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Abstract
Grid computing and cloud systems are distributed systems which provide sub-

stantial widely-accessible services to resources. Quality of service is affected by

the issues around resource allocation, sharing, task execution and node failure.

The focus of this research is on task execution in distributed environments and the

effects of node failure on service provision. Most methods in the literature which

provide fault tolerance, use reactive techniques; these provide solutions to failure

only after its occurrence. In contrast, this research argues that using multi-agent

systems with self-organising capabilities can provide a proactive methodology

which can improve task execution in open, dynamic and distributed environ-

ments. We have modelled a system of autonomous agents with heterogeneous

resources and proposed a new delegation protocol for executing tasks within

their time constraints. This helps avoid the loss of tasks and to improve efficiency.

However, this method on its own is not sufficient in terms of task execution

throughput, especially in the presence of agent failure. Hence, we propose, a

self-organisation technique. This is represented in this research by two different

mechanisms for creating organisations of agents with a certain structure; we sug-

gest, in addition, the adoption of task delegation within the organisations. Adding

an organisation structure with agent roles to the network enables smoother per-

formance, increases task execution throughput and copes with agent failures. In

addition, we study the failure problem as it manifests within the organisations

and we suggest an improvement to the organisation structure which involves the

use of another protocol and adding a new role. An exploratory study of dynamic,

heterogeneous organisations of agents has also been conducted to understand the

formation of organisations in a dynamic environment where agents may fail and

new agents may join organisations. These conditions mean that new organisations

may evolve and existing organisations may change.
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Chapter 1

Introduction

1.1 Motivation

With recent developments in hardware and increases in the sophistication of

software, there has been a noticeable improvement in computational capacities

and in network performance [1]. Grid computing has been designed to provide

the same kinds of capabilities in the computing arena that power grids provide

in the electrical power supply arena – as explained by Ian Foster in [2].

However, one of the issues with grid computing is job scheduling and task

execution, because the resources in this environment are distributed across dif-

ferent locations and are diverse [3]. Also, in grid computing, higher demands are

made of the distributed environment: such as, a requirement for better response

times, reductions in other factors such as the traffic, and critically, having the

ability to deal with malfunctions on the network and to provide fault tolerance.

Therefore, and since such systems are often large and complex, resource sharing

and controlling fault tolerance have been of wide interest in academia particularly

enhancing resource utilization and task execution. Providing automatic failure

detection is critical and this is still considered to be an open problem [4].

Controlling failure in distributed systems provides for safe services and en-

ables work-flow to be maintained in an efficient way. However, within the dis-

1



1.2. Research Aim and Objectives

tributed environment, node failure is an unpredictable and spontaneous problem.

In this work, we provide methods for improving task execution and for dealing

with the kinds of failures which may occur at any time in distributed environ-

ments like in the grid computing environments. We have implemented various

scenarios in order to study and analyse system performance within various dif-

ferent parameter settings.

1.2 Research Aim and Objectives

The aims of this research are:

• To study how self-organisation as a process can help agents within the

distributed networks domain achieve better utilization of resources and

cope with agent failure.

• To investigate and study the disruption problems which may occur whilst

a system is in operation and going through its workload and we provide

reasonable solutions which recover and execute a larger proportion of the

customers’ tasks than would otherwise be executed - enhancing system

performances in distributed networks domains.

The thesis’ objectives are as follows:

• Model a dynamic and distributed system of nodes providing services as

a multi-agent system. This is to create an open multi-agent system as a

distributed network and provide its agents with heterogeneous types of

resources in order that they can execute tasks in response to customers’

requests, but without any central control on the agents’ behaviours. Agents

are connected with each other and create their own contact lists which they

will use for the heuristic algorithms which have been tested here. This

testing was to select an algorithm which can lead to the execution of large

numbers of tasks even in the presence of disruptions. Agents always work

2



1.2. Research Aim and Objectives

to increase their own utilisation values and, here, to have the capacity to

accept more than one task. Furthermore, customers may request, in each

cycle, various numbers of tasks, and an agent may receive more than one

request in each cycle.

• Explore and develop mechanisms for task delegation for the purpose of

increasing task execution throughput and the utilisation of agents’ re-

sources. Our objective in this objective is to provide a delegation protocol

which can work in a distributed environment to increase the task execution.

In network environments, even those using high performance computers,

searching the whole network for a particular resource so that a task can

be executed is infeasible. Therefore, we have focused on using the agents’

various different statuses when operating in the network, and have come

up with the idea that an agent who has received a task which does not

match its own resources, should delegate. In order to delegate a task, an

agent will use its partial knowledge of the other agents in the vicinity to

direct the message. So, tasks will be delegated depending on agents’ sta-

tus, without central control or any global knowledge concerning agents in

the network. Our objective here is to maintain, when failure/disruption is

present in the network, the system’s service level in regard to receiving and

executing tasks. Service maintainability is not easy to provide in distributed

environments with failure problems; reducing the effects of failure is our

main aim. Having simulated failure within the environment, we have then

constructed new methods to deal with this problem.

• Explore mechanisms for the creation of organisations of agents to im-

prove performance and utilisation. Self-organisation and emergence were

the main objectives. Various different models have been studied in order

to make sure that we have selected the best model to support our further

research. The objective was to ensure that the process of creating the or-

ganisations which emerge was effected without any central control. As a

result, we have self-organised entities that can group themselves together

3



1.2. Research Aim and Objectives

depending on their decisions/interests to maximize their utilisation at the

micro level. This leads to the maximization of their functionality and the

maximization of the usage of the emergent organisations at the macro level.

Furthermore, in grid computing, nodes are generally underutilized even

when their resources are being shared between different organisations [5].

Therefore, in our work, to simulate the agents’ various different abilities

and performances, the agents are designed so that they will join a number

of organisations depending on the size of the network; there is a maximum

number of organisations that one agent may join.

• Develop recovery mechanisms to deal with individual agent failure within

organisations. Agent organisations mechanisms can lead to improvements

in task execution throughput and to delegation within organisations. How-

ever, agents in organisations are still affected by failure. To increase task

execution throughput and to deal with the failure problem a recovery proto-

col is an essential part of any (and this, proposed) self-organisation process.

The characteristic of this protocol, here specifically, is that it facilitates an ad-

ditional role for inclusion in each created organisation. Hence, the structure

of the emergent organisations is enhanced by the creation and identification

of another role for its organisation Members. The Head of each organisation

will assign one (and only one) of its Members to be responsible for checking

on the availability of the Head. So, the advantage of using this recovery

protocol is that it allows for the ability to substitute the Head when the Head

has failed.

• Study the evolution of organisations in dynamic open environments. The

objective here is to study dynamic and open heterogeneous organisations

wherein agents may fail permanently. Agent failure will affect the organisa-

tions’ structures and stability since agents with specific roles may disappear,

and this will result in the organisations disbanding. Also new agents may

appear and this may lead to the emergence of new organisations. Hence, it

is essential to provide a protocol that can help to maintain the environment’s

utilization and functionality.

4



1.3. Summary of Work Undertaken

1.3 Summary of Work Undertaken

In distributed systems, tasks may need to traverse several nodes in the network

in order to find the resources that they need for execution. This will lead to some

tasks exceeding their allocated time constraints and thus failing. Another problem

which may prevent proper task execution is node failure. A failure problem

within a distributed environment is difficult to detect because such will occur in

one part of the system while other parts are still functioning correctly. Detecting

failure in files can easily be done by computing the checksum; however, issues

in a distributed environment are more difficult: e.g., the failure of an Internet

server [6]. We have deployed multi-agent systems as a mean to address failure in

a distributed environment and help to choose the proper mechanisms to enhance

the performance of the system.

The problem of network system failure has been mentioned in relation to

some of the most significant computational environments: cloud computing,

cluster computing and grid computing. The failure problem and how to recover

tasks being performed in distributed systems are the main targets of this present

work. The following issues are the challenges/problems that this research will try

to investigate and provide solutions for:

• How to create a network of nodes holding resources as a system of au-

tonomous agents, without a centralised controller, and enable such agents

to react to changes that occur within the system.

• What type of mechanisms can be applied to enable the agents to organise

and improve overall task execution throughput.

• What kind of protocols/mechanisms are needed to recover from failures

which may occur within organisations of agents.

• What kind of mechanisms are needed in order to recover the situation when

key agents fail.

5
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• What kind of mechanisms are needed to recover the created organisations

when agents are permanently failed in dynamic environment.

Our first step was to model a network of agents with heterogeneous types of

resources, simulating the situation that exists in distributed systems such as the

Internet. We decided to have agents represent the nodes in the network because

agents have a number of useful abilities such as autonomy, reactivity and pro-

activity [7]. These capabilities have been implemented within various kinds of

distributed environments and grid computing is one of these. Agents may exist

in various modes: busy executing tasks, or they may be not busy (idle) and

waiting to receive a task. One of the main challenges in open and distributed

systems is the occurrence of unpredictable events such as a disruption which

affects an individual agent’s performance and in consequence the overall system’s

performance. In relation to this, agents will hold various types of heterogeneous

resources in order to satisfy various types of tasks. We have provided a simplified

description for resources and resource matching in the network that has been

adopted in this work.

The second step was to have a customer agent which simulates the existence

of a number of customers all of which send multiple tasks to the network of

agents. Each task issued by a customer must be associated with heterogeneous

types of resources, a matching value and a deadline; in the network, these must be

matched with the agents’ resources. Customers want their tasks to be completed

within the specific time, and this reflects on the service level and the degree of

efficiency of the agent network.

Moreover, since we intended to investigate task execution within distributed

environments, an efficient search algorithm was vital for the purpose of delegating

messages from the receiving agent to another agent in the network and so on -

until the required task is executed by one of the available agents. In this work, we

investigated the efficiency of a random search strategy for this application. As it

turned out, random search was not found to be efficient for this task delegation

process. So we developed another search algorithm, called directed search, which
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is based on directing the message in the network using the agent’s status (busy,

not busy, failed) to direct the search around the network. In this algorithm, if

the receiving agent is unable to carry out a task, then it will delegate to its direct

neighbours. Hence, tasks will be executed depending on the receiving agents’

status or their neighbours’ status.

Our challenge was to produce an environment which can maintain the ex-

ecution of the customer tasks even with the existence of undetected disruption,

and which can recover tasks even when there are failed agents. In relation to this,

we have studied two important concepts: the emergence phenomenon and the

self-organisation technique. These concepts are applied to enhance the efficiency

of multi-agent networks when disruption occurs. Agents may take one of a num-

ber of different status, and our aim was to apply two mechanisms for the creation

of organisations of agents which form a virtual layer above an existent network of

agents. This strategy makes use of emergence in order to demonstrate a natural

means of creating organisations without any central control or human interven-

tion. In the self-organisation process, agents will be grouped together when some

triggering conditions are satisfied within the most busy agent – which is called the

Head of the organisation which will be created. Both heterogeneous organisations

and homogeneous organisation may be created. Furthermore, various different

roles emerge when agents become Members of organisations. The kind of partic-

ipation that an agent takes on will reflect its ability to accept tasks as well as its

ability to facilitate the maximum functionality of the emerged organisations. Our

work has shown that an environment which is equipped with a self-organisation

capability can execute more tasks and thus has enhanced system performance.

Even given the improvements that we have achieved by using emergent self-

organisations, the problem of failures inside the created organisation still affects

the performance of the system to some extent. Therefore, to boost the performance

of systems in the presence of disruption – especially that of the failure of created

organisations’ Heads – we decided to add another feature to our environments.

This was to give the other agents an important role in terms of recovering tasks

throughout the course of a disruption event. The Head agent sends a message
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to any newly joined agent, asking whether the latter can be a Henchman. This

Henchman role adds an important protocol to each emergent organisation, called

the Henchman Recovery Protocol. This protocol helps to maintain the functionality

of an organisation when the Head of the organisation fails.

Finally, we have created dynamic organisations, via our simulator, whereby

agents in the created organisations may suffer permanent agent failure. An agent

can be permanently offline throughout subsequent simulation cycles; this is for

demonstrating the case where permanent failure occurs. This will lead to the dis-

banding of existent organisations and/or the creation of new organisations (when

a new agent joins in). This enables us to explore the performance and stability

of the created organisations in the situation where we have agents malfunction-

ing and others appearing. The new agents may simply become part of existent

organisations or their presence may result in the emergence of new organisations.

1.4 Thesis Contribution

The main contribution of this work is to study, analyse and implement appropri-

ate solutions which will result in increases in the task execution throughput of

distributed environments in the presence of failure. The suggested solutions are

applied to the recovery of customers’ tasks in particular and to the maintenance of

system utilisation and functionality in these dynamic environments. A number of

protocols and mechanisms have been presented in this work, and a set of exper-

iments have been constructed and analysed in order to attempt to demonstrate

that our proposed algorithms are viable. The contributions of this work can be

summarised as follows:

• Presenting a framework for open and distributed multi-agent networks.

Modeling heterogeneous types of resources and creating scalable and dy-

namic environments is the first step in improving task execution throughput

in the presence of node/agent failure.

• Improving the task delegation protocol for use in heterogeneous net-
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works. This is mainly concerned with creating a distributed directed search

algorithm that can direct the customer messages within the network of

agents, depending on the agents’ status. The customer’s task will be as-

signed to an appropriate agent, depending on status.

• Providing a mechanism for creating organisations of agents. The self-

organisation process will be imposed by the environment and depends on

a trigger condition for the creation of organisations of agents. Two mecha-

nisms for creating organisations have been presented: one for heterogeneous

organisations and one for homogeneous organisations. In each mechanism,

an agent in the network may join a number of organizations, but each agent

can only be committed to a limited number of organizations, to reflect an

agent’s ability to participate in organisations, and this lead to the creation

of overlapping organisations. The Members of the created organizations can

execute the various different tasks received from the organizations they have

joined, in order to fulfil their commitments.

• Introducing roles for the agents within the created organisations. In this

work, agents’ roles are an important part of the self-organisation process.

The presence of roles means that structures can be established in each of

the created organisations and that a separation of the agents’ functionalities

can be identified. These roles ( Head, Members, Henchman) are used to

coordinate the work of the organisation in order to gain more benefit from

the formation of the organisations. The presence of these roles is key to the

solution of the problem of recovering more tasks when failure occurs within

organisations. The Head of an organization will send tasks to its Members,

and if any Members are subject to failure, this may partially affect the process

of task distribution. However, in each organisation there are heterogeneous

agents, so more than one agent with matching types of resources may be

available to accept the tasks.

• Henchman Recovery Protocol (HRP). We have been able to demonstrate

that the HRP is a remedy to the disruption problem. It is employed during

the self-organisation process; the Head of each organisation selects one of
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its Members as its Henchman. The purpose of the Henchman agent is to

maintain the functionality of the organisation and its effectiveness in case

of agent (specifically the Head agent) failure. An algorithm for checking the

Head′s availability is used by all the Henchmen in order to watch over each

organisation’s Head. Experimental work, here, has demonstrated that the

HRP is a reliable solution for a self-organised system.

• Deploying the HRP protocol to enables the agents to re-organise and deal

with permanent failure. Agents in the system are prone to permanent

failure throughout the simulation cycles, and once they have failed they

become unavailable to the organisations. Deploying HRP in such environ-

ments, where organisations’ structures are changing and as agents disappear

and new agents appear, is effective.

1.5 Thesis Structure

The structure of the rest of the thesis is as follows:

• Chapter Two: A survey of the literature concerning the area of interest;

this includes subjects such as multi-agents, agent organizations, resource

allocation, task recovery and agent failure in distributed environment do-

mains. The types of algorithms that have been used in the literature to solve

these problems, especially the self-organization methods and agent roles in

self-organization multi-agent systems are also discussed.

• Chapter Three: This chapter contains the detailed description of the problem

formalization. Here, the distributed environment, the multi-agent network

and the customer tasks are explained in detail. The format for messages

which will be sent from the customer to the network of agents is described,

also the format for messages which will be sent from agent to agent in the

network. Descriptions of the created organisations and the agent roles will

also be provided, and the chapter will end with some detailed descriptions
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concerning the simulator which has been used to simulate the proposed

environment.

• Chapter Four: The main concern in this chapter is the work involved with

building the simulator model and the following experiments. Examining

the use of agent busy/not busy status, the agents’ use of directed search and

random search is described in detail. This includes showing how the system

responds to executing tasks within simulation cycles. Also, the failure event

and its effect on the performance of agents is explained - to show how agents

can be affected by the failure problem.

• Chapter Five: In this chapter, we discuss the addition of roles to the agents,

and the setting of the triggering conditions for the self-organization process.

The implementation of two different mechanisms for creating organizations

of agents for executing tasks is explained. Comparisons between the two

suggested mechanisms are also presented in this chapter.

• Chapter Six: Organization-based recovery is suggested as a means to recover

customer tasks. The Henchman recovery protocol is described as a means to

support the system in relation to the problem of Head failure.

• Chapter Seven: Is a discussion of the open and dynamic agent organisa-

tions in the presence of the Henchman recovery protocol. In this chapter, an

exploratory study is undertaken regarding the deployment of HRP in orga-

nizations where agents are prone to permanent failure leading to changes

in organisations’ structures, where agents may disappear and new agents

appear.

• Chapter Eight: This concludes the work by indicating the strengths and

weaknesses of the approaches taken in the research. It then goes on to

identify further work that could usefully be undertaken.
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1.6 Publications

The list of publications related to this thesis are shown below:

1- Asia AL-Karkhi and Maria Fasli. Deploying self-organisation to improve task

execution in a multi-agent systems. Cybernetics (CYBCONF), 2017, 3rd IEEE

International Conference on. IEEE, 2017. This paper is relater to chapter 4 and 5.

2- Asia AL-Karkhi and Maria Fasli. Disruption Recovery within Agent Organi-

sations in Distributed Systems, ICAART, 2018, 10th International conference on

agents and artificial intelligent. Related to chapter 6.

3-Asia AL-Karkhi and Maria Fasli. Poster presentation, 2017 CSEE Joint Work-

shop with Industry, Public and Charitable Sector Friday 30 June 2017, Colchester

Campus.

4-Asia AL-Karkhi and Maria Fasli. Dealing with Permanent Agent Failure in

Dynamic Agents Organisations, under review at Web Intelligence conference

2018, related to chapter 7.
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Chapter 2

Literature Review

2.1 Overview

Here, we look at the existing research literature associated with several impor-

tant areas of this work: grid computing, node failure in distributed systems and

multi-agent systems. We have investigated these areas with a view to making use

of agents in order to solve the failure problem. Node Failure is one of many issues

that have been highlighted by experience with distributed computing systems

such as clusters, grid computing and the cloud. Self-organisation and emergence

techniques are topics that we have studied in particular so that we could sub-

sequently make proper use of them. Providing fault tolerance capabilities will

increase the reliability of grid computing because such enables the systems to

function in an enhanced in the presence of failure [4]. In order to study a self-

organised multi-agent system, it is necessary to produce an environment which

can deal with critical events that are quite specifically related to dynamic systems.

Understanding and conducting prior studies within this domain should help to

suggest techniques relevant to the main purpose of this research.
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2.2 Agents and Multi-agent Systems

Multi-agent systems (MAS) have emanated from the distributed artificial intel-

ligence field. An agent can be defined as a computer system with autonomous,

proactive, reactive capabilities to perform various types of actions to meet its

design objectives [8]. In addition, agents can work together with, or possibly

against, each other in order to undertake tasks , [9]. Furthermore, a multi-agent

systems (MAS) is a loosely coupled network involving a collection of software

components which work together in order to solve complex problems beyond the

capabilities and knowledge of the individual entities [10].

Many researchers have explain various characteristic about agents, in [7] the

author has shown set of properties that agents can have, an agent can communicate

either with human or with other agents to achieve tasks, human has no control

on agent’s behaviour (actions, internal states). Agents can act reactively i.e they

can preserve their environment and behave accordingly to any changes that may

occur i.e. they have the ability to adapt and modify their behaviour. Furthermore,

agents’ ability to act according to the changes in the environment is not the only

capability that they can demonstrate but also the ability to initiate an action for a

goal-directed behaviour to show the pro-activity property.

In software development, one of the most powerful tools for representing

complex systems is the concept of multi-agent systems. Modularity and abstrac-

tion are both considered to be characteristic of the multi-agent concept – in which

agents can be used to represent elements of large, complex, and unpredictable

systems such as air traffic control systems, manufacturing control systems, col-

lecting information from the web and commercial applications (e-commerce, e-

auctions) [11], [12].

Agents have been deployed within open environments in order to solve

complex problems in a range of areas that involve only individual agents would

not be applicable without a collective goal. Agents may hold a variety of different

resources, they may have different skills and expertise, and they may be capable
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of performing a variety of different tasks in order to maximise their resource

utilisation and improve overall system performance.

In [13] agents are entities that are holding resources and they can interact

with each other and have the decision to carry out tasks or not. Hence, agents are

rational and decision makers to resolve issues or accomplish tasks. For an agent

to make a decision there are number of factors that effect its decision such as the

type of the task, agent’s available resources, agent’s role and an agent’s historical

information about other agents in the environment such as type of messages,

an agent last action and last decisions. Hence, an agent micro level behaviour

represented by an agent decision will effect the macro level of the systems [14].

2.3 Agent Organisations

In general, an organisation is a group of autonomous agents that can work and

interact together to achieve specific goals/solutions, depending on system/society

requirements [9]. In structured organisations, the interaction between the agents

emerge from a set of negotiations that control the agents’ socialization [15], [16].

Many researchers argue that in a heterogeneous multi-agent system environ-

ment triggering an agent organisation process to reduce the complexity impact

resulting from having a large number of agents. Hence, this will demand for-

mal theories to help in the design of the organisational structures – the methods

whereby the agents interact, see [17]. Using organizations has been demonstrated

to provide reasonable solutions for many task allocation problems in distributed

environments. These solutions may be used to minimise resource allocation costs

and decrease unnecessary communication among agents when they are oper-

ational within the organization [18]. Using an open multi-agent system with

no predefined(static design) is the most effective option because the agents in a

distributed and dynamic environment may be designed by different people and

facing variety of events and traffic in order to satisfy disparate requirements.

Static design can help in applications that its goal design specific and cannot
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change within time.

Also, the organisations or communities created within networks may have

various properties – for example, overlapping and/or hierarchical structures -

and they may require special algorithms to be used in order to study them and

detect their presence [19], [20], [21]. Constructing organisations of autonomous

agents demands an organisational structure for the participating agents and a

specification for the agents’ operational processes. An organisation may dissolve

or change within a limited time and this depends on the events that occur in the

environment [22].

In [23], they propose a theoretical method for optimizing agents’ networks.

Their proposal was to minimise the number of agents who are chosen to be in

charge each organisation and to maximise the connections of these which are

necessary to achieve the necessary network coverage. They have investigated

and compared between a number of different network types. However, their

model has been tested only on a small number of organizations.

2.3.1 Self-Organisation and Emergence

Self-organisations and emergence are not new topics; both exist and indeed co-

exist in distributed environments. In [24] the authors shown that, emergence

phenomena have been defined in many studies as a comprehensive behaviour

(macro level) which grows from cooperation among local entities (micro level) of

the system, examples of such behaviours, outside the computing area, are to be

found in traffic jams, flocks of birds, and ants who leave trails of pheromones.

