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Abstract

In this paper, we scrutinize the empirical performance of a wavelet-based option pricing

model which leverages the powerful computational capability of wavelets in approximating

risk-neutral moment-generating functions. We focus on the forecasting and hedging perfor-

mance of the model in comparison with that of popular alternative models, including the

stochastic volatility model with jumps, the practitioner Black-Scholes model and the neural

network based model. Using daily index options written on the German DAX 30 index from

January 2009 to December 2012, our results suggest that the wavelet-based model compares

favorably with all other models except the neural network based one, especially for long-

term options. Hence our novel wavelet-based option pricing model provides an excellent

nonparametric alternative for valuing option prices.
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1 Introduction

Since the seminal work of Black and Scholes (1973), huge progress has taken place in the

theoretical and empirical option valuation literature that has greatly advanced our understand-

ing of the options market as a place for trading information and gauging investor expectation.

A large number of parametric and nonparametric methods have been developed to relax one or

more restrictions of the original Black-Scholes model.

One avenue for extending the Black-Scholes model is to develop nonparametric models that

are better at capturing the volatility smile and the literature has seen innovative methods in this

direction. Wavelets are well-known for their remarkable ability in numerical approximation and

the wavelet-based option pricing model developed in Ma (2011) leverages this. It approximates

the implied risk-neutral moment-generating functions (MGF) thus offering a novel approach in

the nonparametric option pricing literature. Unlike many other nonparametric option pricing

models that require a large collection of data, the wavelet-based pricing model is computationally

efficient and requires only a reasonable amount of different strikes. Using numerical experiments,

Haven et al. (2009) demonstrate that this model is able to evaluate and forecast option prices

with great precision.

In this paper, we contribute to the literature by taking this further to empirically compare

the forecasting and hedging performance of the wavelet-based model with three other well-

established models, namely the parametric stochastic volatility model with jumps (SVJ), the

practitioner Black and Scholes model (PBS), and the hybrid neural network based model (NN),

which is a combination of the neural network method and the Black-Scholes model.1 We focus

on the key research questions of whether the excellent performance of the wavelet-based model in

simulation still remains in the crucial test using market data, and how its empirical performance

compares with that of widely-accepted models in the literature.

To the best of our knowledge, this is the first study that subjects the wavelet-based option

pricing model to market data. We use daily index options written on the DAX-30 index, a

1We thank an anonymous referee for the suggestion of adding the practitioner Black-Scholes model and the
neural network based model for comparison.
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major financial index in Europe, from January 2, 2009, to December 28, 2012. Our main

empirical findings can be summarized as follows. In the out-of-sample forecasting exercises

ranging from one- to ten-day ahead, the wavelet-based model outperforms the SVJ for calls and

exhibits similar performance for puts for all option maturities (short-, medium- and long-term)

across all forecasting horizons. It also outperforms the PBS model in forecasting long-term

options. This is the case regardless of whether the market is in a turbulent state with evident

jumps in the underlying stock index. The NN model is always the best-performing model. In

the hedging exercise, the performance of the wavelet-based model is second only to that of

the NN and exhibits substantially smaller hedging error than the SVJ and PBS model.2 Our

strong empirical evidence substantiates the wavelet-based option pricing model as a credible

alternative in the option valuation literature.

The rest of the paper is organized as follows. In Section 2, we review the relevant literature

that motivates our study. Section 3 introduces the wavelet-based option pricing model, the SVJ

model, the PBS model, and the neural network based model and how we conduct the hedging

exercise. In Section 4, we describe data and analyze empirical results. Finally, Section 5

concludes.

2 Literature review

In this section, we review two strands of the literature to which our paper makes a contri-

bution: the literature of option valuation and that of the wavelet method and its applications.

In the parametric option pricing literature, researchers have identified a number of priced

factors essential in capturing the volatility smile, which has become a stylized fact since the

market crash of 1987. For example, volatility is shown to relate negatively to the underlying

asset returns and that delta-hedged portfolios of options and the underlying stocks produce

statistically significant negative returns (see, for instance, Bakshi and Kapadia (2003), Coval

2 We have conducted the same empirical analysis using options written on the FTSE 100 index in the UK and
the Hang Seng index in Hong Kong over the same sample period. We obtain qualitatively similar results that we
do not report to conserve space. These are available upon request from the authors.
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and Shumway (2001), Heston (1993), and Wong and Lo (2009)). Moreover, the random and

unexpected jumps are also found to command significant risk premium in the options market

(Bates, 1996, 2000; Cai and Kou, 2011; Pan, 2002). Another priced factor worth noting is the

demand pressure in the market, which affects option prices in incomplete markets (Gârleanu

et al., 2009).

