
Automatic Game Parameter Tuning using General Video Game Agents

Kamolwan KUNANUSONT

A dissertation submitted for the degree of Master by Dissertation

in Computer Science

School of Computer Science and Electronic Engineering

University of Essex

April 2018

iii

Declaration of Authorship
I, Kamolwan KUNANUSONT, declare that this dissertation titled, “Automatic

Game Parameter Tuning using General Video Game Agents” and the work pre-

sented in it are my own. I confirm that:

• This work was done wholly or mainly while in candidature for a research

degree at this University.

• Where any part of this dissertation has previously been submitted for a

degree or any other qualification at this University or any other institution,

this has been clearly stated.

• Where I have consulted the published work of others, this is always clearly

attributed.

• Where I have quoted from the work of others, the source is always given.

With the exception of such quotations, this dissertation is entirely my own

work.

• I have acknowledged all main sources of help.

• Where the dissertation is based on work done by myself jointly with oth-

ers, I have made clear exactly what was done by others and what I have

contributed myself.

Signed:

Date:

SteepMike
Typewriter
19 April 2018

v

UNIVERSITY OF ESSEX

Abstract

School of Computer Science and Electronic Engineering

Master by Dissertation

Automatic Game Parameter Tuning using General Video Game Agents

by Kamolwan KUNANUSONT

Automatic Game Design is a subfield of Game Artificial Intelligence that aims

to study the usage of AI algorithms for assisting in game design tasks. This

dissertation presents a research work in this field, focusing on applying an evo-

lutionary algorithm to video game parameterization. The task we are interested

in is player experience. N-Tuple Bandit Evolutionary Algorithm (NTBEA) is an

evolutionary algorithm that was recently proposed and successfully applied in

game parameterization in a simple domain, which is the first experiment in-

cluded in this project. To further investigating its ability in evolving game pa-

rameters, We applied NTBEA to evolve parameter sets for three General Video

Game AI (GVGAI) games, because GVGAI has variety supplies of video games

in different types and the framework has already been prepared for parame-

terization. 9 positive increasing functions were picked as target functions as

representations of the player expected score trends. Our initial assumption was

that the evolved games should provide the game environments that allow play-

ers to obtain score in the same trend as one of these functions. The experiment

results confirm this for some functions, and prove that the NTBEA is very much

capable of evolving GVGAI games to satisfy this task.

vii

Acknowledgements
I believe it is not an exaggeration to state that many persons would be de-

lighted once I have announced that this long-journey (very true, as it was begin-

ning in the UK and finishing in Thailand) of reading, experimenting and writ-

ing is ’finally’ finished. I have received a lot of supports from many individuals,

ranging from those who are the experts of this field, to those who does not have

any slightest ideas of what this dissertation is about.

I would like to give the best honourable thanks to Dr. Diego Pérez Liébana,

whose helps and supports were, and have been, far beyond the formal techni-

cal supervision. I do not have enough expertise in English language to express

how much I appreciate all the helps I have received from him, throughout all

of my lows (often) and highs (rarely) moments during the degree. The best

I can say here is that I will not hesitate to stubbornly repeatedly recommend

him to anyone who is choosing a supervisor with him being one of their can-

didates, because he has been not just a supervisor in my viewpoint, but also a

big-brother-like figure.

Special thanks would be given to Prof. Simon Mark Lucas, who was my

main supervisor from January to July 2017, as he was the one who initiated the

work that has become the first experiment of this research. Also, it was him who

had secured me the funding for 2017 academic year and a part-time work so that

I could support my daily life expenses during my study.

As we have mentioned Simon and the funding, I would like to send a sin-

cerely thanks to the Visteon Corporation UK, for supporting my study fees for

the 2017 academic year. Additionally, an extraordinary thanks would be to

Claire Lewis, for her understanding of my complicated academic situation and

to her impressive ability to sort out the best options for both her company and

myself.

Staffs in CSEE have also been very supportive, especially Claire Harvey and

Dr. Steve Sangwine. Claire Harvey always be patient and kindly helpful for all

viii

complicated situations of myself that required her advices. Dr. Steve Sangwine

generosity in offering to name himself as my main supervisor after Diego has

left, to assist me through the completion state, has earned a sincere thanks here.

I would like to also thanks Dr. Luca Citi and Dr. Michael Fairbank who had

agreed to hold a quick board meeting for changing my degree status on that

day, as it was an important step leading to this completion.

Family and partner have been heart-warmly supportive. They always en-

couraged me to keep on with the works every time I felt discourage. I would

like to dedicate my deepest thanks to them as I would unable to finish this work

without their backing. For Summer, who always be there for me despite the 6

(sometimes 7) hours difference and a number of countries (though Russia takes

up the most part) between us, I would like to give her my widest and happiest

smile, in the hope that it would bring hers out as well.

Last and definitely not least, two persons that had been tolerate with my

unstable emotional status during this writing the most were Raluca and Jon. If

they were annoyed by that (in which I am sure they were), they never showed a

slightest sign of it, instead they kept on encouraging me and complimenting me

for every few hundred words I had added into the text. I would like to thank

them quietly here without telling them in persons. For that we Thai people

believe that chanting people behind their backs is the sincerest action you can

ever express to honour them.

If your name has not been mentioned earlier, I would like to thank you here

for being interested in this research work. Please accept my pseudo-handshaking

via this text since I could not offer it in person at the moment you are reading

this. I am very much hoping that once the opportunities present, I will be able

to do it to you in person.

Many Thanks,

Kamolwan KUNANUSONT

ix

Contents

Declaration of Authorship iii

Abstract v

Acknowledgements vii

1 Introduction 1

2 Literature Review 7

2.1 Automatic Game Design . 7

2.1.1 Early Attempts: Proof of Concept 8

2.1.2 Auto-Generate Full Game 9

2.1.3 Auto-Generating Maps or Levels for Games 11

2.1.4 Auto-tuning Game Parameters 17

2.2 General Video Game Artificial Intelligence (GVGAI) 19

2.2.1 Motivation and Origin . 19

2.2.2 Competition Tracks . 21

2.2.3 GVGAI for Game Design 22

2.3 Evolutionary Algorithms . 23

2.3.1 General Improvements . 25

2.3.2 Applications in the Games Domain 31

3 Background 39

3.1 Space Battle . 39

3.2 GVGAI Framework . 41

x

3.2.1 Video Game Description Language 42

3.2.2 Selected Games . 46

3.2.3 Controllers . 53

3.3 Evolutionary Algorithms . 60

3.3.1 Random Mutation Hill Climber (RMHC) 60

3.3.2 Biased Mutation RMHC . 61

3.3.3 N-Tuple Bandit Evolutionary Algorithm (NTBEA) 62

4 Approaches 67

4.1 Space Battle Evolved . 67

4.1.1 Game Rules & Space . 67

4.1.2 Fitness Calculation . 68

4.2 GVGAI Game Rules & Space . 70

4.2.1 Seaquest . 70

4.2.2 Waves . 72

4.2.3 Defender . 76

4.2.4 Fitness Calculation . 79

Target Score Functions . 80

Loss Calculation & Fitness Value 86

Fitness Calculation Summary 89

5 Experiments & Results 91

5.1 Space Battle Evolved . 91

5.2 GVGAI Games . 95

5.2.1 Evolving Game Parameters 97

Different Games . 97

Biasing Loss Calculation . 102

Functions and Parameters 107

5.2.2 Validating Evolved Games 112

Best Individual Selection Criteria 113

xi

Different Games . 115

Normal NRMSE and Biased NRMSE 119

Functions and Parameters 122

5.2.3 Evolved Games . 127

6 Summary & Conclusion 129

6.1 Summary . 129

6.2 Conclusion . 133

7 Future Works 139

7.1 Further Analysis . 139

7.2 Further Experiment . 140

7.3 Extensions and Improvements . 141

References 143

xiii

List of Figures

2.1 A game evolved by [1], taken from page 4 of the publication . . . 9

2.2 Yavalath puzzle, taken from page 12 of [2] 10

2.3 Example of mazes generated by [3] taken from page 8 of the pub-

lication . 12

2.4 Comparison between the original and clone version of Cut the

Rope game used in [20], taken from page 2 of the publication . . . 16

2.5 Flappy bird parameter space, taken from page 6 of [23] 18

2.6 Front (top left), back (top right), middle (bottom left) areas and

neural network structure (bottom right) as applied in [76]. The

image is taken from page 2 of the publication 32

2.7 4 Pacman maps with increasing complexity from left to right, em-

ployed in [79]. The image is taken from page 4 of the publication 34

3.1 Space Battle Game Screenshot . 40

3.2 Space Battle Evolved . 42

3.3 Single-player Aliens level description language and screenshots,

level 0 and 4 . 44

3.4 Seaquest SpriteSet game description 48

3.5 Seaquest InteractionSet game description 48

3.6 Seaquest TerminationSet game description 48

3.7 Waves SpriteSet game description 49

3.8 Waves InstructionSet game description 50

3.9 Waves TerminationSet game description 51

xiv

3.10 Defender SpriteSet game description 52

3.11 Defender InteractionSet game description 53

3.12 Defender TerminationSet game description 53

3.13 MCTS searching steps, taken from page 6 of [41] 60

4.1 Modified Seaquest SpriteSet game description 72

4.2 Modified Seaquest InstructionSet game description 73

4.3 Seaquest ParameterSet game description 74

4.4 Modified Waves SpriteSet game description 75

4.5 Modified Waves InteractionSet game description 76

4.6 Waves ParameterSet game description 77

4.7 Modified Defender SpriteSet game description 78

4.8 Modified Defender InteractionSet game description 79

4.9 Defender ParameterSet game description 80

4.10 Linear target functions . 81

4.11 Linear piecewise target functions 83

4.12 Sigmoid function . 84

4.13 Shifted sigmoid target functions . 85

4.14 Logarithm and exponential target functions 86

4.15 All target function slope . 87

5.2 Screenshots of the 6 designed games evaluated by human players

and their feedback. 95

5.3 Average fitness throughout evolutions for y = 0.2x on the games

of this study . 99

5.4 Average score trend and score difference throughout evolutions

for y = 0.2x on the games of this study. Each plot shows differ-

ent trends, averages taken at different generation ranges through

evolution. 100

xv

5.5 Average fitness throughout evolutions for y = 15 log2(x) for the

games of this study . 101

5.6 Average score trend and score difference throughout evolutions

for y = 15 log2(x), for the games of this study. 103

5.7 Average fitness throughout evolutions for y = 15 log2(x), normal

and biased loss function comparison 104

5.8 Average score trend and score difference throughout evolutions

for y = 15 log2(x), different loss function comparison. 105

5.9 Average score trend and score difference throughout evolutions

for left-sigmoid, for NRMSE and B-NRMSE loss calculation. . . . 106

5.10 Average fitness throughout evolutions for y = 150
1+exp(− x

20+12) , dif-

ferent loss function comparison . 107

5.11 Average score trend and score difference throughout evolutions

for Defender, linear function comparison. 108

5.12 Average score trend and score difference throughout evolutions

for Waves, B-NRMSE, logarithm and exponential function com-

parison . 110

5.13 Average score trend and score difference throughout evolutions

for Waves, normal NRMSE, shifted sigmoid function comparison 111

5.14 Average score trend and score difference throughout evolutions

for Waves, B-NRMSE, 2-part linear piecewise function comparison 112

5.15 Average score trend in validations for y = 2
x

70 , different best pa-

rameter selection comparison . 114

5.16 Average score difference in validations for y = 2
x

70 , different best

parameter selection comparison . 115

5.17 Average score trend in validations for y = x, different best pa-

rameter selection comparison . 116

5.18 Average score difference trend in validations for y = x, different

best parameter selection comparison 117

xvi

5.19 Average score trend and score difference during validation for

y = x best UCB, on the game of this study 118

5.20 Average score trend and score difference during validation for

normal NRMSE right-sigmoid best UCB, on the game of this study 119

5.21 Average score trend and score difference during validation for

Seaquest left-sigmoid best UCB, different loss calculation com-

parison . 120

5.22 Average score trend and score difference during validation for

Seaquest with, y = 15 log2(x) best UCB, different loss calculation

comparison . 121

5.23 Average score trend and score difference during validation for

normal NRMSE Defender, best UCB, linear function comparison 123

5.24 Average score trend and score difference during validations for

normal NRMSE Defender, logarithm and exponential function

comparison . 124

5.25 Average score trend and score difference during validation for

normal NRMSE Defender best UCB, shifted sigmoid function com-

parison . 125

5.26 Average score trend and score difference during validations for

normal NRMSE Defender, 2-part linear piecewise function com-

parison . 126

xvii

List of Tables

4.1 Space Battle Evolved evolvable parameters, description, their value

ranges and step. 69

4.2 An example of the score in T1, T2 and T3 70

4.3 Seaquest’s parameter set search space 74

4.4 Waves’ parameter set search space 75

4.5 Defender’s parameter set search space 78

5.1 Optimized parameters of game instances with the highest or low-

est average fitness, designed by three algorithms. 93

5.2 Experiment parameters . 97

xix

Dedicated to . . .

My dear little brother O.H.

For I could not be with you on that day. . .

Because I had to work on this important mission from

there. . .

And once I am able to come back. . .
It is too late.

1

Chapter 1

Introduction

Automatic Game Design [1] is a subfield of Game Artificial Intelligence that

aims to apply AI techniques to assist in game design tasks. The simplest games

should consist of at least game rules, which indicate the procedures/constraints

that players should follow or the conditions they should satisfy to win. More

complicate games may also have other components such as game maps/levels,

and/or certain in-game parameters. Designing a game includes deciding the

look-and-feel and functionalities of these components. In many scenarios, these

tasks require a number of playtests to value and determine the most suitable

composition. Manually playing games repeatedly for this purpose is usually

time consuming and inefficient for a few reasons. The first one is that human

testers tend to be inconsistent and unable capture many possible playing be-

haviours. Another reason is that most of the gameplays with human-playable

speed are significantly slower than the fastest processable speed. This is ad-

equate to point out the needs of a tool that could repeatedly play the games

automatically for all settings and evaluate each with the same criteria human

testers do. Attempts to develop such systems have been proposed using Evolu-

tionary Algorithms [2] [3] [4] mainly because of their generality and suitability

in optimization problems.

Automatic Game Design research in the early days mainly focused on the

proof-of-concept [1][5], which means experimenting the possibility of devel-

oping such systems, while more recent works targeted specific-domain tasks.

2 Chapter 1. Introduction

These are either auto-generating the whole game, for instance the Ludi sys-

tem [2] and ANGELINA [6], or only a certain component such as map/level

[3][4][7][8]. Another game design related task that would be benefited from the

similar auto-evolution approach is parameter tuning, which has not gained as

much popularity as map or rule generation. An initial work was proposed by

Isaksen et. al. [9] for Flappy Bird1. This work shows that evolutionary ap-

proaches are applicable with this task, and also underlines the importance of

the task in game development process.

Recently, General Video Game AI competition (GVGAI) [10] has just intro-

duced a new Game Design feature. GVGAI is a video game AI competition that,

in contrast to most of other competitions, encourages the development of a sin-

gle AI game player controller algorithm that is general enough to play any video

games instead of just one or a few. Currently there are more than 100 games in

the framework, both single-player and 2-player. The game design feature of GV-

GAI competition does not focus on game playing algorithm development, but

on providing a ’general’ parameterization algorithm instead.

This dissertation summarizes the results of two research experiments done

in video game auto-parameterization using an evolutionary algorithm called N-

Tuple Bandit Evolutionary algorithm (NTBEA) [11]. NTBEA is an evolutionary al-

gorithm decided specifically to deal with noisy environment (e.g. video games).

Instead of evaluating the fitness of each individual by its crisp values (in each

position), NTBEA stores the statistical information of the evaluated fitness value

of such individual. These information are being stored using N-Tuple structure,

therefore they are real-time accessible. Given these characteristics, NTBEA is

robust to noise and fast in individual optimizing. The task we have chosen is

to evolve games that provide specific player experience, using in-game score as

the measurement. The first task that we have done with a variant of Space Bat-

tle game is to develop games that can distinguish players based on how good

1http://flappybird.io/

http://flappybird.io/

Chapter 1. Introduction 3

they were playing, which we called skill depth. We divided the player skill depth

into three levels: skilful, intermediate and amateur. Three General Video Game Play-

ing (GVGP) controllers were selected to represent human players of each skill

depth. Each parameter set fitness function was determined by playing these

controllers against each other in such setting, then the final score was used in

fitness calculation. Although we use score to measure player enjoyment, any

other metrics apart could be employed as well with our proposed evolutionary

scheme.

For the second experiment, we selected three GVGAI games, and focused on

another aspect of player experience which is the game’s score trends. 9 functions

were selected as target score trends so that the score progression achieved by

an agent that plays this game approximates the curve. Since player experience

is difficult to measure due to the uncertainty of player behaviour, we decided

to use 2 GVGAI agents that employ score-based heuristic functions in action

selection. Therefore we, to some extent, could assume that these AI players

would always look to score when the opportunities present, unless such score-

able option leads to to worse foreseeable outcomes such as losing the game.

The objective of the research experiments presented in this dissertation is to

investigate the possibility of applying NTBEA to parameterize game parameters

using General Video Game Playing controllers as human-player substitutions. A

few hypotheses were formed as the basis of the experiment setup:

• NTBEA is more robust to noise in noisy environments than standard hill-

climbing evolutionary algorithms.

• NTBEA can be applied to tune game parameters to provide specific pre-

defined player score trend, for any players playing the game.

• General Video Game Playing controllers can be used as substitutions for

human players in automatic game parameterization.

4 Chapter 1. Introduction

• The games evolved by NTBEA satisfy human preferences more compared

to both RMHC-based algorithms.

• NTBEA can evolve game parameters to fit the same target functions for

any games.

• Biasing the loss calculation helps NTBEA in our optimization task

These hypotheses were validated in the experiments presented in Chapter 5.

The knowledge gain from this research can be beneficial for numbers of fields,

such as Noisy Optimization, and Automatic Game Design which can also benefit

game industry as a basis for a tool for auto-tuning game parameters.

The contents of both experiments presented in this dissertation have been

re-assembled into two separate academic papers, one of which was accepted

in a conference and published, while another is submitted and currently under

review. The contents and contributions of the authors of these papers can be

summarized as follows:

• K. Kunanusont, R. D. Gaina, J. Liu, D. Pérez-Liébana and S. M. Lucas,

"The N-Tuple Bandit Evolutionary Algorithm for Automatic Game Im-

provement", in IEEE Proceedings of the Congress on Evolutionary Com-

putation (CEC), 2017

Contents: Introduction of N-Tuple Bandit EA (NTBEA) usage in game

research; Space Battle Evolved game; Applying NTBEA to Space Battle

Evolved to evolve game parameters that can best distinguish players with

different skill-depth

Contributions: My contributions are game implementations, experiments

and writings. The second and third authors helped with writings and ex-

periments, also the second author provided the implementation of one al-

gorithm used and assisted in game implementation. The fifth author im-

plemented NTBEA and wrote its technical section. All authors helped in

discussions and proof-readings.

Chapter 1. Introduction 5

• K. Kunanusont, S. M. Lucas and D. Pérez-Liébana, "Modeling Player Ex-

perience with the N-Tuple Bandit Evolutionary Algorithm", submitted

to the 2018 Artificial Intelligence and Interactive Digital Entertainment

(AIIDE) Conference

Contents: Applying NTBEA to parameterize three GVGAI games so that

the players that play in such evolved games retrieve the score in the same

trend as the specified functions.

Contributions: Game space setting, fitness function, experiments and writ-

ings. The second author provided NTBEA implementation. The third au-

thor helped with game selection, discussions and writings.

This document consists of further 6 Chapters. Related published literatures

are reviewed in Chapter 2. This is followed by essential background knowledge,

summarized in Chapter 3. Next, Chapter 4 gives detailed descriptions of the

approach proposing. Then, the experiment setup, procedures, and results are

discussed in Chapter 5. After that, summary and findings of the research, along

with its conclusion are stated in Chapter 6. Finally, the last Chapter describes

possible future works of this project.

7

Chapter 2

Literature Review

In this chapter, previously proposed related works are described. This is to give

an overview to the readers about the works that have been done prior to our

research. Each of these works falls into either Automatic Game Design, General

Video Game AI or Evolutionary Algorithm categories.

2.1 Automatic Game Design

Automatic Game Design refers to systems that are capable of generating game

components automatically and efficiently from a given design constraint. Re-

search done in this field aims to close the gap between crude machine-like de-

sign and human design which in general is more sensible and playable. An

alternative objective is to explore some human-overlooked designs that may be

interesting. Early works (before 2010) were done mainly for exploring the pos-

sibility of automatic game design, while more recent works focus on develop-

ing algorithms and applying them to certain games. These automatic systems

can be categorized into three broad areas based on the components/tasks they

were developed to fulfil, either generating the whole game, generating game

maps/levels and game parameter tuning. Both the automatic game design early

works and recent related works are reviewed next.

8 Chapter 2. Literature Review

2.1.1 Early Attempts: Proof of Concept

Nelson and Mateas [5] tried to define automatic game design as a problem-

solving task by declaring 4 design factors needed to create a game. This in-

cludes game mechanics, game representation, game thematic content and control map-

ping. Game mechanics refer to how a game changes its state when it is being

played, while representation means how those states are being presented to the

players (visual/audio format). Thematic contents is the domain/world that the

game takes place, and control mapping is how a specific physical action of a

player is being mapped to affect the game. To clarify these factors with an ex-

ample, a well-known Pac-man game mechanics contain, for instance, the states

that the avatar collects a power pill, which would then effect the enemy ghosts

to transform. The game is represented in 2 dimensional grids with the avatar is

a yellow circle, and the enemies are in comical ghost-shaped. The game takes

place in a big narrow corridor maze full of collectable pills and a player (for a

computer keyboard version) uses arrow keys to control the avatar directions.

Nelson and Mateas developed a method to auto generate a game by designing

all of these components using a set of common sense composition rules acquired

from WordNet [12] and ConceptNet [13]. The generated game was in a similar

style of a Nintendo WarioWare game. Later, as they had realized that an ability

to easily add and remove some mechanics from the game is necessary for auto-

matic modification of a generated game, they proposed another design architec-

ture based on event calculus [14] and reckoned that this new ability profited the

automatic game design as it could generate playable games by modifying some

current components that were blindly generated earlier.

In the same year, Togelius and Schmidhuber [1] proposed their work in using

evolutionary approach to evolve a 15×15 2-dimensional grid game rules from

scratch. In their game space, each grid cell can contain either empty space, a

wall, or a circular-shaped object that could be in either red, green or blue color.

Their proposed game generator (evolver) had to evolve a set of game rules that

2.1. Automatic Game Design 9

FIGURE 2.1: A game evolved by [1], taken from page 4 of the
publication

define the game representation, i.e. how many objects, where are they located

and which colors are they, which effects will be triggered after each pair of ob-

jects collide. After a game rule set has been generated, it would be evaluated

using two random-action controllers. A game was judged as too easy if both

controllers performed well. Although most of the game found in this game

space were unplayable, they were some playable games generated by the gener-

ator. An example of their evolved game can be seen in Figure 2.1, which is taken

from page 4 of [1]. As claimed by the authors, this work was the first attempt to

do single-player game rule evolution, also the first attempt to apply evolution-

ary algorithm into non-board game design, inspiring later works in this field

including ours.

Research works after this focused on developing and improving auto gener-

ation tools for specific domains. Some of the proposed literatures for full game

generation are reviewed next.

2.1.2 Auto-Generate Full Game

In 2010, there was an introduction of Ludi [2] developed by Cameron Browne

and Frederic Maire. Ludi was the first, and still the only one, combinatorial auto-

matic game generator framework with a commercially published game (Yavalath1).

1http://www.cameronius.com/games/yavalath/

http://www.cameronius.com/games/yavalath/

10 Chapter 2. Literature Review

FIGURE 2.2: Yavalath puzzle, taken from page 12 of [2]

Figure 2.2 shows Yavalath game state, taken from page 12 of [2] As defined in

their paper, combinatorial games are two-player turn-based deterministic games

with no hidden information and the outcome states are finite. Ludi generates

games by combining a set of ludemes, which is a piece of information for a game

component, together. They integrated an evolutionary algorithm into the sys-

tem to generate game ludemes population and offspring, but keep all survived

offspring instead of keeping only a few. Four criteria were applied to judge the

generated game quality: depth, clarity, drama and decisiveness, as defined by

Thompson [15]. Ludi is the first widely accepted successful application of using

evolutionary algorithms in full game design, although the combinatorial game

space is small comparing to video games, this framework is still a breakthrough

of automatic game generation research field. The game Yavalath has an inter-

esting winning condition that is quite beyond human common sense (create a

four-in-a-row without three-in-a-row). This points out that a computer program

can find a rule set that humans are interested in but could not think of.

A year later, Michael Cook and Simon Colton proposed an automatic arcade

game generator named ANGELINA [6]. Using similar game representation with

the work done by Togelius and Schmidhuber in 2008 [1], Cook and Colton im-

plemented generators for three game components: rule sets, character layouts

and maps. Evolutionary approach was applied to evolve these components sep-

arately, while also sending information of the fittest individuals into the central

2.1. Automatic Game Design 11

point to share with others. Fitness value of a generated map is calculated from

fragmentation - number of isolated tiles - and domination - number of dominated

tiles. A tile is isolated if it is disconnected from the walls. Two tiles are being

dominated by a third tile if for all paths that connected between the first two tiles

included this third tile. For each ruleset (individual), some unnecessary rules

would be filtered out first, along with those rules which lead to an unplayable

game. Then a bot player with a specific assigned behaviour would play in the

game with such ruleset. The fitness value would be then determined based on

the bot player score. Game layout fitness value was calculated by how sparse

the game objects were placed, how many of them, and also whether the layout

is consistency with the fittest map at that time. ANGELINA was the first entire

game generator using multi-faceted evolutionary algorithm.

As can be seen in ANGELINA system, generating a full game requires dif-

ferent generators for each component. There were research works that were

proposed for automatic generator for a specific game component, which is also

known as procedural content generation. The most popular content to generate

is maps or levels. Some of the proposed works for map/level generation are

reviewed next.

