

In Chapter 5 a cache eviction algorithm is introduced for which a request generator,

such as the one in this Chapter, would provide valuable insight into the behaviour of

such an algorithm.

Users of Video on Demand systems appear not to exemplify a drastic range of

behaviours, though still complicated as many environmental variables are at play at

any one moment. The increase of popularity per item when introduced, the decrease

of popularity of items once their maximum has been reached, the cumulative request

total per item, the request quantities throughout any given time are all factors that can

be broken down to be included in a single simulator which is what is attempted in this

chapter.

One limitation of the pursuit to produce a simulator that encompasses all the vari-

ables mentioned is the lack of quantifiable research data that can be used to produce

such a simulator. A number of research papers have attempted to find and quantify

the parameters required, however, they appear to forget to consider the problem in its

entirety, which limits the possibility of simulating VoD data accurately. An example of

this is the decay of video objects which has been researched [16,36,37], however, without

also considering growth of popularity video objects, this research is incomplete.

Popularity distributions of VoD systems are also important to consider and are

found in many publications [9,10,14,17,18,22,33,38,70,71]. They provide a brief glance

(typically ranging from a week to a number of weeks) into observations of the popularity

of all items in a VoD system (often found to be approximately Zipf, however debated

to be Zipf-Mandelbrot in Chapter 3).The primary limitations of these observations are



Chapter 4. VoD Request Simulation Environment 67

that new items are introduced in this period and items entered prior to the start of

the observation are only observed in their decayed state. The popularity distribution

not measured is the total request distribution for all items at a single moment in time

from their conception to removal (“birth” and “death”). Such a probability distribution

would provide one with the request distribution of all items at a single moment in time.

The items observed may be in the system for various lengths of time, however, it would

give a more complete picture of the popularity distribution one can expect.

4.2 Breakdown of parameters

The parameters discussed in this chapter are those that will aid in the creation of the

simulator of Video on Demand traffic for an entire system. The number of parameters

considered are not all the parameters found in Video on Demand systems. This project

would be of an unfathomable scope as network limitation, application front-end restric-

tions [17], data storage, client limitations, and many more would all start becoming

factors in simulating.

4.2.1 Parameters included

4.2.1.1 Request Distribution

The request distribution of VoD systems represent the popularity of items present in

a system, usually over a set period of time. Popularity distributions for a variety of

systems has been released and published among many journals and research papers

in the context of VoD [7–12, 12–18, 22, 33] (discussed further in Chapter 2.1.2.1). The

request distribution referenced would not suffice for the simulation environment devel-

oped as the method of observation is limited to a period of time during which items

were introduced and removed. The popularity measurement required for the simulator

would require knowledge of all items’ total request quantities, from introduction of said

items, until the items’ expiration. A popularity such as this would provide a more ac-

curately description of the items without the effects of decay creating a disruption to
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the observed data.

An assumption can be made that the total requests per video PDF acquired in

a set window of sufficient size is approximately equal to a total requests per video

distribution. If this is assumed then the probability distributions in Chapter 2.1.2.1

would be sufficient for the initial introductory probability distribution of items in the

system.

A distribution generator in the form of a PDF generator accounting for variable

length is included to ensure flexibility for all video systems. This is done in the form of

a Zipf-Mandelbrot PDF generator (which with a ν variable of 0) also can generate Zipf-

like distributions. The Zipf-Mandelbrot parameters used are those listed in Chapter 3.

Alternatively a pure Zipf Distribution may be used for the purpose of demonstration of

the simulator developed.

4.2.1.2 Decay Rate

The objective of the simulator is to, on a large scale, simulate all video items throughout

a finite amount of time. This requires that items experience a changing popularity on

the basis of time.

The subject of decay is discussed by Gummadi et al. [16] in the context of a peer-to-

peer system called “Kazaa” in a rather poor manner as items larger than 100 MB are

declared to experience a larger amount of request for items older than one month by 72%

and items smaller than 10 MB are declared to experience a larger amount of requests

towards items older than one month but by only 52% with the omission of medium sized

items. The decay here is for multimedia items, not exclusively VoD, which causes some

doubt as to how much this data resembles exclusively VoD data. It may well be possible

that a majority of items observed are not video, dictating the decay-rate experienced

by items in the system.

The subject of decay is also discussed by Li et al. [36] and Chen at al. [38] appear
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to agree that within their observed datasets that the initial day of observations see the

videos decrease in popularity by 20%, and again decrease by 20% 9 days later. This

observation is based on video request data that is explicitly not UGC on both P2P

based systems, as well as CDN run systems, such as Hulu and PPLive. Li et al. [36]

appear to consider items once they are stored on the cloud device and then observed the

decreasing popularity. This comes after a video is selected to be popular enough to be

submitted to the cloud, which may see a large part of the item’s lifetime be omitted (an

hour minimum due to design), as the time before the item became popular it was not

yet considered for measurement of popularity, especially considering the initial surge in

popularity.

Chen et al. [39] follow the lifetime of video items in a system which includes the

decay. The observation is made in a VoD service run by Tencent, which is one of the

largest VoD services in China. It provides video to an active user base of over 50 million

people. For the purpose of measuring video decay, videos are separated into categories,

easily distinguishable by key characteristics (Movies, Music Videos, TV content, News

and Sports), for which each category has a total decay rate measured over the duration

of 7 days. The observations made suggest that most categories appear to see a great

quantity of requests on the day of release, as well as the day following. After this period

all categories see a drastic decrease in popularity, with the exception of the “Movies”

category which appears to see a peak in interest on the third day the item is in the

system. It is unclear if items on day 0 (the initial day of release) were in the system

for the entirety of it, or just the later section of the day. This additional bit of missing

information would point out if the items, almost immediately after release, start seeing

a decreasing request rate or if this happens, as suggested by Chen et al., on the second

day in the system. The conclusive statement by Chen et al. [39] is that video items

in their infancy receive a great amount of promotion, mainly on the front-page of the

VoD application, which may be the primary reason for the popularity received by these

newly introduced video items.
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VoD System Nr. of Observed Entries τ α β

YouTube (Japan & USA) ≤ 160 ≤ 20 ≈ 0 0.5

UitZending Gemist ≤ 42 ≥ 10 ≈ 106 0.5

IMDB ≤ 18 ≥ 10 ≈ 106 0.5

Table 4.1: Results gathered by Avramova et al. The results are approximated from
the graphs in the publication which can be factored in to the simulator

Avramova et al. [37] provide a close look at the decay of video popularity of primarily

video items which have already achieved a great deal of popularity by their submission to

the top 50, list on their respective platforms, such as YouTube (US and JP platforms),

IMDB rental records, and “Uitzending Gemist(.nl)” which is a Dutch TV catch-up

service. Once submitted to the top 50 the items were observed for a period of a minimum

of 30 days. The observations concluded that it is primarily the UGC that sees a thick

tail in the observed decay curve which can be described as a power-law distribution. All

other traces, described as TV catch-up services, appear to follow a more drastic decrease

over time described as following exponential decay. The formula used by Avramova et

al. [37] to plot the decay in the form of a CDF experienced by video items in all systems

is as follows:

Ik(t) = ρk

1−

1 +

(
β

−1
αk − 1

)
(t−Θk)

τk


−αk

For which τ describes the time it takes for a fraction 1 − β of the total view count

to accumulate. ∆t describes the time at which the item is observed and Θ describes

the time of entry in the system. α is the important variable to consider as it is the

variables that is form-determining in the function. If α is large the function produces

an exponential curve which would see the item gain the majority of its requests in the

beginning of its existence. If α is small the function produces a power-law curve which

would see the item remain relevant for an extended period of time, with a small amount

of popularity remaining throughout the item’s existence.

For the tests performed the variables most likely to simulate each category are as

in Table 4.1 [37]. The variables chosen for the purpose of testing this simulator are
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Figure 4.1: Single YouTube Video demonstrating decay over the duration of a month
observed on 10/04/2017 with a total view count of 2,511,009. The observation and

screen capture was made by Hildebrand Weisenborn, the author of this Thesis

α : 1, τ : 40andβ : 0.5.

The video popularity evolution for a UGC system such as content on YouTube

[72] can be accessed publicly. This provides us with insight into the daily evolving

popularity of videos published on the system. The YouTube platform can be linked to

and referenced from foreign websites as well as local users to YouTube who can subscribe

to channels they personally have a preference for. The videos from channels subscribed

to by the user are presented to the user when the user accesses the YouTube website.

Informing users of videos they will likely be interested in viewing soon after the video is

made public is likely the cause for most views being at the start of the videos existence

as demonstrated by a single sample case is Figure 4.1 which are the statistics for a video

that has been publicly available for over a month. The video in Figure 4.1 is posted on

the YouTube Channel (“Kurzgesagt In a Nutshell”) to which a large amount of users

are subscribed (On 10/04/2017: 3,967,384 subscribers).
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4.2.1.3 Lifetime

The lifetime of a video signifies the time video objects spend in a system available for

request. The lifetime of videos in a system is dictated by the design of the VoD system

for which frequently UGC and non-UGC hold great disparity.

It is observed in UGC systems such as YouTube [72] that videos have a date of

introduction and not a date of removal. Removal of video objects may still happen if a

user decides to remove a video, however this action is not systematically exercised by

individuals on the YouTube platform.

Non-UGC VoD systems may vastly range in the length of time videos are present

in the system. In the case of the data in this Thesis that was provided by BT, the TV

catch-up data had an average lifetime of two weeks, which was drastically different from

the VoD data provided which saw videos remain in the system for a period far exceeding

the TV catch-up data by potentially months. In the cases of a number of British public

broadcast channels which make their content available online or provide all content of

other providers online; BBC Iplayer [73], ITV [74], Channel 4 [75] and Channel 5 [76],

they provide videos that are made available for streaming for the duration of 30 days

or fewer. Sky Go Extra [77] provides a VoD service with content that is available

for 30 days, however they also provide a service for Movies which are available for an

undefined amount of time. Channel 5 [76] provides content commissioned by Channel

5 to be available for the period of a year or more, thus highlighting the variability of

VoD systems.

For the purpose of the simulations, we assume most VoD services which provide TV

catch-up services (with specific interest in the UK) appear to make content available

for the period of 30 days. For content that constitutes primarily of movies, it appears

there is no defined period of time after which content is removed.

4.2.2 Parameters not considered

4.2.2.0.1 Item Popularity Growth is not included as the initial growth of items

is a parameter for which currently a very limited amount of data is available in the
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research community in the context of non-UGC systems. The assumption that new

video items have the greatest quantity of requests on release, and soon after, is thus

applied in this simulator. This restriction may not stray far from a simulation where

growth is considered if the increments of time in the simulator are of large enough

size [39] (e.g. the peak of the item popularity may be achieved in the first 6 hours of

existence, thus if a single sample period is equal or greater than 6 hours, the simulation

may be approximately equivalent as with the item growth included).

4.2.2.0.2 Individual User Requests is not included. Quantifying the number

of users, accompanied by the quantity of requests per user, is not considered for this

simulation. It simply considers the total sum of all requests in a single system without

the consideration for where they may be destined. The justification for this is the

granularity required to objectively quantify the localisation for each group of users and

that the localisation bias introduced for each localised group would be hard to implement

and would complicate the simulator significantly. Instead the assumption is made that,

as long as each group is large enough in size, each user group is homogeneous, expelling

the need for localisation.

4.3 Simulator Breakdown

The simulator is designed to imitate the requests received by a VoD system as given by

the literature review above. The specific individual user behaviour and locations, as well

as the network design of the CDN delivering video data, is not considered. Focussing

purely on requests received by a large group of users provides with the means to apply

a topology and simulated environment of video data later if this is available. Scalability

can be tested with consideration of evolution of the video delivery system over time,

as well as an increasing user basis and therefore an increasing request quantity. The

structure used to simulate the popularity rise and fall of individual video objects, as well

as the introduction and removal, in the context of a specific system can be broken down

into two processes; Storyboard Generation and Request Generation, described below.
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The initial process, “Storyboard Generation,” generates the script that is provided

by the data the user describing each video object. The script provides us with a chrono-

logical set of video objects at each ∆t and their respective request probability at the

aforementioned ∆t throughout T . The script is comprised of the probabilities of request

to all items in the system at ∆t in T as well as the time the objects remain requested

in the system described by all ∆t the object remains mentioned in the script.

The second process, “Request Generation,” takes as parameters the script created by

the initial process “Storyboard Generator” and converts it into a linear set of requests

in the order of requests to the VoD system. the script generated by the “Storyboard

Generator” as ∆t specified as the step base time identifier as to when decay happens.

Each ∆t may be specified as to mean a single day or a single hour, whichever the user

requires. The quantity of requests for each ∆t may be chosen by the user to reflect the

simulated system specifics. The quantity of requests to each ∆t may vary, as would be

expected if ∆t is set to simulate an hourly basis.

More details for each process will be described below in the chapters titled “Story-

board Generation” and “Request Generation”.

4.3.1 Storyboard Generation

The Storyboard describes the script that is generated from the data the user provided.

The script provides us with a chronologically ordered list of video objects and their

respective request probability.

The parameters required to generate the script are in the format demonstrated in

Table 4.2. Table 4.2 is comprised of the total number of video objects in the VoD system

at any single moment in time. Each video object has a number of parameters associated

with it which are decay rate in the form of a function, the total time each video object

will be in the system for and the total request probability of each video object. For
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Item ID Life-Time Decay Rate Total Probability

1 24 Function X 0.005

2 168 Function Y 0.002

3 72 Function Z 0.04

Table 4.2: User supplied data for generating sudo-realistic requests

the purpose of condensing the number of items, it is possible to consider that once a

video object is removed, no more requests are made to that object, thus shortening the

Life-Time attributed to that video object.

Once the initial data has been entered, as stipulated in Table 4.2, it is processed.

The first part of the script generated will function as a “warm-up period”. The purpose

of the “warm-up period” is to gradually introduce items as to ensure not all items

in the system are made available at the same interval. The “warm-up period” is a

part of the script that can be viewed as dismissible in the tests as during this period

the system will be dominated by the start up effects. The length of ∆t required for the

“warm-up period” will be equal to the “Life-Time” of the video object with the greatest

“Life-Time”.

The script holds the probability distribution of each video object at each ∆t in the

system. The size of ∆T (total time) in the system is not influential in the quantity of

video objects in the system at each individual ∆t as each time an object is removed, a

new video object with the same characteristics is reintroduced. The decay of probability

of request is set to be the original request probability of the removed item. The new

item could be considered a clone of the removed item with a new ID as to mark it as a

new item with the same characteristics as the removed item.

Table 4.3 is a short example script which includes the fields as produced by the

Storyboard Generation program. The example shows two items introduced with the

third still waiting for introduction. This period would be considered the “warm-up

period” and is comprised of the exact same structure as the period after the “warm-up

period”. One is required to remember the value ∆t which signified the length of the

“warm-up period” as only when ∆t is greater than “System Time” is the “warm-up

period” over and can observations begin in terms of the tests.
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System time in Total Decay Total Current
Time ID System time Rate Probability Probability

1 1 1 24 Function X 0.005 0.003

1 2 1 168 Function Y 0.002 0.015

2 1 2 24 Function X 0.005 0.001

2 2 2 168 Function Y 0.002 0.003

Table 4.3: Storyboard for generating sudo-realistic requests

4.3.1.1 Reintroduction of items

Once an item expires it is removed. Once an item is removed it is considered to have

decayed to the extent that it will no longer generate any request. The assumption that

items may not receive any requests in the future may not reflect what we may expect in a

real scenario, however keeping items with infinitely small probabilities of requests would

be become an increasing constraint when generating request probabilities for many ∆t.

Additionally, video providers may limit the time during which an item is available.

Once an item is removed - a clone is created of the removed object that holds the same

properties (Decay Rate, Total Probability, Life-Time) but with a different ID. The clone

of the removed item is introduced back into the system as a new item immediately after

the removal of the original item with the same properties; creating infinite removal and

reintroduction of all video objects as their life-time is reached in the system. In Figure

4.2 the total probability of items is shown when they are introduced into the system. A

constant “Life-Time” value is chosen across all items in the VoD system to demonstrate a

reoccurring item pattern. Figure 4.2 demonstrates the “warm-up period” during which

life-time in the figure is uniform. Items may expire at ∆t increases before all other

items are introduced, creating an irregular introduction pattern during the “warm-up

period”. The length described as “Number ∆t before reintroduction” signifies the ∆t

quantity of “Life-Time” of items in the system. The items highlighted by the coloured

line signify all items which will be in different stages of decay at a single ∆t. It should

be noted that a different seed is used each time the simulation is run, thus creating a

unique warm-up period in each iteration. The repetition seen in Figure 4.2 is only visible

due to the uniform “Life-Time” specified across all items in the system as non-uniform
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Figure 4.2: Total Probability of items when they are introduced into the system over
time

“Life-Time” would see some objects go through a number of removal and reintroduction

cycles while other go through fewer removal and reintroduction cycles.

4.3.1.2 Request Probabilities at Single ∆t

Figure 4.3 illustrates the request probability of each item in the system at any ∆t (after

the warm-up period). The index of each item is listed on the horizontal axis for which

the Total Request Probability and the Current Request Probability, which has the decay

function developed by Avramova et al. [37] applied, is plotted. The horizontal axes

have been ordered to reflect the Current Request Probability. The Avramova et al. [37]

developed function has been applied to reflect items in various stages of their total life-

span meaning the Current Request Probability may reflect items that have recently been

introduced (high Current Request Probability) and those who have been in the system

for a longer period of time (low Current Request Probability).

Figure 4.4 illustrates the request probability of each item in the system at any ∆t

(after the warm-up period). The index of each item is listed on the horizontal axes for

which the Total Request Probability and the Current Request Probability, which has the

decay function developed by Avramova et al. [37] applied, is plotted. The horizontal

axes have been ordered to reflect the Current Request Probability and the Total Request

Probability, irrespective of each other, meaning that the indexes for Current and Total
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Figure 4.3: Probability of items at single ∆t (Current & Total) — The Index refers to
the same items in terms on Current and Total probability.
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Figure 4.4: Probability of items at single ∆t (Current & Total) — The index for the
Current & Total probabilities are not referring to the same items.

Request Probabilities do not reflect the same items. In this figure, the separation

between the Current Request Probability and the Total Request Probability can be seen,

which brings to attention an interesting difference in the shape of each distribution and

illustrates the effect decay may have on a system to which items are introduced on an

incremental basis.
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4.4 Request Generation

The Request Generation process takes as input the script generated by the Storyboard

Generation process. The Request generation process then creates from the script an

ordered list which holds the request IDs in the order they would be requested from the

VoD system/CDN. ∆t for each item can be included.

The Request Generation process iterates through the storyboard, selecting all entries

for each “system time” and generating requests based popularity distributions for each

∆t that is reflected by the “Current Probability” values. The request based popularity

distribution for all ∆t should be normalised to 1. Once normalised the probability

distribution can be multiplied by the total request quantity of each ∆t which can be

dictated by the user as to simulate a day-by-day request distribution. All example

requests shown in this chapter use a uniform request quantity for all ∆t.

The probability distributions displayed in Figure 4.5 and 4.6 illustrate the request

frequency of all items sorted by observed frequency for specific lengths of ∆t not in-

cluding the warm-up period requests. The example simulation displayed in Figures 4.5

and 4.6 have the following properties:

1. 1000 items in the System at any single ∆t.

2. Items have a decay function with the parameters specified in Chapter 4.2.1.3 (An

implementation of the function introduced by Avramova et al. [37]).

3. Items have a lifetime of 30 days.

4. A single ∆t receives 10000 requests.

5. Warm-up Period is equal to 30∆t.

6. Main Request Period is equal to 60∆t.

7. The Total Request Probability of all items is equal to Zipf(α = 1)

The Request Probabilities in Figure 4.5 illustrate the request probability distribution

observed when time observed is large, in this case 15∆t. The Total Request Probability
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Figure 4.5: Probability of items at intervals of 15 ∆t. Observations were made 4 times
accounting for each Period as shown in the legend.

of all items is set to Zipf(α = 1), however the observed request distribution appears to

follow a Zipf-Mandelbrot distribution as is suggested to by the video request probability

in Chapter 3. For this reason a test was performed to identify if the distributions

observed in Figure 4.5 are Zipf or Zipf-Mandelbrot. This was achieved by generating

a large number of varying Zipf-Mandelbrot distributions which were then supplied,

accompanied by the observed distributions in Figure 4.5 to a KL test. The test was

performed for every period that is specified in the figure. The lowest KL results (Best

fitting) are stored in Table 4.4 showing that indeed a Zipf-Mandelbrot distribution was

found, however very closely resembling Zipf. This is so, due to the low value of ν. If ν is

equal to 0 a Zipf distribution is concluded. Another set of tests were preformed on the

popularity distributions produced when the period over which popularity distributions

were observed is equal to 6∆t. The results are shown in Table 4.5 and illustrated in

Figure 4.6. All distributions are Zipf as ν = 0 in all cases, thus the assumption can be

made that, as time progresses and items are introduced and removed with decay, the

popularity distribution of all items observed appear increasingly more Zipf-Mandelbrot

like due to the similarity in items removed and introduced.
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Period KL value Alpha ν

1 0.0188 1.05 5

2 0.0286 1.25 5

3 0.0345 1 0

4 0.0287 1.25 5

Table 4.4: Observations for every 15 ∆t matched to a Zipf / Zipf-Mandelbrot
Distribution using Kullback-Leibler divergence as the method of matching
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Figure 4.6: Probability of items at intervals of 6 ∆t. Observations were made 10 times
accounting for each Period as shown in the legend.