Bakshi et al. (1997) propose a closed-form parametric option pricing model that simulta-

neously admits the stochastic volatility risk, the jump risk, and the stochastic interest rate risk.

One or more risks can be singled out by setting the parameters of the remaining risk factors to

zero so that the importance of each risk factor can be closely investigated. Based on the pricing,

forecasting, and hedging performance of nested models, they show that the stochastic volatility

and jumps are of first-order importance when it comes to accommodating the volatility smile

observed in the market.

Another prominent option pricing model is the practitioner Black-Scholes model (PBS).

In PBS, a nonlinear deterministic volatility function (DVF) is employed to estimate volatility

values and account for deviations from the assumptions of the original Black-Scholes model

(Derman and Kani, 1994a,b; Rubinstein, 1994; Dumas et al., 1998). A theoretical justification

of the PBS approach as a reduced-form approximation of an unknown structural model is

provided by Berkowitz (2002). As discussed in Andreou et al. (2014), the PBS model is widely

used among practitioners as it is effective in mitigating the volatility smile anomaly and easy

to implement (Christoffersen and Jacobs, 2004; Christoffersen et al., 2009; Berkowitz, 2010).

Parallel to the intensive interest in the parametric option pricing literature, a large number

of nonparametric models have also been developed. Although the nonparametric models lack the

economic interpretation that the parameters contain in the parametric family of models, they are

often more flexible as they impose no prior assumption on the underlying asset process. These

include the flexible distribution method (Rubinstein, 1994), the cubic spline method (Shimko,

1994), which is further developed by Bliss and Panigirtzoglou (2002), the kernel estimation

method (Aı̈t-Sahalia and Lo, 1998; Aı̈t-Sahalia and Duarte, 2003; Birke and Pliz, 2009), the

neural network method (Hutchinson et al., 1994; Garcia and Gençay, 2000; Andreou et al.,
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2008), and the ε-arbitrage replicating portfolio method (Bandi and Bertsimas, 2014).

The neural network method is a popular method in option pricing. It is first introduced by

Hutchinson et al. (1994) to estimate the unknown pricing formula for derivative securities and

further employed for pricing derivatives in Lajbcygier et al. (1996), Garcia and Gençay (2000),

and Yao and Li (2000). They all show that when sufficiently trained, neural network method can

adapt to changing market conditions and achieve remarkable accuracy. Andreou et al. (2008)

combine the neural network method and the parametric option pricing models and show that

the combined hybrid neural network model works even better than the pure neural network

method. The neural network methods are highly data-intensive and require large amount of

historical prices to obtain a reasonably well-trained network.

A more recent addition to this growing literature is Ma (2011). This book develops a

nonparametric option pricing model that focuses on approximating the implied risk-neutral

MGF of the underlying asset returns using wavelets. The risk-neutral MGF has a number of

advantages compared with the implied risk-neutral PDF although there is a one-to-one rela-

tionship between them. For example, the MGF is more tractable when jumps are present in the

underlying price process; the MGF obtained from options is a continuous function; the MGF

can be used to obtain all the statistical moments of the underlying asset distributions and the

preference parameter of the utility function; and out-of-sample options with different maturity

dates can be directly estimated using the risk-neutral MGF.3

Ma (2011) represents another effort in applying the wavelet method, already a popular tool

in science and engineering, in the area of economics and finance.4 As pointed out in Haven et al.

(2009) and Haven et al. (2012), there are mainly three types of application of wavelet methods

in finance and economics. First of all, wavelets are used for multi-scaling analysis. For example,

Ramsey and Lampart (1998a,b) use the wavelet method to analyze the relationship between

economic variables at different scales and suggest that the relationship changes over different

time horizons. Gençay et al. (2001a,b, 2003, 2005) employ the wavelet multi-scaling approach

3 See Haven et al. (2009) for detailed properties of the risk-neutral MGF.
4 For excellent reference for applications of the wavelet method in finance and economics, see Gençay et al.

(2002). See also Percival and Walden (2000) for applications of the wavelet method in the time series analysis.
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to examine intra-day seasonalities, foreign exchange volatilities, and systematic risk. Weron

(2009) implements the wavelet method to de-seasonalize electricity prices. More examples

include Zapart (2002), Connor and Rossiter (2005), Kim and In (2005), Mitra (2006), In and

Kim (2006), Fernandez (2006), Lien and Shrestha (2007), Gallegati and Gallegati (2007), and

Nikkinen et al. (2011).