2.1.3 Auto-Generating Maps or Levels for Games

In 2010, Daniel Ashlock proposed a wide range puzzle generators using an evo-

lutionary algorithm [3]. Two types of puzzles were tested, including chess maze

and chromatic puzzle. Chess maze is a maze-based puzzle that the player move-

ment is restricted to be the same as his/her assigned chess piece, and the goal is

to traverse through the maze to the exit using only such movement. Chromatic

puzzle is, again, a maze-based puzzle that the player could only move to the

adjacent tile with the same color of his/her current tile, or the color that is ad-

jacent to his/her current tile color in the color wheel. Figure 2.3 shows a chess

maze (2.3a) and a chromatic maze (2.3b) generated using Ashlock’s approach,

12 Chapter 2. Literature Review

(A) Chess maze (B) Chromatic maze

FIGURE 2.3: Example of mazes generated by [3] taken from page
8 of the publication

taken from Figure 7 (page 8) of his paper. Ashlock’s aim then was to explore the

possibility of employing an evolutionary algorithm to evolve such puzzle mazes

with pre-defined difficulty levels, using dynamic programming to search for the

minimum number of moves needed. This move number would be then used to

determine the fitness value of the maze map. He reckoned that these puzzles

were not intend to be a stand alone game but rather be a mini-game in other

bigger games, hence this work is considered as a game content level generation.

Sorenson and Pasquier [4] developed a level creator that was applicable with

Super-Mario Bros. and Legend of Zelda. They raised a point that using bottom-

up approach to generate game levels (rule-based) restricting the level generators

to obey the constraints, hence occasionally causing most time spent in the level

construction rather than creation. Based on this argument, they proposed a top-

down approach that only specify how the ’preferred’ levels should be, instead of

how it should be assembled. Using that with a genetic algorithm named Feasible-

Infeasible Two-Population (FI-2Pop) as a level evolution method, they were able to

produce challenging and playable levels for both games. The fitness function

they employed was carefully designed to represent enjoyable rate of a level,

with an assumption that a player enjoys a game that is neither too easy nor too

2.1. Automatic Game Design 13

difficult, therefore the final equation was to measure how dynamic a level was

because the dynamic rate of a map is directly related to how difficult it is.

Another work done for an infinite version of Super Mario Bros. level genera-

tion was proposed by Shaker et. al. [7]. They applied Grammatical Evolution (GE)

to evolve levels that offer the best experience for players with different emo-

tional states from the pre-designed grammar that represents level structures. A

player experience model that they used as the input to calculate fitness values

was obtained from their previous study on modelling the relationship between

player preferences and game content characteristics [16]. The levels were gen-

erated aiming to lead human players into feeling either engagement, frustration

and challenge. Each of these levels were played by two selected AI controllers

with different general behaviours, with the first one (A*) often performing jump

action while the second one (simple heuristic-based) only jumps when needed.

Their gameplays were recorded and analyzed with the player experience model

to see if the levels satisfy their emotional state optimization objectives. They con-

cluded that it is easier to develop levels that make skilful players feel engaged

or challenged. This work shares a similar aspect to our work in term of optimiz-

ing a pre-defined player experience, with an obvious difference that our work

employed parameterization instead of level generation. A less obvious dissimi-

larity is that we evaluated player experience by pure score or score trend, while

this work did with their own extracted features. Furthermore, our objective

does not involve measuring a subjective and stochastic concept like emotional

states, but focused mainly on a more straightforward numerically measurable

statistical data.

A work that was also related to player preferences was done in 2013 by Li-

apis et. al. [17]. They proposed a novel evolutionary algorithm called Rank-based

Interactive Evolution (RIE) that was adaptable with player preferences during the

gameplays. Their testbed was a 2-dimentional grid map with size 64×64 that

consists of either an empty tile, a blocked tile, a resource or a player’s base. They

14 Chapter 2. Literature Review

claimed that this was a simple representation for multi-player strategy games.

Employing knowledge about aesthetic features from some citations, 10 fitness

functions were designed. This ranged from optimizing the map navigational

rate, resource locations to visual representation. A computer program were im-

plemented as a human user simulator in preferred map selection, which the RIE

would evolve new maps with the same fitness trends in each aspect. They found

that the proposed RIE were able to rapidly adjust map generation to satisfy user

preferences. Our work also employed computer program agents in place of hu-

man testers in fitness evaluation, but the agents we were using were mostly

general agents, not domain-specific ones like in this work. Therefore there are

no need in re-implementing agents for each new game testing.

Satisfying the players was one of the main objectives in developing video

games. Lara-Cabrela et. al. [18] proposed a method to evolve maps for Planet

Wars2 that are ’balance’ and ’dynamic’, as the authors claimed that those were

the factors for this game to be considered as ’fun’. They proposed a set of fitness

functions to guide the evolutionary algorithm to each, and both objectives in

different runs. These fitness values were then combined with fuzzy-logic rules

to determine the level of balance and dynamic for a map. Planet Wars game

shares some similarity with the Space Battle game that we employed in our first

experiment as they both are two-player competitive games that take place in the

space, though the details and rules are different. The game space we defined

also has some parameters that defines the map look, and we have our definition

of ’fun’ game as a game that better players can score more, which may related

to this work as usually better players react better to more dynamic maps.

Not only the game player preferences were taken into account in automatic

game level generation, but also the game level designers’. Liapis et. al. [19]

proposed a Map Sketch tool that was adaptable with the designer preferences.

After studying various strategy game map design patterns, they introduced six

2http://planetwars.aichallenge.org/

http://planetwars.aichallenge.org/

2.1. Automatic Game Design 15

quality measurements and defined a fitness evaluator based on those. This fit-

ness function was then applied to evaluate the fitness of the feasible group in the

FI-2Pop (as in [4]). They started the experiment by optimizing each aspect of the

six, and attempted to combine all aspects together later on. Unsurprisingly, they

found that optimizing multiple objectives were much more challenging that sin-

gle aspect. Nevertheless, they reckoned that the tool would be beneficial to the

level designer as it could adapt to their choice of design and assist them by auto-

generating the similar patterns in higher resolution.

Mobile games have been as well gained interests in automatic level gener-

ation. An example is a commercially well-known Cut the Rope3 developed by

Zeptolab. This game is a physics-based puzzle game that the player has to per-

form a correct sequence of actions (e.g. cut the ropes in a specific order) to win

a level. The goal is to deliver the round-shaped candy item to the frog-liked

creature avatar. Shaker et. al. [20] used Grammatical Evolution to evolve a

level description based on a designed context free grammar. Each level gram-

mar defines positions of the candy, the avatar, and other game components such

as ropes or bubbles, along with their specific information (e.g. length for ropes).

They created a clone version of the game specifically for the experiment. The

screenshots of the original game and their clone version are given in Figure 2.4

As their aim then was to generate at least playable levels, they designed a fitness

function that was a combination of various constraints, some of which were the

frog avatar placement, the candy placement and other component placements

and orientations. Using this scheme, they were able to generate 100 playable

variants of levels with 20 generations of individuals and population size 1̄00, all

of which were validated by automatic playtests using a simple random action

AI controller. However, this validation step consumed most of the experiment

time, hence a follow-up work [21] that aimed to improve the AI controller was

proposed. A prolog-based agent that employed a strict rule-based approach

3https://www.zeptolab.com/games/cut_the_rope

https://www.zeptolab.com/games/cut_the_rope

16 Chapter 2. Literature Review

(A) Original game (B) Clone game

FIGURE 2.4: Comparison between the original and clone version
of Cut the Rope game used in [20], taken from page 2 of the pub-

lication

to search for a ’sensible’ action was developed and tested with the framework.

With this agent controller, they were able to detect playable levels much faster

as the agent was more efficient in finding winning action sequences.

Another work on map generation for a physics-based environment problem

was explored by Pérez et. al. [8]. They considered a variant of a well-known NP-

Hard Travelling Salesman Problem [22] that takes physics components (speed

and orientation) into account, called Physical Travelling Salesman Problem (PTSP),

and implemented a game-like framework to represent this problem. In their pa-

per, they explored on using three different AI bots to assist in fitness calculation

of map evolution using an evolutionary algorithm. Three AI controllers have

their own route planners embedded, the simplest one was Nearest-First planner

that selects the closest visiting point to go first, the second planner Distance plans

the waypoint order by using branch-and-bound with A* search and selects the

lowest cost plan, lastly the Physics planner that employs the same scheme with

Distance planner, but also measuring the cost from physical factors such as the

speed and orientation of the vehicles, and the direction it is travelling. Their aim

was to evolve maps that Physics planner would achieve better performance than

Distance, and better than Nearest-First respectively. The objective of this work

was similar to the first experiment done in this dissertation, and the fitness func-

tions employed were similar. Although since Space Battle is a two-player game,

2.1. Automatic Game Design 17

we used the score differences instead of pure score as in this work.

Level generation has dominated interests in automatic game design so far,

comparing to other aspects such as game parameter tuning. This is also impor-

tant as manually tuning game parameters could be time consumption, and as

can be seen from Yavalath, humans might miss out some interesting settings. I

review next the literatures of game parameterization.

2.1.4 Auto-tuning Game Parameters

To the best of my knowledge, the first work that tackled this problem was done

by Isaksen et. al. [9]. They defined a parameter space of a well-known game

Flappy Bird4 and tweaked those parameters with evolutionary algorithms to see

a different variant of games while keeping the rule fixed. Some of these parame-

ters included the pipe width, the gap between pipes, the size of the player avatar

and the gravity force. Every unique game variants were played repeatedly 1000

times by a simple AI controller and the time spent were averaged to estimate

difficulty levels of each variant. Then they clustered generated games using

game parameters as features to select a representative game from each cluster.

Four unique settings were discovered, all are different in pipe lengths, gaps,

player size and gravity, which led to a unique gameplay experience for each.

This shows that changing parameters alone can lead to probably new game sets,

even with the rules are exactly the same. A follow-up work was done then for

generating game variants with different difficulty levels [23]. They started by

implementing a perfect player model that would never lost a playable games,

then introducing some noise into it to create various controllers that represent-

ing human players with different skill depths. Using playtest from these AI

controllers, they categorized the game variants into three disjoint groups: Im-

possible games in which all players lost, Playable games that some players were

able to survive for a time and Trivial games that all players survived for long

4http://flappybird.io/

http://flappybird.io/

18 Chapter 2. Literature Review

FIGURE 2.5: Flappy bird parameter space, taken from page 6 of
[23]

time. They found that all playable games are located together connectedly in

the game parameter space, as given in Figure 2.5 which is taken from page 6 of

[23]. These two works inspired the importance of auto-parameterize in video

game development as adjusting the parameters alone can result in completely

different games.

Another automatic game parameterization was proposed by Liu et. al. [24]

for a two-player game Space Battle. The authors evolve game parameters us-

ing Random Mutation Hill Climber (RMHC) evolutionary algorithm and its im-

proved version called Multi-Armed Bandit Mutation RMHC, which introduced

UCB equation in selecting a next mutated parameter and value. A General Video

Game AI [25] controller named Open-loop Monte Carlo Tree Search (OLMCTS) was

used as an AI controller to compete with another strategy-based Rotate-and-shoot

(RAS) controller. Their objective was to evolve the game parameter sets that fa-

vor OLMCTS over RAS, hence giving more fitness value if the game was won

by OLMCTS. Multi-Armed Bandit Mutation RMHC performed better as it ex-

plored more and converged faster. They put some of high fitness parameter set

on visual gameplay and found that most of the parameter sets penalized RAS

with high cost missiles. This means that RAS, which is just rotate around and

2.2. General Video Game Artificial Intelligence (GVGAI) 19

keep shooting, would constantly lose points. Nevertheless, they found an unex-

pected high fitness pattern with slow missiles and fast movements, which does

not benefit RAS but does help OLMCTS. Space Battle is first introduced in this

work, along with the idea of using GVGAI agents in playtest.

In this section, I have reviewed in details the related literatures in automatic

game design. The same is done for General Video Game Artificial Intelligence

(GVGAI) next.

2.2 General Video Game Artificial Intelligence (GVGAI)

2.2.1 Motivation and Origin

General Video Game Artificial Intelligence, or GVGAI [25], is a framework for Gen-

eral Video Game Playing (GVGP) [26], that aims to fulfil a part of the goal of a pop-

ular research field in AI called Artificial General Intelligence (AGI) [27] but focuses

only on video game domain. As the name suggested, research in AGI involves

developing AI that is general, which means capable of solving problems with

different levels of difficulties and characteristics.

The concept of GVGP is extended from General Game Playing (GGP) [28],

which was the first attempt to do AGI in game research. GGP was introduced

by a group of researchers at the Stanford University in 2005 as a competition for

computer game playing agent. In contrast to other such competitions, games

and rules were unknown to both the agents and their developers prior to agent

submission. These rules would instead be given to the agents right before they

start playing. This, as claimed by Genesereth et al. [29], is to enforce the com-

puter players to employ their own intelligence to make use of the given rules

the most, and not rely on their developers. Therefore this should encourage the

researchers to develop algorithms for adapting into given rules rather than ana-

lyzing the rules, inventing solutions and injecting to the agents (as usually done

in all domain-specific AIs). This adaptation ability is considered in AGI field

20 Chapter 2. Literature Review

as more ’intelligent’ than narrow artificial intelligence since it is more similar to

human intelligence, which is adaptable with various problems.

Although the word ’game’ could cover wide variety of activities, games in

GGP competition are all turn-taking board games. This means the framework

itself does not cover (and from the game definition language they are using,

could not cover) video games. GVGP, proposed by Levine et. al. [26], con-

cept was introduce as a complement of this by focusing on developing AGI for

playing video games. In contrast to board games, video games require real-time

interactions with the game environments, and most of the (human) players do

not read the rules before playing but instead observing the games and reacting.

Therefore, in GVGP the agents would not be given the rules at the beginning

of the game, but would receive the environment information at that particular

time, and should apply this information to provide an action to the game within

a small amount of time.

Apart from GVGAI, another well-known framework for GVGP is Arcade

Learning Environment (ALE) [30]. ALE assembles all Atari 2600 arcade games to-

gether as testbeds for evaluating AGI algorithms, providing screen-capture tool

as a choice of input. The framework has been widely applied in many works,

with the most popular one (at the time this dissertation is written) be Deep Q-

learning (DQN) by Mnih et. al. [31] from Google DeepMind5. They proposed a

learning agent that receives only screen information and output actions to the

game. Using deep convolution neural network [32] in combination with Q-learning

[33] and other neural network-related techniques, their agent was capable of

learning to play all games in ALE at human level.

Although ALE has a huge amount (2600) of games in the framework, it is a

finite set. It is arguable that an agent that has conquered all games is general

enough to solve other video games outside this domain. That is, the framework

lacks the ability to constantly update its testing task, which is one important

5https://deepmind.com/

https://deepmind.com/

2.2. General Video Game Artificial Intelligence (GVGAI) 21

nature of a good AGI evaluator framework. Moreover, all of the input screens

for ALE are of the same size, which seems to be a hole for many algorithms

to take advantage of. Ideally, a framework for GVGP (AGI in video games)

should have, or at least potentially have, infinite number of game supplies, and

not restricted to a fixed-size screen. General Video Game Artificial Intelligence

(GVGAI) has these characteristics.

2.2.2 Competition Tracks

General Video Game Artificial Intelligence or GVGAI is a GVGP framework and

competition, first introduced in 2014 [10] by a group of researchers at University

of Essex. It has gained interested since then with many research works have

been done using its games. In 2017, GVGAI framework featured 5 competition

tracks, which are single-player planning track, 2-player planning track [34], single-

player learning track [35], procedural generation track [36] and rule generation track

[37]. To participate, a competitor has to first register on the website6 and ob-

tain the framework source code. Then he or she should develop a controller (a

generator for generation tracks) and submit to the website as suggested by the

instructions given for each track.

Although winning all games with one ’general’ algorithm is the main objec-

tive here, it still remains unsolvable. The best controller in the 2017 single-player

planning competition (YOLOBOT) has managed to win only 106/250 (42.4 %)

gameplays7 (playing 5 levels of 10 games 5 times each). This indicates that there

are still improvements to work on in developing general agents, also pointing

out that this framework is reflecting how challenging the GVGP (and also the

AGI) problem really is. GVGAI games are of different types (although all are

represented in 2-dimensional rectangular map with up to 5 non-nil in-game

available actions) which require different strategies to solve. This may raise a

6gvgai.net
7http://gvgai.net/gvg_rankings.php?rg=12

gvgai.net
http://gvgai.net/gvg_rankings.php?rg=12

22 Chapter 2. Literature Review

question of whether such general algorithm exists, as each of them would per-

form well in some problems and bad in others. Fortunately, this concern has

been analyzed by Ashlock et. al. [38] with a conclusion that GVGAI would

not suffer from the No Free Lunch theorem [39]. They claimed that, since GVGAI

game corpus consists of only the games that humans are interested in, which is

a small subset of the whole game universe, the framework itself is under the line

of the no free lunch theorem by a well margin. This also means, in theory, there

should exist that general algorithm to solve all games (in which we all know

there is, as humans are capable of winning all games in this framework easily.

This means the algorithm must be composed of something less than or equally

complex with human intelligence).

2.2.3 GVGAI for Game Design

Although Procedural Content Generation (PCG) is one of the most famous game-

related research topic, general generator is a new and much more challenging

problem. To the best of my knowledge, there was only one publication directly

related to GVGAI game design aspect, specifically level generation track. This

was done by Neufeld et. al. [40]. They first translated Video Game Description

Language (VGDL) (the game description used in GVGAI framework) into An-

swer Set Programming (ASP) by analyzing some key constraints of the game that

can be referred into ASP rules. Then, using such ASP rules, they applied EA-

like approach to generate levels by maximizing the score difference between the

sample Monte Carlo Tree Search (MCTS) [41] and random controllers. This was

based on the assumption that a good level should facilitate good players more

than poor players, which is the same assumption we made in our first experi-

ment.

In a tutorial session for the 2017 IEEE Conference on Computational Intel-

ligence in Games (CIG 2017)8, there was a mention about an ongoing work in

8https://www.youtube.com/playlist?list=PLsz4FpDoCTzyRJqDV7VpT2hO02gHOZwA5

https://www.youtube.com/playlist?list=PLsz4FpDoCTzyRJqDV7VpT2hO02gHOZwA5

2.3. Evolutionary Algorithms 23

applying GVGAI in game design. The authors had modified GVGAI framework

to support game parameterization, which is to consider game parameters as a

(huge) search space and try to find a set of parameters that satisfy demands. Ini-

tial work was done with the game Aliens. The second experiment done in this

dissertation is the continuation of such initial work, by extending it into other

games, and to a different task.

2.3 Evolutionary Algorithms

Evolutionary algorithms were originated since 1950s by the idea of modelling

the natural selection process. There were three proposed mainstreams in early

days that share some common concepts, yet differ in details. These three in-

clude Evolution Strategies (ESs), Evolutionary Programming (EPs) and Genetic Pro-

gramming (GPs). Bäck and Schwefel [42] attempted to distinguish them using

mathematical notations based on each of the concept, while Melanie Mitchell

summarized the brief history, along with their similarities and differences, of

all variants in the first chapter of her book written in 1998 [43]. Both of these

literatures present the same fact about the originality of each EAs, which are

summarized in the next few paragraphs.

The Evolutionary Strategies or ESs concept was first investigated and pro-

posed in 1965 by Ingo Rechenberg [44] who also continued his work on this and

presented the clearer concept of his nature-inspired model in 1973 [45]. This

method was employed then as a real value parameter optimization. He later

expanded the concept from only a single next generation individual (offspring)

creation per generation (called (1+1)-ES) to (µ+1)-ES that µ individuals genes

were re-combined up to produce a new offspring [45]. This method was fur-

ther generalized into (µ + λ)-ES that the recombination resulted in more than

one offsprings [46]. This has become the state-of-the-art ES employed in many

applications later on. The ESs general steps including first randomly generating

24 Chapter 2. Literature Review

the first generation population and evaluating each individual. Then produc-

ing λ offsprings from µ parents (re-combination) and then applies a mutation

process to these new offsprings. After that, evaluating each offspring and re-

taining only some of the best to continue. These steps would be repeated until

the termination condition is satisfied.

Evolutionary Programming or EPs was introduced in 1966 by Lawrence J. Fo-

gel, Alvin J. Owens and Michael J. Walsh [47] as a natural-selection-based simu-

lation using finite state machines (FSM). They evolved these FSMs by applying

mutation process to the state transition tables, which would be used to predict

the next alphabetical character based on the given input. The more accurate the

prediction of an FSM is, the better the evaluation score (fitness), hence higher

chance to survive and breed future offsprings. For each parent FSM, only one

offspring is generated by mutation, and half of the best individuals of the com-

bined population set (parents and offsprings) would be retained for the next

generation. Later on, David Fogel studied this and extended the concept to sup-

port real value evolution apart from only FSM [48]. Fogel and his colleagues

were aware that the practical implementation of their EPs required manually-

tuning of high level parameters, and came up with a method to evolve these

optimal parameter settings while the evolution is taking place. This technique

is called meta-evolutionary programming [49]. The EPs general evolution steps are

similar with ESs without any re-combination process, and always select half of

the best individuals in the combined set, which is equivalent to the (µ + µ)-ES

in ES concept.

Finally, Genetic Algorithms or GAs were proposed by John Holland [50] in

1962 as a guideline model for auto-environmental adaptation system, again in-

spired by the nature. Initially, unlike ESs and EPs, this idea was not designed

to solve any specific tasks but rather as a suggestion of importing the evolution

concept into computer field. This ’import’ refers to applying three evolution

2.3. Evolutionary Algorithms 25

operators called mutation, crossover (similar to re-combination in ESs) and in-

version. According to the timeline, this was the first attempt to do so as ESs

and EPs were proposed after this GAs. Holland later discussed the possible ap-

plications of GAs in his book [51] which included some still well-known tasks

such as parameter optimization (which is also the main task of my experiments).

General steps of the original GAs (also known as canonical GAs) are similar to

ESs, with more priority given to crossover rather than mutation.

The emerging of those three algorithms several decades ago has shaped one

of nowadays the most popular research field in computer science: evolutionary

algorithms. There has been enormous proposed works in related topics, either

improving the methods themselves, or applying them to solve specific tasks. I

first review some of the general improvements that are relevant to this thesis

research work, then some of the applications in game domain are addressed

next.

2.3.1 General Improvements

EAs in general are composed of three main components: initialization, evalu-

ation and evolution. Initialization refers to the selection of the very first pop-

ulation at the beginning of the whole process. Evaluation means to justify the

quality of each individual, usually indicating by a real number. Evolution is

composed of all nature-inspired operators, such as mutation, re-combination

(or crossover) or any other processes done to an individual to produce different

individuals.

Initialization step was often accomplished by randomly selecting genes to

every individuals in the first population, as it is the simplest, least effort, quick

and usually produces at least acceptable results. However, in some domains,

careless initialization lead to the local minima convergence after the evolution

is finished. There has been a number of works proposed to tackle this issue.

26 Chapter 2. Literature Review

The review done by Kazimipour et. al. in 2014 [52] categorized these improve-

ments based on three criteria: the randomness of the algorithm, whether it is

composed by more than one non-separable components, and whether it is gen-

eral or domain-specific. Using their criteria, the initialization employed in our

N-Tuple Bandit EA (NTBEA) is considered as stochastic, non-composition and

general.

During evolution, ideal EAs should explore the space as much as possible to

ensure that it does not fall into a local minima, which is also known as prema-

ture convergence. Therefore, maintaining diversity in each evolving population is

crucial. An early attempt was proposed in 1984 by Mauldin [53]. He suggested

that the premature convergence happened because the individuals are too alike

during evolution. Therefore in his paper, all individuals were ensured to be dif-

ferent from others at least one bit (all individuals were sequences of bit strings).

A new individual would be compared to all existing individuals in the current

population first before it is added. If it is identical to one, a randomly selected

bit in the sequence was selected and flipped. Then the checking is performed

on this mutated individual again, and repeats until the individual is completely

new. Years later there has been many works proposed to overcome this issue,

some of these were reviewed in 2012 by Gupta and Ghafir [54]. The first method

is called Niching, which is to allow converging to more than one solutions dur-

ing evolution, invented by De Jong [55]. This could alleviate the chance of pre-

mature convergence as it allows EAs to monitor more than one local minima,

increasing its chance to find the global minima of the space. Another method

called crowding, also proposed by De Jong [55], takes place at the selection step.

That is, before a new individual is about to be included into the population, by

finding the most similar individual in the population first then removes it. It

seems that De Jong shares the similar idea with Mauldin [53] but Mauldin chose

to modify the new individual and preserve the antecedent instead. There also be

other criteria to select individuals out, for example considering only offsprings

2.3. Evolutionary Algorithms 27

and their parents [56]. An individual may also be restricted from mating with

another too similar individual [57] to preserve diversity, or being forced to share

their fitness values [58] with neighbours. In some works Multi-Objective Evo-

lutionary Algorithms (MOEAs) techniques were employed considering diversity

maintenance as a secondary task [59].

This dissertation presents a work about game parameterization using an EA

with some stochastic GVGP agents. The second part of the experiment were

for GVGAI framework. Most GVGAI gameplays are non-deterministic, there-

fore one play-through of a game is not sufficient to justify its true fitness value

correctly. This means that the environment we use is noisy. A state-of-the-art

guidelines with published literatures prior to 1998 was written by Beyer [60]. In

his paper, he confirmed that the presence of noise leads to uncertain location of

global minima and there were three methods to reduce noise: resampling, sizing

the population size and inheritance of rescaled mutation. With a simple mathemati-

cal reduction, he showed that resampling n times reduces the noise strength by
√

n, although that would be traded off with higher evaluation cost. He also pre-

sented an equation for suitable population size by reducing it from the previous

literature. The last method is to perform large mutations to the parent individ-

uals, selects the mutation that produced the best offspring and scales down the

length before adding new offsprings into the population. The idea behind this

is that highly mutate the individuals may result in the significant differences be-

tween the offsprings and parents, which should be higher than the noise level.