Period KL value Alpha ν

1 0.0417 1.05 0

2 0.0559 1.1 0

3 0.0410 1 0

4 0.0464 1 0

5 0.0274 1.1 0

6 0.0432 1.05 0

7 0.0524 1.1 0

8 0.0402 1 0

9 0.0473 1 0

10 0.0270 1.1 0

Table 4.5: Observations for every 6 ∆t matched to a Zipf / Zipf-Mandelbrot
Distribution using Kullback-Leibler divergence as the method of matching

4.5 Conclusion

This Thesis chapter set out to create an ordered list of request for video objects made to

a CDN that reflect the changing probabilities one may expect to find in a VoD system.
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The key characteristics that were set out to include for each unique video object were;

Probability of Request, Decay of Popularity and Life-Time. The process suggested to

create a list of requests requires the user to introduce the properties of items in the

system at a single point of observation. Once the properties of each item are identified,

the requests can be generated by a two step process. The steps are documented as being

the “StoryBoard Generator” (Chapter 4.3.1) and the “Request Generator” (Chapter

4.4).

The list of requests generated by the request generator here may be of use to a number

of ranging application requiring a pseudo-realistic request order for items. One such

example may be cache eviction policy effectiveness in a VoD setting such as for the

algorithms proposed in Chapter 5. To conclude, a successful pseudo-realistic request

generator for a VoD system was designed and implemented for the purposes specified.



5
Bubble Cache Eviction Algorithm

5.1 Abstract

In this chapter a novel algorithm is introduced. The algorithm is called the Bubble

cache eviction algorithm, which is in reference to the Bubble sort algorithm, [21] which

it resembles in some of its behaviours. The introduction of Bubble, together with the

introductions of variations of Bubble, is intended to provide an alternative algorithm

to the known cache eviction algorithm body of work such as LRU, FIFO, RAND and

LFU.

83



Chapter 5. Bubble Cache Eviction Algorithm 84

5.2 Introduction

Cache eviction algorithms are used in combination with computer software or hard-

ware storage to temporarily store for the benefits and availability of the environment in

which they are implemented. The most commonly used cache eviction algorithms are

simple, low operation cost algorithms such as LRU, FIFO and RAND with operational

costs of O(1) per “GET”, “SET” or “EVICT” operation in a HashMap implementa-

tion. LFU is another cache eviction algorithm which is a frequency based algorithm

with an operation cost of O(log (n)) for “GET”, “SET’ and “EVICT” operations in

a LinkedList implementation. In this Chapter, an alternative novel algorithm named

“Bubble” is introduced with operational costs similar to LRU, FIFO and RAND. The

functional strengths and weaknesses of all the algorithms mentioned will be explored in

the following sections. A number of tests are constructed, utilising the Markov Chain

analysis as well as a number of simulation methods are used, to enable comparison of

the algorithms under a variety of circumstances that each provide insight into a realistic

system such as a VoD system or other request system with similar request behaviour.

5.3 Known Algorithms

5.3.1 LRU

Least Recently Used [78–82] LRU is an eviction algorithm that works on the premise

that the most recently requested items should be upheld as the most probable items to

be requested again. This means that the item recently requested is pushed to the top of

the cache, thus pushing all other items in the cache down one space. If the number of

items in the cache exceeds the cache size the item at the bottom of the cache is evicted.

The largest operational cost for LRU is the method by which the search is performed

to identify if an item exists in the cache. If a perfect HashMap is assumed (no conflicting

entries) then it is safe to presume an operational cost of O(1) to perform the search

for existing items. The operation of adding / removing is also O(1) thus assuming that
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LRU has an overall operational cost of O(1).

e.g. LRU, we have an index of items I = {i1 . . . iM} which are unordered, a subset

of the items are in a cache index which is an ordered set which at time t is given by

Ct = 〈cti . . . ctN 〉 where at any one point in time a subset of the items I is associated

with the cache index e.g. at time t1, it could be that ct11 = i5, c
t1
2 = i8, . . .. Then at time

t (where here, for simplicity’s sake, time discrete integer points will be made) generally,

the algorithm works such that if item ik is requested and newly added to the cache then

ct1 = ik, c
t
2 = ct−1

1 , ct3 = ct−1
2 . . . ctj = ct−1

j−1 . . . c
t
N = ct−1

N−1; finally item ct−1
N is evicted from

the cache. Item ik is fetched from the source (or another cache). In the case where

the requested item ik is in the cache at ctx then ct1 = ik, c
t
2 = ct−1

1 , ct3 = ct−1
2 . . . ctj =

ct−1
j−1 . . . c

t
x = ct−1

x−1 and all items cx . . . cN remain then, unchanged.

5.3.1.1 Strengths

LRU benefits from the possibility of rapid eviction of items if those items no longer

receive requests (cache hits) as the minimum number of requests required to reject an

item from the top most position in the cache is equal to that of the cache size. LRU

holds each item that receives a request to be the most important item at that time.

This means that newly introduced items that will indeed generate a large number of

requests in the future are likely to be in the cache and remain in the cache from the

moment of their first request.

5.3.1.2 Weaknesses

LRU holds newly requested items to be the most important at that specific time. This

entails that items which may experience a request only once and then see no further

requests are upheld in the cache for an equal number of requests as is the size of the

cache. For this duration, the space is arguably wasted and would greatly benefit from

occupation from an item that would experience a larger amount of requests.
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5.3.2 FIFO

First-in-First-out [78,79] (FIFO) is an eviction algorithm that functions like LRU with

the exception that an item that is in the cache and receives a request (cache hit) is

not moved to the top of the cache but instead remains in its current position, not

changing the state of the cache and the items currently held within it. Items can only

be submitted to the top of the cache, considering them most important, when the item

receiving the request is not yet submitted to the cache. This will remove the item at

the bottom of the cache if the cache is not yet full.

The operational cost of FIFO may be largely affected by the search for items already

in the cache which is the same as mentioned for LRU. This cost may be assumed to be

O(1) in a Perfect HashMap implementation. The operation of inserting and deleting is

exactly O(1) due to the ordered, fixed length nature of FIFO.

5.3.2.1 Strengths

The Strengths of FIFO are the same as LRU with a slightly slower rate of eviction due

to the restricted movement of items held within the cache.

5.3.2.2 Weaknesses

FIFO has a more static pool of items with the elimination of movement of items within

the cache. Frequently requested items in the cache will not be moved to the top of the

cache when requested in succession and will be evicted once sufficient other items have

received requests. This creates an environment where items, which in LRU would never

be removed from the cache, would in FIFO see the occasional drop from the cache due

to the new entries from outside the cache replacing the top most item and flushing the

rest of the cache out.

5.3.3 LFU

Least Frequently Used [78–83] (LFU) is a frequency based algorithm that records the

frequency of item requests and of items held in the cache. The order of those items
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is according to the observed items request count, thus keeping the most frequently

requested items at the higher end of the cache, thus assuming they are the most popular.

The less frequently requested items are held in the bottom of the cache and thus, are the

items that will be evicted first in case a new item receives requests. The implementation

of LFU considered for the simulations has all items be reduced equally and ensures that

the lowest possible item is always low enough in request count to be replaced by items

which see new requests and are not yet submitted to the cache.

The operational costs of LFU is increased over LRU and FIFO as the a LFU cache

requires ordering based on the quantity of requests received per item. The operation of

“GET”, “SET’ and “EVICT” are of operational costs of O(log n) [84].

5.3.3.1 Strengths

LFU benefits from the memory of previous requests. In the case of popularity distribu-

tions such as Zipf, the popular items see a much greater amount of requests in contrast

to less popular item. This extreme skew and difference in request rate between items

benefits LFU greatly, especially so when the items are static and thus not subject to

change.

5.3.3.2 Weaknesses

LFU’s weakness is in its inability to remove items quickly when they no longer experi-

ence requests when previously they did. This weakness may result in items staying in

the cache for extended periods of time, relative to the amount of requests previously

experienced. Examples when LFU may not perform include when the pool of items in

the system changes frequently and when floods of requests are experienced for a single

item in short succession and then it is no longer requested (e.g. Flash Crowds). For

variations of LFU such as Least Frequently Used with Dynamic Aging Least Frequently

Used with Dynamic Aging (LFUDA), the issue of over retention of popular items is

reduced some, but still may fall pray to flash crowds.
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5.4 Bubble Eviction Algorithm

5.4.1 Motivation

LFU has a number of known weaknesses due to the fact that the cache content is kept

on a request count basis. Once an item has accumulated a large number of requests,

the item is less likely to be dropped by the system. This is a clear issue as items may

experience only a short period of popularity before dropping in popularity rapidly as is

often experienced in video data, called flash crowds [14, 38, 85]. Another weakness can

appear in the form of a Distributed Denial of Service (DDoS) attack which could cause

an unusual large request count for videos that are not popular with users of the system,

which results in videos remaining in the system cache potentially for an extended period

of time even after the DDoS attack as ended (in the case of LFU).

LRU does indeed cope better with flash crowds and DDoS attacks due to the fact it

does no retain items for an extended period of time if items do not receive requests

after an initial rush. The weakness that can be observed in LRU is the retention of

videos which may only have received a single request as it will take a minimum of N

requests to expel the video from the cache where N is equal to the size of the cache.

A variation of the slowloris (Low-bandwidth) attack [86] may provide a method for

polluting a cache with videos not popular with users of the system. LRU considers

the most frequently requested item to the most “important” item as it will required a

minimum of N requests, where N is equal to the size of the cache, to remove the item

from the cache. If unpopular items are inserted into the cache frequently enough, a

large portion of the cache with largely be occupied by items rarely requested.

5.4.2 Solution

The newly suggested, simplified algorithm, Bubble, can overcome the weak performance

experienced by LRU and LFU without increasing the operation costs. The effectiveness

of the algorithm stems from the fact that items, when added to the cache, behave in a

stepwise manner which promotes and demotes them in order of popularity. The main
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difference between LFU and this new algorithm is that the significance of counting how

often items are requested is no longer upheld. Instead the algorithm invests importance

in the present popularity of data items to either promote or demote items. This method

of caching is beneficial in quick recovery from cache poisoning and rotation of items

when individual items experience a rapid decreases and increases (e.g. flood crowds) in

popularity when compared to LFU. The items in the cache will change more frequently

and will more accurately reflect the present popularity of items. The algorithm discards

items swiftly if they experience a sudden decrease in popularity (minimum of N requests

where N is equal to the size of the cache).

Figure 5.1: Bubble & Bubble Variation Algorithms Diagrams

The Bubble caching algorithm works on a stepwise basis as data items enter the list

from the bottom, with each individual request pushing the item towards the top, one

space per request, effectively swapping places with the item above the requested item

in the list. An example sequence is illustrated in Table 5.1 where we can see a time-

line, from left to right, of items introduced into a cache of 3 total spaces. The swapping

mechanism can be seen when item 4 experiences a second request in the 6th total request

- and again in the 7th total request. The 8th total request sees the introduction of new

item 5 which swaps with the item at bottom of the cache, causing the this item to be

removed and replaced by item 5, the 5th total request sees item 1 experience a request

whilst already at the top of the cache - this will cause no change in the cache.

An example implementation of a caching node with the Bubble caching algorithm
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Order of Requested items 1 2 3 4 1 4 4 5 6 6 7 1 2

Cache Content
1 1 1 1 1 1 4 4 4 4 4 4 4

2 2 2 2 4 1 1 1 6 6 7 7
3 4 4 2 2 5 6 1 7 1 2

Table 5.1: Bubble Algorithm Example Sequence

Figure 5.2: Bubble Algorithm Flow Chart

enabled can be found in Figure 5.2.

5.5 Variations of Bubble

Bubble is an algorithm that can be combined with other algorithms. The function of

such a cache would best be described as two logically separated caches with one point

of insertion with rules governing when items are to be moved between caches.

5.5.1 Bubble-Insert

The Bubble algorithm works by inserting new objects into the bottom of the cache.

This means that, for an item to remain in the cache for an extended period of time,

it requires multiple requests in a relatively brief time frame. This creates a problem

when the skew of item popularities is not steep. The items that would be present in a
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Figure 5.3: Bubble-Insert Algorithm Flow Chart

clairvoyant cache are not submitted into the Bubble cache where they may experience

a greater request rate than the current objects inhabiting the cache.

Implementing Bubble with an insertion point in the cache can avoid such issues. The

insertion point will function as the new place new items are loaded into the cache, which

will cause items below the insertion point to shift down, dropping an item if the cache

is currently full. The method of moving down items when a new item is submitted will

closely resemble LRU, however it will not be LRU as items below the insertion point will

only move up a single space if requested. A flowchart demonstrating how Bubble-Insert

functions is shown in Figure 5.3.

The location of insertion can vary and it creates an opportunity to optimise Bubble-

Insert. The optimal place for insertion can depend the behavioural characteristics of

the data submitted to the cache namely; popularity distribution, item decay rates, item

introduction rates.

5.5.2 Bubble-LRU

The Bubble algorithm has a shortcoming in that items that do not receive concurrent

requests are not submitted to the cache to be retained for future requests. This remains
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true in situations where the quantity of requests for items in the cache is less of those

outside the cache. This inherent short-coming prompted research into an improved im-

plementation of Bubble. The Bubble algorithm has the ability of being combined with

the LRU cache eviction algorithm which may prove to alleviate the issue of retention of

less popular items.

As is true for Bubble-Insert, this solution creates a method of storing and retaining

items ensuring a greater turnover of items, expelling items that are thought to provide

fewer cache hits than the newly introduced items.

Bubble-LRU separates the cache into two parts that function using different rules.

The top most part is the Bubble section which will aim to retain the most popular items

in the system of implementation. The bottom section of the cache will function using

LRU aiming to hold less popular items, expelling items quickly, should they only receive

single requests. Requested items not already in the cache will be inserted into the top

of the LRU (referred to as the insertion point P ) section of the cache, moving down

items and discarding items that spill over the total capacity of the cache. Items are

introduced into the Bubble section of the cache if a cache-hit is registered for the item

at the top of the LRU cache at the moment of cache-hit. The item that was previously

the lowest item in the Bubble cache section, moves into the top of the LRU section of

the cache. If an item in the LRU section of the cache is requested it will be moved to

the top of the LRU section of the cache, moving all other items down to fill the newly

opened space where the item was before receiving a request.

This is demonstrated in the flow chart in figure 5.4.

The Bubble-LRU cache suggests a small improvement can be expected over Bubble-

Insert in situations where the bottom part of the cache sees frequent introduction of

items that only receive single requests. Bubble-Insert does not have this strength as

items in the bottom part of the Bubble-Insert cache may only move an item down to

finally be rejected if they are directly below the unpopular item (or outside the cache).

In Bubble-LRU any item below the unpopular item (including those outside the cache)
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Figure 5.4: Bubble-LRU Algorithm Flow Chart

can move the unpopular item down.

5.6 Introduction to the analytical and simulation tech-

niques

Bubble, Bubble-Insert and Bubble-LRU all provide an alternative to known opportunis-

tic cache eviction algorithms such as LRU, LFU, RAND and FIFO. All the newly intro-

duced algorithms have an operational cost of O(1) just as LRU, RAND and FIFO how-

ever a benchmark is required. Benchmarking the newly introduced algorithms against

the known algorithms does provide a way of quantifying the usefulness of the newly

introduced algorithms, providing a measure of when one of the newly introduced algo-

rithms may prove more efficient than the previously existing ones.
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5.6.1 Markov Chain Analysis

Gomaa et al. [87] performs Markov chain analysis on LRU and the FIFO cache eviction

algorithms. The analysis presented here will follow the style of Gomaa et al. [87] but

for the novel algorithms proposed in this Thesis. The analysis presented by Gomaa et

al. [87] presents a novel Markov Chain approach that models the activity of a single web

cache during a fixed evaluation interval [0, T ]. At t > 0 the number of objects generated

by the web server is M(t) which is considered constant for any t thus M(t) ≈M . The

requests that arrive at the server are according to a Poisson process with a rate of β. The

probability of item requests is according to a Zipf or Zipf-Mandelbrot distribution. The

probability of the ith item being requested is that of the probability within the Zipf or

Zipf-Mandelbrot distribution of the ith item multiplied with the request rate (β). The

Zipf-Mandelbrot distribution can be generated in combination with the request rate to

produce an average request rate for each item λi, 1 ≤ i ≤M as follows:

λi =
β

σ(i+ ν)α

Where σ =
∑M

i=1 1/(i+ ν)α . In the Zipf-Mandelbrot distribution α represents the

steepness of the slope in a Zipf or Zipf-Mandelbrot distribution when plotted on a log-

log scale and ν represents the curve of the distribution on a log-log scale. If ν = 0 the

distribution is a Zipf distribution.

Each item in the cache has an expected lifetime that is an exponential distribution

with mean 1/µi. It is assumed that α, ν, β and µi remain unchanged during the evalu-

ation interval [0, T ] across all items.

The cache capacity C is considered as the maximum number of objects, of specified

size, that can be stored simultaneously. The assumption is made that all items within

the system are of equal size.
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The process of estimating the total cache hit ratio of all items H(t) can be performed

by first estimating the cache hit ratio of all individual items from 1 to M,Hi(t) and

calculating the sum and the probability of request of those items as follows:

H(t) =

M∑
i=1

Hi(t)

σ(i+ ν)α

Hi(t) is calculated for each item i using the Markov Chain probability matrices P 1
i

as follows:

Ht
i = 1−

C+1∑
r=1

[P 1
i (t)]r,1

If it is assumed that the pool of items in the web server at t = 0 is empty, P 1
i is

derived from the flow matrices that is unique to each cache eviction algorithm by getting

the exponential as follows: P 1
i (t)− exp(Qi∆t)

where ∆t = t− t0.exp(.) is an exponential matrix exponential operator.

The superscript in each (as 1 in all examples) refers to the iteration in the iterative

algorithm that can be more readily followed in Algorithm 5.1 as variable z which will

be used to generate the Exact Cache Hit Ratio. A breakdown of the first iteration of

Bubble, Bubble-LRU and Bubble-Insert and the method of calculating the following

iterations is detailed in the respective chapters for each eviction algorithm.

The Exact Cache Hit Ratio estimator suggested by [87] requires a probability vector

for each item to indicate the probability of location in the cache combined with the

probability of request to find the estimated cache hit ratio for each respective item to

find the total cache hit ratio for the cache. On the first iteration there is no information

yet on the probability of location within the cache of each item, thus an initial estimation

is required that does not require the additional probability vector. The additional

probability vector is shown to be used in Algorithm 5.1 at the start of the first loop.
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LRU and FIFO first have their lower-bound cache hit ratio estimated for the first

iteration of this method of finding the Exact Cache Hit Ratio Estimation, however

Bubble, Bubble-LRU and Bubble-Insert do not make a lower-bound estimation possible

in the method that LRU and FIFO do. Instead, a closer match for the exact cache

hit ratio is generated on the first iteration working with the assumption that the item

directly below item i in the cache is λi − 1. This is not always true as any item can

be in said positions in the cache and receive requests. However, this does give a good

estimation for the first iteration.

The process followed in Algorithm 5.1 is the process of finding the Exact Cache Hit

Ratio. P zi is found by generating the steady state vector from the probability matrix

from the iteration previous (z − 1) which holds the probability of the location of item i

within the cache.

Algorithm 5.1 instantaneous cache hit ratio for any eviction algorithm [87]

1: procedure Estimating Hit-Ratio
2: Calculate: P 1

i (t)∀i ∈ [1,M ]
3: Calculate: H1

i (t) = 1− P(i, 0)1(t)∀i ∈ [1,M ]
4: Calculate: H1(t)
5: z = 1
6: repeat
7: z = z + 1
8: Further enhanced estimation of hit ratio with each z increase
9: Calculate: P zi (t)usingP

(
i z − 1)(t)i ∈ [1,M ]

10: Calculate: Hz
i (t) = 1− P(i, 0)z(t)∀i ∈ [1,M ]

11: Calculate: Hz(t)
12: until (Hz(t) = H(z − 1)(t))
13: Result = Hz(t)
14: end procedure

5.6.1.1 Bubble Implementation

The initial iteration of the iterative algorithm has no prior knowledge of the probability

of location of each item, thus the assumption is made that the chance item i moves

down in the cache is the chance that the item below item i experiences a request. E.g

the chance that the item at the top of the cache is moved down is equal to λ2 as this

item is more probable to be situated in that position within the cache. As the flow
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matrix holds the top of the cache at index C + 1 an index converter was constructed

using x, as shown below. For ease of documentation, index 0 will refer to the out of

cache state and C as the index of the top of the cache.

x = [C,C − 1, C − 2, , 3, 2, 1]

This method of indexing is used for all Bubble cache variations for their initial flow

matrix and initial estimation of cache hit ratio.

5.6.1.1.1 First Iteration: inaccurate instantaneous cache hit estimation

The chance of eviction of the item at the bottom of the cache is di which is calcu-

lated as follows:

di = β −
C∑

k=1,k 6=i
λk

The flow matrix for Bubble is as follows:

Q1
i =


−λi λi 0 0 ... 0 0 0 0
µi+di −µi−di−λi λi 0 ... 0 0 0 0
µi λx[1] −µi−λx[1]−λi λi ... 0 0 0 0

...
...

...
...

. . .
...

...
...