Secondly, wavelets are used to de-noise raw data. Capobianco (1999, 2001) show that

wavelets as a pre-processing de-noising tool are useful for improving volatility analysis. The

superior de-noising ability of wavelets is also recognized in Haven et al. (2012) which apply

the wavelet method to de-noise option prices before estimating the implied risk-neutral PDF

from the option prices. Their findings show that the wavelet de-noising process significantly

improves the density estimation quality and the forecasting abilities of the estimated densities.

Sun and Meinl (2012) substantiate the superior performance of the wavelet-based local linear

scaling approximation algorithm in denoising high-frequency financial data. Asgharian (2011)

de-noise frequency variations in the first principal component of a business cycle with wavelets.

Other research in this stream includes, among others, Averkamp and Houdré (2003) and Lada

and Wilson (2006).

Finally, wavelets are utilized to estimate unknown parameters of a model. For example,

Jensen (1999, 2000) and Ko and Vannucci (2006) adopt wavelets for calibrating parameters

of long memory processes. Genon-Catalot and Laredo (1992) apply wavelets in estimating a

diffusion function non-parametrically. Matache et al. (2005) adopt wavelets to price American-

style options driven by Lévy processes. Manchaldore et al. (2010) implement the wavelet method

to obtain intraday volume. Ortiz-Gracia and Oosterlee (2016) use Shannon wavelet to price

European options. Additional references include Bayraktar et al. (2004), Hong and Kao (2004),

Dong and He (2007), Esteban-Bravo and Vidal-Sanz (2007), and Haven et al. (2009).
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3 Model specifications

In this section, we outline the wavelet-based option pricing model of Ma (2011), the SVJ

of Bakshi et al. (1997), the PBS model of Dumas et al. (1998) and Andreou et al. (2014), and

the hybrid neural network method of Andreou et al. (2008). We also discuss how we perform

the hedging test.

The wavelet-based option pricing model

The wavelet-based model by Ma (2011) is the latest theoretical contribution to the option

pricing literature. Its motivation and relation to the option-implied risk-neutral MGF and the

option-implied risk-neutral PDF are discussed in Haven et al. (2009) and Ma (2011).

Under fairly general assumptions including i.i.d. distribution for asset returns, the wavelet-

based option pricing model can be expressed as follows:

Ct(St, X, T ) = Xe−r(T−t)L−1

(
ΘT−t(s)

s(s+ 1)

)(
ln
X

St

)
, (1)

where L−1 denotes the bilateral inverse Laplace transform5, Ct is the time t price for a European

call option written on asset whose price is St with strike price X and a future maturity date T .

Interest rate r and the dividend yield are assumed to be constant.

The core of this pricing model is ΘT−t(s)
s(s+1) , where s is a complex value whose real part

Re(s) < −1 for calls and Re(s) > 0 for puts. The MGF ΘT−t(s) of the logarithmic returns

ln ST
St

captures the underlying asset dynamics and investor expectation embedded in option

prices, and needs to be approximated with wavelets.

To approximate the implied MGF with the wavelet method, a particular wavelet needs

to be chosen from a large family of wavelet functions. The wavelet literature seems to agree

that there is no best wavelet for a particular application. Therefore, we follow Mallat (1999)

and choose a wavelet that can achieve a reasonable level of accuracy with minimum number of

wavelet terms. The Franklin hat function performs well on this criterion. In addition, it has

5 See Appendix for the definition and properties of the bilateral inverse Laplace transform.
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the properties of being symmetric, smooth, and piecewise continuous, and it closely emulates

the probability density function of asset returns.

The risk-neutral MGF Θ(s) of the return per unit of time is therefore estimated using the

Franklin hat function h(t), which is defined as follows:

h(t) =


(1− |t|)

0

if − 1 ≤ t < 1

otherwise

. (2)

The Laplace transform of h(t) is denoted as mh(s):

mh(s) = (
es/2 − e−s/2

s
)2. (3)

A set of generalized functions can be generated from the Franklin hat function h(t):

hl,k(t) = 2
l
2h(2lt− k), l, k = 0,±1,±2, ... (4)

The scaling parameter l determines the degree of dilation or contraction and the shifting pa-

rameter k controls the horizontal location of the function. Perform Laplace transform on hl,k(t),

we obtain ml,k(s) as follows:

ml,k(s) = 2−
l
2 e
− ks

2l mh(
s

2l
), l, k = 0,±1,±2, ... (5)

The risk-neutral MGF of the return per unit of time Θ(s) can be expanded using the Laplace

transform of the set of generalized Franklin function as follows:

Θ(s) =

∞∑
l=−∞

∞∑
k=−∞

alkml,k(s), (6)

where al,k is a set of unknown coefficients and needs to be estimated by minimizing the sum of

squared error between market option prices and theoretical prices. We follow the procedure in

Haven et al. (2009) and estimate the unknown coefficients as follows.
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1. Truncate the coefficients alk by setting alk = 0 for all |l| > L and |k| > K, where L and

K are positive integers.6 Let θL,K ≡ {alk}l=L,|k|≤K.