Years later, Jin and Branke did a survey on evolutionary optimization in un-

certain environments in 2005 [61]. They categorized these uncertainty into four

categories based on the causes: noisy fitness function, post-optimizing parameter

deviation, fitness approximation instead of evaluation and dynamic optimal point lo-

cation. Noisy fitness function refers to the situation that evaluating the same

individual twice gives different values. This is certainly our case as both our

28 Chapter 2. Literature Review

game framework (GVGAI) and our AI players (RHEA and MCTS) are stochas-

tic. Therefore performing the same action sequence in the same game might

give different outcomes, and we were using the AI agents that may not perform

the same action in the same situation. Three types of approaches were proposed

to deal with this type of noise. The first two were resampling and increaing the

population size, which Jin and Branke called them explicit averaging and implicit

averaging respectively. Another approach is to modify the selection step. For in-

stance, introducing a threshold value that a new individual has to be fitter than

the parent at least by this threshold [62]. Although the presence of noise seems

to effect slow convergence in optimization, some works reported that a certain

level of noise actually assisted EAs [63] [64].

The second cause is that some parameters of the environment might change

after the optimization is finished, causing the solution to be non-optimal. Jin and

Branke stated that the EAs should be able to find a more robust solution that

tolerate this changes, similarly with the over-fitted issue in Machine Learning

that a good learning model should overcome it. They reckoned that a robust

solution should not be affected by a small alteration in either design variables

or environment variables. To accomplish this, one may attempt to define an

expected fitness function that evaluates the fitness in probability format instead of

crisp values. Additionally, one may try calculating both expected fitness value

and normal fitness value, and then employing MOEAs techniques to optimize

both [65].

In some domains, evaluating the actual fitness might be impractical or un-

affordable. Some obvious examples related to games are the measurement of

players’ fun and enjoyable level. Most of the time the fitness function of these

were manually defined by the researchers. Jin and Branke [61] provided guide-

lines on how to properly approximate the values in noisy environments. The

last source of noise is caused by dynamic environment that the optimal point may

change with time. To tackle this, maintaining diversity during the evolution [66],

2.3. Evolutionary Algorithms 29

keeping track of some previous population [67], or multi-population evolution

are some possible approaches [68].

For more recent works in handling uncertainty in EAs, Hansen et. al. [69]

proposed an uncertainty measurement that was based on the changing in rank-

ing of the population during the evolution. They integrated this into a combus-

tion control system with an uncertainty treatment module that aimed to prevent

system failure. Covariance Metric Adaptation Evolutionary Strategy (CMA-ES) was

applied as an EA to do parameter optimization. They claimed that the effect of

uncertainty in ranking-based EAs would affect the algorithm performance only

if the individual ranking was changed after re-evaluation. After the uncertainty

level was measured, the treatment step would take place if the measured value

is above the threshold. Treatment methods can be either increasing the evalu-

ation time or the population variance. Another work done later by Syberfeldt

et. al. [70] employed iterative resampling to prevent bad solution to survive

and breed due to noise. They tested that technique with two real world multi-

objective optimization problems. Their overall procedures were of 5 steps. First,

a pair of individuals to be compared are sampled (evaluation) n times to esti-

mate noise level. Next, each of to-be-optimized objective mean and standard

deviation values are then computed. Then the confidence level of the individual

relation (how probable one has better, worse, or equally in quality compared

with another) is calculated. After that, they used Welsh confidence interval (WCI)

to indicate whether the differences between two individuals are significant from

the confidence value. Finally, another solution were resampled and all steps are

repeated. Last year (2017) Friedrich et. al. [71] showed that a type of GA called

Compact Genetic Algorithm (cGA) was robust to noise without the need of any

additional handling method. In contrast to normal GA, cGA does not focus on

mutating the population to find better individuals, but instead trying to ’picture’

each gene frequencies that the ideal population would have. This can be done by

30 Chapter 2. Literature Review

starting with random frequency values, picking two individuals from this pop-

ulation distribution, comparing them and updating the value accordingly using

tournament selection. In their paper, Friedrich et. al. presented a mathematical

reduction to prove that the simple hill climber is susceptible to noise even with

low amount. Then they further proved that population-based EA with muta-

tion could not rely on increasing population size to alleviate noise level when

the intensities is high. In contrast to both, they showed that cGA was capable of

converging into optimal even with the presence of noise. The practical experi-

ment the did in comparing cGA with hill-climbing also verified that. Lucas et.

al. [72] proposed two other versions of cGA and observed their performance in

noisy tasks. The first improvement is to sample more than two individuals per

iteration. That is selecting n individuals and compare them pair by pair, which

would be n(n−1)
2 comparisons in total. The second variant is called sliding window

cGA, which aims to update the gene probability vector more frequent. That is,

once an individual is sampled, it would be evaluated and compared with other

previously drawn individuals. The probability vector is updated after each com-

parison. The authors of this work stated that the main objective of their work is

to find an EA that is robust to noise for applications in Game AI. Therefore ap-

plying their cGA variants into our parameter tuning might be a possible future

work.

I have briefly reviewed some works for general improvements of EAs in dif-

ferent aspects in this subsection. Next, some proposed literatures of applying

EAs in game domain would be reviewed.

2.3. Evolutionary Algorithms 31

2.3.2 Applications in the Games Domain

Games have been widely accepted as efficient real-world problem testbeds for

long time, especially for newly developed Artificial Intelligence algorithm test-

ing. This is mainly because a game usually is a combination of tasks or prob-

lems for the players, and solving them often requires intelligent-driven proce-

dures. In early days, EAs were applied to develop board game players in allied

with neural networks, with the idea of using them to evolve a suitable network

topology and structure. This is called Neuroevolution, which its applications in

games and advantages were reviewed by Risi and Togelius [73]. David B. Fogel

had been working on applying this to develop variety of board game computer

players such as Tic-Tac-Toe [74], Checkers [75] and Chess [76]. The network for

each game was designed to receive board representation as input and evaluate

all position values for output. Therefore in Tic-Tac-Toe a network received 9 in-

puts and produced 9 outputs. Then the next move was decided by picking the

position with highest value. All neural networks in his Tic-Tac-Toe paper were

Multilayer Perceptron (MLP) with one hidden layer. The number of neurons in

the hidden layers and connection weights between layers were evolved using

an EA. He started with 50 networks, playing them against a slightly noisy close-

to-optimal rule-based player and recorded the results as fitness values. Then

each network fitness were compared with other 10 randomly selected networks

in the population, and only some of the best survived for the next iteration. This

approach was extended to create a checkers computer player Blondie24. Obvi-

ously the complexity of checkers is more than Tic-Tac-Toe with 8 by 8 board

size, though only half were actually in gameplay. E. Harley stated in a review of

Fogel’s book [75] that Fogel’s objective was to develop a player that could just

learn to play without being told how to (e.g. rule-based). Therefore Blondie24

was not given any information about the game rules or how the score is calcu-

lated, and the only signal given was the reward corresponding to the gameplay

result. For Chess, Fogel realized that the game complexity is significantly higher

32 Chapter 2. Literature Review

FIGURE 2.6: Front (top left), back (top right), middle (bottom left)
areas and neural network structure (bottom right) as applied in

[76]. The image is taken from page 2 of the publication

than Checkers, he employed three neural networks to create a player instead of

one. Each network was responsible for a 16-tile specific area on the board: the

front, back and middle. The front area is the first two rows on player side, while

the back area is the two rows on the opponent’s side and the middle area is

the 16-tile square area at the middle of the board, as illustrated in Figure 2.6.

All three networks produce one output each, called Positional Value Table (PVT)

which each acted as a board position value evaluator. In this setup the hidden

layer node size was fixed at 10 and the EA was adopted to evolve only connec-

tion weights.

Another board game with neuroevolution-based player is Backgammon, from

the work done by Pollack et. al. [77]. They used a two-layer feedforward neural

network to evaluate next move value, with hill-climbing to evolve the network

topology. Their initial method started with setting all weights of the network to

2.3. Evolutionary Algorithms 33

zero, applied mutation to create a mutant network. Then these parent network

and this mutant played the games for a number of times. The mutant would be

selected as the next parent if it won more than half of the games. However, they

found that sometimes a lucky inferior mutant happened to won more, therefore

instead of neglecting the current parent, they mutated the parent to be a bit more

similar to the mutant. For Othello, a neuroevolution using Marker-based encoding

to encode network topology was proposed by Moriarty and Miikkulainen [78].

In this work, the network architecture and connection weights were translated

into a sequence of integers in range [−128, 127] and evolved with genetic algo-

rithms. During the evolution, the networks played with a random move player

and the results were stored. Then some of the best network individuals per-

formed crossover with another randomly selected individuals, producing two

offsprings for each mating. Then the usual selection procedure took place and

the evolution was repeated. Their evolved networks were mostly able to learn

the positional strategy (high score area falls around the corner) quite fast in the

beginning, but more difficult to learn the mobility strategy (conquer as much

areas as possible) that the experienced human players usually employed.

Apart from board games, neuroevolution has also been applied in many

video games. An example of this is a well-known Pac-Man that Yannakakis and

Hallam [79] used neuroevolution approach to generate ghost strategies. First

they created a Pac-Man-like simulator with a simpler graphical layout. Four

mazes, with different complexities (given in Figure 2.7, taken from page 4 of

[79]), were designed for the experiment. Pac-man avatar was controlled by ei-

ther of three bots that would attempt to avoid ghosts or collect power pills, de-

pends on their embedded strategies and heuristic functions. For ghosts, they

were being controlled by a fully-connected feed-forward neural network that

receives state information and produces each ghost’s next action from it. Their

34 Chapter 2. Literature Review

FIGURE 2.7: 4 Pacman maps with increasing complexity from left
to right, employed in [79]. The image is taken from page 4 of the

publication

objective was to evolve ghost behaviours that make the game interesting, mea-

sured by 3 criteria: game difficulty, diversity in opponent behaviour and oppo-

nent aggression level.

Togelius et. al. applied neuroevolution to Super Mario Bros. [80] to create

an efficient avatar controller. Their experiment was done using either multi-

layer perceptron or recurrent network, with (λ + µ)-ES at first and changed to

a GP called HyperGP [81] after an initial experiment. The controllers evolved

were able to clear the stages they were training on, but struggled in other stages,

pointing out their lack of generalization. HyperGP is a GP version of hyper-

NEAT, which is a variant of Neuroevolution of Augmented Topology (NEAT) that the

networks were used to generate weights. NEAT is a neuroevolution method that

starts with the simplest topology and increase complexity during evolution. It

also provides inexpensive methods to tackle different network structure recom-

bination and mutation. Unlike hyperNEAT, hyperGP starts with more complex

network structure. The fitness function of this Mario evolution was calculated

from how far the avatar able to traverse to the right from the initial location.

Stanley et. al. [82] invented a real time version of NEAT [83] and experimented

its performance with their own developed game name NERO, which is a com-

petitive robot fighting game. The game next moves were evolved online during

2.3. Evolutionary Algorithms 35

the gameplay, while carefully compromise between evolving the strategy indi-

vidual and hastily reacting to the game. NEAT was also applied in other game

domain such as racing, as done by Cardamone et. al. [84]. They focused on

developing a car controller for The Open Car Racing Simulator (TORCS) by op-

timizing the performance on two tasks: fast and safety driving component and

opponent overtaking & collision avoidance component. Input of the safety driv-

ing component network were taken from the TORCS API track and speed sen-

sors while the opponent component received input from the opponent sensor.

NEAT was used to evolve a good driving component first on the empty tracks,

then it was extended to cover opponent avoidance and overtaking skill. They

compared the results with other controllers included the manually-designed one

and found that their method outperformed the manually designed controller in

both component tasks.

Other Non-neuroevolution EAs can also be applied to create board game

computer players. For Checkers, Hughes [85] presented an online co-evolution

player that can select a suitable tree-like traversal path from the current state.

Although this is similar to MCTS, it instead evaluated the best move without

random rollouts simulation, but using real lookup because the branching is not

too high. Each individual is a sequence of 100 real values in range [0, 1] that

each represent a move to be executed in order. A real number can be decoded

to move by multiplying it with the size of the current legal move set, round

the value up into an integer, then pick the move from the set with that index.

Two populations were evolved simultaneously with each of them randomly se-

lects a ’representative’ to play against another from the opponent population.

To clarify, the player in this case is the whole population, not just an individual.

The game starts with each population picks the best-so-far individual, which

is a sequence of moves, to compete. Then after one player makes a move, it

will perform a ’look-up’ simulation and applying evolution steps to the moves

according to the current board state, then execute the next move from the best

36 Chapter 2. Literature Review

individual so far. The fitness function favours the individuals that wins earlier,

and loses later. This method is similar to the later-invented Rolling Horizon Evo-

lutionary Algorithm (RHEA) [86].

RHEA is an online planning evolutionary algorithm developed by Perez et.

al. [86]. It has been applied into game playing in various domains, for exam-

ple general video game player in GVGAI [87] [88]. Samothrakis et. al. studied

and compared the performance of using Truncated Hierarchical Open-Loop Planing

(T-HOLOP) with another hierarchical open-loop planing called EVO-P as EAs

in RHEA in three game-like continuous tasks. The first two tasks were bench-

marking problems known as Inverted Pendulum and Double Integrator, while the

third task was based on an arcade game Lunar Lander. T-HOLOP is a variant of

Truncated Hierarchical Optimistic Optimization (T-HOO) which is designed for op-

timization in noisy environments. They found that it is possible to solve the

mentioned tasks in rolling horizon setting, although the performance highly

relied on the heuristic functions, which are domain-specific. For multiplayer

games, Liu et. al. [89] applied RHEA to a simple two-player competitive game.

Two variants of RHEA called Rolling Horizon Genetic Algorithm (RHGA) and

Rolling Horizon Coevolutionary Algorithm (RHCA) were proposed as controllers

and compared with Open-loop MCTS, One-Step Look Ahead (1SLA), Rotate-And-

Shoot (RAS) and Random controllers. RHCA performed the best among all men-

tioned controllers in their task. We employed RHEA as the representative of

human player during parameter evolution in our second experiment.

RHEA is not the only online planning EA that can be used to develop a

game playing controller. Justesen et. al. [90] presented a method called On-

line Evolution for multi-action adversarial games, which is a type of competi-

tive turn-based games that each player perform a number of actions in each

turn. As they claimed, Rolling Horizon techniques were designed to consider

only the best possible actions of the opponents while planning instead of the

actual actions, in opposite to their proposed method. Their approach was to

2.3. Evolutionary Algorithms 37

evolve a set of actions for only one turn, making use of all of the current state

information and evaluate each action set at the end of the turn with the pre-

defined heuristic function. They experimented this Online Evolution with three

tree search methods including Monte-Carlo Tree Search (MCTS) with a two-player

adversarial game named Hero Academy9. Some domain-specific modifications

were necessary because blindly evolving the individuals is likely to cause non-

legal moves. The mentioned four tested algorithms were put to play in all-pair

head-to-head fashion for 100 matches in each pair, to remove the advantages of

being the first move player. All controllers have 6 seconds to select actions for

their turn. They found that Online Evolution performed best with the highest

winning percentage at 80.5%. This Online Evolution was later combined with

Portfolio Greedy Search (PGS) [91] to develop a controller for a micro version of

StarCraft, by Wang et. al. [92]. The idea of PGS is to generate each unit move

from a set of pre-defined scripts (portfolio), improving the scripts by using hill-

climbing greedy search after a playout of the generate moves were executed. In

Wang et. al. work, Online Evolution was used to evolve these scripts instead

of hill-climbing. They tested this proposed method in a Java micro version of

the game called JarCraft, compared with other three algorithms and found that

theirs performed the best.

In this Chapter, previously proposed literatures that are related to our re-

search were surveyed. There are some essential knowledge that the readers

should understand in details for the best understanding of our work. These

are written in the next chapter.

9http://www.robotentertainment.com/games/heroacademy/

http://www.robotentertainment.com/games/heroacademy/

39

Chapter 3

Background

In this chapter, all necessary background knowledge are described in details.

This includes Space Battle along with its variant that was used in this project,

GVGAI framework and Evolutionary Algorithms used in the experiments.

3.1 Space Battle

Space Battle is a two-player competitive game written in Java, earlier used in [89]

to analyze co-ovolution approach for two-player games. Each player controls

a convex-quadrilateral-shape spaceship that can steer (rotating the direction of

the ship), thrust (moving forward by applying force in the front direction of the

ship), and shoot missiles. The front side of a ship is indicated by a single-acute

angle point. The first player controls the blue ship while the second player’s ship

is green. The game objective is to destroy another ship by shooting missiles to it,

while also avoid being hit. Both players act simultaneously and have the same

range of actions available, these include: turn clockwise, turn anticlockwise,

thrust (move forward) and shoot a missile. Rotation, acceleration and shooting

actions can be performed together in one game tick. Turn actions simply rotate

the ship into the corresponding directions, without moving it from its current

position. Therefore, the ship can only move forward when the thrust action is

operated.

40 Chapter 3. Background

FIGURE 3.1: Space Battle Game Screenshot

When a player chooses to shoot, a round-shaped missile appears at the player’s

ship location and moves into the ship’s forward direction with a specific veloc-

ity. Each player starts the game with 1000 lives that will be decreased by one if

being hit by an opponent missile, which also give +1 score to the opponent. The

game can end in either of two scenarios: one player has lost all 1000 lives or the

maximum allowed time step is reached. The player who has more lives after the

game ends is the winner.

The framework uses the same interface as the Two-Player General Video

Game AI (GVGAI) framework [10], [34], therefore it easy to plug in GVGAI

agents and use them for game testing. All controllers have access to a Forward

Model (FM), which allows the agents to simulate possible future game states by

providing an in-game action. Additionally, as the game is real-time, the agents

only have 40ms for making a decision during a game step, with 1s for initial-

ization. Figure 3.1 depicts Space Battle game screenshot at the beginning of the

game.

Space Battle Evolved is a variant of Space Battle was designed specifically for

this project. It introduces three new mechanics to the game:

1. Black holes

Black holes in general refer to places in the space outside planets or stars

3.2. GVGAI Framework 41

that have very high gravity and can pull everything, including light, into

their centre. We applied its concept to create a game object with similar

mechanism. A black hole in our game is a grey-colour circular area that

has gravity-similar force that pulls some other game objects that enter the

area into its centre point. In some situation, a player loses score eventually

if staying inside a black hole penalty area.

2. New Missiles

In the original Space Battle, there is only one missile type shot out directly

from the front side of the ship. We have introduced two new missiles: twin

missile and bomb missile. Twin missile consists of two normal missiles that

can be shot in angle -45 and 45 degree from the front of the ship using

only one ’shoot’ action, and bomb missile is similar to the normal missile

excepts that it can explode, causing damages in its area of explosion, if

colliding with an opponent’s game object.

3. Missile Supply

In the original game, there are only 100 missiles available for each player.

We introduced a new collectible game object called missile supply that

contains 20 missiles which will be added into the player’s available mis-

siles once collected. This missile supply is shown as a small yellow star-

shape in the game.

Figure 3.2 shows Space Battle Evolved with two black holes, twin missiles

and a missile supply.

3.2 GVGAI Framework

GVGAI is a java-based framework for general video game playing (GVGP). It

was first introduced in 2014 to support such research and has since become

widely famous among the researchers in Game Artificial Intelligence field. The

42 Chapter 3. Background

FIGURE 3.2: Space Battle Evolved

framework source code is available online1 to download and execute. To fully

understand how to read the game rules from their description language, Java-

VGDL structure is explained next.

3.2.1 Video Game Description Language

All games in GVGAI framework are written in VGDL, which is first introduced

by Ebner et. al. [93] and implemented by Tom Schaul [94]. The description lan-

guage only supports non-physics 2D grid-based game interface, which means

currently all games in GVGAI are subjected to that constraint. Nevertheless, the

generality of VGDL concepts allows implementation of games in various cate-

gories, ranging from puzzles, mazes, to shooting games. To design a game with

VGDL, at least two description files are needed. This includes game description

and level description. Both description files are structured in tree-like hierarchy,

to facilitate translation and de-serialization into Java game object classes.

Game description defines game rules, events that can happen and all available

mechanics. In VGDL, game description has its game class name written on the

first line, which can be either BasicGame or GameSpace. Game-specific parameter

such as the number of players, input key handling mode and grid-cell square

1https://github.com/EssexUniversityMCTS/gvgai

3.2. GVGAI Framework 43

size (in visualize mode) are defined next to the game class name. Following the

game class in the first line, there are five possible instruction blocks in a game

description:

• LevelMapping: defines which ascii character is used to represent which

sprite in the game.

• SpriteSet: defines all sprite types, which sprites in the same category can

also be defined in hierarchical format. A sprite can either be an avatar, a

resource, a portal, static, spawn from avatar or movable.

• InteractionSet: defines the events to happen if two sprites collide (move

into the same grid tile at the same time step. A sprite always collide with

TIME in every time step. Therefore this can also be used to define time-

based events.

• TerminationSet: defines all conditions that leads to game termination,

along with the winning result in each case.

• ParameterSet: defines all game parameters that can be parameterize in

game design track and experiment.

Both BasicGame and GameSpace always contain the first four instruction blocks,

while only GameSpace has ParameterSet block.

Level description in VGDL defines a game level layout, which are initial po-

sitions of game object sprites. Each level file is a text file that each line has the

same length, as seen in Figure 3.3 a and b, resulted in the actual game layout in

Figure 3.3c and 3.3d respectively. VGDL game must have one game description

and at least one level description, in GVGAI there are 5 level description files for

each game.

A GVGAI avatar can have up to 5 in-game actions, which are 4 directional

movement (ACTION_UP, ACTION_DOWN, ACTION_LEFT and ACTION_RIGHT)

that will move the avatar into the adjacent grid tile in such direction. Some

44 Chapter 3. Background

(A) Level 0 description (B) Level 4 description

(C) Level 0 screenshot

(D) Level 4 screenshot

FIGURE 3.3: Single-player Aliens level description language and
screenshots, level 0 and 4

3.2. GVGAI Framework 45

movement action are not available in some games. The fifth action is ACTION_USE,

which will act differently according to avatar type.

GVGAI provides both single-player and multi-player (two-player at the mo-

ment) games, with two physics systems: grid-based and continuous. In grid-

based physics system games, the game objects (avatars, npcs, push-able objects,

etc.) are movable (or pushable) in 4 directions to a non-occupied grid cell if

the corresponding action is performed, while in continuous physics system, the

movement actions would be affected by game-specific physics forces, which for

instance could be gravity force, steering or thrusting force. A game gives reward

signal to the players based on one of two score systems: Binary and Incremental.

Binary score system only gives a positive score when the player has won the

game, and in some occasion negative score if the player avatar died during the

game to distinguish this from losing after time out. Incremental score system

provides a change in score (either positive or negative) from some events that

happened throughout the gameplay. In the original 2014 GVGAI framework

document they suggested another system called discontinuous in which certain

events lead to significantly higher changes in score. However, after more games

has been added into the framework, it is unclear whether how much ’higher

changes’ of score should be considered as discontinuous system, I would there-

fore categorize every games with events leading to the changing of score before

the end of the game as using incremental system.

All three games we selected for our second experiment are single-player

shooting games with grid-based physics and incremental score system. This

makes them be good testbeds for the experiment, as the agents play in these

game are most likely to obtain score trends in the same style as the functions we

picked. The games are described next.

46 Chapter 3. Background

3.2.2 Selected Games

Seaquest, Waves and Defender were chosen to do parameterization from pre-

defined score trend function.

1. Seaquest

Seaquest is a single-player GVGAI game that was inspired by an arcade

game with the same name in the Atari 2600 framework2. In this game,

a player controls a submarine aiming to rescue underwater divers while

defending itself from the aggressive fish-shaped underwater animals by

shooting them with torpedoes. The submarine has an oxygen level bar

that will continuously decrease with the time it is underwater, and can

be refilled once it moves to the surface. In the Atari version, the player

wins a level if 3 divers are rescued, loses one (out of the initial three) life

if being hit by the fish-shaped animals (as well as their bullets) or runs out

of oxygen. In GVGAI version, the player wins if the avatar survived until

the maximum timestep is reached.

Seaquest VGDL game description SpriteSet instruction block is shown in

Figure 3.4. The description is in format Name > Type [Optional parame-

ters]. From the description, there are 6 main sprite classes: sky, water, saved,

holes, moving and crew. Hole has three sub-classes: sharkhole that will spawn

shark sprites, whalehole that will spawn whale sprites and diverhole that will

spawn diver sprites. Diverhole has two sub-classes, normaldiverhole and of-

tendiverhole that will spawn diver sprites with different probability. Moving

sprite has 4 sub-classes: avatar, torpedo, fish and diver. There are three types

of fish sprites: shark, whale and pirana (which is piranha). Grouping sprite

types makes it easier to define an interaction set, which is shown in Fig-

ure 3.5. The InteractionSet block is in format Sprite1 Sprite2 > Events, which

means the events Events will happen if Sprite1 collides with Sprite2. It can

2http://www.retrogames.cz/play_221-Atari2600.php?language=EN

http://www.retrogames.cz/play_221-Atari2600.php?language=EN

3.2. GVGAI Framework 47

be seen that, grouping shark, whale and pirana as fish helps reducing the

interaction sets, as the events will occur to the all sprites under a parent

class if it has been explicitly defined in the interactions. Each line can be

translated as follows.

• Every 26 time step, avatar health (in this case oxygen level) will de-

crease by one.

• If EOS (a global sprite type means end of screen) is collided by the

avatar, or if a diver collides with sky, the avatar /diver will be pushed

back to the cell they were on the previous time step. This is to prevent

the avatar from moving out of the screen, and to prevent diver from

going to the surface by themselves.

• If a fish leaves the screen, they will disappear from the game.

• If a fish collides with a torpedo, they both will disappear from the

game, and the player receives +1 score.

• If the avatar collides with a fish, the avatar is killed.

• If the avatar moves to the sky, it gets 1 more oxygen level (health

point), and the crew will be changed to saved, with limit crew size

= 4. The player will get 1000 points for each saved he/she has.

• If the avatar collides with a diver, the avatar has one more crew resource

and the diver is removed. This is equivalent with changing the diver

into crew, but since crew is considered as a resource here, the chang-

eResource command is used and the diver is explicitly killed off.