...
µi 0 0 0 ... λx[C−3] −µi−λx[C−3]−λi λi 0

µi 0 0 0 ... 0 λx[C−2] −µi−λx[C−2]−λi λi
µi 0 0 0 ... 0 0 λx[C−1] −µi−λx[C−1]


(5.1)

5.6.1.1.2 Main iteration: Exact instantaneous cache hit estimation The

Exact Cache Hit-ratio for Bubble can be found using the method explained in this

chapter. This is done using the same iterative system as Gomaa et al. [87] provide,

with an adjusted flow matrix to reflect the movement of items subjected to the Bubble

algorithm. Once the flow matrix is generated, the transition matrices, the steady-state

vectors and the hit-ratio can be inferred when the process has converged.

The movement for item i from position j to position j+ 1 is λi as was for the initial
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iteration of Bubble.

The probability vectors from the previous iteration (z − 1) are used to find the

probability of item i transitioning from state j to state j− 1 within the cache. For each

item 1 ≤ k ≤M find the probability of it being in the location of j − 1 combined with

the probability of request for each individual item provides the probability of movement

from state j to state j − 1.This can be expressed as follows:

εzi,j(t) =
M∑

k=1,k 6=i
λkP

z−1
k,x[j−1]

However, this only expresses an item being in the position below and affecting the item

above. In reality, in t, an item other than the one currently in j − 1 can affect the

movement of i in position j. This can be seen as similar to LRU as all items below item

i in position j can be any item that sits below j. The probability for item i in position

j to j − 1 in a Bubble enabled cache is as follows:

ωi = λi ÷ β

For items 1 ≤ k 6= i ≤M to move i in position j to j− 1 if kj ≥ ij is the probability

of all items 1 ≤ h 6= x ≤ M in position item kj−1 to receive a request multiplied with

the probability of h being located in kj−1. This process is repeated kj − ij times which

provides the probability of item kj to move to position ij . The probability of kj to move

to xj−1 is:

Ωk,j =
M∑

x=1,x 6=k
ωx

For all items where ij ≥ kj , which means for all items below ij that will influence

ij , the total request rate is:

εzi,j(t) =
M∑

k=1,k 6=i

C∑
w=j

 w∏
h=j

Ωk,h−1

P z−1
k,w

For all items where ij < kj the total request rate is:
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εzi,j(t) =

M∑
k=1,k 6=i

1∑
w=(j−1)

 w∏
h=(j−1)

λh ÷ β

P z−1
k,w

The total sum will encompass all items’ probability of being in location ij−1 which

needs to be multiplies with β to produce the request rate at which ij moves to ij−1.

This is expressed as follows:

εzi,j(t) =

 M∑
k=1,k 6=i

C∑
w=j

 w∏
h=j

Ωk,h−1

P z−1
k,w +

M∑
k=1,k 6=i

1∑
w=(j−1)

 w∏
h=(j−1)

λh ÷ β

P z−1
k,w

β

The probability of item i moving from position j to j + 1 is λi combined with the

probability of items w > j experiencing decay µ within the cache is as follows:

γzi,j(t) = λi +
M∑

k=1,k 6=i
µk

C∑
w=j−1

P z−1
k,w (t)

The flow matrix is as follows:

Q1
i =



−λi λi 0 0 ... 0 0 0 0
µi+ε

z
i,2 −µi−εzi,2−γzi,1 γzi,1 0 ... 0 0 0 0

µi εzi,3 −µi−εzi,3−γzi,2 γzi,2 ... 0 0 0 0

...
...

...
...

. . .
...

...
...

...
µi 0 0 0 ... εzi,C−2 −µi−ε

z
i,C−2−γ

z
i,C−1 γzi,C−1 0

µi 0 0 0 ... 0 εzi,C−1 −µi−εzi,C−1−γ
z
i,C γzi,C

µi 0 0 0 ... 0 0 εzi,C −µi−εzi,C


(5.2)

5.6.1.2 Bubble-LRU Implementation

Insertion Point P where 1 < P < C is an additional variable to consider for Bubble-

LRU. P dictates the index insertion of new items into the cache. The items i in state

ij > P are subject to transition only if the item k in state kj == ij−1 receives a request.

Items in state j ≤ P move to state ij−1 if the item k in state kj < ij receives a request.

5.6.1.2.1 First Iteration: inaccurate instantaneous cache hit estimation pi

dictates the rate of transition of states j ≤ P to j − 1 formulated as follows:
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pi = β −
P∑

k=1,k 6=i
λk

The transition matrix for the first iteration of Bubble-LRU is therefore as follows:

Q1
i =


−λi 0 0 0 ... λi 0 0 0
µi+pi −µi−pi−λi 0 0 ... λi 0 0 0
µi pi −µi−piλi 0 ... λi 0 0 0

...
...

...
...

. . .
...

...
...

...
µi 0 0 0 ... λx[C−3] −µi−λx[C−3]−λi λi 0

µi 0 0 0 ... 0 λx[C−2] −µiλx[C−2]−λi λi
µi 0 0 0 ... 0 0 λx[C−1] −µi−λx[C−1]


(5.3)

5.6.1.2.2 Main iteration: Exact instantaneous cache hit estimation The

transition state ij to ij−1 if ij > P is dictated by the chance of requests of all items k

being moved into position ij−1 and receiving a request. The transition from state j to

j − 1 when j ≤ P is the probability of any item k in state P − 1 receiving a request.

The decay of items i in state j where j ≤ P in cache Bubble-LRU is εzi,j(t) which is

formulated as follows:

εzi,j(t) = ζi −
M∑

k=1,k 6=i
λk

C∑
w=j+1

P z−1
k,w (t)

The decay experienced by items in position ij greater than insertion point P is the

same as is seen for Bubble in Chapter 5.6.1.1.2 with the additional consideration that

items kj < P influencing ij to move to ij−1 are moved, with a single request, to position

P . This requires a small change to the items influencing item i where xj < ij (all items

k influencing item i in position j that are in positions less than j). This is described as

follows:

 M∑
k=1,k 6=i

1∑
w=(P−1)

(λk ÷ β)j−P P z−1
k,w

β

+

 M∑
k=1,k 6=i

P∑
w=(j−1)

(λk ÷ β)(j−1)−w P z−1
k,w

β
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Which provides with the conclusion that ηzi,j(t), which signifies when items i in state

j moves to state j − 1 for when j > P , can be structured as such:

ηzi,j(t) =

 M∑
k=1,k 6=i

1∑
w=(P−1)

(λk ÷ β)j−P P z−1
k,w

β

+

 M∑
k=1,k 6=i

P∑
w=(j−1)

(λk ÷ β)(j−1)−w P z−1
k,w

β

+

 M∑
k=1,k 6=i

C∑
w=j

 w∏
h=j

Ωk,h−1

P z−1
k,w

β

The chance of items moving up due to item decay above item ij is dependent on the

state. If state j ≤ P the transition from state j to j + 1 is as follows:

γzi,j(t) =

M∑
k=1,k 6=1

µk

C∑
w=j+1

P z−1
k,w (t)

If state j ≤ P the transition from state j to j + 1 is equal to γzi,j(t) + λi.

pj will signify the negative values of the rows as j is equal to the column (x = y)

changes value written as follows:

if j ≤ P :

pj = −(µi + εzi,j + γzi,j + λi)

if j > P :

pj = −(µi + ηzi,j + γzi,j + λi)

The flow matrix for Bubble-LRU is as follows:
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Q1
i =



−λi 0 0 0 . . . λi 0 0 0

µi + εzi,1 p1 γzi,1 0 . . . λi 0 0 0

µi εzi,2 p2 γzi,2 . . . λi 0 0 0

...
...

...
...

. . .
...

...
...

...

µi 0 0 0 . . . εzi,C−2 pC−2 γzi,C−2 + λi 0

µi 0 0 0 . . . 0 ηzi,C−1 pC−1 γzi,C−1 + λi

µi 0 0 0 . . . 0 0 ηzi,C −µi − ηzi,C



(5.4)

5.6.1.3 Bubble-Insert Implementation

Bubble-Insert functions on the basis that any item from state 0 may be inserted into

a specified position P where 1 ≤ P ≤ C. This ensure better retention of items newly

introduced into the cache than plain Bubble, however functions identically to Bubble

in terms of behaviour of items in the cache.

5.6.1.3.1 First Iteration: inaccurate instantaneous cache hit estimation pi

dictates the rate of transition of states j ≤ P to j − 1 formulated as follows:

pi = β −
C∑

k=1,k 6=i
λk

This is so as only items not in the cache can push items below P towards the

bottom of the cache, unlike Bubble-LRU which would enable items in the cache to also

be injected into position P if j < P

The transition matrix for the first iteration of Bubble-Insert is therefore as follows:

Q1
i =


−λi 0 0 0 ... λi 0 0 0
µi+pi −µi−pi−λi 0 0 ... λi 0 0 0
µi pi −µi−piλi 0 ... λi 0 0 0

...
...

...
...

. . .
...

...
...

...
µi 0 0 0 ... λx[C−3] −µi−λx[C−3]−λi λi 0

µi 0 0 0 ... 0 λx[C−2] −µiλx[C−2]−λi λi
µi 0 0 0 ... 0 0 λx[C−1] −µi−λx[C−1]


(5.5)
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5.6.1.3.2 Main iteration: Exact instantaneous cache hit estimation The

decay of items ij ≤ P is the rate of request for items k if items kj − 1 receive a request

+ the probability of items kj = o receiving a request. As for Bubble and Bubble-LRU,

it is important to consider that items not in ij − 1 may receive multiple requests, or

may be pushed down to j − 1 to move ij to ij − 1. This is formulated as:

εzi,j(t) =

 M∑
k=1,k 6=i

λkP
z−1
k,0

β

+

 M∑
k=1,k 6=i

P∑
w=(j−1)

(λk ÷ β)(j−1)−w P z−1
k,w

β

+

 M∑
k=1,k 6=i

C∑
w=j

 w∏
h=j

Ωk,h−1

P z−1
k,w

β

The decay of items ij > P is the rate at which items can climb the cache + the rate

of items being entered into the cache and moving ij to ij − 1. This can be expressed as

follows:

ηzi,j(t) =

 M∑
k=1,k 6=i

(λk ÷ β)j−P P z−1
k,w

β

+

 M∑
k=1,k 6=i

P∑
w=(j−1)

(λk ÷ β)(j−1)−w P z−1
k,w

β

+

 M∑
k=1,k 6=i

C∑
w=j

 w∏
h=j

Ωk,h−1

P z−1
k,w

β

pj will signify the negative values of the rows as j is equal to the column (x = y)

changes value written as follows:

if j ≤ P :

pj = −(µi + εzi,j + γzi,j + λi)
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if j > P :

pj = −(µi + ηzi,j + γzi,j + λi)

The flow matrix for Bubble-Insert is as follows:

Q1
i =



−λi 0 0 0 . . . λi 0 0 0

µi + εzi,1 p1 γzi,1 0 . . . λi 0 0 0

µi εzi,2 p2 γzi,2 . . . λi 0 0 0

...
...

...
...

. . .
...

...
...

...

µi 0 0 0 . . . εzi,C−2 pC−2 γzi,C−2 + λi 0

µi 0 0 0 . . . 0 ηzi,C−1 pC−1 γzi,C−1 + λi

µi 0 0 0 . . . 0 0 ηzi,C −µi − ηzi,C



(5.6)

5.6.1.4 Limitation of analysis of Bubble, Bubble-LRU and Bubble-Insert

The Bubble cache eviction algorithm has a complexity that LRU and FIFO do not

have. The primary complexity is that the chance of movement down in the cache can

be influenced by any item in the cache, including those above the item in question or

many spaces below, which is not true for LRU or FIFO. In a LRU cache, item x below

item k influences item k once as multiple request to item x would have the item not

influence item k beyond the initial request. In Bubble, a single item below item k can

be seen to raise in index in an undisclosed quantity of time to eventually influence item

k, which would influenced item k in the initial request in a LRU or FIFO cache. The

movement of item x before influencing item k may not be one with a unilateral direction,

but rather a number of movements up and down in index before finally influencing k.

This complexity presents us with two limitations which are:

1. Any item x may influence the movement of item kj to move to kj−1 by moving

down to position xj = kj−1 and receiving a request. In order to compute the rate

at which x moves down we have to compute the influence of all items that are not

x to receive a request whist in the position xj−1. This process may be repeated an
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infinite amount of times, increasing the complexity exponentially with each step

creating an NP problem.

2. Additionally, the Bubble algorithm can see items k move up and down a number

of times before finally moving down item i, which is not accounted for in the

suggested Markov-Chain analysis. The reason for this omission are the number of

path permutations possible for item k to eventually locate the position below i.

The only permutation considered is the probability of an item moving in a single

direction (items k below i moving up into position ij−1 and items k above item i,

and at position i, moving down to position ij−1.

The inclusion of indirect paths can be expanded infinitely, with each addition of

movement to the analysis exponentially increasing the complexity of the calcula-

tion of decrease in index of items relative to the size of the cache, thus making

this an NP problem

For the reasons above it is declared that only a first order approximation is able to

be calculated for the results in this Thesis.

5.6.2 Icarus - ICN Simulation Environment

Developed by Saino et al. [43] Icarus is an ICN simulation environment designed to

test routing strategies and cache eviction algorithms. The environment enables for

a variety of network architectures and environmental factors to be changes to enable

benchmarking for specified conditions or a broad spectrum of conditions. For this reason

Icarus is well suited to benchmark cache eviction algorithms such as the the proposed

Bubble, Bubble-Insert and Bubble-LRU.

Object Popularity Distribution The instance of Icarus used to benchmark the pro-

posed algorithms will have enabled the possibility of implementing a Zipf-Mandelbrot

popularity Distribution for the objects available for request as well as a Zipf-like pop-

ularity Distribution. This is mainly due to the result of the research conducted in
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Chapter 3. It is left to reason that a Zipf-like Distribution for the modelling of popu-

larity data should be considered as well and Zipf-Mandelbrot due to the extensive pre

Zipf-Mandelbrot research [7–18] as it is still widely considered a standard regarding

what popularity distribution conventional video content follows, as well as general web

content which is more specifically considered to follow a pure Zipf distribution [25–27].

Topology The Topology used for the purpose of benchmarking cache eviction algo-

rithms is the GEANT [66] Topology. The purpose of summarising the Icarus results to

originate only from a single topology is to reduce the total number of simulations as

a greater quantity than already stipulated would require vastly more time. A number

of simulations were run including a number of alternative topologies and an extremely

minute observable behavioural difference was found to exist between the GEANT topol-

ogy and the GARR [67],WIDE [69] and Tiscali [68] Topologies - warranting a single

topology to be sufficient.

Routing Strategy Routing Strategies are a mayor focus of analysis in Icarus, however

it does not encompass the focus of the tests intended for Bubble, Bubble-LRU and

Bubble-Insert. For this reason from the large range of routing strategies, a group selected

based on diversity will be adopted for the purpose of benchmarking the cache eviction

algorithms in question. They are:

• Cache Less For More (CL4M) [48] as in Section 2.3.1

• Leave Copy Down (LCD) [49] as in Section 2.3.2

• Probabilistic Caching (ProbCache) [50] as in Section 2.3.3

• Hash Hybrid Symmetrical-Multicast Routing [51] as in Section 2.3.5.1

Cache Eviction The results observed from the simulation of Bubble, Bubble-LRU

and Bubble-Insert will required to be compared to the performance that can be expected

from more, well know, cache eviction algorithms that function with an operation cost

that is equal or at least similar to Bubble, Bubble-LRU and Bubble-Insert in order to
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quantify the realistic performance gain expected, which will be discussed below. This

prompts the need for running, what might be considered, a control set of experiments

using cache eviction algorithms that will aid in pinpointing the performance gain or loss

experienced when Bubble, Bubble-LRU or Bubble-Insert are subjected to Icarus.

The cache eviction algorithms used for setting a benchmark for Bubble, Bubble-LRU

and Bubble-Insert to be measured against are:

• Least Recently Used (LRU) as in Section 2.4.1

• Least Frequently Used (LFU) as in Section 2.4.2

• First-In-First-Out (FIFO) as in Section 2.4.4

• Random (RAND) as in Section 2.4.3

5.6.2.1 Icarus Limitations

Icarus does not provide a platform where request objects experience change throughout

the simulation. Instead Icarus has provided a static popularity distribution of all request

objects which will generate requests only based on the request probability assigned at

the start of the simulation. The omission of decay and finite lifespan of items should

be noted as a limitation of the Icarus simulation environment when assessing the cache

hit ratio of each cache eviction algorithm submitted.

5.6.3 Single Cache Bubble Analysis

The Request Generator used in this section is as introduced in Chapter 4. The request

generator provides a tool to simulate requests based on a number of parameters such as:

Probability of Request, Decay (In the form of a function) and Life-Time. The parameters

used for the simulation were as previously mentioned in the introduction of Chapter 5.7.

The function of decay used is an implementation of the function described by Avramova

et al. [37]. This decay function is discussed further in Chapter 4.2.1.2. The variables

chosen for the purpose of this simulation are: τ : 40 and β : 0.5.
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5.7 Analytical and Simulation Results of Bubble & Vari-

ations

The Bubble, Bubble-LRU and Bubble-Insert cache eviction algorithms will be bench-

marked using; Markov Chain Analysis, Complex Single Cache Analysis and Icarus. The

purpose of these tests is to objectively measure the performance of Bubble, Bubble-LRU

and Bubble-Insert against known cache eviction algorithms such as LRU, LFU, FIFO

and RAND in a variety of situations relating primarily to web delivery content such as

HTML pages, images, videos and other online media objects.

Each method of evaluation suggested and used has pros and cons associated with it.

For this reason, multiple methods of testing were used to ensure that, though not each

approach is inclusive of all strengths, a plethora of methods with different strengths

were utilised. One example is the introduction of object popularity decay and limited

lifetime of objects which is included in the method “Complex Single Cache Analysis”

and not in the other methods used for testing the cache eviction algorithms.

Each method of testing the cache eviction algorithms will be formulated to reflect

the same type of systems with alterations where feasibility of computing may be a

limiting factor. The popularity distributions, total number of unique objects, quantity

of requests and quantity of requests before observation will be consistent across methods

of testing to reflect known online video content characteristics as well as a small spectrum

of Zipf-like popularity distributions.

Popularity Distributions as real user request data:

1. Zipf(α = 0.8) [8]

2. Zipf(α = 1) [17,25]

3. Zipf(α = 0.9) as found in Chapter 3

4. Zipf(α = 0.765) (motivation stated in Chapter 3)

5. Zipf-Mandelbrot(α = 1.42, ν = 23) (motivation stated in Chapter 3)

6. Zipf-Mandelbrot(α = 1.20, ν = 111) (motivation stated in Chapter 3)

Popularity Distributions Zipf / Zipf-Mandelbrot:
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1. Zipf(α = 0.8)

2. Zipf(α = 0.9)

3. Zipf(α = 1)

4. Zipf(α = 1.1)

5. Zipf(α = 1.2)

Total number of unique objects:

1. ≈ 11000

2. ≈ 2500

3. = 100 (for the Markov Chain analysis1)

Requests:

1. Quantity of requests: 600000

2. Quantity of warm-up requests: 300000 (Where applicable)

The real user request distributions will highlight the strengths and weaknesses in

pseudo-realistic scenarios. These scenarios are constructed from observed video popu-

larity distributions. They are ranging which suggests that, though they may give an

insight into the general performance gained from the suggested algorithms, they are not

able to contrast the strengths and weaknesses that Bubble, Bubble-Insert and Bubble-

LRU exhibit in Zipf or Zipf-Mandelbrot situations as they are all summarised in the

Pseudo-realistic distributions. For this reason a range of Zipf Distributions are also

separately tested, as well as a range of Zipf distributions. The Zipf Distributions range

from a low α value (0.8) to a larger α value in a stepwise fashion. The Zipf-Mandelbrot

distributions used are mapped to be as close to the α variable 0.8 as possible, in an

effort to reflect the most realistic Zipf-Mandelbrot distribution with regards to video

request behaviour. This was done by increasing the Zipf α variable (steepness of the

slope in the Zipf Distribution) and adjusting the skewness factor ν to best reflect the

Zipf distribution with α of 0.8. The measurement by which the best Zipf-Mandelbrot

distributions were chosen were based on the Kullback-Leibler Divergence results. The

1The Markov-Chain analysis is computationally infeasible if attempted with a large pool of unique
items; specifically in the case of Bubble, Bubble-Insert and Bubble-LRU.
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Model Optimised Values KL Divergence

Zipf-Mandelbrot α = 1.0, ν = 5 0.0429

Zipf-Mandelbrot α = 1.2, ν = 26 0.114

Zipf-Mandelbrot α = 1.4, ν = 69 0.177

Zipf-Mandelbrot α = 1.6, ν = 137 0.226

Zipf-Mandelbrot α = 1.8, ν = 227 0.265

Zipf-Mandelbrot α = 2.0, ν = 336 0.295

Table 5.2: Zipf-Mandelbrot correlated to Zipf(a=0.8) with a range of alpha values
with fitted ν values confirmed with Kullback-Leiber divergence

results are demonstrated in Table 5.2.

5.7.1 Markov Chain Analysis tests

The Markov Chain analysis has a limitation in the computational power a large scale

experiment would require. It is for this reason that a smaller sample of items and cache

sizes are used in tests that were performed using the Markov Chain analysis technique

developed by Gomaa at al. [87].

As presented in Chapter 5.6.1.4, there are limiting factors in the implementation

of Bubble, Bubble-LRU and Bubble-Insert. The limitations are easily observed when

running the Markov Chain analysis as the results simply do not converge for these

scenarios. This is due to a large cache size that holds a great number of methods for

which the decreasing factor for items in the cache to move down can be influenced by

other items, as explained in Chapter 5.6.1.4.

The total unique item quantity used in the Markov Chain analysis tests is 100. This

is because a larger unique item quantity would require an amount of computational

effort that is infeasible in the scope of this PhD.

