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1 Introduction

After the Ukrainian cabinet unanimously approved the E.U. Association Agreement in September 2013, the

official signing of the agreement, scheduled two months later at the E.U. Vilnius summit, was supposed

to be a simple formality. However, in November, the Ukrainian President Yanukovych refused to sign

the agreement, a decision that triggered mass protests, and finally led to the current conflict in the eastern

Ukraine. What derailed a cooperation that both parties found mutually beneficial only two months before?

While examining the bilateral E.U.-Ukraine negotiations sheds some light into this sudden change of heart,

it does not tell the complete story. Arguably, a concerned third party, Russia, interfered in, and ultimately

altered, the E.U.-Ukraine relations. A combination of political pressure and economic side-payments, as

well as the prospect of membership in the Eurasian Customs Union, led Ukraine closer to Russia (Englund &

Lally 2013). Of course, closer ties with Russia meant weaker ties with the E.U. Thus, in order to understand

the Vilnius debacle, politicians and scholars alike cannot focus on the E.U.-Ukraine interaction alone. They

also need to take into account the actors’ interaction with relevant third parties.

The decision that Ukraine faced in 2013 is by no means a singular event. Quite the contrary, situations

in which a player simultaneously negotiates with more than one potential partner, and an agreement with one

party precludes an agreement with the others, are ubiquitous. Governments that join a given international

institution (e.g., military alliance, free trade area, etc.), implicitly decide against joining a rival organization.

Employees who sign a contract with a specific employer often have alternative offers that they did not accept.

Also, in most countries, people can marry only one person, politicians can be a member of only one political

party, etc.

Even though multiparty negotiations are a common occurrence, analyzing such scenarios is hindered

by a lack of empirical estimators that can efficiently deal with multi-actor interaction. In the absence of

a well-established estimation strategy, empirical studies employ a wide range of alternative models (e.g.,

univariate logit/probit, (mixed) conditional and multinomial logit, bivariate probit, selection and partial ob-

servability models) to analyze binary outcomes that are the result of negotiations with outside alternatives.

While in practice they are the most commonly used estimators, univariate and bivariate models share a

crucial limitation: they can accommodate one or two actors, but not more (Greene 2003, Heckman 1979,

McFadden 1974, Poirier 1980, Train 2007, Wooldridge 2003). Particularly in the context of multiparty nego-
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tiations, this limitation has important consequences for the estimated parameters’ consistency, and ultimately

the inferences that one would draw. Specifically, results from Monte Carlo (MC) simulations indicate that

ignoring the multilateral aspect in a multi-actor interaction scenario leads to biased results, and inaccurate

or incorrect inferences.

This paper develops a new estimation procedure, called the Multilateral Mediated Interaction with

Partial Observability (MMIwPO) model, for the analysis of binary decisions with competing and typically

unobserved alternatives.1 In this model, a player chooses whether to cooperate with any, or none, of several

potential partners. For their part, each potential partner decides whether to reject or accept any requests for

cooperation. If more than one suitable partner is willing to cooperate, the player chooses the partner that

they prefer the best. Given that any potential partner can reject the player, the partner with which the player

ends up cooperating may or may not be their first choice. Thus, the observed outcome is the result of the

joint multilateral interaction between a player and that player’s potential partners, as neither the player nor

any one partner can unilaterally determine the cooperation outcome.

In summary, the new model is suited to analyze scenarios where (i) a player is confronted with

multiple, mutually exclusive choice alternatives, and (ii) the player’s potential partners can opt in or out

of a cooperation with that player. Because the alternatives are mutually exclusive, the model is designed to

examine substitution not complementary effects. To better outline the scope conditions of the new estimator,

let us consider three scenarios that involve an interaction among three (or more) actors: direct and mediated

multilateral interactions, and bilateral interactions with third party intervention.2

A direct multilateral event is, for example, where three countries come together and negotiate a

treaty, of which all three can be a part. When the available choices are substitutes, though, only one of the

competing alternatives can be chosen. This is the type of interaction the new estimator is designed to model.

For example, one negotiates with two potential employers, and, if both make an offer, the employee must

choose one. This is still a multi-actor interaction; the potential employers interact, albeit indirectly via the

future employee. Hearing that employer B made a bigger offer, employer A can decide to match, or raise

the offer. In fact, both employers can make offers at the same time, and may do so either in response or

1 In this paper I use the terms (empirical) model, estimator, and estimation procedure interchangeably.
2 I thank an anonymous reviewer for pointing out these scenarios.
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anticipation of the other. I refer to this scenario as a multilateral mediated interaction.

Lastly, in bilateral events subject to third party influence, the intervening third party does not represent

a plausible alternative to either of the remaining two actors. This would be the case of a third country

promising military support to a government engaged in a civil conflict. The government, which otherwise

would have signed a peace agreement with the rebels, now decides to continue fighting. As the external

support is meant to augment the regime’s military forces, the third party does not constitute a distinct fighting

opponent for the rebel group, and hence not a proper alternative to the government.

In the next section, I introduce the new MMIwPO model. To validate the new estimator, I then

present MC simulation results which provide strong evidence for the superior performance of the MMIwPO

relative to the standard approach. I also analyze real data on defense alliance formation, and then compare

the MMIwPO results to those reported by a univariate logit to see what would be different were we to use

the standard methodology in the literature (Gibler & Wolford 2006, Poast 2010). Finally, for researchers

interested in employing the MMIwPO, I provide detailed working examples, as well as an easy-to-use

program that implements the estimation procedure in Stata.

2 Analyzing Multiparty Negotiations

The current practice of analyzing multi-actor interaction as the (joint) binary choice of either a single or

two decision-makers is not optimal for both theoretical and methodological reasons. Theoretically, scholars

are often interested in the motivations of all parties involved, as well as in how the decision of one actor

constrains or alters the actions of others. Yet, univariate models can only provide insights into how factors

affect the incentives (probability) of one single actor (process), while bivariate models can accommodate

interactions between only two actors. Methodologically, analyzing multilateral processes as a set of either

monadic or dyadic events only increases the sample size, but it adds no new information and introduces bias

(Croco & Teo 2005, Fordham & Poast 2016, Poast 2010, Signorino 1999). To account for these challenges,

an ideal estimator should be able to accommodate the input of multiple actors into a unified, overarching

decision making process.
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2.1 The Multilateral Mediated Interaction with Partial Observability Model

Multilateral negotiations can be represented as an interaction between two (or more) sets of actors, {1, 2, . . . ,

N} and {1, 2, . . . ,K}, where at least of one set comprises minimum two elements.3 Each actor i ∈ N must

decide whether or not they want to cooperate with every actor j ∈ Ki, and vice versa. For each actor i, we

can write the net value of the cooperation with potential partner j as an unobserved, latent variable

y∗ij = xijβ + εij (1)

where β represents a vector of coefficients, xij represents a vector of independent variables for actor i

associated with potential partner j, and εij is assumed to be drawn from the standard logistic distribution

with a mean of 0 and a variance of π
2

3 .

Actor i is willing to cooperate with j if the net value of cooperation is positive:

yij =

1 if y∗ij > 0

0 if y∗ij ≤ 0.
(2)

Similarly, for each actor j, we can describe the net value of the cooperation with potential partner i

3 Were both sets a singleton, the scenario reduces to a bilateral interaction. Theoretically, though, the

process underpinning both bilateral and multilateral interactions is the same. Fordham and Post’s (2016,

841) assessment of the alliance formation process can be easily generalized to encompass multi-actor inter-

actions generally: “Scholars should reconceptualize all alliances, bilateral and multilateral, as originating

from a multilateral process. Even when states only form a bilateral alliance, the alliance, in principle, could

have contained additional states”. In the context of bilateral negotiations, some outside negotiations can be

observed only in hindsight, as it was the case in the E.U.-Ukraine interaction. Also, it may be the case that

negotiations with a potential partner never even start when an actor infers that the negotiations would fail.

Yet, the actor had actually weighed the opportunity to engage in that negotiation. The decision to turned

down that opportunity is equivalent to rejecting the potential partner.
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as an unobserved, latent variable

y∗ji = zjiγ + εji (3)

where γ represents a vector of coefficients, zji represents a vector of independent variables for actor j

associated with potential partner i, and εji is assumed to be drawn from the standard logistic distribution.

As with the actor i, actor j is willing to cooperate with i if the net value of cooperation is positive:

yji =

1 if y∗ji > 0

0 if y∗ji ≤ 0.
(4)

If the unobserved variables influencing actors i and j are independent, cov
(
εij , εji

)
= 0,4 we can

write the individual probability that i wants to cooperate with j as

Pr
(
yij = 1|xij

)
= Pij = F

(
xijβ

)
, (5)

and the individual probability that j wants to cooperate with i as

Pr
(
yji = 1|zji

)
= Pji = F

(
zjiγ

)
(6)

where F (·) is the cumulative distribution function of the standard logistic distribution, i.e., F (·) = Λ (·).

