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Abstract

In this paper, we scrutinize the empirical performance of a wavelet-based option pricing
model which leverages the powerful computational capability of wavelets in approximating
risk-neutral moment-generating functions. We focus on the forecasting and hedging perfor-
mance of the model in comparison with that of popular alternative models, including the
stochastic volatility model with jumps, the practitioner Black-Scholes model and the neural
network based model. Using daily index options written on the German DAX 30 index from
January 2009 to December 2012, our results suggest that the wavelet-based model compares
favorably with all other models except the neural network based one, especially for long-
term options. Hence our novel wavelet-based option pricing model provides an excellent

nonparametric alternative for valuing option prices.
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1 Introduction

Since the seminal work of Black and Scholes (1973), huge progress has taken place in the
theoretical and empirical option valuation literature that has greatly advanced our understand-
ing of the options market as a place for trading information and gauging investor expectation.
A large number of parametric and nonparametric methods have been developed to relax one or

more restrictions of the original Black-Scholes model.

One avenue for extending the Black-Scholes model is to develop nonparametric models that
are better at capturing the volatility smile and the literature has seen innovative methods in this
direction. Wavelets are well-known for their remarkable ability in numerical approximation and
the wavelet-based option pricing model developed in Ma (2011) leverages this. It approximates
the implied risk-neutral moment-generating functions (MGF) thus offering a novel approach in
the nonparametric option pricing literature. Unlike many other nonparametric option pricing
models that require a large collection of data, the wavelet-based pricing model is computationally
efficient and requires only a reasonable amount of different strikes. Using numerical experiments,
Haven et al. (2009) demonstrate that this model is able to evaluate and forecast option prices

with great precision.

In this paper, we contribute to the literature by taking this further to empirically compare
the forecasting and hedging performance of the wavelet-based model with three other well-
established models, namely the parametric stochastic volatility model with jumps (SVJ), the
practitioner Black and Scholes model (PBS), and the hybrid neural network based model (NN),
which is a combination of the neural network method and the Black-Scholes model.! We focus
on the key research questions of whether the excellent performance of the wavelet-based model in
simulation still remains in the crucial test using market data, and how its empirical performance

compares with that of widely-accepted models in the literature.

To the best of our knowledge, this is the first study that subjects the wavelet-based option

pricing model to market data. We use daily index options written on the DAX-30 index, a

We thank an anonymous referee for the suggestion of adding the practitioner Black-Scholes model and the
neural network based model for comparison.



major financial index in Europe, from January 2, 2009, to December 28, 2012. Our main
empirical findings can be summarized as follows. In the out-of-sample forecasting exercises
ranging from one- to ten-day ahead, the wavelet-based model outperforms the SVJ for calls and
exhibits similar performance for puts for all option maturities (short-, medium- and long-term,)
across all forecasting horizons. It also outperforms the PBS model in forecasting long-term
options. This is the case regardless of whether the market is in a turbulent state with evident
jumps in the underlying stock index. The NN model is always the best-performing model. In
the hedging exercise, the performance of the wavelet-based model is second only to that of
the NN and exhibits substantially smaller hedging error than the SVJ and PBS model.2 Our
strong empirical evidence substantiates the wavelet-based option pricing model as a credible

alternative in the option valuation literature.

The rest of the paper is organized as follows. In Section 2, we review the relevant literature
that motivates our study. Section 3 introduces the wavelet-based option pricing model, the SVJ
model, the PBS model, and the neural network based model and how we conduct the hedging
exercise. In Section 4, we describe data and analyze empirical results. Finally, Section 5

concludes.

2 Literature review

In this section, we review two strands of the literature to which our paper makes a contri-

bution: the literature of option valuation and that of the wavelet method and its applications.

In the parametric option pricing literature, researchers have identified a number of priced
factors essential in capturing the volatility smile, which has become a stylized fact since the
market crash of 1987. For example, volatility is shown to relate negatively to the underlying
asset returns and that delta-hedged portfolios of options and the underlying stocks produce

statistically significant negative returns (see, for instance, Bakshi and Kapadia (2003), Coval

2 We have conducted the same empirical analysis using options written on the FT'SE 100 index in the UK and
the Hang Seng index in Hong Kong over the same sample period. We obtain qualitatively similar results that we
do not report to conserve space. These are available upon request from the authors.



and Shumway (2001), Heston (1993), and Wong and Lo (2009)). Moreover, the random and
unexpected jumps are also found to command significant risk premium in the options market
(Bates, 1996, 2000; Cai and Kou, 2011; Pan, 2002). Another priced factor worth noting is the
demand pressure in the market, which affects option prices in incomplete markets (Garleanu

et al., 2009).

Bakshi et al. (1997) propose a closed-form parametric option pricing model that simulta-
neously admits the stochastic volatility risk, the jump risk, and the stochastic interest rate risk.
One or more risks can be singled out by setting the parameters of the remaining risk factors to
zero so that the importance of each risk factor can be closely investigated. Based on the pricing,
forecasting, and hedging performance of nested models, they show that the stochastic volatility
and jumps are of first-order importance when it comes to accommodating the volatility smile

observed in the market.

Another prominent option pricing model is the practitioner Black-Scholes model (PBS).
In PBS, a nonlinear deterministic volatility function (DVF) is employed to estimate volatility
values and account for deviations from the assumptions of the original Black-Scholes model
(Derman and Kani, 1994a,b; Rubinstein, 1994; Dumas et al., 1998). A theoretical justification
of the PBS approach as a reduced-form approximation of an unknown structural model is
provided by Berkowitz (2002). As discussed in Andreou et al. (2014), the PBS model is widely
used among practitioners as it is effective in mitigating the volatility smile anomaly and easy

to implement (Christoffersen and Jacobs, 2004; Christoffersen et al., 2009; Berkowitz, 2010).

Parallel to the intensive interest in the parametric option pricing literature, a large number
of nonparametric models have also been developed. Although the nonparametric models lack the
economic interpretation that the parameters contain in the parametric family of models, they are
often more flexible as they impose no prior assumption on the underlying asset process. These
include the flexible distribution method (Rubinstein, 1994), the cubic spline method (Shimko,
1994), which is further developed by Bliss and Panigirtzoglou (2002), the kernel estimation
method (Ait-Sahalia and Lo, 1998; Ait-Sahalia and Duarte, 2003; Birke and Pliz, 2009), the

neural network method (Hutchinson et al., 1994; Garcia and Gengay, 2000; Andreou et al.,



2008), and the e-arbitrage replicating portfolio method (Bandi and Bertsimas, 2014).

The neural network method is a popular method in option pricing. It is first introduced by
Hutchinson et al. (1994) to estimate the unknown pricing formula for derivative securities and
further employed for pricing derivatives in Lajbcygier et al. (1996), Garcia and Gengay (2000),
and Yao and Li (2000). They all show that when sufficiently trained, neural network method can
adapt to changing market conditions and achieve remarkable accuracy. Andreou et al. (2008)
combine the neural network method and the parametric option pricing models and show that
the combined hybrid neural network model works even better than the pure neural network
method. The neural network methods are highly data-intensive and require large amount of

historical prices to obtain a reasonably well-trained network.

A more recent addition to this growing literature is Ma (2011). This book develops a
nonparametric option pricing model that focuses on approximating the implied risk-neutral
MGTF of the underlying asset returns using wavelets. The risk-neutral MGF has a number of
advantages compared with the implied risk-neutral PDF although there is a one-to-one rela-
tionship between them. For example, the MGF is more tractable when jumps are present in the
underlying price process; the MGF obtained from options is a continuous function; the MGF
can be used to obtain all the statistical moments of the underlying asset distributions and the
preference parameter of the utility function; and out-of-sample options with different maturity

dates can be directly estimated using the risk-neutral MGF.3

Ma (2011) represents another effort in applying the wavelet method, already a popular tool
in science and engineering, in the area of economics and finance.* As pointed out in Haven et al.
(2009) and Haven et al. (2012), there are mainly three types of application of wavelet methods
in finance and economics. First of all, wavelets are used for multi-scaling analysis. For example,
Ramsey and Lampart (1998a,b) use the wavelet method to analyze the relationship between
economic variables at different scales and suggest that the relationship changes over different

time horizons. Gengay et al. (2001a,b, 2003, 2005) employ the wavelet multi-scaling approach

3 See Haven et al. (2009) for detailed properties of the risk-neutral MGF.
4 For excellent reference for applications of the wavelet method in finance and economics, see Gencay et al.
(2002). See also Percival and Walden (2000) for applications of the wavelet method in the time series analysis.



to examine intra-day seasonalities, foreign exchange volatilities, and systematic risk. Weron
(2009) implements the wavelet method to de-seasonalize electricity prices. More examples
include Zapart (2002), Connor and Rossiter (2005), Kim and In (2005), Mitra (2006), In and
Kim (2006), Fernandez (2006), Lien and Shrestha (2007), Gallegati and Gallegati (2007), and

Nikkinen et al. (2011).