The TerminationSet of Seaquest is given in Figure 3.6, which describes that

the player loses if the avatar was killed, and wins if he/she has survived

until time step 1000.

2. Waves

Waves is an alien fighting GVGAI game that the player controls a space-

ship trying to survive from a big alien attacking wave. Aliens are spawned

48 Chapter 3. Background

SpriteSet

sky > Immovable img=oryx/backLBlue
water > Immovable img=newset/water2
saved > Immovable color=LIGHTGREEN
holes > SpawnPoint color=LIGHTGRAY img=newset/whirlpool2

portal=True
sharkhole > stype=shark prob=0.01
whalehole > stype=whale prob=0.005
diverhole > stype=diver

normaldiverhole > prob=0.005
oftendiverhole > prob=0.025

moving >
avatar > ShootAvatar color=YELLOW stype=torpedo
img=newset/submarine healthPoints=18 limitHealthPoints=20

torpedo > Missile color=YELLOW img=oryx/bullet1

fish >
shark > Missile orientation=LEFT speed=0.25
color=ORANGE img=newset/shark2

whale > Bomber orientation=RIGHT speed=0.1 color=BROWN
stype=pirana prob=0.02 img=newset/whale

pirana > Missile orientation=RIGHT speed=0.25 color=RED
shrinkfactor=0.6 img=newset/piranha2

diver > RandomNPC color=GREEN speed=0.5 img=newset/diver1
cons=2

crew > Resource color=GREEN limit=4

FIGURE 3.4: Seaquest SpriteSet game description

InteractionSet

avatar TIME > subtractHealthPoints timer=26 repeating=True
EOS avatar diver sky > stepBack
fish EOS > killSprite
fish torpedo > killBoth scoreChange=1

avatar fish > killSprite
avatar sky > addHealthPoints value=1
avatar sky > spawnIfHasMore resource=crew stype=saved limit=4

spend=4
saved sky > killSprite scoreChange=1000

avatar diver > changeResource resource=crew
diver avatar > killSprite

FIGURE 3.5: Seaquest InteractionSet game description

TerminationSet

SpriteCounter stype=avatar limit=0 win=False
Timeout limit=1000 win=True

FIGURE 3.6: Seaquest TerminationSet game description

3.2. GVGAI Framework 49

SpriteSet

background > Immovable img=oryx/space1 hidden=True

asteroid > Immovable img=oryx/planet

missile > Missile

rock > orientation=LEFT speed=0.95 color=BLUE img=oryx/orb3

sam > orientation=RIGHT color=BLUE speed=1.0 img=oryx/orb1
shrinkfactor=0.5

laser > orientation=LEFT speed=0.3 color=RED
shrinkfactor=0.75 img=newset/laser2_1

portal >

portalSlow > SpawnPoint stype=alien cooldown=10 prob=0.05
img=newset/whirlpool2 portal=True

rockPortal > SpawnPoint stype=rock cooldown=10 prob=0.2
img=newset/whirlpool1 portal=True

shield > Resource color=GOLD limit=4 img=oryx/shield2

avatar > ShootAvatar color=YELLOW stype=sam speed=1.0
img=oryx/spaceship1 rotateInPlace=False

alien > Bomber color=BROWN img=oryx/alien3 speed=0.1
orientation=LEFT stype=laser prob=0.01

FIGURE 3.7: Waves SpriteSet game description

from their spawn points and moving considerably fast to the avatar direc-

tion. Alien liars also constantly shoot missiles and laser to the player, in

which the player will lose one health if colliding with each of them. The

avatar can regain health by collecting shields that dropped from destroyed

lasers, after shooting missiles at them.

Wave game description SpriteSet is given in Figure 3.7. There are 7 main

sprites in this game: background, asteroid, missile, portal, shield, avatar and

alien. Missile can be either rock, sam or laser while portal has 2 sub-classes:

portalSlow and rockPortal that will spawn alien and rock respectively.

Waves InstructionSet can be found in Figure 3.8. It can be translated as

follows:

• The avatar are not allowed to leave the screen, while aliens and missiles

will be destroyed once they have left the screen.

50 Chapter 3. Background

InteractionSet
avatar EOS > stepBack

alien EOS > killSprite

missile EOS > killSprite

alien sam > killBoth scoreChange=2

sam laser > transformTo stype=shield killSecond=True

avatar shield > changeResource resource=shield value=1
killResource=True

avatar rock > killIfHasLess resource=shield limit=0

avatar rock > changeResource resource=shield value=-1
killResource=True

avatar alien > killIfHasLess resource=shield limit=0

avatar alien > changeResource resource=shield value=-1
killResource=True

avatar laser > killIfHasLess resource=shield limit=0

avatar laser > changeResource resource=shield value=-1
killResource=True

asteroid sam laser > killSprite

rock asteroid > killSprite

alien asteroid > killSprite

laser asteroid > killSprite

avatar asteroid > stepBack

FIGURE 3.8: Waves InstructionSet game description

• If an alien collides with a sam, both will be destroyed and the player

score increases by 2.

• If a sam hits a laser, spawns a shield (by changing the sam to a shield),

and destroy the laser.

• Collecting a shield will increase the avatar resource by 1.

• The avatar loses one resource if hit by a rock, an alien or a laser, and is

killed if no resource left.

• An asteroid is destroyed if hit by a sam or a laser.

• A rock, an alien and a laser will be killed once collides with an asteroid,

while the avatar cannot move to any cells with an asteroid.

3.2. GVGAI Framework 51

TerminationSet
SpriteCounter stype=avatar limit=0 win=False

Timeout limit=1000 win=True

FIGURE 3.9: Waves TerminationSet game description

Waves game termination condition (Figure 3.9) is the same as Seaquest,

which the player wins if the avatar is still alive until 1000 time step, and

loses if the avatar is killed.

3. Defender

Similar with Seaquest, Defender is also inspired by the game with the same

name in Atari 2600 framework3. In this game, the player plays as an armed

aircraft trying to protect cities from alien assault. Aliens occasionally drop

bombs to destroy the cities below. The aircraft can shoot missiles at aliens

to kill them before they successfully bombarding all cities. In GVGAI ver-

sion, aliens move from their spawn points horizontally in one direction

and is harmless to the avatar aircraft. The avatar has a limit amount of

missile resource, which can be reloaded by collecting a supply pack that is

constantly falling down from above.

GVGAI Defender SpriteSet game description is given in Figure 3.10. There

are 10 main sprite classes in this game: floor, city, avatar, missile, alien, portal,

portalAmmo, supply, bullet and wall. Missile has 2 sub-classes: sam and bomb,

while portal can be either portalSlow or portalFast.

The InstructionSet, depicted in Figure 3.11, can be translated as follows:

• The avatar cannot leave the screen, nor move to a city or a wall.

• Once left the screen, an alien and a missile will be destroyed.

• A city can be destroyed by a bomb, which will also decrease the player

score by 1.

3http://www.free80sarcade.com/2600_Defender.php

http://www.free80sarcade.com/2600_Defender.php

52 Chapter 3. Background

SpriteSet
floor > Immovable img=oryx/space1 hidden=True

city > Immovable color=WHITE img=newset/city1

avatar > ShootAvatar color=YELLOW ammo=bullet stype=sam
img=oryx/spaceship1 rotateInPlace=False

missile > Missile

sam > orientation=RIGHT color=BLUE img=oryx/bullet1

bomb > orientation=DOWN color=RED speed=0.5 img=newset/bomb
shrinkfactor=0.6

alien > Bomber orientation=LEFT stype=bomb prob=0.04 cooldown=4
speed=0.6 img=oryx/alien3

portal > SpawnPoint stype=alien cooldown=10 invisible=True
hidden=True

portalSlow > prob=0.2

portalFast > prob=0.5

portalAmmo > SpawnPoint stype=supply cooldown=10 prob=0.15
invisible=True

supply > Missile orientation=DOWN speed=0.25 img=oryx/goldsack

bullet > Resource limit=20

wall > Immovable img=oryx/wall1

FIGURE 3.10: Defender SpriteSet game description

• A city can also be destroyed once hit by a sam or an alien, but the score

will stay the same in this case.

• A supply is destroyed if collides with an alien.

• Once an alien was shot by a sam, they both will be destroyed, and the

player score will increase by 2.

• A supply cannot pass through a city or a wall, or another supply, in-

stead it will be stacked up.

• The avatar resource (sam) will be increased by 5 if it collects a supply.

Defender game termination condition is the same as Waves and Seaquest,

with an additional case of losing if all city has been destroyed. This Termi-

nationSet is shown in Figure 3.12.

3.2. GVGAI Framework 53

InteractionSet
avatar EOS city wall > stepBack

alien EOS > killSprite

missile EOS city > killSprite

city bomb > killSprite scoreChange=-1

city sam alien > killSprite

supply alien > killSprite

alien sam > killBoth scoreChange=2

supply supply > stepBack

supply wall city > stepBack pixelPerfect=True

avatar supply > changeResource resource=bullet value=5
killResource=True

FIGURE 3.11: Defender InteractionSet game description

TerminationSet
SpriteCounter stype=avatar limit=0 win=False

SpriteCounter stype=city limit=0 win=False

Timeout limit=1000 win=True

FIGURE 3.12: Defender TerminationSet game description

3.2.3 Controllers

In our first experiment, we applied six controllers, all excepts Rotate and Shoot

taken from the GVGAI framework to use as either player-substitutions or en-

emy players. This includes Do Nothing, Random, One Step Look Ahead (1SLA),

Rotate and Shoot (RAS), Monte Carlo Tree Search (MCTS) and Microbial Evolution-

ary Algorithm (MEA). In the second experiment, the chosen games were played

and evolved using a GVGAI controller called Rolling-Horizon Evolutionary Algo-

rithm (RHEA) , and the evolved game parameters were validated using MCTS.

RHEA and MCTS controllers were chosen to do this task because they always

perform well compared with the other sample controllers in the framework, and

also because of their ’score hunger’ nature. Specifically, these two controllers are

using heuristics that taking the game score into account as the second priority,

with only the game winning result is more important.

To develop a GVGAI controller, a Java class named Agent is needed, and it

must extends a Java class named AbstractPlayer. Any non game-specific setup

54 Chapter 3. Background

should be implemented in the agent’s constructor as the agent would be cre-

ated before it is assigned any games to play. After entering a gameplay state,

the act method would be called for the agent to return an action for that current

time step. Both agent constructor and act method receive two parameters, a Sta-

teObservation class which encapsulates all accessible information and a forward

model of that game state, and a ElapsedCpuTimer that the agent can query time-

related information. An agent in non-learning track is allowed to ’simulate’ the

possible future outcomes of the game by passing an action to the forward model

(by calling StateObservation.advance(Action) method). With the information

obtained from this simulation the agent should plan the action carefully, as it is

given no chance to replay the game.

GVGAI allows 1 second CPU time for agent’s creation (constructor) and 40

milliseconds for returning an action in the act method. Violating any of these

time constraints will result in the agent being disqualified for that game play,

and receive a huge negative score. All controllers’ algorithm description and,

for advance controllers only, their implementation in GVGAI framework are ex-

plained in details next.

1. Do Nothing

As the name suggests, the controller always return no action in every time

step. It was used as an enemy player parameter to be evolved in our vari-

ant of Space Battle.

2. Random

This controller returns random action in every game step. It was used as

an enemy player parameter to be evolved in our variant of Space Battle.

3. One Step Look Ahead (1SLA)

This is the simplest controller that accesses the forward model. It simulates

possible next steps by passing each action to the forward model, and apply

the action that leads to the best outcome, which can be determined from its

3.2. GVGAI Framework 55

internal heuristic. In this case the heuristic considers only the game score.

It was used to portray amateur player in Space Battle Evolved experiment,

because it is powerful only if the enemy is right in front of the ship.

4. Rotate and Shoot (RAS)

Rotate and Shoot is the only non-general agent using in our experiment. It

employs a simple-but-powerful strategy of rotating clockwise and shoot-

ing missiles around repeatedly. In the Space Battle game with unlim-

ited missile, this controller maybe unbeatable. However, in Space Battle

Evolved, only 100 missiles are provided in the beginning. RAS was used

to represent intermediate player since it is invincible in at least the first 100

game steps.

5. Microbial Evolutionary Algorithm (MEA)

This controller is known under the name sampleGA in GVGAI competi-

tion. It first randomly generate a population of individuals encoded as

sequences of in-game actions, then performs selection using a microbial

tournament, from which an offspring is generated by crossover operation.

This newly generated individual is then mutated, and is evaluated its fit-

ness value. Then some of the best individuals are retained as a part of

the next generation. This process is reiterated until the budget limit is

reached (e.g. time, memory or specific number of iterations). This con-

troller was applied as an enemy player parameter to be evolved in our

variant of Space Battle.

6. Rolling Horizon Evolutionary Algorithm (RHEA)

RHEA was first introduced by Perez et. al. [86] as an online planning

game player for Physical Travelling Salesman (PTSP) problem. Rolling

horizon (also known as ’Model Predictive’) refers to a planning behaviour

that plans a sequence of actions from the current point to the limit fore-

seeable future, then performs the first action on of the sequence and then

56 Chapter 3. Background

replan. Perez et al. considered this sequence of actions as an individual

in evolutionary algorithm domain. It was implemented as a sample con-

troller for GVGAI framework and has achieved promising performance

(although often ranked below MCTS - as claimed in [87]) in average.

RHEA algorithm can be summarized as follows:

(a) Randomly picks a set of individuals (in this case a sequence of actions,

each randomly assigned from a set of available actions in the game)

(b) Evaluates fitness values of each individual and sorts them in descend-

ing order

(c) Performs crossover and mutation to all individuals excepts the best

one.

(d) Evaluate every new population individuals, if the fitness value of a

newly created individual is higher than the best one, replace the best

one with this.

(e) Repeat step (c) and (d) until the time almost runs out.

(f) Return the first action of the best individual.

(g) Repeat (a)-(f) until the game ends.

Algorithm 1-3 shows how RHEA controller implements GVGAI act method.

The evaluate statement means simulating each action in the individual se-

quentially using the forward model and return the fitness value according

to the heuristic function it is using. Crossover and mutate methods refer to

two well-known techniques for individual evolution in genetic algorithm.

7. Monte Carlo Tree Search (MCTS)

Monte Carlo Tree Search (MCTS) is a tree-based planning algorithm that

was designed to tackle problems with huge branching factors. Its main

strength is the ability to explore in only some sections of the space that are

most likely to give promising outcomes, while neglecting other non (or

3.2. GVGAI Framework 57

Algorithm 1 RHEA act method
INPUT: StateObservation stateObs, ElapsedCpuTimer timer
OUTPUT: an available action

1: pop← init_pop(stateObs)
2: while enough time left from timer do
3: pop← runIteration(pop, stateObs)
4: end while
5: return first action of the best individual in pop

Algorithm 2 init_pop
INPUT: StateObservation stateObs
OUTPUT: a population of action sequences

1: pop← ∅
2: POP_SIZE←maximum allowed population size
3: INDIV_LEN ← longest simulation allowed
4: while enough time left and length(pop) < POP_SIZE do
5: individual ←array of INDIV_LEN random action indices
6: individual[f itness]← evaluate(individual)
7: add individual to pop
8: end while
9: sort(pop) in descending order of f itness value

10: return pop

almost non) informative branches. Generally in planning-based domains

with lookahead ability, the most challenging task is to balance between ex-

ploration and exploitation while selecting next area to simulate. Exploration

means spending time to search more in unseen areas, while exploitation is

to search more in the known areas to gain more or validate the knowledge

of such areas (especially in stochastic domains such as GVGAI, one-time

simulation of a state does not give all possible outcomes). MCTS tack-

les this by doing one-level breadth-first-search at a time (expanding all

children nodes for this state only) for a new state, and do one-part depth-

first-search with a selected children node (repeatedly simulate future steps

by selecting random actions until the maximum depth, or the termination

state, is reached). This is called rollout, then the final outcome of this rollout

is back-propagated through expanded nodes. Then the process of selecting

58 Chapter 3. Background

Algorithm 3 runIteration
INPUT: Population pop, StateObservation stateObs
OUTPUT: an evolved population of action sequences

1: INDIV_LEN ← longest simulation allowed
2: RE_EVALUATE← whether re-evaluation should be done
3: if RE_EVALUATE then
4: for all individual in pop do
5: if enough time then
6: pop[individual]← evaluate(individual)
7: else
8: stop
9: end if

10: end for
11: end if
12: if length(pop) > 1 then
13: for all non preserved individuals at position i in pop do
14: if enough time then
15: newIndiv← crossover()
16: newIndiv← mutate(newIndiv)
17: newIndiv[f itness]← evaluate(newIndiv)
18: pop[i]← newIndiv
19: else
20: stop
21: end if
22: end for
23: sort(pop) in descending order of f itness value
24: else if length(pop) = 1 then
25: newIndiv←array of INDIV_LEN random action indices
26: newIndiv[f itness]← evaluate(newIndiv)
27: if newIndiv[f itness] > pop[0][f itness] then
28: pop[0]← newIndiv
29: end if
30: end if
31: return pop

to-explore-next area is done by computing UCB values, using UCB1 algo-

rithm, of each children node at a time and pick the one with the highest

value to explore. UCB1 equation is given in equation 3.1.

a∗ = arg max
a∈A(s)

{
Q(s, a) + C

√
ln N(s)
N(s, a)

}
(3.1)

3.2. GVGAI Framework 59

While (a∗) is the best action, which would be selected as the one that max-

imizes the UCB1 equation, Q(s, a) is the estimated reward of taking action

a from state s, N(s) is the number of times s has been visited, N(s, a) repre-

sents how many times action a has been chosen from s andC is a constant

that balances between exploration and exploitation, with a value typically

set as
√

2 when rewards are bounded in [0, 1].

The mentioned process of MCTS planning can be divided into 4 phases:

• Selection: Repeatedly selecting a known child node from root using

UCB1 equation (equation 3.1) until a node with some unexpanded

children is found.

• Expansion: A new unexplored child node is added to the tree.

• Simulation: A rollout is done from the newly added child node until

the termination condition is reached.

• Back-propagation: The outcome of the rollout is repeatedly back-up

through the parental paths from the newly added node to the root

node.

Figure 3.13 depicted these 4 phases, the image was taken from page 6

of an MCTS survey paper by Browne et. al. [41]. Algorithm 4 summa-

rizes how MCTS is implemented in GVGAI act method. SelectAndExpand

refers to Selection and Expansion phase of MCTS, returning the newly

expanded child node, while rollOut and backup are Simulation and Back-

propagation phase respectively. In our work, MCTS was used as a repre-

sentation of skilful player in Space Battle Evolved experiment, and used in

validation phase of the GVGAI experiment.

60 Chapter 3. Background

FIGURE 3.13: MCTS searching steps, taken from page 6 of [41]

Algorithm 4 MCTS act method
INPUT: StateObservation stateObs, ElapsedCpuTimer timer
OUTPUT: an available action

1: mctsPlayer ← a new tree with root is the state stateObs
2: rootState← mctsPlayer[root]
3: while enough time do
4: selectedNode← selectAndExpand(rootState)
5: value← rollOut(selectedNode, rootState)
6: backup(value)
7: end while
8: return most visited action in rootState

3.3 Evolutionary Algorithms

There were three evolutionary algorithms applied in our two experiments. The

first one Random Mutation Hill Climber (RMHC) along with its variant Biased Mu-

tation RMHC were used in the Space Battle Evolved experiment only as baseline

algorithms to compare with N-Tuple Bandit Evolutionary Algorithm (NTBEA). The

second experiment with GVGAI games employ only NTBEA as the EA to pa-

rameterize games.

3.3.1 Random Mutation Hill Climber (RMHC)

RMHC is the simplest version of evolutionary algorithms that has only one in-

dividual in the population. It starts with random individuals, then randomly

3.3. Evolutionary Algorithms 61

selects one gene for mutation uniformly. The fitness value of this new individ-

ual is calculated and compared with the previous one. The better individual is

kept for the next iteration of the algorithm. These steps are repeated until the

termination condition is reached. In the implementation used for the Space Bat-

tle Evolved experiment, both the parent and the offspring are evaluated in each

generation.

3.3.2 Biased Mutation RMHC

Biased Mutation RMHC (B-RMHC) was inspired by the idea that different pa-

rameters affect the change in fitness values at different rates. That is, modify-

ing one parameter might significantly affect the fitness value more than others.

Therefore, a biased mutation towards more interesting parameters was used to

obtain more diverse games and speed up evolution. The algorithm is made up

of two parts: parameter pre-processing and actual evolution.

• Pre-processing

In this part, the parameters were divided into two groups, with the black

hole cell parameters (Group B) being separated from the rest (Group A).

For Group A’s pre-processing, the parameters were first randomly assigned.

Then, for each of them, the importance metric was calculated using stan-

dard deviation from the fitness in N tests, where N is the total number

of values the parameter tested can take. For each value, the game taking

the new parameter list was evaluated using the same fitness function em-

ployed during evolution. This assessment is based on the assumption that

larger differences in fitness lead to larger standard deviation values.

For Group B, the parameters were analyzed separately for each possible

grid size value, starting from all the black hole cells being empty and eval-

uating the effect of enabling a black hole in each cell. Similarly to Group

A, the standard deviation of the fitness values resulted from each cell’s

evaluation was used to rank these parameters.

62 Chapter 3. Background

Algorithm 5 Biased Mutation Pre-processing (MutPrep)

1: Input: game parameter list params
2: Output: sorted lists of important parameters
3: BEGIN
4: PriorityQParams← ∅
5: PriorityQBH← ∅
6: ParamsN← GroupA parameters
7: FOR EACH p in paramsN
8: value← ∅
9: rand← randomly assign other parameter values

10: FOR EACH possible value v of p
11: rand[p]← v
12: add fitness(rand) to value
13: PriorityQParams[p]← SD(value)
14: rand← randomly assign other parameter values
15: rand← disable all black holes
16: FOR gSize ∈ {0, 1, 2, 3, 4}
17: bhpriorityQ← ∅
18: fitnessOff ←fitness(rand)
19: FOR b = 1 to gSize2

20: enable black hole at position b in rand
21: bhpriorityQ[b]← fitnessOff − fitness(rand)
22: PriorityQBH[gSize]← bhpriorityQ
23: RETURN PriorityQParams, PriorityQBH
24: END

Pre-processing step outputs two list of parameters sorted by how much

they affect the game fitness value. Details of this algorithm can be seen in

Algorithm 5. This ordering was then used in the evolution step.

• Evolution

A softmax function was used to bias parameter selection at the beginning

of the evolution process. This ensures that more important parameters are

more likely to be selected to mutate. After that, the algorithm follows the

the similar steps of simple RMHC.

3.3.3 N-Tuple Bandit Evolutionary Algorithm (NTBEA)

N-Tuple Bandit Evolutionary Algorithm (NTBEA), first applied in Game AI by

Simon Mark Lucas, is an evolutionary algorithm that was designed for a noisy

domain task, e.g. one fitness evaluation does not give the correct value of the

3.3. Evolutionary Algorithms 63

individual, instead the appropriate approach is to find average value from mul-

tiple evaluations. NTBEA stores the statistical information of the evaluated fit-

ness value of such individual. These information are being stored using N-Tuple

structure, therefore they are real-time accessible. Given these characteristics, NT-

BEA is robust to noise and fast in individual optimizing.

All of our selected GVGAI games, and also both controllers, are stochastic.

Therefore to do game parameter tuning by evolutionary approach, a fast and

noise-robust evolutionary algorithm is necessary.

NTBEA is composed of two important ideas. Firstly, it uses N-Tuple struc-

ture to store statistical information of the evaluated parameter sets. This N-Tuple

structure application literature can be found in [95]. In this implementation, N-

Tuple is a set of lookup tables which using integer parameter as keys to access

the stored statistics. Another important component of our N-Tuple EA is that it

uses bandit approach (UCB1, equation 3.1) to select the best parameter set found

so far. N-Tuple Bandit EA operates as follows:

1. Randomly selects a parameter set as the initial individual.

2. Evaluates the fitness value (and other statistical information in later itera-

tions) of that individual, stores it in the lookup table.

3. Mutates the individual to generate a set of ’neighbour’ (the individuals

that shares all but one parameter values of such individual).

4. Calculates the UCB value of each neighbour individuals from the informa-

tion stored in their lookup tables.

5. Selects the neighbour with the highest UCB value as the next individual.

6. Repeats 2-5 with the selected next individual until the termination condi-

tion is reached.

To clarify how N-Tuple Bandit EA evolution steps work, See the following

example.

64 Chapter 3. Background

Example 3.3.1. Suppose we would like to evolve a game parameter set of size

4 with, with all of them have the same set of possible values equals to 1, 2, ...10.

The state space size is 104 = 10, 000, and the game is stochastic. Suppose that

the fitness value of each individual is defined by the score after the game ends

proportional to 100 (e.g score 58 will be 58
100 = 0.58), N-Tuple Bandit EA steps are

as follow:

• Selects a random individual value 2487, plays a game with this setup and

obtains score = 30, hence fitness = 0.3.

• Creates a lookup table table and set

– table[2487][average] = 0.3 and table[2487][count] = 1.

– table[2xxx][average] = 0.3 and table[2xxx][count] = 1, while [2xxx]

means keeping the statistics of all parameter values that start with 2.

– table[x4xx][average] = 0.3 and table[x4xx][count] = 1.

– table[xx8x][average] = 0.3 and table[xx8x][count] = 1.

– table[xxx7][average] = 0.3 and table[xxx7][count] = 1.

It is possible to also set the values of table[24xx] and table[248x] or other

combinations of them, but it will consume more computational resources.

In the experiment we only use the 1-Tuple (with one value specified, such

as x4xx, xx8x and xxx7 in this example) and the N-Tuple (with all value

specified, such as 2487) and omitted 2, 3, ... N-1 Tuple.

• Standard error and other statistical information are also stored, but it is

neglected to keep this example concise.

• Mutates 2487, obtains 7487, 2987, 2407 and 2481 as neighbours.

• Calculates UCB values of all, which in this case they are all the same as

none of them has been sampled, therefore randomly pick 2987 as the next

individual.