Yet, when it comes to bilateral interactions we often do not observe the individual choices of the

actor i, yij , or j, yji, only the joint outcome oij = yij × yji. oij equals one only if yij and yji are both

one, zero otherwise. Where this is the case, the choices of actors are only partially observed (Abowd &

Farber 1982, Poirier 1980, Przeworski & Vreeland 2002, Nieman 2015). On the one hand, it is possible to

infer the choices of both actors when they cooperate – actor i must have chosen to cooperate with j, and

actor j must have agreed. On the other hand, it is not possible to infer the choices of either actor when

they do not cooperate. The failure to observe i and j cooperating could be because actor i did not want to

cooperate with j, actor j rejected i, or neither actor was interested in a mutual cooperation. Therefore, the

4 I relax this assumption and discuss the ensuing consequences in Subsection 2.2.
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joint probability that actor i seeks to cooperate with j and that actor j accepts to cooperate with i is

Pr
(
oij = 1|xij , zji

)
= Pij × Pji. (7)

Conversely, the probability that actor i does not cooperate with actor j, either because i refuses to cooperate

with j or because j rejects i (or both), is simply

Pr
(
oij = 0|xij , zji

)
= 1−

(
Pij × Pji

)
. (8)

Moving from bilateral to multilateral negotiations, the situation is further complicated by the fact

that, for actor i, the (i, j) dyad is not the only cooperation opportunity. In fact, actor i is confronted with a

multichotomous choice, not a dichotomous one. Thus, the above joint (partial observability) probabilities,

Eq. (7) and Eq. (8), apply to every single cooperation opportunity. Clearly, for actor i, there are Ki such

opportunities. How can we then compute the probability that actor i cooperates with actor j, and not with

∼j, out of a set of Ki potential partners?5 Starting from the joint probabilities, we need to compute the

following conditional probability

Pr
(
yij = 1, yi2 = 0, . . . , yiKi = 0 | yij + yi2+, . . . ,+yiKi = 1

)
=

Pr
(
y = (1, 0, . . . , 0)′

)
Pr
(
y = (1, 0, . . . , 0)′

)
+ Pr

(
y = (0, 1, . . . , 0)′

)
+, . . . ,+Pr

(
y = (0, 0, . . . , 1)′

) (9)

where j ∈ Ki.

Using the joint dyadic probabilities in Eq. (7) and Eq. (8), the numerator in Eq. (9) can be computed

5 In line with the real life examples that motivate this paper, one assumption of the model developed here

is that actor i can choose and be accepted by only one actor from the choice set Ki. The reason for this is

that the potential partners are presumed to be substitutes not complements.
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as

{[
PijPji

]
×
[
1− Pi2P2i

]
×, . . . ,×

[
1− PiKiPKii

]}
={[(

exijβ

1 + exijβ

)(
ezjiγ

1 + ezjiγ

)]
×

[
1−

(
exi2β

1 + exi2β

)(
ez2iγ

1 + ez2iγ

)]
×, . . . ,×

[
1−

(
exiKi

β

1 + exiKi
β

)(
ezKii

γ

1 + ezKii
γ

)]}
,

(10)

and the denominator as

{[
PijPji

]
×
[
1− Pi2P2i

]
×, . . . ,×

[
1− PiKi

PKii

]}
+
{[

1− PijPji
]
×
[
Pi2P2i

]
×, . . . ,×

[
1− PiKi

PKii

]}
+

, . . . ,+
{[

1− PijPji
]
×
[
1− Pi2P2i

]
×, . . . ,×

[
PiKiPKii

]}
={[(

exijβ

1 + exijβ

)(
ezjiγ

1 + ezjiγ

)]
×

[
1−

(
exi2β

1 + exi2β

)(
ez2iγ

1 + ez2iγ

)]
×, . . . ,×

[
1−

(
exiKi

β

1 + exiKi
β

)(
ezKii

γ

1 + ezKii
γ

)]}
+

{[
1−

(
exijβ

1 + exijβ

)(
ezjiγ

1 + ezjiγ

)]
×

[(
exi2β

1 + exi2β

)(
ez2iγ

1 + ez2iγ

)]
×, . . . ,×

[
1−

(
exiKi

β

1 + exiKi
β

)(
ezKii

γ

1 + ezKii
γ

)]}
+

, . . . ,+{[
1−

(
exijβ

1 + exijβ

)(
ezjiγ

1 + ezjiγ

)]
×

[
1−

(
exi2β

1 + exi2β

)(
ez2iγ

1 + ez2iγ

)]
×, . . . ,×

[(
exiKi

β

1 + exiKi
β

)(
ezKii

γ

1 + ezKii
γ

)]}
.

(11)

Upon simplifying both expressions,6 the conditional probability that actor i cooperates with actor j,

out of a set of Ki alternatives, can be written as

Pr
(
yij = 1|xi1, . . . , xiKi , z1i, . . . , zKii;

∑Ki
k=1yik = 1

)
=

exijβezjiγ

1+exijβ+ezjiγ∑Ki

k=1
exikβezkiγ

1+exikβ+ezkiγ

(12)

where j ∈ Ki.

6 In Online Appendix A I present step-by-step the simplification process.

7



It follows that the likelihood for the entire sample in the MMIwPO model is

L =
N∏
i=1

Ki∏
k=1

P dikik , (13)

where dik is an indicator variable that equals one if actor i cooperates with actor k, zero otherwise.

As with all multivariate models, in order for the MMIwPO to be identified, it is necessary that there

be at least one variable in one of the vectors of independent variables (xij , zji), but not the other (Poirier

1980, Gordon & Smith 2004).

A Multiparty Interaction Example

An example might help to illustrate how actors’ partially observed preferences determine the observed

outcome, as well as the data structure underlying a multi-actor interaction scenario. Suppose we have a

set of N states and a set of K military alliances. The question at hand is which alliance a given candidate

state (e.g., state S1 ∈ N ) joins, given that it can be a member of only one alliance. In this particular example,

S1 is confronted with five alliance alternatives: A1, A2, A3, A4, and A5, where A∗ ∈ K. Since theoretically

a candidate state may affiliate with any alliance, the data are organized into alliance membership opportunity

sets comprising all state-alliance dyads. Specifically, the alliance membership opportunity set of state S1

comprises five state-alliance dyads: S1 −A1, S1 −A2, S1 −A3, S1 −A4, and S1 −A5.

To each state-alliance dyad corresponds a pair of independent variable sets: one for the candidate

state, xS∗A∗, and the other one for the target alliance, zA∗S∗. Whether or not a given actor cooperates is a

function of that actor’s determinants. Facing multiple alternatives, the state ranks alliances in terms of the

utility it receives from membership in that alliance. In this example, S1 ranks the five alliances as follows.

Ideally, it would like to be a member of A1, but, if this is not possible, it is content to join A3. If everything

else fails, the candidate state would also settle for A2. However, it would join neither A4 nor A5 under any

circumstances. For their part, each alliance decides whether to accept or reject the wouldbe member. Apart

from A1 and A5, all alliances would welcome S1. The preferences of all actors and the resultant outcome

are shown in Table 1. Note that the information presented in last three columns, to the right of the vertical

line, are not available to the researcher.
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Table 1: Alliance Membership as Multilateral Negotiations

Candidate Alliance Observed Candidate Unobserved
Candidate Target Determinants Determinants Joint Outcome Rank Choice Individual Preferences
State Alliance yS∗A∗ yS∗ yA∗

S1 A1 xS1A1 zA1S1 0 1 1 0
S1 A2 xS1A2

zA2S1
0 3 1 1

S1 A3 xS1A3
zA3S1

1 2 1 1
S1 A4 xS1A4

zA4S1
0 — 0 1

S1 A5 xS1A5 zA5S1 0 — 0 0
...

...
...

...
...

...
...

...
SN AkN . . . . . . . . . . . . . . . . . .

...
...

...
...

...
...

...
...

SN AKN
. . . . . . . . . . . . . . . . . .

Note: S∗ is an indicator for candidate states, where S∗ ∈ N . A∗ is an indicator for target alliances, where A∗ ∈ K. yS∗A∗
represents the observed outcome. xS∗A∗ and zA∗S∗ represent the candidate state and target alliance determinants, respectively. yS∗
represents the unobserved preferences of state S∗ with respect to whether it is willing to seek membership with a given alliance.
yA∗ represents the unobserved preferences of target alliances with respect to whether they are interested to accept that state.

Which alliance does state S1 ultimately join? In this example, S1 becomes a member of A3 because

its most preferred choice, A1, rejects the state, and among the remaining viable choices, A2 and A3, it

prefers A3 the best. This hypothetical six-party interaction highlights the need to employ a multivariate

partial observability model in a multilateral negotiation scenario. In the current set-up there are several

substantively different, yet observationally equivalent, non-cooperation outcomes. Specifically, S1 joins

none of the following alliances: A1 (the state’s first choice),A2 (an alliance that S1 actually finds acceptable,

and vice versa), A4 (an alliance the state rejects), and A5 (an alliance the state rejects, and vice versa). As

Poast (2012, 279) argues, there is the value in considering the “dogs that didn’t bark” observations, and

partial observability models are designed to make the most of these non-cooperation outcomes.

For example, like bivariate partial observability models, MMIwPO can accommodate situations

where non-cooperation is the result of one actor rejecting the other (e.g., the S1 − A1 and S1 − A4 in-

teractions), or both parties rejecting cooperation (e.g., the S1 − A5 interaction). Unlike the standard partial

observability models, however, MMIwPO can also explain why a cooperation that is mutually beneficial to

both parties, such as the interaction between S1 and A2, does not occur. Recall that in the MMIwPO model,

the utility associated with a specific alliance is evaluated relative to that of the other alternatives. The fact
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that another alternative is comparatively more advantageous can explain why a bilateral cooperation, whose

absolute value is positive, does not occur.