Secondly, wavelets are used to de-noise raw data. Capobianco (1999, 2001) show that
wavelets as a pre-processing de-noising tool are useful for improving volatility analysis. The
superior de-noising ability of wavelets is also recognized in Haven et al. (2012) which apply
the wavelet method to de-noise option prices before estimating the implied risk-neutral PDF
from the option prices. Their findings show that the wavelet de-noising process significantly
improves the density estimation quality and the forecasting abilities of the estimated densities.
Sun and Meinl (2012) substantiate the superior performance of the wavelet-based local linear
scaling approximation algorithm in denoising high-frequency financial data. Asgharian (2011)
de-noise frequency variations in the first principal component of a business cycle with wavelets.
Other research in this stream includes, among others, Averkamp and Houdré (2003) and Lada

and Wilson (2006).

Finally, wavelets are utilized to estimate unknown parameters of a model. For example,
Jensen (1999, 2000) and Ko and Vannucci (2006) adopt wavelets for calibrating parameters
of long memory processes. Genon-Catalot and Laredo (1992) apply wavelets in estimating a
diffusion function non-parametrically. Matache et al. (2005) adopt wavelets to price American-
style options driven by Lévy processes. Manchaldore et al. (2010) implement the wavelet method
to obtain intraday volume. Ortiz-Gracia and Oosterlee (2016) use Shannon wavelet to price
European options. Additional references include Bayraktar et al. (2004), Hong and Kao (2004),

Dong and He (2007), Esteban-Bravo and Vidal-Sanz (2007), and Haven et al. (2009).



3 Model specifications

In this section, we outline the wavelet-based option pricing model of Ma (2011), the SVJ
of Bakshi et al. (1997), the PBS model of Dumas et al. (1998) and Andreou et al. (2014), and
the hybrid neural network method of Andreou et al. (2008). We also discuss how we perform

the hedging test.

The wavelet-based option pricing model

The wavelet-based model by Ma (2011) is the latest theoretical contribution to the option
pricing literature. Its motivation and relation to the option-implied risk-neutral MGF and the

option-implied risk-neutral PDF are discussed in Haven et al. (2009) and Ma (2011).

Under fairly general assumptions including i.i.d. distribution for asset returns, the wavelet-
based option pricing model can be expressed as follows:

Co(Se, X, T) = Xe " T—0 1 (S(T;i(f))) <ln gi) , (1)

where £~1 denotes the bilateral inverse Laplace transform®, C; is the time ¢ price for a European
call option written on asset whose price is S; with strike price X and a future maturity date 7'

Interest rate r and the dividend yield are assumed to be constant.

The core of this pricing model is 2?5__:8)

Re(s) < —1 for calls and Re(s) > 0 for puts. The MGF ©T~%(s) of the logarithmic returns

, where s is a complex value whose real part
ln% captures the underlying asset dynamics and investor expectation embedded in option

prices, and needs to be approximated with wavelets.

To approximate the implied MGF with the wavelet method, a particular wavelet needs
to be chosen from a large family of wavelet functions. The wavelet literature seems to agree
that there is no best wavelet for a particular application. Therefore, we follow Mallat (1999)
and choose a wavelet that can achieve a reasonable level of accuracy with minimum number of

wavelet terms. The Franklin hat function performs well on this criterion. In addition, it has

® See Appendix for the definition and properties of the bilateral inverse Laplace transform.



the properties of being symmetric, smooth, and piecewise continuous, and it closely emulates

the probability density function of asset returns.

The risk-neutral MGF ©(s) of the return per unit of time is therefore estimated using the
Franklin hat function A(t), which is defined as follows:
(1—1J¢) if —1<t<1

h(t) = . 2)

0 otherwise

The Laplace transform of h(t) is denoted as myp(s):

65/2 _ 675/2

mp(s) = (————)%. (3)

S

A set of generalized functions can be generated from the Franklin hat function h(t):
L l
hip(t) = 22h(2% — k), 1,k = 0,+1, 42, .. (4)

The scaling parameter [ determines the degree of dilation or contraction and the shifting pa-
rameter k controls the horizontal location of the function. Perform Laplace transform on hy (%),

we obtain my ;(s) as follows:

L ks S
myg(s) =2 2e 2 mh(?),l,kzo,il,il... (5)
The risk-neutral MGF of the return per unit of time ©(s) can be expanded using the Laplace

transform of the set of generalized Franklin function as follows:

O(s)= D> > awmx(s), (6)

l=—0 k=—

where a; ;. is a set of unknown coefficients and needs to be estimated by minimizing the sum of
squared error between market option prices and theoretical prices. We follow the procedure in

Haven et al. (2009) and estimate the unknown coefficients as follows.



1. Truncate the coefficients aj by setting aj, = 0 for all |I| > L and |k| > K, where L and

K are positive integers.® Let Ok = {le}l:L,\k\gK.

2. Given a collection of market data for options at time t, {S, X;,Cy;, T, 7}, where i =
1,2,...,N, we estimate the unknown coefficients 0, r by minimizing the sum of squared

errors between market option prices Cy; and theoretical prices C’t,i:

gnin Ei(Cm — ét7i(0L7K,SthhTatvr))Z' (7)
LK

3. Increase L by 1 at a time and repeat the above steps until Zi(Cm — CA’t,Z-)2 < ¢ for an

arbitrary € > 0.

The above optimization process yields an estimate of the risk-neutral MGF, which is ex-

pressed as a series of the Laplace transform of the set of the generalized Franklin functions:

O(s) = > > ammu(s). (8)

=L |k|<K

In the empirical analysis, the scaling parameter L and the shift parameter K are chosen

by the optimisation programme so that a satisfactory estimation result can be obtained.

The stochastic volatility model with jumps (SVJ)

The volatility and jump risks have long been considered priced factors in the options
market and should be included in option pricing models (Coval and Shumway, 2001; Bates, 1996;
Huang and Wu, 2004; Pan, 2002; Santa-Clara and Yan, 2010). Bakshi et al. (1997) formulate
a parametric model that incorporates a mean-reverting stochastic volatility component that

correlates with the underlying stock and a jump process that follows the Poisson distribution.

Assuming constant interest rate, the closed-form formula for European call options is as
follows,

Ct = StHI (t7 Ta St7 V;ﬁ) - X GXp(—T(T - t))H2 <t7 Tv St; W)v (9)

6 According to Haven et al. (2009), K is chosen to be the smallest integer greater than 0.7 x 2 4+ 1 as log
returns typically lie between [—0.7,0.7]. The value of K can be easily adapted to specific situations.



where the risk-neutral probabilities II; and Il

1 1 /OO e [exp(—iwn(X)fj(t?T’ 51, Vi ¢) do,j=1,2
0

Hj(t,T,St,‘/t>:§+* l¢

™

are obtained by inverting the characteristic functions f; and fo. Note that the expression in

the square brackets is a complex number and Re [-] takes the real part of it.

There are a number of parameters in the SVJ model. The jump process is described with
the mean jump size u s, the standard deviation of jump size o7, and the jump frequency A. The
mean-reverting stochastic volatility process V; are parameterized by the speed of adjustment
Ky, the long-term mean of the volatility 6,/k,, and the variation coefficient of the diffusion
volatility o,. The volatility process and the underlying asset dynamics are correlated with
coefficient p. For index options and most equity options, p is negative corresponding to the
negative skewness found in the risk-neutral distributions. In addition, the underlying assets of
many different types of options exhibit volatility mean reversion which is also captured in this
SVJ model (Bali and Demirtas, 2008; Wong and Lo, 2009). These unknown parameters are
calibrated by minimizing the sum of squared differences between market option prices C; and

theoretical ones C’t.

The practitioner Black-Scholes model (PBS)

Although the Black-Scholes (BS) option valuation framework is still widely used by practi-
tioners due to its reasonable performance and straight-forward structure, the implied volatility
of the BS model, however, has been the focus of intense research. The regression-based deter-
ministic volatility function (DVF) Dumas et al. (1998) and Andreou et al. (2014), is one of the
popular approaches for determining option specific volatilities to accommodate the volatility

smile or smirk observed in market data.

In this study, we select two best-performing structures of DVF in Dumas et al. (1998) and

Andreou et al. (2014) as follows:

DVF 1: ¢ = max(0.01,ap + a;(In X) + az(In X)?) (10)

10



DVF 2: 0 = max(0.01,ag + ai(In X) 4+ ao(In X)? + a3T + as(In X)T + a5T?). (11)

DVF 1 expresses volatility as a simplified function of log strike price In X whereas DVF 2
specifies volatility as a function of log strike price In X and option time to maturity 7. These

two specifications are termed PBS1 and PBS2, respectively.

We follow the literature and employ the nonlinear least square (NLS) regression to estimate
the model parameters. In the NLS, the sum of squared errors between the model price and the
market price is minimized by the Levenberg-Marquardt method, which interpolates between
the Gauss-Newton algorithm and the gradient descent method. We implement this using the

minpack R package.

The hybrid neural network based model (NN)

We follow Andreou et al. (2008) to construct an artificial neural network (NN) based model
for option pricing. As one of the most popular data-driven models, NN operates as a nonlinear

regression tool as follows:

Y = G(i‘) +enn, (12)

that maps the unknown relation, G(-), between the input variables, & = [z1, x2, ...,z N]T, and the
target function Y. The traditional NN usually implements the Multi-layer Perceptron (MLP)
with a single hidden layer for mapping the inputs with the target function, and the existing
literature reaches the consensus that a single hidden layer is sufficient to make MLP a universal

approximator for most problems (Bengio, 2009).