A self-organised system means a system which can change dynamically without

any external intervention whenever the surrounding circumstances demand it

[24]. An example of a self-organised system is an ad-hoc network that can freely

discover the accessibility of its members without a router. The main fields in which

self-organisation has been studied are computer science, physics and systems

theory [25].
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Although self-organisation is an attractive process in terms of dealing with

dynamic requests to a software system, it does not always have a positive effect

on the system which adopts it, as has been explained in [26], [25]. In our work,

we illustrate, in chapter 5, that one of the created organisation mechanism led

to negative effects on the network. Also, in [27] the researchers demonstrate the

effects of creating some greedy self-organized groups as on the network has been

presented using cyclic graphs.

In [28], the authors suggest a framework for a system which deploys rea-

soning capability in the agents. The framework provides semantic operations

based on logic performed by the agents themselves in order to make the decisions

instead of on installing explicit conditions within these agents. So, the agents

can make organisational decisions such as to join or not to join an organization,

to comply with an organisation or to leave an organisation, based on the role

requested by other agents. The meta-model of the suggested system supports

the idea of providing for obligations, roles and role enactment within the organi-

sations. Their system assumes organisations to be pre-existent and independent

from the agents, so the agents can decide freely to join or not to join. Part of

their system’s platform is implemented in Java and then this is integrated into

a Jason multi-agent platform. In our work, a self-organisation technique has

been utilized which demonstrates the beneficial outcome of neighbourhood ac-

tivities performed by individual agents in relation to the overall network: i.e.,

to increase task execution and thus enhance system performance. Subsequently

we designed approaches for the triggering of the creation of agent organisations.

This was an upgrade to the design which implemented roles for the agents in the

self-organization process and which represents a robust enhancement to the agent

networks. Agents have the option to join or not depending on their preferences

at the time of receiving the organisation Head’s message.

One of the most important capabilities of self-organised systems is that they

are highly adaptable. Such systems exhibit non-linear and complex behaviour.

Hence, they have been adapted to a large range of environmental circumstances.

Sometimes weak self-organisation systems are created, and this generally necessi-
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tates the creation of a centralized environment. However, a system that distributes

control all over its entities can be much stronger [25].

In [29], the authors have analysed and shown how the bio-inspired techniques

can be deployed to provide flexible, reliable and reconfigurable solutions. The

authors also explained that in nature, various complex tasks are accomplished in

an effective and straightforward manner; this provides us with powerful adaptive

techniques when we mimic them. One of the fields which involves bio-inspired

techniques is multi-agent systems to solve complex engineering problems. Swarm

intelligence can be seen in nature: e.g. in ant colonies, shoals of fish and flocks of

birds. Another adaptive technique which is taken from nature is self-organisation

itself. Both swarm behaviour and self-organisation are based on the individual

entities’ activities which emerge and then affect the operation of the whole group

of entities. Swarm intelligence has been used to solve many problems in industrial

fields such as the Turkish forecasting energy demand problem [30] and to solve

transportations problems, especially in relation to traffic congestion [31].

In [32], the author shows how it is possible to use an emulation of bee foraging

behaviour in grid computing to help the client to select dynamically the best

method by which to process and execute a particular chunk of data. A metaphor

of ant behaviour can be used for dynamic web page communities so that the web

pages which hold particular information about authors represent pheromones –

in Web terms – thus creating a foot trail. So, authors can collectively organise Web

pages into communities [33].

In [34], the authors have implemented an event processing system which

demonstrates a new method by which to implement recovery from failure based

on rollback. The status of each operator is saved via savepoints, instead of via

checkback points as were used in the original rollback algorithm [35]. When a

node fails, its predecessor holds a savepoint, in a savepoint tree, that has been

stored at a pre-specified time. This tree is created to save the operator states of

all the operators in the path closure of the predecessor. A heart beat signal from

a coordinator represents the method by which operator failure is detected, and

this is used to coordinate the savepoint tree and update it when necessary. The
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proposed algorithms resulted in high overheads because of the need to update

the savepoint tree whenever necessary. Also, their method would have to be en-

hanced in order to use it in a distributed manner because a coordinator needs to

be implemented for each operator in order to detect failure and control and stabi-

lize operator topology and recovery from failure. The introduction of leadership

and group membership is necessary in order to solve this problem [36]. In our

work, the Head, the created organizations, and the Henchman recovery protocol

constitute a viable method for implementing their system, but in a distributed

manner – as we have demonstrated in this thesis.

In [37], the author has shown the effect of peer influence on activity driven

networks using graph theory. In their model, each node is assigned a probability of

becoming active and then the active nodes can promote their neighbours which

are less active - and encourage them to become active. This will increase the

probability of the neighbours becoming active, leading to the formation of a web

of community structure. The limitation of their work is that the less active nodes

may still receive messages even when they have started to become active and part

of the community. This is in contrast to our work where, especially as described

in chapter 4, and 5, the network is created by inserting agents into the context one

after the other. After creating the network, peer influence is created by applying

a triggering condition which is related to the context’s demands: i.e., the busiest

agent in the system needs some help from other agents and this will lead to the

sending of message by the busy agent to its neighbours. Thus, the less busy agents

will start taking part in the community or created organizations. We believe that

our system corresponds to real-world networking situations.

In [38], the authors propose a self-organised resource allocation scheme based

on Decentralised Distributed Virtual Environment (DDVE). The scheme func-

tions independently from the underlining P2P network. The authors presented

a scheme, based on using gossip protocol, which identify the users’ critical zone.

They took advantage of the presence of heterogeneous peers (clients). So, by

using some information provided locally the loaded zones will be identified and

the zones with less load will be the target to create the virtual peers to reduce
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the load on the other regions. In our work, the algorithm used by the Head to

create an organisation is based on the gossip protocol and will search for other

agents which could potentially join the Head′s organisation, taking note of their

(the other agents’) busy/ not busy statuses.

Other researchers have used agent organisations in distributed environments

in order to enhance the performance of such systems. In [39], the author imple-

mented a simulation model for exploring recommendations regarding the con-

nection of a networked system of heterogeneous service supplier and purchaser

agents in an electronic market. They introduced an agent-based model for recom-

mendations as well as decisions, using the principle of homophilic neighbourhood

choice. They implemented methods for selecting peers based on agent similarity

and demonstrated the ability of such a set-up to self-organise an overlay system.

Their work sheds some light on agents’ capabilities in terms of decision making

and the agents’ knowledge concerning connected peers, gained via the network

evolution process. In our work, a self-organisation technique has been utilized

to demonstrate the beneficial outcome of neighbourhood activities, performed by

the individual agents, to the overall network – to expand the task execution and

hence to enhance the system’s performance. In addition, we have created rules

for triggering the emergence of agent organisations. These rules provide roles

for the agents in the self-organization process which thus introduces a robust

enhancement scheme to the agents’ network.

2.3.2 Role in Organisations

The role concept is an important element within these self-organizations because

it shows that agents are capable of abstract behaviour. The agents have to satisfy

the specified constraints (skills, requirements, obligations) in order to obtain a

role and accrue the benefits that an agent can expect to receive in playing that role

and undertaking the duties related to it [9]. Creating organizations of agents and

applying roles to its Members in order to improve their ability to work as societies

has been the aim for many researchers [40], [41]. In relation to [42], wherein agents
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are made to work in a large and complex system environment, giving a role to

the agents may be a better solution for them. A role adds the capability for the

agents to overcome issues like event or process interruption and at the same time,

to gain the opportunity to maximise their own interests.

Also, in [43] the researchers have shown the importance of collections of

roles and the connections between each other which decide the behaviour of the

multi-agents in the created organisation.

In [44] the researchers proposed a method called trust-based role coordination

for task oriented multi-agent systems; they claimed that sometimes heterogeneous

agents have various statuses in relation to which they may be unable to receive

or accomplish tasks, so processes which achieve delegation should be carried

out. They developed a mechanism that enhances the decision-making process

for partner selection in relation to orienting tasks. They built a role taxonomy in

which it is determined which set of agents are able to execute which specific kinds

of tasks. This taxonomy allows for the determining of which labelled agents are

suitable for which roles. However, agents do not always follow their assigned

roles especially in dynamic and distributed environment where agents may leave

at any time and other agents may join in. In our homogeneous organisation, the

organisations created emerge based on the ability of agents to group together

to solve tasks with specific required accuracies; however this model was not

as effective as the other model which we have developed where agents form

organisations based on heterogeneity.

2.4 Grid Computing

Grid computing is an important case study in relation to this research. We have

found a number of different problems and challenges which are implied by the use

of grid computing. Researchers in academia have presented a number of solutions

for various issues relating to distributed environments: such as fault tolerance,

resource sharing, and resource allocation. Grid computing is considered to be
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a distributed system; it has been defined in [4]as follows:“Grid is a collection of

distributed computing resources available over a local or wide area network that

appears to an end user or application as one large virtual computing system”.

In distributed systems, availability means the network is in operational mode

and reliability means providing a system that does not lose tasks; both of these

concepts must be dealt with for grid computing to be viable.

The main goal of creating a grid computing system is to be able to provide

services and to share heterogeneous computing resources as fast as possible, in

the same way that power is shared across an electric power grid; this has been

discussed by Ian Foster in [2].

Issues such as resource advertisement, resource allocation, task execution

and fault tolerance have been addressed and yet more challenges are coming to

light. However, grid computing has developed a-pace. Primary grid computing

systems are considered to be a kind of service oriented architecture (SOA). Such

a system will have its own scheduling strategy and resource allocation methods.

The current grid computing architecture is called “open service oriented architec-

ture”, [2]; this architecture has been implemented to supply resource allocation

and scheduling mechanisms, using web services [45].

In many organisations and institutions, it has been found that the computa-

tional resources available are underutilized and also that the servers which exist

in such organisations tend to suffer the same issue of poor utilization. Grid com-

puting can effectively enhance the utilization of such underutilized resources,

since it focuses on sharing geographically distributed resources via administra-

tive domains; it creates virtual dynamic organisations and shares these resources

between organisations [46], [5].

2.4.1 Fault Tolerance in Distributed Computing Environments

Fault tolerance is a capability that should be developed into a system: it will allow

the distributed domains to continue functioning even in the presence of failure.
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Failure means a system is behaving in a different way from that which it supposed

to, and system errors or faults are considered the causes of system failure [4].

The probability of failure events, such as nodes failure and/or communication

loss, is higher than in other, more conventional, distributed environments due to

grid computing heterogeneous nature and complexity [47]. This can affect the

type, quality, availability and reliability of grid services: the users may not be able

to trust the service level of grid computing systems.

In the literature, researchers have developed new methods and theories in

regard to this issue. In general the methods relating to fault tolerance can be

divided into two types: pro-active and post-active as explained in [5], [4], [48],

[49]. Where, a pro-active method is one which detects and measures the level of

failure before scheduling tasks onto grid nods while a post-active evaluates the

situation after scheduling tasks onto a failed grid node; most of the research is

concerned with the second kind of method as the first kind is more difficult. In

our study, we have implemented models that use a self-organisation technique

to manage and help the system cope in the event of agent failure. The set-up

of the implemented system depend on the most busy agent to trigger the self-

organisation process: from this, the organisations emerge. This procedure allows

the customer tasks to have a better chance of execution even in the case of failure,

due to the heterogeneous type of agents which exist in the organisations. So, even

if failed agents are present, other agents may be able to accept and execute the

tasks.

Fault detection strategies mainly adhere to either the pull model or the push

model [50], [51]. That work also recommends the proactive method and proposes

a framework for failure for use in grids using autonomous agents. The agents are

proactive and they also save information about grid components; hence, based

on this information, the agents can work on improving the reliability and per-

formance of the grid. The limitation to this is that they did not include failures

such as network failure, response failure, node failure, etc. They only considered

operating system and application failure. We think that our work is more generic

even-though it operates within the application layer; we hope that we can inte-
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grate it as a service in the grid middle-ware; this will be our next step (future

work).

In the pull model [50] and [52], all the grid entities send periodic signals to the

fault detector, if one of them has not sent a signal within a specific period, then the

detector will activate a fault tolerance mechanism. In the push model, the detector

is the one that sends a signal to the grid entities and detects failure. Hence, when

a failure occurs in the environment and cannot be averted, the problem recovery

methods then come to the fore. Agent failure detection – we investigated methods

for detecting agent failure; most of them use heartbeat messages in order to check

for the occurrence of failure: the push model, the pull model, the use of neural

networks, and probabilistic methods - all these methods may require differing

types of solutions to suit the target system.

A more recent study of agent failure in distributed MAS is [53]. There the

author has addressed agent failure in situations where disaster repeatedly occurs.

Consecutive or simultaneous agent failures may occur in the future as a result of

the disaster event. A comparison between repair task allocation algorithms which

are centralised, centralised resource allocation with repair, distributed resource

allocation, distribution with repair after agent failure, and a MAS unit solution,

were all looked at in order to find a viable method for decreasing the number

of failed agents in a system experiencing such a critical situation. The author

demonstrated the simulation of the failure of hundreds of agents, and the running

of the server simulation scenario for 1000 cycles.

2.4.2 Task Recovery in Distributed Domains

Nodes in distributed systems can suffer from unexpected failure, and this means

the loss of tasks and a decrease in the agents’ utilization in the environment.

Hence, to ensure robust performance, the ability of the system to self-organize is

not only desirable but essential.

In the literature, the aim in regard to designing peer to peer networks is
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to apply fair and sensible allocation of the spare resources using a number of

different resource allocation methods. However, the existence of disruption and

the obstacles which are sometimes associated with data transmission, such as

machines offline and high user activities, may lead to severe reduction in the

correct utilization of the resources [54].

The solutions for the problems caused by faults, in terms of grid computing,

are fault tolerance, recovery, and removal. The main fault tolerance techniques

which have been used in cluster systems and grid computing are checking points,

message logging, replication and retry [55].

In a grid system like Globus, the fault detection technique which is applied

in order to detect networking and the host/server failure is the heartbeat; the

tolerance consists of the fact that a failed job can be resubmitted. The disadvantage

of this method is that it is unable to solve errors caused by user exceptions [56].

In many studies, multi-agent systems have borrowed and applied recovery

protocols from other domains. Roll-back recovery protocols are a kind of re-

covery method which has been applied to control disruption in another kind of

distributed environment: i.e., client server, world-wide web, peer-to-peer net-

works and mobile ad-hoc network - when resources are limited, when there is

limited access to certain types of resources or there is only (as is more likely) in-

direct access to such resources. Roll-back recovery protocols have been deployed

in various different distributed environments, as in [35]. Those authors present

a survey which helps to distinguish between different types of roll-back recov-

ery protocols and then compare their performance. The first one looked at is the

checkpoint based protocol, which is based on choosing a checkpoint and restoring

the system to that point in the case of failure. The second one is the log based

protocol, which is a combination of the checkpoint protocol and the use of log-in

information. These protocols deal with nodes in a network as groups of pro-

cesses that communicate between each other. These interactive processes access a

storage appliance periodically in order to save recovery information - which will

be at minimum checkpoint states for those processes passing messages to each

other. This information can then be used when the nodes return to active mode
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after the disruption has been processed. However, the processes might have only

out-of-date information to work on after being returning to the checkpoint state,

and may end up working on something which may no longer be required by the

system.

In [57], the amount of information that needs to be saved for the checkpoints

is large; the system must be kept updated to keep the agents up-to-date with

the states pertaining to the system prior to any failure. The authors argued that

their work provides a promising solution to the problem of failure in distributed

agent environments. The multi-agents were designed as being Believe Desire

Intention (BDI) agent oriented. In these authors’ work, a single and multiple,

but non neighbour agent crash or failure could be handled by the agents. They

also claimed that they solved both failure causes using a distributed logical clock

to update the agent’s beliefs; the agents do not depend only on their own clock.

To compare between messages and update the beliefs about the system held by

the the agent in the recovery process, the time-stamp technique was applied. In

our work, which uses an object-oriented design, we have implement the issues of

neighbour agent and non-neighbour agent crashes, via a given probability value

of failure. We have also implement dynamic message exchange between agents.

Neither of these latter issues were addressed in [57].

In [58], it is shown that forming an organisation is with the aim of achieving

either emerged or designed purposes. In their work, they showed that agents

could depend on their stored values to self-organise. The first advantage of this

is to give the agents more mobility to self-organise on their own account. The

second advantage is to make the self-organisation process realistic in relation to

the changes in the environment as represented by the agent’s stored values. In our

work, however, the idea is to maximize the utilization of the created organisations,

as well as that of the individual Members of the organisations, as this will increase

the performance of the organisations and their ability to satisfy the tasks requested

by the customer side.

The researchers in [59], present a dynamic system recovery process, based

on agents, for a distributed database system. In their work, agents are used to
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buffer the initial information during the recovery stage and then they replay it.

The authors have compared their work to the basic message-log protocol, see [35]

and they argue that their new method generates less of an overhead and performs

more efficiently. However, there is still a need for the buffered information held

on the databases to be synchronised.

Other researchers have addressed the same issue of agents catching up after

downtime: “Zero-delay Recovery of Agents in Production”, as it is termed in [60].

In their work, they target the multi-agent systems paradigm, but without using

emerged organisations, and their proposed framework is called “Mozart Spaces”.

It is based on a Linda-like paradigm, [61], which is used to solve the failing agents’

problem by which agents are unable to catch up with the requirements of their

environment. However, their method is based on using a shared memory space

to store up-to-date state information – to be accessed by all agents. This could

crash, and it also means that their system needs a high-capacity storage device or

a relatively small number of agents. This is in contrast to our proposal, wherein

agents are autonomous and are implemented with an ability to check themselves

in regard to the last state, after downtime. They try to resume their tasks if the

task deadlines has not been reached. It is by this means that our work attempts

to provide a mechanism for solving the disruption in agent organisation systems.

This is not the case in [62], wherein the authors proposed a method to de-

tect and identify malicious SMS messages sent to android devices. Using JADE

agents, the multi-agents interacted with each other to watch and gather the exis-

tent technical features. Hence, they created a user profile on the mobile devices

and transmitted this to the server so that It could analyse and detect any mali-

cious behaviour. The authors’ idea was mainly to find a correlation between the

reported user profile created on the device and the malicious SMS. In our work,

however, the self-created organisations will be able to detect disruption on their

own and adopt a recovery process when required.

The authors in [49], have implemented a resource allocation scheme which

takes into account the existence of the random failure problem. They have claimed

that their methods can be applied to automatic target discrimination systems or to
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observe the vital signs of medical patients. The system provides a static allocation

for a batch of tasks in a heterogeneous environment. Tasks are assigned to com-

puting resources after these complete previous tasks or recover from failure. They

implemented five different methods and the most efficient one was found to be

a match-making method based on the Derm-Lieberman-Ross theorem [63]. They

claimed that the methods they derived improved and maximized the cumulative

rewards received from the tasks finished before their deadlines.

Other researchers who have studied the failure problem in networks deploy-

ing agents are [64]. In their work they tried to find out which of their agent

algorithms was a fit with which of the various different topologies of complex

and distributed networks – such as small world, scale free networks and lattice

networks – all with different rates of agent failure. They also suggested an algo-

rithm for studying the effect of agent failure on the exploration process whereby

agents search the network to collect and synchronize data. The suggested method

was to collect data using an ant-colony based algorithm, and they demonstrated

in the experimental work how this algorithm works better than the random walk

algorithm for some topologies of networks. The random walk works well in scale

free networks.

2.5 Research Problem and Challenges

Grid computing is a distributed computing environment which will keep provid-

ing challenges to researchers. New techniques and enhancements are constantly

being added to grid computing, and this means that solutions are needed in

order to allow the environment to cope with the issues arising. We focus on

providing pro-active solutions to the task recovery problem by deploying self-

organised agents in organisations. Most of the existing methods in the literature

are post-active or, as they are often termed, reactive solutions [5].

Applying solutions which attempt to cope with the problem before its oc-

currence is more challenging, but also more productive. Agents and multi-agent
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systems can host algorithms for fault tolerance which can be enhanced and then

deployed to grid computing environments. We found a great deal of work in

literature that looks at self-organisation and most of these studies use the bio-

inspired method because these have demonstrated reliable performance [29]. In

this work we wanted to provide some interesting heuristic methods and mecha-

nisms for the environment in which this research problem presents itself. Mainly,

this consisted of creating a trigger condition that could emerge from the individual

agent’s behaviour and which triggers the self-organisation process – represented

by the creation of organisations. Further, combining the emergence phenom-

ena and the self-organisation capability have attracted many researchers such as

in [26]; the latter attempted to develop a system which exhibits group behaviour

which emerges from individual agent behaviour. This agent behaviour was com-

bined with an ability of the individual agents to change dynamically without any

external intervention whenever the surrounding circumstances demanded, as ex-

plained in [24]. However, effectively combining the two (emergent behaviour and

self-organisation) is not an easy task because this could lead to negative emer-

gences that may affect the whole system’s performance [26]. In our work, as we

address in the following chapters, we adapt the methodology in order to create

organisations of agents to maintain the system services using heuristic techniques.

Agent roles can play a significant part in the self-organisation process inside the

created organisation. The presence of roles implies the specification of constraints

like skills and requirements that an agent should encompass in order to obtain

a role and accrue the benefits that an agent can expect to receive in playing that

role and undertaking the duties related to it [9]. However, agents do not always

follow their assigned roles, especially in dynamic and distributed environments

where agents may leave at any time and other agents may join; such issues need

to be tackled.
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Chapter 3

The Problem Formalization

3.1 Introduction

This chapter provides the formalization of the problem which has been studied

in this research and includes descriptions of our environment’s entities: namely,

agents, organisations and roles. Notwithstanding this, the formalization of the

problem will be the main focus of this chapter. In particular, here we will con-

centrate on the task execution and recovery problem inherent in prone-to-failure,

distributed, scalable and dynamic systems. We have seen that including dummy

nodes in a network is not sufficient to detect or solve the problem of agent fail-

ure [65], [66], [67]. Instead, it has been discovered that adding distributed adaptive

agents provides the network with the necessary autonomous/proactive/reactive

elements for this purpose [68], [69].

Networks of agents can be used to model actual networks with heterogeneous

types of resources: e.g., the Internet, the cloud and grid computing networks.

In addition, agents hold various different kinds of resources and can perform

various different tasks, accordingly, in order to maximize their resource utilization.

Furthermore, a self-organization capability can be one of the most empowering

abilities that groups of agents can be endowed with.

Simulators for agent-based modeling and also dynamic network analysis
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software have been widely used to study the kind of complex, adaptive and

non-linear systems which we are dealing with here, see [70].

3.2 Problem Description

Disruption is a problem that almost all distributed, scalable and dynamic systems

face. In this work, we study dynamic and open systems (agents may enter or

leave at any time). With these systems, unexpected failure is a problem which

leads to lost tasks and delayed task delivery (to the customer) and which affects

the network performance. This problem has been modeled in this research using

heterogeneous entities/agents with decision making capabilities. Agents can de-

cide to carry out tasks or not depend on number of constraints. The environment

generates random failure events that effect the agents performance.

This research focuses on how to use distributed multi-agent systems to solve

the customer tasks recovery problem through deploying new self-organisation

mechanisms to avoid bottlenecks/failure and guide the agent’s individual be-

haviour (at the local level) as well as the system behaviour overall. We envisage

that the proposed solutions, will lead to better, more effective and efficient util-

isation of agents’ resources and increase the throughput of the system. Thus, a

solution to the disruption problem, using self-organisation (i.e. agents with the

ability to self-organize into aggregations), is suggested.

We study how an agent can perform a number of different roles in the course

of the self-organisation process. Furthermore, creating new roles for the agents,

via the self-organization process, results in agents which act more appropriately in

response to failure, and this is important in relation to the failure of a Head. In this

research, we assign agents roles in order to enable self-organisation – we study the

effect of the agents’ roles on each other and on the types of relationships which

may occur. The questions we are seeking to answer is how can the process of

adding these roles help the process of recovering tasks i.e. increase task execution
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and control disruption in the network of agents. After that, decide which of

the suggested self-organisations mechanisms is better in terms of task execution.