2. Given a collection of market data for options at time t, {St, Xi, Ct,i, T, r}, where i =

1, 2, ..., N , we estimate the unknown coefficients θL,K by minimizing the sum of squared

errors between market option prices Ct,i and theoretical prices Ĉt,i:

min
θL,K

Σi(Ct,i − Ĉt,i(θL,K , St, Xi, T, t, r))
2. (7)

3. Increase L by 1 at a time and repeat the above steps until
∑

i(Ct,i − Ĉt,i)2 < ε for an

arbitrary ε > 0.

The above optimization process yields an estimate of the risk-neutral MGF, which is ex-

pressed as a series of the Laplace transform of the set of the generalized Franklin functions:

Θ̂(s) =
∑
|l|=L

∑
|k|≤K

âlkmlk(s). (8)

In the empirical analysis, the scaling parameter L and the shift parameter K are chosen

by the optimisation programme so that a satisfactory estimation result can be obtained.

The stochastic volatility model with jumps (SVJ)

The volatility and jump risks have long been considered priced factors in the options

market and should be included in option pricing models (Coval and Shumway, 2001; Bates, 1996;

Huang and Wu, 2004; Pan, 2002; Santa-Clara and Yan, 2010). Bakshi et al. (1997) formulate

a parametric model that incorporates a mean-reverting stochastic volatility component that

correlates with the underlying stock and a jump process that follows the Poisson distribution.

Assuming constant interest rate, the closed-form formula for European call options is as

follows,

Ct = StΠ1(t, T, St, Vt)−X exp(−r(T − t))Π2(t, T, St, Vt), (9)

6 According to Haven et al. (2009), K is chosen to be the smallest integer greater than 0.7 × 2l + 1 as log
returns typically lie between [−0.7, 0.7]. The value of K can be easily adapted to specific situations.

9



where the risk-neutral probabilities Π1 and Π2

Πj(t, T, St, Vt) =
1

2
+

1

π

∫ ∞
0

Re

[
exp(−iφ ln(X)fj(t, T, St, Vt;φ)

iφ

]
dφ, j = 1, 2

are obtained by inverting the characteristic functions f1 and f2. Note that the expression in

the square brackets is a complex number and Re [·] takes the real part of it.

There are a number of parameters in the SVJ model. The jump process is described with

the mean jump size µJ , the standard deviation of jump size σJ , and the jump frequency λ. The

mean-reverting stochastic volatility process Vt are parameterized by the speed of adjustment

κv, the long-term mean of the volatility θv/κv, and the variation coefficient of the diffusion

volatility σv. The volatility process and the underlying asset dynamics are correlated with

coefficient ρ. For index options and most equity options, ρ is negative corresponding to the

negative skewness found in the risk-neutral distributions. In addition, the underlying assets of

many different types of options exhibit volatility mean reversion which is also captured in this

SVJ model (Bali and Demirtas, 2008; Wong and Lo, 2009). These unknown parameters are

calibrated by minimizing the sum of squared differences between market option prices Ct and

theoretical ones Ĉt.

The practitioner Black-Scholes model (PBS)

Although the Black-Scholes (BS) option valuation framework is still widely used by practi-

tioners due to its reasonable performance and straight-forward structure, the implied volatility

of the BS model, however, has been the focus of intense research. The regression-based deter-

ministic volatility function (DVF) Dumas et al. (1998) and Andreou et al. (2014), is one of the

popular approaches for determining option specific volatilities to accommodate the volatility

smile or smirk observed in market data.

In this study, we select two best-performing structures of DVF in Dumas et al. (1998) and

Andreou et al. (2014) as follows:

DVF 1: σ = max(0.01, a0 + a1(lnX) + a2(lnX)2) (10)
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DVF 2: σ = max(0.01, a0 + a1(lnX) + a2(lnX)2 + a3T + a4(lnX)T + a5T
2). (11)

DVF 1 expresses volatility as a simplified function of log strike price lnX whereas DVF 2

specifies volatility as a function of log strike price lnX and option time to maturity T. These

two specifications are termed PBS1 and PBS2, respectively.