The tests performed aim to provide a measurement of Bubble, Bubble-LRU and

Bubble-Insert’s effectiveness in comparison to the effectiveness of LRU,LFU and FIFO.

These tests will be structured as follows:

1. What Cache-Hit ratios can be expected from a number of Zipf Distributions with

a variety of cache sizes in a system with an item pool of 100 unique items
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Bubble-LRU, M = 100 Cache Size
Converged Results 4 5 6 7 8 9 10

Zipf-M(α = 1.0, ν = 5) 3 4 5 5 5 5 5

Zipf-M(α = 1.2, ν = 26) 2 4 5 5 5 6 5

Zipf-M(α = 1.4, ν = 69) 2 2 5 6 6 6 6

Zipf-M(α = 1.6, ν = 137) 2 2 2 2 2 2 2

Zipf-M(α = 1.8, ν = 227) 2 2 2 2 2 2 2

Zipf-M(α = 2.0, ν = 336) 2 2 2 2 2 2 2

Zipf(α = 0.8) 3 4 5 6 6 6 6

Zipf(α = 0.9) 3 4 5 6 6 6 7

Zipf(α = 1) 3 4 5 5 6 6 6

Zipf(α = 1.1) 3 4 5 6 6 7 7

Zipf(α = 1.2) 3 4 5 6 6 7 7

Zipf(α = 0.765) 3 4 5 6 6 6 6

Zipf-M(α = 1.42, ν = 23) 2 4 5 5 5 5 5

Zipf-M(α = 1.20, ν = 111) 2 2 2 2 2 2 2

Table 5.3: Insertion Points of Bubble-LRU with the highest Cache-Hit Ratios

2. What Cache-Hit ratios can be expected from a number of Zipf-Mandelbrot Distri-

bution modelled to be similar to a Zipf distribution of α equal to 0.8 (Table 5.2)

with a variety of cache sizes in a system with an item pool of 100 unique items.

3. What Cache-Hit ratios can be expected from a number of realistic popularity

distributions with a variety of cache sizes in a system with an item pool of 100

unique items.

5.7.1.1 The optimal insertion index for Bubble-LRU and Bubble-Insert

The Bubble-LRU and Bubble-Insert algorithms have a great number of possible indices

of insertions, based on the total size of the cache. We first aim to find the most well-

performing insertion indices for each set that is to be compared. The sets are comprised

of the scenarios presented previously, modelled to give a broad perspective of behaviour

of the cache eviction algorithms, as well as a number of pseudo-realistic scenarios.

The results which did converge the insertion indices yielding the highest cache-hit

ratios were selected and are displayed in Tables 5.3 & 5.4. The results were derived

from sets of results shown in Figure 5.5. The converged result with the insertion index

yielding the greatest Hit-Ratio is considered the superior insertion Index for the scenario.
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Bubble-Insert, M = 100 Cache Size
Converged Results 4 5 6 7 8 9 10

Zipf-M(α = 1.0, ν = 5) 3 4 5 5 5 5 5

Zipf-M(α = 1.2, ν = 26) 2 4 5 5 5 6 5

Zipf-M(α = 1.4, ν = 69) 2 4 5 6 6 6 5

Zipf-M(α = 1.6, ν = 137) 2 2 2 2 2 2 2

Zipf-M(α = 1.8, ν = 227) 2 2 2 2 2 2 2

Zipf-M(α = 2.0, ν = 336) 2 2 2 2 2 2 2

Zipf(α = 0.8) 3 4 5 6 6 6 6

Zipf(α = 0.9) 3 4 5 6 6 6 7

Zipf(α = 1) 3 4 5 6 6 6 6

Zipf(α = 1.1) 3 4 5 6 6 7 7

Zipf(α = 1.2) 3 4 5 6 6 7 7

Zipf(α = 0.765) 3 4 5 6 6 6 6

Zipf-M(α = 1.42, ν = 23) 2 4 5 5 5 5 5

Zipf-M(α = 1.20, ν = 111) 2 2 2 2 2 2 2

Table 5.4: Insertion Points of Bubble-Insert with the highest Cache-Hit Ratios

Alpha: 0.8. V: 0 Alpha: 1. V: 0 Alpha: 1.2. V: 0 Alpha: 2. V: 336
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Figure 5.5: Insertion Points - Markov-Chain - Cache Size: 10

A number of Markov-Chain tests did not converge. These results were analysed to

show a pattern, though interesting, only show a trend that may suggest that an increased

/ decreased insertion index is superior, however this suspicion cannot be confirmed

using the Markov-Chain analysis performed here due to the Markov-Chain analysis not

converging. The analysis results including the non-converged results are shown in Tables
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Bubble-LRU, M = 100 Cache Size
Models 4 5 6 7 8 9 10

Zipf-M(α = 1.0, ν = 5) 3 4 5 *6 *6-7 *6-8 *6-9

Zipf-M(α = 1.2, ν = 26) 2 4 5 *6 *6-7 *7-8 *6-9

Zipf-M(α = 1.4, ν = 69) 2 2 5 6 *7 *7-8 *7-9

Zipf-M(α = 1.6, ν = 137) 2 2 2 2 2 2 2

Zipf-M(α = 1.8, ν = 227) 2 2 2 2 2 2 2

Zipf-M(α = 2.0, ν = 336) 2 2 2 2 2 2 2

Zipf(α = 0.8) 3 4 5 6 *7 *7-8 *7-9

Zipf(α = 0.9) 3 4 5 6 *7 *7-8 *8-9

Zipf(α = 1) 3 4 5 *6 *7 *7-8 *7-9

Zipf(α = 1.1) 3 4 5 6 *7 7 7

Zipf(α = 1.2) 3 4 5 6 *7 7 7

Zipf(α = 0.765) 3 4 5 6 *7 *7-8 *7-9

Zipf-M(α = 1.42, ν = 23) 2 4 5 *6 *6-7 *6-8 *6-9

Zipf-M(α = 1.20, ν = 111) 2 2 2 2 2 2 2

Table 5.5: Insertion Points of Bubble-LRU with the highest Cache-Hit Ratios

Insertion Points Cache Size
Bubble-Insert, M = 100 4 5 6 7 8 9 10

Zipf-M(α = 1.0, ν = 5) 3 4 5 *6 *6-7 *6-8 *6-9

Zipf-M(α = 1.2, ν = 26) 2 4 5 *6 *6-7 *7-8 *6-9

Zipf-M(α = 1.4, ν = 69) 2 4 5 6 *7 *7-8 5

Zipf-M(α = 1.6, ν = 137) 2 2 2 2 2 2 2

Zipf-M(α = 1.8, ν = 227) 2 2 2 2 2 2 2

Zipf-M(α = 2.0, ν = 336) 2 2 2 2 2 2 2

Zipf(α = 0.8) 3 4 5 6 *7 *8 *8-9

Zipf(α = 0.9) 3 4 5 6 *7 *7-8 *8-9

Zipf(α = 1) 3 4 5 6 *7 *7-8 *7-9

Zipf(α = 1.1) 3 4 5 6 *7 7 7

Zipf(α = 1.2) 3 4 5 6 *7 7 7

Zipf(α = 0.765) 3 4 5 6 *7 *7-8 *7-9

Zipf-M(α = 1.42, ν = 23) 2 4 5 *6 *6-7 *6-8 *6-9

Zipf-M(α = 1.20, ν = 111) 2 2 2 2 2 2 2

Table 5.6: Insertion Points of Bubble-Insert with the highest Cache-Hit Ratios

5.5 & 5.6. The results were derived from sets of results shown in Figure 5.6.

The method of selection with regards to the insertion points best suited to represent

Bubble-LRU and Bubble-Insert in the scenarios where results did not converge has

challenges. The main of which is that for a single cache size, the best performing cache

entry point may be one which has not converged (Signified with the * symbol). In order
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Figure 5.6: Insertion Points - Markov-Chain - Cache Size: 10

to derive a ”best” insertion point the way at which the results leaned was taken into

consideration. In Figure 5.6 eight example test are shown. In the case of the test where

Alpha = 0.8 and V = 0 it is clear to see the best performing insertion point may be one

of two points. The converged hit-ratios increases with each incrementation of insertion

point until the insertion point have reached 8 or above, which is when an error occurs

and the hit-ratio is equal to 1. For this reason the best insertion point is considered 8

or 9. In the case where Alpha = 1.2 and V = 0 it is clear to see that the points that

converged insertion point 7 holds the greatest value. Insertion point 9 shows an error

by converging to 1, however as insertion point 8 declines from 7 to a lower hit-ratio,

it can be assumed that 9 may also follow this trend, thus insertion point 7 is chosen

as the representative highest hit-ratio. In the test case where Alpha = 2 and V = 336

we observe that for all values that converged 2 holds the greatest hit-ratio. The hit-

ratio declines from 2 as the insertion point increases. For this reason the non-converged

errors seen at insertion points 7,8 and 9 are disregarded and the assumption is made

the decreasing trend would likely have continued.
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5.7.1.2 Markov-Chain Cache-Hit Ratio Results

The constructed scenarios, as listed previously as “Popular Distributions as real request

Data” and “Popularity Distributions Zipf / Zipf-Mandelbrot” in the introduction to

Section 5.7 will all be subjected to the Bubble, Bubble-LRU and Bubble-Insert algo-

rithms with a varying cache size beside better known cache eviction algorithms such

as LRU and FIFO in the case of the Markov-Chain Analysis. The total number of

unique items is, as previously stated, 100 with a variety of cache sizes between 4 and

10. For each scenario the Bubble-LRU and Bubble-Insert insertion points have been

selected based on their Hit-ratio in each scenario as presented in the previous Chap-

ter. The Bubble-LRU and Bubble-Insert will each be represented once as only the

insertion points found to present the best Hit-Ratio will solely represent the algorithm

Bubble-LRU or Bubble-Insert in each scenario.

Each group of video popularity distributions described in the introduction of Section

5.7 will be described individually as to address the individual results the cache eviction

algorithms produced in each group of tests. All results found in the figures displayed in

the following Sections will have the results displayed empirically in Section A.1 of the

Appendix.

5.7.1.2.1 Pseudo-Real Video Popularity Distributions, as decided by results

found in Chapter 3, were used to aid in measuring the effectiveness of the Bubble,

Bubble-LRU and Bubble-Insert cache eviction algorithms, as well as a number of known

cache eviction algorithms commonly used such as LRU and FIFO. The Markov-Chain

analysis, as documented in Section 5.6.1, was used to measure the effectiveness of each

cache eviction algorithm. The pseudo-realistic distributions considered are listed below.

All other simulation details were remain as stated in the introduction of this Section.

1. Zipf(α = 0.8) [8]

2. Zipf(α = 1) [17,25]

3. Zipf(α = 0.9) as found in Chapter 3

4. Zipf(α = 0.765) (motivation stated in Chapter 3)
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Figure 5.7: Cache-Hit Ration for each Cache Eviction Algorithm. Each Figure
Displays the results for a different Pseudo-Realistic Video Request Distribution

5. Zipf-Mandelbrot(α = 1.42, ν = 23) (motivation stated in Chapter 3)

6. Zipf-Mandelbrot(α = 1.20, ν = 111) (motivation stated in Chapter 3)

The results found for each Cache Eviction Algorithm are shown in Figure 5.7. In

the Figure, the Cache Size is documented in relation to the Hit Ratio. The Hit Ratios

for Bubble, Bubble-LRU and Bubble-Insert in some specific scenarios did not converge

due to the limitations of the Markov-Chain Analysis as discussed in Section 5.6.1.4.

The results in Figure 5.7 show a clear indication that Bubble, in the case of pseudo-

realist where the video popularity distribution follows a Zipf distribution, performs

very well if the cache sizes are small. It appears as the ν parameters increase, the

Bubble eviction algorithm diminishes in performance. Bubble was unfortunately only

converged for small cache sizes which means no conclusion can be drawn as to how

effective Bubble would have been for larger cache sizes. Bubble-LRU, as shown in

Figure 5.7, shows a Cache-Hit Ratio very similar to Bubble-Insert. The discrepancy

between each of the algorithms is very small due to the similar workings of each of the

two algorithms. From the test results one may conclude that, for all cache sizes in every

pseudo realistic video popularity distribution scenario, Bubble-LRU and Bubble-Insert

provide a suitable replacement for the LRU or FIFO algorithms. The operational cost is

the same for each of the cache eviction algorithms used with the only additional variable

affecting the effectiveness of the Bubble-LRU and Bubble-Insert being the insertion
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point.

Interestingly, between all pseudo-realistic video request distributions submitted to

the Markov-Chain analysis tool, one result does not match the others. The result

unlike all other pseudo-realistic test results is the Zipf-Mandelbrot distribution with the

parameters α : 1.2 and ν : 111. These test results belong to the distribution for which ν is

largest and the Zipf-Mandelbrot distribution has the most significant visible curve when

plotted on a log-log scale as is visible in Figure 3.9 which shows the VoD distribution

to which this Zipf-Mandelbrot distribution was modelled. The most requested items

in this distribution are very closely matched, meaning that the likely cause of the low

cache-hit ratio is due to the likeness between all top items, exceeding the top 10. This

competition between a large amount of the most frequently requested items results in

an ineffective cache which is left scrambling between a large set of near equally popular

objects, meaning a poor cache-hit ratio is expected.

5.7.1.2.2 Zipf Video Popularity Distributions were tested with increasing α

parameters in the Markov-Chain Analysis tool to provide insight into the effectiveness

that can be expected when they are submitted to Bubble, Bubble-LRU and Bubble-

Insert, as well as a number of known algorithms such as the LRU and FIFO cache

eviction algorithms. The increasing α parameters in a Zipf-like distributions submitted

to the test provide results that give insight into the eviction algorithms one may prefer

in a range of scenarios. The Zipf parameters associated with video delivery are thought

to range between α : 0.8 [8] and α : 1 [17,25]. Other systems, not exclusively delivering

video objects, may follow more extreme power-law distributions thus creating the po-

tential necessity to test algorithms Bubble, Bubble-LRU and Bubble-Insert with more

extreme α variables that are greater than 1 as is described in this Section.

The Zipf request distributions submitted to the Markov-Chain analysis are listed below:

1. Zipf(α = 0.8)

2. Zipf(α = 0.9)

3. Zipf(α = 1)

4. Zipf(α = 1.1)
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Figure 5.8: Cache-Hit Ration for each Cache Eviction Algorithm. Each Figure
Displays the results for a different Zipf Video Request Distribution

5. Zipf(α = 1.2)

From the results displayed in Figure 5.8 a pattern is visible. As the α parameter

increases in value, the cache-hit ratio expected from each algorithm can be expected to

be higher. The reason for this is that the relative occurrence probability of the most

frequently occurring items increases as α increases. Contrasting the Zipf probability

α : 0.8 to α : 1.2; the top 5 items increase from a request probability of 0.319 to a

request probability of 0.565 and the top 10 items increase from a request probability of

0.438 to a request probability of 0.685. Acknowledging this insinuates that Bubble, for

the few results it did converge, is the most effective cache eviction algorithm. For all

cache sizes for which Bubble did not converge Bubble-Insert and Bubble-LRU produced

the highest cache-hit ratios. This trend is visible throughout all Zipf-like distributions

with little to no deviation as to how difference the cache-hit ratios are in relation to

each cache eviction algorithm.

5.7.1.2.3 Zipf-Mandelbrot Video Popularity Distributions modelled to closely

approximate the Zipf-like distribution α : 0.8 were submitted to the Markov-Chain Anal-

ysis method to give insight into the performance one can expect from eviction algorithms

Bubble, Bubble-LRU and Bubble-Insert, as well as more commonly know cache eviction

algorithms LRU and FIFO, in scenarios with ranging Zipf-Mandelbrot object request

distributions. The Zipf-Mandelbrot distributions were modelled to closely approximate
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Figure 5.9: Each Figure Displays the results for a different Zipf-Mandelbrot Video
Request Distribution

the Zipf-like distribution with parameter α : 0.8. α parameter 0.8 was chosen on the

basis it is between the Zipf distribution α variables found to most closely approximate

the TV catch-up and VoD empirical request distributions as demonstrated in Sections

3.4.2.2 and 3.4.2.1 which uses the KL and PCS comparison methods.

The Zipf-Mandelbrot probability distribution parameters submitted to the Markov-

Chain analysis tests to inspect the effectiveness of the aforementioned cache eviction

algorithms are listed as follows:

1. Zipf-Mandelbrot(α = 1.0, ν = 5)

2. Zipf-Mandelbrot(α = 1.2, ν = 26)

3. Zipf-Mandelbrot(α = 1.4, ν = 69)

4. Zipf-Mandelbrot(α = 1.6, ν = 137)

5. Zipf-Mandelbrot(α = 1.8, ν = 227)

6. Zipf-Mandelbrot(α = 2.0, ν = 336)

The results of the Markov-Chain analysis testing different Cache-Hit Ratios with

probability distributions Zipf-Mandelbrot are shown in Figure 5.9. The Zipf-Mandelbrot

distributions are such that, as the α parameter value increases, so does the ν param-

eter value. As α increases fewer objects draw increasing probability of occurrence.

This is counteracted with the parameter ν which creates a more heavy tail in the Zipf-

Mandelbrot distribution, as well as a more even request probability among the most
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frequently occurring objects. If the large number of frequently requested items share a

near equal request probability, the cache eviction algorithms are ineffective in determin-

ing which object is more likely to be requested. When this happens, no single algorithm

is more effective over another, which may be similarly to a Zipf-Mandelbrot request

distribution with a large ν parameter value.

When the ν parameter value is low, the Bubble algorithm appears to be the most

effective algorithm for the scenarios were the Bubble eviction algorithm converged. For

all other situations, the Bubble-LRU and Bubble-Insert eviction algorithms were the

most effective which becomes increasingly less so as the ν parameter increases.

5.7.1.3 Markov-Chain Conclusion

From the results discussed in the previous section it is clearly indicated that, in the

case of a static popularity distribution when subjected to the Markov-Chain Analysis

method, Bubble, Bubble-LRU and Bubble-Insert are effective cache eviction algorithms,

especially relative to the LRU and FIFO cache eviction algorithms.

5.7.2 Icarus Simulations

The Icarus ICN simulation environment created by Saino et al. [51] as further described

in Section 2.5 provides a publicly-available, python-based tool for simulating caching

behaviour on an ICN network. The popularity distribution of the items populating the

system can be changed to reflect the desired system behaviour. Icarus enables the possi-

bility of implementing a number of routing strategies which dictate the flow of data with

the intention to populate caches in the network in the most efficient manner thus reduc-

ing the total amount of traffic on the network. Icarus also allows for any topology to

be implemented. The network topology used for the simulations is GEANT [66] (Euro-

pean academic network). More topologies were initially submitted; however topologies

GARR [67], GEANT [66], TISCALI [68] and WIDE [69] produced insignificantly differ-

ent results and thus, were omitted. The results acquired are measurements of; average

cache hit ratio, average path stretch and latency experienced on the network. A num-
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ber of popularity metrics will be subjected to testing in regards to request behaviour

as described in Section 5.7 however, the simulations will not include details such as;

item popularity decay over time, item removal over time and introduction of new items.

Instead a static workload will be subjected to testing.

The Routing strategies adopted were “Cache less for more” [48], “Hybrid Symmet-

rical Hash” [51], “Leave Copy Down” [49] and “Probabilistic Caching” [51] which are

representative of the best cache routing strategies implemented in Icarus. The average

of all routing strategies makes up the results displayed and presented. The ten cache

sizes chosen to test the probability distribution differences for which the range of is

displayed in Equation 5.7 where j = 0, 1, 2 . . . , 9 and M is equal to the unique number

of video items available for request.

2j

1000
M (5.7)

It is important to note that the cache capability in each simulation (often referred

to as cache size) is relative to the total number of unique items. For example, a cache

size of 0.512 for a simulation in which 2500 unique items are available for request

will see a total caching capacity of caching capabilities of 1280 which is distributed

among all nodes with multiple connections (not edge nodes). This would mean, for the

GEANT [66] topology, that the total quantity of caching nodes is 19 which means that

a single node is capable of caching 67 unique items. Additional to this, the insertion

index for Bubble-LRU and Bubble-Insert is not relative. As the individual cache size

for the small group does not reach 5 until a minimum total cache size of 0.064 has been

reached and does not reach 5 for the large group until a minimum total cache size of

0.016 has been reached.

Three measurements were obtained from each test with insights into the perfor-

mance that can be expected from each cache eviction algorithm under a variety of video

popularity distributions as described in Section 5.7. The measurements are Average

Latency, Average Path Stretch and Average Cache Hit-Ratio.

The number of requests made to the unique items from across edge nodes was 600000
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with 300000 warm-up requests made to populate the caches and distribute items in a

manner that would reflect a system that has converged to a relatively steady state

before the simulation started. The number of requests made should suffice in quantity

to ensure a result that are observed have converged to an accurate result, however to

ensure consistency, the simulations were performed twice with an average of the two

simulations serving as data used in this Chapter.

5.7.2.1 The optimal insertion index for Bubble-LRU and Bubble-Insert

The Bubble-LRU and Bubble-Insert algorithms have a great number of possible indices

of insertions, based on the total size of the cache. They were aimed at finding the

most well-performing insertion indices for each set that is to be compared. The sets are

comprised of the scenarios presented previously modelled to give a broad perspective

of behaviour of the cache eviction algorithms, as well as a number of pseudo-realistic

scenarios. The optimal insertion point was deduced from the Average Cache Hit-Ratio

measurement acquired in the simulations.