Furthermore, we look at repairing these aggregations/organizations when things

go wrong. Finally, agent failure can be permanent and this will change the

emerged organisations structure.

3.3 Environment Formalization

The environment used in this work consists mainly of two components: the

customer agent that sends customers’ tasks and the network of agents which

receives these. Agents are added to the environment one after the other. Each

node can have N connections to other nodes – where N ≥ 1. The agents are

connected by bidirectional links. Each agent may have a different resource set

from other agents, and this makes the network heterogeneous and distributed.

This network, like any network in the real world, involves the possibility that

some of its agents may become inactive, or active but busy executing tasks – i.e.,

unavailable for a period of time. Agents exchange their resources with each other

in order to obtain (partial) knowledge of their surrounding environment. The

abstract functions can be seen in Figure 3.1 and a simple agent structure is shown

in Figure 3.2.

Each agent has an identification (a name) by which it can be identified across

the open, distributed environment and which can be used for further processes,

such as exchanging its name with other agents so that agents can gain partial

knowledge of their surrounding environment. Also the agents are connected

together in a network, and the type of connection is bidirectional, as explained

below:

• The system: is a tuple, < A, L >, where A = { a1, a2, a3,......, an } is a finite set

of agents and L is a set of links, and where each link { ai, a j } ∈ L indicates

the bidirectional connection between agents ai and a j.

• Each agent is linked to N (number of neighbour) agents, and can sustain
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Figure 3.1: Abstract View of an Agent

Figure 3.2: A simple View of an Agent Structure

a maximum number of connections, which may be different from agent to

agent. An agent has a set of capabilities depending on its role in the system.
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3.3.1 Agent Model Formalisation

An agent is an active entity that can communicate with other entities and form

groups with them. An agent will have role/roles in the groups which are formed

and may join a number of different groups simultaneously. There are no restric-

tions on the architecture of an agent: agents can be designed to have properties

such as re-active, proactive, cognitive, mobile and others [71].

An agent should be able to provide services to other entities in the system and

its services should be made accessible via the use of the agent’s identification [9].

An agent can store information about its connections with its neighbours

and/or about the tasks it has accepted – in terms of time and resources. The

descriptions of the elements that are defined in each agent are as follows:

ai ={ aID, Role i, N, Resource i, TID, CL, BA, BT, PS, ST, ATQ}where:

• aID: is an agent identifier which is used when agents send messages to each

other.

• Role i: specifies agent roles; each agent will have its default role as a service

provider when the environment first becomes active. After the organisations

emerge, various roles can be held by the agents in the various organisations,

an agent’s role can be defined as a tuple Role=<R1, R2, R3, R4 >.

• N: is the maximum number of connections for agent ai where N≥ 1.

• Resource i: each agent has a number of different types of resources. The

resources are represented by a resource tuple Resourcei <r1, r2, r3>: is the

resource descriptor; the resource is specified via three elements, and these

are used to encode a range of resources. Each element consists of a value

between [0, 4].

• TID: is the task received from the customer to be executed by the service

provider agent; this will be described in more detail in the next section.

• CL: refers to the Contact List which is a list of an agent’s neighbours’ names
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and resources – stored as < Neighbour ID, Neighbour Resources >, where

the first parameter is the neighbour’s identifier and the second parameter is

the neighbour’s resources.

• BA: Busy Agent is a Boolean value used to change the agent’s status from

one state to another. If its value is set to true, this means that the agent is

currently actively executing a task, while if its value is set to false, this means

that the agent is in an idle state, waiting to receive a task and execute it.

• BT: Busy Time is the number of cycles an agent will need in order to finish

executing its current task. This value is dependent on the deadline that will

be sent with each task. This situation will be described in detail later.

• PS: Probability of Failure, we have created an agent failure property which

uses probability values to simulate the occurrence of failure in real-life net-

works.

• ST: Shut-down Time, agents are set as offline for a period of time to create the

impression in the network that these agents are unable to accept messages

or execute tasks for this period. This we describe in chapters 4, 5, and 6,

while in chapter 7 we show what happens when the ST variable is removed

in order to simulate the situation where the agents fail permanently.

• ATQ: Accepted Task Queue, each agent has queue to hold the accepted

task(s) with their deadline restrictions.

3.3.2 The Customer Agent and the Task Description

The customer agent is an entity whose role it is to send tasks to the agent network.

The customer agent will send its tasks to the network throughout the course of the

simulation cycles. The tasks will be sent via a type of message called a customer

message, CM, which contains the following elements:

CM = {CID, TID, RV, TTL, TD, RA }

Where:
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• CID: Customer ID is a unique identification number which is given to each

customer and used by the service provider agents. They use it to return the

response concerning the task’s status – e.g., pending (in the agent accepted

task queue), executed or failed – to the appropriate customer.

• TID: Task ID is a unique identification number given to each task; each

customer can send various numbers of tasks M Tasks in each cycle.

• RV: Resource Vector represents a sequence of resources, RV = < r1, r2, r3 >;

these are requested variously by each task.

• TTL: Time to Live is the number of hops which the customer message can

use to traverse through the network of agents.

• TD: Task Deadline is the deadline which represents the duration of execution

allowed after an agent satisfies the required resources accuracy RA.

• RA: Required Accuracy represents the required accuracy in terms of match-

ing the customer-required resources with the agent’s resources; its value

ranges between (0− 12) and is pre-agreed between the customer and the

agents.

3.4 The Structure of Organisations

The term organisation in the context of multi-agent systems has been defined by

many researchers one of them is in [72]: “an organisation as a collection of roles,

that stand in certain relationships to one another, and that take part in systematic

institutionalised patterns of interactions with other roles”.

Predicting the behaviour of the overall system is a difficult task because of

the possibility of an unexpected behaviour emerging [9]. In our work, creating

an organisation means formalizing a group of agents with roles so that the ability

of a system to cope with malfunctions is enhanced. The purpose, here, of an

organisation of agents is to increase the number of tasks that can be executed

(under conditions of failure) and minimize the time required for accepting and
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executing tasks. This means that an agent that can satisfy the requested task

requirements should be found within a single hop or in a minimal number of hops.

Further, the system may contain more than one organisation and organizations

may overlap.

The organisations can be defined as follow:

Org = {Org1,..., Orgq}, where Orgp with 1 ≤ p ≥ q, is the pth organisation in the

system, hence, the elements in each organisation is represented by:

Orgp = < OrgIDp, OrgHp, {a1,...ano}, HMp, Zp >, where 1≤ no ≤ Zp.

• OrgIDp: a unique identifier for each organisation created.

• OrgHp: is the name of the Head of an organisation.

• {a1,...ano}: the participants in the organisation at a specific time.

• HMp: is the Henchman′s (follower’s) name for each organisation created.

• Zp: is the maximum size of each organisation.

Any agent, ai, in the network can be a Member in a number of organisations.

The emerged organisations are intended to fulfil all the recovery requirements

with minimum overhead. An agent with or without an organisation can ask for

help from another agent or refuse to perform a task. Also, an agent can leave an

organisation or a new agent can join in. Furthermore, if an organisation becomes

ineffective/inefficient, then it needs to be re-organised; alternatively the agents’

connections need to be reconsidered.

3.4.1 Agents Role Description

The idea of agents taking up roles is an important concept which we have explored

in this research; a specific set of roles has been used for this research. An agent

role can be defined as an agent behaviour that can affect, enhance and/or change
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a system’s structure. Typically a role will posit expectations, skills and duties

and hence an agent which takes on a particular role must be able satisfy these

requirements [9]. The taking-on of roles by the agents in a network is an essential

part of the self-organisation process used in our proposed solution to the task

recovery problem. Each agent ai, at any one time, has a number of roles R i.

• R i is defined as a set of roles, < R1, R2, R3, R4 >

• An agent ai can assume a role in relation to at least one other agent, which

can be an individual or an organisation.

• The roles an agent may take on within an organisation are {Member, Henchman,

Head}, each agent may have one of these roles or more than one, depending

on a set of conditions.

• If ai has a role it may accept consequential role(s), this means that an agent

that is a Member in an organisation later on may accept the Head′s message

to be the organisation’s Henchman agent.

• If Orgp and Orgq are two created organisations, then ai can belong to both

of them. In turn, any two or more organisations in the network can share a

number of Members, so an agent can have different or the same Roles: if the

overlapped organisations( Orgp, Orgq):

(a) ai can be Member in Orgp, Member in Orgq.

(b) ai can be Head in Orgp, Member in Orgq.

(c) ai can be Head in Orgp, Not Henchman in Orgq.

(d) ai can be Henchman in Orgp, Not Henchman in Orgq.

• In the emerged overlapped organisations, An agent cannot be a Head and a

Henchman in the same organisation.

• The Head of each organisation is responsible for the activities of its agents.

The presence of a Head in an organisation of agents is necessary in order to

coordinate the work.
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• A Henchman in an organisation will become a temporary Head when the

Head of its organisation has failed.

• Agents are expected to take on and change roles while they are operating in

the environment.

3.5 Agent Based Modeling and Simulation

The concept of using agents to conduct simulations has taken different guises in

the literature and has been referred to as Agent-Based Modelling (ABM), Agent-

Based Simulation (ABS), ABMS, or IBM (individual based modeling). In this

work, we use the acronym ABMS (agent based modeling and simulation).

Complex and non-linear adaptive systems have been widely studied using

agent-based modeling and simulation (ABMS) and dynamic network analysis

(DNA) techniques. The ubiquity of cheap computing power has broadened the

scope for research so that more intricate problems in many unexamined fields

can now be looked at [73]. ABMS has been used in many fields: social, physical

and biological. The growth in the use of simulation to study complex systems,

such as the activity or behaviour of individual entities (humans, agents, proteins,

etc.) and their actions in a group, is critical and dynamic not only at the micro-

level, but also as it relates to the integrity, modification and evaluation of whole

systems which can be intensively affected by such behaviours [73]. ABMS is used

for simulating the continuous interactions between decentralized, heterogeneous

agents with decision making capabilities over time using available scheduling

methods – either continuous or discrete/time stepped. The interaction process

centres around agent behaviours relating to the exchange of their information

and how to reach a desired end from these interactions: [74], [75].
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3.5.1 Repast Simphony Simulator

For this research, we have chosen the Repast Simphony simulation software,

which is widely used, free and open source: the REcursive Porous Agent Simu-

lation Toolkit (Repast), using Eclipse IDE (Java/Python /C++ programming) [76].

Repast is a desktop development environment for implementing Agent-Based

Model Simulations (ABMS), and it is considered one of the most scalable agent

based environments, depending on the complexity of the agent source code. Other

simulators which share the same properties are Swarm, MASON, and anyLogic.

An ABMS can be used to explore issues relating to heterogeneous environments

and emergent systems, [77], [78], [76]. Repast has been extensively used for social

simulation, but it can be used in any domain. Many versions of the Repast mod-

eling toolkit are available: such as, Repast under Java, ReLogo, Repast python,

Repast for Microsoft.NET and Repast Simphony. Repast Simphony allows the

developer to work with networks, optionally combined with a geographic infor-

mation systems (GIS), and to control the number of agents, the agents’ actions

and their behaviour by using different scheduling methods – which can be either

continuous or discrete.

Using Repast allowed us to design and study the behaviour of multi-agent

systems and to investigate agent paths, actions, and behaviour (micro level) and

their effect on the final, created societies of agents (macro level). In our work we

have used Repast Simphony to model a complex adaptive system to study how

the self-organisation process can be used to enhance the network environment

in a better way than using other network simulators. For example,using ns2

simulator would create a more complex environment and we would need to

model network details that are not relevant to what we are trying to study in

this work. Repast Simphony helps to produce simpler environment and provides

better control to design adaptive agents. Developers can control the number of

agents as well as the agents’ actions and behaviours by using different scheduling

methods. This facility allowed the design and implementation of a framework that

deploys multi agent organisations to provide a self-adapting system. In general,

Repast Simphony has been used for various complex adaptive systems such as
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optimization techniques, system engineering, producer – consumer systems, and

pedestrian traffic networks; other examples of its use can be found in [74].

Figure 3.3: Repast Simphony Agent Diagram

Figure 3.3 shows an abstract representation of the agents we designed using

Repast. As the diagram shows, agents were injected into the environment; the

population of agents can be created or added to and will vary according to the

complexity of the problem modeled. The controller is used to send the agents’

interaction and behaviour to the Graphical User Interface (GUI). Moreover, there

is a scheduler which is used as a basis on which to simulate the agents’ actions

within simulation cycles; either discrete or continuous scheduling can be used

depending on the problem requirements. Repast Simphony contains a large

library to support agent modeling. Input parameters to be passed to the agents

can be set by the system, and the output can be files or output messages to be sent

to the environment’s console. Furthermore, Repast Simphony has a number of

plug-in features [79], the following are some of them:

• The application framework which provides Repast Simphony’s runtime

interface plug-in system and user interface
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• The Eclipse set provides programming tools and model specifications

• The Core set provides the main modeling simulation procedures and func-

tions, for example scheduling.

• The ReLogo set consists of a simple language with its own library for agent

based modeling.

• GIS The geographical interface system can be used to enhance for modeling

and visualization

• The 2D Visualization set for viewing models with appropriate features.

• 3D Visualization set for viewing models with appropriate features.

• The Integrated Library set for supporting neural networks, Genetic algo-

rithms, and social network

• The Freeze Dryer set provide for storage in XML and text formats.

• Re third party applications, Repast Simphony supports a number of software

systems which can thus be accessed from the GUI:

1. R statistics.

2. Java Universal Network/Graph framework network analyses

3. spreadsheet

4. weka data mining

5. Structure Query Language(SQL).

3.6 Summary

This chapter has presented the problem formalisation for our distributed scalable

dynamic agent network. We have explained briefly the problem scope and how

agents are deployed to provide the solution. We have provided descriptions

of the agents in the network, the customer agent, organisation’s structure and

the agents’ roles. The components described in this chapter form the basis on
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3.6. Summary

which we will build the final model which will be studied and analysed over

the following chapters. We have provided a description of the Repast Simphony

simulator’s main components, what kind of software it is, and how it can help

when developing and working with complex, adaptive and scalable network

systems.
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Chapter 4

Task Execution and Delegation in a

Distributed Environment

4.1 Introduction

This chapter describes our first strides in implementing our proposed solutions –

the practical implications of our framework for multi-agent networks. Problems

such as agent failure, topology change and lack of reliability all still exist in almost

every distributed environment [80], [49]. Such environments are dynamic, and

critical events may occur throughout the time workload is present.

However, the techniques and methods in use in academia and industry have

progressed in relation to overcoming these issues. We resolved to address the

problem of node/agent failure in distributed grid computing. This can affect

service provision to customers and reduce resource utilization. Hence, we have

suggested using the properties of a distributed adaptive multi-agent system to

provide remedies to the problem of node/agent failure in relation to this envi-

ronment. As we have mentioned, agents are autonomous, proactive and reactive

entities. The microscopic, i.e., the agents’ individual behaviours, can affect the

macroscopic, i.e., the network level behaviour. Adaptive multi-agent systems

may have the ability to self-heal and self-organise, and this ability can be de-
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ployed in distributed open and dynamic environments in order to develop auto-

organized and high-performance systems [81], [82]. Both multi-agent systems

and grid computing have been used to provide various techniques and mech-

anisms which can control or avert problems in open, dynamic and distributed

environments [83], [84]. The main motivation for constructing distributed envi-

ronments is resource sharing. Resources are heterogeneous – they can be files,

printers, scanners, or for instance web pages. All of these are managed by specific

servers on the Internet. On the other side of the equation, the customers are users

that use the web browsers to access these resources [6].

In this research, nodes in the grid environment have been represented by

agents. These agents hold heterogeneous types of resources; customers will re-

quest these using their connections. We are aware that there are specially designed

languages which are used to define the resources in multi-agent systems [85].

However, our system has been implemented via simulation and we have used

our own method to represent the resources in order to avoid any overheads. The

target in this research is to provide methods and techniques that can be deployed

in distributed environments for, in particular, increasing network utilization and

task execution. There are tasks which may need more than one message to be

sent across the network in order for it (the task) to be completed. Hence, the

contribution of the work described in this chapter is the introduction of a dele-

gation algorithms that can increase the number of executed tasks and also agent

utilization in dynamic and distributed systems. Instead of using a random search

algorithm [86], we introduced the use of a directed search algorithm that will di-

rect the search in the network depending on the agent’s status. This is to find out

whether the directing the search will make the system works better – improves

task execution and resources utilization. The agents have been designed as ob-

jects; each object holds its own data and can perform a particular set of functions –

such as, exchanging messages with other agents in the network, changing its own

status, rejecting a task, etc. Several models have been implemented for studying

the initial results while advancing towards acceptable solutions. The following

sections will explain the system’s main component and functions.
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4.2. The Initial Network Formation

4.2 The Initial Network Formation

Within the simulation environment, there are two types of agents: the customer

agent, which is used to simulate task requests emanating from the multiple cus-

tomers that might exist in reality, and agents which possess the resources to

execute tasks. Initial network formation occurs within the first few simulation

cycles. So, the network of agents and the customer agent are constructed at this

time as well. The customer is responsible for forming the messages representing

the tasks to be sent to the network of agents. Using the Repast Simphony Simula-

tor, the following steps are performed for a specific number of cycles as specified

by the researcher; this is in order to construct the agent network:

• The agents start to enter the environment randomly one by one. So the

network is created by adding agents. An initial scale-free network is

created with an initial number of agents, as specified by a parameter,

NumberO f Agents. During this construction process, even when the net-

work consists of only one or two connected agents, the network still has

the ability to accept tasks from customer agent because everything is cre-

ated in parallel. The acceptance of tasks depends on whether the requested

resources are available or not; if the required accuracy is met, a task will

be executed by the receiving agent, otherwise the task will be delegated to

another agent in the network.

• The experiments we have undertaken control the number of connections for

each agent in the network. Each agent has a random number of connections

within a maximum value N, and so each agent can sustain a maximum

number of connections, and this maximum may be different from agent to

agent. However, the system is still scalable – agents can be added to/deleted

from the system. The N value is for simulation purposes only and to simulate

circumstance that agents have a limited capacity/memory for maintaining

contacts (i.e., an agent cannot ’know’ the entire network). Figure 4.1 is a

network of 300 agents visualized using Gephi [87] with the Force Altas2

layout which is useful to visualise Small-World and scale free networks.
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4.2. The Initial Network Formation

Figure 4.1: Visualisation of a network size of 300 agents.Different colours represent the degree of
each agent i.e. the number of connections for each agent. The purple=1 connection, light green=2,
blue=3, black=4, orange=5, green=6,red=7, light pink=8, grey=9 or more).
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• During the connection process (as described above), each agent will send a

message containing its contact details to its randomly selected neighbour(s)

and the receiver(s) will respond with a message containing their contact

details, depending on whether the original agent gives its consents to receive

these details. So each agent maintains a list of its own known contacts. As

a result, in the initial phase, each agent obtains at least one other agent’s

contact details. So in this phase, the agents acquire a partial knowledge of

their surrounding environment.

• An agent’s connections will not remain fixed. The agents may change their

connections in order to achieve better performance and to create organised

groups.

• The type of network which result from the simulation model which has been

developed is one which is scale free and contains a number of hubs; this is

typical for scale free networks [88]. So, the network created in the above way

will have many agents each with a number of connections to other nodes.

Some nodes may have few connections while other nodes may have a large

number of connections and in this regard such a scale free network follows a

power low distribution. Specifying the number of agent connections during

the creation of the network minimises the possibility of having centralized

nodes (agents): i.e., it prevents the system from converging to centralization,

and this is important in relation to the fact that the network is scale free. A

condition has been set which specifies a random number of connections for

each agent. In the model used, a scale free network has been chosen because

this is the form of network which exists in various relevant systems such as

social networks, the Internet and biological systems [88], [89]. The following

figures provide a visualization of the scale free networks involved, using a

variety of network sizes – all under the Repast Simphony simulator. The

networks of agents have been implemented using the algorithm proposed

by Barabsi, [88]. Figures 4.2 show, in sequence, network sizes of (1, 24, 50,

100, 200, 500, 1000) agents.
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(a) 1 to 6 agents (b) 50 agents

(c) 100 agents (d) 200 agents

(e) 500 agents (f) 1000 agents

Figure 4.2: Visualisation of scale free networks of different sizes using Repast Simphony

4.3 Implemented Model Description

The model which has been implemented mainly results in network of heteroge-

neous agents. The agents do not necessarily know of each other, but they attempt

to process tasks and services and start making connections with each other via

messages. The agents in the network are providers that have diverse resources

which can execute heterogeneous tasks and provide services; these match the
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requirements of the customers to various extents. On the other side, there is the

customer agent, which simulates the existence of several customers which need

to find services or have tasks executed.

The participant agents in our simulated network can be in different states

(busy, not busy, not failed/online and failed/offline). For example, when an agent’s

status changes from ’busy’ to ’not busy’ this means that an action has occurred

in the system which has meant that this agent has had to change its status. Tasks

being delegated from agent to agent or from one network to another is the primary

means by which agent statuses are changed. An agent may have a busy status

if it has accepted a task and is currently busy executing it. Other agents may be

in high demand, and they can accept more tasks only within the customer time

and accuracy constraints. Hence, agents in the network have queues which hold

the tasks that they must execute after finishing the current tasks. This situation

is termed “Busy agent and its Accepted Task Queue (ATQ) > K”; this means the

agent is currently busy, has just received another task from a customer and has a

ATQ containing K number of accepted tasks K 6 W, where W is the maximum

size of ATQ.

A customer agent is an entity which issues tasks to the network of agents.

Large numbers of tasks will be sent to the network to be accepted and executed.

Customer tasks are heterogeneous and so need computational resources with

specific required accuracies. Agents in the network hold heterogeneous compu-

tational resources, an agent makes its resources available as part of task execution

for a period of time. If an agent receives a task (becomes a receiving agent) and

cannot satisfy the requested task due to a lack of time before the task deadline,

unmatched required accuracies, the agent being busy, or the agent’s accepted task

queue being full then it will initiate a search algorithm to delegate the task to

other available agents in the network.

A feedback message has been implemented. When the customer agent sends

a task to an agent in the network, a report message should be sent back to the

customer to give the current task status.
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Two search algorithms have been investigated; this investigation was carried

out in order to select which algorithm was the most applicable for use in the

delegation process which takes place between agents in the network. Further-

more, the preferred algorithm will be put forward as an element of the suggested

solutions in the subsequent chapters.

4.4 The Implemented Model Execution Cycles Sce-

nario

In the scenarios we have implemented, the simulation time was divided into

cycles, and the number and types of these is a parameter defined by the researcher.

In each cycle, both the customer agent and the network agents perform their own

execution cycles.

Cycle0: constructs the network by adding the agents to the environment one

by one. Via this initial phase of the simulation, a scale free network is created

with an initial number of agents – as specified by the parameter, NumberO f Agents.

Agents will start to acquire knowledge of their surrounding neighbours by ex-

changing messages in order to create a contact list relating to their neighbour-

hoods.

Cyclee: (where e=1 . . . Total Simulation Cycles) Once the network is formed,

in each simulation cycle:

4.4.1 Customer Agent Execution Cycles

In each Cyclee of the simulation scenario, the customer agent executes the follow-

ing steps:

• issues a number of task requests (M Tasks) to a random set of agents, to

indicate a specific task TID j and to indicate a specific agent ai.
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• receives task TID j acceptance messages from agents.