We follow the literature and employ the nonlinear least square (NLS) regression to estimate

the model parameters. In the NLS, the sum of squared errors between the model price and the

market price is minimized by the Levenberg-Marquardt method, which interpolates between

the Gauss-Newton algorithm and the gradient descent method. We implement this using the

minpack R package.

The hybrid neural network based model (NN)

We follow Andreou et al. (2008) to construct an artificial neural network (NN) based model

for option pricing. As one of the most popular data-driven models, NN operates as a nonlinear

regression tool as follows:

Y = G(x̃) + εNN , (12)

that maps the unknown relation, G(·), between the input variables, x̃ = [x1, x2, ..., xN ]T , and the

target function Y . The traditional NN usually implements the Multi-layer Perceptron (MLP)

with a single hidden layer for mapping the inputs with the target function, and the existing

literature reaches the consensus that a single hidden layer is sufficient to make MLP a universal

approximator for most problems (Bengio, 2009).

An MLP with a single hidden layer is a function f : RD → RL, where D is the size of

the input vector x̃, and L is the size of the output vector Y , such that the total approximation

function can be represented as follows:

Y = G
[
b(2) +W (2)

(
S
(
b(1) +W (1)x

))]
, (13)

where b(1) and b(2) are bias vectors, W (1) and W (2) are weight matrices, and G(·) and S(·) are
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activation functions. The function Φ(x) = S
(
b(1) +W (1)x

)
constitutes the hidden layer, where

W (1) is the weight matrix connecting the input vector to the hidden layer. The output vector

Y is obtained as G
(
b(2) +W (2) (Φ(x))

)
.

In this paper, we follow the specification in Andreou et al. (2008) for the hybrid neural

network model. This NN model has a traditional three-layer structure: an input layer, a single

hidden layer, and an output layer. The numbers of neurons in the input and the output layers

are equal to the dimensions of the input and the output vectors x̃ and Y , respectively. The

number of neurons in the hidden layer is between five to ten and determined by the cross

validation. For the NN model, the input vector x̃ is constructed as as follows:

x̃ =
[
(Se−δT )/X, T, r, σ

]T
, (14)

where δ is the dividend yield, and σ is the volatility. The σ is obtained through calibrating the

implied structural parameters by focusing on the Brownian volatility to drive the residual error

to zero (Andreou et al., 2008). The output target vector in NN is represented as follows:

Ct,i/X − CBSt,i /X, (15)

where the estimated BS call prices are obtained when volatility is proxied by historical volatili-

ties. When training the NN model, we employ the Levenberg-Marquardt method incorporated

into the backpropagation algorithm (Hagan and Menhaj, 1994) to obtain efficient and accurate

testing results. We implement the NN model by the neuralnet R package.

For this NN model, we use six months of data for training and another two months for

cross validation. It is then used for forecasting option prices over the next one, two, five and ten

days. The training and cross validation window then rolls forward one day following a rolling

window scheme. This method is in line with Fig. 2 in Andreou et al. (2008) with Ts equal to

one day. The rolling window scheme is able to capture the dynamics of the distribution but

suffers from computational inefficiency (Ren et al., 2016).
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Hedging exercise

In addition to out-of-sample forecasting, we also compare the hedging performance of the

models following Hutchinson et al. (1994), Bakshi et al. (2000) and Garcia and Gencay (2000).

Suppose we sell one call option and undertake ∆ shares of stock and bonds to discretely hedge

this call during its life. Let Vt denote the value of the portfolio consists of the option, the stock

and the bond as follows:

Vt = VS,t + VB,t + Ct, (16)

where VS,t, VB,t, and Ct are, respectively, the value of the stock, the bond, and the call option

held in the portfolio on date t. The initial value of the portfolio can be specified as follows:

VS,t = St∆t

∆t =
∂Ĉt,T
∂St

Ct = −Ĉt,τ

VB,t = − (VS,t + Ct) , (17)

where Ĉt,T is the call price estimated by a particular model on day t with maturity T . Since we

assume the stock purchase is entirely self-financed by the riskless borrowing and the sale of the

call option, the initial value of the portfolio on date t is zero: Vt = VS,t + VB,t +Ct = 0. Before

option expiry, we re-balance the stock and bond positions at regular interval ∆τ to satisfy the

following relations:

VS,t+∆τ = St+∆τ∆t+∆τ

∆t+∆τ =
∂Ĉt+∆τ,T−∆τ

∂St+∆τ

Ct+∆τ = −Ĉt+∆τ,T−∆τ

VB,t+∆τ = er∆τVB,t, (18)

where ∆τ is chosen to be 7 or 30 days following Bakshi et al. (2000). The hedging error is, as

of the revision day, the present value of the replicating portfolio value and can be expressed as
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follows:

ε = VB,t+∆τ + VS,t+∆τ + Ct+∆τ . (19)

When we implement the hedging exercise for NN, we train and cross validate the model with

data in the first eight months and use the remaining data for hedging performance evaluation

without re-training the model.