An MLP with a single hidden layer is a function f : RP? — R, where D is the size of
the input vector Z, and L is the size of the output vector Y, such that the total approximation

function can be represented as follows:
Y =G [b<2> +w® (s <b(1) + W(l)x)ﬂ , (13)
where b(1) and b() are bias vectors, W) and W®) are weight matrices, and G(-) and S(-) are

11



activation functions. The function ®(z) = S (b(l) + W(l)x) constitutes the hidden layer, where
WM is the weight matrix connecting the input vector to the hidden layer. The output vector

Y is obtained as G (b(g) +Ww® (®(x))).

In this paper, we follow the specification in Andreou et al. (2008) for the hybrid neural
network model. This NN model has a traditional three-layer structure: an input layer, a single
hidden layer, and an output layer. The numbers of neurons in the input and the output layers
are equal to the dimensions of the input and the output vectors T and Y, respectively. The
number of neurons in the hidden layer is between five to ten and determined by the cross

validation. For the NN model, the input vector Z is constructed as as follows:
5T T
T = [(56’ )/ X, T, a} , (14)

where ¢ is the dividend yield, and o is the volatility. The o is obtained through calibrating the
implied structural parameters by focusing on the Brownian volatility to drive the residual error

to zero (Andreou et al., 2008). The output target vector in NN is represented as follows:
Cii/X — CPY/ X, (15)

where the estimated BS call prices are obtained when volatility is proxied by historical volatili-
ties. When training the NN model, we employ the Levenberg-Marquardt method incorporated
into the backpropagation algorithm (Hagan and Menhaj, 1994) to obtain efficient and accurate

testing results. We implement the NN model by the neuralnet R package.

For this NN model, we use six months of data for training and another two months for
cross validation. It is then used for forecasting option prices over the next one, two, five and ten
days. The training and cross validation window then rolls forward one day following a rolling
window scheme. This method is in line with Fig. 2 in Andreou et al. (2008) with 7T's equal to
one day. The rolling window scheme is able to capture the dynamics of the distribution but

suffers from computational inefficiency (Ren et al., 2016).

12



Hedging exercise

In addition to out-of-sample forecasting, we also compare the hedging performance of the
models following Hutchinson et al. (1994), Bakshi et al. (2000) and Garcia and Gencay (2000).
Suppose we sell one call option and undertake A shares of stock and bonds to discretely hedge
this call during its life. Let V; denote the value of the portfolio consists of the option, the stock
and the bond as follows:

Vi=Vsi+ Vg + Ci, (16)

where Vs, Vg, and C; are, respectively, the value of the stock, the bond, and the call option

held in the portfolio on date ¢. The initial value of the portfolio can be specified as follows:

Vsi = Sil¢
C;
A — 9
! a8,
Ct = _ét,r
Ver = — (Vs +Cy), (17)

where CA'tVT is the call price estimated by a particular model on day ¢ with maturity T". Since we
assume the stock purchase is entirely self-financed by the riskless borrowing and the sale of the
call option, the initial value of the portfolio on date t is zero: V; = Vg, + Vg + C; = 0. Before
option expiry, we re-balance the stock and bond positions at regular interval At to satisfy the

following relations:

Vsirar = SitarDiiar
A act+AT,T—AT
AT = g
8St+AT
CtJrAT = _Ct+AT,T7AT
A
VBitar = €°7Vay, (18)

where AT is chosen to be 7 or 30 days following Bakshi et al. (2000). The hedging error is, as

of the revision day, the present value of the replicating portfolio value and can be expressed as

13



follows:

€ = Veiiar + Vsirar + Criar (19)

When we implement the hedging exercise for NN, we train and cross validate the model with
data in the first eight months and use the remaining data for hedging performance evaluation

without re-training the model.

4 Data and empirical analysis

In this paper, we use options written on the German DAX-30 index for our empirical
investigation. Daily call and put option data from January 2, 2009, to December 28, 2012 are
obtained from Ivolatility.com. Option prices are calculated as the average of end-of-day bid and
ask prices, which avoids the bid-ask bounce. We take the Euro LIBOR rate as the interest rate.
These data and dividend yields are obtained from the Datastream. The interest rates with five
different maturities from one month to 12 months are matched with the options data based on
maturities. The underlying DAX index is dividend-adjusted. We apply conventional exclusion

rules to clean the raw options data, including:

e At- or in-the-money (ITM) options are removed;

Options with prices below unity are removed;

Options with less than 14 days to maturity or more than 365 days to maturity are excluded;

Options with less than 10 contracts traded on a day are excluded;

Options with less than 9 different strike prices with the same maturity are removed as we

need sufficient strikes for parameter estimation.
These exclusion rules leave us with 65,867 calls and 95,895 puts over 1004 business days.

Descriptive statistics for the data are summarized in Table 1. Following Bates (1996),
we divide the options into three categories. Short-term options have 90 days or less before

expiry; medium-term options are between 90 to 180 days to maturity; and long-term options

14



are between 180 and 364 days to expiry. In this way we avoid weighting longer-term options more
heavily than shorter-term options (Huang and Wu, 2004), which contain slightly different market
information (Bakshi et al., 2000). Following Bakshi et al. (2000), we also group options according
to their moneyness, defined as X/S. As time to maturity increases, we see proportionately more
OTM options. For calls, the proportional of OTM options goes up from 53% from short-term
to 73% of long-term ones; whereas for puts, the corresponding proportions are 69% and 79%

for short- and long-term options, respectively.

Our out-of-sample forecasting exercise is carried out on a rolling basis from 1 September,
2009, until the end of the sample period. On each day, all options with the same maturity date
are used to estimate model parameters, which are then used as inputs to forecast option prices
for a range of forecasting horizons from one day to ten days. The out-of-sample forecasting
performance is reported in Table 2 for call options and in Table 3 for put options. We adopt
three metrics to evaluate forecasting errors: the root mean squared error (RMSE), the mean

absolute error (MAE), and the mean percentage error (MPE).

The first thing we notice is that the neural network based model outperforms all other
models in offering the smallest forecasting errors in most cases. For example, in the one-day
ahead forecasts for slightly OTM short-term calls in Table 2, the RMSE, MAE, and MPE for the
neural network model is 3.95, 2.37, and 0.02, respectively, much smaller than the corresponding
errors produced by the other models. When we move to longer forecasting horizons with two-,
five- and ten-day ahead forecasts, the neural network model continues to fare better than the
other models across different maturities. For example, the error for medium-term five-day ahead
put option forecasts are 1.86, 1.27 and 0.03, respectively, for the RMSE, MAE, and MPE in

Table 3, the lowest among the alternative models when options are slightly OTM.

However, as discussed in the previous section, neural network models are data-intensive
and require a large amount of historical data to obtain a reasonably well-trained network. In
this paper, we use six months of option data for training and another two months for cross
validation before any forecasts are produced. This is different from the other methods whereby

we only need one day’s data to forecast prices for the following day and over longer forecasting

15



horizons. Hence the neural network based model is not exactly comparable on an equal footing

with other models in this regard.

Apart from the neural network based model, the wavelet-based model consistently outper-
forms the SVJ model for all three loss functions and across option maturities in Table 2 for call
options. Similar performance for put options is reported in Table 3. For example, the MAE
for ten-day ahead forecasts for the deepest OTM options are 9.05, 16.63, and 22.11, respec-
tively, for short- (Panel A), medium- (Panel B) and long-term (Panel C) calls in Table 2. The

corresponding values are 9.57, 18.25, and 24.27, respectively, for the SVJ model.

When compared with the two PBS specifications, the wavelet-based model tends to fare
better for long-term options but worse for short- and medium-term options across the forecasting
horizons. For PBS2, the better-performing PBS model, its MPE remains 0.07 across the four
forecasting horizons when moneyness is between 0.94 and 0.97 for long-term puts in Table 3.
This is higher than or equal to the MPE for the wavelet-based model at 0.03, 0.04, 0.05, and
0.07, respectively, over the same forecasting horizons. In addition, for these two tables in Panel
D we group OTM options by moneyness only to provide an overall picture. We observe the
same patterns that the neural network based model performs best, and that wavelet-based model

outperforms the SVJ model.

Our results are related to Andreou et al. (2014) which show that the PBS2 specification
outperforms the SVJ in the out-of-sample forecasting test. However, their results are based on
the use of all options simultaneously and the performance for options with different maturities
is not examined. In this paper, we conduct our empirical analysis by looking at options per
maturity in the spirit of Bakshi et al. (2000), which argue that the market information captured
by short- and long-term options is somewhat different. Interestingly, our forecasting results
differ a little per maturity. We find that the SVJ model indeed performs worse than the PBS2
for short- and medium-term options but it tends to outperform the PBS2 for long-term call
options across the forecasting horizons. We also show that the wavelet-based options tend to

perform better than the PBS model for long-term options in the forecasting exercise.
Furthermore, following Andreou et al. (2014) we conduct a subsample analysis to scrutinize
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the models when the market is in a volatile condition defined as when the underlying DAX index
jumps by more than 1% in either direction. The results, summarized in Table 4, are broadly
consistent with our baseline results. We note that the neural network based model is still the
best-performing model, that the wavelet-based model still outperforms the SVJ models across
option maturities in Panels A to C and forecasting horizons from one to ten days, and that it
outperforms the PBS model only for long-term options when the forecasting horizon is less than

ten days. Panel D aggregates options only by moneyness and shows the same pattern.