As a side note, in this example, the set of five potential partners was introduced without a preliminary

discussion. Yet, determining the pool of alternatives to include in the estimation is a very important issue.

When it comes to identifying the full set of possible alternatives, the research question should inform the

selection criteria. For example, if the analysis is about interstate conflict, then all other states are potential

targets or aggressors. Often, though, only a small subset of all dyads can plausibly experience the phe-

nomenon in question (e.g., the odds of a war between Saint Kitts and Nevis and San Marino are slim to

none). Some researchers argue that only these dyads are a proper reference group, and the others should be

discarded (Lemke & Reed 2001).

When this is a concern, one could run a global goodness of fit test to determine whether adding a

given alternative improves the overall model fit. This approach is advised only if the alternative in question

is included in all (or most) actors’ pool of potential partners. To identify the subset of relevant dyads at the

individual dyad level, one could run a separate logit model and then include in the MMIwPO only the dyads

with a high enough likelihood. This approach, however, does not properly account in the final estimation for

the uncertainty in identifying these dyads. Alternatively, one can employ theoretical criteria to tag relevant

dyads. A popular approach in the conflict literature, for example, is to restrict the analysis to “politically

relevant” dyads, usually defined in terms of the dyad members’ major power status and geographic contigu-

ity (Lemke & Reed 2001). While the precise attributes are likely to vary with the research question, theory

should play a central role in informing this decision.

2.2 The Multilateral Mediated Interaction with Partial Observability and Odds Ratio

The joint probability, Eq. (7), and the subsequent conditional joint probability discussed above, Eq. (12),

assume that the two component probabilities, Pij and Pji, are independent. Of course, in some scenarios

this assumption might not be warranted. Where this is the case, we must address the problem that both the

systematic and/or stochastic components could be correlated (Leemann 2014, Poirier 1980). In practice, we

need to define another parameter, the odds ratio, that captures the relationship between the two outcomes.

The odds ratio, ψ, is defined as ψ =
Pr
(
Pij=1 | Pji=1

)
×Pr
(
Pij=0 | Pji=0

)
Pr
(
Pij=1 | Pji=0

)
×Pr
(
Pij=0 | Pji=1

) , where ψ = 1 if and only if the
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individual probabilities are independent (Bland & Altman 2000, Szumilas 2010). Solving the equation

allows us to compute the joint outcome, Poij , as a function of the odds ratio, ψ, and the marginal individual

probabilities, Pij and Pji. The solution is a quadratic equation in Poij
7

0 = a× P 2
oij + b× Poij + c

Poij =
(
− b+

√(
b2 − 4× a× c

))
/(2× a) (14)

where a = 1− ψ, b = 1−
(
1− ψ

)
×
(
Pij + Pji

)
, and c = −ψ × Pij × Pji (McLerran 2010).

When ψ = 1, then a = 0, and therefore the denominator of Eq. (14) is zero. Consequently, we cannot

compute the Poij employing the above formula. However, recall that when ψ = 1, it must be the case that

the individual probabilities are independent, so the joint probability in this scenario is simply the product of

the two probabilities. Therefore, the new joint probability that actor i seeks to affiliate with actor j, and that

j accepts i is

Pr
(
oij |xij , zji;ψ = 1

)
=


(
− b+

√(
b2 − 4× a× c

))
/(2× a) if ψ 6= 1;

Pij × Pji if ψ = 1.
(15)

Substituting the new joint outcome probability in the conditional probability defined in Eq. (9), we

obtain the following conditional probability that actor i cooperates with actor j, out of a set of Ki potential

partners,

Pr
(
yij = 1|xi1, . . . , xiKi , z1i, . . . , zKii;

∑Ki
k=1yik = 1

)
=

∏Ki
k=1

[
P yikoik

(
1− Poik

)yik]∑
si∈Si

∏Ki
k=1

[
P sikoik

(
1− Poik

)sik] , (16)

where yik is the dependent variable taking on values 0 or 1, yi = (yi1, . . . , yiKi) is the outcomes for actor i

as a whole, sik is equal to 0 or 1 with
∑Ki

k=1 sik = 1, and Si is the set of all possible combinations of yi one

and zeros. Clearly, there are Ki such combinations.

7 In Online Appendix B I present the intermediate steps in solving the equation.
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The Multilateral Mediated Interaction with Partial Observability vs. Conditional Logit

How does the new MMIwPO model relate to extant choice models? It turns out that MMIwPO nests the

conditional logit (CL), the standard univariate model for multiple choices (McFadden 1974, McFadden

1974a).8 In the restricted model, the CL, a player chooses among multiple choice alternatives and the

player’s decision is decisive. In effect, the outcome is determined solely by the decision of a single actor. In

the MMIwPO, the premise is similar: a player chooses among multiple potential partners. The twist is that

the partners have a say in the final outcome, as they can reject individual requests for cooperation. Thus, the

outcome in this scenario is determined by the joint choices of a player and that player’s potential partners.

The fact that the CL is only a special case of the unrestricted MMIwPO model means that, on the one

hand, the two models produce identical results in situations where the outcome is indeed the result of a single

actor’s unilateral decision. On the other hand, the MMIwPO ought to produce more accurate estimates in

situations where the outcome is the result of multilateral interactions. To determine whether this is indeed

the case, I conduct multiple MC experiments that allow me to directly compare the performance of the

MMIwPO and CL models. MC simulations are useful because they provide a controlled environment, where

one can tease out the effect of a given modeling choice. To prevent contamination effects, ideally, there

should be just one difference between the compared scenarios. The only difference between the two models

in question is that the new estimator allows potential partners to reject individual requests for cooperation. In

fact, were we change the corresponding probabilities to reflect that all K actors automatically accept player

8 The MMIwPO model is also similar to the two-sided logit (TSL) that has been developed to examine

how the choices of workers and employers jointly determine employment outcomes (Logan 1996, Logan

1998). There are at least three notable differences between the TSL and the MMIwPO model. First, the

likelihood function associated with the TSL model is not globally concave. This causes practical problems

because its estimation algorithm often finds a local not a global maximum (Logan 1996, 127). Second, the

TSL restricts a player’s choice to the subset of partners that are willing to cooperate. This assumes that we

can always observe or infer the individual choices of all actors. Third, the TSL cannot estimate whether

actors’ choices are interrelated. This is due in part to the fact that the model presupposes that actors move

sequentially, and therefore the disturbances are assumed uncorrelated. The MMIwPO does not suffer from

any of these problems.
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i (i.e., exp(zkiγ)
1+exp(zkiγ)

= 1 in Eq. (10) and (11)), the MMIwPO probability simplifies to the CL’s conditional

probability. Thus, when comparing the MMIwPO and CL estimates, it is easy to tell what drives the changes

in results, if any.

3 Monte Carlo Simulations

Each MC experiment comprises 2,000 players and 5 potential partners. Each player chooses whether they

want to cooperate with any, or none, of the five alternatives. Similarly, each potential partner decides whether

they would reject or accept a player were he willing to cooperate. Both players and potential partners choose

the option that maximizes the utility accrued from that cooperation. Since there are two sets of actors, i.e.,

the players (N ) and potential partners (K), there are two distinct utility functions:

y∗ij = β1IV 1ij + β2IV 2ij + εij (17)

y∗ji = γ1IV 1ji + γ2IV 3ji + εji (18)

where i ∈ N , j ∈ K, β1 = 0.2, β2 = −0.6, γ1 = +/− 0.8, γ2 = 0.4, and cov
(
εij , εji

)
= ρ.

There are two inputs to both players and potential partners’ utilities. One of the inputs, the inde-

pendent variable IV 1, is the same in both actors’ utility function. This is to evaluate how a factor can

simultaneously affect the incentives of both players and partners. The IV 1’s coefficient β1 is always pos-

itive. In contrast, while retaining the same absolute value, γ1 is either positive or negative in alternative

MC experiments. This allows us to evaluate how different estimators perform when the common factor has

either a similar (positive in this case) or opposing effect on the actors. The second input is distinct between

the two utilities; IV 2 is a determinant of the player’s incentives alone, whereas IV 3 is included only in the

potential partners’ equation. All three independent variables have values randomly drawn from the standard

logistic distribution, with a mean of 0 and a variance of π2

3 . The error terms are randomly drawn from a

cumulative logistic distribution with a correlation coefficient of ρ.

Next, employing the logistic function, I compute two dichotomous variables to indicate the probabil-
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ity that actor i is willing to cooperate with j, and vice versa:

yij =


1 if 1

1+e
−y∗
ij
> 0.5

0 if 1

1+e
−y∗
ij
≤ 0.5;

(19)

yji =


1 if 1

1+e
−y∗
ji
> 0.5

0 if 1

1+e
−y∗
ji
≤ 0.5.

(20)

One assumption of the MMIwPO model is that potential partners are substitutes not complements.

In practical terms this means that actor i can choose and be accepted by only one actor from the choice set

Ki. Therefore, the dependent variable is coded one for the
(
y∗ij , y

∗
ji

)
dyad that maximizes the product of the

two latent variables, given that both individual probabilities are one. Formally, the dependent variable, yij ,

equals one if
((
y∗ij × y∗ji

)
= max

j∈Ki

{(
y∗i1 × y∗1i

)
, . . . ,

(
y∗iKi × y

∗
Kii

)}
|
(
yij = 1 | yji = 1

))
, zero otherwise.