4 Data and empirical analysis

In this paper, we use options written on the German DAX-30 index for our empirical

investigation. Daily call and put option data from January 2, 2009, to December 28, 2012 are

obtained from Ivolatility.com. Option prices are calculated as the average of end-of-day bid and

ask prices, which avoids the bid-ask bounce. We take the Euro LIBOR rate as the interest rate.

These data and dividend yields are obtained from the Datastream. The interest rates with five

different maturities from one month to 12 months are matched with the options data based on

maturities. The underlying DAX index is dividend-adjusted. We apply conventional exclusion

rules to clean the raw options data, including:

• At- or in-the-money (ITM) options are removed;

• Options with prices below unity are removed;

• Options with less than 14 days to maturity or more than 365 days to maturity are excluded;

• Options with less than 10 contracts traded on a day are excluded;

• Options with less than 9 different strike prices with the same maturity are removed as we

need sufficient strikes for parameter estimation.

These exclusion rules leave us with 65,867 calls and 95,895 puts over 1004 business days.

Descriptive statistics for the data are summarized in Table 1. Following Bates (1996),

we divide the options into three categories. Short-term options have 90 days or less before

expiry; medium-term options are between 90 to 180 days to maturity; and long-term options
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are between 180 and 364 days to expiry. In this way we avoid weighting longer-term options more

heavily than shorter-term options (Huang and Wu, 2004), which contain slightly different market

information (Bakshi et al., 2000). Following Bakshi et al. (2000), we also group options according

to their moneyness, defined as X/S. As time to maturity increases, we see proportionately more

OTM options. For calls, the proportional of OTM options goes up from 53% from short-term

to 73% of long-term ones; whereas for puts, the corresponding proportions are 69% and 79%

for short- and long-term options, respectively.

Our out-of-sample forecasting exercise is carried out on a rolling basis from 1 September,

2009, until the end of the sample period. On each day, all options with the same maturity date

are used to estimate model parameters, which are then used as inputs to forecast option prices

for a range of forecasting horizons from one day to ten days. The out-of-sample forecasting

performance is reported in Table 2 for call options and in Table 3 for put options. We adopt

three metrics to evaluate forecasting errors: the root mean squared error (RMSE), the mean

absolute error (MAE), and the mean percentage error (MPE).

The first thing we notice is that the neural network based model outperforms all other

models in offering the smallest forecasting errors in most cases. For example, in the one-day

ahead forecasts for slightly OTM short-term calls in Table 2, the RMSE, MAE, and MPE for the

neural network model is 3.95, 2.37, and 0.02, respectively, much smaller than the corresponding

errors produced by the other models. When we move to longer forecasting horizons with two-,

five- and ten-day ahead forecasts, the neural network model continues to fare better than the

other models across different maturities. For example, the error for medium-term five-day ahead

put option forecasts are 1.86, 1.27 and 0.03, respectively, for the RMSE, MAE, and MPE in

Table 3, the lowest among the alternative models when options are slightly OTM.

However, as discussed in the previous section, neural network models are data-intensive

and require a large amount of historical data to obtain a reasonably well-trained network. In

this paper, we use six months of option data for training and another two months for cross

validation before any forecasts are produced. This is different from the other methods whereby

we only need one day’s data to forecast prices for the following day and over longer forecasting
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horizons. Hence the neural network based model is not exactly comparable on an equal footing

with other models in this regard.

Apart from the neural network based model, the wavelet-based model consistently outper-

forms the SVJ model for all three loss functions and across option maturities in Table 2 for call

options. Similar performance for put options is reported in Table 3. For example, the MAE

for ten-day ahead forecasts for the deepest OTM options are 9.05, 16.63, and 22.11, respec-

tively, for short- (Panel A), medium- (Panel B) and long-term (Panel C) calls in Table 2. The

corresponding values are 9.57, 18.25, and 24.27, respectively, for the SVJ model.