• receives task TID j rejection messages from agents.

• receives task TID j execution results.

4.4.2 Network Agent Execution Cycles

An agent ai execution cycle consists of two main elements:

(A) Communication of messages which covers both checking incoming mes-

sages and sending messages.

(B) Task execution (if an agent has any tasks currently to execute).

In each Cycle e

(A) Communication

If no messages have been received, the ai continues to (B).

If there are messages, the ai process them one by one:

If message = TID j from customer

(a) If the ai has the required resources with the required accuracy, then

check if it ai has the time by deadline TD j to execute the task. If it can

execute the task by the TD j, add the task to the queue of tasks to be

executed. Send message to customer “Task received, TID j”.

(b) If this ai has the required resources with the required accuracy, but

cannot schedule due to ATQ being full until TD j, then the task is sent

to one of this agent’s neighbours and the ai responds with the message

“Busy”.

(c) If this ai does not have the required resources with the required accu-

racy, and there is still Time To Live TTL, forward/delegate the message

to one/random agent of the contact/neighbour agents.

If message = from contact with request for task TID j
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(a) If this ai has the required resources with the required accuracy, then

check if it has the time by deadline TD j to execute the task. If this ai

can execute the task by TD j, add task to the queue of tasks ATQ to be

executed.

(b) If this ai has the required resources with required accuracy, but it cannot

schedule the task due to ATQ task being full until TD j, then forward

the message to one of this agent’s contacts and return a message to the

customer “Busy”.

(c) If this ai does not have the required resources with the required ac-

curacy, and there is still TTL, forward the message to the set of con-

tacts/neighbours.

(B) Task Execution

(a) If ai = busy with TID j (this means TID j is still under execution), execute

another step of it, this is meant to simulate the circumstance that each task

may take a number of cycles to execute, not just one, decrease the number of

steps required for this task to be completed. Send a message to the customer

containing the following information:

Execution message:(TID j, ai, Send Cycle, TD, Agent Cycle, Duration o f Execution,

result) and a simple Execution message: “TID j, result”. Remove task from

ATQ and Go to (c).

(b) If ai = idle, look at ATQ for tasks; If there is a task scheduled TID j, execute

one step of it. If there are no tasks in the ATQ, remain idle.

(c) End ai execution cycle.

4.5 Agent Communication and Messages

The customer agent and the network agents communicate with each other using a

number of messages. This form the contains part of messages formulate in agent

communication languages. As this is a simulation, messages are used instead of

53



4.5. Agent Communication and Messages

utilising an Agent Communication Language (ACL) [90] such as that defined by

the Foundation for Intelligent Physical Agents (FIPA) or the Knowledge Query

and Manipulation Language (KQML) – doing this would add to the overhead of

processing messages within the system. The format of the message that is sent

from the customer to the agents to request the execution of a task takes the format:

Message (TID, TTL, TD, Cl, RV, RA), where:

TID – is the task’s unique identifier; this is used to identify each task sent by the

customer.

TTL – is the Time to Live (TTL) for each task; this specifies the maximum number

of hops that a message can make within the network and is tracked in the search

algorithms.

TD – is the task deadline, which relates to real world systems; typically these

require task executions to have deadlines by which task execution results must

be returned to the requesting customer agent. When a customer sends a task,

it generally wants this to be finished within this deadline. To simulate such

a deadline in our model, the customer sends a deadline value with each task

issued to the network of agents. The deadline is a specific value representing

the execution period that the randomly selected agent in the network should use

for the execution of the task. It means also, the number of cycles the customer

is willing to wait for the execution result after the agent in the network accepts

the task. So, the response from the agent to the customer should be guaranteed

within this specified, simulated, time period.

Cl – is the simulation cycle in which the task has been sent.

RV – is the resources vector representing the resources that are requested by the

customer for the execution of the task. The contents of the vectors may be different

from task to task.

RA – This represents the required accuracy for matching the customer resources

with the agent’s resources. The accuracy values range between (0−12).

When the customer agent sends a customer task to an agent in the network, this

task will only be accepted and executed by the receiving agent if certain conditions

are met – as checked by each agent.

Task messages – There are various types of messages that the agents send to the
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customer agent and to each other on the receipt of a task request message.

• Task acceptance – An agent which has received a task from the customer

will try to provide the required resources by checking the required accuracy,

and if this is met, the agent will reply with “Task accepted, TID” otherwise,

the agent has to transfer the message to one of its neighbours.

• Task in Queue acceptance – If the agent is executing another task it means

that it is busy, and if the deadline has not expired, it will send a “Task in

my Task queue, TID” message to the customer to confirm the acceptance

of the task – but only if the agent is able to execute the message within the

deadline and with the required accuracy.

• Task rejection – If the Agent is busy and its Task queue is full, the task will

be refused, so the agent will reply with “Busy, TID”, and the message will

be passed on to one of the agent’s contacts.

• Task failure – If no agent has the required resources with the required accu-

racy, agents are busy, the search fails due to TTL =0, the remaining time to

deadline is not sufficient, and there is no other agent to search then the last

agent to receive the task request sends the message “Task Failed, TID” to

the customer.

• Successful task execution: Once an agent in the network successfully exe-

cutes a task, it sends an execution message to the customer:

Execution message Execution message:(TID j, ai, Send Cycle, TD, Agent Cycle,

Duration o f Execution, result) Where:

TID j – is the specific task identifier which is received from the customer.

ai – is the identifier of the agent who has executed the task.

Send Cycle – is the simulation cycle in which the task has been sent.

TD – The time by which the customer expects to receive the result from the

network of agents.

Agent Cycle – is the cycle in which the agent received the task from either

the customer or another agent in the network.

Duration o f Execution – is the number of cycles allowed for execution. This
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is a value randomly selected but depending on the deadline value. Thus

both the situation where the agent does not use all the time available up to

deadline and the situation where the agent does use this is simulated; the

use of a random value simulates the variation from one agent to another in

regard to the period of execution.

Once an agent has sent an acceptance message to the customer, it starts

to execute the task using the determined duration (once the task has been

scheduled in its task queue). So, the agent keeps executing the task until it

finishes its execution, as indicated by the parameter “Duration o f Execution”.

result – failed or success tasks.

After that, the agent sends the above message to the customer and changes

its status to not busy.

4.6 Resources Matching Process

In the distributed environment, there are various different methods for represent-

ing resources – such as the Web Ontology Language (WOL) [91] and the Resource

Description Framework (RDF) [92]. However, the resources associated with each

task issued by the customer have been represented in a simplified way in this

research. This is because we are trying to provide mechanisms that can maintain

services to the requesting customer in critical agent environments. The resources

in each task are represented in the following format.

RV = < r1, r2, r3 >.

An agent in the network that receives a task will match the task’s resources with

its resources. The first such condition is the result of a matching process between

the customer resource vector and the receiving agent resources, which uses the

well-known Manhattan Distance (Manhattan Dis) Equation 4.1. The resulting

matching value should meet the task’s required accuracy; this is a specific value

between (0−12). Therefore, in the delegation protocol as shown in Algorithm 2

an agent accepts a task if a matching has occurred between the customer resources
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and the receiving agent’s resources.

For example, where a customer, RV is <0, 0, 0>, has a RA equal to 6, and

the recipient agent’s RV is <2, 2, 2>, then when applying the Manhattan Distance

equation, the match will be positive. The second condition checked is the TTL. If

TTL = 0, the task will be considered to have failed, otherwise, if TTL > 0, then the

receiving agent will check the TD of the task; if this is sufficient then the task will

be executed, but if it’s not sufficient (either because the received agent is currently

executing a task or its queue of tasks already contains a number of tasks) the

agent will then delegate the task to a neighbour agent in the network. Hence, if

an agent cannot satisfy at least one of the conditions given above, the task will

be either failed or delegated to another agent in the network; this process will be

propagated.

Manhattan Dis(RV,AR) =

x=2∑
x=0

|RVx−ARx| (4.1)

Where:

RVx : the requested resources vector for the task.

ARx : the matched agent resources that performs task successfully.

x = 0 to 2: the index of the requested resource vector, <r1, r2, r3>.

4.7 Task Delegation Protocol

To delegate tasks which have been received from the customer across the agents’

network, a task delegation protocol was proposed and tested. In each cycle,

the customer sends M Tasks messages to a random set of agents. So, when the

customer requests a task TID, this is sent to one agent at random. Each agent in the

network has a queue; the queue is for storing the tasks which have been accepted

ATQ. Before an agent accepts a task, it must check the task’s deadline value, as

has been explained regarding the Task deadline Algorithm 1. So, when an agent

in the network accepts a task it means all the crucial requirements for the task
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have been met by the agent. The agents are autonomous and self-interested and

have the desire to maximise the benefit to themselves; therefore, agents will keep

the accepted tasks in their ATQ for as long as they are currently busy executing

task. After executing the current task the agent will check its ATQ and then start

work on the tasks held on this. Hence, when the agent is not busy it will check

its queue of accepted tasks; if the queue has at least one task, the agent starts to

execute the first in the queue. If the agent’s queue of accepted tasks has more than

one task, the agent uses the First Come First Served (FCFS) technique to execute

the tasks in sequence.

Algorithm 1 Task deadline Algorithm
Input: ai: is a busy agent that has accepted a task TID j.
Output: ai.ATQ.insert(TID j) and return (1) or return(0) then ai delegates TID j.

1: if (ai.busy == true) and (ai.ATQ == 0) then
2: ai predicted the finish time for its current task.
3: if (ai.Duration o f Execution ) < (TID j.TD j ) then
4: ai.ATQ.insert(TID j)
5: Compute random value for the execution cycles depending on the

TID j.TD j
6: “Task in my Task queue, TID j”
7: return 1
8: else
9: return 0

10: end if
11: else if (ai.busy == true) and (ai.ATQ > 0) then
12: the busy agent access to its last task in ATQ to find out the

Duration o f Execution.
13: if (ai.Duration o f Execution) < (TID j.TD j) then
14: ai.ATQ.insert(TID j)
15: Compute random value for the execution cycles depends on the TID j.TD j

16: “Task in my Task queue, TIDj”
17: return 1
18: else
19: return 0
20: end if
21: else
22: return 0
23: end if
24: End

When workload is high, an agent may receive a task that it cannot execute

for various reasons – such as the deadline for the task does not leave enough time
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for the agent to execute it or the resources of the agent did not match with the

task’s required accuracy. In order to delegate such tasks, each agent has to use

either a distributed directed search algorithm or a random search algorithm. In

the random search algorithm technique, the search is based on randomly selecting

neighbours for sending the customer message during the delegation process. The

directed search algorithm has a different mechanism. An agent which has been

randomly selected to receive a task from the customer but cannot execute this itself

is called the initiator. The initiator will start searching the network by sending

the task message which it has received (in any cycle) to its direct contacts and

by this means the messages will traverse through the network, depending on the

receiving agents’ status – whether they are not busy or busy and whether their

ATQ = W or < W – and on the value of the TTL and the network sizes. The

task message will be considered failed if the TTL becomes zero or if the message

is returned to the initiator, see Figure 4.3. This delegation protocol can work

in parallel with the agent network construction process which was described in

section 4.2. A further description of the task delegation protocol is embodied in

the flowchart 4.4 and a simple pseudo code specification of what happens inside

the network is presented in Algorithm 2. It is worth mentioning that when ai

accepts a task it means that ai has performed the resources matching process,

using the same process shown in the example described in section 4.6.
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Figure 4.3: Task Delegation Process

Algorithm 2 Task Delegation Protocol
Input: TID1,TID j....,TIDM are M Tasks: number of tasks sent from the customer

in each cycle, TID j is to show the process for a specific task.
A set of agents a1,ai,....,a f in each single cycle, where f < NumberO f Agents.

Output: TID j Success or Fail.
1: Cyclee:
2: ai.receive(TID j)
3: if (ai.busy == f alse) and (ai.accept(TID j == true) then
4: ai.SendMessage(“Task accepted, TID j” ) to customer.
5: else if (ai.busy == f alse) and (ai. accept(TID j == f alse)) and (TTL > 0) then
6: TTL = TTL -1
7: // ai delegates the task to one of its contact list
8: ai.SendMessage(contacts,TID j)
9: end if

10: Cyclee+1
11: ai.receive(TID j)
12: if (ai.busy == true) and (ai.accept(TID j == true)) and (ai.ATQ <>W) then
13: ai.ATQ.insert(TID j)
14: ai.SendMessage(“Task accepted, TID j) to customer.
15: else if (ai.busy == true) and (ai.ATQ == W) and (TTL >0) then
16: TTL = TTL-1
17: // ai delegates the task to one of its contact list
18: ai.SendMessage(contacts,TID j)
19: else if TTL = 0 then
20: ai.SendMessage(“Task failed,TID j”)
21: end if
22: End
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Figure 4.4: Flowchart: Directed Search Algorithm
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4.8 Experimental Work

Our network has been implemented using the Repast Simphony simulator, an

Agent Based Modeling (ABM) simulator running under Java [76]. Agents in

our implemented models are objects implemented using the Java programming

language. Table 4.1 shows all the parameters which have been used to set up the

experiments.

In this experiment, two models have been investigated and developed, the

directed search model and the random search model; this was in order to decide

which one of these is more efficient for carrying out the delegation process. In

regards to this, the next sections study the effects of each model on the task

execution in relation to the increasing of the agents’ neighbour connection size,

the TTL values, and the total network sizes.

4.8.1 Neighbourhood Size Experiment

In this section, the maximum neighbourhood size, N, is studied in regard to its

effects on the number of executed tasks and the network’s performance. Agents’

connections are limited to a specific number, and for this experimental work we

have increased the individual agents’ connections to a number of different values

(10, 15, 20, 25); the effects of each value have been evaluated over ten test runs

and simulator runs for 2000 cycle. Table 4.1 shows the setting parameter that has

been used for the delegation processes associated with both directed and random

search models. Please note that in the pie charts that follow, the different colours

used represent different accuracies between 0-12 and therefore we use 13 different

colours.
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Table 4.1: The input data parameters for the agent neighbourhood connections changes

Agents Max N TTL TD Max Tasks cycle
300, 1000 10 10 (11-13) Normal distribution*T+M(5,300)
300, 1000 15 10 (11-13) Normal distribution*T+M(5,300)
300, 1000 20 10 (11-13) Normal distribution*T+M(5,300)
300, 1000 25 10 (11-13) Normal distribution*T+M(5,300)

The equation 4.2 yields the Average Number of Successfully Executed Tasks Ratio

(ASETR). This is the average number of successfully executed tasks per required

accuracy divided by the total number of tasks issued per required accuracy. Tasks

are issued in each cycle from the customer side using a normal distribution, in

order to simulate the real world network situation when different numbers of task

requests are issued.

ANETR =
STA(s)

TTR(s)
×100 (4.2)

Where:

STA(s): Number of successfully executed tasks with their required accuracy (s).

TTR(s): The total number of tasks issued per required accuracy (s).

Figures 4.5 a and 4.5 b show the use of a network size of 300 agents with a

neighbourhood count of N =10. The search algorithms perform differently. The

directed search achieves much better performance in comparison to the random

search algorithm, in particular, where tasks are executed with different required

accuracies. The directed search heuristic algorithm uses agents’ status (busy or not

busy) to direct the search around the network. This is unlike the random search

algorithm which, as its name suggests, is based on random selection for its next

move. With the same setting parameters, random search is unable to achieve the

same level of results as the directed search: i.e., there is no significant impact on

the average number of successfully executed tasks ratio when the neighbourhood

size is changed and the random selection search is used.
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(a) Directed search

(b) Random search

Figure 4.5: ANETR for network size:300 agents with maximum agent’s neighbourhood N: 10
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(a) Directed search

(b) Random search

Figure 4.6: ANETR for network size: 300 agents with maximum agent’s neighbourhood N: 15
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In Figures 4.6 a, 4.6 b, 4.7 a, 4.7 b, 4.8 a and 4.8 b different neighbourhood values are

presented in order to show the different performances of the two algorithms when

the number of individual agents’ connections is changed. The average number

of successfully executed tasks ratio increases with increasing connections when

using either directed or random search. This is because the more connections

that are available, the better placed each agent will be: i.e., having a variety of

neighbourhood agents with different types of resources is advantageous and this

leads to the execution of more tasks. Almost all the tasks needing a number of

different types of required accuracies are executed or their execution percentages

are gradually increased. However, a minority of tasks which have certain specific

required accuracies are executed less than those with other required accuracies

because some resources are more rare than others. Tasks that need these rare

resources will be executed at a lower rate than those which do not – because the

number of hops required to reach these resources is excessive.

The network size has been extended to 1000 agents in order to further investigate

which of the search algorithms is better in terms of performance and utilisation

of the network – as shown in Figures 4.9 a, 4.9 b, 4.10 a, 4.10 b,4.11 a, 4.11 b,4.12

a and 4.12 b, the directed search with N = 10, 15, 20, 25 shows a higher number

of successfully executed tasks with different required accuracies than does the

random search.

In the course of this experimental work, it was realised that, especially with

the directed search, increasing the network size to 1000 agents with the number

of connections set to only (N = 10), the system can satisfy more tasks than with a

network size of 300 agents with the same number of connections per agent set N

= 10. This is so under the same simulation parameters: i.e., the number of tasks

issued in the system is the same in both cases. For example, when the network

size was 300 agents and N = 10, the tasks with specific required accuracies were

successfully completed at a rate of (7) = 61 per–cent. When the network size was

1000 agents with N = 10, the tasks with the same specific required accuracies were

successfully completed at a rate of (7) = 94 per–cent. This is because increasing

the network size, adding more agents, appears to be sufficient to increase the ratio
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(a) Directed search

(b) Random search

Figure 4.7: ANETR for network size: 300 agents with maximum agent’s neighbourhood N: 20
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of executed tasks, and is more effective in this regard than increasing the number

of the individual agents’ connections, with a smaller overall network size. The

results using random search follow the same trends as those yielded from using

directed search in these terms, but, on average, the percentages yielded thus are

less than those produced using directed search.
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4.8.2 The Effect of Increasing Message Time To Live (TTL) Ex-

periments

In this section, the results of increasing the messages’ TTLs in relation to both the

directed search and the random search algorithms are shown. This was done by

allowing the TTL for the tasks to take the values 15 and then 20 while keeping

the values of the agents’ neighbourhood connections to a maximum of 10. This

allows the tasks to have more time to traverse the network. So, the task message

can be sent to more agents for possible delegation in the case of the task not being

executed by the first receiving agents in the course of the search. Table 4.2 shows

the setting parameters which have been used in this experiment. Various network

sizes have been tested with various TTL values, without increasing the range of

neighbourhood connections. The simulator ran for 2000 cycles and the runs were

repeated 10 times.

Table 4.2: The Input Data Parameters for the TTL Experiment

Agents Max N TTL TD Max Tasks cycle
300, 1000 10 10 (11-13) Normal distribution*T+M(5,300)
300, 1000 10 15 (16-18) Normal distribution*T+M(5,300)
300, 1000 10 20 (21-23) Normal distribution*T+M(5,300)
300, 1000 10 25 (26-28) Normal distribution*T+M(5,300)

When the TTL was increased to 15 and then to 20 as shown in Figures 4.13

a, 4.13 b for TTL = 15 and 4.14 a, 4.14 b for TTL = 20 and where the network size

was maintained at = 300 agents, both search algorithms showed slight increases

in the ratio of executed tasks in relation to certain required accuracies. Overall

though, the directed search showed better performance than the random search

in relation to all the task required accuracies.

When the network size was increased to 1000 agents, applying the same

changes to TTL, i.e., TTL =15 and then TTL = 20, did not greatly improve the ratio

of executed tasks. This was due to the presence of an abundance of agents. This,

on its own, led to the execution of more tasks with specific ranges of required

accuracies. In general, though, increasing the TTL values when the network has
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1000 agents, especially when using directed search, leads to the execution of more

tasks than when the network size = 300 agents. To analyse this, increasing the

TTL values means that the message can traverse more agents with various types

of resources and this will increase the chance of finding most of the requested

resources with the required accuracies issued from the customer. This leads to a

higher percentage of tasks of specific accuracies being executed. The same is the

case with random search but its performance is not as good as that of directed

search.
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Here we describe the experiments which we conducted to calculate the number

of successfully executed tasks in each cycle of the simulation running time; which

was 2000 cycles for all cases mentioned above in relation to modifying the number

of neighbour connections and increasing task message TTL values. For this reason,

the following formula 4.3 has been used.

ANSET =
1

NR

NR∑
i=1

x=2∑
x=0

|RVx−ARx| (4.3)

Where:

NR: number of runs = 10.

RVx : the requested resources vector for the task.

ARx : the matched agent resources that performs task successfully.

x = 0 to 2: the index of the requested resource vector, <r1, r2, r3>.

In Figures 4.17 a and 4.17 b, both with a network size of 300 agents, the aver-

age number of successfully executed tasks in each cycle has been computed in

relation to both the directed search and the random search algorithms. For both

algorithms, when the number of connections was increased to 15, 20 and then

25, the number of successful task executions in each cycle also increased. This

is because increasing the number of connections means increasing the chances of

having a greater variety of neighbours with different types of resources. How-

ever, the directed search performed better than the random search for all of the

connection values mentioned above.

In Figures 4.18 a and 4.18 b, where the network size was 1000 agents, the

average number of successfully executed tasks in each cycle for all numbers of

connections was higher for the directed search than for random search for all the

simulation cycles. This demonstrates that the directed search is a more promising

algorithm than the random search. This is because, first, increasing the individual

agent’s neighbourhood connections means that the directed search can make use

of this increased number of directly contactable agents to direct the search to the

most proper agent in the contact list, this led to better performance than that of

random search within the same simulation setting parameter. Also, a network
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size of 1000 agents also contributed to the enhancement of the number of tasks

executed successfully using directed search as compared to the same number in

relation to random search.

The set of experiments described below were performed to determine the effects

of increasing the TTL value on the number of successfully executed tasks in each

cycle. The results of two different TTL values for a network size of 300 agents are

shown in Figures 4.19 a and 4.19 b. A network size of 300 agents means there

are fewer agents than arriving customers’ tasks – customers send about 305 tasks

in each cycle. As a result, increasing the TTL will lead to a small improvement

in the number of executed tasks in each cycle. Figures 4.20 a and 4.20 b show

the same results in relation to a network size of 1000 agents. With both of the

search algorithms which were applied, increasing the TTL values increased the

average number of successfully executed tasks within each cycle. This is because

increasing the TTL means giving more time for the customers’ tasks messages

to be sent to more agents for delegation – especially important considering that

the network size has been increased – and this will increase the probability of

them being successfully executed. As can be seen, the directed search again

outperforms the random search.
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(a) Directed search

(b) Random search

Figure 4.8: ANETR for network size: 300 agents with maximum agent’s neighbourhood N: 25
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(a) Directed search

(b) Random search

Figure 4.9: ANETR for network size: 1000 agents with maximum agent’s neighbourhood N: 10
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(a) Directed search

(b) Random search

Figure 4.10: ANETR for network size: 1000 agents with maximum agent’s neighbourhood N: 15
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(a) Directed search

(b) Random search

Figure 4.11: ANETR for network size: 1000 agents with maximum agent’s neighbourhood N: 20
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(a) Directed search

(b) Random search

Figure 4.12: ANETR for network size: 1000 agents with maximum agent’s neighbourhood N: 25
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(a) Directed search

(b) Random search

Figure 4.13: ANETR for network size: 300 agents with TTL value: 15
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(a) Directed search

(b) Random search

Figure 4.14: ANETR for network size: 300 agents with TTL value: 20
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(a) Directed search

(b) Random search

Figure 4.15: ANETR for network size: 1000 agents with TTL value: 15
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(a) Directed search

(b) Random search

Figure 4.16: ANETR for network size: 1000 agents with TTL value: 20
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(a) Directed search (b) Random search

Figure 4.17: Successfully executed tasks in cycles, network size = 300 agents, different N values

(a) Directed Search (b) Random Search

Figure 4.18: Successfully executed tasks in cycles, network size =1000 agents, different N values
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(a) Directed search (b) Random search

Figure 4.19: Successfully executed tasks in cycles, network size = 300 agents, different TTL
values

(a) Directed search (b) Random search

Figure 4.20: Successfully executed tasks in cycles, network size = 1000 agents, using different
TTL values
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4.8.3 Message Traffic in The Network

In this section, the amount of message traffic occurring as a result of the delegation

process is discussed – in relation to increases in the neighbourhood connections

and the messages’ Time to Live TTL values. Changes to these change the traffic

status of the network, as does the use of the directed search algorithm as opposed

to the random search algorithm. To give a brief description of the tasks issued by

the customer, the number of customer tasks which will be issued in each cycle is

a value generated from a normal distribution with variance = 5 and mean = 300;

hence, roughly the maximum number of tasks issued in each cycle is around 300.