In addition to the out-of-sample forecasting performance, we further examine the hedging
performance between the option pricing models. The hedging errors, the average after each
re-balancing, are reported in Table 5. Unsurprisingly, the neural network based method again
offers the smallest hedging errors among all the models considered in this paper. Apart from this
model, the wavelet-based model consistently outperforms other models across different option
maturities and re-balancing frequency. For example, for short-term DAX options, the hedging
error of the wavelet-based model is only -9.58 for seven-day re-balancing for the deepest OTM
options, compared with -15.88 for the SVJ, and -14.18 for the two PBS specifications. The

hedging error is only -8.07 for this group of options using the neural network based model.

It is worth mentioning that although in our paper the neural network based model com-
prehensively outperforms other models, in the literature however it is argued that this model
does not perform very well for deep OTM or long-dated options. Bennell and Sutcliffe (2004)
and Gradojevic et al. (2009) address this by categorizing options based on moneyness and time
to maturity. They train nine modular neural networks for each group of options with improved

performance at the cost of computational complexity.

In summary, our empirical analysis suggests that the wavelet-based model is a strong
contender in the out-of-sample prediction and offers the second smallest hedging error in the
hedging exercise during the sample period we study in this paper. This attests to the powerful
approximation ability of the wavelet methodology. The superior forecasting performance of the

wavelet-based model is due to the inherent de-noising and approximation ability of wavelets.
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5 Conclusion

This paper empirically evaluates the wavelet-based model and compares it with various
option pricing models for their out-of-sample forecasting and hedging performance. The para-
metric SVJ model has the advantage that we can observe parameter estimates and assess the
economic intuition of the risk factors they represent. Nonparametric methods including the
neural network based and the wavelet-based models, on the other hand, possess greater flexi-
bility in capturing the underlying asset price dynamics and the return distributions. The PBS
model is very popular among practitioners due to its simplicity and flexibility in mitigating the

volatility smile anomaly.

The data we use in this paper include daily end-of-day bid-ask midpoint of the DAX-30
index options. We show that in the out-of-sample forecasting exercise, the wavelet-based option
pricing model consistently outperforms the SVJ. It also outperforms the PBS model for long-
term options. The hedging performance of the wavelet method is the second best among all
models considered apart from the NN. This suggests that the wavelet-based model is effective
in revealing the risk-neutral MGF and hence useful for option pricing, forecasting and hedging.
This empirical evaluation work therefore provides a solid basis for future research, such as
utilizing the wavelet-based model for revealing risk preference and higher moments implied in

option prices as well as gauging jump in the underlying asset with the wavelet method.
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Appendix: Bilateral Laplace transform

Following Haven et al. (2009), the bilateral Laplace transform is defined as follows. For a real-

valued function f(¢) which is piecewise continuous on [—o0, 00), its bilateral Laplace transformation is a

18



complex valued function given by the following:

LUONe) = F(s) = [ s at (A1)
where s is a complex value and £ denotes the Laplace transform operator. The inverse Laplace transform,
denoted by L71{F(s)}(t), can be written as follows:

c+ic0

E”N@H@=f@=4</ F(s)e*tds, (A2)

—100
where c is a specific real number.

Let F(s) denote L{f(x)}(s) and G(s) denote L{g(x)}(s), we have the properties of the Laplace

transform summarized as follows:

1. Linearity

L{af(z) + bg(x)}(s) = aF(s) + bG(s); (A3)
L HaF(s) 4+ bG(s)}(x) = af(z) + bg(x). (A4)
2. Frequency shifting
L{e " f(x)}(s) = F(s+1),Vl € R; (A5)
LTYF(s+ 1)} (x) =e " f(x),V] € R. (A6)
3. Time shifting
L{f(x — xz0)}(s) = e "°F(s),Vx¢ € R; (AT)
L7 He ™ F(s)}(z) = f(x — x0),Vxo € R. (A8)
4. Convolution
L{f(z) x g(x)} = F(s)G(s); (A9)
LTHEF(5)G(s)}z) = f(=) * g(2), (A10)

where * indicates the convolution operator on f and g. This operator can be defined as (Bracewell

(1999, page 25)),

frxg= /jo f(r)gt —7)dr = /OO g(T)f(t — 7)dT. (A11)

— 00
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Table 1. Summary statistics of options data

This table provides summary statistics of options written on the German DAX-30 index. Moneyness is defined
as X/S. The sample period is from January 2, 2009, to December 28, 2012.

Call options

Put options

Total No. of options 65867 95895
Total No. of trading days 1004 1004
Panel A. Short-term options
Avg No. per day 36.59 54.05
Range of moneyness [1, 1.9144] [0.2945, 1]

Moneyness < 0.94

0.94 <= Moneyness < 0.97
Moneyness >= 0.97
Moneyness < 1.03

1.03 <= Moneyness < 1.06
Moneyness >= 1.06

8606 (23.43%)
8581 (23.36%)
19548 (53.21%)

Panel B. Medium-term options

37376 (68.87%)
8406 (15.49%)
8487 (15.64%)

Avg No. per day 16.26
Range of moneyness [1,1.6033]
Moneyness < 0.94

0.94 <= Moneyness < 0.97
Moneyness >= 0.97
Moneyness < 1.03

1.03 <= Moneyness < 1.06
Moneyness >= 1.06

2648 (16.39%)
2648 (16.39%)
10864 (67.23%)

Panel C. Long-term options

22.47
0.2359, 1]
17071 (76.51%)
2594 (11.63%)
2648 (11.87%)

Avg No. per day 19.12
Range of moneyness [1, 1.9144]
Moneyness < 0.94

0.94 <= Moneyness < 0.97
Moneyness >= 0.97
Moneyness < 1.03

1.03 <= Moneyness < 1.06
Moneyness >= 1.06

2633 (13.74%)
2517 (13.14%)
14008 (73.12%)

23.64
[0.1388, 1]
18711 (78.81%)
2379 (10.02%)
2653 (11.17%)

26



cro €ro 420 o cro Iro @co 120 cro cro 810 810 o cro Iro €10 €ro HdIN
1€'8 €16 9E°LT LT8 116 L8°C  TLET 88Tl 1€'8 LT'6 cUIT  99°0T 78 1€°6 19°'c 108 QLL HSIN

9608z TSI PLET G8V6C ¢Sl 9L'E€T  T0°¢  GLTIT L9°0C 09L0€  TS'CT  6L°€T ST'LT 9791 9€STVP  L9CT  86'€T 0TV 9LTl T1€Cl HUSINY S/X UV
LT°0 LT°0 ge0 S0 ST0 LT0 620 .20 9IT’o 91’0 €50 [4aly] S0 9T'0 LT0  LT0 910 HdIN
LL9 L 6S°7T 099 89c  8LTIT  90°TT 899 9€°L 8T'6 6L°8 qL9 VL €9°C 899 HSIN

L8L9T  LEOT  LE'TT 907C 9€9LT  TC’0T  PC'IT LUV V7861 O08'8I LTT8T  8T'OT  €E'IT 9T'eT 8Vl 699¥¢  LE0T  PPIT €TV CYTIT  L6°0T  HUSINY 90 1=<
L0°0 L0°0 120 L0°0 L0°0 G000  STO Y10 L0°0 L0°0 Y10 Y10 900 L0°0 700 010 01’0 HdIN
616 T0T 06°61 8T'6 ¥¢'0T  88%C 0S¢l 6771 0€°6 8¢°0T 06'cT  0€CTT LV'6 LVOT  T¥T  ST6 768 HVIN

€998 TIG€T 88F1 8€°6C 2665 19°€T 861 T6V 0€€c TT'ee 9629 €9°€T  SO°ST 88T  LO'SIL €er8 PRET  LTSGT  ¥RE  99°€T  ST'ET  HUSIWNY  90°1-€0°T
<00 <00 €10 S0'0 S0°0 ¢0'0 600 600 S0'0 S0°0 600 800 S0'0 S0'0 c0'0 900 900 HdIN
00T g€l L0°€T GCCl  TYET  S9v'e 98°LT €L9T ¢0er  €eet L6VT  CVVL €€ TYET  ¥O'E G601 IL0T  HUVIN

9999 1991 GT'8T 1ree 1689 98°9T  FG8T  9L'G €€¢C VITC 1629 99'9T  GT'8T 050z €861 ¥rr8 L89T 6981  ILT 8T'ST 68F%T HSWY €0 1-00T

suondo [y (I [Pued

Y10 ST0 600 120 61°0 Y10 ST'0 80°0 ST'0 v1°o €r'o ST'0 L00 2T0 110 Y0 ST'0 80°0 800 800 HdIN
9961  ¥LTc VSV 99°LT  V8TC €961  TLTT TE&V  €L8T  9T'LT €961  6LTC ¢O¥  LOST  STWI G861 10CC 86'€ 9€0T 986 HSIN

2069 €0'€c  LE€'6C  TT9  T19'8¢  8EGE 1029 IT'€c  8F'¢c 199 €LLT 6LGT 8€59 10€c  €7'¢c  €LS  €6'Tc  99°0T 7168 Lg'€c  Tl'St  SV'e 9F'ST  9LVT HSINY S/X v
9IT’o LT°0 110 <20 €20 9IT’o LT°0 0T'0 610 LT°0 0] LT°0 600 V10 Y10 9IT’o LT°0 0r’0 010 600 HdIN
€7'ST FOLT 0TV  LTVe 1T°CC 0T'ST €897  L8E CT'LT  68GT 8C'ST G691  19'¢  LVET  L9TT LEGT  LOLT  T9€  TE6 8’8 HVIN