Overall, I conduct thirty MC experiments, which represent the combination between (i) five different

values for the disturbance correlation parameter (ρ successively takes the value of 0, 0.25, 0.5, 0.75, and 1),

(ii) two different values for the γ1 coefficient (+/− 0.8), and (iii) three different estimators (CL, MMIwPO,

and MMIwPO with Odds Ratio). For each of the thirty scenarios, I run 1,000 simulations. To keep things

concise, in the main text I present only the results from the CL and MMIwPO models where the disturbances

are not correlated, ρ = 0.9 Since the CL can accommodate only one set of actors, the MC experiments in

this case are restricted to analyzing the players’ incentives to choose among available potential partners.

Thus, right off the bat, the univariate logit fails to provide any insights into how factors affect the potential

partners’ incentives to accept or reject the players’ (potential) cooperation requests.

Which estimator performs best according to the MC simulations? I employ two indicators to discrim-

inate between the MMIwPO and CL models. First, I perform a likelihood-ratio test to assess the goodness-

of-fit between the two empirical models. Without exception, the test indicates that the MMIwPO model fits

the simulated data significantly better in every MC experiment. Thus, the MMIwPO’s increased complexity

is justified in terms of the significant improvement in fit over the CL model. Second, I contrast the MMIwPO

and CL models in terms of their ability to minimize the bias in the estimated coefficients.

9 In Online Appendix C I present and discuss the full set of MC experiments.

14



Figure 1: The β1 Coefficient Bias
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(b) β1 is positive while γ1 is negative
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Note: Figure 1 illustrates the β1 coefficient bias for the CL and MMIwPO models. The bias estimates are based on 1,000 MC
simulations. The left panels indicate scenarios where the common variable, IV 1, has a positive effect on both sets of actors, N and
K. The right panels indicate scenarios where IV 1 has a positive effect on the N actors, and a negative effect on the Ks.

Figure 1 shows the bias in the β1 coefficient across the player’s ranked choice of potential partners

for both the CL and MMIwPO models.10 The coefficient bias is simply the difference between the estimated

and the true value of that coefficient. The ranked choice captures potential partners’ position on the player’s

preference scale. For example, a value of one indicates that the player was accepted by the partner that he

ranks first. Higher values indicate that the player was rejected by his preferred choice, and he had to settle

for his second best alternative, or worse. The left panels indicate scenarios where the common factor, IV 1,

has a positive effect on both sets of actors, N and K. The right panels indicate scenarios where IV 1 has a

10 In the main text I discuss only the bias in the estimated coefficient on the variable present in both actors’

utility function, IV 1. However, I do report the estimated bias for all four coefficients in Online Appedix C.
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positive effect on the N actors, and a negative effect on the Ks.

It is easy to note that in both scenarios the MMIwPO reports the least biased coefficients, with the

bias values straddling the zero line (see Panel II in Figure 1a and 1b). While the CL’s β1 estimates are always

biased, the direction of the bias is determined by the sign of the γ1 coefficient from the potential partners’

utility function. Recall that β1 is always positive. When γ1 is also positive, the estimated β1 coefficient

is always bigger than its true value since it is artificially pulled up by the positive effect that IV 1 has on

the potential partners’ incentives (Figure 1a Panel I). When γ1 is negative, the CL’s β1 coefficient is always

smaller since it is pulled down by IV 1’s negative effect on the partners’ incentives (Figure 1b Panel I). In

effect, the conditional logit model reports a weighted average of the IV 1’s effect on all actors.

4 An Application to Alliance Formation

In this section, I demonstrate the inferential benefits of employing the MMIwPO by applying the model to

real data on alliance formation. The upcoming empirical analysis is meant only to illustrate the applicability

of the MMIwPO model, not to develop a new theoretical account of the alliance formation process. First, I

present a couple of anecdotes to support the claim that a state’s membership in a given alliance is contingent

on the available options. Next, I describe the data and address various measurement issues. I then present

the results and discuss their substantive importance.

In June 2013, the Colombian President Juan Manuel Santos announced that he wants a closer part-

nership with NATO. Not surprisingly, his announcement stirred strong emotions. Colombia’s partners in the

Union of South American Nations, the defense alliance in South America, expressed strong objections to

this proposal with the Bolivian President claiming that “[a]ny presence of NATO in South America or Latin

America poses a threat to peace in the region” (Mallén 2013). In order to contain the problem and appease

Colombia’s current South American allies, the Colombian foreign minister qualified the President’s state-

ment by saying that Colombia is not actively seeking to join NATO (Mallén 2013). NATO also distanced

itself from the Colombian President’s remarks saying that Colombia cannot become a NATO member as it

“does not meet the geographically limited membership criteria” (Agence France-Presse 2013). Of course,

there are various reasons why an alliance might find a particular candidate state undesirable. Georgia, for

example, initiated the NATO membership process in 1994. After more then twenty years, it is still not a
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member because of political and military considerations (Fuller 2014). Indeed, it may be the case that ne-

gotiations over a potential alliance membership never even start because the interested candidate knows that

it does not meet the necessary requirements, or it infers that the negotiations would fail.

Regardless of whether because of a geographic or other technical reason, when states are denied

membership in an alliance of their choice, they are forced to look for security guarantees somewhere else.

Therefore, their subsequent decision (i.e., to join another alliance, form a new one, or remain neutral) is

determined in part by having had their options curtailed by their preferred alliance’s rejection. For example,

Fordham and Poast (2016) argue that in 1963 Spain was forced to form a bilateral alliance with the U.S.,

instead of joining the existing U.S. sponsored European alliance, because of other NATO members’ distaste

for Franco. In their assessment, this “illustrates how the positions of third-party states can influence the

formation of a bilateral alliance” (Fordham & Poast 2016, 844).

4.1 Data and Measurement Issues

The upcoming analysis builds on Poast’s (2010) work on alliance formation, which in turn draws on Gibler

and Wolford’s (2006) study on alliance membership. While my analysis closely follows Poast (2010) with

respect to the set of explanatory variables, operationalization rules, and temporal domain, it is not a replica-

tion per se of that work. The two studies differ in terms of their scope and the cases included in the respective

analyses. On the one hand, Poast (2010) addresses the question of why a given k-adic alliance forms while

alternative k-member alliances do not. On the other hand, this study answers two questions: (i) why a state

forms a given k-adic alliance instead of joining an existing one, and (ii) why the other alliance members

accept that state. Finally, Poast (2010) drops alliances with six or more members from the analysis, whereas

I include all alliances irrespective of their size. These differences aside, I focus on Poast’s (2010) study

because, by conceptualizing alliance formation as a multilateral event, it departs from the traditional dyadic

analysis framework. In the process it also provides the first guidelines with respect to various aggregation

issues that one faces when moving from a dyadic to multi-actor interaction.

Following Poast (2010), the analysis focuses solely on alliance formation, treating the decision to

join an existing alliance as distinct from the decision to create a new one.11 The data are organized into

11 In this study I look only at defense alliances. One assumption of the MMIwPO model is that the
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alliance membership opportunity sets. A state’s membership opportunity set comprises the state-alliance

dyads between the potential member and all extant alliances, as well as the dyad between that state and the

new alliance.12 An example might help to illustrate the data structure. Suppose we have a state, S, that

forms a new alliance, A3, at a time when there were two other alliances, A1 and A2. In this scenario, the

alliance membership opportunity set of state S would comprise three state-alliance dyads: S −A1, S −A2,

and S −A3. Including existing alliances in a state’s membership opportunity set captures the intuition that,

aside from forming a new alliance, the state also has the option to reach out to extant alliances. Indeed, the

need to form a new military alliance can stem from the fact that either no existing alliance is able to fulfill

that state’s security needs, or, if such alliances exist, they reject that state (e.g., Spain in 1963, Colombia and

Georgia nowadays). In this sense, the new alliance is a substitute to existing alliances.13

The temporal domain covers the period from 1816 till the end of the cold war in 1990. The number of

independent states and military alliances varies across time, but the full dataset comprises 121 states and 182

military alliances. In total, there are 5,638 unique state-alliance dyads grouped in 509 alliance membership

opportunity sets.14 The dependent variable in the upcoming empirical analysis, New Allies, is coded one if

available alternatives are potential substitutes. Given this assumption, it does not make sense to put defense

and entente pacts together. Previous studies have also recognized this important distinction and analyzed

defense alliances, which entail the highest level of military commitment, as a stand-alone category (Gibler

& Wolford 2006, Lai & Reiter 2000).
12 In a state’s membership opportunity set, any new alliance is coded as being formed from all other

members except the candidate state. This rule facilitates the comparison between the new alliance and

those alliances of which the state never becomes a member. For the same reason, when computing various

alliance specific variables, the candidate state’s input is ignored for all alliances in that state’s membership

opportunity set.
13 It is worth noting that alternative research questions may emphasize the potential complementarity

among alliances. This is generally the case of analyses that examine states’ membership in multiple or-

ganizations that are similar in scope. Analyses that focus on complementary effects, though, are not fully

isomorphic with the assumptions underlying the new estimator.
14 For the cases where a state forms more than one alliance in a given year, I create duplicates of the
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the state-alliance dyad represents a true relationship in the sense that the state is an original member of the

newly formed alliance, zero otherwise.