3.3. Evolutionary Algorithms 65

Algorithm 6 N-Tuple Bandit EA evolution method
INPUT: Search space space, Maximum generation allowed budget OUTPUT: the
best parameter set

1: ntupleSystem← setup the lookup tables from space
2: individual ← random a set of parameters from space
3: count← 0
4: while count < budget do
5: f itness← evaluate(individual)
6: neighbours← mutateAFew(individual)
7: update ntupleSystem
8: individual ← neighbours with the best UCB value
9: end while

10: return best parameter set in ntupleSystem based on defined criteria

• Plays a game with parameter set 2987, suppose the fitness value is 0.7, set

– table[2987][average] = 0.7 and table[2987][count] = 1.

– table[2xxx][average] = 0.3+0.7
2 = 0.5 and table[2xxx][count] = 2.

– table[x9xx][average] = 0.7 and table[x9xx][count] = 1.

– table[xx8x][average] = 0.3+0.7
2 = 0.5 and table[xx8x][count] = 2.

– table[xxx7][average] = 0.3+0.7
2 = 0.5 and table[xxx7][count] = 2.

• Repeats the same mutation and evolution procedure, suppose that after a

while the value 2487 was selected again and the fitness after this gameplay

is 0.9, we set table[2487][average] = 0.3+0.9
2 = 0.6 and table[2487][count] =

2. Then set the rest of 1-Tuple value the same way as explained earlier.

After the evolution has finished, NTBEA gives sets of the best parameters

based on each of four selection criteria: best sampled individual, a combination

of best parameters, best sampled individual along with its neighbours and best

UCB value individual. We have compared the results of these selection criteria

of our experiments in 5.2.2. The NTBEA in [11] was implemented in Java, and is

already compatible with GVGAI framework. Therefore we re-applied this ver-

sion in our second experiment. Its implementation details is given in Algorithm

6.

66 Chapter 3. Background

In this chapter, I have given the details of GVGAI framework and all re-

lated aspects that were used in this dissertation, along with describing N-Tuple

Bandit EA algorithm. Next, the game space and fitness calculation function are

explained in chapter 4.

67

Chapter 4

Approaches

This dissertation gives a summary of two experiments that applying N-Tuple

Bandit Evolutionary Algorithm (NTBEA - 3.3.3) to evolve game parameter set of

the selected games. For the first game (Space Battle Evolved) we aimed to evolve

games that best distinguish players skill-depth, while for the rest (GVGAI) we

aim to evolve games that provide game environment for the player to obtain

score in the similar, or ideally the same, trend with the pre-defined functions.

In this chapter, approaches of preparing the experiment are explained in details.

First, the selected game rules and space of Space Battle Evolved are described

and followed by the game parameter fitness measurement function. Then the

game rule and space of the selected GVGAI games are explained.Finally, the

fitness evaluation procedures for GVGAI experiment are described.

4.1 Space Battle Evolved

4.1.1 Game Rules & Space

We selected 30 in-game parameters from Space Battle Evolved to evolve using

NTBEA. These parameters can be categorized into 4 groups:

1. Missile Related

There are 6 missile-related parameters. This includes maximum speed,

cooldown (time allowed between each shot), type of missile (normal, twin

68 Chapter 4. Approaches

or bomb), size, maximum time allowed in the game and explosion radius

of the bomb.

2. Black Hole Related

There are 21 black hole-related parameters. 4 of these define black hole

characteristics, such as size, how strong the dragging force is, penalty score

for each time step a player stays inside and how big the non-penalty area

is. The rest are for determining the number and position of each black hole.

To do this, we first divide the map into n2 regions where n ∈ {1, 2, 3, 4}.

Then there to-be-evolved parameters that specify whether such region will

have a black hole in the centre or not. This means a game can have up to

16 black holes. Figure 3.2 shows a game with n = 2 that have black holes

in only region 1 and region 4.

3. Resource Related

There are two resource (missile supply) related parameters: number of

time step a resource is allowed on the screen and between each resource

spawning.

4. Enemy ID

This parameter determines which controller will be used as player 2 in the

game. The controllers can be either Do Nothing, Random, 1LSA, RAS, MCTS

and MEA.

Table 4.1 describes all parameter names, descriptions, possible values and

space size. Notice that even though the space size of BLACKHOLE_CELL is

written as 216, we implemented the EAs to ignore other cell parameters that

are unnecessary when the GRID_SIZE is less than 4.

4.1.2 Fitness Calculation

The fitness value of each game was evaluated with 3 gameplays, using three GV-

GAI controller 1SLA, RAS and MCTS as players. After a gameplay is finished,

4.1. Space Battle Evolved 69

TABLE 4.1: Space Battle Evolved evolvable parameters, descrip-
tion, their value ranges and step.

Parameter Description Value Range Step Space Size
MISSILE_MAX_SPEED Missile’s maximum speed 1 - 10 1 10
MISSILE_COOLDOWN Missile’s cooldown 1 - 9 1 10

MISSILE_TYPE Missile’s type 0 - 2 1 3
MISSILE_RADIUS Missile’s radius 2 - 10 2 5

MISSILE_MAX_TTL Missile’s maximum time to live 40-160 20 7
BOMB_RADIUS Bomb’s radius 10 - 50 10 5

BLACKHOLE_CELL x 16 Whether this cell has a black hole 0 or 1 1 216

BLACKHOLE_RADIUS Black hole’s radius 25 - 200 25 8
BLACKHOLE_FORCE Black hole’s drag force 0 - 3 1 4

BLACKHOLE_PENALTY Score lost when in a black hole 0 - 9 1 10
GRID_SIZE Square root of number of areas 1 - 4 1 4

SAFE_ZONE Radius of area without black hole penalty 0 - 20 10 3
RESOURCE_TTL Missile’s pack time to live 400 - 600 100 3

RESOURCE_COOLDOWN Missile’s pack spawn cooldown 200 - 300 50 3
ENEMY_ID Opponent controller ID 0 - 5 1 6

Total search space size 7.134× 1014

player 1 and player 2 scores would be divided by 100 to lower the scale, then a

1000 bonus points would be given to the winner to prioritize winning result in

producing the final score. The fitness value of this game is determined by the

difference in the final score between player 1 and player 2. Equation 4.1 shows

the final score calculation for each gameplay. Wk = 1000 if the player k won the

game and 0 otherwise.

Tg = (
S1

100
+ W1)− (

S2

100
+ W2) (4.1)

This total score calculation is done for three gameplays: player 1SLA vs RAS,

RAS vs MCTS and 1SLA vs MCTS. After the total score Tg for every game g

is computed, it was brought into the final fitness calculation using Equation

4.2, where T1 is the amateur player’s game fitness (1SLA), T2 is the immediate

player’s game fitness (RAS) and T3 is the skilful player’s game fitness (MCTS).

Fitness = Min(T3 − T2, T2 − T1) (4.2)

T1, T2 and T3 can be derived from equation 4.1. For example, using one set of

parameter in a game. If the final score of the three matches are as in Table 4.2, T1

70 Chapter 4. Approaches

would be (100
100)− (200

100 + 1000) = -1001, T2 would be (400
100 + 1000)− (200

100) = 1002

and T2 would be (1000
100 + 1000)− (100

100) = 1009.

TABLE 4.2: An example of the score in T1, T2 and T3

Player Enemy
MCTS 1000 100
RAS 400 200
1SLA 100 200

Equation 4.2 is similar to that used for the Physical Travelling Salesman Prob-

lem by Perez et. al. [8]. Based on this fitness evaluation, the aim of the algo-

rithms is to maximize the smallest gap between final scores of each game in the

order T3 >T2 >T1, which would result in the maximum skill-depth.

4.2 GVGAI Game Rules & Space

As discussed in details in 3.2.1 and 3.2.2, the VGDL game description files of

all games must be modified first to support game parameter tuning. This in-

volves changing the file class (on the first line) from BasicGame to GameSpace, and

adding a ParameterSet section. Moreover, as our score trend functions (details in

4.2.4) are all increasing functions excepts the shifted sigmoids, but with different

increasing rates in each area, we added a new rule to provide rich search space

where the interesting solutions can be found.

4.2.1 Seaquest

In the original GVGAI Seaquest, all holes sprites (which are the NPC’s spawn

points) can spawn an NPC from the beginning of the game until the end. Since

we wanted to vary the score increasing rate, we had to restrict this by adding

new interaction sets that will allow the game to restrict these spawning to only

some period of the game, and put this as an evolve-able parameter in the space.

This caused a change in SpriteSet block and InteractionSet as depicted in Figure

4.1 and Figure 4.2. There were two main modifications highlighted in blue and

4.2. GVGAI Game Rules & Space 71

bold text fonts. The blue statements introduced four new sprite types into the

game, all of which are the ’non-spawning’ types of holes. In order, nholeS is a

non-spawning type of sharkhole, nholeW is for whalehole, nholeND is for normal-

diverhole and nholeOD corresponds with oftendiverhole. It is possible to group all

these ’non-spawning’ holes together using hierarchical feature of VGDL, but it

would not facilitate the further usage in the InteractionSet because we still need

to manually assign the statements line by line in all cases, as shown in Figure 4.2.

The first four blue lines introduce the transformation of all nholeS to sharkhole, all

nholeW to whalehole, all nholeND to normaldiverhole and all nholeOD to oftendiver-

hole when the time step is equal to DELAY, which will be set based on the given

game parameter. The rest of blue lines do the transformation back into ’non-

spawning’ holes for all excepts sharkhole as the shark and pirana provide smaller

magnitude of reward compared with the whale (set by the WHALESCORE pa-

rameter).

The bold texts were another main modification for the ParameterSet section,

with each value will be replaced by the corresponding values with the same

name from the ParameterSet section, as given in Figure 4.3. Each line of the Pa-

rameterSet block is in format Name > values=[possible_values] string=description,

while [possible_values] can be either minimum value:incremental value:maximum

value for numerical values, or true:false for boolean value. For example, the third

line in Figure 4.3 (starts with SHPROB) means that the parameter name SHPROB

has four possible values: 0.01, 0.06, 0.11 and 0.16 (because 0.16 + 0.05 = 0.21 > 0.2)

and its description is SharkHole_SpawnProb, which is the spawn probability of

sharkhole.

There were 18 parameters in total, which can be categorized into 6 groups

based on their functionality in the game: probability related, health point re-

lated, speed related, crew related, non-spawn hole related and score related.

Table 4.3 shows search space size of each parameter in Seaquest along with their

72 Chapter 4. Approaches

SpriteSet
sky > Immovable img=oryx/backLBlue

water > Immovable img=newset/water2

saved > Immovable color=LIGHTGREEN

nholeS > Passive color=RED

nholeW > Passive color=BLUE

nholeND > Passive color=BLACK

nholeOD > Passive color=GREY

holes > SpawnPoint color=LIGHTGRAY img=newset/whirlpool2
portal=True

sharkhole > stype=shark prob=SHPROB

whalehole > stype=whale prob=WHPROB

diverhole > stype=diver

normaldiverhole > prob=DHPROB

oftendiverhole > prob=OFDHPROB

moving >

avatar > ShootAvatar color=YELLOW stype=torpedo
img=newset/submarine healthPoints=HP limitHealthPoints=MHP

torpedo > Missile color=YELLOW img=oryx/bullet1

fish >

shark > Missile orientation=LEFT speed=SSPEED
color=ORANGE img=newset/shark2

pirana > Missile orientation=RIGHT speed=PSPEED
color=RED shrinkfactor=0.6 img=newset/piranha2

whale > Bomber orientation=RIGHT speed=WSPEED
color=BROWN stype=pirana prob=WSPROB img=newset/whale

diver > RandomNPC color=GREEN speed=DSPEED img=newset/diver1
cons=DCONS

crew > Resource color=GREEN limit=CRLIMIT

FIGURE 4.1: Modified Seaquest SpriteSet game description

description. The total space is considerably huge with about 58 billion combina-

tions. It is obvious that brute force is infeasible to search for the fittest set.

4.2.2 Waves

Similar with Seaquest, Waves portals start spawning rocks and aliens since the

beginning of the game. We modified this by adding a new sprite type called

closePortal into the game. These closePortals will transform into portalSlows after

a delayed time, and transform back before the end of the game. These modifi-

cations can be seen in Figure 4.4 and Figure 4.5 for SpriteSet and InteractionSet

4.2. GVGAI Game Rules & Space 73

InteractionSet

avatar TIME > subtractHealthPoints timer=TIMERHPLOSS
repeating=True

avatar TIME > transformToAll stype=nholeS stypeTo=sharkhole
nextExecution=DELAY timer=DELAY repeating=False

avatar TIME > transformToAll stype=nholeW stypeTo=whalehole
nextExecution=DELAY timer=DELAY repeating=False

avatar TIME > transformToAll stype=nholeND
stypeTo=normaldiverhole nextExecution=DELAY timer=DELAY
repeating=False

avatar TIME > transformToAll stype=nholeOD stypeTo=oftendiverhole
nextExecution=DELAY timer=DELAY repeating=False

avatar TIME > transformToAll stype=whalehole stypeTo=nholeW
nextExecution=SHUTHOLE timer=SHUTHOLE repeating=False

avatar TIME > transformToAll stype=normaldiverhole
stypeTo=nholeND nextExecution=SHUTHOLE timer=SHUTHOLE
repeating=False

avatar TIME > transformToAll stype=oftendiverhole stypeTo=nholeOD
nextExecution=SHUTHOLE timer=SHUTHOLE repeating=False

EOS avatar diver sky > stepBack

fish EOS > killSprite

whale EOS > killSprite

fish torpedo > killBoth scoreChange=1

avatar fish > killSprite

whale torpedo > killBoth scoreChange=WHALESCORE

avatar whale > killSprite

avatar sky > addHealthPoints value=HPPLUS

avatar sky > spawnIfHasMore resource=crew stype=saved
limit=CRLIMIT spend=CRLIMIT

saved sky > killSprite scoreChange=10

avatar diver > changeResource resource=crew

diver avatar > killSprite

FIGURE 4.2: Modified Seaquest InstructionSet game description

respectively. The lines highlighted in blue in the InteractionSet effects the trans-

formation between closePortal and portalSlow, which will happen at step DELAY

and CLOSE, set by the game parameter set.

In the initial Waves description, the avatar has a health point which will allow

it to be hit by the enemies multiple times before the game is over. It is still

true in this modified game unless the SLIMIT is set to lower than |APEN| or

|LASERPEN|. This makes the game can be either one-shot killed or multiple-

shot killed depending on the parameter setup.

74 Chapter 4. Approaches

ParameterSet

#Name of the parameter > values(min, inc, max)/(boolean) descriptive
string

SHPROB > values=0.01:0.05:0.2 string=SharkHole_SpawnProb
WHPROB > values=0.005:0.02:0.1 string=WhaleHole_SpawnProb
DHPROB > values=0.005:0.01:0.045 string=DiverHole_SpawnProb
OFDHPROB > values=0.05:0.02:0.1 string=DiverHole_Often_SpawnProb
HP > values=9:8:40 string=Initial_Health_Points
MHP > values=10:10:40 string=Max_Health_Points
HPPLUS > values=1:1:4 string=Health_Points_Plus
SSPEED > values=0.05:0.15:0.5 string=Shark_Speed
WSPEED > values=0.05:0.15:0.3 string=Whale_Speed
PSPEED > values=0.05:0.15:0.5 string=Pirana_Speed
DSPEED > values=0.1:0.2:1.0 string=Diver_Speed
WSPROB > values=0.01:0.03:0.1 string=Whale_Spawn_Prob
DCONS > values=1:1:3 string=Consecutive_Moves_Diver
CRLIMIT > values=1:2:8 string=Crew_Limit
TIMERHPLOSS > values=5:5:20 string=Is_GameWon_OnTimeOut
DELAY > values=0:50:200 string=Hole_Delay
SHUTHOLE > values=200:50:400 string=Hole_Close
WHALESCORE > values=5:5:20 string=WHALE_SCORE

FIGURE 4.3: Seaquest ParameterSet game description

TABLE 4.3: Seaquest’s parameter set search space

Type Name Description Size

Speed

SSPEED Shark’s speed 4
WSPEED Whale’s speed 2
PSPEED Piranha’s speed 4
DSPEED Diver’s speed 5

Probability

SHPROB Shark portal’s probability to spawn a shark 4
WHPROB Whale portal’s probability to spawn a whale 5
DHPROB Normal diver portal’s probability to spawn a diver 5

OFDHPROB Fast diver portal’s probability to spawn a diver 3
WSPROB Whale’s probability to spawn a piranha 4

Health Point

HP Avatar’s initial oxygen amount 4
MHP Avatar’s maximum oxygen amount 4

HPPLUS Avatar’s oxygen gained per time step at the sea surface 4
TIMERHPLOSS Oxygen amount lost per time step underwater 4

Score WHALESCORE Score increased when a whale is shot 4

Diver DCONS Number of consecutive tiles that a diver can move per step 3
CRLIMIT Maximum diver that the avatar can rescue in one diving 4

Portal DELAY The time step that all portals start spawning 5
SHUTHOLE The time step that all portals stop spawning 5

Total search space size 5.892× 1010

All evolve-able parameters in Waves are depicted in Figure 4.6. There are

17 parameters in total, which fall into each of the 6 categories: speed-related,

cooldown-related, probability-related, score-related, shield-related and portal-

related. The parameter search space and description of Waves is given in Table

4.2. GVGAI Game Rules & Space 75

SpriteSet

background > Immovable img=oryx/space1 hidden=True

asteroid > Immovable img=oryx/planet

missile > Missile

rock > orientation=LEFT speed=RSPEED color=BLUE
img=oryx/orb3

sam > orientation=RIGHT color=BLUE speed=SSPEED
img=oryx/orb1 shrinkfactor=0.5

laser > orientation=LEFT speed=LSPEED color=RED
shrinkfactor=0.75 img=newset/laser2_1

portal >

portalSlow > SpawnPoint stype=alien cooldown=ACOOLDOWN
prob=APROB img=newset/whirlpool2 portal=True

rockPortal > SpawnPoint stype=rock cooldown=RCOOLDOWN
prob=RPROB img=newset/whirlpool1 portal=True

closePortal > Passive color=BLACK

shield > Resource color=GOLD limit=SLIMIT img=oryx/shield2

avatar > ShootAvatar color=YELLOW stype=sam speed=PSPEED
img=oryx/spaceship1 rotateInPlace=False

alien > Bomber color=BROWN img=oryx/alien3 speed=ASPEED
orientation=LEFT stype=laser prob=ASPROB

FIGURE 4.4: Modified Waves SpriteSet game description

TABLE 4.4: Waves’ parameter set search space

Type Name Description Size

Speed

RSPEED Rock’s speed 5
SSPEED Avatar missile’s speed 4
LSPEED Laser’s speed 5
PSPEED Avatar’s speed 3
ASPEED Alien’s speed 6

Cooldown ACOOLDOWN Alien portal’s cooldown 4
RCOOLDOWN Rock portal’s cooldown 4

Probability
APROB Alien portal’s probability to spawn an alien 2
RPROB Rock portal’s probability to spawn a rock 6

ASPROB Alien’s probability to shoot a laser 4

Avatar SLIMIT Avatar’s maximum health point 5
SPLUS Amount of avatar’s health point increased when collected a shield 5

Score
APEN Score lost when the avatar collides with an alien 4

LASERPEN Score lost when the avatar was hit by a laser 4
SREWARD Score gained when an alien is shot 5

Portal DELAY The time step that all portals start spawning 7
CLOSE The time step that all portals stop spawning 4

Total search space size 7.741× 1010

4.4. The total space size is in the same order (1010) as Seaquest, with 77 billion

possible sets.

76 Chapter 4. Approaches

InteractionSet
avatar EOS > stepBack

alien EOS > killSprite

missile EOS > killSprite

avatar TIME > transformToAll stype=closePortal stypeTo=portalSlow
nextExecution=DELAY timer=DELAY repeating=False

avatar TIME > transformToAll stype=portalSlow stypeTo=closePortal
nextExecution=CLOSE timer=CLOSE repeating=False

alien sam > killBoth scoreChange=SREWARD

sam laser > transformTo stype=shield killSecond=True

avatar shield > changeResource resource=shield value=SPLUS
killResource=True

avatar rock > killIfHasLess resource=shield limit=0

avatar rock > changeResource resource=shield value=-1
killResource=True

avatar alien > killIfHasLess resource=shield limit=0

avatar alien > changeResource resource=shield value=APEN
killResource=True

avatar laser > killIfHasLess resource=shield limit=0

avatar laser > changeResource resource=shield value=LASERPEN
killResource=True

asteroid sam laser > killSprite

rock asteroid > killSprite

alien asteroid > killSprite

laser asteroid > killSprite

avatar asteroid > stepBack

FIGURE 4.5: Modified Waves InteractionSet game description

4.2.3 Defender

Similar with Seaquest and Waves, we added two new sprites and four new inter-

actions to restrict alien spawning period. These are shown in Figure 4.7 and Fig-

ure 4.8 for SpriteSet and TerminationSet respectively. Two new included sprites

were closeSlow, which is a passive version of portalSlow, and closeFast that is for

portalFast. All closeSlow will transform into portalSlow when the game time step

is equal to DELAY, same with all closeFast that will become portalFast. The portal

will then transform back to the passive ones at time step CLOSE.

4.2. GVGAI Game Rules & Space 77

ParameterSet

#Name of the parameter > values(min, inc, max)/(boolean) descriptive
string

RSPEED > values=0.45:0.5:2.5 string=Rock_Speed
SSPEED > values=0.5:0.5:2.0 string=Shot_Speed
LSPEED > values=0.1:0.1:0.5 string=Laser_Speed
ACOOLDOWN > values=2:4:14 string=Alien_Cooldown
RCOOLDOWN > values=2:4:14 string=Rock_Cooldown
APROB > values=0.01:0.04:0.07 string=Alien_PortalProb
RPROB > values=0.15:0.05:0.4 string=Rock_SpawnProb
PSPEED > values=0.5:0.5:1.5 string=Avatar_Speed
ASPEED > values=0.05:0.05:0.3 string=Alien_Speed
SLIMIT > values=2:2:10 string=Shield_Limit
ASPROB > values=0.005:0.005:0.02 string=Alien_SpawnProb
SPLUS > values=1:1:5 string=Shield_Plus
APEN > values=-4:1:-1 string=Alien_Collide_Penalty
LASERPEN > values=-4:1:-1 string=Laser_Collide_Penalty
SREWARD > values=1:2:9 string=Alien_Shot_Reward
DELAY > values=0:50:300 string=Open_Portal
CLOSE > values=350:50:500 string=Close_Portal

FIGURE 4.6: Waves ParameterSet game description

The parameter set description of Defender is given in Figure 4.9. In contrast

to Seaquest and Waves, Defender score can be negative as LOSSCITY value will

be subtracted from the total score if a city is bombarded by a bomb. Since the

avatar cannot be killed (both aliens and bombs are harmless to the avatar), and

there are 68 citys in the first level game (which is the only level tested in the

experiment, and this is kept fixed) the score can be as negative as 68×−4 (min-

imum value of LOSSCITY) when the game ends. It is obviously more challeng-

ing for the EA to evolve a Defender parameter set that satisfies our target score

functions. There are 5 parameter groups: speed-related, probability-related,

cooldown-related, score-related and portal-related. Defender parameter space

size and description is listed in Table 4.5. The total search space size, which is

lower than Waves and Seaquest but still in the same 1010 order, is around 10

billions.

78 Chapter 4. Approaches

SpriteSet
floor > Immovable img=oryx/space1 hidden=True

city > Immovable color=WHITE img=newset/city1

avatar > ShootAvatar color=YELLOW ammo=bullet stype=sam
img=oryx/spaceship1 rotateInPlace=False

missile > Missile

sam > orientation=RIGHT color=BLUE img=oryx/bullet1

bomb > orientation=DOWN color=RED speed=BSPEED
img=newset/bomb shrinkfactor=0.6

alien > Bomber orientation=LEFT stype=bomb prob=APROB
cooldown=ACOOLDOWN speed=ASPEED img=oryx/alien3

portal > SpawnPoint stype=alien cooldown=PCOOLDOWN invisible=True
hidden=True

portalSlow > prob=SLOWPPROB

portalFast > prob=FASTPPROB

closeSlow > Passive color=BLACK

closeFast > Passive color=BLACK

portalAmmo > SpawnPoint stype=supply cooldown=AMCOOLDOWN
prob=AMPROB invisible=True

supply > Missile orientation=DOWN speed=SUPSPEED
img=oryx/goldsack

bullet > Resource limit=BLIMIT

wall > Immovable img=oryx/wall1

FIGURE 4.7: Modified Defender SpriteSet game description

TABLE 4.5: Defender’s parameter set search space

Type Name Description Size

Speed
BSPEED Bomb speed 5
ASPEED Alien speed 5

SUPSPEED Supply falling speed 3

Probability

APROB Alien’s probability to shoot a bomb 5
SLOWPPROB Slow portal’s probability to spawn an alien 5
FASTPPROB Fast portal’s probability to spawn an alien 2

AMPROB Supply portal’s probability to spawn a supply 3

Cooldown
ACOOLDOWN Alien’s bomb shooting cooldown 5
PCOOLDOWN Alien portal’s cooldown 4

AMCOOLDOWN Supply portal’s cooldown 4

Supply BLIMIT Avatar’s maximum ammo supply 4
ADDSUP Amount of ammo a supply pack contains 5

Score LOSSCITY Score lost when a city is destroyed 4
AREWARD Score gained when an alien is shot 5

Portal DELAY The time step that all portals start spawning 7
CLOSE The time step that all portals stop spawning 4

Total search space size 1.08× 1010

4.2. GVGAI Game Rules & Space 79

InteractionSet
avatar TIME > transformToAll stype=closeSlow stypeTo=portalSlow
nextExecution=DELAY timer=DELAY repeating=False

avatar TIME > transformToAll stype=closeFast stypeTo=portalFast
nextExecution=DELAY timer=DELAY repeating=False

avatar TIME > transformToAll stype=portalSlow stypeTo=closeSlow
nextExecution=CLOSE timer=CLOSE repeating=False

avatar TIME > transformToAll stype=portalFast stypeTo=closeFast
nextExecution=CLOSE timer=CLOSE repeating=False

avatar EOS city wall > stepBack

alien EOS > killSprite

missile EOS city > killSprite

city bomb > killSprite scoreChange=LOSSCITY

city sam alien > killSprite

supply alien > killSprite

alien sam > killBoth scoreChange=AREWARD

supply supply > stepBack

supply wall city > stepBack pixelPerfect=True

avatar supply > changeResource resource=bullet value=ADDSUP
killResource=True

FIGURE 4.8: Modified Defender InteractionSet game description

4.2.4 Fitness Calculation

To evaluate the fitness value of a parameter set, it would be first injected into the

game to set all relevant parameters, and then the game with this setup would

be played by a selected controller. During the gameplay, the raw score of every

game steps would be recorded. This is then further used in fitness calculation

based by comparing each with the target function of that run. All target score

functions in the experiments are described next.