The indices found to produce the best results are listed in Tables: 5.7, 5.7, 5.8 and

5.10. Each of the four tables shows a unique set of simulation results for Bubble-Insert

and Bubble-LRU for which the unique item count was 2500 or 11000. The best insertion

point indices do not appear to follow a steady pattern largely due to the small difference

a varying insertion index makes on some distribution of item sets. This small variation

of cache hit ratio for a specific set of results can be seen in Figures 5.11 and 5.10. It

appears that for a large set of unique item distributions, the insertion index has almost

no impact on the cache-hit ratio for when M is large (11000), however when M is

small, the insertion index has more impact, likely due to the relative difference between

cache size and insertion index. For example Figure 5.10 does not contain the insertion

indexes greater than 67 due to the total individual cache size of each node being 67

when the relative cache size is 0.512. When M = 11000 a cache enabled node is capable

of holding up to 296 when the GEANT topology is applied to the simulation. For this

reason the insertion indexes can be expanded to the largest quantity which is 75 for the
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Bubble-LRU, M = 11000 Relative Cache Size
Results .016 .032 .064 .128 .256 .512

Zipf-M(α = 1.0, ν = 5) 5 15 35 70 75 65

Zipf-M(α = 1.2, ν = 26) 5 15 35 70 70 65

Zipf-M(α = 1.4, ν = 69) 5 15 35 70 75 75

Zipf-M(α = 1.6, ν = 137) 5 15 35 70 75 65

Zipf-M(α = 1.8, ν = 227) 5 15 35 70 70 75

Zipf-M(α = 2.0, ν = 336) 5 15 35 70 70 70

Zipf(α = 0.8) 5 15 35 65 65 75

Zipf(α = 0.9) 5 15 35 60 75 70

Zipf(α = 1) 5 15 35 65 75 50

Zipf(α = 1.1 5 15 35 60 65 30

Zipf(α = 1.2) 5 15 35 65 70 15

Zipf(α = 0.765) 5 15 35 55 75 65

Zipf-M(α = 1.42, ν = 23) 5 15 35 70 75 40

Zipf-M(α = 1.20, ν = 111) 5 15 35 70 70 70

Table 5.7: Insertion Points of Bubble-LRU with the highest Cache-Hit Ratios (Unique
Item Count: 11000)

Bubble-Insert, M = 11000 Relative Cache Size
Results .016 .032 .064 .128 .256 .512

Zipf-M(α = 1.0, ν = 5) 5 15 35 70 75 75

Zipf-M(α = 1.2, ν = 26) 5 15 35 70 75 70

Zipf-M(α = 1.4, ν = 69) 5 15 35 70 75 70

Zipf-M(α = 1.6, ν = 137) 5 15 35 70 75 75

Zipf-M(α = 1.8, ν = 227) 5 15 35 70 70 75

Zipf-M(α = 2.0, ν = 336) 5 15 35 70 75 70

Zipf(α = 0.8) 5 15 35 70 70 75

Zipf(α = 0.9) 5 15 35 65 75 75

Zipf(α = 1) 5 15 35 70 75 65

Zipf(α = 1.1) 5 15 35 70 75 70

Zipf(α = 1.2) 5 15 35 65 70 75

Zipf(α = 0.765) 5 15 35 70 75 75

Zipf-M(α = 1.42, ν = 23) 5 15 35 70 75 75

Zipf-M(α = 1.20, ν = 111) 5 15 35 70 75 70

Table 5.8: Insertion Points of Bubble-Insert with the highest Cache-Hit Ratios
(Unique Item Count: 11000)

tests performed.

The best insertion indexes for both Bubble-LRU and Bubble-Insert are used for the

tests in the Section following, in the Icarus test environment, to be representative for

their respective cache eviction algorithm.
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Figure 5.10: Insertion Points - Icarus - Unique Item Count: 11000 - Cache Size: 5635
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Figure 5.11: Insertion Points - Icarus - Unique Item Count: 2500 - Cache Size: 1280



Chapter 5. Bubble Cache Eviction Algorithm 125

Bubble-LRU, M = 2500 Relative Cache Size
Results .064 .128 .256 .512

Zipf-M(α = 1.0, ν = 5) 5 15 30 60

Zipf-M(α = 1.2, ν = 26) 5 15 30 60

Zipf-M(α = 1.4, ν = 69) 5 15 30 65

Zipf-M(α = 1.6, ν = 137) 5 15 30 65

Zipf-M(α = 1.8, ν = 227) 5 15 30 65

Zipf-M(α = 2.0, ν = 336) 5 15 30 65

Zipf(α = 0.8) 5 15 30 65

Zipf(α = 0.9) 5 15 30 65

Zipf(α = 1) 5 15 30 65

Zipf(α = 1.1) 5 15 30 55

Zipf(α = 1.2) 5 15 30 65

Zipf(α = 0.765) 5 15 30 65

Zipf-M(α = 1.42, ν = 23) 5 15 30 65

Zipf-M(α = 1.20, ν = 111) 5 15 30 65

Table 5.9: Insertion Points of Bubble-LRU with the highest Cache-Hit Ratios (Unique
Item Count: 2500)

Bubble-Insert, M = 2500 Relative Cache Size
Results .064 .128 .256 .512

Zipf-M(α = 1.0, ν = 5) 5 15 30 65

Zipf-M(α = 1.2, ν = 26) 5 15 30 65

Zipf-M(α = 1.4, ν = 69) 5 15 30 65

Zipf-M(α = 1.6, ν = 137) 5 15 30 65

Zipf-M(α = 1.8, ν = 227) 5 15 30 65

Zipf-M(α = 2.0, ν = 336) 5 15 30 65

Zipf(α = 0.8) 5 15 30 65

Zipf(α = 0.9) 5 15 30 65

Zipf(α = 1) 5 15 30 60

Zipf(α = 1.1) 5 15 30 65

Zipf(α = 1.2) 5 15 30 65

Zipf(α = 0.765) 5 15 30 60

Zipf-M(α = 1.42, ν = 23) 5 15 30 65

Zipf-M(α = 1.20, ν = 111) 5 15 30 65

Table 5.10: Insertion Points of Bubble-Insert with the highest Cache-Hit Ratios
(Unique Item Count: 2500)

5.7.2.2 Icarus Cache-Hit Ratio Results

Each group of video popularity distributions described in the introduction of Section

5.7 will be described individually as to address the individual results cache eviction
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Figure 5.12: Cache-Hit Ration for each Cache Eviction Algorithm. Each Figure
Displays the results for a different Pseudo-Realistic Video Request Distribution

(unique items: 2500)

algorithms produced in each group of simulations.

Pseudo-Real Video Popularity Distributions, as decided by results found in

Chapter 3, were used to aid in measuring the effectiveness of the Bubble, Bubble-

LRU and Bubble-Insert cache eviction algorithms, as well as a number of known cache

eviction algorithms commonly used such as LRU, RAND, FIFO and FIFO. The Icarus

Simulation, as documented in Section 5.6.2 was used to measure the effectiveness of

each cache eviction algorithm. The pseudo-realistic distributions considered are listed

below. All other simulation details were as described previously in this Section.

1. Zipf(α = 0.8) [8]

2. Zipf(α = 1) [17,25]

3. Zipf(α = 0.9) as found in Chapter 3

4. Zipf(α = 0.765) (motivation stated in Chapter 3)

5. Zipf-Mandelbrot(α = 1.42, ν = 23) (motivation stated in Chapter 3)

6. Zipf-Mandelbrot(α = 1.20, ν = 111) (motivation stated in Chapter 3)

As can be seen in Figures 5.12 and 5.13, the largest difference in cache-hit-rate

can be expected when the cache is of medium size as large caches will be very likely

to consistently contain popular items and small caches will frequently discard popular

items, regardless of what caching algorithm is used. Table 5.11 shows the mean deviation

between Bubble and other known cache eviction algorithms. From the Figures and
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Figure 5.13: Cache-Hit Ration for each Cache Eviction Algorithm. Each Figure
Displays the results for a different Pseudo-Realistic Video Request Distribution

(unique items: 11000)

graphs it is clear that, for the scenarios “pseudo realistic” we can determine Bubble to

be an effective cache-eviction algorithm with a total mean performance gain over known

cache eviction algorithms of 0.05680574 and −0.02090089 over LFU over all cache sizes.

The Bubble algorithm appears to perform best when cache sizes are of a medium size.

This is probably due to the repetitive requests required for a single item consecutively

in order for an item to be submitted to the cache and remain in the cache for more than

a single request cycle. Repetitive requests for single items is likely when the cache size

is small due to the power-law nature that is present in the simulation data used.

Cache Size Mean Difference LFU RAND FIFO LRU

0.001 -0.025 -0.101 0.000 -0.000 0.000
0.002 -0.024 -0.097 -0.000 -0.000 -0.000
0.004 0.042 -0.044 0.074 0.074 0.066
0.008 0.092 -0.002 0.131 0.131 0.108
0.016 0.111 0.012 0.155 0.155 0.123
0.032 0.123 0.027 0.168 0.169 0.129
0.064 0.115 0.025 0.160 0.160 0.115
0.128 0.076 0.001 0.118 0.118 0.070
0.256 0.039 -0.017 0.072 0.072 0.028
0.512 0.018 -0.013 0.040 0.040 0.006

Table 5.11: Mean difference of the cache-hit ratios between Bubble and other Cache
Eviction Algorithms (Unique Item Count: 11000)

As can be seen in Figures 5.12 and 5.13 the largest difference in cache-hit rate can be

expected then the cache is of medium size as large caches will, very likely, consistently
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contain popular items and small caches will frequently discard popular items, regardless

of what caching algorithm is used. Table 5.12 shows the mean deviation between Bubble-

Insert and other known cache eviction algorithms. From the Figures and graphs it is

clear that, for the scenarios “pseudo realistic” we can determine Bubble-Insert to be an

effective cache-eviction algorithm. The Bubble-Insert algorithm appears to perform best

when cache sizes are of a medium to large size. This is likely due to the forgiving nature

of Bubble-insert to items that do not receive many requests. Items, once submitted,

will remain in the cache and can only be expelled by items below them in the cache,

receiving requests. Despite this Bubble-Insert would remain the algorithm of choice for

the scenarios for which the cache size would be of size 0.016 to 0.126.

Cache Size Mean Difference LFU RAND FIFO LRU

0.016 0.071 -0.028 0.115 0.115 0.083
0.032 0.107 0.011 0.153 0.153 0.113
0.064 0.113 0.022 0.158 0.158 0.112
0.128 0.075 -0.001 0.116 0.116 0.068
0.256 0.026 -0.029 0.060 0.060 0.015
0.512 0.000 -0.031 0.021 0.021 -0.012

Table 5.12: Mean difference of the cache-hit ratios between Bubble-Insert and other
Cache Eviction Algorithms (Unique Item Count: 11000)

As can be seen in Figures 5.12 and 5.13 the largest difference in cache-hit-rate

can be expected when the cache is of medium size as large caches will be very likely

to consistently contain popular items and small caches will frequently discard popular

items, regardless of what caching algorithm is used. Table 5.13 shows the mean deviation

between Bubble-LRU and other known cache eviction algorithms. From Figures 5.12

and 5.13 and Table table: Mean Deviation pseudo real BubbleLRU, it is clear that for

the scenarios “pseudo realistic” we can determine Bubble-LRU to be an effective cache-

eviction algorithm. The Bubble-LRU algorithm appears to perform best when cache

sizes are of a medium and large size. This can be expected due to the quick removal

of items that are rarely requested in the LRU section of the cache and the retention of

items that are frequently requested within the bubble section of the cache.

To conclude: It is important to remember that when the insertion index of Bubble-
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Cache Size Mean Difference LFU RAND FIFO LRU

0.016 0.073 -0.026 0.116 0.116 0.085
0.032 0.107 0.011 0.153 0.153 0.113
0.064 0.113 0.023 0.158 0.158 0.113
0.128 0.075 -0.000 0.117 0.117 0.069
0.256 0.035 -0.021 0.068 0.068 0.024
0.512 0.015 -0.016 0.036 0.036 0.003

Table 5.13: Mean difference of the cache-hit ratios between Bubble-LRU and other
Cache Eviction Algorithms (Unique Item Count: 11000)

Insert and Bubble-LRU is at the lowest index possible of the cache, it is the Bubble

algorithm. For this reason, is it interesting to observe that the Bubble algorithm holds

a high cache-hit ratio when: the cache sizes are of a medium size, in the case of a large

set of unique available items for request; or, there is a medium to large cache size in the

case of a smaller set of unique items available for request. This is likely due to the larger

set holding the most frequently requested items in a smaller amount of items relatively

to the total size of the cache (e.g. In the case of pure Zipf, if the total number of unique

available items is 2500, the cumulative request probability of the 1% of items, receive

46% of the total requests.

The probability of 1% of a set of 11000 unique items following a Zipf distribution is

53%). The situation in which Bubble, and it’s counterparts Bubble-LRU and Bubble-

Insert, can be considered most effective is when the number most frequently requested

items share the same size as the cache when the cumulative request probability of those

items is x, which is a variant that depends on the request probability distribution.

Based on the average of all results for set sizes 11000 and 2500 in the scenario of Pseudo

realistic request distributions when the count of the most frequently requested items

that have a combined request probability of approximately 70% is equal to the total

network cache size it is likely to see Bubble perform better than other algorithms listed in

the simulations performed in Icarus. This result will vary depending on the probability

distribution found to exist in an environment. As a closing remark, it is interesting

to observe that LFU has the largest operational cost out of all the other algorithms

compared in this set of simulation results, meaning that Bubble is the most effective
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Figure 5.14: Cache-Hit Ration for each Cache Eviction Algorithm. Each Figure
Displays the results for a different Zipf Video Request Distribution (unique items:

2500)

algorithm, in all instances, with an operational cost of O(n).

Zipf Video Popularity Distributions were tested with increasing α parameters in

the Markov-Chain Analysis tool to provide insight into the effectiveness that can be

expected when they are submitted to Bubble, Bubble-LRU and Bubble-Insert, as well

as a number of known algorithms such as the LRU and FIFO cache eviction algorithms.

The increasing α parameters in a Zipf-like distribution submitted to the test provide

results that give insight into the eviction algorithm one may prefer that looked at a range

of scenarios. The Zipf parameters associated with video delivery are thought to range

between α : 0.8 [8] and α : 1 [17, 25]. Other systems, not exclusively delivering video

objects, may follow more extreme power-law distributions thus creating the potential

necessity to test algorithms Bubble, Bubble-LRU and Bubble-Insert with more extreme

α variables that are greater than 1, as described in this Section.

The Zipf request distributions submitted to the Markov-Chain analysis are listed below:

1. Zipf(α = 0.8)

2. Zipf(α = 0.9)

3. Zipf(α = 1)

4. Zipf(α = 1.1)

5. Zipf(α = 1.2)

Figures 5.15 and 5.14 demonstrate the cache-hit rates for the cache eviction algo-
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Figure 5.15: Cache-Hit Ration for each Cache Eviction Algorithm. Each Figure
Displays the results for a different Zipf Video Request Distribution (unique items:

11000)

rithms listed in the legends in each of the figures. The graphs suggest that LFU, Bub-

ble, Bubble-LRU and Bubble-Insert are predominantly the most efficient algorithms.

To further emphasise this, a number of tables were included; (Tables 5.14, 5.15 and

5.16). The tables demonstrate the different cache-hit ratios of all algorithms with all

popularity distribution used in all simulations combined.

Cache Size Mean Difference LFU RAND FIFO LRU

0.001 -0.038 -0.150 -0.000 -0.000 -0.000
0.002 -0.036 -0.144 0.000 -0.000 -0.000
0.004 0.056 -0.046 0.098 0.097 0.077
0.008 0.089 -0.005 0.132 0.132 0.096
0.016 0.097 0.007 0.139 0.139 0.101
0.032 0.099 0.019 0.139 0.139 0.099
0.064 0.087 0.017 0.124 0.124 0.084
0.128 0.054 -0.004 0.086 0.087 0.048
0.256 0.028 -0.015 0.053 0.054 0.019
0.512 0.013 -0.010 0.030 0.030 0.004

Table 5.14: Mean difference of the cache-hit ratios between Bubble and other Cache
Eviction Algorithms in the scenario of a Zipf Popularity Distribution (Unique Item

Count: 11000)

Bubble as seen in Figures 5.15 and 5.14, performs well in most simulations. From

the Figures it is hard to distinguish the difference in performance between the Bubble

algorithm and LFU, Bubble-LRU and Bubble-Insert algorithms in all probability distri-

butions shown. Table 5.14 demonstrates the mean difference that is observed when all
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Zipf-like distributions are combined and averaged to assess how Bubble compares to all

other known algorithms used in the simulations. It is easy to see that Bubble, although

not always superior over LFU in all situations, does appear to, in some instances, per-

form better, and achieve a greater cache-hit ratio, than its better known counterpart.

The performance gain over LFU can be considered small when it is achieved, however,

it is often substantial over the cache eviction algorithms that share an equal operational

cost of O(n). The total mean difference observed for Bubble in this set of simulations

is 0.045.

Cache Size Mean Difference LFU RAND FIFO LRU

0.016 0.065 -0.024 0.108 0.108 0.070
0.032 0.087 0.007 0.127 0.127 0.088
0.064 0.086 0.016 0.123 0.123 0.083
0.128 0.053 -0.005 0.085 0.086 0.047
0.256 0.024 -0.018 0.050 0.050 0.016
0.512 0.012 -0.012 0.028 0.028 0.002

Table 5.15: Mean difference of the cache-hit ratios between Bubble-LRU and other
Cache Eviction Algorithms in the scenario of a Zipf Popularity Distribution (Unique

Item Count: 11000)

Bubble-LRU as seen in Figures 5.15 and 5.14 performs well in most simulations.

From the Figures, it is hard to distinguish the difference in performance between the

Bubble-LRU algorithm and LFU, Bubble and Bubble-Insert algorithms in all probability

distributions shown. Table 5.15 demonstrates the mean difference that is observed

when all Zipf-like distributions are combined and averaged to assess how Bubble-LRU

compares to all other known algorithms used in the simulations. From this set of

observations, it is likely that Bubble-LRU would not be considered over LFU as the

situations for which Bubble-LRU is better, is only better by a very slight margin.

Bubble-Insert as seen in Figures 5.15 and 5.14 performs well in most simulations.

From the Figures it is hard to distinguish the difference in performance between the

Bubble-Insert algorithm and LFU, Bubble and Bubble-LRU algorithms in all probability

distributions shown. Table 5.16 demonstrates the mean difference that is observed

when all Zipf-like distributions are combined and averaged to assess how Bubble-Insert

compares to all other known algorithms used in the simulations. From this set of
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Cache Size Mean Difference LFU RAND FIFO LRU

0.016 0.064 -0.025 0.107 0.106 0.069
0.032 0.088 0.007 0.127 0.127 0.088
0.064 0.086 0.015 0.122 0.123 0.082
0.128 0.053 -0.005 0.085 0.085 0.046
0.256 0.017 -0.026 0.042 0.043 0.008
0.512 -0.001 -0.024 0.015 0.016 -0.010

Table 5.16: Mean difference of the cache-hit ratios between Bubble-Insert and other
Cache Eviction Algorithms in the scenario of a Zipf Popularity Distribution (Unique

Item Count: 11000)

observation, it can be seen that the results for Bubble-LRU and Bubble-Insert are very

comparable, meaning that LFU would be the preferred algorithm in almost all cases.

To conclude: Reflecting on Tables 5.14, 5.15 and 5.16 it can be determined that

Bubble is the best newly introduced cache eviction algorithm. However, being the best

newly introduced algorithm is situational. The statement of being the best algorithm

comes from the comparison to all the algorithms that were simulated as part of the Zipf

results. Bubble does indeed appear to be the preferred algorithm in cache sizes that

are of a medium size. The results found for the Zipf distributions tested appears to

align with the results in the previous Section in which the pseudo-realistic probability

distributions were applied in the Icarus simulations. The situation in which Bubble can

be considered most effective is when the number of most frequently requested items

share the same size as the cache when the cumulative request probability of those items

is x which is a variant depending on the request probability distribution. Based on the

average of all results for set sizes 11000 and 2500 in the scenario of Pseudo realistic

request distributions when the count of the most frequently requested items that have a

combined request probability of approximately 70% is equal to the total network cache

size we are likely to to see Bubble perform better than other algorithms listen in the

simulations performed in Icarus.

Zipf-Mandelbrot Video Popularity Distributions modelled to closely approxi-

mate the Zipf-like distribution α : 0.8 were submitted to the Markov-Chain Analysis

method to give insight into the performance one can expect from eviction algorithms
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Figure 5.16: Each Figure Displays the results for a different Zipf-Mandelbrot Video
Request Distribution (unique items: 2500)

Bubble, Bubble-LRU and Bubble-Insert, as well as more commonly know cache eviction

algorithms LRU and FIFO, in scenarios with ranging Zipf-Mandelbrot object request

distributions. The Zipf-Mandelbrot distributions were modelled to closely approximate

the Zipf-like distribution with parameter α = 0.8. α parameter 0.8 was chosen on the

basis that it is between the Zipf distribution α variables found to most closely approx-

imate the TV catch-up and VoD empirical request distributions as demonstrated in

Sections 3.4.2.2 and 3.4.2.1 which uses the KL and PCS comparison methods.