In Poast’s (2010) analysis, four core determinants explain a state’s decision to form a new alliance:

capability ratio, joint democracy status, geographic distance, and common threat. Since the main objective

of a defense alliance is to provide assistance in case of foreign aggression, the military capabilities of the

parties involved play a crucial role in determining whether a state joins a given alliance. Capability Ratio

captures the relative military strength of the candidate state and target alliance. Effectively, it is an indicator

of whether the wouldbe member is likely to be a consumer or provider of security within a particular al-

liance. Capability Ratio is calculated as the ratio between the military capability of the wouldbe member and

that of the target alliance.15 For example, if CS and CA represent the military capabilities of the candidate

state and target alliance, respectively, the Capability Ratio would be calculated as: CS
CS+CA

. On the one hand,

individual states are more likely to seek membership with a strong military alliance that can protect them

from outside threats. On the other hand, alliances have the incentive to accept militarily powerful members

that have a positive effect on their overall military might. This line of reasoning leads to opposing expecta-

tions about the impact of relative military capabilities on the candidate’s and target alliance’s incentives. An

increase in the capability ratio, which indicates that the candidate state is more powerful compared to the

other alliance members, negatively affects a state’s incentives to join. This is because the wouldbe member

is likely to be a security provider. Conversely, an increase in the capability ratio makes an alliance more

likely to accept that state as this would translate into a significant increase in the alliance military might.

Generally, the literature reports a positive relationship between regime type similarity and alliances,

although some recent studies have questioned this finding (Siverson & Emmons 1991, Simon & Gartzke

1996, Lai & Reiter 2000). Joint Democracy captures the political similarity between the candidate state and

target alliance. Joint Democracy is calculated as the product between the democratic status of the candidate

respective opportunity set, and then remove the ulterior alliances from the previous membership opportunity

sets. For example, if a state forms two alliances in a given year, there would be two alliance membership

opportunity sets for that state, but the opportunity set associated with the first alliance formation would not

include the subsequent alliance.
15 The data on states’ military capabilities come from Singer, Bremer and Stuckey (1972).
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state (0 or 1) and the proportion of member states that are democracies in a given alliance (Poast 2010). A

state is coded as a democracy if it scores a six or above on the Polity IV scale for a given year (Marshall, Gurr

& Jaggers 2010). Higher values indicate that a democratic state seeks to affiliate with a military alliance that

has a large share of democratic members.

As an indicator of geographic proximity, Geographic Distance captures both the incentives to ally

(in terms of how likely states are to have a common interest or threat) as well as the presumed alliance

effectiveness (in terms of how expeditious receiving military support would be). The expectation is that the

geographically closer states are, the more likely they are to ally. Measuring geographic distance between

states is relatively straightforward in a dyadic setting, and it is usually calculated as the square root distance

between the capital cities. This becomes complicated when more than two states are involved. Following

Poast (2010), I apply the ‘weakest link’ principle and use the square root distance between the candidate

state and the most distant alliance member (Oneal & Russett 1997). For contiguous states, the distance is

set to zero (Lai & Reiter 2000, Gibler & Wolford 2006, Poast 2010).16

Finally, countries’ involvement in international disputes provides an additional indicator about how

opportune a given military collaboration is. Common Threat captures the idea that countries are more

likely to come together if they face a common enemy. Common Threat is calculated as the proportion of

alliance members that participated in a militarized interstate dispute (MID) against the same third party

as the candidate state in the previous ten years (Poast 2010).17 Empirically, a state’s willingness to join a

military alliance should increase with the number of alliance members that fought against the state’s enemies

in the past.

In terms of the candidate state’s MID experience, military alliances are interested to know how bel-

ligerent the wouldbe member is. One of the costs of accepting new members is the probability that the

alliance would be dragged into wars against states with which, absent the new member, the alliance has no

quarrels. Additional Threat is calculated as the proportion of alliance members that did not participate in a

militarized dispute against any of the candidate state’s adversaries in the previous ten years. Discriminating

16 The data on geographic distance come from Gleditsch and Ward (2001). The data for the period before

1875, as well as the contiguity information come from Gibler and Wolford (2006).
17 The data on dyadic MIDs come from Maoz (2005).
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between the candidate state and target alliance’s incentives based on their respective MID records also helps

satisfy the MMIwPO’s identification requirement. Recall that in order for the model to be identified, it is

necessary that the actors’ determinant sets are not identical (Poirier 1980, Gordon & Smith 2004).

4.2 Results and Discussion

The results of the empirical analysis are shown in Table 2. The second column presents the estimates from a

conditional logit model, the standard univariate logit for multiple choices. These results act as a benchmark

against which to compare the results from the MMIwPO. The MMIwPO estimates, which are shown in the

third and fourth columns, indicate how covariates influence the choices of the wouldbe member and target

alliance separately.

Table 2: The Determinants of Alliance Formation

Conditional Logit Multilateral Mediated Interaction with Partial Observability

Regressor Wouldbe Member Target Alliance

Capability Ratio 1.50*** −1.22*** 4.06***
(0.27) (0.41) (0.59)

Joint Democracy 1.47*** −0.48 5.21***
(0.30) (0.41) (0.91)

Geographic Distance −0.08*** −0.05*** −0.05***
(0.00) (0.01) (0.01)

Common Threat 1.19*** 0.98*** —
(0.26) (0.30)

Additional Threat — — −1.18***
(0.34)

Log Likelihood −1161.99 −1128.74
Number of Observations 11632 11632

Note: The Conditional Logit estimates indicate how the regressors influence the likelihood of alliance formation. The Wouldbe
Member and Target Alliance estimates, respectively, indicate how the regressors influence the incentives of the candidate state and
target alliance.

The results from the CL model are generally in accord with those from previous studies. Specifically,

the likelihood of alliance formation decreases as the candidate state and alliance members are geographi-

cally farther apart. This is indicated by the negative and statistically significant coefficient on Geographic

Distance in the Conditional Logit column. The positive and statistically significant coefficients on Capabil-

ity Ratio, Joint Democracy, and Common Threat indicate that a state is more likely to join a military alliance

if that state is militarily strong, the alliance members have a similar regime, or they have previously fought
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against the same enemies.

I now turn to the results from the MMIwPO model.18 The first thing to note is that, unlike the uni-

variate logit, the MMIwPO is able to provide insights into how the covariates affect the choices of both

the candidate state and the target alliance. It turns out that this has important consequences for the infer-

ences that one would draw. For example, the MMIwPO estimates indicate that a candidate state’s military

strength has opposing effects on the state’s and alliance’s incentives. The positive and statistically signifi-

cant coefficient on Capability Ratio in the Target Alliance column suggests that an alliance is more likely to

accept a militarily strong candidate that has the ability to provide security guarantees to its current members.

Contrary, a state is less likely to choose an alliance with militarily weak members. This is because such an

alliance is unlikely to provide credible security guarantees. Moreover, as a powerful member of that alliance,

the candidate state is likely to be called upon to defend weaker members. Evidence for this line of reasoning

comes from the negative and statistically significant coefficient on Capability Ratio in the Wouldbe Member

column. The univariate logit, which reports solely a positive effect, completely misses the negative effect of

military capabilities on the probability of alliance formation.

What does it substantively mean that some factors have opposing effects on the candidate state and

target alliance? In Figure 2, I use the estimates from the CL and MMIwPO models to show the percentage

change in the probability of alliance formation as Capability Ratio increases from its mean to one standard

deviation above the mean, while all other variables are held at their means. In the case of MMIwPO, I also

illustrate the effect of Capability Ratio on the state’s and alliance’s incentives separately. The predicted

probabilities are computed from a stylized scenario where a state chooses between two alliances, which in

turn decide whether to accept or reject the candidate. The solid vertical lines represent two-tailed 90% confi-

dence intervals, which were computed via simulations based on 10,000 draws from the estimated coefficient

vector and variance-covariance matrix.

The CL model suggests that the counterfactual increase in a candidate state’s military strength in-

18 For theoretical reasons, in this analysis I employ the MMIwPO and not the MMIwPO with odds ratio

model. When actors’ choices are not simultaneous, the disturbances are generally assumed uncorrelated

(Abowd & Farber 1982, Przeworski & Vreeland 2002). Arguably, alliance formation is an inherently se-

quential process. In fact, membership negotiations can take a long time, sometimes even years (Fuller 2014).
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Figure 2: The Substantive Effect of Military Capabilities
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(b) Multilateral Mediated Interaction
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Note: Figure 2a illustrates the percent change in the probability of alliance formation when Capability Ratio increases from its
mean to one standard deviation above the mean, while all other variables are held at their means. Figure 2b graphs the substantive
effect of Capability Ratio on the state’s and alliance’s incentives separately, as well as the overall effect. The solid square marks
indicate the percentage change in probability. The solid vertical lines represent two-tailed 90% confidence intervals.

creases the probability of alliance formation by 22% [15, 26] (Figure 2a). Much more substantive infor-

mation can be gleaned from the MMIwPO plot. Given the same counterfactual scenario, the MMIwPO

estimates indicate that the probability of the target alliance accepting a militarily strong state increases by

48% [39, 56]. Conversely, the probability that a candidate state chooses a weaker alliance decreases by

16% [−25, −9] (Figure 2b). Neither of these substantive quantities of interest can be calculated from the

CL estimates. The overall (joint) probability of observing a new alliance increases by 35% [26, 41], 13

percentage points more than with the inappropriate univariate logit. By ignoring the multi-way interaction

underpinning an alliance formation scenario, the univariate logit is essentially mixing the effect of military

capabilities on the choices of the wouldbe member and target alliance.