80 Chapter 4. Approaches

ParameterSet

#Name of the parameter > values(min, inc, max)/(boolean) descriptive
string

BSPEED > values=0.1:0.2:0.9 string=Bomb_Speed
APROB > values=0.01:0.01:0.05 string=Alien_SpawnProb
ACOOLDOWN > values=2:2:10 string=Alien_Cooldown
ASPEED > values=0.2:0.2:1.0 string=Alien_Speed
PCOOLDOWN > values=5:5:20 string=Portal_Cooldown
SLOWPPROB > values=0.05:0.05:0.25 string=SlowPortal_Prob
FASTPPROB > values=0.3:0.2:0.7 string=FastPortal_Prob
AMCOOLDOWN > values=5:5:20 string=Ammo_Cooldown
AMPROB > values=0.05:0.1:0.25 string=Ammo_Prob
SUPSPEED > values=0.05:0.2:0.55 string=Supply_Speed
BLIMIT > values=5:5:20 string=Resource_Limit
ADDSUP > values=1:1:5 string=Resource_Add
LOSSCITY > values=-4:1:-1 string=Lost_City_Penalty
AREWARD > values=1:2:9 string=Alien_Shot_Reward
DELAY > values=0:50:300 string=Open_Portal
CLOSE > values=350:50:500 string=Close_Portal

FIGURE 4.9: Defender ParameterSet game description

Target Score Functions

All of the selected target functions are positive-definite functions1 (e.g. f (x) > 0

for all x > 0). The simplest ones are linear functions, followed by a more com-

plex piecewise linear function, and other 3 non-linear functions. The first non-

linear function is shifted sigmoid, which are to-the-left and right shifted versions

of the original sigmoid function. Next, a logarithm and exponential functions

were included to see if the EA can react differently with the fast increasing rate

in different areas of the target functions.

• Linear

A linear function is a continuous function in format y = cx, we picked

the values c to be either 0.2, 0.4 or 1. Theoretically, our domain set (time

step) is discrete, therefore it is not actually a continuous linear function

but a piecewise function in the format shown in equation 4.3, while I+

is the set of positive integers. For simplicity, we will call the functions

with this format ’linear’ from this point onwards. The similar annotation

1https://www.encyclopediaofmath.org/index.php/Positive-definite_function

https://www.encyclopediaofmath.org/index.php/Positive-definite_function

4.2. GVGAI Game Rules & Space 81

is also applied for all target functions. Figure 4.10 shows the three linear

functions used in the experiment.

f (x) =

cx, if x ∈ I+

unde f ined, otherwise
(4.3)

0 50 100 150 200 250 300 350 400 450 500
0

100

200

300

400

500

x

y

y = 0.2x
y = 0.4x
y = x

FIGURE 4.10: Linear target functions

As described in 4.2.1, the highest obtainable per step score is 20 for Seaquest,

with WHALESCORE is set as 20 and the avatar has managed to shoot it in

every time step. This requires the parameter WHPROB to be as high as

possible. However, the controller must able to avoid colliding with these

pool of whales spawn while maintaining the oxygen level. Based on this,

it seems possible to find parameter sets that satisfies the y = x linear tar-

get function, as scoring 1 per time step in average and trying to survive

until the game ends is not challenging in the game with low speed av-

erage amount of fish. Waves, however, is slightly more difficult with the

maximum value of AREWARD is only 9. Although in most settings the

82 Chapter 4. Approaches

avatar would not lose its life after only a single hit, it is still challenging

to avoid all aliens and lasers and rocks while shooting them to maximize

the score. Defender is the toughest in this aspect as the score can be neg-

ative. This can however be alleviated with LOSSCITY = -1, AREWARD =

9 and considerably low BSPEED and ASPEED, with high ACOOLDOWN.

We expected the EA to find good sets of parameters as we believe they are

such sets in the search space.

• Linear Piecewise

Piecewise functions refer to all functions that are combined from more

than one functions, generally cannot expressed by one equation and need

an if-else notation for different intervals. Linear piecewise functions are

the piecewise function that all sub-functions are linear. In our second ex-

periment, we defined two linear piecewise target functions, given in equa-

tion 4.4 and 4.5. This is clearly plotted in Figure 4.11 and can be seen that

the blue graph (represents equation 4.4 is increasing fast in the first 100

timestep, while the red graph (represents equation 4.5) increases slowly

until time step 400 and then rapidly afterwards. The objective of defining

these two functions is to test if the EA can react with such swift change in

increasing rate, in both ways.

f (x) =

2x, if x ≤ 100

2(100) + 0.2(x− 100), otherwise
(4.4)

f (x) =

0.2x, if x ≤ 400

0.2(400) + 2(x− 400), otherwise
(4.5)

• Shifted Sigmoid

Sigmoid function is an S-shape curve that the simplest format has the y-

value between 0 and 1, with f (0) = 0.5. The normal sigmoid function is

4.2. GVGAI Game Rules & Space 83

0 50 100 150 200 250 300 350 400 450 500
0

50

100

150

200

250

300

350

x

y
y = f (x) in eq. 4.4
y = f (x) in eq. 4.5

FIGURE 4.11: Linear piecewise target functions

as equation 4.6 and the actual graph is plotted in Figure 4.12.

f (x) =
1

1 + exp(−x)
(4.6)

We modified the original function to be in format:

f (x) = K1(
1

1 + exp(− x
K2

+ K3)
) (4.7)

while K1, K2, K3 are constants for shifting the value range. K1, fixed at 150,

is to scale up y to [0, 150], K2, set at 30, is to restrict the value to be less than

160, and K3 is for shifting the values along the x-axis (left and right). We

set K3 = 3 for a function that will be called left-sigmoid from this point, and

K3 = 12 for right-sigmoid. These left and right shifted sigmoid functions can

be visualized in Figure 4.13.

Similar with linear piecewise target functions, the objective of setting these

shifted sigmoid functions is to test if the EA can react with the rapid change

84 Chapter 4. Approaches

−6 −4 −2 0 2 4 6
0

0.5

1

x

y

FIGURE 4.12: Sigmoid function

in score increasing rate at different points. Another minor objective is to

explore its behaviour when the score is staying constant for a period. These

happen after around step 250 to the end of the game for left-sigmoid and at

the beginning of the game until almost step 200 for right-sigmoid.

• Logarithm and Exponential

The last pair of our target functions were a base-2 logarithm and an expo-

nential functions given in equations 4.8 and 4.9 respectively.

f (x) = 15 log2 x (4.8)

f (x) = 2
x

70 (4.9)

The function values for x ∈ [0, 500] are plotted in Figure 4.14. Notice that

generally logarithm function does not allow x ∈ (∞, 0], but we set f (0) = 0

in this graph. It is commonly known that exponential function is among

the fastest growing functions (highest order of growth in general) in math-

ematics. This is the main reason that we have to restrict the maximum time

step of most gameplays to 500 in the experiment, because 2
500
70 ≈ 141 while

2
1000
70 ≈ 19972 which is clearly unachievable for the current settings.

4.2. GVGAI Game Rules & Space 85

0 50 100 150 200 250 300 350 400 450 500
0

20

40

60

80

100

120

140

160

180

200

x

y
y = left-sigmoid
y = right-sigmoid

FIGURE 4.13: Shifted sigmoid target functions

Similar with the piecewise and sigmoid comparison, this pair of logarithm

and exponential functions also differs in ’high increasing rate’ area, with

the logarithm function increases considerably fast in the beginning and

slower with higher x, and the exponential function is in the complete op-

posite style.

Apart from comparing the f (x) values of the functions themselves, their ’in-

creasing rate’ (also known as slope, differential) should also be taken into ac-

count. As it is possible that the EA might unable to find the parameter sets that

give the exact value, but able to achieve the similar score increasing rate. Dif-

ferential functions of all target score functions are shown in Figure 4.15. It can

be seen that the increasing rates of the function in the same groups (or pairs)

are alike, while they are all dissimilar across the groups. Linear functions have

constant slope functions, which are the value of c in y = cx. Linear piecewise

function each has two distinct constant slope functions y = 0.2 or y = 2 accord-

ing to their definitions. Both shifted sigmoid functions have smooth continuous

86 Chapter 4. Approaches

0 50 100 150 200 250 300 350 400 450 500
0

20

40

60

80

100

120

140

160

180

x

y
y = 15 log2(x)
y = 2

x
70

FIGURE 4.14: Logarithm and exponential target functions

bell-shaped curves, which the centre point locates near the point x = 100 for

left-sigmoid and x = 350 for right-sigmoid. Finally, the logarithm function has

a first-quadrant rectangular hyperbola (xy = 1) similar-shaped function as its

slope, while the exponential function slope is also an exponential function with

one order lower (for example, 2n−1 is the slope for 2n).

After the game is finished, the recorded score value of every time step would

be compared with the target function of that experiment, then the fitness value

is calculated. These procedures are explained in details next.

Loss Calculation & Fitness Value

We used a Root Mean Square Error (RMSE) to calculate the total deviation be-

tween the obtained score and the target function. Suppose that ŝ is a set of real

score sequence from time step 1 to the last, and ŷ is the set of f (x) values for the

selected target function with domain set = 1, 2, ..., n where n is the last time step,

the RMSE value between ŝ and ŷ can be computed as follows:

4.2. GVGAI Game Rules & Space 87

0 100 200 300 400 500
0

0.5

1

1.5

2

x

y

y = (0.2x)′

y = (0.4x)′

y = x′

(A) Linear

0 100 200 300 400 500
0

1

2

3

x

y

y = f ′(x) in eq. 4.4
y = f ′(x) in eq. 4.5

(B) Piecewise

0 100 200 300 400 500
0

0.5

1

1.5

2

x

y

y = (left-sigmoid)’
y = (right-sigmoid)’

(C) Shifted sigmoid

0 100 200 300 400 500
0

0.5

1

1.5

2

x

y

y = (15 log2(x))′

y = (2
x

70)

(D) Log and Expo

FIGURE 4.15: All target function slope

88 Chapter 4. Approaches

RMSE(ŝ, ŷ) =

√
∑n

i=1(ŷi − ŝi)2

n
(4.10)

This value, however, can have a huge magnitude from a game that ŝ and ŷ are

highly different. We normalized the value by dividing it by norm = ŷmax − ŷmin

to scale down the absolute value of RMSE(ŝ, ŷ). There were two versions of

Normalized-RMSE used in our experiment, the normal one (NRMSE) and the

biased one (B-NRMSE).

• Normal Normalized RMSE (NRMSE)

The NRMSE between a score set ŝ and the selected target set ŷ can be cal-

culated by:

NRMSE(ŝ, ŷ) =
RMSE(ŝ, ŷ)
ŷmax − ŷmin

(4.11)

where RMSE is depicted in equation 4.10.

• Biased-Normalized RMSE (B-NRMSE)

In this biased version of NRMSE, we penalized the values more in the area

that has higher increasing rate. Our initial objective behind this was to

trigger the EA to react faster to such areas, expecting that it would help

speeding up the target curves fitting. This was done by calculating the

difference between each adjacent pair in ŷ, and called it ˆslope(ŷ):

ˆslope(ŷ) = {di|di = ŷi+1 − ŷi} for i = 1, .., |ŷ| − 1 (4.12)

Furthermore, we introduced a value called slopeScale = 1
max(ˆslope(ŷ))

to nor-

malize these slope values into the ratio between [0, 1] before multiplying

them with the square error value calculated. That is, B-NRMSE can be

computed as shown in this equation:

4.2. GVGAI Game Rules & Space 89

B-NRMSE(ŝ, ŷ) =

√
∑n

i=1((ŷi − ŝi)2 × |slopeScale× ˆslope(ŷ)i|)
n

(4.13)

After either NRMSE or B-NRMSE was used to calculate the loss value be-

tween ŝ and ŷ, called Loss(ŝ, ŷ), the final fitness value is equal to 1− Loss(ŝ, ŷ).

Since the loss value is always at least 0, we know that the maximum possible

value of this fitness calculation is 1 and the EA should try to optimize this by

maximizing it, which satisfies the current implementation of NTBEA in GVGAI

framework.

Fitness Calculation Summary

To explicate the fitness calculation steps employed during the evolution step in

the experiment, they are summarized it details as follows:

1. Selects a game game to parameterize.

2. Selects a target function to fit, suppose it is called t̂.

3. Selects a version of RMSE to be used (either normal or biased one), calls it

Loss.

4. Uses the EA to select the next parameter set, calls it p̂.

5. Constructs a version of game using p̂.

6. Injects RHEA (see 3.2.3 for details) to play this game.

7. Records the score obtained by RHEA for every time step, stored in ŝ.

8. Calculates Loss(t̂, ŝ) by:

(a) Using equation 4.11 if Loss is NRMSE.

(b) Using equation 4.13 if Loss is B-NRMSE.

90 Chapter 4. Approaches

9. Sets fitness of p̂ to 1-Loss(t̂, ŝ).

10. Continues evolution.

Although our possible values of game are restricted to only three games and

the t̂ can be one of the 9 functions described earlier, this approach can be ex-

tended to any GVGAI games and any positive-increasing functions.

In this chapter, we clarified in details about all modifications made to the

game rules, as well as describing the overall search space. All selected target

functions of the second experiment were also presented and illustrated for vi-

sualization. Finally the fitness calculation for both experiments were explained

deliberately. Next section we present the report of the experiments carried out

using these set-ups.

91

Chapter 5

Experiments & Results

In chapter 1, we formed three main hypotheses as follows:

• HM1: NTBEA is more robust to noise in noisy environments than standard

hill-climbing evolutionary algorithms.

• HM2: NTBEA can be applied to tune game parameters to provide specific

pre-defined player score trend, for any players playing the game.

• HM3: General Video Game Playing controllers can be used as substitu-

tions for human players in automatic game parameterization.

There were two experiments taken to validate these hypotheses. Both experi-

ments applied NTBEA with general video game agents as representatives of hu-

man players to do automatic game parameterization. The first experiment was

done for Space Battle Evolved using the game space defined in 4.1 to validate hy-

pothesis HM1 and HM3. The second experiments are for three GVGAI selected

games, described in 4.2 for validating hypotheses HM2 and HM3. This chapter

includes results from both experiments, starting with Space Battle Evolved, and

then GVGAI games.

5.1 Space Battle Evolved

We apply the RMHC, the Biased Mutation RMHC (denoted as B-RMHC) and the

N-Tuple Bandit Evolutionary Algorithm (denoted as NTBEA) independently 50

92 Chapter 5. Experiments & Results

times to evolve game instances, thus 150 games are designed in total. There was

one minor hypothesis formed specifically to this experiment:

• HS1: The games evolved by NTBEA satisfy human preferences more com-

pared to both RMHC-based algorithms.

Therefore, in this experiment we aimed to validate HM1, HM3 and HS1 hy-

potheses. 100 game evaluations are allocated to each of the algorithms dur-

ing the evolution. Each evaluation takes into account the outcomes of three

games played by the 1SLA (amateur), RAS (intermediate) and MCTS (skilful)

controllers. The sorted average fitness values over 100 evaluations and standard

errors are presented in Figure 5.1.

The NTBEA (green markers, denoted as N-Tuple) outperforms both the RMHC

and its variant. Moreover, NTBEA is more robust and has a more stable perfor-

mance (negligible standard error). Among 50 game instances evolved by the

NTBEA, only a few of them (very left part in Figure 5.1) have an average fitness

below zero. Nevertheless, the lowest average fitness is still much higher than

most of the games evolved by both RMHC and B-RMHC. This confirms that the

hypothesis HM1 is correct, at least for this Space Battle Evolved game space for

this specific optimization task.

Table 5.1 provides the parameters of the games, optimized by the RMHC,

the B-RMHC and the NTBEA algorithm, with the highest and lowest average

fitness. As seen, NTBEA was more robust than the baseline RMHC in evolving

parameters in a simple noisy game environment.

We picked up the games with the highest and lowest average fitness de-

signed by the 3 algorithms and invited two human players to evaluate them.

The human players were asked to play this 6 games and provide feedback with-

out being told the fitness level of each game. One screenshot of each of the games

is presented in Figure 5.2. These two human players evaluated the games dif-

ferently, according to their playing preference. Player A cared more about the

5.1. Space Battle Evolved 93

TABLE 5.1: Optimized parameters of game instances with the
highest or lowest average fitness, designed by three algorithms.

Parameter
Value optimised by different algorithms

RMHC B-RMHC N-Tuple
High Low High Low High Low

MISSILE_MAX_SPEED 6 1 10 1 9 10
MISSILE_COOLDOWN 9 5 5 3 2 5

MISSILE_RADIUS 2 10 10 4 4 4
MISSILE_MAX_TTL 140 60 40 80 40 140

GRID_SIZE 4 3 1 1 3 1
BLACKHOLE_CELL(1,1) 0 1 0 1 1 1
BLACKHOLE_CELL(1,2) 0 0 1 1 0 1
BLACKHOLE_CELL(1,3) 0 1 1 0 0 1
BLACKHOLE_CELL(1,4) 1 0 0 0 0 0
BLACKHOLE_CELL(2,1) 0 0 1 1 0 1
BLACKHOLE_CELL(2,2) 1 1 0 1 0 0
BLACKHOLE_CELL(2,3) 1 0 1 0 0 1
BLACKHOLE_CELL(2,4) 1 1 1 0 1 0
BLACKHOLE_CELL(3,1) 1 1 1 0 0 0
BLACKHOLE_CELL(3,2) 1 0 1 0 1 1
BLACKHOLE_CELL(3,3) 1 0 0 0 1 1
BLACKHOLE_CELL(3,4) 1 1 0 0 1 1
BLACKHOLE_CELL(4,1) 1 0 0 1 0 0
BLACKHOLE_CELL(4,1) 1 0 0 0 0 1
BLACKHOLE_CELL(4,3) 1 0 0 1 0 1
BLACKHOLE_CELL(4,4) 0 1 0 0 1 1
BLACKHOLE_RADIUS 200 75 100 100 150 25
BLACKHOLE_FORCE 2 1 3 3 3 1

BLACKHOLE_PENALTY 3 4 0 7 7 8
SAFE_ZONE 20 0 20 20 10 10

BOMB_RADIUS 10 50 20 40 20 20
MISSILE_TYPE 2 1 2 0 2 0

RESOURCE_TTL 400 500 500 500 400 500
RESOURCE_COOLDOWN 200 250 250 200 200 200

ENEMY_ID 0 2 1 0 0 5

94 Chapter 5. Experiments & Results

FIGURE 5.1: Sorted average fitness values over 100 evaluations
of 50 game instances evolved using three different algorithms

challenging aspect of the game and is attracted more towards uncommon game

scenarios; Player B was less easily satisfied and found most of the games boring.

Interestingly, though they have ranked the games differently, they both have a

preference for the game G3H (with the highest average fitness value, optimised

by NTBEA) and dislike the games G1H (with the highest average fitness value,

optimised by RMHC) and G2H (with the highest average fitness value, opti-

mised by B-RMHC). The Player A ranked the games as G1L > G3H > G1H >

G3L > G2H > G2L in terms of challenge/fun, while the Player B ranked the

same games as G2L > G3H > G3L > G1H > G1L > G2H. This shows that NT-

BEA more successful in evolving Space Battle Evolved parameters that satisfy

two human tester preferences in this experiment. This, however, is not sufficient

to validate the HS1, but provides a positive outcome. Hence, HS1 is inconclusive

in general since there are not enough evidence. Similarly with HM3, we used

general video game agents (1SLA and MCTS) to as representatives for human

players with different skill-depth, but it is still inconclusive in general.

In this section, we present the results of an experiment that was designed

5.2. GVGAI Games 95

(A) G1H , game with the
highest average fitness de-

signed by the RMHC

(B) G2H , game with the
highest average fitness de-
signed by the Biased Muta-

tion RMHC.

(C) G3H , game with the
highest average fitness de-
signed by the N-Tuple Ban-

dit Mutation.

(D) G1L, game with the low-
est average fitness designed

by the RMHC.

(E) G2L, game with the
lowest average fitness de-
signed by the Biased Muta-

tion RMHC.

(F) G3L, game with the low-
est average fitness designed
by the N-Tuple Bandit Mu-

tation.

FIGURE 5.2: Screenshots of the 6 designed games evaluated by
human players and their feedback.

to validate two main hypotheses HM1 and HM3 of the research. The task se-

lected was Space Battle Evolved parameterization to find games that best distin-

guish players based on their skill-depth. Next, the results of optimizing another

player-experience task based on score trend using other noisy environments are

presented.

5.2 GVGAI Games

As we aimed to validate HM2 and HM3 in this experiment, we ran the NT-

BEA to evolve game parameter sets for 3 GVGAI games (Defender, Waves and

Seaquest), fitting each of 9 target functions (3 linear functions, 2 linear piecewise

functions, a logarithm function, an exponential function and 2 shifted sigmoid

functions), with two fitness calculation types (NRMSE and B-NRMSE), that is 54

different settings in total. There were 10 games evolved for each distinct setting

96 Chapter 5. Experiments & Results

and the outcomes were averaged to present the evolution result of such setting.

The maximum timestep was fixed at 500 for all gameplay to avoid exploding

value for the exponential function (2
1000
70 ≈ 20000) that would lead to unachiev-

able score for the current game space. Validation repetition for NTBEA was set

at 20 iterations, with 10 neighbour points taken into consideration.

Initially, evaluation budget was set at 10000, but after observing Seaquest

logarithmic runs that converged before 2000 generations, we have changed it to

2000 to reduce computation time. However, Defender fitness trend seemed to

still be unstable after 2000 generations evolved, therefore we have increased it

to 5500 only for this game.

RHEA was selected as player controller during the parameter evolution. Af-

terwards all evolved games were being validated 10 times each using MCTS as

the controller. RHEA population size was set at 20, while the length of the indi-

viduals was set to 10. The mutation rate was set at 0.1, meaning that one gene

is mutated on average on each individual. For MCTS, its rollout depth was set

at 10 to match the length of the RHEA individuals. This is to ensure that our

evolved games provided environments for that specific score trend, regardless

of the controllers played. Both RHEA and MCTS used the same heuristic func-

tion to evaluate states: as per Equation 5.1: the score is used as fitness (resp.

reward in MCTS) unless the games end with a victory or loss, in which case the

reward is 1000 or −1000 respectively. The C value for the UCB1 equation is
√

2

for both the MCTS agent and the NTBEA. The number of neighbours for NTBEA

was set to 100.

value(state) =

1000, if state result is winning

−1000, if state result is losing

score, otherwise

(5.1)

These pre-defined parameters are summarized in Table 5.2. Result analysis is

5.2. GVGAI Games 97

TABLE 5.2: Experiment parameters

Game Specific Global

Games Budget Max step
Evolution

Agent
Validation

Agent
Neighbour

Size
Repetition

Defender 5500 500

RHEA MCTS 10 20
Seaquest

10000 for log,
2000 else

500

Waves 2000
1000 for log,

500 else

divided into two sections, from the game evolution and validation phase re-

spectively.

5.2.1 Evolving Game Parameters

We measured NTBEA performance in game parameter evolution using three

matrices: Average fitness trends over generations, Average score for each time

step in 5 generation ranges, and average score difference (slope of score trend)

for each time step also in 5 generation ranges. The average fitness trend was

used as guidelines to select the last generation to visualize for the score and score

slope trend. To clarify, if the fitness values were stable after 500 generations, only

the average score and difference from generation 1 to 500 would be shown. This

is for ease of observing how the score trends were evolved compared with the

actual target functions.

We have compared and analyzed the evolution results in three aspects: be-

tween games, between biased and non-biased NRMSE, and between target func-

tions.

Different Games

We have selected Defender, Seaquest and Waves for the experiment because

their score system are incremental, which game score can change during game-

plays if certain conditions are met. This makes them possible, in theory, for the

players to obtain the same or similar score trend with any of our target functions

98 Chapter 5. Experiments & Results

if the parameters are set properly. Our minor hypothesis for this between-game

comparison is:

• HG1: NTBEA can evolve game parameters to fit the same target functions

for any games.

We compared the results between all three games in fitting the same target

function and the same loss calculation, beginning with linear function with m =

0.2 (y = 0.2x) since it was the least challenging function to fit (the m value is

considerably small).

The fitness trend, averaged from 10 distinct evolutions, over the first 1000

generations of three games are shown in Figure 5.3. The lighter blue shaded

areas indicate standard deviation of the values. It can be seen that the fitness

values were stable at generation 1000 for all games, which for Seaquest (Figure

5.3c) it converged before generation 200, while it took at about 500 generations

for Waves (Figure 5.3b). Defender fitness, shown in Figure 5.3a, were growing

slower than the previous two with about 800 generations to stay non-increased,

with significantly higher standard deviation. For this matrix, Seaquest seems to

have the least deviate trend, followed by Waves and Defender respectively.