When compared with the two PBS specifications, the wavelet-based model tends to fare

better for long-term options but worse for short- and medium-term options across the forecasting

horizons. For PBS2, the better-performing PBS model, its MPE remains 0.07 across the four

forecasting horizons when moneyness is between 0.94 and 0.97 for long-term puts in Table 3.

This is higher than or equal to the MPE for the wavelet-based model at 0.03, 0.04, 0.05, and

0.07, respectively, over the same forecasting horizons. In addition, for these two tables in Panel

D we group OTM options by moneyness only to provide an overall picture. We observe the

same patterns that the neural network based model performs best, and that wavelet-based model

outperforms the SVJ model.

Our results are related to Andreou et al. (2014) which show that the PBS2 specification

outperforms the SVJ in the out-of-sample forecasting test. However, their results are based on

the use of all options simultaneously and the performance for options with different maturities

is not examined. In this paper, we conduct our empirical analysis by looking at options per

maturity in the spirit of Bakshi et al. (2000), which argue that the market information captured

by short- and long-term options is somewhat different. Interestingly, our forecasting results

differ a little per maturity. We find that the SVJ model indeed performs worse than the PBS2

for short- and medium-term options but it tends to outperform the PBS2 for long-term call

options across the forecasting horizons. We also show that the wavelet-based options tend to

perform better than the PBS model for long-term options in the forecasting exercise.

Furthermore, following Andreou et al. (2014) we conduct a subsample analysis to scrutinize
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the models when the market is in a volatile condition defined as when the underlying DAX index

jumps by more than 1% in either direction. The results, summarized in Table 4, are broadly

consistent with our baseline results. We note that the neural network based model is still the

best-performing model, that the wavelet-based model still outperforms the SVJ models across

option maturities in Panels A to C and forecasting horizons from one to ten days, and that it

outperforms the PBS model only for long-term options when the forecasting horizon is less than

ten days. Panel D aggregates options only by moneyness and shows the same pattern.

In addition to the out-of-sample forecasting performance, we further examine the hedging

performance between the option pricing models. The hedging errors, the average after each

re-balancing, are reported in Table 5. Unsurprisingly, the neural network based method again

offers the smallest hedging errors among all the models considered in this paper. Apart from this

model, the wavelet-based model consistently outperforms other models across different option

maturities and re-balancing frequency. For example, for short-term DAX options, the hedging

error of the wavelet-based model is only -9.58 for seven-day re-balancing for the deepest OTM

options, compared with -15.88 for the SVJ, and -14.18 for the two PBS specifications. The

hedging error is only -8.07 for this group of options using the neural network based model.

It is worth mentioning that although in our paper the neural network based model com-

prehensively outperforms other models, in the literature however it is argued that this model

does not perform very well for deep OTM or long-dated options. Bennell and Sutcliffe (2004)

and Gradojevic et al. (2009) address this by categorizing options based on moneyness and time

to maturity. They train nine modular neural networks for each group of options with improved

performance at the cost of computational complexity.

In summary, our empirical analysis suggests that the wavelet-based model is a strong

contender in the out-of-sample prediction and offers the second smallest hedging error in the

hedging exercise during the sample period we study in this paper. This attests to the powerful

approximation ability of the wavelet methodology. The superior forecasting performance of the

wavelet-based model is due to the inherent de-noising and approximation ability of wavelets.
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5 Conclusion

This paper empirically evaluates the wavelet-based model and compares it with various

option pricing models for their out-of-sample forecasting and hedging performance. The para-

metric SVJ model has the advantage that we can observe parameter estimates and assess the

economic intuition of the risk factors they represent. Nonparametric methods including the

neural network based and the wavelet-based models, on the other hand, possess greater flexi-

bility in capturing the underlying asset price dynamics and the return distributions. The PBS

model is very popular among practitioners due to its simplicity and flexibility in mitigating the

volatility smile anomaly.

The data we use in this paper include daily end-of-day bid-ask midpoint of the DAX-30

index options. We show that in the out-of-sample forecasting exercise, the wavelet-based option

pricing model consistently outperforms the SVJ. It also outperforms the PBS model for long-

term options. The hedging performance of the wavelet method is the second best among all

models considered apart from the NN. This suggests that the wavelet-based model is effective

in revealing the risk-neutral MGF and hence useful for option pricing, forecasting and hedging.