As noted above, the CL results indicate that democratic states are more likely to choose alliances

with many democratic members. Yet, the MMIwPO estimates suggest that it is the other way around. An

alliance with a large share of democratic members is more likely to accept a democratic state, while regime

similarity does not play a significant role in a candidate state’s decision to join. Evidence for this line of

reasoning comes from the positive and statistically significant coefficient on Joint Democracy in the Target

Alliance column, and the statistically insignificant coefficient on the same variable in the Wouldbe Member
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column. Therefore, the finding of previous studies where joint democracy is a strong indicator of alliance

membership, appears to be driven by alliances’ ideological considerations, and only to a lesser degree of the

candidate state.

Of course it does not have to be the case that all factors that push a candidate state to seek mem-

bership in a given alliance make the target alliance less like to accept that state. As expected, the negative

and significant coefficients on Geographic Distance in the Wouldbe Member and Target Alliance columns

indicate that an increase in the distance between the candidate and alliance members reduces the willingness

of both players to cooperate. Lastly, MMIwPO estimates suggest that the MID records of both players affect

the probability of alliance formation. In particular, in line with the theoretical expectations, a state is more

likely to ally with countries that have the same enemies. This is indicated by the positive and statistically

significant coefficient on Common Threat in the Wouldbe Member column. Conversely, an alliance is less

likely to accept a new member that has fought with states that are not enemies of its current members. This

is to prevent the alliance being dragged into unwanted disputes. Evidence for this comes from the negative

and statistically significant coefficient on Additional Threat in the Target Alliance column.

5 Conclusions

The conflict in the eastern Ukraine has already claimed more than 30,000 casualties, and left critical civilian

infrastructure in ruin (OHCHR 2017). What triggered these events was the Ukrainian executive’s abrupt

decision to pull back from an already agreed cooperation with the E.U. In the framework of the bilateral

interaction between Ukraine and the E.U., it is virtually impossible to explain Ukraine’s change of heart.

The terms of cooperation, and therefore its value to the signatory parties, did not change in the two months

that elapsed form the signing to dismissing the agreement. As a rational actor with consistent preferences,

Ukraine should have had the same position on the agreement before and at the Vilnius summit. Reneging

the agreement, though, was arguably rational if we acknowledge that for Ukraine the E.U. was not the only

alternative. Indeed, Ukraine had been simultaneously negotiating with Russia as well. While the absolute

value of the E.U. collaboration did not change, its relative value compared to Russia’s counteroffer did.

Thus, the conclusion of the Vilnius summit is the result of the multilateral negotiations between Ukraine on

one side, and the E.U. and Russia on the other.
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Extant empirical estimators are not well equipped to analyze multi-actor interactions. As a result, the

common practice is to employ univariate or bivariate models to analyze multilateral phenomena. These ap-

proaches are inappropriate, though, for both substantive and methodological reasons. Substantively, scholars

are often interested in how the actors engaged in negotiations individually respond to changes in their en-

vironment. Univariate models can only provide insights into how factors affect the incentives of a single

actor. Studies that employ bivariate estimators can account for the incentives of two actors, but they still

ignore the characteristics and motivations of concerned third-parties. Methodologically, analyzing multilat-

eral processes as a set of either monadic or dyadic events biases the results (Croco & Teo 2005, Fordham &

Poast 2016, Poast 2010, Signorino 1999).

In this paper, I introduce a new Multilateral Mediated Interaction with Partial Observability model

that is specifically designed to analyze multi-actor negotiations. In this model, a player chooses whether

to cooperate with any, or none, of several potential partners. For their part, each potential partner decides

whether to reject or accept any requests for cooperation. To validate the new estimator, I conduct MC

simulations that provide strong evidence for the superior performance of MMIwPO relative to the CL. First,

likelihood-ratio tests indicate that employing the more complex model is warranted since MMIwPO fits the

data significantly better. Second, MMIwPO consistently outperforms the CL in terms of minimizing the

bias of estimated coefficients. Specifically, the CL estimates are always bias, but especially so when a factor

simultaneously affects the incentives of more than one actor. Where this is the case, neither the direction

nor magnitude of the bias can be inferred from the univariate analysis. Consequently, one cannot adjust the

point and interval estimates to account for the bias. Since the new estimator can model the input of multiple

actors into a unified, overarching decision making process, the MMIwPO estimates are more consistent.

Lastly, the analysis on alliance formation also highlights the need for a more refined empirical ap-

proach. Unlike the CL, MMIwPO is able to distinguish among different types of alliance membership

determinants. On the one hand, there are factors that have a similar effect on the candidate state and target

alliance (e.g., Geographic Distance). On the other hand, some factors have different effects on the actors

(e.g., Joint Democracy), with some having opposing effects (e.g., Capability Ratio). By mixing the determi-

nants’ effect on several actors, existing studies essentially report a weighted average of the different effects.

They do so by obscuring the exact influence on any one actor, and leading in many cases to incorrect infer-

25



ences. For example, the CL results suggest that the stronger a state is relative to the alliance members, the

more likely it is to seek affiliation with that alliance. MMIwPO estimates, however, suggest that the positive

effect from the univariate model is driven by the incentives of target alliances, which are more likely to

accept a militarily powerful candidate. In fact, a militarily strong state is less likely to join a weak alliance

since it has little to gain from such a commitment.
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Online Appendix A: Deriving the MMIwPO Likelihood Function

In Section 2.1 of the main text I note that the simplified conditional probability that actor i cooperates with

actor j, and not with ∼j, out of a set of Ki potential partners is

Pr
(
yij = 1|xi1, . . . , xiKi , z1i, . . . , zKii;

∑Ki
k=1yik = 1

)
=

exijβezjiγ

1+exijβ+ezjiγ∑Ki

k=1
exikβezkiγ

1+exikβ+ezkiγ

(A1)

where j ∈ Ki.

I now present step-by-step how the conditional probability underlying the MMIwPO’s likelihood

function is computed. Recall that the joint probability that actor i seeks to cooperate with j and that actor j

accepts to cooperate with i is

Pr
(
oij |xij , zji = 1

)
= Pij × Pji (A2)

where Pij = F
(
xijβ

)
and Pji = F

(
zjiγ

)
. Pij represents the individual probability that iwants to cooperate

with j, β is a vector of coefficients, and xij is a vector of independent variables for actor i associated with

potential partner j. Pji represents the individual probability that j wants to cooperate with i, γ is a vector of

coefficients, and zji is a vector of independent variables for actor j associated with potential partner i. F (·)

is the cumulative distribution function of the standard logistic distribution, i.e., F (·) = Λ (·).

Conversely, the probability that actor i does not cooperate with actor j, either because i refuses to

cooperate with j or because j rejects i (or both), is simply

Pr
(
oij |xij , zji = 0

)
= 1−

(
Pij × Pji

)
. (A3)

Starting from the joint dyadic probabilities, we can write the conditional probability that actor i
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cooperates with actor j, and not with ∼j, out of a set of Ki potential partners as

Pr
(
yij = 1, yi2 = 0, . . . , yiKi = 0 | yij + yi2+, . . . ,+yiKi = 1

)
=

Pr
(
y = (1, 0, . . . , 0)′

)
Pr
(
y = (1, 0, . . . , 0)′

)
+ Pr

(
y = (0, 1, . . . , 0)′

)
+, . . . ,+Pr

(
y = (0, 0, . . . , 1)′

) (A4)

where j ∈ Ki.

Using the joint probabilities in Eq. (A2) and Eq. (A3), the numerator in Eq. (A4) can be computed as