Score and score difference trends also present the similar results, as depicted

in Figure 5.4. All target lines are plotted in red. Notice that the final generations

shown for each game are different, as they were selected based on their own

fitness trend. Seaquest first 50 generation gameplays had a score trend (blue

line in Figure 5.4e) that is above the target score line by a significant gap, and

managed to find the parameter set that lower the score down to fit the target

line more. In contrast, Waves initial parameter set did not provide as high score

as the target line, but it showed a promising progress during evolution, with

RHEA scored more in the later game set, as can be seen in Figure 5.4c. The score

difference trend (Figure 5.4f) also showed the slope curves moved closer to the

target line as the game evolved. Defender (Figure 5.4a and 5.4b) was struggling

5.2. GVGAI Games 99

0 200 400 600 800 1000
Generation

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

Fi
tn

es
s

Average fitness over all generations
Defender_Lin_0.2

Fitness

(A) Defender

0 200 400 600 800 1000
Generation

0.25

0.00

0.25

0.50

0.75

1.00

1.25

Fi
tn

es
s

Average fitness over all generations
Waves_Lin_0.2

Fitness

(B) Waves

0 200 400 600 800 1000
Generation

2

1

0

1

2

Fi
tn

es
s

Average fitness over all generations
Seaquest_Lin_0.2

Fitness

(C) Seaquest

FIGURE 5.3: Average fitness throughout evolutions for y = 0.2x
on the games of this study

the most with negative score trend in the beginning, but improved with time

and obtained a positive linear-like trend after generation 800.

Another example in this between-game comparison is from logarithm func-

tion, with NRMSE loss calculation. Fitness trends are plotted in Figure 5.5 while

the score and slope trends are given in Figure 5.6a. Similar to the results from

y = 0.2x function, Fitness values seem to converge the fastest for Seaquest (5.5c),

with only about 200 generations of parameter evolution. This was followed by

Waves (5.5b) with about 500 game parameter sets evolved, and lastly Defender

(5.5a) after generation 1500.

100 Chapter 5. Experiments & Results

0 100 200 300 400 500
Steps

20

0

20

40

60

80

100

Av
er

ag
e

sc
or

e
fo

r e
ac

h
st

ep

Average score over all generations
Defender_Lin_0.2

gen = 0-100
gen = 100-200
gen = 200-300
gen = 300-400
gen = 400-500
wanted

(A) Defender score

0 100 200 300 400 500
Steps

0.10

0.05

0.00

0.05

0.10

0.15

0.20

Av
er

ag
e

sc
or

e
di

ffe
re

nc
e

fo
r e

ac
h

st
ep

Average slope over all generations
Defender_Lin_0.2

gen = 0-100
gen = 100-200
gen = 200-300
gen = 300-400
gen = 400-500
wanted

(B) Defender score slope

0 100 200 300 400 500
Steps

0

20

40

60

80

100

Av
er

ag
e

sc
or

e
fo

r e
ac

h
st

ep

Average score over all generations
Waves_Lin_0.2

gen = 0-100
gen = 100-200
gen = 200-300
gen = 300-400
gen = 400-500
wanted

(C) Waves score

0 100 200 300 400 500
Steps

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Av
er

ag
e

sc
or

e
di

ffe
re

nc
e

fo
r e

ac
h

st
ep

Average slope over all generations
Waves_Lin_0.2

gen = 0-100
gen = 100-200
gen = 200-300
gen = 300-400
gen = 400-500
wanted

(D) Waves score slope

0 100 200 300 400 500
Steps

0

25

50

75

100

125

150

175

Av
er

ag
e

sc
or

e
fo

r e
ac

h
st

ep

Average score over all generations
Seaquest_Lin_0.2

gen = 0-50
gen = 50-100
gen = 100-150
gen = 150-200
gen = 200-250
wanted

(E) Seaquest score

0 100 200 300 400 500
Steps

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Av
er

ag
e

sc
or

e
di

ffe
re

nc
e

fo
r e

ac
h

st
ep

Average slope over all generations
Seaquest_Lin_0.2

gen = 0-50
gen = 50-100
gen = 100-150
gen = 150-200
gen = 200-250
wanted

(F) Seaquest score slope

FIGURE 5.4: Average score trend and score difference through-
out evolutions for y = 0.2x on the games of this study. Each
plot shows different trends, averages taken at different genera-

tion ranges through evolution.

5.2. GVGAI Games 101

0 1000 2000 3000 4000 5000
Generation

0.2

0.0

0.2

0.4

0.6

Fi
tn

es
s

Average fitness over all generations
Defender_Log

Fitness

(A) Defender

0 200 400 600 800 1000
Generation

0.75

0.50

0.25

0.00

0.25

0.50

0.75

Fi
tn

es
s

Average fitness over all generations
Waves_Log

Fitness

(B) Waves

0 200 400 600 800 1000
Generation

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

Fi
tn

es
s

Average fitness over all generations
Seaquest_Log

Fitness

(C) Seaquest

FIGURE 5.5: Average fitness throughout evolutions for y =
15 log2(x) for the games of this study

In score trend, it is difficult to see in Defender (5.6a) whether it is follow-

ing the trend we want (scoring more in the beginning and less later on), but it

is clearer in score difference (5.6b) as the later generation game parameters has

higher slope, which the peak point is at around generation 180, and the slope

decreases slowly afterwards. The earlier generations, such as those represent

in blue lines have clearly lower average score slope. This implies that the EA

responded to our fitness function and was trying to adjust parameters accord-

ingly. Waves results (Figure 5.6c for score and 5.6d for score slope) are a bit more

noticeable that the average score was increasing faster in the early steps for all

102 Chapter 5. Experiments & Results

generation ranges. Therefore the EA seemed to be trying to fit the actual values

of our target curve, resulting in higher slope in later generations. For Seaquest

(5.6e for score and 5.6f for score slope), the EA could find a parameter set with

the final score value (at step 500) close to the target function value quite early,

therefore it was mostly evolving to fit with the rest of the curve. This is reflected

more obviously in the score slope that the peak area has moved from step 250

(blue jagged curve) to around 150 (black jagged curve), and the slope before step

100 is significantly higher in generation 600-750 than in the beginning.

From two sets of examples provided, we can see that NTBEA reacted to our

fitness function and attempted to find parameter set that gives the fittest result

for all games tested in this experiment. Results from other target functions are

also similar to this trend. Although this is not sufficient to confirm that the minor

hypothesis HG1 is correct, it provides some evidence in positive direction. For

an additional observation, we can see that Defender game space was the most

challenging for the EA, while Waves was less difficult and Seaquest was the

easiest.

Biasing Loss Calculation

There were two loss calculation functions used in the experiment, Non-biased

(NRMSE) and Biased Normalized Root Mean Square Error (B-NRMSE), as de-

scribed in section 4.2.4. The main difference is that B-NRMSE penalizes errors

in the area with higher slope in the target functions more, while normal NRMSE

treats errors at all points equally. The minor hypothesis we set for this compari-

son is:

• HG2: Biasing the loss calculation helps NTBEA in our optimization task

Based on the results, biasing the loss calculation resulted in both positive

and negative outcomes in our experiment depending on the target functions.

An advantage of biasing the errors is that the EA more actively reacted to those

5.2. GVGAI Games 103

0 100 200 300 400 500
Steps

0

20

40

60

80

100

120

140

Av
er

ag
e

sc
or

e
fo

r e
ac

h
st

ep

Average score over all generations
Defender_Log

gen = 0-300
gen = 300-600
gen = 600-900
gen = 900-1200
gen = 1200-1500
wanted

(A) Defender score

0 100 200 300 400 500
Steps

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Av
er

ag
e

sc
or

e
di

ffe
re

nc
e

fo
r e

ac
h

st
ep

Average slope over all generations
Defender_Log

gen = 0-300
gen = 300-600
gen = 600-900
gen = 900-1200
gen = 1200-1500
wanted

(B) Defender score slope

0 200 400 600 800 1000
Steps

0

25

50

75

100

125

150

Av
er

ag
e

sc
or

e
fo

r e
ac

h
st

ep

Average score over all generations
Waves_Log

gen = 0-100
gen = 100-200
gen = 200-300
gen = 300-400
gen = 400-500
wanted

(C) Waves score

0 200 400 600 800 1000
Steps

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Av
er

ag
e

sc
or

e
di

ffe
re

nc
e

fo
r e

ac
h

st
ep

Average slope over all generations
Waves_Log

gen = 0-100
gen = 100-200
gen = 200-300
gen = 300-400
gen = 400-500
wanted

(D) Waves score slope

0 100 200 300 400 500
Steps

0

20

40

60

80

100

120

140

Av
er

ag
e

sc
or

e
fo

r e
ac

h
st

ep

Average score over all generations
Seaquest_Log

gen = 0-150
gen = 150-300
gen = 300-450
gen = 450-600
gen = 600-750
wanted

(E) Seaquest score

0 100 200 300 400 500
Steps

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Av
er

ag
e

sc
or

e
di

ffe
re

nc
e

fo
r e

ac
h

st
ep

Average slope over all generations
Seaquest_Log

gen = 0-150
gen = 150-300
gen = 300-450
gen = 450-600
gen = 600-750
wanted

(F) Seaquest score slope

FIGURE 5.6: Average score trend and score difference throughout
evolutions for y = 15 log2(x), for the games of this study.

104 Chapter 5. Experiments & Results

0 200 400 600 800 1000
Generation

0.75

0.50

0.25

0.00

0.25

0.50

0.75

Fi
tn

es
s

Average fitness over all generations
Waves_Log

Fitness

(A) NRMSE

0 200 400 600 800 1000
Generation

1.2

1.0

0.8

0.6

0.4

0.2

0.0

0.2

Fi
tn

es
s

Average fitness over all generations
Waves_Log

Fitness

(B) B-NRMSE

FIGURE 5.7: Average fitness throughout evolutions for y =
15 log2(x), normal and biased loss function comparison

areas with higher slope values and found more parameter sets that fit those parts

better. One example of this can be seen in Figure 5.7, which shows a comparison

between normal and biased NRMSE in Waves for y = log2(15x). It can be seen

that the black curve (generation 400-500) in the biased version graph (Figure

5.8b) has higher average value at about 90, compared with about 70 in the non-

biased graph (Figure 5.8a). This is more obvious in the slope results (Figure

5.8c and Figure 5.8d) that the black jagged curve of the biased graph has higher

values at step 100 than the non-biased graph, and decreasing faster afterwards.

On the other hand, a disadvantage of biasing the errors is that it would ne-

glect all errors from the areas with zero slope in the target curve. This can be

seen in the results of left-sigmoid curve that the y value always equals to 150 af-

ter step 250, hence the slope is 0 from this step onwards. This is shown in Figure

5.9. The average score of normal NRMSE (Figure 5.9a) were restricted to be at

most equal to the red curve values, while it is untrue for the biased one (Figure

5.9b). However the slope in biased NRMSE is closer to the target slope than the

non-biased one.

Another observed effect of biased error calculation was that it linearly trans-

formed the fitness values down. This is true for all functions, excepts linear

5.2. GVGAI Games 105

0 200 400 600 800 1000
Steps

0

25

50

75

100

125

150

Av
er

ag
e

sc
or

e
fo

r e
ac

h
st

ep

Average score over all generations
Waves_Log

gen = 0-100
gen = 100-200
gen = 200-300
gen = 300-400
gen = 400-500
wanted

(A) NRMSE score

0 200 400 600 800 1000
Steps

0

20

40

60

80

100

120

140

160

Av
er

ag
e

sc
or

e
fo

r e
ac

h
st

ep

Average score over all generations
Waves_Log

gen = 0-100
gen = 100-200
gen = 200-300
gen = 300-400
gen = 400-500
wanted

(B) B-NRMSE score

0 200 400 600 800 1000
Steps

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Av
er

ag
e

sc
or

e
di

ffe
re

nc
e

fo
r e

ac
h

st
ep

Average slope over all generations
Waves_Log

gen = 0-100
gen = 100-200
gen = 200-300
gen = 300-400
gen = 400-500
wanted

(C) NRMSE slope

0 200 400 600 800 1000
Steps

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Av
er

ag
e

sc
or

e
di

ffe
re

nc
e

fo
r e

ac
h

st
ep

Average slope over all generations
Waves_Log

gen = 0-100
gen = 100-200
gen = 200-300
gen = 300-400
gen = 400-500
wanted

(D) B-NRMSE slope

FIGURE 5.8: Average score trend and score difference throughout
evolutions for y = 15 log2(x), different loss function comparison.

106 Chapter 5. Experiments & Results

0 100 200 300 400 500
Steps

0

20

40

60

80

100

120

140

Av
er

ag
e

sc
or

e
fo

r e
ac

h
st

ep

Average score over all generations
Seaquest_Sig

gen = 0-50
gen = 50-100
gen = 100-150
gen = 150-200
gen = 200-250
wanted

(A) NRMSE score

0 100 200 300 400 500
Steps

0

50

100

150

200

Av
er

ag
e

sc
or

e
fo

r e
ac

h
st

ep

Average score over all generations
Seaquest_Sig

gen = 0-50
gen = 50-100
gen = 100-150
gen = 150-200
gen = 200-250
wanted

(B) B-NRMSE score

0 100 200 300 400 500
Steps

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Av
er

ag
e

sc
or

e
di

ffe
re

nc
e

fo
r e

ac
h

st
ep

Average slope over all generations
Seaquest_Sig

gen = 0-50
gen = 50-100
gen = 100-150
gen = 150-200
gen = 200-250
wanted

(C) NRMSE slope

0 100 200 300 400 500
Steps

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Av
er

ag
e

sc
or

e
di

ffe
re

nc
e

fo
r e

ac
h

st
ep

Average slope over all generations
Seaquest_Sig

gen = 0-50
gen = 50-100
gen = 100-150
gen = 150-200
gen = 200-250
wanted

(D) B-NRMSE slope

FIGURE 5.9: Average score trend and score difference through-
out evolutions for left-sigmoid, for NRMSE and B-NRMSE loss

calculation.

functions that have fixed-value slopes. For instance, as given in Figure 5.7, the

final average fitness values of normal NRMSE are about 0.5 while they are less

than 0 for the biased one. More obvious example can be seen in Figure 5.9, with

the final fitness values are 0.5 and -75 for non-biased and biased versions respec-

tively. It is also shown that the biased loss calculation gave significantly higher

standard deviation (blue shaded area) in this case, which is also true in others

from my observation. Since we observed mixed results from this comparison,

HG2 is inconclusive.

5.2. GVGAI Games 107

0 200 400 600 800 1000
Generation

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

Fi
tn

es
s

Average fitness over all generations
Seaquest_Sig

Fitness

(A) NRMSE

0 200 400 600 800 1000
Generation

175

150

125

100

75

50

25

Fi
tn

es
s

Average fitness over all generations
Seaquest_Sig

Fitness

(B) B-NRMSE

FIGURE 5.10: Average fitness throughout evolutions for y =
150

1+exp(− x
20+12) , different loss function comparison

Functions and Parameters

We compared the results from fitting different target functions, by pairing the

same types with opposite trends (for instance, higher slope in the beginning and

higher slope in the end) together, except linear lines that we compared different

m in y = mx.

Results from Defender were selected to present linear target function com-

parison because it was the most challenging game to evolve, as described in

5.2.1. Score and score slope trends are given in Figure 5.11. It is obvious that the

target lines with higher slope was more difficult to fit for this game. Neverthe-

less, the average final score (at step 500) are different, as it is more than 40 for

m = 0.2, approximately 75 for m = 0.4 and slightly more than 100 for m = 1. We

can infer from this that the EA was affected more by the higher the target slope

is and was trying harder to fit it. Average score slope results also confirm this as

they have higher peak values with higher m target function.

Next, we compare logarithm and exponential function results as they are

the inverse function of each other. Waves with B-NRMSE were selected due to

108 Chapter 5. Experiments & Results

0 100 200 300 400 500
Steps

0

20

40

60

80

100

Av
er

ag
e

sc
or

e
fo

r e
ac

h
st

ep

Average score over all generations
Defender_Lin_0.2

gen = 0-200
gen = 200-400
gen = 400-600
gen = 600-800
gen = 800-1000
wanted

(A) y = 0.2x score

0 100 200 300 400 500
Steps

0.15

0.10

0.05

0.00

0.05

0.10

0.15

0.20

0.25

Av
er

ag
e

sc
or

e
di

ffe
re

nc
e

fo
r e

ac
h

st
ep

Average slope over all generations
Defender_Lin_0.2

gen = 0-200
gen = 200-400
gen = 400-600
gen = 600-800
gen = 800-1000
wanted

(B) y = 0.2x slope

0 100 200 300 400 500
Steps

0

25

50

75

100

125

150

175

200

Av
er

ag
e

sc
or

e
fo

r e
ac

h
st

ep

Average score over all generations
Defender_Lin_0.4

gen = 0-600
gen = 600-1200
gen = 1200-1800
gen = 1800-2400
gen = 2400-3000
wanted

(C) y = 0.4x score

0 100 200 300 400 500
Steps

0.0

0.1

0.2

0.3

0.4

Av
er

ag
e

sc
or

e
di

ffe
re

nc
e

fo
r e

ac
h

st
ep

Average slope over all generations
Defender_Lin_0.4

gen = 0-600
gen = 600-1200
gen = 1200-1800
gen = 1800-2400
gen = 2400-3000
wanted

(D) y = 0.4x slope

0 100 200 300 400 500
Steps

0

100

200

300

400

500

Av
er

ag
e

sc
or

e
fo

r e
ac

h
st

ep

Average score over all generations
Defender_Lin

gen = 0-1100
gen = 1100-2200
gen = 2200-3300
gen = 3300-4400
gen = 4400-5500
wanted

(E) y = x score

0 100 200 300 400 500
Steps

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

sc
or

e
di

ffe
re

nc
e

fo
r e

ac
h

st
ep

Average slope over all generations
Defender_Lin

gen = 0-1100
gen = 1100-2200
gen = 2200-3300
gen = 3300-4400
gen = 4400-5500
wanted

(F) y = x slope

FIGURE 5.11: Average score trend and score difference through-
out evolutions for Defender, linear function comparison.

5.2. GVGAI Games 109

its clearest distinction of the graphics plotted, hence easiest to visualize the dif-

ferences. The graphs showing average score and slope trends are illustrated in

Figure 5.12. It is obvious that the EA was evolving game parameters to fit the

given target functions, as the average score values at step 200 for later genera-

tions for logarithm function result is significantly higher than the exponential

function result. Visualizing average slope trend also confirms this as the peak

point of the logarithm result is at around step 100 (for the black line) while for

the exponential result it is at around step 400. Based on the results, the EA ob-

viously reacted differently to these two target functions, and producing similar

score difference trend to each.

Left and right shifted sigmoid functions, given in Figure 5.13, is compared

next. Normal NRMSE Waves results were selected because, again, they are eas-

iest to visualize. The results are similar to those in logarithm and exponential

function as the average score in later generation for left sigmoid result is higher

than right sigmoid result at step 300. Notice that the blue curves of both results

are almost the identical (taking the y-scale into account), pointing out that the

initial parameter of both cases were giving the similar score trend (although the

initial points in the game space were randomly picked), and the EA managed to

evolve games with different trends in the end. This means that the evolution-

ary algorithm and the approach we are proposing is general and adaptable with

various target functions.

Unexpectedly, The most challenging functions to fit were 2-part linear piece-

wise. B-NRMSE Waves results were selected to show in Figure 5.14. Although

the results are of the same trends with those in sigmoid and logarithm-exponential

comparisons, the EA could not efficiently react to the section with m = 2 in both

runs. My assumption is that the m values were probably too high, as we have

seen from the linear target function parameter comparison, it was challenging

to even fit a linear line with m = 1 from the beginning. Further experiment

with smaller m for this piecewise setting might confirm this. Another possible

110 Chapter 5. Experiments & Results

0 200 400 600 800 1000
Steps

0

20

40

60

80

100

120

140

160

Av
er

ag
e

sc
or

e
fo

r e
ac

h
st

ep

Average score over all generations
Waves_Log

gen = 0-100
gen = 100-200
gen = 200-300
gen = 300-400
gen = 400-500
wanted

(A) y = 15 log2(x) score

0 100 200 300 400 500
Steps

0

20

40

60

80

100

120

140

Av
er

ag
e

sc
or

e
fo

r e
ac

h
st

ep

Average score over all generations
Waves_Pow

gen = 0-100
gen = 100-200
gen = 200-300
gen = 300-400
gen = 400-500
wanted

(B) y = 2
x

70 score

0 200 400 600 800 1000
Steps

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Av
er

ag
e

sc
or

e
di

ffe
re

nc
e

fo
r e

ac
h

st
ep

Average slope over all generations
Waves_Log

gen = 0-100
gen = 100-200
gen = 200-300
gen = 300-400
gen = 400-500
wanted

(C) y = log2(15x) slope

0 100 200 300 400 500
Steps

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Av
er

ag
e

sc
or

e
di

ffe
re

nc
e

fo
r e

ac
h

st
ep

Average slope over all generations
Waves_Pow

gen = 0-100
gen = 100-200
gen = 200-300
gen = 300-400
gen = 400-500
wanted

(D) y = 2
x

70 slope

FIGURE 5.12: Average score trend and score difference through-
out evolutions for Waves, B-NRMSE, logarithm and exponential

function comparison

assumption is that the ’change point’, which is 100 for the 2-0.2 and 400 for the

0.2-2, were probably need to be closer to the middle step to provide more time

to react on it. Modifying this or increasing game playing time in further experi-

ment may confirm this.

In this subsection, I have analyzed the data resulted from the parameter evo-

lution phase using RHEA as the controller to play games. The results were com-

pared between games, between using normal and biased NRMSE as loss calcu-

lation function, and between fitting different target functions of the same types.

5.2. GVGAI Games 111

0 100 200 300 400 500
Steps

0

20

40

60

80

100

120

140

Av
er

ag
e

sc
or

e
fo

r e
ac

h
st

ep

Average score over all generations
Waves_Sig

gen = 0-100
gen = 100-200
gen = 200-300
gen = 300-400
gen = 400-500
wanted

(A) y = 150
1+exp(− x

20+3) score

0 100 200 300 400 500
Steps

0

20

40

60

80

100

120

140

Av
er

ag
e

sc
or

e
fo

r e
ac

h
st

ep

Average score over all generations
Waves_Sig

gen = 0-100
gen = 100-200
gen = 200-300
gen = 300-400
gen = 400-500
wanted

(B) y = 150
1+exp(− x

20+12) score

0 100 200 300 400 500
Steps

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Av
er

ag
e

sc
or

e
di

ffe
re

nc
e

fo
r e

ac
h

st
ep

Average slope over all generations
Waves_Sig

gen = 0-100
gen = 100-200
gen = 200-300
gen = 300-400
gen = 400-500
wanted

(C) y = 150
1+exp(− x

20+3) slope

0 100 200 300 400 500
Steps

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Av
er

ag
e

sc
or

e
di

ffe
re

nc
e

fo
r e

ac
h

st
ep

Average slope over all generations
Waves_Sig

gen = 0-100
gen = 100-200
gen = 200-300
gen = 300-400
gen = 400-500
wanted

(D) y = 150
1+exp(− x

20+12) slope

FIGURE 5.13: Average score trend and score difference through-
out evolutions for Waves, normal NRMSE, shifted sigmoid func-

tion comparison

Based on the results, I conclude that the EA can react to the same target function

similarly across different games. Biasing the loss calculation resulted in higher

sensitivity of the EA, but less robust as it increased standard deviation range.

Comparison between different target functions indicates that our NTBEA was

able to react to different functions appropriately. Next, some of the evolved pa-

rameter sets were taken into validation phase, which is to set the game with such

parameters, playtest using another controller, record the results, and analyze the

results to confirm whether they provide the environment to achieve such score

112 Chapter 5. Experiments & Results

0 100 200 300 400 500
Steps

0

50

100

150

200

250

Av
er

ag
e

sc
or

e
fo

r e
ac

h
st

ep

Average score over all generations
Waves_LogLin

gen = 0-150
gen = 150-300
gen = 300-450
gen = 450-600
gen = 600-750
wanted

(A) 2-0.2 linear piecewise score

0 100 200 300 400 500
Steps

0

50

100

150

200

250

Av
er

ag
e

sc
or

e
fo

r e
ac

h
st

ep

Average score over all generations
Waves_PowLin

gen = 0-150
gen = 150-300
gen = 300-450
gen = 450-600
gen = 600-750
wanted

(B) 0.2-2 linear piecewise score

0 100 200 300 400 500
Steps

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Av
er

ag
e

sc
or

e
di

ffe
re

nc
e

fo
r e

ac
h

st
ep

Average slope over all generations
Waves_LogLin

gen = 0-150
gen = 150-300
gen = 300-450
gen = 450-600
gen = 600-750
wanted

(C) 2-0.2 linear piecewise slope

0 100 200 300 400 500
Steps

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Av
er

ag
e

sc
or

e
di

ffe
re

nc
e

fo
r e

ac
h

st
ep

Average slope over all generations
Waves_PowLin

gen = 0-150
gen = 150-300
gen = 300-450
gen = 450-600
gen = 600-750
wanted

(D) 0.2-2 linear piecewise slope

FIGURE 5.14: Average score trend and score difference through-
out evolutions for Waves, B-NRMSE, 2-part linear piecewise

function comparison

trends.

5.2.2 Validating Evolved Games

After game parameter sets had been evolved, the EA reported the best individ-

ual on each of the four selection criteria, as mentioned in 3.3.3. We extracted

these parameter individuals from every settings in all 10 runs and performed

validation playtests using MCTS, 10 times each for one result (more validation

may be necessary to reduce the standard error). The score from these playtests

5.2. GVGAI Games 113

were recorded, averaged for the same parameter set, and plotted along with

others in the same evolution configuration. We first compare the results from

different selection criteria, then follow with the same comparison criteria with

the previous section.

Best Individual Selection Criteria

There are four best individuals selected by the EA for each game parameter

evolution. The first one called best sampled is the group of parameter that has

achieved the highest fitness among all the sampled individuals during evolu-

tion. The best params is the combination of the parameters with the highest

average fitness individually. The best s+neighbours is the best set among all sam-

pled individuals with their neighbours (the sets that share all but one parameter

values). Finally, the best UCB are the best of all sampled points, ranked by UCB

values (equation 3.1) instead of only fitness values.

We selected the result from normal NRMSE Defender with exponential tar-

get function as it is the best to reflect the differences between each best selection

parameter sets. The average score trend of this configuration in validation phase

is given in Figure 5.15 and the average slope trend is shown in Figure 5.16. Each

blue curve represents the average of playtest results from one game evolved,

with the red curve is the target function. It can be seen that the best sampled

parameters did not provide environment for MCTS to obtain score in the same

trend as our target function. The other three best parameter sets achieved more

promising performance as most of the games ended in high positive score. For

the slope trend, the best UCB and the best s+neighbour seemed to outperform the

other two with clearer higher slope trend in the later steps than the beginning.