The Zipf-Mandelbrot probability distribution parameters submitted to the Markov-

Chain analysis tests to inspect the effectiveness of the aforementioned cache eviction

algorithms and are listed as follows:

1. Zipf-Mandelbrot(α = 1.0, ν = 5)

2. Zipf-Mandelbrot(α = 1.2, ν = 26)

3. Zipf-Mandelbrot(α = 1.4, ν = 69)

4. Zipf-Mandelbrot(α = 1.6, ν = 137)

5. Zipf-Mandelbrot(α = 1.8, ν = 227)

6. Zipf-Mandelbrot(α = 2.0, ν = 336)

Figures 5.17 and 5.16 demonstrate the cache-hit rates for the cache eviction algo-

rithms listed in the legends in each of the figures. The graphs suggest that LFU, Bubble,

Bubble-LRU and Bubble-Insert are predominantly the most efficient algorithms. To fur-

ther emphasise this, a number of tables were included (Tables 5.17, 5.18 and 5.19). The
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Figure 5.17: Each Figure Displays the results for a different Zipf-Mandelbrot Video
Request Distribution (unique items: 11000)

tables demonstrate the different cache-hit ratios of all algorithms with all popularity

distribution used in all simulations combined.

Cache Size Mean Difference LFU RAND FIFO LRU

0.001 -0.011 -0.045 0.000 0.000 0.000
0.002 -0.013 -0.050 0.000 0.000 -0.000
0.004 0.019 -0.038 0.039 0.039 0.037
0.008 0.088 0.001 0.121 0.121 0.111
0.016 0.130 0.017 0.175 0.175 0.152
0.032 0.153 0.027 0.211 0.211 0.165
0.064 0.141 0.027 0.201 0.202 0.135
0.128 0.091 0.005 0.144 0.144 0.074
0.256 0.039 -0.015 0.075 0.075 0.022
0.512 0.015 -0.010 0.033 0.033 0.003

Table 5.17: Mean difference of the cache-hit ratios between Bubble and other Cache
Eviction Algorithms in the scenario of a Zipf Popularity Distribution (Unique Item

Count: 11000)

The Bubble algorithm can be considered the best able to contain frequently re-

quested items in a number of scenarios displayed in Figures 5.17 and 5.16 which can be

more clearly seen in Table 5.17. The results conclude that LFU, in most tested scenar-

ios, performs better than Bubble, however not when the cache size is of a medium size.

Considering only cache eviction algorithms that are of an equal operational cost (LRU,

FIFO and RAND) it is interesting to see that Bubble has a much superior cache-hit

ratio. For these reasons Bubble should be considered. As for the majority of scenar-

ios tested, the mean difference between Bubble and all other cache eviction algorithms
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for the scenarios Zipf-Mandelbrot was positive, meaning that the mean cache-hit ratio

was above average, and in some occasions better than all other mean cache eviction

algorithms used in the Icarus simulations.

Cache Size Mean Difference LFU RAND FIFO LRU

0.016 0.076 -0.036 0.121 0.121 0.098
0.032 0.130 0.004 0.188 0.188 0.142
0.064 0.138 0.024 0.198 0.198 0.132
0.128 0.090 0.003 0.142 0.142 0.073
0.256 0.034 -0.021 0.069 0.070 0.016
0.512 0.013 -0.012 0.031 0.031 0.001

Table 5.18: Mean difference of the cache-hit ratios between Bubble-LRU and other
Cache Eviction Algorithms in the scenario of a Zipf Popularity Distribution (Unique

Item Count: 11000)

Cache Size Mean Difference LFU RAND FIFO LRU

0.016 0.075 -0.038 0.120 0.120 0.097
0.032 0.130 0.003 0.187 0.187 0.141
0.064 0.138 0.024 0.199 0.199 0.132
0.128 0.089 0.002 0.141 0.141 0.072
0.256 0.025 -0.029 0.061 0.061 0.008
0.512 -0.001 -0.025 0.018 0.018 -0.013

Table 5.19: Mean difference of the cache-hit ratios between Bubble-Insert and other
Cache Eviction Algorithms in the scenario of a Zipf Popularity Distribution (Unique

Item Count: 11000)

Bubble-LRU and Bubble-Insert in the scenarios of Zipf-Mandelbrot are of a very

comparable performance. Each algorithm demonstrates positive results when cache sizes

are of a medium size within the ranges simulated. When cache sizes are of a favourable

size to Bubble-Insert and Bubble-LRU, it can be seen that the performance over the

next best algorithm, LFU, is rather small relative to the performance LFU provides

over Bubble-LRU and Bubble-Insert in the rest of the simulation results. In a few

cases, Bubble-LRU and Bubble-Insert have a negative mean difference when compared

to all algorithms in the simulation, which makes it hard to value these algorithms for

the simulation in which Zipf-Mandelbrot was applied. If the Tables of Mean Difference

of Bubble-Insert and Bubble-LRU are compared to the Table of Mean Difference of

Bubble and it can be concluded that Bubble is the superior algorithm out of those
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newly introduced.

5.7.2.3 Bubble, Bubble-insert and Bubble-LRU Icarus Simulation Conclu-

sion

Bubble, Bubble-LRU and Bubble-Insert are, in this chapter, compared against algo-

rithms of similar or greater operational costs in a video on demand setting. A video

on demand system may show a variety of characteristics, thus presenting the need to

test a number of them to identify how the presented algorithms may perform under dif-

ferent circumstances. When summarising the results in the Zipf, Zipf-Mandelbrot and

Pseudo realistic simulations it is clear to see that LFU and Bubble are very comparable

in performance when cache sizes range between 0.008 and 0.128. In these scenarios one

can expect Bubble to produce a cache-hit ratio comparable, or better, than LFU. If

only cache eviction algorithms on operational cost O(n) were considered, Bubble would

certainly be the most effective algorithm in the scenarios tests.

This concludes the Icarus simulation discussion with a situational preference for

Bubble over other algorithms used in this chapter. Bubble-Insert and Bubble-LRU are

tested, however perform to a mediocre standard when compared to Bubble with a lower

cache-hit ratio across all cache sizes. Bubble-Insert and Bubble-LRU do provide an

appropriate alternative to algorithms tested with an operational cost of O(n), however,

they are more cumbersome to set-up correctly than Bubble with an additional vari-

able that is required to be set accordingly to gain the performance witnessed in the

simulations in this chapter (Insertion Index).

5.7.3 Complex Request Single Cache Analysis

Objects in real systems do not exist with a constant request frequency throughout the

period they are available for request. The majority of objects experience a measure

of popularity when they are first introduced into the system with a gradual decay of

popularity in some web systems, such as video delivery systems [37]. To simulate this, it

is important to consider the churn one may expect of videos in a VoD system which can
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be variable depending largely on the category of content [39] (e.g. News, Movies, TV

shows). Icarus and the Markov Chain Analysis used for testing the Bubble algorithms

as well as its variations do not encompass this aspect of video delivery systems. The

Complex Request Single Cache Analysis simulator does encompass this aspect of video

delivery for which there are two parts. One is the Request Generator and the second is

a single cache to which the requests are subjected.

The Request Generator used in this section is as introduced in chapter 4. The

request generator provides a tool to simulate requests based on a number of parameters

such as: Probability of Request, Decay (In the form of a function) and Life-Time. The

parameters used for the simulation were as previously mentioned in the introduction of

Chapter 5.7. The function of decay used is an implementation of the function described

by Avramova et al. [37]. This decay function is discussed further in Chapter 4.2.1.2.

The variables chosen for the purpose of this simulation are:τ : 40 and β : 0.5.

The tests performed aim to provide a measurement of Bubble, Bubble-LRU and

Bubble-Insert’s effectiveness in comparison to the effectiveness of LRU,LFU and FIFO.

these tests will be structured as follows:

1. What Cache-Hit ratios can be expected from a number of Zipf Distributions with

a variety of cache sizes in a system with an item pool of 11000 or 2500 unique

items

2. What Cache-Hit ratios can be expected from a number of Zipf-Mandelbrot Dis-

tribution modelled to be similar to a Zipf distribution of α equal to 0.8 (Table

5.2) with a variety of cache sizes in a system with an item pool of 11000 or 2500

unique items.

3. What Cache-Hit ratios can be expected from a number of pseudo realistic popu-

larity distributions with a variety of cache sizes in a system with an item pool of

11000 or 2500 unique items.

Note the cache sizes used in the tests performed in this chapter are deliberately

sized to be comparable to the Icarus simulation results. The relative cache sizes are

S = [0.001, 0.002, 0.004, 0.008, 0.016, 0.032, 0.064, 0.128, 0.256, 0.512] to the total cache
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thus, making the cache sizes used M × S. For when M = 2500, the smallest two values

are dismissed, due to their extremely small size ([2, 5]) when measuring Bubble-LRU

and Bubble-Insert as the lowest insertion point is 5.

5.7.3.1 The optimal insertion index for Bubble-LRU and Bubble-Insert

The Bubble-LRU and Bubble-Insert algorithms have a great number of possible indices

of insertions, based on the total size of the cache. The aim is to find the most well-

performing insertion indices for each set that is to be compared. The sets are comprised

of the scenarios presented previously, modelled to give a broad perspective of behaviour

of the cache eviction algorithms, as well as a number of pseudo-realistic scenarios. For

the Complex Request Single Cache Analysis scenario, Bubble-LRU and Bubble-Insert

can be assessed in two scenarios in which the total available pool of items is small and

large (M = 11000 OR M = 2500).

5.7.3.1.1 The large dataset where M = 11000 is interesting when looked at

separately from the smaller dataset due to the rotational influence that is introduced in

this Chapter. The larger dataset M can influence the cache behaviour differently from

when M is small through the larger set of frequently requested items. similar decay and

removal rate relative to M would suggest a difference in request behaviours between the

large and small item set M .

Tables 5.21 and 5.20 demonstrate the changing preference in insertion index depen-

dant on the frequency of request distributions submitted to the caching environment.

The insertion index is largely preferred to be low with an index of 5 with the exception

of when the popularity distribution is Zipf α = 1 and larger. The low insertion index

is likely due to the requirement that items do not remain in the cache for a long period

of time. Once submitted to the cache an item will decay rapidly in their frequency

of requests. This characteristic of the Complex Request Single Cache Analysis gives a

unique insight that may be visible in terms on best insertion index.
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Bubble-LRU, M = 11000 Cache Size
Converged Results 11 22 44 88 176 352 704 1408 2816 5632

Zipf-M(α = 1.0, ν = 5) 5 5 5 5 5 5 5 5 5 5

Zipf-M(α = 1.2, ν = 26) 5 5 5 5 5 5 10 10 5 5

Zipf-M(α = 1.4, ν = 69) 5 5 5 5 5 5 5 5 5 5

Zipf-M(α = 1.6, ν = 137) 5 5 5 5 5 5 5 5 5 5

Zipf-M(α = 1.8, ν = 227) 5 5 5 5 5 5 5 5 5 5

Zipf-M(α = 2.0, ν = 336) 5 5 5 5 5 5 5 5 5 5

Zipf(α = 0.8) 5 5 5 5 5 5 10 5 5 5

Zipf(α = 0.9) 5 5 5 5 5 5 15 5 10 5

Zipf(α = 1.0) 10 10 10 10 10 10 20 15 15 5

Zipf(α = 1.1) 10 10 10 5 5 5 5 5 5 5

Zipf(α = 1.2) 10 10 10 5 5 5 15 20 5 5

Zipf(α = 0.765) 5 5 5 5 5 5 5 5 10 5

Zipf-M(α = 1.42, ν = 23) 5 5 5 5 5 15 5 25 5 5

Zipf-M(α = 1.20, ν = 111) 5 5 5 5 5 5 5 5 5 5

Table 5.20: Insertion Points of Bubble-LRU with the highest Cache-Hit Ratios

Bubble-Insert, M = 11000 Cache Size
Converged Results 11 22 44 88 176 352 704 1408 2816 5632

Zipf-M(α = 1.0, ν = 5) 5 5 5 5 5 5 5 5 5 5

Zipf-M(α = 1.2, ν = 26) 5 5 5 5 5 5 5 5 5 5

Zipf-M(α = 1.4, ν = 69) 5 5 5 5 5 5 5 5 5 5

Zipf-M(α = 1.6, ν = 137) 5 5 5 5 5 5 5 5 5 5

Zipf-M(α = 1.8, ν = 227) 5 5 5 5 5 5 5 5 5 5

Zipf-M(α = 2.0, ν = 336) 5 5 5 5 5 5 5 5 5 5

Zipf(α = 0.8) 5 5 5 5 5 5 5 5 5 5

Zipf(α = 0.9) 5 5 5 5 5 5 5 5 5 5

Zipf(α = 1) 10 10 10 10 10 5 10 5 5 5

Zipf(α = 1.1) 10 10 10 10 5 5 5 5 5 5

Zipf(α = 1.2) 10 10 10 5 5 10 5 10 5 5

Zipf(α = 0.765) 5 5 5 5 5 5 5 5 5 5

Zipf-M(α = 1.42, ν = 23) 5 5 5 5 5 5 5 5 5 5

Zipf-M(α = 1.20, ν = 111) 5 5 5 5 5 5 5 5 5 5

Table 5.21: Insertion Points of Bubble-Insert with the highest Cache-Hit Ratios

5.7.3.1.2 The small dataset where M = 2500 gives a perspective different from

the large dataset due to the relative rotational properties relative to M as mentioned

previously. Tables 5.22 and 5.23 demonstrate the optimal insertion indexes for Bubble-

LRU and Bubble-Insert. It is interesting to observe the difference in optimal insertion

index when the popularity distribution is Zipf α = 1 and larger. Through smaller cache
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Bubble-LRU, M = 2500 Cache Size
Converged Results 10 20 40 80 160 320 640 1280

Zipf-M(α = 1.0, ν = 5) 5 5 5 5 5 5 5 5

Zipf-M(α = 1.2, ν = 26) 5 5 5 5 5 5 5 5

Zipf-M(α = 1.4, ν = 69) 5 5 5 5 5 5 5 5

Zipf-M(α = 1.6, ν = 137) 5 5 5 5 5 5 5 10

Zipf-M(α = 1.8, ν = 227) 5 5 5 5 5 5 5 5

Zipf-M(α = 2.0, ν = 336) 5 5 5 5 5 5 5 5

Zipf(α = 0.8) 5 5 5 5 5 5 5 5

Zipf(α = 0.9) 5 10 10 10 5 5 5 5

Zipf(α = 1.0) 5 10 10 5 5 5 5 5

Zipf(α = 1.1) 5 10 10 10 5 5 5 5

Zipf(α = 1.2) 5 10 10 5 5 5 5 5

Zipf(α = 0.765) 5 5 5 5 5 5 5 5

Zipf-M(α = 1.42, ν = 23) 5 10 5 5 5 5 5 5

Zipf-M(α = 1.20, ν = 111) 5 5 5 5 5 5 5 5

Table 5.22: Insertion Points of Bubble-LRU with the highest Cache-Hit Ratios

Bubble-Insert, M = 2500 Cache Size
Converged Results 10 20 40 80 160 320 640 1280

Zipf-M(α = 1.0, ν = 5) 5 5 5 5 5 5 5 5

Zipf-M(α = 1.2, ν = 26) 5 5 5 5 5 5 5 5

Zipf-M(α = 1.4, ν = 69) 5 5 5 5 5 5 5 5

Zipf-M(α = 1.6, ν = 137) 5 5 5 5 5 5 5 10

Zipf-M(α = 1.8, ν = 227) 5 5 5 5 5 5 5 5

Zipf-M(α = 2.0, ν = 336) 5 5 5 5 5 5 5 5

Zipf(α = 0.8) 5 5 5 5 5 5 5 5

Zipf(α = 0.9) 5 10 5 5 5 5 5 5

Zipf(α = 1) 5 10 5 10 5 10 10 10

Zipf(α = 1.1) 5 10 10 10 5 10 15 5

Zipf(α = 1.2) 5 10 10 10 10 10 10 10

Zipf(α = 0.765) 5 5 5 5 5 5 5 10

Zipf-M(α = 1.42, ν = 23) 5 10 5 5 5 5 5 5

Zipf-M(α = 1.20, ν = 111) 5 5 5 5 5 5 5 5

Table 5.23: Insertion Points of Bubble-Insert with the highest Cache-Hit Ratios

sizes the optimal insertion index of 10 remains, even though the larger set of items is

more than four times the total number of items. This similarity appears to hold less

true as the cache sizes grow, implying that relative to the rotational influence, it has a

different effect on cache performance depending on the cache size and the total number

of items available for request (M).
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Figure 5.18: Insertion Points - Complex Request Single Cache Analysis - Cache Size:
352 — M = 11000

To illustrate the impact of varying insertion points a smaller medium cache size

was chosen to be plotted in Figures 5.18 and 5.19 for the Complex Request Single

Cache Analysis. When the cache sizes are large the lines are almost flat due to the

large quantity of items that will permanently reside in the cache and the items affected

by the varying insertion index will be those that are of a low request frequency. The

Figures show an interesting pattern that suggests that higher insertion points are the

most desired, however this may change if the rotation and decay of the items was less

extreme. From the Figures, a definitive impact that results from the insertion index

in a cache can be derived, which implies one would be required to exercise caution

when choosing an appropriate insertion index as to ensure they gain the cache-hit ratio

desired.

5.7.3.2 Complex Request Single Cache Analysis Cache-Hit Ratio Results

As for the results of the Complex Request Single Cache Analysis we introduce Bubble

besides all other cache eviction algorithms used which are LFU, LRU, RAND and

FIFO. Bubble-Insert and Bubble-LRU will only be considered when an insertion index
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Figure 5.19: Insertion Points - Complex Request Single Cache Analysis - Cache Size:
2500 — M = 2500

is possible which is when the total cache size c is greater than the lowest insertion index

tested (5).

5.7.3.2.1 Pseudo-Real Video Popularity Distributions, as decided by results

found in Chapter 3, were used to aid in measuring the effectiveness of the Bubble,

Bubble-LRU and Bubble-Insert cache eviction algorithms, as well as a number of known

cache eviction algorithms commonly used such as LRU and FIFO. The Complex Re-

quest Single Cache Analysis, as documented in Chapter 4, was used to measure the

effectiveness of each cache eviction algorithm. The pseudo-realistic distributions con-

sidered are listen below. All other simulation details were as described previously in

this Section.

1. Zipf(α = 0.8) [8]

2. Zipf(α = 1) [17,25]

3. Zipf(α = 0.9) as found in Chapter 3

4. Zipf(α = 0.765) (motivation stated in Chapter 3)

5. Zipf-Mandelbrot(α = 1.42, ν = 23) (motivation stated in Chapter 3)
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Figure 5.20: Cache-Hit Ration for each Cache Eviction Algorithm. Each Figure
Displays the results for a different Pseudo-Realistic Video Request Distribution in a

Complex Request Single Cache Analysis environment — M = 11000
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Figure 5.21: Cache-Hit Ration for each Cache Eviction Algorithm. Each Figure
Displays the results for a different Pseudo-Realistic Video Request Distribution in a

Complex Request Single Cache Analysis environment — M = 2500

6. Zipf-Mandelbrot(α = 1.20, ν = 111) (motivation stated in Chapter 3)

The Bubble cache eviction algorithm, as shown in Figures 5.20 and 5.21, exhibits

some unusual, and counter intuitive behaviour when compared to other algorithms. The

Bubble algorithm, even compared to the RAND algorithm, performs very poorly when

the cache sizes are relatively large. The reason for this poor performance is due to fact

that items in the Complex Request Single Cache simulations are available for request

for a finite amount of time. New items that are introduced into the cache are required

to receive two consecutive requests to be submitted to the cache for more than a single

cycle. This requirement for items to maintain persistence in the cache is the barrier

that stops the items that have decayed in popularity from being removed from the cache
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and stops new items being introduced into the cache, unless they are items that have a

large enough probability of request to be requested two times consecutively.

It is notable that, though Bubble performs poorly when the cache size is large,

Bubble performs superbly when the cache size remains small. The mean difference

between Bubble and the other known algorithms when the cache size is of size 10 and

smaller, as shown in Table 5.24, averages a performance gain of ≈ 0.05, with a peak

mean difference of 0.71. This performance can be attributed to the quick rejection of

items which are requested a single time due to the items being removed as soon as a

new item not yet in the cache is requested / submitted. Any items popular enough to

be requested two times consecutively will remain in the cache for more than a single

cycle of request, thus giving those items a greater chance of remaining in the cache.

Equally important is the removal of items when they decay in popularity. Unlike LFU,

which retains items until the count of requests decays to a small enough number to

be overtaken by a new item, Bubble will see items bumped down in index as soon

as the item below in index receives a request. This means items are likely to move

frequently in a Bubble cache; implying that recency of request is more important than

the measurement of historic quantity of requests, as holds importance in LFU, when

items decay in popularity and when new items are frequently added and removed.

cache size mean difference LFU RAND FIFO LRU

2 0.036 0.032 0.039 0.039 0.036
5 0.071 0.056 0.079 0.079 0.070

10 0.041 0.014 0.056 0.056 0.038
20 -0.038 -0.074 -0.015 -0.016 -0.048
40 -0.142 -0.173 -0.114 -0.118 -0.162
80 -0.253 -0.269 -0.224 -0.235 -0.283

160 -0.363 -0.358 -0.334 -0.359 -0.401
320 -0.452 -0.430 -0.420 -0.471 -0.487
640 -0.499 -0.480 -0.477 -0.514 -0.524

1280 -0.526 -0.511 -0.512 -0.537 -0.543

Table 5.24: Mean difference of the cache-hit ratios between Bubble and other Cache
Eviction Algorithms in the scenario of a pseudo-realistic Popularity Distribution

(Unique Item Count: 2500)

The Bubble-LRU and Bubble-Insert cache eviction algorithm performance measure-
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ments are listed in Tables 5.25 and 5.26. The results for each of these algorithms are

comparable and does no include any results for cache sizes equal to and lower than five.