{[
PijPji

]
×
[
1− Pi2P2i

]
×, . . . ,×

[
1− PiKi

PKii

]}
={[(

exijβ

1 + exijβ

)(
ezjiγ

1 + ezjiγ

)]
×

[
1−

(
exi2β

1 + exi2β

)(
ez2iγ

1 + ez2iγ

)]
×, . . . ,×

[
1−

(
exiKi

β

1 + exiKi
β

)(
ezKii

γ

1 + ezKii
γ

)]}
=

{[
exijβezjiγ(

1 + exijβ
)(

1 + ezjiγ
)]× [ 1 + exi2β + ez2iγ(

1 + exi2β
)(

1 + ez2iγ
)]×, . . . ,×[ 1 + exiKi

β + ezKii
γ(

1 + exiKi
β
)(

1 + ezKii
γ
)]} =

{
exijβezjiγ ×

(
1 + exi2β + ez2iγ

)
×, . . . ,×

(
1 + exiKi

β + ezKii
γ
)(

1 + exijβ
)(

1 + ezjiγ
)
×
(
1 + exi2β

)(
1 + ez2iγ

)
×, . . . ,×

(
1 + exiKi

β
)(

1 + ezKii
γ
)},

(A5)

and the denominator as

{[
PijPji

]
×
[
1− Pi2P2i

]
×, . . . ,×

[
1− PiKi

PKii

]}
+
{[

1− PijPji]×
[
Pi2P2i

]
×, . . . ,×

[
1− PiKi

PKii

]}
+

, . . . ,+
{[

1− PijPji]×
[
1− Pi2P2i

]
×, . . . ,×

[
PiKi

PKii

]}
={[(

exijβ

1 + exijβ

)(
ezjiγ

1 + ezjiγ

)]
×

[
1−

(
exi2β

1 + exi2β

)(
ez2iγ

1 + ez2iγ

)]
×, . . . ,×

[
1−

(
exiKi

β

1 + exiKi
β

)(
ezKii

γ

1 + ezKii
γ

)]}
+

{[
1−

(
exijβ

1 + exijβ

)(
ezjiγ

1 + ezjiγ

)]
×

[(
exi2β

1 + exi2β

)(
ez2iγ

1 + ez2iγ

)]
×, . . . ,×

[
1−

(
exiKi

β

1 + exiKi
β

)(
ezKii

γ

1 + ezKii
γ

)]}
+

, . . . ,+{[
1−

(
exijβ

1 + exijβ

)(
ezjiγ

1 + ezjiγ

)]
×

[
1−

(
exi2β

1 + exi2β

)(
ez2iγ

1 + ez2iγ

)]
×, . . . ,×

[(
exiKi

β

1 + exiKi
β

)(
ezKii

γ

1 + ezKii
γ

)]}
=

{[
exijβezjiγ(

1 + exijβ
)(

1 + ezjiγ
)]× [ 1 + exi2β + ez2iγ(

1 + exi2β
)(

1 + ez2iγ
)]×, . . . ,×[ 1 + exiKi

β + ezKii
γ(

1 + exiKi
β
)(

1 + ezKii
γ
)]}+
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{[
1 + exijβ + ezjiγ(

1 + exijβ
)(

1 + ezjiγ
)]× [ exi2βez2iγ(

1 + exi2β
)(

1 + ez2iγ
)]×, . . . ,×[ 1 + exiKi

β + ezKii
γ(

1 + exiKi
β
)(

1 + ezKii
γ
)]}+

, . . . ,+{[
1 + exijβ + ezjiγ(

1 + exijβ
)(

1 + ezjiγ
)]× [ 1 + exi2β + ez2iγ(

1 + exi2β
)(

1 + ez2iγ
)]×, . . . ,×[ exiKi

βezKii
γ(

1 + exiKi
β
)(

1 + ezKii
γ
)]} =

{
exijβezjiγ ×

(
1 + exi2β + ez2iγ

)
×, . . . ,×

(
1 + exiKi

β + ezKii
γ
)(

1 + exijβ
)(

1 + ezjiγ
)
×
(
1 + exi2β

)(
1 + ez2iγ

)
×, . . . ,×

(
1 + exiKi

β
)(

1 + ezKii
γ
)}+

{ (
1 + exijβezjiγ

)
× exi2βez2iγ×, . . . ,×

(
1 + exiKi

β + ezKii
γ
)(

1 + exijβ
)(

1 + ezjiγ
)
×
(
1 + exi2β

)(
1 + ez2iγ

)
×, . . . ,×

(
1 + exiKi

β
)(

1 + ezKii
γ
)}+

, . . . ,+{ (
1 + exijβ + ezjiγ

)
×
(
1 + exi2β + ez2iγ

)
×, . . . ,×exiKi

βezKii
γ(

1 + exijβ
)(

1 + ezjiγ
)
×
(
1 + exi2β

)(
1 + ez2iγ

)
×, . . . ,×

(
1 + exiKi

β
)(

1 + ezKii
γ
)}. (A6)

If we multiply the numerator, Eq. (A5), and denominator, Eq. (A6), by

(
1 + exijβ

)(
1 + ezjiγ

)
×
(
1 + exi2β

)(
1 + ez2iγ

)
×, . . . ,×

(
1 + exiKi

β
)(

1 + ezKii
γ
)(

1 + exijβ + ezjiγ
)
×
(
1 + exi2β + ez2iγ

)
×, . . . ,×

(
1 + exiKi

β + ezKii
γ
) ,

the conditional probability can be written as

exijβezjiγ

1+exijβ+ezjiγ

exijβezjiγ

1+exijβ+ezjiγ
+ exi2βez2iγ

1+exi2β+ez2iγ
+, . . . ,+ e

xiKi
β
e
zKii

γ

1+e
xiKi

β
+e

zKii
γ

=

exijβezjiγ

1+exijβ+ezjiγ∑Ki
k=1

exikβezkiγ

1+exikβ+ezkiγ

(A7)

where j ∈ Ki.
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Online Appendix B: Deriving the Odds Ratio for a Bivariate Logit

In Section 2.2 of the main text, when computing the joint outcome Poij as a function of the odds ratio, ψ, and

the marginal individual probabilities, Pij and Pji, I jump straight to the solution of the quadratic equation.

Here I present the intermediate steps that link the formula for computing the odds ratio, ψ, to the quadratic

equation in Poij . Recall that the odds ratio is defined as ψ =
Pr
(
Pij=1 | Pji=1

)
×Pr
(
Pij=0 | Pji=0

)
Pr
(
Pij=1 | Pji=0

)
×Pr
(
Pij=0 | Pji=1

) , and that

Poij = Pr
(
Pij = 1 | Pji = 1

)
= Pij × Pji.

ψ =
Pr
(
Pij = 1 | Pji = 1

)
× Pr

(
Pij = 0 | Pji = 0

)
Pr
(
Pij = 1 | Pji = 0

)
× Pr

(
Pij = 0 | Pji = 1

)
ψ =

Poij ×
(
1− Pij − Pji + Poij

)(
Pij − Poij

)
×
(
Pji − Poij

)
0 = Poij ×

(
1− Pij − Pji + Poij

)
− ψ ×

(
Pij − Poij

)
×
(
Pji − Poij

)
0 = Poij − Poij × Pij − Poij × Pji + P 2

oij − ψ ×
(
Pij × Pji − Poij × Pij − Poij × Pji + P 2

oij

)
0 = Poij − Poij ×

(
Pij + Pji

)
+ P 2

oij − ψ ×
[
Pij × Pji − Poij ×

(
Pij + Pji

)
+ P 2

oij

]
0 = Poij − Poij ×

(
Pij + Pji

)
+ P 2

oij − ψ × Pij × Pji + ψ × Poij ×
(
Pij + Pji

)
− ψ × P 2

oij

0 = P 2
oij − ψ × P

2
oij + Poij − Poij ×

(
Pij + Pji

)
+ ψ × Poij ×

(
Pij + Pji

)
− ψ × Pij × Pji

0 = (1− ψ)× P 2
oij +

[
1−

(
Pij + Pji

)
+ ψ ×

(
Pij + Pji

)]
× Poij − ψ × Pij × Pji

0 = (1− ψ)× P 2
oij +

[
1− (1− ψ)×

(
Pij + Pji

)]
× Poij − ψ × Pij × Pji

0 = a× P 2
oij + b× Poij + c. (B8)

The solution to the quadratic equation is

Poij =
(
− b+

√(
b2 − 4× a× c

))
/(2× a) (B9)

where a = 1− ψ, ψ 6= 1, b = 1−
(
1− ψ

)
×
(
Pij + Pji

)
, and c = −ψ × Pij × Pji.
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Online Appendix C: The Full Set of Monte Carlo Simulations

In Section 3 of the main text, I discuss only a subset of the Monte Carlo (MC) simulations that I conduct

to validate the new empirical estimator. I now briefly review the set-up of the simulations, and then present

the results from all MC experiments. In each MC experiment, 2,000 players choose whether they want to

cooperate with any, or none, of 5 potential partners. Similarly, each potential partner decides whether to

reject or accept a player were he willing to cooperate. Both the players and potential partners choose the

option that maximizes the utility accrued from that cooperation, or the lack thereof. Since there are two sets

of actors (i.e., the players (N ) and potential partners (K)), there are two distinct utility functions:

y∗ij = β1IV 1ij + β2IV 2ij + εij (C10)

y∗ji = γ1IV 1ji + γ2IV 3ji + εji (C11)

where i ∈ N , j ∈ K, β1 = 0.2, β2 = −0.6, γ1 = +/ − 0.8, γ2 = 0.4, and cov
(
εij , εji

)
= ρ. All three

independent variables have values randomly drawn from the standard logistic distribution, with a mean of

0 and variance of π2

3 . The error terms are randomly drawn from a cumulative logistic distribution with a

correlation coefficient of ρ.

One assumption of the MMIwPO model is that potential partners are substitutes not complements. In

practical terms this means that actor i can choose and be accepted by only one alternative from the choice set

Ki. Therefore, the dependent variable is coded one for the
(
y∗ij , y

∗
ji

)
dyad that maximizes the product of the

two latent variables, given that both individual probabilities equal one. Formally, the dependent variable,

yij , equals one if
((
y∗ij × y∗ji

)
= max

j∈Ki

{(
y∗i1 × y∗1i

)
, . . . ,

(
y∗iKi × y∗Kii

)}
|
(
yij = 1 | yji = 1

))
, zero

otherwise.

Overall, there are thirty MC experiments, which represent the combination between (i) five different

values for the disturbance correlation parameter (i.e., ρ successively takes the value of 0, 0.25, 0.5, 0.75,

and 1), (ii) two different values for the γ1 coefficient (+/ − 0.8), and (iii) three different estimators (CL,

MMIwPO, MMIwPO with Odds Ratio). For each of the thirty scenarios, I run 1,000 simulations.