We have computed the traffic in the network, MsgTra f f ic, using the following

formula:

MsgTra f f ic =
NoMsgs

TRT×TTL
×100 (4.4)

Where:

NoMsgs: The accumulated number of messages in the network for all the received

tasks.

TRT: The total number of received tasks.

A number of experiments were conducted to investigate the effect of increasing

the neighbourhood connections on network traffic while keeping the value of TTL

= 10; the results of these experiments are shown in Figures 4.21 a, 4.21 b,4.22 a and

4.22 b. On average the message traffic when the system uses the directed search

algorithm with network sizes of either 300 or 1000 agents decreases with increases

in agents’ neighbourhood connections; this is to be considered a good sign, and

with random search, there are increases of network traffic with increases in the

agents’ neighbourhood connections.

Looking at the comparison between networks of size 300 agents and networks

of size 1000 agents as shown in Figures, on average, when applying the directed

search algorithm, the networks of size 300 agents have more traffic than the

networks of size 1000 Agents. This is because when the network size is 300 agents,

agents are more likely to be busy than when the network size is 1000 agents. The

busy agents will delegate the receiving tasks to other agents in the network and
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(a) Directed search (b) Random search

Figure 4.21: The message traffic generated by 300 agents with different N values

(a) Directed search (b) Random search

Figure 4.22: The message traffic generated by 1000 agents with different N values

so on – leading to a high volume of traffic. The number of tasks issued by the

customers also plays a role in this behaviour as it is the same number of tasks

for both network sizes. When random search is applied, it is noticeable that the

traffic increases when the network size is increased to 1000 agents. This is because

the technique of random search is based on randomly selecting neighbours for

the receipt of the customer messages during the delegation process and as the

neighbourhood increases the delegation requests increase accordingly.

After analysing the effects of changing the neighbourhood value, N, on the

message traffic in the network, the TTL value was then investigated. This was
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done by increasing its value and then looking at how this affected the number of

messages (i.e., the traffic) produced with network sizes of 300 agents and the size

of the neighbourhood is 10 and TTL =(10,15, 20). In Figures 4.23 a and 4.23 b.

We note that the network traffic increased with increasing TTL values in random

search and with directed search the traffic, on average, started to decreased. This

means that the agents in random delegation algorithm trying to use all the task’s

TTL value with the hope to execute the task until its TTL expired. Meanwhile, in

directed search the traffic starts to decreased in the network when the task’s TTL

value has increased this is because the directed search may not use all the TTL to

find the proper resources to accomplish a task.

(a) Directed search (b) Random search

Figure 4.23: The message traffic generated by 300 agents with various TTL values

Figures 4.24 a and 4.24 b show the directed and random search with network

size = 1000 agents, N=10 and different TTL values. When the random search was

applied, the increase in traffic was greater when compared to the situation with

directed search. This can be seen from the average values shown in the figures.
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(a) Directed search (b) Random search

Figure 4.24: The message traffic generated by a 1000 agents network with various TTL values

4.9 Disruption in Agent Service Provision

From the analyses that have been carried out in the previous sections, it is clear

that the directed search was the algorithm that could be counted on to delegate

the customers’ tasks through the network and the one that could provide the

customers with the required level of successfully executed tasks – with greater

efficiency than the random search algorithm. Therefore, from this section on, only

the directed search will be adopted to delegate tasks in the network.

In this section agent failure problem has been applied to the system to study

the effect of disruption on task execution and system performance. Agents in

the network may lose their connectivity, i.e., they may go offline. To model this,

agents are equipped with a parameter that enables them to be switched on/off for a

period of time, and when they are off they, in essence, create the impression to the

system that they are offline and unable to execute tasks or respond to messages.

We have skewed a probability distribution between[0,1] such that a lower (nearer

0) probability value produces fewer failed agents and a higher probability value

(nearer 0.9) will produce a larger number of failed agents in the system. During

the simulation initialization step, all agents are assigned the same probability of

failure. For example, if we have 300 agents and the probability is set as p=0.2, then

all the agents will be assigned the probability p=0.2 when the system imposes the
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probability that in one time could be the same as the currently active agent, that

agent will fail for a random number of cycles to demonstrate that it can not accept

tasks or run its currently task. After returning to operational mode, the agent

checks the workload that it already has. It will start executing tasks if there any

in its workload have not yet reached their deadlines.

Applying a high failure rate simulates the harsh operational conditions which

exist in some systems: i.e., it progressively increases the chance of failure within

the system.

After an agent has been offline for a period of time, it will check its current

task and its ATQ, if the deadlines for its tasks have not been reached, then the

agent will try to execute them. Otherwise, the agent will declare the tasks to have

failed. The on/off parameter has been applied using the probability values of 0.9,

0.5 and 0.2. Algorithm 3 shows the steps that have been carried out to implement

this.

Algorithm 3 Agent Failing Algorithm
Input: Initialize the individual agents with a failure probability value (ex.prob =

0.6), an agent ai where i = 0 to M, M is a maximum number of the available
agents in the system. match probability= (0.9−0.1)

Output: ai.status= failed(true) or not failed agent(false)
1: Cycle K
2: match probability =Random (0,1)
3: if ai.prob == match probability and ai.status , true then
4: ai.fail=random cycles(1,m)
5: ai.status =True
6: else
7: ai carry on executing task(s)
8: end if
9: Cycle K+1

4.10 Experimental Work

The experimental work in this section implements a simulation of the problem

of agent disruption and its effects on system performance. To carry out the

experiments, two network sizes have been tested with differing failure probability
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values and the same task distribution has been applied here. Figure 4.25 a shows

the situation with a network size of 300 agents, without failure, while the other

Figures 4.25 b, 4.26 a, and 4.26 b show the situation with the same network size

but with the effects of agents failure on the performance of the network. It can

be seen that increasing the failure probability leads to the loss more tasks with

various types of required resources.

Figure 4.27 a shows the situation that pertains with a network size of 1000 agents,

and without a failure probability being applied, and Figures 4.27 b, 4.28 a and

4.28 b show the situation with the same network size but with failure probability

values being applied. These figures show that even when the size of the network

is increased, agent failure can have a negative effect on the network’s performance

and the agents’ utilization. This means that the system cannot always provide the

customer with successfully executed tasks.

The average number of successfully executed tasks in each cycle has been cal-

culated for both network sizes (300 and 1000 agents) as shown in Figures 4.29 a

and 4.29 b. The average number of successfully executed tasks in each cycle is

decreased when the probability of failure is increased – as more agents fail.

In this section, we have presented introductory work which examines the fail-

ure problem in the distributed system. This shows that the deployment of au-

tonomous agents in dynamic and distributed systems is not sufficient to maintain

these systems at an appropriate level of functionality without providing these

entities with special capabilities and mechanisms which allow them to be self-

motivated, adapting themselves to the disruption problem in the distributed

environment. The distribution of such a scenario has been achieved by creating

self-organised organisations in the system environment that help the system to

keep functioning even with the existences of failure issues and this what we will

demonstrate in chapters 5, 6, and 7.
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(a) Directed search p=0.0

(b) Directed search p=0.2

Figure 4.25: ANETR for network size=300 agents with probability of failing p=0.0 and p=0.2
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(a) Directed search p=0.5

(b) Directed search p=0.9

Figure 4.26: ANETR for network size=300 agents with probability of failing p=0.5 and p=0.9
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(a) Directed search p=0.0

(b) Directed search p=0.2

Figure 4.27: ANETR for network size=1000 agents with probability of failing p=0.0 and p=0.2
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(a) Directed search p=0.5

(b) Directed search p=0.9

Figure 4.28: ANETR for network size=1000 agents with probability of failing p=0.5 and p=0.9
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(a) 300 agents (b) 1000 agents

Figure 4.29: ANSET for network size = 300 and 1000 agents with probabilities of failing
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4.11 Chapter Summary

This chapter has investigated the main components of the simulated network

system which has been constructed from autonomous agents. Network agents

are the entities which can adopt the mechanisms which can deal with the failure

problem in the grid computing environment.

The contribution which has been presented in this chapter is the implemen-

tation of networks which allow for the use of autonomous agents to encapsulate

the heterogeneous computational resources and to provide a better service for

simultaneous and multiple customers’ requests. Furthermore, two delegation

algorithms, one using directed search and the other random search have been in-

vestigated in relation to the requirement to distribute tasks in case of the receiving

agent not being able to accept and execute tasks. These two algorithms have been

implemented and compared against each other: a number of experiments have

been implemented to study which algorithm is more applicable.

The directed search algorithm has been shown to result in better performance

in relation to task execution in the network than the random search algorithm.

The Average Number of Successfully Executed Task Ratio (ASETR) and the Aver-

age Number of Successful Executed Tasks in each cycles (ANSET) for the directed

search is higher than those same measures in relation to random search. The di-

rected search algorithm is based on a heuristic choice for the next agent to navigate

the message. Hence, directing the task message across the network using agents’

statuses; busy or not busy decreases the possibility of losing tasks as compared

to random search. The technique of random search is based on randomly se-

lecting neighbours for the receipt of the customer message during the delegation

process. For both algorithms, each agent maintains its own queue to increase its

benefit and its resource utilisation. The resources have been modeled as a vector

of resources with specific required accuracies to simulate the semantic represen-

tations for resources in heterogeneous networks. In all of the experimental work,

the directed algorithm has been compared against the random search algorithm.

For this comparisons, various different setting parameters have been applied in-
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cluding various network sizes, neighbourhood values N, and TTL values. The

comparisons have shown that the directed search outperforms random search in

term of the ASETR, ANSET and message traffic generated in the network.

Some resources are rarer than others and tasks requiring them have a lower

rate of completion, in terms of percentages. This effect is dependent on the

require accuracies issued by the system and the availability of such resources

in the network. Furthermore, after selecting the directed search for use here,

another set of experiments were undertaken to simulate disruption in the system.

This was done by applying a probability of failure to the agents in the network,

whereby a number of probability values were selected, such as (0.2, 0.5 and 0.9),

and studying the effects of failure on the agents’ performances as well as on the

network’s performance as a whole. The experimental work has shown that agent

failure can significantly affect customer task execution and the utilization of the

agents in the system. This problem will be addressed, broadly, and suggested

mechanisms for its solution will be described in the next chapters.
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Chapter 5

Task Delegation through Agent

Organisations

5.1 Introduction

Grid computing is one of the types of distributed systems with which virtual or-

ganisations are a good fit; sharing resources is one of the most important concepts

associated with the topic of grid computing [93], [5]. A grid computing system

consists of heterogeneous resources; it is crucial to discover usable methods for

ensuring that such resources can be utilized with maximum efficiency. The use

of emergent organizations has been demonstrated to be capable of providing

reasonably effective solutions for many of the task allocation problems found in

distributed environments [94], [95]. These solutions can be used to minimise

resource allocation costs and reduce unnecessary communication among agents

within organizations [18]. In this chapter, we present the mechanisms we propose

for the maximization of resource utilization, the improvement of task execution

and for delegation, as well as those aimed at dealing with the problems caused

by agent failure – via the creation of virtual organisations of agents. We attempt

to demonstrate that the performance of a network of agents can be improved

by the use of a self-organisation technique whereby agents can self-organise into

emergent clusters/organisations. The principle of self-organisation has been used
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to create agent organisations; this activity is triggered when some of the agents

experience excessive loading. Hence, busy agents within the network may decide

to create an organisation so that they can receive extra support from other, less

busy, agents so that, in turn, more tasks may be executed. By this means, the work-

load will be distributed over the newly created groups. Here, a self-organisation

process has been used to show the positive effects of local action performed by

individual agents, intended to increase the task execution throughput of the net-

work and hence to improve overall network performance. The target of this

research is the creation of dynamic organizations of agents whose Members may

take on roles so that their work as societies is enhanced. Other researchers, such

as [40], [96], have explored this area. However, most of the methods proposed

in the existent literature present large networks as separated communities, while

most real-world large networks are composed of significantly overlapped and

nested communities [20]. The agents presented in this work may participate in

different communities/organisations, and this ability varies from agent to agent –

so demonstrating the autonomous agents’ differing abilities.

In this chapter, two different mechanisms have been explored whereby or-

ganisations may be created. The first creates homogeneous organisations, all of

whose Members have semantically similar resources. The second method creates

heterogeneous organisations from the various dissimilar agents that are avail-

able in the network. In relation to both of these suggested mechanisms, a task

delegation protocol is proposed, based on delegating tasks to the Members of the

organisation instead of to isolated individual agents in the network. In each of the

created organisations, there is a Head agent which will act as the decision maker

in terms of delegating tasks to the Members of its organisation.

In chapter 4, we presented two delegation protocols: the directed search and

the random search. Directed search demonstrates better performance as com-

pared to random search. Directed search improves the delegation process by

taking into account the status of agents (busy/ not busy) when choosing the next

agent to receive a task allocation message. In contrast, random search delegates

the task message purely randomly. Also, we show that there are disruptions which
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can affect the system’s performance as demonstrated by resource utilisation and

task delegation across the network. Therefore, the introduction of organisations

here is needed because we want to improve system performance – by the delega-

tion of tasks, by increasing the throughput of tasks, by reducing the number of

messages and as a means to deal with disruption in the system.

5.2 Creating Organizations

The network design presented in chapter 4 allows for a network to grow gradually

as agents connect to each other randomly and thus create a large network. Agents

in the network created possess heterogeneous resources and so are able to execute

many different types of tasks as issued by the customer agent. Each agent needs

at least one connection with another agent in the network and each can sustain

up to a maximum number of connections; this can be a different number from

agent to agent. Each agent maintains partial knowledge of the network Members

by creating a contact list containing the contact details of all the agents to which

it has a direct connection. The tasks are delegated to agents based on their status,

and task messages may need to traverse many agents in order to either succeed or

fail. The agents are autonomous and self-interested and have the goal of creating

the maximum benefit for themselves. Manifesting the way in which agents are

self-interested, each agent in the network has a queue ATQ containing the tasks

it has accepted for imminent execution. Hence, when an agent in the network

accepts a task, this means that the agent has met all the crucial requirements

specified by this task, and so its status will become busy and will remain at this

state until the task has been executed when it will be changed to not busy. If its

queue has tasks, then the agent will become busy while it executes the tasks in its

queue.

However, we are still left with problems which lead to lost tasks and decreased

agent utilization. The first problem is that tasks may require more hops for their

execution and this leads to there being more messages in the network which, in

turn, will create more traffic in the network. Second, agents may receive tasks
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which they cannot execute for a number of different reasons, such as the task

deadline allowance is not sufficient for the receiving agent or the agent does not

have the required accuracy, etc. Third is the problem of disruption caused by

agent failures; this may lead to more tasks being lost.

In response to these circumstances, here we propose the idea of creating

organizations of agents; this mechanism is to be based on gathering autonomous

agents in groups as a virtual layer above the existing agent network in order to

enhance the task delegation process. We assume that this will lead to the recovery

of more tasks, an increase in the number of executed tasks and a minimization of

the time required for accepting and executing tasks. This will be effected using

a new task delegation process, within each organisation. This delegation process

aims to find an agent which can most precisely satisfy the requirements of the

requested task with a single hop or with a few hops only.

To simplify matters, the explanation here will focus on only one organisation.

However, the system as a whole may well contain more than one. The emergence

of agent organisations will depend on a triggering condition resulting from the

most-busy agent’s activity. The most busy agent is an agent that can satisfy the

following conditions:

(a) Currently executing a task.

(b) Still receiving tasks from the customer.

(c) Already having tasks in the accepted tasks queue. ATQ > K; ATQ contains

K accepted tasks – K 6W, where W is the maximum size of ATQ. Hence, the

accepted tasks in the queue will require at least Y cycles to be completed,

where Y is a random value related to the deadline of each task.

The created organisations can be defined as: Org = {Org1,..., Orgq}, where

Orgp with 1 ≤ p ≥ q, is the pth organisation in the system, hence the elements in

each organisation are:

Orgp = < OrgIDp, OrgHp, {a1,...ano}, Zp >, where 1≤ no ≤ Zp.
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• OrgIDp: a unique identifier for each organisation created.

• OrgHp: is the name of the Head of an organisation.

• {a1,...ano}: the participants in the organisation at a specific time.

• Zp: is the maximum size of each organisation.

The most busy agent can decide to initiate the process of creating a new

organisation and to become the Head of that organization – in order to receive more

help. The Head will then send a multicast message to its contact list neighbours

in order to invite them to join its organisation. This is performed as shown in

Algorithm 4 which is based on the multi-cast “Push Gossip” algorithm [25] which,

for purposes of brevity we call the gossip algorithm. This action will propagate

the message across the network. The authors of [25], in their chapter 7, clarified

the essential properties of gossip-based information dissemination and showed

how the various gossip processes can be utilized, not only in human society, but

also in other domains such as computer networks. The push gossip protocol

may produce slightly elevated numbers of messages when spreading the gossip

message across a network. This is because an agent that receives the gossip

message may send it to other random agents that may already have received it.

However, the overhead that is generated by this process is not unacceptably high.

Several gossip protocols have been explained in [25] and they have been used in

many studies in the literature which look at self-organising agent societies [97],

[98]. In this work, we study the gossip protocol and show that this is the most

applicable method in terms of the conditions that must be met. The Head will

spread its message to the agents in the network to create diverse (in terms of

resources and agents) organisation with various agents; this set-up can help to

execute more tasks within a shorter duration, so our approach was to look in more

detail at this network structure and at what the gossip protocol can provide.

Within this network environment, if a not-busy agent accepts an invitation

message (to join an organisation) then it will respond with an acceptance message

“accept to join” to the Head. If, on the other hand, the message reaches a busy

agent, then the busy agent will act as a transmitter so that the Head′s message
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can reach other parts of the network; the gossiping process stops when the Head

message returns back to the Head or the TTL for the message has expired. Hence,

the size of an organisation may vary based on the status of the agents that receive

the Head′s message. In this way, the system has added a virtual layer “an organ-

isation”over and above the network of agents. The resulting organisations are

shown in Figure 5.1.

Figure 5.1: The Created Organizations

A database record will be added to the Head′s database for each agent who

joins the organisation. The Head holds the following information on its database

about its organization.

H DB ={OrgIDp,OrgHp, aID,Resource i }

In the literature, grid and cloud computing are shown to be focused on

providing a powerful range of resource sharing facilities for their distributed

environment. However, it has been found that in an organisation that is part

of a grid computing system, a computational node can be underutilised and not

fulfil its potential; i.e., it may be utilised (busy) only 5% or less of the time [5].

This motivated us to create overlapped organisations; we aimed to increase the

agents’ resource utilisation by allowing agents to join more than one organisation.

However, in practice, depending on how busy it is, an agent can only be committed

to a limited number of organizations at any one time and this number depends

on its setting parameter – which varies from agent to agent. So, this will lead to

the creation of overlapping communities/organisations as shown in Figures 5.2
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Algorithm 4 Gossip Protocol
Input: ai: is the most busy agent (Head) that will create an organisation, al is one

of the ai contacted list neighbour, TTL > 0.
Output: ai completed organisation.

1: Cycle e
2: ai.SendMessage(Contactlist(1,N))
3: if al ! = busy then
4: al infected with the gossip message of ai
5: al has the option to join or not to the created organisation.
6: else if al == busy then
7: al.SendMessage(1,Random(N))
8: end if
9: if TTL > 0 then

10: TTL = TTL − 1
11: end if
12: Cycle e + 1
13: End

a and 5.2 b. For example, if a Member agent receives a task and cannot execute

it, then it will send the task initially to the Head of the first organisation that the

agent joined – since it can join more than one organisation. The Head will send

the task to its Members and if none of them can accept the task, the Head may then

send the task to another Member which can satisfy the resource requirements/

accuracies; it will continue to do this for all the organisations it has joined. If the

task cannot be executed by any agent of any of the organisations that either the

Head or the original Member belong to, then the Member will operate as if there are

no organisations: i.e., the task will be delegated to one of the Member′s neighbours

which can comply with the TTL and deadline constraints.

Each agent will hold the required information for all the organisations it has

joined. Any agent joining an organization must satisfy a set of rules, as follows:

agreeing to execute tasks or put them in the accepted task queue if the required

accuracy is matched and the agent is able to execute the task within the allocated

deadline. The following section will illustrate the two different mechanisms which

we have used to create organizations of agents.
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(a) Several overlapped organisations struc-
ture.

(b) Simplified structure, an example of over-
lapping organisations where q=3

Figure 5.2: Illustration of the concept of overlapping organisations. In Figure (b), the Blue
organisation overlaps with the Green and the Red organisations in terms of a single node, whereas
the Green overlaps with the Red in relation to two nodes. These overlapping regions are in the
intersection of the large circles.

5.2.1 The Creation of Homogeneous Organizations

The mechanism we first used to create organisations utilises autonomous and

heterogeneous agents in the network to create homogeneous organizations in

which the agents are clustered together depending on similarities between their

resources in relation to predefined required accuracies.

• Agents will have the opportunity to decide which organization to work with

based on a semantic checking process related to resources.

• Any agent can join an organization if its resources match the required accu-

racy specified by the Head of that organization, provided it (the agent) is not

currently busy.

• Each agent makes its own decision in terms of whether to join or not de-

pending on its preferences; if these are met, then it will join the organization.

• Each agent has a setting parameter that specifies the number of organizations

it can join; this may be different from agent to agent, within the simulation,

to demonstrate the different abilities of agents in the network.
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5.2.2 The Creation of Heterogeneous Organizations

The second mechanism we investigated for creating organizations of agents with

heterogeneous types of resources was one in which agents were gathered in

groups without any predefined threshold; the only condition they had to meet

was that agents less busy to help the Head of the organisation with executing more

tasks. Any agent can be a Member in an organization, provided it is not currently

a busy agent and the maximum number of organizations that it can join has not

yet been reached. There is no requirement that the required accuracy be met – as

there is with the first mechanism. Via either mechanism, the process of creating an

organization takes time. During this time, the network of agents is still receiving

tasks from the customer even when the network consists of only two agents. The

tasks can be executed by individual agents with the aid of the directed search

algorithm.

5.2.3 Agent Roles within Organizations

This work focuses on adding roles for the agents within the self-organization

process. These roles, from an abstract viewpoint, have been defined in chapter 3.