This is because the lowest insertion index used in these experiments is five.

In contrast to Bubble, Bubble-LRU holds cache-hit ratios greater or equal to the

known algorithm tested in almost all situations. The average performance gained in

terms of cache hit ration, as can be seen in Table 5.25, is ≈ 0.035. The performance of

the Bubble-LRU can be largely attributed to incorporating the performance experienced

by Bubble when cache sizes are small into a LRU cache which, when frequent change of

items and their popularity occurs, adjusts well. For this reason, the difference between

LRU and Bubble-LRU remain small when cache sizes are large due to the insertion

index frequently being low and therefore being similar to LRU. When the cache sizes

are relatively small the Bubble section of the cache, which is frequently 5 or 10 (See

Section 5.7.3.1), has a larger influence on the total performance thus resulting in a

greater discrepancy between the cache-hit ratio of LRU and Bubble-LRU.

Bubble-Insert appears to perform comparably to Bubble-LRU when cache sizes are

small. The slightly lower cache-hit ratio experienced in Bubble-Insert when compared

to Bubble-Insert when cache sizes are low is likely due to the retention that Bubble

demonstrates relatively to LRU. LRU will move items that receive a request back to

the top of the LRU, which is also experienced in the LRU section of the Bubble-LRU

cache. This quick method and rotation of items in the LRU section will result in items

being discarded from the cache much more frequently than would be true for a Bubble-

Insert cache as the Bubble algorithm will see items move down only when the item

in the index below a given item is requested, or when an item outside of the cache is

requested if inspecting the cache below the insertion index.

This Section dove into the performance of Bubble, Bubble-LRU and Bubble-Insert

and what may be the reason as to why the cache-hit ratios measured were as such, com-

paring the results to known cache eviction algorithms. The results used were specifically

those of when the request frequency data was relatively similar to real user behaviour;

referred to as “Pseudo-realistic” request distributions. The results of all of the Pseudo-
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cache size mean difference LFU RAND FIFO LRU

10 0.049 0.022 0.065 0.064 0.046
20 0.031 -0.005 0.055 0.054 0.022
40 0.026 -0.005 0.054 0.050 0.006
80 0.030 0.014 0.058 0.048 0.000

160 0.037 0.042 0.067 0.041 -0.000
320 0.034 0.056 0.067 0.015 -0.000
640 0.025 0.044 0.046 0.010 -0.000

1280 0.029 0.044 0.043 0.018 0.012

Table 5.25: Mean difference of the cache-hit ratios between BubbleLRU and other
Cache Eviction Algorithms in the scenario of a pseudo-realistic Popularity

Distribution (Unique Item Count: 2500)

cache size mean difference LFU RAND FIFO LRU

10 0.044 0.017 0.059 0.059 0.041
20 0.015 -0.021 0.038 0.038 0.005
40 -0.005 -0.036 0.022 0.019 -0.025
80 -0.010 -0.027 0.018 0.007 -0.040

160 -0.001 0.003 0.028 0.002 -0.039
320 0.020 0.042 0.052 0.001 -0.014
640 0.029 0.048 0.051 0.014 0.004

1280 0.011 0.026 0.025 0.000 -0.006

Table 5.26: Mean difference of the cache-hit ratios between BubbleInsert and other
Cache Eviction Algorithms in the scenario of a pseudo-realistic Popularity

Distribution (Unique Item Count: 2500)

realistic request distributions were summarised and each known algorithm was directly

compared to Bubble, Bubble-LRU and Bubble-Insert. The distributions were varied, as

would be expected in the real world with varying video delivery services, providing an

average which gives a good indicator of the effectiveness of the algorithms tested.

The results indicate that Bubble would be a good consideration in a pseudo-realistic

environment for when the cache size remains small. This can be measured to be of a

size until the items at the popularity index of the size of the bubble cache, if we list

the available items from most popular to least, to have a low probability of consecutive

requests. Exactly how low will depend largely on the distribution and decay used. In

the case of the distribution Zipf(M = 2500, α = 1) in these experiments the cache size

stopped increasing the cache-hit ratio when it reached a size of ≈ 20 which is when the

consecutive request probability of item 21 was ≈ 0.0000321.
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The results for Bubble-Insert and Bubble-LRU appears to be similar in performance

in the pseudo-realist test results with a small performance increase in the Bubble-LRU

results. Bubble-LRU cache eviction algorithm should be highly considered when rota-

tion is apparent in the environment for which it could be considered, as well as when

the popularity distributions found to exist in the environment is similar to the pseudo-

realistic distributions used in this Section. The performance experienced in terms of

cache-hit ratio for the Bubble-LRU cache eviction algorithm exceeds all other algorithms

by a large margin with few exceptions.

5.7.3.2.2 Zipf Video Popularity Distributions were testing with increasing α

parameters in the Markov-Chain Analysis tool to provide insight into the effectiveness

that can be expected when they are submitted to Bubble, Bubble-LRU and Bubble-

Insert, as well as a number of known algorithms such as the LRU and FIFO cache

eviction algorithms. The increasing α parameters in a Zipf-like distribution submitted

to the test provide results that give insight into the eviction algorithm one may prefer

if a range of scenarios. The Zipf parameters associated with video delivery are thought

to range between α : 0.8 [8] and α : 1 [17,25]. Other systems, not exclusively delivering

video objects, may follow more extreme power-law distributions thus creating the po-

tential necessity to test algorithms Bubble, Bubble-LRU and Bubble-Insert with more

extreme α variables that are greater than 1 as are described in this Section.

The Zipf request distributions submitted to the Markov-Chain analysis are listed below:

1. Zipf(α = 0.8)

2. Zipf(α = 0.9)

3. Zipf(α = 1)

4. Zipf(α = 1.1)

5. Zipf(α = 1.2)

The Bubble eviction algorithm appears to exhibit the same characteristics as those

that have previously been mentioned in the discussion in the previous Section regarding

performance of Bubble in a Pseudo-realistic environment. Bubble appears to perform

extremely well, relative to other algorithms tested, when the cache size remains low due
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Figure 5.22: Cache-Hit Ration for each Cache Eviction Algorithm. Each Figure
Displays the results for a different Zipf Video Request Distribution in a Complex

Request Single Cache Analysis environment — M = 11000
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Figure 5.23: Cache-Hit Ration for each Cache Eviction Algorithm. Each Figure
Displays the results for a different Zipf Video Request Distribution in a Complex

Request Single Cache Analysis environment — M = 2500

to the quick rejection of items that are no longer requested and the fact that items that

receive a single request will not remain in the cache for more than a single request cycle.

Bubble-LRU appears to perform best in all situations tested. It is interesting to

note that, as the Zipf popularity distribution becomes steeper with the increase of the

α variable, the difference between the algorithms in terms of performs appears to become

smaller. This appears to be true for both sets tested, where M = 11000 or M = 2500, as

can be seen in Figures 5.22 and 5.23. This is to be expected with fewer items receiving an

increasing amount of the total requests, thus making it easier to assess for an algorithm

which items are to be contained in the cache to increase the cache-hit ratio as a result.

The reason as to why Bubble-LRU produces as greater cache-hit ratio when compared
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cache size mean difference LFU RAND FIFO LRU

2 0.055 0.044 0.061 0.061 0.055
5 0.092 0.062 0.109 0.109 0.090

10 0.069 0.038 0.089 0.088 0.059
20 -0.007 -0.041 0.018 0.017 -0.022
40 -0.107 -0.131 -0.081 -0.084 -0.132
80 -0.211 -0.222 -0.185 -0.196 -0.243

160 -0.309 -0.302 -0.283 -0.306 -0.344
320 -0.381 -0.364 -0.354 -0.396 -0.411
640 -0.418 -0.404 -0.400 -0.429 -0.439

1280 -0.439 -0.429 -0.428 -0.447 -0.453

Table 5.27: Mean difference of the cache-hit ratios between Bubble and other Cache
Eviction Algorithms in the scenario of a Zipf Popularity Distribution (Unique Item

Count: 2500)

to Bubble is discussed in the Pseudo-realistic Section.

Bubble-Insert appears to exhibit a very similar behavioural pattern as Bubble-LRU

as can be seen in Figures 5.22 and 5.23 with a slightly lower average cache-hit ratio.

This can be reasoned to be because of the nature of LRU which is able to eject items

more rapidly than Bubble as further discussed in the Pseudo-Realistic Section of the

Complex Request Single Cache result discussion.

cache size mean difference LFU RAND FIFO LRU

10 0.062 0.031 0.083 0.082 0.052
20 0.045 0.011 0.070 0.069 0.030
40 0.033 0.009 0.059 0.056 0.009
80 0.032 0.021 0.058 0.048 0.000

160 0.035 0.041 0.061 0.037 -0.000
320 0.030 0.047 0.057 0.015 -0.000
640 0.029 0.044 0.047 0.018 0.008

1280 0.028 0.038 0.039 0.020 0.014

Table 5.28: Mean difference of the cache-hit ratios between BubbleLRU and other
Cache Eviction Algorithms in the scenario of a Zipf Popularity Distribution (Unique

Item Count: 2500)

5.7.3.2.3 Zipf-Mandelbrot Video Popularity Distributions modelled to closely

approximate the Zipf-like distribution α : 0.8 were submitted to the Markov-Chain Anal-

ysis method to give insight into the performance one can expect from eviction algorithms

Bubble, Bubble-LRU and Bubble-Insert, as well as more commonly know cache eviction
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cache size mean difference LFU RAND FIFO LRU

10 0.057 0.026 0.078 0.077 0.047
20 0.032 -0.002 0.056 0.056 0.016
40 0.005 -0.019 0.031 0.028 -0.019
80 -0.005 -0.016 0.022 0.011 -0.036

160 0.001 0.008 0.027 0.004 -0.034
320 0.017 0.034 0.044 0.002 -0.013
640 0.012 0.026 0.030 0.001 -0.009

1280 0.008 0.018 0.020 0.000 -0.005

Table 5.29: Mean difference of the cache-hit ratios between BubbleInsert and other
Cache Eviction Algorithms in the scenario of a Zipf Popularity Distribution (Unique

Item Count: 2500)

algorithms LRU and FIFO, in scenarios with ranging Zipf-Mandelbrot object request

distributions. The Zipf-Mandelbrot distributions were modelled to closely approximate

the Zipf-like distribution with parameter α : 0.8. α parameter 0.8 was chosen on the ba-

sis that it is between the Zipf distribution α variables found to most closely approximate

the TV catch-up and VoD empirical request distributions as demonstrated in Sections

3.4.2.2 and 3.4.2.1 which uses the KL and PCS comparison methods.

The Zipf-Mandelbrot probability distribution parameters submitted to the Markov-

Chain analysis tests to inspect the effectiveness of the aforementioned cache eviction

algorithms are listed as follows:

1. Zipf-Mandelbrot(α = 1.0, ν = 5)

2. Zipf-Mandelbrot(α = 1.2, ν = 26)

3. Zipf-Mandelbrot(α = 1.4, ν = 69)

4. Zipf-Mandelbrot(α = 1.6, ν = 137)

5. Zipf-Mandelbrot(α = 1.8, ν = 227)

6. Zipf-Mandelbrot(α = 2.0, ν = 336)

The Bubble algorithm, as shown in Figures 5.24 and 5.25 appears to largely demon-

strate the same strengths and weaknesses as in the Pseudo-Realistic environments as

the Zipf environments discussed here. It appears Bubble suffers from inability to dis-

card old items due to its inability to acquire newly introduced items in a large cache

unless they exceed a probability in request that is likely to see them experience receiving

two consecutive requests, as is discussed in more detail in the Pseudo-Realistic results
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Figure 5.24: Cache-Hit Ration for each Cache Eviction Algorithm. Each Figure
Displays the results for a different Zipf-Mandelbrot Video Request Distribution in a

Complex Request Single Cache Analysis environment — M = 11000
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Figure 5.25: Cache-Hit Ration for each Cache Eviction Algorithm. Each Figure
Displays the results for a different Zipf-Mandelbrot Video Request Distribution in a

Complex Request Single Cache Analysis environment — M = 2500

Section. The cache-hit ratio of Bubble compared to other algorithms can be seen in

more detail in Table 5.30.

Bubble-LRU appears to benefit greatly from the presence of the Zipf-Mandelbrot

popularity distribution. As the difference between Bubble-LRU and the other observed

known algorithms appears to remain large, even with changing α and ν values of the

distributions. This is made more clear in Figure 5.25 where a smaller total set of

items is used. There is a visible separation between Bubble-LRU, Bubble-Insert and

the other algorithms. This can be seen more clearly in Tables 5.31 and 5.32. The

discrepancy between Bubble-LRU and Bubble-Insert is small, however it is easy to see

that Bubble-LRU is the preferred algorithm if applied with the correct insertion index
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cache size mean difference LFU RAND FIFO LRU

2 0.016 0.016 0.016 0.016 0.016
5 0.035 0.030 0.037 0.037 0.034

10 0.002 -0.012 0.009 0.008 0.001
20 -0.075 -0.101 -0.059 -0.060 -0.078
40 -0.185 -0.222 -0.158 -0.162 -0.197
80 -0.317 -0.348 -0.283 -0.294 -0.344

160 -0.450 -0.454 -0.412 -0.441 -0.492
320 -0.555 -0.535 -0.516 -0.575 -0.592
640 -0.608 -0.589 -0.585 -0.623 -0.637

1280 -0.639 -0.623 -0.624 -0.650 -0.659

Table 5.30: Mean difference of the cache-hit ratios between Bubble and other Cache
Eviction Algorithms in the scenario of a Zipf-Mandelbrot Popularity Distribution

(Unique Item Count: 2500)

cache size mean difference LFU RAND FIFO LRU

10 0.026 0.012 0.033 0.033 0.025
20 0.017 -0.009 0.032 0.031 0.013
40 0.015 -0.022 0.042 0.038 0.003
80 0.026 -0.004 0.060 0.050 -0.001

160 0.041 0.037 0.079 0.050 -0.001
320 0.037 0.057 0.076 0.016 -0.000
640 0.028 0.048 0.052 0.013 -0.000

1280 0.020 0.036 0.036 0.009 0.000

Table 5.31: Mean deviation between BubbleLRU and other Cache Eviction
Algorithms in the scenario of a Zipf-Mandelbrot Popularity Distribution (Unique Item

Count: 2500)

if the popularity distribution in the environment is Zipf-Mandelbrot with resemblance

to a Zipf distribution where α = 1 as not a single mean difference measured in the

Zipf-Mandelbrot simulations saw Bubble-LRU receive a lower cache-hit ratio than any

other algorithm tested. The reason as to why this is, is likely the same as was explained

in the test results from the Pseudo-realistic results.

5.7.3.3 Complex Request Single Cache Simulation Conclusion

Bubble, Bubble-LRU and Bubble-Insert are, in this Chapter, compared against algo-

rithms of similar or greater operational costs in a video on demand setting. A video on

demand system may show a variety of characteristics, thus presenting the need to test a

number of them to identify how the presented algorithms may perform under difference
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cache size mean difference LFU RAND FIFO LRU

10 0.022 0.009 0.030 0.029 0.022
20 0.005 -0.021 0.021 0.020 0.002
40 -0.012 -0.049 0.015 0.010 -0.024
80 -0.019 -0.050 0.015 0.004 -0.046

160 -0.007 -0.011 0.030 0.001 -0.049
320 0.021 0.041 0.060 0.001 -0.016
640 0.015 0.035 0.039 0.000 -0.013

1280 0.011 0.027 0.026 0.000 -0.009

Table 5.32: Mean difference of the cache-hit ratios between BubbleInsert and other
Cache Eviction Algorithms in the scenario of a Zipf-Mandelbrot Popularity

Distribution (Unique Item Count: 2500)

circumstances. This experiment had, the functionality to add, remove items, as well as

have items decay in their probability of request throughout the experiment. When sum-

marising the results from the Zipf, Zipf-Mandelbrot and Pseudo realistic simulations it

can be concluded that Bubble-LRU is the most effective algorithm in all cases for which

it was tested. This is so due to the adaptive nature of Bubble and LRU combined.

Bubble was tested for a number of scenarios for which Bubble-LRU and Bubble-

Insert were not due to the restriction of insertion index. Bubble was the most successful

algorithm, producing the greatest cache-hit ratio, across all distributions it was tested

when the cache size remained small. Scenarios where cache storage is expensive and

cache sizes are required to remain of a limited size, Bubble would provide the most

appropriate algorithm thus concluding Bubble and Bubble-LRU to be the most appro-

priate algorithms if the scenario in which a caching algorithm is required experiences a

changing pool of items and changing popularity of those items whilst demonstrating a

Zipf or Zipf-Mandelbrot popularity distribution.

5.7.4 Exploration of Insertion Index

Bubble-LRU and Bubble-Insert have the unique property of an insertion index. To

explore the impact of the location of the insertion index a separate set of experiments are

introduced in this section that leverage the Complex Request Single Cache Simulation

introduced in this Chapter. The experiment assesses the cache-hit ratio of each index of

the cache instead of the entire cache to more closely inspect the impact of the insertion
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index.

An assumption expressed in previous sections was that the Bubble section, in Bubble-

LRU and Bubble-Insert cache, provides a section of cache that provides superior reten-

tion of the more popular items in the dataset. This assumption can be confirmed

when inspecting Figure 5.26 and Figure 5.27 which holds cache hit rates of each index

of the cache of a simulation of a static set of items following a Zipf distribution for

Bubble-Insert and Bubble-LRU for a variety of insertion indexes of a cache of size 80.

Additionally these figures confirm that the cache-hit ratio of the Bubble section of the

Bubble-Insert cache ahead of the insertion index, where index is greater than the inser-

tion index, does indeed receive a reduced cache-hit ratio when compared to the LRU

section of the Bubble-LRU cache.

Just as Figures 5.26 and 5.27 demonstrate, Figures 5.28 and 5.29 show a very com-

parable result however with a less clear benefit of the variability of insertion index.

Figures 5.26, 5.27, 5.28 and 5.29 all show the cache-hit rate of each index within a

cache of cache size 80 with a variety of insertion indexes. The results appear to follow

a pattern where the Insertion Index of the items shifts the area of the cache where the

highest cache hit rates are measured. It is worth noting that the highest summed hit

rates for all Insertion Indexes varies between the Static pool of requestable items and

the rotating pool of requestable items simulation results. In the case of the rotating
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Bubble−LRU Rotating Items
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Bubble−Insert Rotating Items
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item pool results (marked as ’story’) the highest hit-rate is experienced approximately

at Insertion Index 15. In the case of the results of the static pool of items the insertion

index is found to be greater as the insertion index is of a larger index, in this case where

the Insertion Index is equal to 40. No concrete pattern of behaviour appeared to be

derivable from the results.

5.8 Conclusion Bubble Eviction Algorithm

This chapter introduced the Bubble cache eviction algorithm. Additionally to the in-

troduction of Bubble, two variations of Bubble were also introduced as Bubble-LRU

and Bubble-Insert. The Bubble algorithm takes inspiration from the Bubble sort algo-

rithm which iteratively compares items and swaps them based on the predefined rule.

Bubble also swaps items however, it interprets them based on a recency of requests

experienced, thus providing the requested item with a greater value, swapping it with

the item preceding it. This mechanism is introduced in this Chapter as a simple cache

eviction algorithm with potential to rival existing, better known algorithms such as

LRU, FIFO, RAND and even LFU. Bubble-LRU and Bubble-Insert are variations in

which the insertion of new items, which is at the lowest index in Bubble, is changed to

be at alternative indexes with a change to the proceedings below the alternative index

to follow the LRU method in the Bubble-LRU algorithm.

Bubble, Bubble-LRU and Bubble-Insert are compared to a number of algorithms in

three different methods of testing. They are:

1. Markov Chain Analysis

(a) Analytical

(b) Single Cache

(c) No decay of probability of objects

(d) No removal/introduction of available objects

2. Information Centric Networking Simulation (Icarus)

(a) Simulation

(b) Topology
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(c) Placement Policies

(d) No decay of probability of objects

(e) No Removal / Introduction of available objects

3. Complex Request Single Cache Simulation

(a) Simulation

(b) Single Cache

(c) Decay of items

(d) Removal.Introduction of items

This slightly simplified list incorporates a number of the most influential factors that

make up the methods used for testing the cache eviction algorithms introduced. For

this reason, comparing sets of results is to be approached with caution.

The Analytical method of testing, due to the extremely expensive method of testing,

cannot encompass large sets of available items as well as a large cache size. For this rea-

son the results are drawn from a set of results in which the cache size is small and the set

of available items is relatively small. An additional challenge is the inability for Bubble

to converge when a cache of a large size is used. The Icarus simulation environment

contains complexity in the method of delivery of items in a network. The simulator

is constructed in such a way that considers topology, routing strategies, cache eviction

algorithms and popularity distribution that does not change through the simulation.

The Complex Request Single Cache Simulation does not include routing strategies and

network topology, but instead holds a single cache through which the objects are moved

when requested.The pool of available objects changes with a decay introduced to the

objects in the simulation. This changing pool of items requires cache eviction algorithms

to, as well as aim to contain the most frequently requested items, also dispel those that

decay and are removed from a Video on Demand environment. This makes the Complex

Request Single Cache Simulation unique.

In a small test environment, such as the one of the Analytical Markov Chain tests

performed, Bubble, Bubble-LRU and Bubble-Insert are experienced to provide a supe-

rior cache eviction algorithm over the other algorithms tested. The limiting analysis
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possible with Bubble does mean that we cannot conclude Bubble to provide us with

a cache-hit ratio towards which it trends for the larger cache sizes. Bubble-LRU and

Bubble-Insert do not suffer from this inability to converge for larger cache sizes, thus

making it possible to declare that, within the scope of the possible Markov-Chain anal-

ysis performed in this Chapter, Bubble and its variants provide effective alternative

algorithms that should be encouraged to be tested and used in Video in Demand Envi-

ronments.