Le€V LT'8T 000 98°¢ €6¥7e 0€7ce asig 66°'LT G861 R86'S TC'9C 8V'TC YLV PO'8T  G6°6T  ¥E€'S G00C TRBI 9679 LT'8T  0T'0Z  L0¢ €E€FL  69€l HSINY 90 T=<
800 600 100 0T°0 600 80°0 600 c0'0  L00 900 80°0 600 100 900 S0°0 800 600 100 700 700 HdIN
69'8C  08'T€ T0'S L9¢e 69°T€ 00'6c  60cE  80'S G9'CT  8¥'0C ¥0'6c TT'oE VLV 8P6T  €T'8T wéc 09ce Th'v  0€€T  8%Cl WUVIN

99L c00e  Sree  ov9  S6°Sy ORIV 018 oy'0e  19°€€  CI'L ¥C'1€ 86'8C 698 €606 99ee  IT9 89T 10°SC LLTT 89°0¢  T6'E€E  ¥9'G LT8T 9VLT  HUSINY  90°1-€0°T
80°0 800 100 800 00 800 80°0 100 €00 S0°0 800 800 100 700 700 800 80°0 100 €00 €00 HdIN
66'¢e 99L& 96'S  T9LE 80'€E LEPE  86°LE 96'G  E€T'€C  6L°0C 69€e  0C'LE 8V'G  LT6T TSI 8T'PE  €8'.LE 8Y'G T0E€T L¢CT WUVIN

66 1666 0166  69L CTI98F €9€Y 08 68°6E 196 €68 G9'1€  9T'6C <16 c0'ée  998¢  60°L LT'9C I8¢ et ¥9'¢e  1€6€  00L TO8T 6SLT  HUSWNY  €0°1-00°T

suorydo we)-guor ‘) [Purd

110 cro 600 L20 €T0 (0] o L0°0 020 8T°0 170 cro 80°0 STO ST'o 170 cro 80°0 ¢TI0 010 HdIN
9L'6 6L01 60€¢ QCTC T661 99'6 ¢L0T 28T 6091 6671 1.6 GL0T  99¢  1LCT 90Tl L6 8L°0T 69C CT0'6 998 HSIN

60€L 08'TT 86°CT LY T€TE T9°6C 8VEL YLTIT ¥6°CT 9¢'F  LETVT T0'€T vesL 0L'TT 88°CT 8V'v  GT'6T  GE'8T LTTOT  69°TT 06°CT 86'¢  9FTI  ELET HSINY S/X v
Y10 ¥I°0 €0 ve0 0€°0 €ro €ro 110 S2°0 €0 €r'o Yo 11°0 020 61°0 €r'o Yo ¢ro  9ro Yo HdIN
86'9 8C'L LLT ST8T €991 9IT'9 ST'L ¥¥'e  19€T oLl L¥'9 LT°L ge€'c  €9°0T 8001 67'9 6T°L €8¢ 671 ST'L HVIN

98LY or's 68'8 vy L6l TO9T agsid 108 8’8 8TV 991 0€°0C 687 G6°L €L 6V T69T 8CIT T899 68°L 0L'8 L€ 0€€r  TPel  WUSINY 90 1=<
L0°0 800 c00  ¥I0 cro L0°0 800 c00 010 600 L0°0 800 100 800 400 L0°0 800 100 €00 S0°0 HdIN
STVT L9761 6€€¢ €06 19°¢C €TYT 8L°GT T€°¢ 690 TT6T 6071 T9°¢T €6'C  0L9T 89°ST 6T VT TLGT YL G9TT 90°TT HVIN

Y921 96¥T  8F'9T  L8F 99°8¢  96°TE 29c1 LOST 1991 167 €6'8C VSLT 80€T 0871  €€91T 90F T8CC TI'1C €4LT 06'PT  PPOT  L6'€ SO9T LP'ST HUSINY 90°1-€0°T
900 900 100 0T°0 600 900 900 100 00 900 900 900 100 900 S0°0 90°0 900 1000 ¥0°0 700 ddIN
crLT 8C'6T 07  67V0€ 1L9C IVLT GE6T 6L€ 0T'Tc  P96T 6C°LT VT'61 8V'€ 8LI9T  68°GT 9€°LT TT61 ov'e 0Tl €811 HVIN

6501 8¢'8T  ¥I'0c  69'¢ ¢66E G6°GE jazat 68T  8T1°0c 0¢'¢ SIT'6C €9LC ceet 90'8T 1661 ¥8F% €9CC 69°1C T8L1 CI'8T 8661  498% 9L9T 1691 HUSWY €0°1-00°T

suo1ydo wIe)-wnIpajy "¢ [Purd

taN(] cro 8T°0 L£0 €e0 o o 41’0 92’0 jzql 7o o teqll] leaqll] 70 o ¥I°0 910 9T°0 HdIN
€0e Iv'e vL¢  1e¥T OT€l 1ee 8¢°¢ ge€'c  LL0T  6T°0T 16°€ 98'8 998 ¥e'e 29°¢ 80c €99 169 HSIN

TSOST  97'F Ly 86'F 9T'cc TO'TC €809T 697 687 9¢F  SPLT 6691 88991 €Ly TLET TVl G0sce oSV L8V 69°¢ 6901 €¥0T HSINY s/X v
61°0 8T°0 €0 050 770 9IT’o 9IT°0 ve0  9€0 ve0 LT°0 0€0 62°0 LT0 9T°0 ¥e0  TTo 120 HdIN
11'c LT'T L9C  LS6 06 S0'c STe 8T°C  8LL 0S°L €1'e 209 06°¢ L0°C 8T'C €0c €97 Kiiad HVIN

€LLL e or'e 87 C&9T  68°¢CT TSE8 e sT'e 8E'V  G8'E€T  09°€T 6958 16°C 60°0T 686 I8STT  76C c0'e qLe  LT8 L0'8 HSINY 90 1=<
900 900 4000 820 920 900 900 900 610 810 900 8T°0 LT°0 900 900 G00 €10 cro HdIN
87'E 6L'¢ 0S¢’z 06'9T  8€'¢CT €L'¢ L0V T€C  Tvel  9LTT €6°¢ 62°0T  TO0T 0Le L0V 88T  G9°L 8¥'L HVIN

169¢ ey LY ¥y 98¥e 0vee v6ee Ly 90°¢ 9€7  66'8T  6€°8T 6907 88'F crer  LLVI €059 97 €0°¢ 8¢'e  €E€TIT  IT'IT  USIWNY  90°T-€0°T
700 700 c0'0  LTO0 ST'0 700 700 c00 110 1o 700 1o 01’0 700 700 c00 800 800 HdIN
8€°G 68°¢ yrI'e oric 0961 99°¢ 129 6LC  99¢T  €6TI €09 IVeT  OT'€T L9°G 9 LeC L00T 166 HVIN

L29¢€ 67'9 86'9 8L°G G06C TTLT L8L€ 0L'9 9T L IS  €¢cc 89'1C 0sov 80°L SI'8T  €8'LIL 1evs 699 0€°L G6°¢  9%°€T  L9€T  HUSIWY  €0°1-00°T

suordo uLe)-4I0yg 'y [Pued
90 csdd  1Sdd NN [AS AABAN $q0 csdd  1Sdd NN [AS AABAN $90 csdd  1Sdd NN [AS AABAN $q0 csdd  1Sdd NN [AS SABA s/x
peaye Aep-uag, peaye Aep-oAl peoye Aep-omJ, peaye Aep-auQ

"ZT0T ‘8¢ 10quadd(] 03 ‘600z ‘oquvydog T woiy st porod

8uryseoe10] oY ], 'seord jeyIeW pUR Pa)SEILIO] o) Weemiaq (HJJN) I0i1e oejuadied weswr o) pue ‘(FYIN) 10118 anjosqe ueaw oY) ‘(HSINY) 10110 parenbs uesw 1001 oY) Aq pajenyess si

soururIo}tad 3UIISRISIO] O], 25D YoDd UL (§Q()) SU0YDALISQO [0 UPQUINU

a3 140das 0sp 944 ‘suorpdo [[ed Xy 10} (zSad pue 1Sdd) [Ppout se[oydg-3oe[g Iouorijoeid o1) Jo suoreoyroads

om) pue ‘(NN) [PPOW YIomjou [ernou PLiqAy oY) ‘opouwr fAG oY) ‘(aaepy) [opowr Sumrid paseq-jo[eaem oY) JO SIOLID SUI)seddI0] praye Aep-uo) pue ‘-oAl ‘-om) ‘-ouo o1y syrodar aqe) SIyJ,

suorjdo [[es jo soueuriojrod Suriseosaio) ojdures-jo-im() g d[qR],

27



400 S0°0 .20 L0°0 400 00 LT°0 L0°0 G00 VIO vIo L00 L0°0 <00 HdIN
LT9 €9°T crer 6L°G 07’9 qe'T 8¢°0T LE°9 qeT oL €8'8 €8'¢ v9 8T HVIN