Each agent is a service provider in the network. Creating organisations of agent

leads to the emergence of new roles.

• The most busy agent is the Head of the organisation; this agent is responsible

for distributing tasks to its Member as well as for accepting and executing

tasks itself.

• The Members are agents in the network that have responded positively to the

Head′s message inviting them to join its organisation and they all operate as

service providers within the organisations they have joined.

• Any Member of one organisation can be a Head or a Member of another

organisation (overlapped organisations), so an agent can have a number of

roles R i = < R1,R2,R3 >, each agent may have just one of these roles or more
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than one.

• Members who join the organization to accept and execute tasks have the role

of service provider agents.

• Any Member within an organization that receives a task from the customer

but has no ability to execute it, will send the task to other organizations that

the agent has joined.

• An agent can have the Member role in many organisations. However, it can

be a Head of only one organisation.

5.3 Task Execution and Delegation in Organizations

Task execution and delegation is the same in both mechanisms described above.

However, the method follows different directions in the homogeneous organisa-

tions than it does in the heterogeneous organisations. This is because the Heads

in homogeneous organisations request specific accuracies to accept tasks. The

following steps occur in both mechanisms.

• If the task received by the Head of an organisation.

(a) The task will be executed if and only if the Head is not busy and can

accept the task, depending on there being a match in terms of the

Manhattan distance required accuracy and the task deadline value.

(b) The task will be queued if its required accuracy matches the Head

preferences but the Head is executing another task when the message

arrives.

(c) Otherwise, the Head will check which of its Members can execute the

task and delegate the task to one of these.

(d) If the Head cannot find any of its Members who can execute the task,

then the Head will delegate the task using its contact list.

• If the task has been received by ai where ai is a Member in an organisation.
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(a) The task will be executed by a Member if it (the member) is not busy, and

can accept the task; this depends on the Manhattan distance accuracy

matching criteria requirement being met and on the task deadline value.

(b) If the Member cannot accept the task and cannot put it in its ATQ, the

Member agent will send the task to its Head and the Head will accept it

or delegate it as indicated above.

(c) A Member agent may be a Member of more than one organisation, so a

Member agent will repeat step (b) to send the task to the next organisa-

tion that it joined, and so on until the task succeeds.

(d) If the task TTL > 0, and there is no agent (Members or Heads) in any of

the ai emerged organisations that can accept and execute the task, then

the ai will delegate the task, using the neighbours in its contact list.

5.4 System Performance with and without Organisa-

tions

We have designed and implemented a three different models in order to demon-

strate the effects of creating organisations.

In the figures below, we have pointed out and compared between the three

models which were developed, both with organisations and without organisa-

tions.

• The homogeneous organisation model as (Organisation Ver0).

• The heterogeneous organisation model as (Organisation Ver1).

• The delegation protocol (the directed search, as described in chapter 4)

model, named (No Organisation).
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Agent Network Size Task distribution Simulation Time
300 Mean=30,variance=8 3000 Cycles
500 Mean=30,variance=8 3000 Cycles

1000 Mean=30,variance=8 3000 Cycles

Table 5.1: Network Size and Task Distribution

5.4.1 Experimental Results

The evaluation of the suggested organisation models and of their performance

has been carried out using a simulation environment. The experiments were

conducted using a number of different agent network sizes (300, 500, 1000) – we

have included the additional network size of 500 agents in order to demonstrate

network/size performance as it exists in between the other two sizes. The maxi-

mum connection for each agent is up to N = 10 and the time to live for the task

messages is TTL = 10. The simulation time has been increased to 3000 cycles from

2000 cycles in order to gain more accurate results relating to the self-organisation

process. The results have been collected by repeating the run 10 times to ensure

their robustness; these results were then used to construct the graphs. The exper-

iments show the effects of changing the task distribution on the performance of

the system with different network sizes and how task execution can be increased

using a self-organisation process. Table 5.1 shows the values representing tasks

issued from the customer side. These are generated using a normal distribution

in order to simulate the real-world situation whereby variable numbers of tasks

requests are issued. Figures 5.4 a to 5.11 have been produced using Equation

5.1 which represents the Average Number of Successfully Executed Tasks Ratio

(ASETR). All these values, except for those in Figure 5.3 have been produced

using Equation 5.2 – which computes the number of successfully executed tasks

within the allocated number of simulation cycles (ANSET).

ANETR =
STA(s)

TTR(s)
×100 (5.1)

Where:

STA(s): The number of successfully executed tasks with their required accuracy
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(s).

TTR(s): The total number of tasks issued per required accuracy (s).

ANSET =
1

NR

NR∑
i=1

x=2∑
x=0

|RVx−ARx| (5.2)

Where:

NR: The number of runs = 10.

RVx : The requested resources vector for the task.

ARx : The matched agent resources that performs task successfully.

x = 0 to 2 : The index of the tuple that represent the requested resource vector.

The first collection of experiments was conducted in order to analyse the perfor-

mance of the two mechanisms for creating organisations with different setting

parameters and the effects of these variations on system performance and agent

utilisation. Also, we have compared between the different performance of the

emerged organisations and the directed search. Figure 5.3 shows the perfor-

mance of the system in terms of the number of successfully executed tasks within

the cycles; this statistic has been extracted by applying equation 5.2. Organiza-

tion Ver1 shows a higher efficiency in terms of executing tasks than the other

two models. This is due to the variety of agents’ resources in each organization;

thus, when any agent becomes unavailable there are other agents that can accept

and execute the tasks received. Figure 5.4 a shows the performance of Organi-

zation Ver0 and Organisation Ver1 as compared to the No Organization model.

In general, the number of executed tasks when models with organizations are

used is better than the numbers of executed tasks yielded by a No Organization

model for all the required accuracies from (0-12). In the Organization Ver0 model,

each emerged organization has the same accuracy requirement as specified by its

Head; here, the number of executed tasks showed slight improvements as com-

pared to the same measure for the agents’ network NO Organizations. On the

other hand, in Organization Ver1, each created organization is a cluster of het-

erogeneous agents which can satisfy tasks with a number of different required

accuracies. The results from this version show more tasks being executed than

were executed by Organisation Ver0, for all ranges of required accuracies. By
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Figure 5.3: The successful executed tasks in cycles for Network Size: 300 Agents

increasing the number of agents to 500 agents, as shown in Figure 5.4 b, and by

maintaining the number of tasks at the same level, we showed that Organiza-

tion Ver0 and Organisation Ver1 yielded higher numbers of executed tasks than

did the system with No Organizations; the results were particularly improved

when using Organisation Ver1.

Now, it is worth mentioning that when the size of the network was increased to

1000 agents, nearly all the tasks were executed with the required accuracies (from

3 to 7) as more resources are available for these accuracies; these tasks represent

those with the highest requested accuracies as specified by the customer side.

A minority of tasks which have certain required accuracies are executed less

frequently than those with other required accuracies because some resources are

more rare than others. This leads to fewer tasks which need these rare resources

being executed. The reason behind this is that the number of hops required

to reach the necessary resources is excessive. In relation to this, nearly similar

performance was achieved by both with-organization models and by the No

Organization model. The aim of the emergent organizations is to address the

requests from the customer(s) where these represent a heavy workload in a system

110



5.4. System Performance with and without Organisations

(a) (b)

Figure 5.4: ANETR for Network Size: 300 and 500 Agents

which does not have a very high number of agents, increasing the number of

agents reduced the impact and effectiveness of the emerged organizations in

relation to the same demand from the customer side.
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Figure 5.5: ANETR for Network Size: 1000 Agents

5.5 Dealing with Disruption in Agent Service Provi-

sion

Within distributed and dynamic systems, fault tolerance techniques must be made

available because failure rates will affect the level of service provided by the

system. In such systems, there is uncertainty, and this means that nodes may

fluctuate between an operational and a failed state randomly. An example of this

situation is represented by a dynamic group of nodes which may join and leave

the system at random times in an ad-hoc network [49].

In this section of this work, we examine how our system can deal with the

disruption that may occur as a result of agents losing their connectivity: e.g.,

by being offline. Agents prone to severe or mild failure will degrade overall

system performance. To simulate this, agents were equipped with a parameter

that enables them to be switched off for a period of time, in essence creating the

impression that they are offline and unable to execute tasks or respond to messages

– as has been presented in chapter 4. The on/off parameter was applied using
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probability values of p= 0.9, p= 0.5 and p=0.2. It is certain that an environment

which has a failure problem needs pre-determined mechanisms which can deal

with this problem. In this section, we describe the scenario whereby a self-

organisation technique is relied on as a means to recover customer tasks.Two

approaches to this were taken, represented by Organisation Ver0 and .

Only the delegation protocol implemented via directed search will be used

here for the purposes of these investigations. The directed search algorithm deals

with failure as follows: when an agent, called the initiator, delegates a task to an

agent in its contact list, if no response from that agent has been received after a

pre-specified number of cycles (e.g., 3 cycles), then the initiator will delegate the

task to another agent on its contact list and so on until the task is executed or TTL

=0. If this process proves to be unable to deal with the failure and the situations

leads to the TTL value being consumed, then the task can only be delegated to two

or three agents and this means that the probability of a failed task is increased.

Therefore, these two mechanisms have both been presented here.

5.5.1 Experimental Work

Our experiments examine the advantages and disadvantages of the emergent

organisation mechanisms by comparing them with a selected delegation protocol

as represented by the directed search – which was presented in chapter 4. Hence,

the failure function described there – the Agent Failing Algorithm outlined in

section 4.9 at the page 87 – has been added to the mechanisms as follows:

• The homogeneous organisations as (Organisation Ver0) model with failure

problem.

• The heterogeneous organisation as (Organisation Ver1) model with failure

problem.

• The directed search as (No Organisation) model with failure problem.

The simulation experiments present the three models: Organisation Ver0, Organ-
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isation Ver1 and No Organisation with three different probability values for agent

failure. The selected probability values (P) are: 0.9, 0.5 and 0.2. The same setting

parameters shown in Table 5.1 are applicable here. The study looks at three dif-

ferent network sizes: 300, 500 and 1000 agents. The output of the experiments

has been used to compute the ANETR and ANSET for all three models

Figure 5.6 a shows the three models – Organisation Ver0, Organisation Ver1,

and No Organisation – implemented on a network size of 300 agents and with

a failure probability of p= 0.9. The simulation results show that the ANETR,

using Organisation Ver1, is the highest of the three across all the required accu-

racies with different degrees, as compared to the other two models. The use of

Organisation Ver1 improved the system performance and coped with the pres-

ence of offline events; this was due it having a variety of heterogeneous agent

organizations which, together, are able to satisfy a higher percentage of the re-

quested tasks as compared to Organisation Ver0. Also task delegation requires

fewer hops, using this organisation, as the Head has knowledge of its Members

agents. In contrast, in the No Organisation model, the process of delegation and

of checking agents consumes the TTL value, and as a result more tasks will fail.

Both the No Organisation model and the Organisation Ver0 model yield a lesser

convergence evaluation in term of performance as compared to the Organisa-

tion Ver1 model. The reason behind the relatively good performance achieved

via Organisation Ver0 is that the organization structures in this model is based on

specific required accuracies (homogeneous organisations) whereby each Head of

these organisations has a specific required accuracy, and this may not match with

the required accuracies of many of the receiving tasks. This leads to the delegation

of the tasks to different organisations or, in other words, simply to the agents in

the receiving agents’ contact lists (if the TTL value has not yet been reached). This

behaviour is similar to that of the No Organisation model where task delegation

occurs only when agents are unavailable or have unpredictably dropped out. In

the latter model, there is no other, more efficient, strategy that can be followed in

order to deal with agent failure.

In Figure 5.6 b, increasing the number of agents to 500 and the failure prob-
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(a) (b)

Figure 5.6: ANETR for Network Size: 300 and 500 Agents With Failure Problem p: 0.9

ability to p= 0.9, resulted in more tasks being executed, especially via Orga-

nization Ver1. The latter can be explained by the fact that the probability of

finding resources for the requested task that match the issued required accuracies

is higher than in the other two models. However, with some of the higher re-

quired accuracies, it is still difficult to find the appropriate resources. In relation

to the Organisation Ver0 model, with the increase in the number of agents more

organisations were created but at a rate that was still unable to cope with the

accuracy requirements of the incoming tasks since the organisations were based

on the Heads′ specific required accuracies. This meant that the tasks lost more

of their TTL searching for an organisation that could match their required accu-

racies. In addition to this, due to the fact that each organisation had to comply

with its Head′s required accuracy, fewer agents were able to join more than one

organisation. Therefore, for some accuracies, the system performance dropped

down to even less than that achieved by the No Organisation model.
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Figure 5.7: ANETR for Network Size: 1000 Agents With Failure Problem p: 0.9

When the network size was increased to 1000 agents, all three models showed

better ratios than with the lower network sizes of (300 and 500) agents, as shown in

Figure 5.7. This can be understood as a larger network requiring more requested

tasks before it can benefit from the facility provided by the created organizations

in the event of agents being offline.
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(a) (b)

Figure 5.8: ANETR for Network Size: 300 and 500 Agents with Failure Problem p: 0.5

Figures 5.8 a, 5.8 b and 5.9 illustrate the runs of the system where the offline

probability has been set to 0.5 with different agent network sizes (300,500,1000).

On average, the ANETR increased for all the required accuracies for all the three

models, due to the reduction of the probability of failure. The highest ANETR is

still achieved by Organisation Ver1 with all of the network sizes presented. With

Organisations ver0, the consumption of the TTL within the emerged organisations

leads to worse performance as compared to that achieved by the No Organisation

model. These Figures show higher ANETRs compared to Figures 5.6 a, 5.6 b and

5.7.
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Figure 5.9: ANETR for Network Size: 1000 Agents with Failure Problem p: 0.5

(a) (b)

Figure 5.10: ANETR for Network Size: 300 and 500 Agents with Failure Problem p: 0.2
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Figure 5.11: ANETR for Network Size: 1000 Agents with Failure Problem p: 0.2

When the probability of an agent going offline is 0.2, the effects vary according to

the mechanism used. Using Organisation Ver1, generally, the performance of the

system increased and it demonstrated that it can effectively cope with the case of

agents being offline; this was due to it possessing agent organizations which can

satisfy high percentages of the requested tasks. In contrast, Organisation Ver0,

due to its construction criteria, shows negative effects in the same situation. It

cannot overcome the problems caused by having specific accuracies in its created

organisations; this leads to more failed tasks than even with the No Organization

model, see Figures 5.10 a, 5.10 b and 5.11.
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(a) (b)

(c)

Figure 5.12: ANSET for network of 300 Agents with Probabilities (0.2,0.5,0.9)

We also computed the Average Number of Successfully Executed Tasks (ANSET),

representing the system throughput within the cycles. This we did for network

sizes (300, 500, 1000) and with probabilities of failure of (0.2,0.5,0.9). Organ-

isation Ver1 executes more tasks as shown in Figures 5.12 a, 5.12 b, and 5.12

c. Organisation Ver1 executes more tasks than Organisation Ver0 and the No

Organisation model even when the probability values were increased: Organi-

sation Ver1 achieves higher throughput than the two other models. This means

that self-organising heterogeneous agents in organisations lead to increases in

the agents’ opportunities to accept more tasks and this situation enhances the

system’s performance.
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These experiments show that Organisation Ver1 is a more stable and effective

model than the Organisation Ver0 model. Furthermore, the use of Organisa-

tion Ver1 results in higher throughput across all the applied probability values

especially with a network size of 300 agents. This indicates that the Organi-

sation Ver1 model can result in a system with better performance when small

number of agents exists in the network. Increasing the network size showed

that Organisation Ver1 achieved more stable throughput than Organisation Ver0.

However, increasing the network size does not show the effectiveness of hav-

ing organisations, because the same number of tasks arrive are issued from the

customers i.e. we need to increase the number of customer tasks in each cycle

to demonstrate the better performance and usage yielded by the organisations

created in the system.
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A further experiment was conducted; this time, to show the differing num-

bers of emerged organizations which result from having differing network sizes

(300,500,1000 agents) but applying the same task distribution and setting param-

eters as per Table 5.1. The following explanation focuses purely on a network size

of 300 agents; this has been chosen as a representative case, as shown in Figure

5.13. Due to the poor performance results obtained from Organisation Ver0, the

explanation here is only concerned with Organisation Ver1.

Figure 5.13: Number of created organizations for 300 agent with different probabilities

Overall, with Organisation Ver1 and without agents going offline (normal

case, green colour), it is noticeable that the average number of organizations rose

dramatically in the first few cycles, then it levelled off at a point where there was no

demand to create more organizations for the remaining simulation time because

there were no critical issues (failures) and most of the agents were either busy and

their ATQ<W so they could accept more tasks or were not busy. With the presence

of the agent offline condition as governed by a number of different probability

values (0.9,0.5,0.2), the average number of created organizations increased steadily

with time and nearly followed the same trends in all the simulation time cycles.

Thus, the average number of emerged organizations decreased as the probability

of there being offline agents increased. Hence, with p=0.9 the system created
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fewer organisations (around 66), with p=0.5 it created around 90 organisations

and with a failure probability of only p=0.2, the number of created organisations

was about 108. Increasing the probability of failure makes the system unstable

and some agents become very busy. However this does not lead to the creation

of more organisations.

Increasing the number of tasks issued by the customer may lead to increases

in the number of emerged organisations. However, this number is bounded by

the size of the network, the triggering condition that declares an agent as the most

busy and as needing help from other agents, the availability of agents, and most

importantly, the fact that an agent can only be a Head for one organisation.

5.6 Chapter Summary

This chapter has presented the idea of using self-organisation techniques in or-

der to enhance task execution throughput and system performance. Two self-

organisation mechanisms have been presented: the homogeneous organisation

mechanism and the heterogeneous organisation mechanism. The organisations

emerged to manage the problem of agents being busy for long periods of time

– the condition that their ATQ become forms a trigger condition which initiates

the organisation creation process. Such agents will be considered the Heads of

the organizations, so they start to send multicast messages to other agents asking

the less busy agents to join in their organizations and provide services. In the

literature [5], it is reported that computational nodes may be underutilised and

not meet their full potential: i.e., they may be utilised or busy less than 5% of the

time.

We aimed to increase the agents’ resource utilisation by allowing an agent to

join more than one organisation (overlapped organisations). This lets us execute

more tasks and makes the system more resistant to failure. A comparative study

using a set of experiments has been conducted which shows the relationship

between these two mechanisms and the delegation protocol represented by the
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directed search which was presented in chapter 4.

Heterogeneous organisations demonstrated high performance in compari-

son with both homogeneous organisations and directed search. This is because

the emerged organisations consist of heterogeneous types of agents and a new

method for task execution and delegation was used with these organisations, as

presented in section 5.3 at the page 106. These factors enabled the tasks to be

executed and delegated inside the organisation instead of using agents’ contact

lists. Also, in the Organisation Ver1 model, agents have heterogeneous resources,

and this allows the organisations to accept and execute various different types of

tasks. This is in contrast with Organisation Ver0 where the agents are grouped

in organisations only if they have satisfied the Head′s accuracy requirements; this

leads to the creation of homogeneous organizations. This mechanism represents

part of the contribution of this work relating to task execution using organizations

of heterogeneous agents in distributed domains.

Another contribution is that the agent can enact various different roles in

the system. The fulfilling of this contribution requirement led to the creation of

Heads of organisations and Members both of which are service providers in the

emerged organisations. Agents can adopt more than one role due to the creation

of overlapped organisations. An agent can be a Member of one organisation but

the Head of another organisation. Hence, the system supports two roles: one is

the Head and the other is the Members, and both are service providers. This makes

our mechanisms unlike the proposals in other related works, [99] where agents

are able to join an organization only at specific times in their life time and have to

change their behaviour in order to join an organization and to match the sole role

that they have been requested to perform.

Further, we applied agent failure to networks using both of these mechanisms

as well as to networks using the delegation protocol described in chapter 4. As

we have mentioned before, in chapter 2, fault tolerance techniques for modern

distributed systems have been explored by many researchers. However, most of

the methods available for such dynamic and open systems are reactive techniques.

These types of technique provide solutions for node failure only after its occur-
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rence [100], one of the few exceptions is [101]. Here, we have implemented models

that use a self-organisation technique to manage and prepare the system for fail-

ure, before it occurs. This approach means that the customer tasks have a better

chance of execution even in the case of failure, due to the heterogeneous types

of agents which exist in the organisations. So, even if failed agents are present,

other agents may be able to accept and execute the tasks they would otherwise

have executed. As illustrated by the experiments, the model using heterogeneous

organisations outperforms the other two methods. In the No Organisation model,

the network performance was weak, as shown in the experimental results, where

the TTL value was frequently consumed. It is predictable that this issue can lead to

the loss of tasks and can affect the network performance. The implemented work

shows that the proposed protocols have delivered models that can cope with the

failure problem in distributed domains. This indicates that self-organisation is a

promising mechanism for improving task execution throughput in heterogeneous

systems that face random agent failure.
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Chapter 6

Henchman Task Recovery Protocol

6.1 Introduction

One of the most challenging problems in distributed systems is dealing with

agent failure; examples of complex systems where this is an issue are the Internet,

the World Wide Web and peer-to-peer networks [102]. Distributed systems are

heterogeneous, scalable and have to maintain the availability of their services even

in the presence of disruption. This means that supplying distributed systems with

fault tolerance is a very significant goal [6]. For instance, agents can fail and this

may mean that any action (s) or task (s) that such agents have taken on will fail to

be executed.

In chapter 5, we explored how agent organisations can limit the effects of

disruption, caused by agent failure, via a better mechanism than that which we

presented in chapter 4. An agent can decide to create organisations in order

to improve the number of executed tasks, to increase their own utility and to

make better use of their resources. Hence, we show that agent organisations

can be resilient to unexpected disruption which would otherwise significantly

affects a system’s performance. However, the occurrence of an organisation Head

failure still leads to have failed tasks. Head failure can also lead to consume the

TTL values as aMember in an organisation may delegate tasks to other Heads of
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organisations it has joined. Appropriate mechanisms are needed to handle Head

failure within organisations so that their functionality and effectiveness can be

maintained within these parameters.

We present a protocol for recovering from agent failure which occurs within

the emerged organisations, called the “Henchman Recovery Protocol (HRP)”.

This protocol has been added to the chosen self-organisation mechanism (which

uses heterogeneous organisations). This mechanism has been chosen because it

demonstrated higher task execution throughput than the other mechanism (ho-

mogeneous organisation). We have studied and analysed both mechanisms via

the experimental work described in chapter 5, and determined that this mecha-

nism is the better one.

The HRP enables the agents within an organisation of heterogeneous agents

to maintain task execution throughput and recover tasks in the event of agent

failure. We show how the protocol helps to maintain the efficiency of the emerged

organisations. This enhancement is a remedy for the situation where a Head agent

fails and its effect is to recover the number of tasks executed by the emerged

organisations.

6.2 Henchman Recovery Protocol (HRP)

This section describes the situation wherein we add the new protocol to the het-

erogeneous organisation mechanism. We have seen that the numbers of executed

tasks were increased to a greater extent by this as compared to homogeneous

organisations mechanism and we have demonstrated this effect with different

network sizes.

In the literature, especially in the network environment, there are some meth-

ods that can deal with fault tolerance similar to the HRP like the Master (MAS)

/standby server (SBS) model [103]. Either term will generally get the point across,

but theres some differences between them. HRP has structured organisations with

specific roles to the participating agents in the self-emerged organisation. This
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enables the HRP to react more effectively in term of fault tolerance.