In the Icarus environment we experience Bubble performing better than all other

algorithms tested in a limited number of situations. It was found that Bubble-LRU and

Bubble-Insert rarely surpass the cache-hit ratio of LFU which was most often measured

to be the most effective algorithm tested in the Icarus environment. This is likely due

to the stationary set of objects available for request. It is interesting to note that

for when cache sizes ranged between 0.016 and 0.128 (40% of the tests), Bubble still

performed better than LFU, thus suggesting Bubble to be a contender to be the most

appropriate algorithm in a large amount of situations that resemble the Icarus simulation

environment.

The Complex Request Single Cache Simulation environment was used to test Bubble

and its variants; Bubble-LRU and Bubble-Insert. The results are drastically different

from the Icarus results and the results found in the Markov-Chain analysis, likely due to

the changing nature of the items available for request. The simulation results suggest

that Bubble is appropriate to apply when cache sizes remain small. The cache-hit

ratio experienced by Bubble exceeded other algorithms by a large margin, sometimes

even as much as 150% of the next best producing cache-hit ratio algorithm. When

the cache size is increased, the Bubble algorithm interestingly hits a maximum cache-

hit ratio which, no matter the size of the cache, it seems unable to increase beyond.

Bubble-LRU and Bubble-Insert were found to remain relevant beyond the small cache-

size with a cache-hit ratio that exceeded all other algorithms in most tests performed.

Bubble-LRU performed very similarly to Bubble-Insert in terms of cache-hit ratio with

an improvement of cache-hit ratio.
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As to conclude, Bubble would be the most appropriate to consider in an environ-

ment such as that of the Complex Request Single Cache Simulation environment when

the cache size remains small. Bubble-LRU provides a better solution than the other

known algorithms testing when the cache size is expanded with the caveat that where

implemented, the appropriate insertion index would need to be applied which can have

an adverse effect if not chosen properly.



6
Conclusion

This Thesis set to achieve a greater understanding of video request data and its intri-

cacies, as well as to propose methods to alleviate some of the strain VoD currently has

on the Internet. Two data-sets were analysed to provide a closer look at the structures

observable in VoD data. The research community considers two separate models to re-

semble VoD request distributions closely. This Thesis identifies a single superior model

for replication of VoD request distributions based on the provided data. Additionally,

a request generator was created introducing factors such as decay of popularity and

removal and introduction of objects, which previously were commonly overlooked influ-

encers in VoD data. The Request Generator, as well as an ICN simulation environment

and a Markov Chain Analysis method were used to simulate VoD traffic to assess three

novel cache eviction algorithms, namely Bubble, Bubble-Insert and Bubble-LRU, in a

VoD environment in an effort to provide a platform for improved VoD delivery.
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6.1 Motivation for work

As previously mentioned in the introduction of this Thesis, the motivation comes from

wanting to understand video request data and suggesting an area of improvement that

may impact video streaming directly. BT provided popularity request data in the form

of a two popularity distributions. The scope of the work was partially focused around

attributing to the discussion surrounding the debate of which model, Zipf or Zipf-

Mandelbrot is most appropriate for modelling video popularity distribution. In the

effort to conclude which model provides the most appropriate model to replicate video

request distributions a number of methods had to be found that demonstrate, in a

statistically significant manner, techniques for comparing a model to another data-set.

A goal also set was to further the communal understanding of the characteristics

surrounding video requests in an effort to recreate them to the best of our abilities, as

well as create a novel cache eviction algorithm to be implementable in a cache-enabled

network infrastructure focused purely on reducing traffic associated with VoD.

6.2 Summary

Chapters 3, 4 and 5 contain the primary research pieces. Chapter 5 contains novel

cache eviction algorithms with a primary focus in helping grant a reduction of VoD

traffic in a cache enabled network such as a network that has implemented the ICN or

CCN network protocols. To achieve a network model accurate enough to conclude the

effectiveness of the novel cache eviction algorithms, a great understand had to be had

of video request generation in real VoD systems. Deficiencies exist within the research

community with regards to VoD data due to data required to draw key characteristic at-

tributes of VoD request data being sparse and valuable. Although a section of the video

request data can be fabricated using a number of resources and intuition, as further

explained in Chapter 4, two VoD popularity distribution were provided and analysed to

further the general understanding of at least this specific key characteristic within video
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request data, which aided in the completion of Chapter 4 and provided a platform for

replicating real request data. Chapter 5 had a primary focus on video caching. Chapter

4 helped aid progress in Chapter 5 by creating a method of replicating video request

data which could be used to test cache eviction algorithms aimed at caching specifically

video data.

6.3 Conclusions

As to conclude the main Chapters, this Thesis sought to gain a greater understanding

of video request data and a method by which a cache enabled network could optimise

its delivery in avoiding replicated video data on its network. Chapter 3 contained anal-

ysis of two VoD popularity distribution data-sets provided by BT. The wider research

community partially claimed that VoD popularity distributions follow a Zipf Distribu-

tion [7–18]. Other research findings have contradicted this claim or expressed caution

as to assuming the distribution follows Zipf [12, 16, 17], thus providing a need to set-

tle this dispute. A number of methods were used in an effort to deduce which model,

Zipf or Zipf-Mandelbrot, is most appropriate in an effort to replicate VoD popular-

ity distributions. The means of matching distributions included analytical methods

leveraging Kullback-Leibler divergence, Pearson Chi-Sqaured, Pearson Correlation and

an ICN network simulation environment used to assess the behavioural similarities of

the request behaviours of the most prominent Zipf and Zipf-Mandelbrot distribution

found to match the real popularity distributions most closely. The results of all tests

performed concluded that Zipf-Mandelbrot is the most appropriate model to use when

replicating VoD popularity distributions with emphasis on the performance differential

experienced in the Icarus ICN environment when comparing Zipf and Zipf-Mandelbrot

against the real popularity distributions. Zipf-Mandelbrot resembled the real data to a

much greater degree as can be quantified and seen in Table 6.1 where a mean average

cache-hit ratio for all cache sizes is summarised to demonstrate the close resemblance to

the real data-set Zipf-Mandelbrot shows in relation to the real data as opposed to the
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Empirical and Model — Mean Absolute Deviation

VoD TV Catch-up
Cache Size Zipf Zipf-Mandelbrot Zipf Zipf-Mandelbrot

Total Mean 0.0304 0.0037 0.0385 0.0056

Table 6.1: Difference between Cache-Hit Ratios relative to Empirical Results in test
where Zipf and Zipf-Mandelbrot models were selected based on a goodness-of-fit

produced in KL — This table is a reduced replicate of Table 3.6

Zipf Distribution. In determining these results the methods by which it was possible to

compare models and data-sets was the largest contribution. The Pearson Chi-Squared

method used, though unconventional, is a novel method of comparing two popularity

distributions that would provide an appropriate additional method of comparing two

models beside the more conventional method of using the Kullback-Leibler divergence.

Chapter 4 set out to create an ordered list of requests for video objects made to a

CDN that reflects the changing probabilities one may expect to find in a VoD system.

The key characteristics that were set out to include for each unique video object were;

Probability of Request, Decay of Popularity and Life-Time. The process suggested to

create a list of requests and requires the user to introduce the properties of items in the

system at a single point of observation. Once the properties of each item are identified,

the requests can be generated by a two step process. The steps are documented as be-

ing the “Storyboard Generator” (Chapter 4.3.1) and the “Request Generator” (Chapter

4.4).

The list of requests generated by the request generator here may be of use to a number

of ranging application requiring a pseudo-realistic request order for items. One such

example may be cache eviction policy effectiveness in a VoD setting such as for the

algorithms proposed in Chapter 5. As to conclude, a successful pseudo-realistic request

generator for a VoD system was designed and implemented for the purposes specified.

In Chapter 5, the Bubble cache eviction algorithm is introduced. Additionally to

the introduction of Bubble, two variation of Bubble were also introduced as Bubble-

LRU and Bubble-Insert. The Bubble algorithm takes inspiration from the Bubble sort
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algorithm which iteratively compares items and swaps them based on the predefined

rule. Bubble also swaps items however, it interprets items based on a recency of re-

quests experienced, thus providing the requested item with a greater value swapping it

with the item preceding it. This mechanism is introduced in this Thesis as a simple

cache eviction algorithm with potential to rival existing, better known algorithms such

as LRU, FIFO, RAND and even LFU. Bubble-LRU and Bubble-Insert are variations in

which the insertion of new items, which are at the lowest index in Bubble, are changed

to be at an alternative index with a change to the proceedings below the alternative

index to follow the LRU method in the Bubble-LRU algorithm.

Three separate methods were used to simulate the approximate cache-hit ratios one

may be expected to find in a video on demand environment with caching. Each method

used had a variety of results, however, from the Markov Chain and Icarus Simulations

it can be concluded that Bubble is an effective eviction algorithm. Bubble, when results

were obtainable, received a greater cache-hit ratio in most scenarios with the exception

of LFU which closely resembled Bubble in most cases. This means that Bubble is the

most effective eviction algorithm out of all algorithms used with the same operation

cost of O(n). The third method of testing Bubble and it’s variants saw them submitted

to the Complex Single Cache Request Generator created in Chapter 4. This method

did not see a static pool of items available for request but instead saw a changing pool

of available items as well as the introduction of popularity decay. This new dimension

saw Bubble perform better than all other cache eviction algorithms tested when the

cache size was very small, however not produce positive results when the cache size

was medium or large. In the scenarios where Bubble did not perform, Bubble-LRU

appeared to apply the performance Bubble applied in the small caches together with

the effectiveness of LRU and performed better than all other algorithms observed.

To conclude, Bubble is the most appropriate cache eviction algorithm when cache

sizes remain small based on the results observed in Chapter 5. When cache sizes are
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large, a cache eviction algorithm such as Bubble-LRU would be worthy of investigation

as it can achieve a great cache-hit ratio in a range of situations.

6.4 Future Work

Chapter 3 has introduced a number of methods considered appropriate for testing and

in this chapter two power-law distributions are introduced and compared against a real

video request distribution data-set. These methods of testing have demonstrated that

there is indeed a superiour model between the two models submitted. The comparison

methods can extend to other models that were not in the scope of this Thesis, such as

log-normal [17,33,34] and k-transform [14], and many others.

Bubble, Bubble-Insert and Bubble-LRU were introduced in this Thesis as suggested

technologies to be applied to reduce traffic on a network over which video delivery is

experienced and local caching is available. Although video delivery is responsible for

a large amount of the total traffic on many network infrastructures, it is not the only

subject area in which these novel algorithm can be applied. The Bubble algorithm

and its variants may be found to be beneficial in multiple areas where simple caching

algorithms are applied, thus potentially contributing to greater cache efficiency beyond

the VoD scope in which Bubble was demonstrated to be effective. The Zipf distribution

has appeared in many distributed forms of content such as Images, HTML pages and

many other types of media available for request on the World Wide Web (WWW)

[25–28], thus making all of these types of media attractive areas of investigation for the

application of Bubble caching.

Chapter 4 set out to create an ordered list of requests for video objects made to a

CDN that reflects the changing probabilities one may expect to find in a VoD system.

This system, though considered pseudo real, may provide a platform on which assump-

tions made about video request data may be scrutinised when user observed request

data is not available. Additionally to providing a method for proving, or disproving

assumptions, statistics may be drown from a simulation environment in aid to model a

real system - should the general characteristics, such as user count, frequency of request
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per user and the popularity distribution of the items contained in the video delivery

service, be known or predictable.

Video delivery is a subject that requires more exploration as currently, effects of

decay, limited lifetime of items and methods used for observation of popularity distri-

butions, leave much to be desired. The limiting factor in effectively modelling all these

factors, not all of which are listed here as they are now all known or well understood,

is the availability of VoD data. If video request data were to be obtained, it would

be suggested to attempt to replicate VoD requests in Chapter 4 and observe for any

improvements.

6.5 Implications of Work

The novel work introduced in this Thesis consist of identifying the Zipf-Mandelbrot

distribution within Video Request Distributions and the introduction of the Bubble

eviction algorithms and variants of the Bubble eviction algorithms. These observations

and creations are novel and are applicable to VoD systems in the methods introduced

in this Thesis.

The danger of simply assuming a Zipf-like distribution instead of a Zipf-Mandelbrot

distribution as suggested in this Thesis for video consumption, without supporting ev-

idence, is that the resultant model may not be sufficiently representative of the user

demands. Assuming a badly fitting model may lead to sub-optimal design choices in

areas, such as service planning/provisioning, utilization of network resources, accommo-

dation of SLAs. To enable users to correctly simulate video request data to a greater

accuracy than previously possible could create for fewer predictive errors for anyone

seeking to create a large scale VoD system.

The Bubble Cache Eviction algorithm and variations provide alternative cache evic-

tion algorithms to, for example, LRU with a potential to achieve greater traffic reduction

in VoD environments with caching enabled than was previously possible with known

simple cache eviction algorithm. The Bubble algorithm may be found to be beneficial in

multiple areas where simple caching algorithms are applied, thus potentially contribut-
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ing to greater cache efficiency beyond the VoD scope in which Bubble was demonstrated

to be effective.

Additional to these contributions a number of methods were used, some of which

were novel, to conclude the listed results, such as the leveraging Kullback-Leibler di-

vergence, Pearson Chi-Sqaured, Pearson Correlation and an ICN network simulation

environment as well as the creation of a novel video request generation platform that

provides a diverse request generation method designed to incorporate a large set of

variables associated with video delivery systems that may be present in an observed

video request data-set. These methods aided in determining all results above and are

diversely applicable.



A
Supplementary Evaluations and Results

A.1 Markov-Chain Empirical Analysis Results - Bubble-

LRU & Bubble-Insert

169
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Zipf Hit Ratio / Cache Size (Insertion Point)
Model Algorithm 4 5 6 7 8 9 10

Zipf(α = 0.8)

LRU 0.124 0.151 0.177 0.201 0.224 0.247 0.267
FIFO 0.118 0.141 0.164 0.185 0.205 0.224 0.242

Bubble 0.239 0.282 0.317 0.357 *1 *1 *1
B-LRU 0.171 0.229 0.275 0.312 0.325 0.336 0.353
B-Insert 0.171 0.230 0.276 0.312 0.326 0.342 0.354

Zipf(α = 0.9)

LRU 0.163 0.196 0.227 0.256 0.283 0.308 0.331
FIFO 0.152 0.181 0.207 0.231 0.253 0.274 0.294

Bubble 0.295 0.341 0.379 *0.415 *1 *1 *1
B-LRU 0.219 0.284 0.334 0.373 0.386 0.402 0.426
B-Insert 0.220 0.285 0.334 0.373 0.388 0.404 0.434

Zipf(α = 1.0)

LRU 0.212 0.252 0.289 0.321 0.351 0.378 0.402
FIFO 0.195 0.228 0.258 0.285 0.310 0.332 0.354

Bubble 0.355 0.404 0.443 *0.475 *1 *1 *1
B-LRU 0.273 0.344 0.397 0.413 0.451 0.465 0.475
B-Insert 0.275 0.345 0.397 0.438 0.452 0.466 0.482

Zipf(α = 1.1)

LRU 0.271 0.317 0.358 0.393 0.425 0.452 0.478
FIFO 0.246 0.283 0.317 0.346 0.372 0.397 0.419

Bubble 0.418 0.469 0.509 *0.541 *1 *1 *1
B-LRU 0.334 0.408 0.462 0.503 0.517 0.545 0.563
B-Insert 0.336 0.409 0.462 0.503 0.518 0.547 0.565

Zipf(α = 1.2)

LRU 0.337 0.389 0.432 0.469 0.501 0.528 0.552
FIFO 0.303 0.344 0.380 0.411 0.439 0.464 0.486

Bubble 0.482 0.533 0.573 *0.606 *0.776 *1 *1
B-LRU 0.397 0.473 0.527 0.568 0.582 0.614 0.624
B-Insert 0.400 0.474 0.528 0.568 0.584 0.614 0.625

Table A.1: The All Cache Eviction Algorithm Markov-Chain Cache-Hit Ration results
for Zipf scenario results
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Real Scenarios Hit Ratio / Cache Size (Insertion Point)
Model Algorithm 4 5 6 7 8 9 10

Zipf(α=0.765)

LRU 0.112 0.138 0.162 0.185 0.207 0.228 0.248
FIFO 0.108 0.130 0.151 0.171 0.190 0.208 0.226

Bubble 0.221 0.262 0.297 *0.352 *1 *1 *1
B-LRU 0.156 0.212 0.256 0.292 0.304 0.315 0.332
B-Insert 0.156 0.212 0.256 0.292 0.305 0.317 0.334

Zipf(α=0.9)

LRU 0.163 0.196 0.227 0.256 0.283 0.308 0.331
FIFO 0.152 0.181 0.207 0.231 0.253 0.274 0.294

Bubble 0.295 0.341 0.379 *0.415 *1 *1 *1
B-LRU 0.219 0.284 0.334 0.373 0.386 0.402 0.426
B-Insert 0.220 0.285 0.334 0.373 0.388 0.404 0.434

Zipf-M(α=1.42,ν=23)

LRU 0.0619 0.0771 0.0923 0.107 0.122 0.137 0.152
FIFO 0.0616 0.0765 0.0913 0.106 0.120 0.134 0.149

Bubble 0.0881 0.116 *1 *1 *1 *1 *1
B-LRU 0.0668 0.0913 0.118 0.132 0.147 0.161 0.175
B-Insert 0.0676 0.0916 0.119 0.133 0.149 0.164 0.181

Zipf-M(α=1.20,ν=111)

LRU 0.0423 0.0529 0.0635 0.0741 0.0846 0.0952 0.106
FIFO 0.0424 0.0529 0.0635 0.0741 0.0846 0.0951 0.106

Bubble 0.0448 0.0565 *1 *1 *1 *1 *1
B-LRU 0.0428 0.0534 0.0639 0.0745 0.0851 0.0956 0.106
B-Insert 0.0431 0.0541 0.0651 0.0763 0.0877 0.0992 0.111

Table A.2: The All Cache Eviction Algorithm Markov-Chain Cache-Hit Ration results
for pseudo-real scenario results
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Real Scenarios Hit Ratio / Cache Size (Insertion Point)
Model Algorithm 4 5 6 7 8 9 10

Zipf-M(α=1,ν=5)

Bubble 0.1338 0.1736 1 1 1 1 1
LRU 0.0783 0.0972 0.1159 0.1343 0.1524 0.1703 0.1878
FIFO 0.0772 0.0952 0.1129 0.1301 0.1469 0.1633 0.1794

B-LRU 0.0933 0.1323 0.1716 0.1872 0.2026 0.2172 0.2335
B-insert 0.0938 0.1327 0.172 0.1885 0.205 0.2222 0.2382

Zipf-M(α=1.2,ν=26)

Bubble 0.0707 0.0927 1 1 1 1 1
LRU 0.0533 0.0666 0.0798 0.0929 0.106 0.1191 0.1321
FIFO 0.0532 0.0663 0.0793 0.0922 0.1049 0.1176 0.1302

B-LRU 0.0565 0.0746 0.0958 0.1085 0.121 0.1444 0.1465
B-insert 0.0571 0.0748 0.0959 0.1091 0.1226 0.1411 0.1505

Zipf-M(α=1.4,ν=69)

Bubble 0.0527 0.0677 1 1 1 1 1
LRU 0.0457 0.0571 0.0685 0.0799 0.0913 0.1026 0.114
FIFO 0.0458 0.0571 0.0684 0.0797 0.091 0.1022 0.1134

B-LRU 0.047 0.0584 0.0717 0.0839 0.0953 0.1071 0.119
B-insert 0.0474 0.0592 0.0719 0.0843 0.0959 0.1094 0.1206

Zipf-M(α=1.6,ν=137)

Bubble 0.0461 0.0583 1 1 1 1 1
LRU 0.0429 0.0536 0.0644 0.0751 0.0858 0.0965 0.1072
FIFO 0.043 0.0537 0.0644 0.075 0.0857 0.0964 0.107

B-LRU 0.0435 0.0542 0.065 0.0757 0.0864 0.0971 0.1078
B-insert 0.0439 0.055 0.0662 0.0776 0.0891 0.1007 0.1125

Zipf-M(α=1.8,ν=227)

Bubble 0.0434 0.0545 0.064 1 1 1 1
LRU 0.0417 0.0522 0.0627 0.0731 0.0835 0.094 0.1044
FIFO 0.0418 0.0523 0.0627 0.0731 0.0835 0.0939 0.1043

B-LRU 0.0421 0.0525 0.063 0.0734 0.0839 0.0943 0.1047
B-insert 0.0424 0.0532 0.0642 0.0752 0.0864 0.0978 0.1092

Zipf-M(α=2,ν=336)

Bubble 0.0421 0.0527 0.0618 1 1 1 1
LRU 0.0412 0.0515 0.0619 0.0722 0.0825 0.0928 0.1031
FIFO 0.0413 0.0516 0.0619 0.0722 0.0825 0.0928 0.1031

B-LRU 0.0414 0.0517 0.0621 0.0724 0.0827 0.093 0.1033
B-insert 0.0418 0.0524 0.0632 0.0741 0.0852 0.0964 0.1077

Table A.3: The All Cache Eviction Algorithm Markov-Chain Cache-Hit Ration results
for Zipf-M scenario results
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