9geeY 6001 78T 86°CC 76557 86 €0 Ve 2891 8STLY 8T0T  €FV'¢ TI€¥FT  6ETT 61669  SE€'6 €01 LTC HISINY S/X UV
S0°0 100 cro ¥0°0 S0°0 100 800 S0°0 100 .00 200 ¥0°0 S0°0 100 HdIN
0s'cT €7 [diged 09'TT  08Cl  €TC 6G°CT ¢Sel  ¥oe  T9CT 9L°ET 69°'TT  6LCT LT'C HVIN

186G PLI9T  99°€ 9IT'1€ 8229 SPSeT 6691 1€°€ 0L°2C 8259 9991  €€'€  T7961 896 cI88 9F'eT 6691  €T'€ HUSINY  00°1-L6°0
S0°0 c00 8T°0 ¥0°0 S0°0 200 7o S0°0 c0'0  0T0 01’0 ¥0°0 S0°0 10°0 HdIN
€26 86T 99°02 a8 876 €8T 8T VI VE'6 €8T L6'TT €T'Cl 67'8 e T HVIN

80LG 0z’€l  10°€ §9'8¢ 6119 80°¢T  PE'E€l  08°%C 1212 6769 Yeel  LL'T 8VLT 8CLI LG8 L0CT  €€€T  €97C HSINY  L6°0776°0
800 200 €0 800 800 00 0z°0 800 000 910 LT°0 800 800 900 HdIN
98V i q9ct 0z'y 79V Le°T 798 997 9¢'T  8I'L 8¢ L vev 697 et HVIN

L991€ V'L 6T°C 1861 Lyeee @89 el 91T 1284} 18¢ve 9¢°L ¥I'e ceer  ovel c6197  06'9 €9°L 10°C HSINY 760>

suondo [y (I [Pued

L0°0 800 200 €10 ¥T°0 L0°0 80°0 c0'0 600 010 L0°0 80°0 c0'0 800 60°0 L00 80°0 c0'0 900 90°0 HdIN
PEET  C8FT  T¥T  I¥6I 6T cyer 1671 I¥e 9L°el T'Tl V€T ¥6VT  €€C  8€TT  CYIT €9°€T  ST'ST  L&C V€L el HVIN

1606 TLOT 88T  T¥'E€ G8LT  €0'8C L0L6 G89T  T98T  L¥'E€ GL6T GR6T 1266 6L9T 99°8T 61°€ GO'8T  80'8T G6PET  €0°LT  ©88T  0€'€ 06'TT 9L TT HSINY S/X v
L0°0 800 100 .00 400 L0°0 800 100 700 ¥0°0 L0°0 800 100 700 ¥0°0 L0°0 800 100 €00 €00 HdIN
06'8c  ¥6'T€ 06'¢ LE€8C 60°8C ST'6c  6TCE  0L'€ 88T  GT'8T 90'6c  ¢l'ce 8%'E  9FV'LT  90°LT 07'6c  87'ce  €L'¢ 9011  66°0T HVIN

666 €0°0e  90'€e  60'¢ T69E IT°LE 2901 ¢c0e  6T°€E L6V T0'9C  86°ST €901 croe  8T'€E 997 8T'ST  00°6T TLVT 0906 L9€€ 647 99T ¢TIl  USINY 00 1-L6°0
L0°0 800 100 00 L00 L0°0 800 100 €00 S0°0 L0°0 800 100 700 700 L0°0 800 100 €00 €00 HdIN
80°'VC 0L°92 ov'e ¥¥9z  GT9T 61VC €8°92 0z'€ 8981 PE8T veve 68°92 oT'e  ¥e9T  0T'9T 0v've L0'LT 61°¢  PE0OT T1€0T HVIN

988 cU'se  vLle WV LLVE 06°7€ €96 GI'6c  8L°LT L&V 6€°9C 9T°9C 696 8¢'GC  ¥6'LC L6'E  CI'EC  IT°€C €retr ¢y'éc  0I'8¢  LOW  PI'ST  PO'ST  HUSINY  L6°0776°0
L0°0 80°0 €00 ST0 9T'0 L0°0 80°0 €00 0T0 cro L0°0 800 €00 600 0T’0 L0°0 80°0 €00 L00 00 HdIN
98'6 6601  60C 0Ll OVLD 66 GO'TT  €T'c  STIT  6E°1T €0°0T  6T'TT  L0C 866 0T°01 Yot I€TT 60T 979 679 HVIN

[4xa) 9¢°cl  69°€T  L6C ¢ESc  19°GT T69L 0F'el  €L€T  L0'€  89LT  GR'LT G064 €V'¢l  6L°€T €8T L09T 8T9T TTL0T  69CT  96'€T @6C 890T TS0 HSINY 60>

suorydo we)-guor ‘) [PuRd

900 900 €00 LT0 61°0 900 90°0 €00 ¢r0 e€ro 90°0 90°0 €00 010 o 90°0 L00 €00 800 L0°0 HdIN
L6°9 SLL 3 €0°LT  8FLI oT'L 88°L 67T 6911 6811 66°9 9L°L TS'T 886 G966 0L 08°L 0S'T 699 659 HVIN

88%0T  L0'6 T0°0T ¥e'se  LSGT 88L0T 616 PI'0OT  8T'C 8T'8T L¥'8T 8¥60T  90°6 66°6 T6’c  €9°¢T  0L°¢T G89VT 606 €0°0T LT’z @80T 980T HSINY S/X v
S0°0 900 800 600 S0°0 900 100 900 90°0 <00 90°0 1000 S0°0 <00 <00 90°0 1000 €00 €00 HdIN
1091 0L°LT 61°¢C  99°6C T€9T  008T  6€C LOLT GELT €09T  0L°LT 8%  T0°¢T  TIT'GT Yror  I8LT  6F'C  €T0T 10T WUVIN

88CT LLOT  VP8T LS'€ L6€E EVTE 88CT €0°LT TL8T cTce 0Sve  9¢Ve 6€€T 8L9T ¥¥'8T ¢¥'e 8Tl ¥T'1C L8L1T 98°9T  €98T 0T'€ 99FI L9FT HUSINY 00 1-L60
<00 900 100 010 1o <00 900 100 00 400 i 100 900 i <00 900 100 700 ¥0°0 HdIN
6€°CT LLET LT'C  9V'¥C  68°VC TLCT aTvL 96'T  S6'9T TT'LT € €6'T  P8€ET 3 €v'et 08°€T 68T TC'6 626 HVIN

9021 PUET  0SFPT  90'€ 0r'€e  8p'ee 0621 8C€'E€T  6LFI  69C €VVC 0SVC Vo€t YeVL  89C  GS'61 6961 VeLT 60°€T  9V'FT 19T LEET HUSINY  L6°0776°0
900 900 €00 00 [4aly] 900 L0°0 €00 FI0 ST'0 L0°0 €00 ¢TI0 cro 900 i 700 600 800 HdIN
697 ¥Te Ge'T  09FT  SOST LLY ces LTT 686 0z 0T [ 8C'T €78 67'8 vy LT 19°¢ 8G"¢ HVIN

Y66 90'9 0.9 ¥6'1T 10TC 0€7TC 0128 o9 LL9 98T 98¢l 0191 <0e8 €09 999 98T  LLET €R°€l PPITT €09 06'T  LS°6 296 HSINY 60>

suo1ydo wIe)-wnIpajy "¢ [Purd

800 L0°0 800 0€0 e L0°0 L00 L0000 120 L0°0 L00 L0°0 8T0 8T°0 L00 L00 L00 €10 cro HdIN
etard 44 ¥e'lr  C9Tl Thel 9€°C 94T qcT LTS €98 LET 94T L2T  €TL 8€°L LET 84T YI'r S0°¢ 80°¢ HVIN

1666 TE'€ L9°¢ ¢C'c  8S8T  TIE6T ceese  vre €Le c0c  E€FTT 897I €829 09°€ LLg LT 9611 SO0'CT 66£5¢  9V'€ LLE 8L'T 798 9’8 HSINY S/X v
€00 ¥0°0 100 7vI'0 ST0 €00 00 100 600 60°0 €00 700 100 600 60°0 €0°0 00 100 900 90°0 HdIN
80°¢ 8¢°¢ 96T  LS6T 40T LE°G T°6'¢ LLUT I8ET LTVI (4 98¢ ¢8'1T 8Tcl  8¥Tl ws 96°¢ 99T T1L8 88 HVIN

yTLe or'9 €99 €0'¢  €TLC  00'8C 016¢ 9€'9 769 L'c T80 10'1¢ 9ETY Se9 16'9 L8C  GELT  6VLT A1 v 0L 8V'c  9LCl  8LTT  HUSINY  00°1-L6°0
¥0°0 ¥0°0 c00 020 cT0 €00 ¥0°0 200 €10 €T’o ¥0°0 ¥0°0 c00  ¢I'0 €ro €00 ¥0°0 c00 800 600 HdIN
¥ee 96°¢ 8C'T  L6'9T LR'LT cre 08¢ S¥'T 06’11 S€TT cre LLe 67T  9€0T 1901 sve e 0T LTL 65°L HVIN