In any of these organisations, the Head is the agent which is responsible

for distributing the tasks to its Members in the organisation, so that if the Head

fails, the tasks will also fail, and this will affect the performance of the system

as a whole and lead to the loss of more tasks. To avoid this loss of tasks and

enhance the performance of the system, an enhancement has been applied to the

heterogeneous organisation mechanism; a new role is introduced to the structure

of the emerged organisations. We suggest that this will assist the organisation to

provide an efficient service to the customers. This will be because agents having

the new role will detect the failure of their Head and then take the necessary action

to avoid losing tasks. The new role is a Head follower, called the Henchman; this

role is to be created in each organisation structure. As we have explained before,

the Head is the one which is responsible for distributing the tasks to the Members

of its organisation; when a Head fails, the role of the Henchman is to act as a

substitute to the failed Head, providing a further self-organised capability to the

system, maintaining the functionality of the emerged organisation. Each Member

has the ability to decide to accept a new role or to reject it. The following describes

the mechanism of the Henchman role.

The first stage of the HRP is performed during the runtime of the gossip

algorithm – by calling “BeMyHenchman”. Here, the algorithm which is used

for creating heterogeneous organizations has been applied alongside the agent

self-switching (on/off) capability. The gossip protocol has been modified. In the

previous chapter, we used a gossip algorithm whereby the Head sends a multicast

message to randomly selected neighbours, asking the agents to join its organisa-

tion and be its service providers. But here, in Algorithm 5, we have introduced

an improved usage of the gossip algorithm whereby the Head sends the multicast

message to all its directly connected neighbours to create the organisation. In

both situations, the decision as to whether to join or not, depends on the status of

the agents in terms of them being busy or not. The less busy agents are the most

likely to accept the invitation to join the organisation – in order to improve their

resource utilisation. If the Head′s message encounters a busy agent, that agent
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will merely pass the message on to other agents in the network. We believe that

this way of creating organisations will lead to a better utilisation of the system

resources.

Algorithm 5 Gossip Protocol Updated
Input: ai: is the most busy agent (Head) that will create an organisation, ax is one

of the ai contacted list neighbour, TTL > 0.
Output: ai completed organisation.

1: Cycle e
2: ai.SendMessage (Contactlist(1,N))
3: if ( ax ! = busy ) then
4: ax infected with the gossip message of ai
5: // ax has the option to join or not to the created organisation.
6: call “BeMyHenchman” to select an agent to be Henchman.
7: else if ( ax == busy ) then
8: ax.SendMessage (1,(N))
9: end if

10: if (TTL > 0) then
11: TTL = TTL − 1
12: end if
13: Cycle e + 1
14: End

6.2.1 Henchman Appointment in Organisation

In this section, we describe an appointment of the Henchman agent in an organi-

sation. The process is started by the Head agent sending out a message to the first

agent ai that joined the Head′s organisation, asking the agent whether it will agree

to be its (the Head′s) Henchman (HM). The Head will send the same message to all

the other agents that joined in sequence until one of the Members accept the Head′s

message and becomes the organisation’s Henchman. All the Members contacted

have the ability to take the decision either to accept or to reject the Head′s message.

After assigning a Henchman for its organisation, the Head has the responsi-

bility to synchronize its database DB with that of the Henchman; this contains the

contact details of the Members, and will, of every newly joined agent. This means

that the Henchman′s DB will always be maintained to be identical to the Head′s

DB. When the Head goes offline, the Henchman will immediately replace the Head

to maintain the functionality of the organisation.
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(a) The interaction process between the customers with Head

(b) The interaction process between the Henchman and the customers

Figure 6.1: Abstract system interaction using HRP

If the Henchman does not receive any acknowledgement back from the Head,

the Henchman will declare to all the other Members and the customer agent that

the Head has failed and the new Head is the Henchman; this is in order to redirect

the traffic to itself instead. When the Head recovers, i.e. the Henchman receives

an “I’m alive” messages again from the Head, the Henchman will instantly inform

the organisation Members as well as the customer that the Head is now alive and

the organisation should be back to its normal condition. This will be explained in

more detail in the Algorithm 6 called “Monitoring Head Availability”. However,

there is a small chance that a disruption will effect both the Head and its Henchman

at the same time. Here, if the customer agent sends tasks while this is the case,

these tasks will fail – until the Head and/or the Henchman return to an active state

after being offline for a random number of cycles. Figures 6.1 a and 6.1 b are

included to demonstrate how the system works, using the HRP.
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6.2.2 Monitoring Head Availability

After the assignment of the Henchman role to the desired Member agent, in Algo-

rithm 6, this Henchman will check the availability of the Head at random numbers

of cycles. At this point, the task messages received by the Head are automatically

seen by the Henchman in order to keep the Henchman continuously updated about

the customer’s CIDs.

Algorithm 6 Monitoring Head Availability Algorithm
1: while (true) do
2: Henchman.SendMessage (Head, “Are you alive.”)
3: Head.SendMessage (Henchman,“I’m alive”)
4: if (Henchman.SendMessage (Head, “Are you alive”)= f ail) then
5: // Redirect the customer and the Members to the Henchman.
6: Henchman.SendMessage (Customer, “Head has failed”)
7: Henchman.SendMessage (Members, “Head has failed”)
8: end if
9: if (Henchman.SendMessage (Head, “Are you Alive”)= success) then

10: // Redirect the customer and the Members to the Head.
11: Henchman.SendMessage (Customer, “Head is alive”)
12: Henchman.SendMessage (Members, “Head is alive”)
13: end if
14: // keeps on checking the Head, select a random cycles
15: cycle e=cycle e+Random(1, No cycles)
16: end while

6.3 Revised Organisation Structure and Roles

This section presents the structure description for the second layer (for heteroge-

neous organisations) above the existing agent network, after adding the Henchman

role into the emerged organisations.

Now every created organisation in the system has the following format:

Org = {Org1,..., Orgq}, where Orgp with 1 ≤ p ≥ q is the pth organisation in the

system; hence the elements in each organisation are:

Orgp = < OrgIDp, OrgHp, {a1,...ano}, HMp, Zp >, where 1≤ no ≤ Zp.
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• OrgIDp: a unique identifier for each organisation created.

• OrgHp: is the name of the Head of an organisation.

• {a1,...ano}: the participants in the organisation at a specific time.

• HMp: is the Henchman′s (follower’s) name for each organisation created.

• Zp: is the maximum size of each organisation.

The following are the updated principles of the Member′s role in the emerged

organisations, after adding the HRP.

• R i is a set of roles, < R1, R2, R3, R4 >

• The roles an agent may take on within an organisation are {Member, Henchman,

Head}, each agent may have one of these roles or more than one, depending

on a specific set of conditions.

• If Orgp and Orgq are two emerged organisations, then ai can belong to both

of them. In turn, any two or more organisations in the network can share a

number of Members, so an agent can have a number of different or the same

Roles: if the overlapped organisations are ( Orgp, Orgq):

(a) ai can be Member in Orgp, Member in Orgq.

(b) ai can be Head in Orgp, Member in Orgq.

(c) ai can be Head in Orgp, Not Henchman in Orgq.

(d) ai can be Henchman in Orgp, Not Henchman in Orgq.

• An agent cannot be a Head or a Henchman of more than one organisation.

• Agents may change their roles during runtime. When organizations start to

emerge, a Member of one organisation can be a Head of another organization,

a Henchman of another and a Member of yet another, or perhaps, for example,

a Henchman of one organization and the Head of a different organization.
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• The Head of each organisation is responsible for the activities of its agents.

The presence of a Head in an organisation of agents is necessary to coordinate

the work.

• A Henchman of an organisation can be a temporary Head when the Head of

its organisation has failed.

6.4 Task Recovery in Organisations

At this point, the task messages received by the Head are automatically also seen

by the Henchman – in order to keep the Henchman informed about the customers.

During simulation activity, when the Henchman checks the Head′s availability, in

a number of cycles which is randomly determined, the Henchman may detect that

the Head has gone offline, so the Henchman will then directly report this to the

customer side as well as to the other agents in its organisation. So, both sides

will send or receive the tasks to and from the Henchman instead of to and from

the Head while the latter is absent. During this time, the Henchman will also be

receiving tasks and trying to execute them: if it can do so within their required

accuracies and deadlines. If this is not the case, it will send such received tasks to

the Members of its organisation. After the Head returns to work, the Henchman will

inform the customer side and its organization’s agents that the Head has returned

and that they should redirect tasks to the Head again.

Sometimes there is a case, although the incidence is very small, that an

organization may lose both its Head and Henchman which leads the member

agents to lose their connections with the both. In such a case the system will take

the advantage from the created overlapped organisations. Hence, the Member will

send its task to the second Head; it will continue to do this for all the organisations it

has joined. If the task cannot be executed by any agent of any of the organisations

that a Member already joined, then it will act as if there are no organisations and

will delegate tasks to one of its neighbours which can comply with the tasks TTL

and deadline constraints.
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6.5 Experimental Set Up

In the following experiments, differing assigned values have been used to show

the differing statuses of the Head and the Henchman while the Head is offline as a

result of differing probability values. Table 6.1 shows the setting parameters which

have been used to set up the experiments, where (ND = Normal Distribution, and

(T and M) are given the values of the mean and the standard deviation; also H

= Head, HM = Henchman). The number of experimental runs which had to be

Agents Run Time Tasks Prob.offline(1) Prob.offline(2) Offline cycles
5000 5000 Normal distribution*T+M H=0.9 ,HM=0.6 H=0.6, HM=0.2 (2-5)HM+ Menber= (10-11)
2500 5000 Normal distribution*T+M H=0.9 ,HM=0.6 H=0.6, HM=0.2 (2-5)HM+ Member= (10-11)
500 5000 Normal distribution*T+M H=0.9 ,HM=0.6 H=0.6, HM=0.2 (2-5)HM+ Member= (10-11)

Table 6.1: Henchman recovery protocol setting parameters

carried out in order to obtain a reliable result was determined to be 10, and each

run took from 55 to 70 minutes, so in total it took more than 11 hours before we

could process the data and extract the relevant figures using the R tool software.

Results from the three models (HRP, Organisation Ver1 and No Organisation) are

shown in the figures below, the runs used the setting parameters are as shown

in Table 6.1. The simulation was run for 5000 cycles to produce the result for the

model using HRP and we were able to increase the network size=5000 and 2500

agents, and re-execute for 10 times with the setting parameter shown in Table 6.1;

the same process was undertaken for the other two models and with the various

network sizes already mentioned.

Equation 6.1 is to compute ANSET, the average number of successfully exe-

cuted tasks completed during the simulation cycles (ANSET).

ANSET =
1

NR

NR∑
i=1

x=2∑
x=0

|RVx−ARx| (6.1)

Where:

NR: thenumber of runs = 10.

RVx : the requested resources vector for the task.

ARx : the matched agent resources that performs task successfully.
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x = 0 to 2 : the index of the tuple that represent the requested resource vector <r1,

r2, r3 >.

The Figures below demonstrate the differences in the average numbers of suc-

cessfully executed tasks across each of the three models (HRP, Organisation Ver1

and No Organisation) and for different network sizes. With a network size of 5000

agents, our tests revealed that the setup with HRP, in comparison to the results

for the other two models, had a higher percentage of executed tasks across all

the different offline probability values (0.9,0.6,0.2); this result applies to all the

types of agents, whether Head, Henchman or Members, as shown in Figures 6.2 a

and 6.2 b. Also similar results were achieved with a network size of 2500 agents,

as shown by Figures 6.3 a,6.3 b. The same positive performance effect, resulting

from the use of HRP, was also encountered with a network size of 500 agents – in

comparison with the other two models. Further, with a network size of 500, it was

very difficult for the agents in both the (Organisation Ver1 and No Organisation)

models to cope with a non-zero failure probability as well as a very high number

of tasks issued from the customers in each cycle, as shown in Figures 6.4 a and 6.4

b.

The most noteworthy output in the depicted Figures is from the HRP model.

Clearly, having a Henchman within each organisation has advantages due to its

integrated roles: it is a temporary Head and also a Member. In addition, the fact

that there exists heterogeneous Members in the organisations plus the HRP means

that the organisation can effectively deal well with the presence of failure. This

demonstrates the idea that generating heterogeneous organisation structures and

imposing roles for the agents in the organisations will improve system perfor-

mance and throughput – because more tasks can be recovered.

The roles that have been created together provide a method whereby tasks

can be recovered. If the Head fails, then the Henchman can work as a temporary

Head, also, the Members have the role of accepting and executing tasks as well

as delegating tasks to the organisations that they are Members of. The Head can

access its Members to delegate tasks across the organisation while consuming less

of the TTL value, all these factors led to the good performance of the HRP model.
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(a) (b)

Figure 6.2: Average Number of Successfully Executed Tasks for 5000 agents and offline probability
0.9 and 0.6

Moreover, in the models (HRP and Organisation Ver1), even where no Members

are able to execute a task, this task would still have a chance of being executed

by being delegated to one of the neighbour agents. Thus, the Organisation Ver1

model has a performance which is in between that of the No Organisation model

and the HRP model, and this implies that even with the existence of the organisa-

tions, the model is still prone to lose tasks due to the high number of tasks issued

from the customer agent and the probability of agent failure. However, using

the Organisation Ver1 model, the system shows better performance than it does

when the No Organisation model is used, for all the network sizes and offline

probabilities which were presented to it. This is because the No Organisation

model depends only on task delegation via directed search when the receiving

agent cannot accept a given task. Hence, this is not an adequate solution, largely

due to the presence of agent failure.
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(a) (b)

Figure 6.3: Average Number of Successfully Executed Tasks for 2500 agents and offline probability
0.9 and 0.6

(a) (b)

Figure 6.4: Average Number of Successfully Executed Tasks for 500 agents and offline probability
0.9 and 0.6
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6.6 Comparison and Evaluation of HRP

In this section of our study, we compare the efficiency of the protocol that we have

suggested, HRP, and the heterogeneous emerged organisation structure with

the Master/standby fault tolerance server system [103]. In the master/standby

server system, both of the servers must be available from the beginning of the

network creation process, and the connecting link must be initiated by the Master

server which sends messages requiring acknowledgement to the standby server

so that this can indicate its availability. Thus, to create that scenario, but for our

organisations, in each organisation we have specified the Head to act as a MAS

(server) called the Master Head (MAH) and also specified another agent in the

organisation to act as a SBS called the Standby Head (SBH). The SBH will only

respond to the customer messages when the MAH of the organisation is down. In

our work, it is the Henchman′s responsibility to check the Head availability through

the heartbeat messages. In addition, the organisation structure (Head, Henchman,

Members) with its roles leads to the emergence of self-organised groups that can

overcome the failure issue, as explained in subsection 6.3 above, this is unlike

the MAS/SBS method whereby the SBS can only switch to active mode when

the MAS has failed. This experiment has been implemented with the setting

(a) (b)

Figure 6.5: Comparison Between Henchman Recovery Protocol and The Master/standby
Server,with network size 500 and probability 0.6 and 0.9
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parameters that have been presented in Table 6.1 for task distribution, and the

various offline probability values (0.9, 0.6, 0.2) have been set for the agents (Head,

Henchman, Members). Two network sizes have been used, 500 and 5000 agents, for

the purpose of verifying our system as shown in Figures 6.5 a and 6.5 b. When the

HRP system and the Master/standby server system had the probability of failure

set at p = 0.6, the HRP demonstrated a slightly higher number of executed tasks

in each cycle than did the MAS/SBS approach. Increasing the value of failure

to p= 0.9, increased this difference in favour of HRP. This is because, in our

scenario, the Henchman has a role in the self-organisation process whereby it acts

as a Member which can receive and execute tasks as well as a follower of the

Head of the organisation. In contrast, in the MAS/SBS approach, the SBS is only

a backup server and is only turned to active mode when the MAS has failed.

Increasing the network size to 5000 agents, as illustrated in Figures 6.6 a and 6.6

b, results in the HRP demonstrating that it can provide the network system with

a self-organisation capability which leads to an enhancement in the number of

executed task, over and above that achieved by the MAS/SBS approach.

(a) (b)

Figure 6.6: Comparison Between Henchman Recovery Protocol and The Master/standby Server,
with network size 5000 and probability 0.6 and 0.9
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6.7 Chapter Summary

This chapter has mainly focused on describing a new technique we have imple-

mented and tested for dealing with Head failure within heterogeneous emerged

organisations. We have provided the emerged organisations with a protocol

which is integrated into their structure. A new role has been added as a result

of deploying this new protocol, HRP. We have highlighted the importance of

solving the disruption problem using a self-organised multi-agent system as well

as of providing a solution in which organisations emerge without the requirement

for central control. We have managed to demonstrate the HRP as a remedy for the

disruption problem within multi-agent systems. The purpose of the Henchman

agent is to maintain the functionality of the organisation and its effectiveness in

the case of the failure of the Head. Monitoring the availability of the Head by the

Henchman is achieved via a periodic message which is sent by each Henchmen to

the Head of its organisation. The experimental work demonstrated that the HRP

is a reliable solution for a self-organised system. Moreover, we have compared

HRP against the Master/standby server system [103]. Our suggested system per-

formed better in terms of the number of successfully executed tasks in each of the

simulation cycles. The test was carried on two different network sizes: namely,

500 and 5000. In the next chapter, we explore dynamic organisations that may

face permanent agent failure and how tasks can be executed in such a dynamic

environment in a way which leads to the maintenance of the service level to the

customers. Furthermore, we study the organisation formation structure’s stability

in the circumstance of new agents joining and existed agent failing.
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Chapter 7

Agent Failure in Dynamic

Organisations

7.1 Introduction

Self-organising agents can be considered a reliable platform for deployment in

various autonomic computing systems because such agents can provide these

systems with the ability to manage themselves [104]. Deploying self-organising

agents in dynamic and distributed systems leads to the evolution of new structures

in such systems which can enhance task execution and delegation due to changes

in the structural relations between agents; these may lead to better performance.

Real world networks can consist of multiple-layers, all of which can be af-

fected by unpredictable changes (disruptions) in their structure [105]. Dynamic

systems can be changeable over time – i.e., an agent may unexpectedly fail, or

a new agent may join in; at such times, the ability to continue to deliver the re-

quested customer services may be very critical. In our scenario, the environment

can receive parallel and distributed messages (tasks) in each cycle. The customer

agent is the part of the system that sends messages which contain customers’

tasks to be executed by randomly selected agents in the network. Also, service

provider agent may fail at any cycle while it is of active status, leading to the loss
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of its assigned tasks. An agent failure will almost certainly affect the stability and

performance of the network.

In chapter 6, we presented the HRP as a recovery protocol which can be

deployed in the heterogeneous organisation formations to enhance the organisa-

tions’ performance and minimize the effects of the agent failure problem.

In this chapter, we explore dynamic organisations that may face permanent

agent failure and how tasks can be executed in such a dynamic environment

in a way which leads to the maintenance of the service level to the customers.

Furthermore, we study the organisation formation structure’s stability in the

circumstance of new agents joining which may lead to the creation of a new set

of connections within the organizations or the new agents presence may result in

the emergence of new organisations.

7.2 Abstract scenario

Agents are autonomous and have their own decision making behaviours. An

agent may decide to join more than one organisation and this ability varies from

agent to agent. In relation to working in a dynamic environment, we have in-

vestigated the tolerance to failure of dynamic organisation systems and we have

created three different models: the first is a model representing a straightforward

network of agents; the second model implements a virtual layer of heterogeneous

organisations which provides a self-organised multi-agent scheme and the ap-

plication of roles and protocols for the agents; and the third is the Henchman

Recovery Protocol, HRP, model. The following explains further:

• Agents are autonomous and hold heterogeneous types of resources. Each

agent in the system has been designed so that it has its own accepted-task

queue.

• An agent or multiple agents may fail randomly and permanently. In such

cases, the failed agent’s profile will be removed from the system. Agents in
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the network are connected to a number of neighbours. An agent can detect

other failed agents through the task delegation process. When an agent

delegates a message to another agent, if it does not receive any feedback

from that agent for a number of cycles, then that agent will be considered

failed. Therefore, the sender agent will delete its contact information related

to that failed agent. The failure problem can lead to the loss of agents and

leave a number of agents suffering from a lack of connections. Hence,

the network could eventually collapse and, indeed, gradually disappear.

However, new agent(s) may appear to make up for the lack of agents in the

system and so restore system performance. A new agent will send messages

to randomly-selected other agents – to obtain at least partial knowledge of

its surrounding environment – and start to connect with them. When a

receiving agent, in this model, cannot execute a customer task, it will use

just the delegation protocol in order to acquire assistance for the satisfaction

of the requested task’s required resources with the attached accuracies and

Time To Live (TTL) values as requested by the customer.

• The second model is called the heterogeneous organisational model. Agents

within any of the organisations which have been created may fail. This

model consists of two layers; agents may participate in organisations. The

failed agent could be a Head or a Member, if it is a Head, then when the

Members wants to send messages to the Head and there is no response from

the Head after a number of attempts, the Members will consider the Head

to have failed. For the other way around, when a Member agent has failed

the Head will detect this after a number of attempts at sending a messages;

in this latter circumstance, the Head will remove that Member from its DB.

To maintain the stability of the emerged organisations in the face of agent

failure problems, new agent(s) will be injected and may accept roles inside

one or more organisations and/or create a new organisation.

• The third model we have used is one which includes the Henchman Recovery

Protocol, HRP; this is, in fact, the same as the second model except for the

addition of an HRP in each organisation. All the above descriptions are

applicable in this model as well. But, in addition, if the failed agent is one
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which has a Henchman role in one of the existing organizations, the Head

will remove it from its DB and the Members DBs will be informed by the

Head that the Henchman is no longer functioning. The Head agent will then

use the algorithm, “BeMyHenchman”, as described in chapter 6, in order to

obtain a new Henchman for its organisation.

• If both the Head and then the Henchman of the organisation have failed,

the organization will have neither a Head nor a Henchman, and in such

cases, when the Members want to access them by sending messages they will

receive no reply, and after a number of attempts the Members will consider

the organisation to have disbanded.

• Each task requires a random set of resources; these may be different from one

task to another. Each task should be completed within a specific deadline,

DL. If task Ti has not completed successfully by time DL, this means that

agent ai has failed during the execution time, and the received task’s DL is

also considered to have been exceeded. Sometimes tasks have failed because

there was no agent available to execute the task within the DL – because

either the agents were all busy executing tasks and/or their accepted task

queues were all full or task Time To Live TTL value has expired.

7.3 Recovery Mechanisms in the Created Organisa-

tions

Agents in the organisations are prone to fail at any cycle, and once they have

failed they are no longer available to the system. A suitable process is required in

order to prevent the organisations from collapsing and to demonstrate how the

organisations can cope with such failures and how agents must work with and

respond to environmental changes. So, the failed agents could be Head, Member,

or Henchman, and their failure will be detected in the following ways:

• If the agent is a Member, then its failure will be detected by the Head and the
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Head will remove the failed agent from its DB and inform the Henchman to

do the same.

• If the agent is a Head, then the Henchman will detect that and stand-in as a

temporary Head.

• If the agent is a Henchman and the Head has other Members, then the Head

will send messages to its Members asking them to be the new Henchman.

But if no agent is able to comply then the organisation will have to depend

solely on the Head.

• If the Head and the Henchman have both failed, then the organisation will

disband. And this means that the Members will have detected the failure

after a number of failed attempts to access the Head and the Henchman.