I employ two indicators to discriminate between the competing estimators. First, I perform a likelihood-

ratio test to assess the goodness-of-fit between the CL and the two MMIwPO models. With no exception,
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Figure C1: The β1 Coefficient Bias
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(b) β1 is positive while γ1 is negative
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Note: Figure C1 illustrates the bias in the estimated β1 coefficient for three different models: Conditional Logit, Multilateral
Mediated Interaction with Partial Observability, and Multilateral Mediated Interaction with Partial Observability and Odds Ratio.
The left panels indicate scenarios where the common factor, IV 1, has a positive effect on both sets of actors, N and K. The right
panels indicate scenarios where IV 1 has a positive effect on the N actors, and a negative effect on the Ks. The estimates are based
on 1,000 MC simulations.

both MMIwPO and MMIwPO with Odds Ratio fit the simulated data significantly better in every MC exper-

iment. This test indicates that the increased complexity of the new Multilateral Mediated Interaction with

Partial Observability model is justified in terms of the significant improvement in fit.

Second, I contrast the three models in terms of their ability to minimize the coefficients’ bias. Fig-
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ure C1 illustrates the bias in the β1 coefficient for each of the three estimators across the player’s ranked

choice of potential partners, at five levels of correlation between disturbances. The coefficient bias is sim-

ply the difference between the estimated and the true value of that coefficient. The ranked choice captures

potential partners’ position on the player’s preference scale. For example, a value of one indicates that the

player was accepted by the partner that he ranks first. Higher values indicate that the player was rejected by

his preferred choice, and he had to settle for his second best alternative, or worse. The left panels indicate

scenarios where the common factor, IV 1, has a positive effect on both sets of actors, N and K. The right

panels indicate scenarios where IV 1 has a positive effect on the N actors, and a negative effect on the Ks.

Across all scenarios, the MMIwPO with Odds Ratio reports the least biased coefficients, with the

bias values straddling the zero line (Figure C1 Panel III). The next best performing model is the MMIwPO.

Since this model does not account for the interdependence between actors’ choices, it performs best when

the correlation is relativity low. As the disturbance correlation level increases, the estimated coefficients

become increasingly biased (Figure C1 Panel II). Lastly, the CL estimates are always biased regardless of

the disturbance correlation level. To make things worse, the direction of the β1 bias is determined by the sign

of the γ1 coefficient from the potential partners’ utility function. Recall that β1 is always positive. When γ1

is also positive, the estimated β1 coefficient is always bigger than its true value since it is artificially pulled

up by the positive effect that IV 1 has on the potential partners’ incentives (Figure C1a Panel I). When γ1

is negative, the CL’s β1 coefficient is always smaller than its true value since it is pulled down by IV 1’s

negative effect on the potential partners’ incentives (Figure C1b Panel I). In effect, the conditional logit

model reports a weighted average of the IV 1’s effect on all actors.

Figure C2 illustrates the β2 bias, the coefficient on IV 2, a variable that affects only players’ incen-

tives. Not surprisingly, the estimated coefficients are more consistent across all models. This indicates that,

in contrast to the β1 estimate, β2 is not directly affected by the fluctuation induced by shifting γ1’s sign.

Overall, the insights are similar to the ones from the β1 coefficient analysis. The MMIwPO with Odds Ratio

is the model that reports the least biased coefficients, followed by MMIwPO, and then the CL. For the last

two models, the estimated coefficients are increasingly biased as the correlation level increases.
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Figure C2: The β2 Coefficient Bias

(a) β1 and γ1 are both positive
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Panel III. Multilateral Mediated Interaction
with Partial Observability and Odds Ratio

(b) β1 is positive while γ1 is negative
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Panel II. Multilateral Mediated Interaction
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Panel III. Multilateral Mediated Interaction
with Partial Observability and Odds Ratio

Note: Figure C2 illustrates the bias in the estimated β2 coefficient for three different models: Conditional Logit, Multilateral
Mediated Interaction with Partial Observability, and Multilateral Mediated Interaction with Partial Observability and Odds Ratio.
The left panels indicate scenarios where the common factor, IV 1, has a positive effect on both sets of actors, N and K. The right
panels indicate scenarios where IV 1 has a positive effect on the N actors, and a negative effect on the Ks. The estimates are based
on 1,000 MC simulations.
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Figure C3: The γ1 Coefficient Bias

(a) β1 and γ1 are both positive
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Panel II. Multilateral Mediated Interaction
with Partial Observability and Odds Ratio

(b) β1 is positive while γ1 is negative
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Panel II. Multilateral Mediated Interaction
with Partial Observability and Odds Ratio

Note: Figure C3 illustrates the bias in the estimated γ1 coefficient for two models: Multilateral Mediated Interaction with Partial
Observability, and Multilateral Mediated Interaction with Partial Observability and Odds Ratio. The left panels indicate scenarios
where the common factor, IV 1, has a positive effect on both sets of actors, N and K. The right panels indicate scenarios where
IV 1 has a positive effect on the N actors, and a negative effect on the Ks. The estimates are based on 1,000 MC simulations.

Finally, Figure C3 and C4 illustrate the bias in the γ1 and γ2 coefficients, respectively. The first

thing to note is that there are no coefficient bias estimates for the CL model. As all univariate models, the

conditional logit reports only one set of coefficients, and, consequently, we cannot estimate the covariates’

effect on individual actors. This means that, when it comes to potential partners’ determinants, we can only

compare the MMIwPO and MMIwPO with Odds Ratio models. Figure C3 and C4 indicate that, while on

average both models perform fairly well, where actors’ decisions are interrelated, the MMIwPO with Odds

Ratio’s coefficients are less biased. In the next section, I discuss in greater detail the tradeoffs between using

one or the other version of the Multilateral Mediated Interaction with Partial Observability model.
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Figure C4: The γ2 Coefficient Bias

(a) β1 and γ1 are both positive
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(b) β1 is positive while γ1 is negative
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Panel II. Multilateral Mediated Interaction
with Partial Observability and Odds Ratio

Note: Figure C4 illustrates the bias in the estimated γ2 coefficient for two models: Multilateral Mediated Interaction with Partial
Observability, and Multilateral Mediated Interaction with Partial Observability and Odds Ratio. The left panels indicate scenarios
where the common factor, IV 1, has a positive effect on both sets of actors, N and K. The right panels indicate scenarios where
IV 1 has a positive effect on the N actors, and a negative effect on the Ks. The estimates are based on 1,000 MC simulations.

39



Online Appendix D: MMIwPO vs. MMIwPO with Odds Ratio Model

When choosing whether to employ the MMIwPO or the MMIwPO with Odds Ratio model, one ought to

consider both theoretical and practical matters. From a theoretical perspective, the relevant question is

whether the researcher has any priors or theoretical convictions with respect to the sequence in which actors

make their decisions. Generally, there are two alternative approaches to estimating multivariate models. One

approach assumes that actors’ choices occur sequentially and that the disturbances are uncorrelated (Abowd

& Farber 1982, Przeworski & Vreeland 2002). A second approach allows actors’ choices to (potentially)

occur simultaneously, in which case the disturbances are correlated (Poirier 1980). Thus, theoretically, one

should employ the MMIwPO when analyzing cases that correspond to the first scenario, and the MMIwPO

with Odds Ratio where cases fit the latter scenario.

If the researcher is agnostic with respect to actors’ sequence of moves, a safe approach is to first run

the MMIwPO with Odds Ratio. The nice feature of this model is that it allows one to empirically test the

disturbance interdependence assumption. If the odds ratio parameter is statistically insignificant, we can

employ the simple MMIwPO specification. If the estimate is statistically significant, though, one should

employ the more complex estimation procedure.

There are, however, a couple of practical problems associated with the MMIwPO with Odds Ratio.

One drawback is that this model specification has a lower convergence rate. In the MC experiments, the

MMIwPO has a 100% convergence rate. The overall convergence rate for the MMIwPO with Odds Ratio

model is still fairly high, but it varies across scenarios. Specifically, when the common independent variable

has a similar effect on the actors, the average convergence rate is 99.84% (min = 99.3% , when ρ = 1; max =

100%, when ρ = 0). Where IV 1 has different effects on the actors, the average convergence rate is 87.62%

(min = 82% , when ρ = 1; max = 93.9%, when ρ = 0). To some extent, these average convergence rates

may be overly optimistic. In the MC experiments there are only five potential partners, four covariates, and

the number of observations is capped at 10,000. A substantial increase in any of these parameters is likely

to lead to lower convergence rates.

The second cost of employing the MMIwPO with Odds Ratio model is the increased computational

time. Take, for example, the MC simulation with the highest number of observations, 9,075.1 When estimat-

1 The exact specifications of this MC iteration are: 1,815 players, five potential partners, four independent
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ing this scenario, the MMIwPO reached convergence in two seconds, while the MMIwPO with Odds Ratio

after fifty-three seconds. In fact, the computational time for the MMIwPO with Odds Ratio model increases

exponentially with the number of independent variables and that of available alternatives. Of course, the

more elaborate a model is, the higher the risk of not reaching convergence at all.

variables (three distinct), and a disturbance correlation level of one.
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