€r9e L0V ey ¥e'e  S0ve  GLYT L06€ (4 d Y9V 0€'c  8C'8T TS'8I 9.0V 8TV L9V ¥v'e  G0°ST 8T'ST 8059 9TV 9% 102 TL0T GL0T HSIWNY L6°076°0
60°0 60°0 01’0 9¢°0 o 600 600 01’0 %20 taly] 600 600 01’0 120 120 600 800 600 910 ST0 HdIN
ov'1 T STT 998 e SPT ST 60'T g9 <9 YT €9t 60'T  6£°¢ 67°¢ €' Te'T 660 TLE cLe HVIN

72991 66°1 L0¢ 06'T ce¥l 0TSl GESLT 20T 1454 9L T 6€T1T 6911 TL08T 11T 12°¢ 06'T  L£6 6 LEEVT 86T cre ceT TLl9 899 HSINY 60>

suordo uLe)-4I0yg 'y [Pued
90 csdd  1Sdd NN [AS AABAN $q0 csdd  1Sdd NN [AS AABAN $90 csdd  1Sdd NN [AS AABAN $q0 csdd  1Sdd NN [AS SABA s/x

ooururiojtad 3UIISRISIO)] OYJ, 25D YoDd UL (§Q()) SU0YDALISQO [0 uPquInu Y] fs0das os)p 24 -suolrdo ind Xy 10} (gSdd Pue 1Sdd) [Ppow so[oydg-yor[g Ieuornijoeld oY) jo suolpeosyoads
om) pue ‘(NN) [PPOW YIomjou [ernou PLiqAy oY) ‘opouwr fAG oY) ‘(aaepy) [opowr Sumrid paseq-jo[eaem oY) JO SIOLID SUI)seddI0] praye Aep-uo) pue ‘-oAl ‘-om) ‘-ouo o1y syrodar aqe) SIyJ,

peaye Aep-uay,

peate Aep-aAtg

peaye Aep-om T,

suorydo gnd jo soueurropred Furyseosioy oidures-Jo-in(Q) ¢ 9qe],

"ZT0T ‘8¢ 10quadd(] 03 ‘600z ‘oquvydog T woiy st porod

8uryseoe10] oY ], 'seord jeyIeW pUR Pa)SEILIO] o) Weemiaq (HJJN) I0i1e oejuadied weswr o) pue ‘(FYIN) 10118 anjosqe ueaw oY) ‘(HSINY) 10110 parenbs uesw 1001 oY) Aq pajenyess si

peaye Aep-auQ

28



€ro €ro Y10 cro L0 et} cro 120 120 cro cro ¢ro  vro €ro HdIN
698 v'6 ge'e 8C'8 LELT  9¥°9T 1€°6 €V'€T  06°CT £€9'8 16°6 €6'c  T4'8 9T'8 HSIN

€68TT  TLCT  96'€T  89'C L08TT  G€'2l €9°LT  9T°9C TeTET €6°¢T 8961  68'8T 9PELT  88°CT  6TFI  8LT 8EE€T  ¥6'Cl  HUSINY S/X UV
LT°0 LT°0 120 S0 ce0 91’0 920 §%0 9IT’o 9T’0 8T°0  LI0 LT°0 HdIN
[q WA 9L'L 69'9 LTVT 99°L S8T'TT  ¢L0T 60°L 8L'L LL°T 60°L HVIN

8€TL ¥9°0T 9911 129 YovL 0201 GR'€T 01z 09°TT VLT 6991 ¢060T  €L°0T  I8TIT P97 O0TCl 0911 HUSINY 90 1=<
900 L0°0 S0°0 900 LT°0 900 ST0 ST0 900 L0°0 €00  0T0 600 HdIN
VL6 €L0T  6V'E 05°6 80°6T €9°01T IT9T  ¥¥et 86°6 PO'TT  18C 8T0T 886 HVIN

0¥¢e 00%T  TF'Sl 699 6812 PSer €0°6C 8C¥T gy 96'1c  S0'1T avee YrvT o ¥6'ST L&V 8FPI SOVD USINY 90°1-€0°T
<00 <00 c00 S0'0 1o S0°0 0T'o 600 S0'0 S0'0 c0'0 900 900 HdIN
6€°CT 79°er 9€V €qer ov'1e ceer 8C'8T  09°LT taxan €8¢l 9'¢  Cl11 Sl HVIN

§T1CC c0'LT 6987  0T'L ¥<1e 0'LT 4a8°0€ €9¥C €9°8T L8'€T  90°€T 661¢ 0Z°LT  ¥6'8T  69°¢ 6091 LLSGT HASWY  €0°T-00°T

suondo [y (I [Pued

Y10 ST0 800 120 020 €ro vIo 80°0 00 8T°0 €r'o vIo 00 ¥T°O €ro Y0 ST'0 80°0 800 800 HdIN
Y961  CL'Tc €SV 1€0€  €9°LT c0'6T  90'Tc  T<¥v  19'6C  S0°CC 9961  08°'T¢  €€F% TI'8T 8691 L00c  vg'cc 1€V 06°0T  8€0T  HSIN

€192 98'cc  T¢'Sc  €6'¢ 0LV T9'6E 6€5T Te'TT  €9Ve 689 00°¢E 9L°CE 668¢ 96'cc  LE€6C 0€°9  66'T7C  6V'ET T68¢E Le'€T 08¢ P09  G9ST  TEVI  HSINY S/X v
9IT’o LT°0 0T’0 20 €20 S0 91’0 0T’0  ¥20 cT0 0] 91’0 600 910 910 9IT’o LT°0 110 010 01’0 HdIN
0L'6T  G€LT  60F ¥99¢ LV'VC FO'ST 9991 607 00CC V90T TOST  TELT  L8E  8TI9T  €EGT L6'GT  OL°LT  €6'€  T66 7’6 HVIN

8G6T €8T  020c Ve 6€8¢ I8°GE L061T cLLT  L96T 099 8T'€E  0T'1E 991¢ €€'8T  G¢0c  €6'¢  16'CC  0S°1C 188¢ G98T  09°0c ¥9'¢ CSVI 8LET  HUSINY 90 T=<
800 600 c00 110 01’0 80°0 600 c0'0 800 800 80°0 600 100 00 900 800 600 100 700 700 HdIN
8L°8C  ¥6'TE  0€°¢  L06E T9°GE 90'8c  €T'TE  61°¢ G9'8C 0L°9C LT’6c  09'ce  6T'S €VEC  98'1C 66'6c  FcEE  98F  69°€T  €0ET  HUVIN

0ze G008 €Tee 999 IL0S  LELY €0¢ 626  L£CE 889 €E0V  69°LE cse 69°0€ 98°€E  T99 G6'6C 6C'8C 87 Yore  €9ve  €T9 TP8T L9LT  USINY  90°1-€0°T
80°0 800 100 600 800 L0°0 80°0 100 900 900 L0°0 800 100 €00 S0°0 L0°0 80°0 100 €00 €00 HdIN
16°€e 068 L€9  9€€V cLee  0e°Le  TV9  €€8C  96°ST Lee veLe  €r9 19'€C 88'1T 67 7E  GI'8€ €09 L6'€T 6TE€T  HUVIN

qee 9666 L6'8¢  T8L €T9¢  GO'TIS 62¢ YI'ée 048 0¥'8 9966 19°9€ a8¢ cr'ée  9L8€  ¥RL 99°0€ 6L°8C 687 €6°66 096  98L T88T 8I'8T HUSIWY €0°1-00°T

suorydo we)-guor ‘) [Purd

110 cro 600 0€0 §T0 110 80°0 ¥¢'0 [ealt} 170 cro 600  8T°0 LT0 170 cro 600 <TI0 o HdIN
86'6 POIT  1€€¢ 9L°6C GLTT L9'6 61°¢ 700 9881 9L°6 ¢80T  98°C €€¢T P9Vl 8L°6 G801  L8C 096 ST'6 HSIN

90T€E €0'¢T  PCET  60°¢  99'9¢  €eEe 656 L8'TT €S 190€  66'8C GLTE L9TT  68CT 0V 98T1c 00'1¢ 6VTY GLTT 86T €¢F  T€CST 9971  HSINY S/X v
Y10 ¥I°0 €0 L€0 ze0 €ro 110 1€0 820 Y Yo ¢ro €20 o Yo ST'0 €10 ST0 Yo HdIN
S0°L 8L'L 66'c TIv'1c 8T61 ¥L'9 TLT  €TLT €T9T 8’9 8G°L cec  T8el 189 09°L T¢'c 008 89°L HVIN

VI1C ¥9'8 87'6 €8V ¢l'ce  896C £€0e 07’8 V6’V ST'LT  09°6C 0STe Le8 cre 007 8T6T 9981 9€8¢C Te'8 LT6 0Ty STVPI  CVer  USINY 90 1=<
L0°0 L0°0 c00 910 ¥1°0 L0°0 c00 110 1o L0°0 100 600 600 L0°0 400 100 €00 S0°0 HdIN
I87TT vt 89'¢  6¥VFE TI0E€ 0971 88'¢ 929z  08VC 96°CT cee 980z 9961 L97T 6291 ¢ce  9%cl  0T'el HVIN