Furthermore, introducing a new agent will also affect the stability of the

organisation’s structure. New agents may try to join the available organisations,

depending on their decision as to whether to cooperate with these organisations

or not. Later on, a new agent may become one of the most-busy agents and

therefore take on a role: i.e., it may satisfy the trigger conditions for creating its

own organisation and so become the Head of this organisation. Another possible

role is that the new agent may receive an invitation message from an existing

Head to perform a role: this role could be that of Member, initially, and after it has

accepted such an invitation, it could be then asked to become a Henchman.

7.4 The Experimental Work

We have developed three models which all use the setting parameters, as in 7.1. In

relation to these three models, we have shown the results of various network sizes,

task distributions (the task distribution is used to specify the number of tasks sent

from customer to the network of agents in each cycle) and simulation times. For

all of the three models, the number of tasks sent from the customer agent follows a

normal distribution with specific values for the mean and variance. In this work,
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we have found that we need to increase the number of simulation cycles used in

order to give the self-organisation process represented by organisation Ver1 and

HRP more time to demonstrate better outcomes. However, in the interests of a

fair test, we needed to increase the simulation time for all of the three models,

hence, the simulation time was set at 7000 cycles.

Table 7.1: Experimental Setting Parameters

Agent Network Size Task distribution Simulation Time
500 Mean=1000,variance=10 7000 Cycles

2500 Mean=1000,variance=10 7000 Cycles
5000 Mean=1000,variance=10 7000 Cycles

Figures 7.1 and 7.2 show the average number of successfully executed tasks,

ANSET, within the cycles, for each of the three models which have been imple-

mented. Note that the two models (Organisation Ver1 and HRP) have a specific

structure in terms of their organisations and also have graduated responsibilities

for their agents: agents have different roles(Head, Henchman, Member). However,

the roles of agents may change over the simulation time and agents disappear

and new agents appear; these changes will affect the execution of tasks and the

system’s ability to schedule tasks.

The No Organisation model consistently delivers lower numbers of success-

fully executed tasks over the simulation time (than the other two). So, using

this model, the system loses a significant number of tasks due to frequent agent

failures and the restrictions imposed by the messages’ Time To Live (TTL) and the

tasks’ deadlines. In this model, the resources are distributed and the delegation

for the task message may take more time to reach a desired agent that can accept

the task. Hence, the other two models, Organisation Ver1 and HRP, show better

performance; in these cases, fewer hops are required in order to find agents which

can accept the tasks because, even though there is a probability of failure, the or-

ganisations are created with heterogeneous resources and therefore, in the event

of failure, other agents are readily available to execute the tasks. The ANSETs

of these two models fluctuate due to the presence of the probability of failure,

which causes disruption in the system such that agents will start to fail inside the

created organisations leading to significant changes in the execution rates of the
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Figure 7.1: Average numbers of successfully executed tasks computed across 7000 simulation
cycles, p= 0.9

tasks. The No organisations model shows a smaller percentage of variation in its

ANSET as compared to the other two models. It is clear that the No Organisation

model executes tasks within the same ranges of time, on average, in each and

every simulation cycle. This is because the model contains no structure and new

agents may connect randomly with other existent individual agents. Where the

task may be executed is dependant only on delegation across the entire network,

and this quickly consumes the tasks’ TTL values. Hence, the Organisation Ver1

and HRP models perform better on average than does the “No Organisation”

model.

In Figures 7.3 a and 7.3 b., it is noteworthy that, with increases in the network

size, the system activity becomes more stable, showing less fluctuation in the

ANSET values than in a network size of 500 agents. Even in the presence of

significant numbers of failures, the HRP model achieves the highest average

number of successfully executed tasks. This is because, first, the higher the

number of agents in the system the more organisations can be created with a
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Figure 7.2: Average numbers of successfully executed tasks computed across 7000 simulation
cycles, p= 0.6

greater variety of resources. Second, when failures occur in the system, there are

other agents which are able to join the network structure and so can also join the

existing organisations.

The same explanation is applicable to 7.4 a, and 7.4 b, where increasing the

network size leads to there being higher numbers of tasks executed within the

simulation cycles: the ANSET is more than with the other two network sizes (2500,

500). In models Organisation Ver1 and HRP, the created organisations consist of

a large number of heterogeneous agents, so even with the failure of an agent

the Head will probably still able to find a Member that can satisfy the required

resources. Moreover, the existence of the Henchman in the HRP has added benefit

to the system.
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(a) (b)

Figure 7.3: Average numbers of successfully executed tasks computed across 7000 simulation
cycles, p= 0.9 and p= 0.6

(a) (b)

Figure 7.4: Average numbers of successfully executed tasks computed across 7000 simulation
cycles, p=0.9 and p=0.6

Figures 7.5 a, and 7.5 b show the HRP model which has been used to demonstrate

the number of failing agents in the system with a network size of 5000 agents.

The figures show that the number of failing agents is between 135 to 187 (nodes)

every 50 cycles – with a probability value of 0.9. With a probability value of 0.6 the

number of failing nodes is between 55 to 87 – also every 50 cycles. In Figure 7.5 a,

the average number of failing agents is between 3.0 to 3.5 every 50 cycles. Hence,

in the latter case, the number of failures in the environment can be considered

very small in relation to the size of the network. Also, a large number of emerged
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(a) 5000 Agents,p=0.9 (b) 5000 Agents,p=0.6

Figure 7.5: Average numbers of Failed Agents computed across 7000 simulation cycles, p= 0.9
and p=0.6

organisations is demonstrated here which means that the failures have less effect

on the system. This shows the advantages of using the HRP model: it leads to

good system performance. The same explanations are also applicable to Figure

7.5 b with a probability p = 0.6.

150



7.4. The Experimental Work

7.4.1 Evaluation HRP Model

We have attempted an empirical comparison between HRP with other methods

from the literature. The results from the HRP model with network sizes (500,

2500, 5000) were compared against the master-standby system [103]. The Master

(MAS)/standby (SBS) model is a fault tolerance model in which the system has two

servers. The first one is called the MAS and all the clients are connected to it. The

second is called the SBS – the clients are only connected to this when the MAS has

failed. Furthermore, there is a checking message transmitted between the MAS

and the SBS which enables the SBS to switch to active mode and serve the clients’

requests in place of a failed MAS. We have implemented this architecture within

our simulation set-up, and the results are depicted in the following Figures:

(a) (b)

Figure 7.6: Average number of successfully executed task ratio in/out organisations with proba-
bility p= 0.9 and p= 0.6

In Figures 7.6 a, and 7.6 b, we have computed the number of executed tasks

ratio, ANETR, in relation to the following: various different required accuracies;

execution inside and outside of organisations; a network size of 5000 agents;

and two probabilities of failure – 0.9 and 0.6. As shown, a network where HRP

operates within organisations outperforms the MAS/SBS model. This is because

the MAS/SBS model depends for its operation on its delegation process, and a

smaller number of tasks have been executed inside its organisations as a result of

the fact that this model has no structural roles such as those in the HRP model’s
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organisations. Members inside the organisations have roles and they can delegate

tasks to the Head′s of organisations that they are part of. Also, the Head and the

Henchman of an organisation each have a significant role to perform within it.

However, in MAS/SBS the nodes delegate tasks to other nodes in the emerged

organisations, and if no agent can accept the task the task will be delegated across

the network which consumes its TTL values.

(a) (b)

Figure 7.7: Average numbers of successfully executed tasks computed across 7000 simulation
cycles, p= 0.9 and p= 0.6

Figures 7.7 a, and 7.7 b show that the HRP′s performance has been effected by

the agents which have failed within the organisations, but on average the ANSET

is higher than that yielded by the MAS/SBS model server. The HRP model with a

network size of 500 agents showed a fluctuation in its ANSET because of losing the

agents with roles in the organisations – which affects the system performance. The

ANSET from the MAS/SBS model is almost the same as that of the No organisation

model because it uses the delegation across the network.

Figures 7.8 a, 7.8 b, and 7.9 a, 7.9 b, show the models’ performance, in terms

of ANSET, within the simulation cycles. It is clear that the HRP model performs

better than the MAS/SBS model in terms of task execution throughput. The sys-

tem performance increases when the network size increases to 2500 and then 5000

agents. The HRP demonstrates, on average, a better performance in each cycle

than the MAS/SBS model. This is because, in our scenario, the Henchman has a

152



7.4. The Experimental Work

(a) (b)

Figure 7.8: Average numbers of successfully executed tasks computed across 7000 simulation
cycles, p = 0.9 and p= 0.6

role in the self-organisation process where it acts as a Member that can receive

and execute tasks as well as being a follower to the Head of the organisation. In

contrast, in the MAS/SBS approach, the SBS is only a backup server and is only

switched to active mode when the MAS fail. Moreover, in relation to both prob-

abilities of failure and also in relation to all the various network sizes, the HRP

demonstrates better performance.

(a) (b)

Figure 7.9: Average numbers of successfully executed tasks computed across 7000 simulation
cycles, p= 0.9 and p= 0.6
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We now present the amount of message traffic that each of the four models

generates during their simulation cycles in order to demonstrate the amount of

TTL usage for each model. The message traffic information presents the TTL

value which is attached to each task. We have computed the TTL values for each

task which is transferred via messages within the environment. To compute the

traffic in the network, MsgTra f f ic, the following formula has been used:

MsgTra f f ic =
NoMsgs

TRT×TTL
×100 (7.1)

Where:

NoMsgs: The accumulated number of messages in the network for all the received

tasks.

TRT: The total number of received tasks.

Figure 7.10: Message Traffic in the implemented Model 7000 simulation cycles, 500 agents, p=
0.9

Figure 7.10 shows that the TTLs’ usage reached its highest, on average, in the

No Organisation model due to the higher number of hops that the messages took
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in order to be executed; the second highest TTL usage resulted from the adoption

of the Master/standby server model. In contrast, using the models Organisa-

tion Ver1 and the HRP model, the traffic is significantly less. This is because the

latter two models contain organisations that, due to their structures, use fewer

numbers of hops to traverse the agents which are within them. In addition, the

HRP model uses even less message traffic than the Organisation Ver1 model. This

is because the Henchman of an organisation will work as a Head in the case of the

Head′s failure, so tasks can still be executed within the organisation and do not

need to be delegating across all the agents in the network. So, the existence of

the HRP in each organisation leads to a decrement in the TTL usage beyond that

achieved by the use of the organisation model only.

Figure 7.11: Message Traffic in the implemented Model 7000 simulation cycles, 2500 agents, p=
0.9

Figures 7.11 and 7.12 show that the increases in the network sizes to 500 and then

5000 lead to the production of less traffic in all the four available models (No

Organisation, Server/standby server, Organisation Ver1, HRP): Figure 7.10. In

the Organisation Ver1, and HRP models, the traffic in the system is less than the
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traffic produced by the No Organisation and MAS/SBS model because less of the

TTL value was used to reach agents which could accept and execute tasks – due

to the organisational structure present in these two models.

Figure 7.12: Message Traffic in the implemented Model 7000 simulation cycles, 5000 agents, p=
0.9

7.5 Chapter Summary

This chapter focused on studying the creation of open and dynamic agent or-

ganisation formations which can provide services to requesting customers in the

presence of failure. In chapter 6, we presented the HRP to minimize the effects of

the agent failure problem. However, in this chapter, the motivation is to explore

agents in organizations when they are prone to permanent failures such as occur

in any distributed environment. This can lead to the loss of tasks and to de-

creases in the effectiveness and utilisation of agent networks. We have presented

a framework whereby agents and organisations can be counted on to provide

remedies which can avert these kinds of disruptions. Our aim was to deploy the

Henchman Recovery Protocol. HRP, within each organisation; this is a viable solu-
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tion for maintaining the functionality of the organisations. After that, to preserve

the stability of the emerged organisations, new agents will be injected into the

environment to create new connections (and so the organisation structures may

change). Weeding out failure from distributed systems is not something that can

be done automatically on a totally predictable basis, and the problem presented

by failures requires sound theories and efficient solutions that can be applicable to

critical domains in order to maintain their stabilities [106], [5]. Grid computing is

the target domain for this work because it can provide researchers with a suitable

environment in which to apply our virtual organisations as well as in which to

study node failure. Our solution is to apply a heuristic protocol, HRP, in order

to recover customer tasks and preserves the organisations’ formation structure.

HRP has been shown to have a more acceptable performance as compared to the

MAS/SBS model. The existence of roles inside the heterogeneous organisations

plays an important role in the self-organisation of the systems and provides a pro-

active technique for dealing with failure. The experiments have shown that the

HRP produces fewer traffic messages than the other models: (No Organisation,

Organisation Ver1, MAS/SBS).
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Chapter 8

Conclusion and Future Work

8.1 Conclusions

For systems that are dynamic and complex, there is often no straight forward

mathematical equation which is able to solve them. In such circumstances, sim-

ulation can be the best approach for estimating the likelihood of various out-

comes [107]. This work has aimed to address some of the challenges and limita-

tions associated with dynamic, open and distributed network systems and most

particularly those relevant to the field of grid computing. We have used the

Repast Simphony simulator for these purposes. Here, we have provided meth-

ods which preserve system functionality by maintaining, in the presence of node

failure, network/system effectiveness. Furthermore, we have studied the effects

of node/agent failure within the environment in question, and addressed how to

minimize these effects on the network and on customers’ tasks execution. We

have designed a number of models in order to study and analyse various out-

comes resulting from the failure problem; these models helped us to adopt the

necessary solutions. The novelty of our approach lies in suggesting a number of

mechanisms and protocols for distributed environments. Agents in the network

possess various statuses such as busy, not busy or failed; the latter was included

in order to represent a dynamic environment in which a fault tolerant solution

is essential in order to recover customers’ tasks – as demonstrated in chapter
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4. Where customer tasks cannot be executed in one hop, the resources used in

distributed systems are heterogeneous and can be shared in order to speed-up

services provision and maintain the quality of service to the users. Therefore, a

distributed task delegation algorithm has been utilized, and within this a directed

search algorithm has been implemented – to distribute the customers’ tasks across

the network according to agents’ statuses. In the presence of failure, the system

has shown that, to some extent, it has the ability to provide the customers tasks

with the requested services.

The problem of failure needs to be met with effective techniques for min-

imising its effect on the adequate accomplishment of the customers’ requested

tasks. Thus, we have investigated self-organisation/self-healing methods which

are appropriate to multi-agent systems. We have presented a number of self-

organisation algorithms in chapters 5, 6 and 7 which are based on the gossip

protocol concept: organisations emerge, i.e., organised groups of agents are cre-

ated. These are either heterogeneous organisations or homogeneous organisa-

tions, and these helps to avoid the disruptions that could otherwise occur over

the simulation time and recover customers’ tasks. Here, we have preferred the

heterogeneous types of organisation; these are unlike the organisations found

described in some works in the literature – which are concerned with creating

homogeneous organisations [14].

The use of this heterogeneous type of organisation has resulted in an enhance-

ment in the performance of our example system – in terms of raising the average

number of successfully executed tasks and the average number of tasks executed

in each cycle. Also, we have created here a new self-organisation protocol, which

we have termed the Henchman Recovery Protocol (HRP). This introduces a new

role within the self-organisations. Each Head will try to find a Member that ac-

cepts the role of follower or Henchman. The Henchman helps in preserving the

services delivery effected by the emerged organisations. In addition, the findings

suggested that permanent agent failure was another situation which we should

analyse and attempt to solve in order to try to minimize its negative effects on

environments. For this scenario, we have implemented algorithms which address
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the problem of permanent failure. In the following sections we will present the

strengths and limitations of the methods involved. After this we will make some

suggestions for future work.

8.2 Contributions Summary

This study contributes to the research which has been undertaken in regard to

dealing with task recovery when disruption occurs within distributed environ-

ments. The first contribution we made was the design of a framework in which to

deploy a multi-agent system and thus to make beneficial use of the autonomous

agents’ behaviour. This work aimed at using agents with heterogeneous types of

resources as the nodes of the network. The network can benefit from autonomous

agents in order to increase its functionality and performance. An agent can com-

municate with, and be contacted by, the surrounding environment only via its

contacts. We demonstrated that agent/node status may vary: a node may be busy,

not busy or failed. It should be made clear that we have deliberately focused on

these particular status, here, as they represent the ones most frequently encoun-

tered; there are other node/agents’ statuses such as pending and running (these

are taken to mean busy for most intents and purposes). In addition, the status

“lost node” is taken to mean the same as “failed agent” by the recovery processes.

Moreover, we have provided a new delegation protocol based on directing

the task messages across the network; in this new delegation algorithm, a directed

search based on the use of agents’ statuses to direct the messages is used. This

has been compared against the random search algorithm and has demonstrated

better performance than the random search. The “failed” status can affect the

task delegation process: e.g., if the receiving agent cannot execute a task, then

it will try to delegate this to one of its neighbours; if that neighbour does not

respond within a certain number of cycles, the original agent will try to delegate

the task to another neighbour and then after a number of such agent delegation

attempts, the task will fail because the TTL value associated with it will have been

reached. However, a directed search algorithm which is based on checking the
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agents’ statuses first has demonstrated the ability to perform a higher number of

customers’ tasks, as compared to the random search algorithm. This was the first

of our solutions that we put to the test; it has been shown that directed search

results in better outcomes.

One of the most interesting ideas to come to light as a result of this research

was that of prompting a network to cause virtual structures called organisations

to emerge from the network environment as a second layer. Hence, we are

enabling, through the use of various protocols and mechanisms, the emergence

of organisations to support the effective operation of the network. This was one

of the solutions that we have presented for the enhancement of task execution

in distributed environments. The forming of organisations means that a task

message will take fewer hops before it is executed by a receiving agent. Triggering

conditions have been set which result in the creation of organisations. These are:

an agent is currently busy, has just received another task from the customer

and its accepted task queue contain tasks. These triggering conditions result

in the creation of an organisation and the enacting of roles by agents. Thus, the

original agent, by default, becomes the organisation’s Head, and subsequently any

agent which accepts the Head′s message to join-in its organisation will become a

Member. Thus the self-organisation or self-healing technique helps to maintain

the environment’s efficiency even when disruption occurs without any outside

intervention. Since the arriving customer tasks request various values in terms

of required accuracies, in this research, both heterogeneous and homogeneous

organisation models have been explored and we have compared these two.

The contribution here is that the roles are a result of the triggering conditions.

The most busy agent becomes the Head of an organization and then sends a multi-

cast message to other agents in the network inviting them to join its organization

and provide services. Hence, the system contains two roles one is Head and the

other is Members. In other related work such as [99], the agents are able to join

an organization only at a specific point in their life time and must change their

behaviour to join the organization and match the requirements of the requested

role. The experiments we have carried out have shown that a system which in-
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tegrates heterogeneous organisations produces a greater number of successfully

executed tasks than a system which includes only homogeneous organisations.

This is because having more than one type of agent, in terms of resource types,

in an organisation means that various required accuracies (associated with tasks)

can be satisfied. Also, this situation will help to reduce the impact of having

failed agents inside the organisation. In contrast, in homogeneous organisations

the process that enables agents to join an organisation is based on a matching

between the agents’ resources and the required accuracy that has been specified

by an organisation’s Head. This requirement means that all the Members can sat-

isfy only one specific type of required accuracy while the arriving customer tasks,

as mentioned above, request different values for their required accuracies. This

means that not all tasks can be executed by a homogeneous type of organisation.

Another important achievement of this study is the development of what

we have termed the “HRP”. The idea here is to stop Heads of the organisations

from losing tasks. This is done by deploying a Henchman Recovery Protocol,

or HRP. The function of the Henchman in each organisation is to monitor the

Head′s availability via a heartbeat algorithm. The HRP facilitates the recovery of

customer tasks when a Head fails. This is demonstrated in the experimental work.

Our experimental work has shown that the existence of roles (Head, Member,

Henchman) in a self-organised environment can improve system utilisation and

performance as compared to that achieved by another approach described in the

literature [103], the master/standby server approach, when dealing with fault

tolerance in a distributed system. Different probability values for failing have

been tested with different network sizes in order to implement the master/standby

server: the standby server only operates when the master server has failed. The

main contributing factor to the relative success of the HRP is the ability of the

Henchman agent to monitor the Head and process tasks whenever the latter cannot.

This produces an improvement across all the required accuracies and network

sizes. Also, an organizational structure which includes the main roles (Head,

Henchman, Members) leads to the emergence of self-organised groups which can

overcome the random failure issue. HRP thus contrasts with the master/standby
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server method whereby the standby server can only switch to active mode when

the master server has entirely failed.

In this thesis, we have also explored permanent agent failure by designing

three models. We have developed a network model, an organisations model

and an HRP model. These models have each been presented with permanent

agent failure which is made to occur using random values. The experimental

work has shown that the viable solution among these models, for maintaining the

functionality of the environment, is the Henchman Recovery Protocol HRP model,

whereby the HRP is maintained within each organisation. A further feature which

has been implemented within the system is the injection of new agents into the

environment to maintain the stability and the services provided by the emerged

organisations. Moreover, we have compared our work to that achieved by another

approach described in the literature [103].

Some areas of improvement in regard to this work are: (1) in terms of the

description of the resources in the simulated models, it might be better to find

another method to represent the semantic resources (e.g., by implementing them

via a real-world representation such as one using Ontology); (2) another limitation

is that, due to lack of resources, we could not apply the proposed work on a real

grid system; (3) in chapter 7, an improvement to the implemented work is to find a

new method that provides the system with the ability to deal with the probability

that a failed agent may return back to active mode.

8.3 Future work

In this thesis, we have highlighted the agent failure problem as it occurs in dis-

tributed environments and its effect on task execution, and we have suggested

a number of heuristic solutions to this problem. However, there is always the

possibility that other approaches can be looked at which may increase a system’s

ability to survive; these approaches would constitute further research. One such

avenue is to extend our design so that it can act as the basis of a normative system.
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The roles of Head, Henchman and Members can be extent by adding a number of

rules for their behaviour ; this would be the first attempt to create a normative

system, wherein these rules could include obligations and permissions in regard

to the Members, and by which the Heads of the organisations will apply either

encouragement to their Members by increasing their utility, or sanctions, if they

are not committed to the Head’s organisation.

Another avenue would be to attempt to design hierarchical organisations,

because such an attempt might be useful for determining the type of organisa-

tional structures which are appropriate to such an environment. Studying such

structures might help to determine which are optimal – by comparing between

hierarchical network designs and the self-organisation design used in our model.

In term of further work, more research would be beneficial if an organisation

can have both abilities to self-heal from failure that has been explained in chapter

6 and permanent failure that has been explained in chapter 7.

Another possible technique could be used alongside the organisation models,

instead of HRP: the Members of the organisation could be the ones that invoke the

algorithm for checking the Head’s availability – checking the Head′s in random

cycles. If this were done, when a Head fails, a voting algorithm could be used

by the Members to decide which one of them will be selected to be the new

organisation’s Head. Their preferences for selecting the new Head would be based

on the various candidates’ utility values and/or on using only the most busy

Members to participate as candidates while other Members would be voters. After

this, the agent with the highest number of votes would act as the Head of the

organisation.

Another direction for further investigations, in relation to the HRP model, is

the idea of a leadership competition between the Head and the Henchman. This

would be to see which one of them was more suitable for the leadership role. For

example, if the Head has been offline more frequently, then the Henchman could

undertake the leadership role and exclude the Head. Another idea, for the case of

Henchman failure, is that the organisation could determine that it needed another
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Henchman: i.e., an organisation could be constructed with a Head, Members, and

dual Henchmen.

We think that our work is more generic than the fact that our design operates

within the application layer implies. We hope that we can integrate it as a service

in the grid middle-ware; this will be our next step.
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