This empirical evaluation work therefore provides a solid basis for future research, such as

utilizing the wavelet-based model for revealing risk preference and higher moments implied in

option prices as well as gauging jump in the underlying asset with the wavelet method.
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Appendix: Bilateral Laplace transform

Following Haven et al. (2009), the bilateral Laplace transform is defined as follows. For a real-

valued function f(t) which is piecewise continuous on [−∞,∞), its bilateral Laplace transformation is a
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complex valued function given by the following:

L{f(t)}(s) = F (s) =

∫ ∞
−∞

f(t)e−stdt, (A1)

where s is a complex value and L denotes the Laplace transform operator. The inverse Laplace transform,

denoted by L−1{F (s)}(t), can be written as follows:

L−1{F (s)}(t) = f(t) =
1

2πi

∫ c+i∞

c−i∞
F (s)estds, (A2)

where c is a specific real number.

Let F (s) denote L{f(x)}(s) and G(s) denote L{g(x)}(s), we have the properties of the Laplace

transform summarized as follows:

1. Linearity

L{af(x) + bg(x)}(s) = aF (s) + bG(s); (A3)

L−1{aF (s) + bG(s)}(x) = af(x) + bg(x). (A4)

2. Frequency shifting

L{e−lxf(x)}(s) = F (s+ l),∀l ∈ R; (A5)

L−1{F (s+ l)}(x) = e−ltf(x),∀l ∈ R. (A6)

3. Time shifting

L{f(x− x0)}(s) = e−x0sF (s),∀x0 ∈ R; (A7)

L−1{e−x0sF (s)}(x) = f(x− x0),∀x0 ∈ R. (A8)

4. Convolution

L{f(x) ∗ g(x)} = F (s)G(s); (A9)

L−1{F (s)G(s)}(x) = f(x) ∗ g(x), (A10)

where ∗ indicates the convolution operator on f and g. This operator can be defined as (Bracewell

(1999, page 25)),

f ∗ g ≡
∫ ∞
−∞

f(τ)g(t− τ)dτ =

∫ ∞
−∞

g(τ)f(t− τ)dτ. (A11)

19



References

Aı̈t-Sahalia, Y., Duarte, J., 2003. Nonparametric option pricing under shape restrictions. Journal of

Econometrics 116, 9–47.

Aı̈t-Sahalia, Y., Lo, A., 1998. Nonparametric estimation of state-price densities implicit in financial asset

prices. Journal of Finance 52, 490–547.

Andreou, P. C., Charalambous, C., Martzoukos, S. H., 2008. Pricing and trading European options

by combining artificial neural networks and parametric models with implied parameters. European

Journal of Operational Research 185, 1415–1433.

Andreou, P. C., Charalambous, C., Martzoukos, S. H., 2014. Assessing the performance of symmetric and

asymmetric implied volatility functions. Review of Quantitative Finance and Accounting 42, 373–397.

Asgharian, H., 2011. A conditional asset-pricing model with the optimal orthogonal portfolio. Journal of

Banking and Finance 35, 1027–1040.
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Table 1. Summary statistics of options data

This table provides summary statistics of options written on the German DAX-30 index. Moneyness is defined

as X/S. The sample period is from January 2, 2009, to December 28, 2012.

Call options Put options

Total No. of options 65867 95895
Total No. of trading days 1004 1004

Panel A. Short-term options

Avg No. per day 36.59 54.05
Range of moneyness [1, 1.9144] [0.2945, 1]
Moneyness < 0.94 37376 (68.87%)
0.94 <= Moneyness < 0.97 8406 (15.49%)
Moneyness >= 0.97 8487 (15.64%)
Moneyness < 1.03 8606 (23.43%)
1.03 <= Moneyness < 1.06 8581 (23.36%)
Moneyness >= 1.06 19548 (53.21%)

Panel B. Medium-term options

Avg No. per day 16.26 22.47
Range of moneyness [1,1.6033] [0.2359, 1]
Moneyness < 0.94 17071 (76.51%)
0.94 <= Moneyness < 0.97 2594 (11.63%)
Moneyness >= 0.97 2648 (11.87%)
Moneyness < 1.03 2648 (16.39%)
1.03 <= Moneyness < 1.06 2648 (16.39%)
Moneyness >= 1.06 10864 (67.23%)

Panel C. Long-term options

Avg No. per day 19.12 23.64
Range of moneyness [1, 1.9144] [0.1388, 1]
Moneyness < 0.94 18711 (78.81%)
0.94 <= Moneyness < 0.97 2379 (10.02%)
Moneyness >= 0.97 2653 (11.17%)
Moneyness < 1.03 2633 (13.74%)
1.03 <= Moneyness < 1.06 2517 (13.14%)
Moneyness >= 1.06 14008 (73.12%)
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