805 T9ST  €TLT  GTS  6IVF  ¥86E SV 8G°GT L9°¢  gTLe  €9°¢E 91¢ 6991 9TV LL'9T 8T'ST 299 CVeT  SOLT  ILV 8ELT GL9T USINY 90°T-€0°T
900 900 100 2¢T°0 01’0 900 100 800 00 900 100 00 900 900 900 1000 ¥0°0 700 ddIN
TLLT 7961 8CT7  63°¢E  09°0€ €9°LT 097 9T'9¢  €V'TC 8C'6T  €6'€ 1€0C E€V6I TGLT 9761 L0V 88%CI PS¢l HUVIN

g 09'8T ©§'0c 16'¢ S8y 050V 97 99°81 8¢9  ¥6'9¢ 86VE 609 L0°0c  00°¢  VI'9C VI'ST 159 ¢€'8T  8C0C ¢6'S PWLLLT  PELL  HUSINY  €0°1-00°T

suo1ydo wIe)-wnIpajy "¢ [Purd

€ro cro 610 0V0 9€°0 110 o 9T°0 T1€0 0€0 cro cro LT0  ST0 gc0 70 o <10 9T°0 HdIN
6£°¢ 69°¢ 8¢  ¥I'9T 0TSl i cLe €6'c  L9€T ST'El 0s'€e 9€'c 9901  €¥°01 ov'e L9°€ 66T 00°L HSIN

929 99'% 98'F 98¢ €9TC T19°€C 76€9 98'F oT'e vLe  1T'Ce  9S°TC L80L 89'F G6'€  LLCT 9F'CT 9V€6 €97 96'% 8TV OT'TT  USIWY S/X v
61°0 8T°0 €0 ¥5°0 87°0 LT°0 9IT°0 920  Tv'0 or°0 LT°0 8¢°0 €€0 €e0 LT0 9T°0 et} o HdIN
€€C LE°T e 611 180T 1€°C 07'¢ ¥9'¢  0T°0T LL6 TeT 9°C €Vl 65°L LT°C 8€°C LT 967 HVIN

[it424 62°¢ 9T'€e ce's 0981  €€'8T 186¢€ 09°€¢ 8¢°€ Yv'e  CLLT 9ELT G68¢ cre €6'¢  66'TT  €LTT G8TG 8C'€ ae'e 6TV 188 HSINY 90 1=<
900 900 900  0€0 820 S0°0 900 G00 @20 120 900 G00 610 61°0 <00 900 S0°0 cro HdIN
9L'¢ 907 ¥0'€ 9861 TIPS L0V o'y 66'c  TPI9T  99°¢T 90'% Te’c  96CcT 99Tl €6°¢ €7 0%°¢ i) VN

g4t 8V or'e 8%'G¢  GE€'8C TVO'LT eV 90°¢ or'e €8¢ 98VC  IT'VC 06ST S0°¢ Q9'e  TLLT €ELT c01e a4 8¢S 0Le YOeT  USINY  90°T-€0°T
700 700 €00 LTO 910 700 700 c0'0 €10 €10 700 c00  ¢I'0 cro 700 700 200 L00 HdIN
69°G 90'9 ¥6'¢ 61V 91TC T6'G €79 €9°¢ 80°0C TE6T 0€°g 8¢ LLT TE9T L6°ST TLg 8¢9 68°C L9°0T  UVIN

6071 ¥8'9 LTL 0e’L Lgte  ge0e 8LET 0L el 999  €¥'8C IL°LT TLST g9 169 0e€y 901 L9°0C 6502 089 (U LLY 09%T  HUSIWNY  €0°1-00°T

suordo uLe)-4I0yg 'y [Pued
90 csdd  1Sdd NN [AS AABAN $q0 csdd  1Sdd NN [AS AABAN $90 csdd  1Sdd NN [AS AABAN $q0 csdd  1Sdd NN [AS SABA s/x

a8ejuaoiod ueaw oyy pue ‘(FYIN) 10110 9gnjosqe ueawr oy ‘(HSINY) 10110 parenbs weowr 3001 oyy Aq pajenyead st odueurioprad Sursesal1o] oy J, 950 yova Ul (§Q(0)) SU0DALISQO [0 L2QUINU Y]
740da. 08D 944 "UOIIDDIIP IOYJS UL 9T uey) olowt Aq sdunl xepur Xy Surd[iepun ay3 uaym suorpdo [[ed Xy 10J (zSdd pue 1Sdd) [Ppouwt sa[oydg-yoe[g Ieuornijoeld ayj jo suoijeoyroads
om) pue ‘(NN) [PPOW YIomjou [ernou PLiqAy oY) ‘opouwr fAG oY) ‘(aaepy) [opowr Sumrid paseq-jo[eaem oY) JO SIOLID SUI)seddI0] praye Aep-uo) pue ‘-oAl ‘-om) ‘-ouo o1y syrodar aqe) SIyJ,

peaye Aep-uay,

"210¢ ‘8¢ 19queda( 03 ‘600g ‘Ioquuerdeg T wodg st porrad Surysesolo] oy ], 'seorid jo)IeW pue pajsesdlof oY) ueemiaq (FJIN) 10110

peate Aep-aAtg

suorjdo [1ed 10J sAep jueNqINg} uo souruLIojIod Surjsesero; sjdures-jo-nQ) § 9[qel,

peaye Aep-om T,

peaye Aep-auQ

29



G6¢6  8IC'6L- CVI'6L- SL9VV- ¥E€90T- 8ST'T9- 8LL8  L80°'EV- L60°E€V-  ¥8LVC-  VILTS-  90T'1¢- S/X v

¥veg  T1C6V-  G0E€'6¥- C66'9C-  9L8°09-  LGE'9€- 08¢s 8IT'0¢- 680°0c- VC'IT- 9G€°€C-  TLOTVI- 90'T=<
IT¢c ¢19°€S-  ¢69'€S-  L8L°0€- €6€'99- TIL6E- ¢IIc  ¢9C'Ly- 89CLV- 91C'Le-  GES'LS-  T6ETE-  90'1-€0°'1
OPST  €9'80T- 6€'80T- ¢0°¢9- T°09T- 1CT'16- 98€T  C88'T9- PE6'T9- 968G~ TGCVL- VE8¥PY- €0'T-00'T

suondo [y [ [Pued

99 T¢'CeT-  COCeT-  €9¥'€L- €€ T6T- LS GTI- 0 - - - - - S/X vV
474 €€0T- T9°¢0T- 80T'9S%- TI€T- CS6°LL- 0 - - - - - 90'T=<
0 - - - - - 0 - - - - - 90'T-€0°T
44 CT'T9T-  €P09T- 8IL06- 99'1GC- 6T°€ST- 0 - - - - - €0'T-00'T
suorpdo wIe)-8uor] ‘) pued
0T€C  L9€°0L- 80€0L- TOT 0¥~ 8I¥'98- CTST'CS- 6L0C  G999°€G-  L99°€S-  TO0L0€- CTLT'G99- LVE6E- S/X IV
TGST TS9'8C- GT9'8C- 99/'GT- 6L6°€E-  69%°0C €9¥1T  160°92- 966°GCc-  IVVI- TE€8°06-  99°ST- 90'T=<
78V 986°€L-  66°CL- 69€°Cv-  9C9°€6-  CS0'99- L0V €9°C9- 88G'C9-  96°GE- 68€°LL-  €0€°9F- 90'1-€0°'T
QLT 9%7'80T- CE'80T- 8LE'CY9- GI9TIET- TE6'6L- 602 €8€°CL-  9TV'CL- TPLIV- 969°L8- SAT'€G-  €0°T-00'T
suorydo wrIe)-wmIpay g [PueJ
G869  I80°G¢¢- 660°9¢- T960C- 89T IV~  €9LTVC- 6699  619°CE- LTSCE-  LI98'QT-  GGT'8¢- 998°Cc- S/X IV
€66¢  L89°GT- T69°GT- €€16'8- TSY9'LI- 8¥9°0T1- LI8¢  PST'¥I- 1I8T'¥I- 60L0°'8- 88'GI- 9€8G°6- 90'T=<
LCLT  8E€T'E€E-  ¥6I'€E-  90C°61- T9T°66- 69€°€C- G0LT  €66°'1¢- 8¥6°'1¢€- I8¥'8I-  89°LE- G87'¢c-  90°'1-€0°'T
G9CT  8TE€9S- CI¥'9S- 996'CE- 166°99- CVC 0¥~ LLTT  S€'1G- TSY'1S-  8¥0°08- G06°09- 6CS9¢- €0°1-00°T
suorjdo ur199-4I10YS Y [ouRJ
sq0 ¢Sdd 1Sdd NN [AS OABA sq0 ¢Sdd 1Sdd NN [AS SABA\ S/X

aoue[eq-9Y Aep-0¢ aoue[eq-9Y Aep-)

"'ZT0T ‘8T Iaquuada(] 01 ‘600g ‘Tequeideg T woly st porrad Sul)SeI8Io] oY [, ‘95D

Yova ui (sQ0)) sU0YDALISQO [0 uaquinu Yy} J40dad 08D 94 ‘suorydo [[ed Xy 10} (gSdd pue 1Sgd) [Ppow se[oydg-spe[d Ieuonoeld o) Jo suorjeoyads om) pue ‘(NN) [opowt
I0MJOU [RINSU PLIGAY oY) ‘[opowt [AS oY) ‘(earpy ) [opow Surorid paseq-jo[oaem oY} I0] SAep (g 10 ), A19Ad peoue[eq-ol are sorojriod uaym Iolle Surdper] o) sprodor a[qe) ST T,

suorjdo [reo . sppowt gurntid uordo o) jo ooururiopred SUISPoY "G O[R],

30