To confirm that this performance pattern is also true in other settings, we

show the validation results for normal NRMSE Seaquest in linear line y = x

as both the game and the function were less challenging to evolve in evolution

phase. The average score is given in Figure 5.17 and the score slope is depicted

114 Chapter 5. Experiments & Results

0 100 200 300 400 500
Steps

25

0

25

50

75

100

125

150

sc
or

e

Validation results for Defender, played by mcts
setting 1
setting 2
setting 3
setting 4
setting 5
setting 6
setting 7
setting 8
setting 9
setting 10
wanted

(A) Best sampled individual

0 100 200 300 400 500
Steps

0

20

40

60

80

100

120

140

sc
or

e

Validation results for Defender, played by mcts
setting 1
setting 2
setting 3
setting 4
setting 5
setting 6
setting 7
setting 8
setting 9
setting 10
wanted

(B) Best parameters

0 100 200 300 400 500
Steps

0

20

40

60

80

100

120

140

sc
or

e

Validation results for Defender, played by mcts
setting 1
setting 2
setting 3
setting 4
setting 5
setting 6
setting 7
setting 8
setting 9
setting 10
wanted

(C) Best sampled plus neighbours

0 100 200 300 400 500
Steps

0

20

40

60

80

100

120

140

sc
or

e

Validation results for Defender, played by mcts
setting 1
setting 2
setting 3
setting 4
setting 5
setting 6
setting 7
setting 8
setting 9
setting 10
wanted

(D) Best UCB

FIGURE 5.15: Average score trend in validations for y = 2
x

70 ,
different best parameter selection comparison

5.2. GVGAI Games 115

0 100 200 300 400 500
Steps

1

0

1

2

slo
pe

Validation results for Defender, played by mcts
setting 1
setting 2
setting 3
setting 4
setting 5
setting 6
setting 7
setting 8
setting 9
setting 10
wanted

(A) Best sampled individual

0 100 200 300 400 500
Steps

3

2

1

0

1

2

3

4

slo
pe

Validation results for Defender, played by mcts
setting 1
setting 2
setting 3
setting 4
setting 5
setting 6
setting 7
setting 8
setting 9
setting 10
wanted

(B) Best parameters

0 100 200 300 400 500
Steps

4

3

2

1

0

1

2

3

slo
pe

Validation results for Defender, played by mcts

setting 1
setting 2
setting 3
setting 4
setting 5
setting 6
setting 7
setting 8
setting 9
setting 10
wanted

(C) Best sampled plus neighbours

0 100 200 300 400 500
Steps

2

1

0

1

2

3

slo
pe

Validation results for Defender, played by mcts
setting 1
setting 2
setting 3
setting 4
setting 5
setting 6
setting 7
setting 8
setting 9
setting 10
wanted

(D) Best UCB

FIGURE 5.16: Average score difference in validations for y = 2
x

70 ,
different best parameter selection comparison

in Figure 5.18. We can see that all of the best parameter set score trends are

similar to the target line except for the best sampled individual. Based on this

and to keep the document concise, for the rest of this section, only the validation

results from the best UCB would be selected to show in further comparison.

Different Games

Validation results for the linear target function y = x have been selected for

between-game comparison, showed in Figure 5.19. Most of the parameter sets

116 Chapter 5. Experiments & Results

0 100 200 300 400 500
Steps

0

100

200

300

400

500

sc
or

e

Validation results for Seaquest, played by mcts
setting 1
setting 2
setting 3
setting 4
setting 5
setting 6
setting 7
setting 8
setting 9
setting 10
wanted

(A) Best sampled individual

0 100 200 300 400 500
Steps

0

100

200

300

400

500

600

sc
or

e

Validation results for Seaquest, played by mcts
setting 1
setting 2
setting 3
setting 4
setting 5
setting 6
setting 7
setting 8
setting 9
setting 10
wanted

(B) Best parameters

0 100 200 300 400 500
Steps

0

100

200

300

400

500

600

sc
or

e

Validation results for Seaquest, played by mcts
setting 1
setting 2
setting 3
setting 4
setting 5
setting 6
setting 7
setting 8
setting 9
setting 10
wanted

(C) Best sampled plus neighbours

0 100 200 300 400 500
Steps

0

100

200

300

400

500

sc
or

e
Validation results for Seaquest, played by mcts
setting 1
setting 2
setting 3
setting 4
setting 5
setting 6
setting 7
setting 8
setting 9
setting 10
wanted

(D) Best UCB

FIGURE 5.17: Average score trend in validations for y = x, dif-
ferent best parameter selection comparison

evolved for Defender provided the environment for positive score in average,

which is a huge improvement considering that most of the initial parameter

set gave negative score, though neither of them able to achieve the average of

m = 1. Waves and Seaquest evolved parameter sets gave obviously better re-

sult in score trend, as most of the lines are close to the target line. In term of

score difference (slope), Waves result seems to closer to the target line in aver-

age. This is also true for other target function results, as another example for

right-sigmoid is given in Figure 5.20. This agrees with the result from evolution

5.2. GVGAI Games 117

0 100 200 300 400 500
Steps

0

5

10

15

20

25

slo
pe

Validation results for Seaquest, played by mcts
setting 1
setting 2
setting 3
setting 4
setting 5
setting 6
setting 7
setting 8
setting 9
setting 10
wanted

(A) Best sampled individual

0 100 200 300 400 500
Steps

0

2

4

6

8

10

slo
pe

Validation results for Seaquest, played by mcts
setting 1
setting 2
setting 3
setting 4
setting 5
setting 6
setting 7
setting 8
setting 9
setting 10
wanted

(B) Best parameters

0 100 200 300 400 500
Steps

0

2

4

6

8

10

slo
pe

Validation results for Seaquest, played by mcts
setting 1
setting 2
setting 3
setting 4
setting 5
setting 6
setting 7
setting 8
setting 9
setting 10
wanted

(C) Best sampled plus neighbours

0 100 200 300 400 500
Steps

0

2

4

6

8

10

12

slo
pe

Validation results for Seaquest, played by mcts
setting 1
setting 2
setting 3
setting 4
setting 5
setting 6
setting 7
setting 8
setting 9
setting 10
wanted

(D) Best UCB

FIGURE 5.18: Average score difference trend in validations for
y = x, different best parameter selection comparison

phase that Defender was the most difficult to fit due to its parameter space. Al-

though it is still inconclusive whether Seaquest or Waves are easier to evolve it

is obvious from both Figure 5.19 and Figure 5.20 that the NTBEA was capable

of tuning parameters for both games, at least in for this function set, with the

final outcomes of the evolution still provide the game environment that allows

the player to achieve the same score trend as the target functions. This confirms

the hypothesis HM2 because two different controllers have similar score trend

in average for the same game.

118 Chapter 5. Experiments & Results

0 100 200 300 400 500
Steps

0

100

200

300

400

500

sc
or

e

Validation results for Defender, played by mcts
setting 1
setting 2
setting 3
setting 4
setting 5
setting 6
setting 7
setting 8
setting 9
setting 10
wanted

(A) Defender score

0 100 200 300 400 500
Steps

4

2

0

2

4

slo
pe

Validation results for Defender, played by mcts
setting 1
setting 2
setting 3
setting 4
setting 5
setting 6
setting 7
setting 8
setting 9
setting 10
wanted

(B) Defender score slope

0 100 200 300 400 500
Steps

0

100

200

300

400

500

600

700

sc
or

e

Validation results for Waves, played by mcts
setting 1
setting 2
setting 3
setting 4
setting 5
setting 6
setting 7
setting 8
setting 9
setting 10
wanted

(C) Waves score

0 100 200 300 400 500
Steps

0

1

2

3

4

5

6

slo
pe

Validation results for Waves, played by mcts
setting 1
setting 2
setting 3
setting 4
setting 5
setting 6
setting 7
setting 8
setting 9
setting 10
wanted

(D) Waves score slope

0 100 200 300 400 500
Steps

0

100

200

300

400

500

sc
or

e

Validation results for Seaquest, played by mcts
setting 1
setting 2
setting 3
setting 4
setting 5
setting 6
setting 7
setting 8
setting 9
setting 10
wanted

(E) Seaquest score

0 100 200 300 400 500
Steps

0

2

4

6

8

10

12

slo
pe

Validation results for Seaquest, played by mcts
setting 1
setting 2
setting 3
setting 4
setting 5
setting 6
setting 7
setting 8
setting 9
setting 10
wanted

(F) Seaquest score slope

FIGURE 5.19: Average score trend and score difference during
validation for y = x best UCB, on the game of this study

5.2. GVGAI Games 119

0 100 200 300 400 500
Steps

0

20

40

60

80

100

120

140

160

sc
or

e

Validation results for Waves, played by mcts
setting 1
setting 2
setting 3
setting 4
setting 5
setting 6
setting 7
setting 8
setting 9
setting 10
wanted

(A) Waves score

0 100 200 300 400 500
Steps

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

slo
pe

Validation results for Waves, played by mcts
setting 1
setting 2
setting 3
setting 4
setting 5
setting 6
setting 7
setting 8
setting 9
setting 10
wanted

(B) Waves score slope

0 100 200 300 400 500
Steps

0

20

40

60

80

100

120

140

sc
or

e

Validation results for Seaquest, played by mcts
setting 1
setting 2
setting 3
setting 4
setting 5
setting 6
setting 7
setting 8
setting 9
setting 10
wanted

(C) Seaquest score

0 100 200 300 400 500
Steps

0

2

4

6

8

slo
pe

Validation results for Seaquest, played by mcts
setting 1
setting 2
setting 3
setting 4
setting 5
setting 6
setting 7
setting 8
setting 9
setting 10
wanted

(D) Seaquest score slope

FIGURE 5.20: Average score trend and score difference during
validation for normal NRMSE right-sigmoid best UCB, on the

game of this study

Normal NRMSE and Biased NRMSE

In 5.2.1 I have clarified that biasing the loss calculation affected the results from

fitting shifted sigmoid functions the most. However, it is not as obvious from

the validation phase results. A comparison between normal NRMSE and B-

NRMSE can be seen in Figure 5.21, which is showing the results from Seaquest.

Both score trends (Figure 5.21a for normal NRMSE and 5.21b for B-NRMSE) are

similar. This is also true in score difference trends (Figure 5.21c for NRMSE and

5.21d for B-NRMSE) that most of the blue bars in B-NRMSE figure seems to

120 Chapter 5. Experiments & Results

0 100 200 300 400 500
Steps

0

50

100

150

200

sc
or

e

Validation results for Seaquest, played by mcts
setting 1
setting 2
setting 3
setting 4
setting 5
setting 6
setting 7
setting 8
setting 9
setting 10
wanted

(A) NRMSE score

0 100 200 300 400 500
Steps

0

50

100

150

200

250

300

sc
or

e

Validation results for Seaquest, played by mcts
setting 1
setting 2
setting 3
setting 4
setting 5
setting 6
setting 7
setting 8
setting 9
setting 10
wanted

(B) B-NRMSE score

0 100 200 300 400 500
Steps

0

2

4

6

8

10

slo
pe

Validation results for Seaquest, played by mcts
setting 1
setting 2
setting 3
setting 4
setting 5
setting 6
setting 7
setting 8
setting 9
setting 10
wanted

(C) NRMSE slope

0 100 200 300 400 500
Steps

0

2

4

6

8

slo
pe

Validation results for Seaquest, played by mcts
setting 1
setting 2
setting 3
setting 4
setting 5
setting 6
setting 7
setting 8
setting 9
setting 10
wanted

(D) B-NRMSE slope

FIGURE 5.21: Average score trend and score difference during
validation for Seaquest left-sigmoid best UCB, different loss cal-

culation comparison

scatter away from the red curve more than from in NRMSE slope figure.

The more obvious example can be seen from logarithmic validation results

of Waves, shown in Figure 5.22. It is clearly observable that all of the curves

for normal NRMSE (Figure 5.22a) were restricted by the target curve, while it is

untrue for the biased NRMSE (Figure 5.22b) . Score difference graphs (Figure

5.22c for normal NRMSE and 5.22d for biased NRMSE) also show that the slope

trends of the ones using normal NRMSE as loss calculation are much more closer

to the red curve, that is higher in the beginning and decreasing afterwards. In

5.2. GVGAI Games 121

0 100 200 300 400 500
Steps

0

20

40

60

80

100

120

140

sc
or

e

Validation results for Waves, played by mcts
setting 1
setting 2
setting 3
setting 4
setting 5
setting 6
setting 7
setting 8
setting 9
setting 10
wanted

(A) NRMSE score

0 100 200 300 400 500
Steps

0

50

100

150

200

250

sc
or

e

Validation results for Waves, played by mcts
setting 1
setting 2
setting 3
setting 4
setting 5
setting 6
setting 7
setting 8
setting 9
setting 10
wanted

(B) B-NRMSE score

0 100 200 300 400 500
Steps

0

2

4

6

8

10

12

14

slo
pe

Validation results for Waves, played by mcts
setting 1
setting 2
setting 3
setting 4
setting 5
setting 6
setting 7
setting 8
setting 9
setting 10
wanted

(C) NRMSE slope

0 100 200 300 400 500
Steps

0

2

4

6

8

10

12

14

16

slo
pe

Validation results for Waves, played by mcts
setting 1
setting 2
setting 3
setting 4
setting 5
setting 6
setting 7
setting 8
setting 9
setting 10
wanted

(D) B-NRMSE slope

FIGURE 5.22: Average score trend and score difference during
validation for Seaquest with, y = 15 log2(x) best UCB, different

loss calculation comparison

contrast, results from the Seaquest game parameters evolved by using B-NRMSE

as loss calculator do not follow that trend.

Based on the observed results from the validation phase, I would conclude

that biasing the loss value calculation does not improve the performance in this

application, hence rejecting the hypothesis HG2. The initial assumption of this

was that it would give more priority to the ’more important’ areas (the areas

with higher slope). However, we have found that it instead reduces the prior-

ity of the areas with lower slope values, resulting in higher standard deviation

122 Chapter 5. Experiments & Results

range, because the EA was less ’restricted’ to such areas from the small penalty

given.

In this subsection, the results of biasing loss calculation for reporting fitness

were discussed. Next, I will compare the results between the selected target

functions.

Functions and Parameters

Similar to 5.2.1, the functions are divided into four groups based on their in-

creasing behaviours. I selected the result set from only Defender with normal

NRMSE as I have discussed earlier that Defender was the most difficult game to

evolve, and biasing the loss calculation did not improve the performance. Keep-

ing these two parameters fixed make it easier to compare only the aspect we

want, which is the target function.

Figure 5.23 shows the score and slope trends of validation phase for linear

functions y = mx with m = 0.2, 0.4 and 1. For m = 0.2, most of the lines are

close to the red line, with two that still have negative average final score. This

indicates that the majority of game score throughout the plays follow the target

trend. The same trend applies for m = 0.4 with fewer lines close to the red line .

It can be referred from this that smaller m is easier to fit for this game parameter

space. An evidence to confirm this is the result of m = 1 (Figure 5.23) that none

of the line trends seem to be close to the red line. Moreover, based on the results

in Figure 5.23e, it confirms that the m = 1 linear score trend is unachievable

for the current Defender setting. This would further explain the unsuccessful

of fitting with two-part linear piecewise functions later. Nevertheless, since the

results are similar to the last generation range in evolution phase, HM1 is con-

firmed for this target function.

The next function pair is logarithmic and exponential. Figure 5.24 shows

the results of average score and score slope for Defender, using normal NRMSE

loss calculation. For logarithmic function (Figure 5.24a, all of the curves are

5.2. GVGAI Games 123

0 100 200 300 400 500
Steps

20

0

20

40

60

80

100

120

sc
or

e

Validation results for Defender, played by mcts
setting 1
setting 2
setting 3
setting 4
setting 5
setting 6
setting 7
setting 8
setting 9
setting 10
wanted

(A) y = 0.2x score

0 100 200 300 400 500
Steps

6

4

2

0

2

4

slo
pe

Validation results for Defender, played by mcts

setting 1
setting 2
setting 3
setting 4
setting 5
setting 6
setting 7
setting 8
setting 9
setting 10
wanted

(B) y = 0.2x slope

0 100 200 300 400 500
Steps

50

0

50

100

150

200

250

sc
or

e

Validation results for Defender, played by mcts
setting 1
setting 2
setting 3
setting 4
setting 5
setting 6
setting 7
setting 8
setting 9
setting 10
wanted

(C) y = 0.4x score

0 100 200 300 400 500
Steps

4

2

0

2

4

slo
pe

Validation results for Defender, played by mcts

setting 1
setting 2
setting 3
setting 4
setting 5
setting 6
setting 7
setting 8
setting 9
setting 10
wanted

(D) y = 0.4x slope

0 100 200 300 400 500
Steps

0

100

200

300

400

500

sc
or

e

Validation results for Defender, played by mcts
setting 1
setting 2
setting 3
setting 4
setting 5
setting 6
setting 7
setting 8
setting 9
setting 10
wanted

(E) y = x score

0 100 200 300 400 500
Steps

4

2

0

2

4

slo
pe

Validation results for Defender, played by mcts
setting 1
setting 2
setting 3
setting 4
setting 5
setting 6
setting 7
setting 8
setting 9
setting 10
wanted

(F) y = x slope

FIGURE 5.23: Average score trend and score difference during
validation for normal NRMSE Defender, best UCB, linear func-

tion comparison

124 Chapter 5. Experiments & Results

0 100 200 300 400 500
Steps

0

50

100

150

200

sc
or

e

Validation results for Defender, played by mcts
setting 1
setting 2
setting 3
setting 4
setting 5
setting 6
setting 7
setting 8
setting 9
setting 10
wanted

(A) y = 15 log2(x) score

0 100 200 300 400 500
Steps

0

20

40

60

80

100

120

140

sc
or

e

Validation results for Defender, played by mcts
setting 1
setting 2
setting 3
setting 4
setting 5
setting 6
setting 7
setting 8
setting 9
setting 10
wanted

(B) y = 2
x

70 score

0 100 200 300 400 500
Steps

2.5

0.0

2.5

5.0

7.5

10.0

12.5

15.0

slo
pe

Validation results for Defender, played by mcts
setting 1
setting 2
setting 3
setting 4
setting 5
setting 6
setting 7
setting 8
setting 9
setting 10
wanted

(C) y = 15 log2(x) slope

0 100 200 300 400 500
Steps

2

1

0

1

2

3

slo
pe

Validation results for Defender, played by mcts
setting 1
setting 2
setting 3
setting 4
setting 5
setting 6
setting 7
setting 8
setting 9
setting 10
wanted

(D) y = 2
x

70 slope

FIGURE 5.24: Average score trend and score difference during
validations for normal NRMSE Defender, logarithm and expo-

nential function comparison

completely disjoint until step 100. It is worth noticing that the target values

of the few early steps are hardly achievable, as 15 log2(x) = 15 when x = 2

and almost 35 when x = 5. With the decreasing of the increasing rate of the

function it is more practical later on. Our initial objectives of selecting this were

first to experiment if the EA would be able to find a parameter set that allows

the player to score more in the beginning and less afterwards. It is difficult to

visualize if we have achieved this as the slope (Figure 5.24c values are more

constant-like, although plotting them without some first few steps might clarify

5.2. GVGAI Games 125

0 100 200 300 400 500
Steps

50

0

50

100

150

200

250

sc
or

e

Validation results for Defender, played by mcts
setting 1
setting 2
setting 3
setting 4
setting 5
setting 6
setting 7
setting 8
setting 9
setting 10
wanted

(A) left sigmoid score

0 100 200 300 400 500
Steps

25

0

25

50

75

100

125

150

sc
or

e

Validation results for Defender, played by mcts
setting 1
setting 2
setting 3
setting 4
setting 5
setting 6
setting 7
setting 8
setting 9
setting 10
wanted

(B) right sigmoid score

0 100 200 300 400 500
Steps

3

2

1

0

1

2

3

4

slo
pe

Validation results for Defender, played by mcts
setting 1
setting 2
setting 3
setting 4
setting 5
setting 6
setting 7
setting 8
setting 9
setting 10
wanted

(C) left sigmoid slope

0 100 200 300 400 500
Steps

2

1

0

1

2

3

4

slo
pe

Validation results for Defender, played by mcts
setting 1
setting 2
setting 3
setting 4
setting 5
setting 6
setting 7
setting 8
setting 9
setting 10
wanted

(D) right sigmoid slope

FIGURE 5.25: Average score trend and score difference during
validation for normal NRMSE Defender best UCB, shifted sig-

moid function comparison

this. Nevertheless, observing the raw score results alone can partially confirm

HG1 for this pair of functions.

The next function pair is left and right shifted sigmoid, shown in Figure 5.25.

We expected that the games evolved to fit the left sigmoid function would pro-

vide more score in the beginning and then stop later on. However, based on

Figure 5.25a and Figure 5.25c, the score seems increasing in more linearly trend

for this game after step 100. The results from fitting right sigmoid functions (Fig-

ure 5.25b and Figure 5.25d) look more similar to the target curve. The EA is more

126 Chapter 5. Experiments & Results

0 100 200 300 400 500
Steps

0

50

100

150

200

250

300

sc
or

e

Validation results for Defender, played by mcts
setting 1
setting 2
setting 3
setting 4
setting 5
setting 6
setting 7
setting 8
setting 9
setting 10
wanted

(A) 2-0.2 linear piecewise score

0 100 200 300 400 500
Steps

0

50

100

150

200

250

sc
or

e

Validation results for Defender, played by mcts
setting 1
setting 2
setting 3
setting 4
setting 5
setting 6
setting 7
setting 8
setting 9
setting 10
wanted

(B) 0.2-2 linear piecewise score

0 100 200 300 400 500
Steps

2

0

2

4

slo
pe

Validation results for Defender, played by mcts
setting 1
setting 2
setting 3
setting 4
setting 5
setting 6
setting 7
setting 8
setting 9
setting 10
wanted

(C) 2-0.2 linear piecewise slope

0 100 200 300 400 500
Steps

4

2

0

2

4

slo
pe

Validation results for Defender, played by mcts

setting 1
setting 2
setting 3
setting 4
setting 5
setting 6
setting 7
setting 8
setting 9
setting 10
wanted

(D) 0.2-2 linear piecewise slope

FIGURE 5.26: Average score trend and score difference during
validations for normal NRMSE Defender, 2-part linear piecewise

function comparison

successful in evolving games to fit right shifted sigmoid than left sigmoid. It is

possible that it is more challenging to stop providing the score, than to suppress

it in the beginning and start giving them out in the later steps.

The last target score pair to compare are two-part linear piecewise functions.

The score and slope trend of Defender, using normal NRMSE loss calculation,

are given in Figure 5.26. The EA did not respond to the ’shift’ point (step 100 for

m = 2 → 0.2 and step 400 for m = 0.2 → 2) and instead MCTS score trends are

linear. This could be caused by several reasons. The first and most probable one

5.2. GVGAI Games 127

is that the value m = 2 is too high, as briefly mentioned earlier in linear function

comparison. The EA struggled to fit y = x linear function, therefore it is unlikely

to fit y = 2x. Further experiments with smaller m would confirm this. Another

possible reason is that the ’shift’ point might be too close to the beginning and

the end of the game, with only 100 steps to react. Modifying this parameter to

move the shift points more to the middle of the game might clarify if this is the

cause.

5.2.3 Evolved Games

We observed the final parameters evolved by NTBEA in Defender and com-

pared them within the same group of target functions. For linear functions, we

compared m = 0.2 and 1 and found that the game with m = 1 tended to have

higher supply limit, with slower bomb speed and alien spawn probability. The

portal in m = 1 also tended to close faster, probably to prevent more aliens

dropping bombs to the city. In right shifted sigmoid final parameter set, supply

speed, alien speed and alien spawning probability are higher, while the portal

opened later and closed earlier compared with the left-shift version. In logarith-

mic/exponential comparison, the portal opened and closed later in exponential

version, with slower supply speed and faster alien. All games evolved maxi-

mized the reward given when an alien is shot while minimized the penalty of a

city being bombarded.

Examples of the evolved games in Defender can be found in an online video1.

This video shows one game from each analyzed set (linear with m = 2 and 1,

left/right shifted sigmoids and logarithm/exponential). In the videos, it is no-

ticeable the differences in supply speed/spawning rate and numbers of enemies

spawned, as well as the lack of enemies at the beginning of the exponential-

function-evolved game.

1https://youtu.be/GADQLe2TiqI

https://youtu.be/GADQLe2TiqI

128 Chapter 5. Experiments & Results

In this section, the final evolved parameter sets of each setting from the evo-

lution phase were selected and applied to design games. These games were then

played by MCTS for validation and the score were recorded and plotted, along

with their slope trend. Some of these graphs were selected to compare and an-

alyze in three aspects: between-game comparison, bias and normal normalized

root mean square error loss calculation comparison, and between target function

comparison. Similar with the evolution phase results, Defender game space was

the most difficult to evolve, followed by Waves, and Seaquest respectively. Bias-

ing NRMSE did not provide the better games compared to normal NRMSE. For

function and parameters, finding games to fit the functions with higher increas-

ing rates are harder, and the functions which increasing faster in the beginning

were more difficult to fit than those increasing later.

In this chapter, the research experiment procedures, parameters and some

results for both experiments taken are reported and analyzed in details. In the

next chapter, we give the summary and conclusion of this dissertation and dis-

cuss the findings of the research taken.

129

Chapter 6

Summary & Conclusion

The research done in this dissertation falls into the field of Automatic Game

Design [1], which involves the usage of Artificial Intelligence techniques to au-

tomatically solve game design tasks. We focus on only one task here which is pa-

rameter tuning. The scope of this work covers only Space Battle and video games

from the General Video Game AI framework [10], with three of its games were

manually selected for the experiment. We used an evolutionary algorithm called

N-Tuple Bandit Evolutionary Algorithm (NTBEA) to evolve the selected games’ pa-

rameters following evolutionary approach. In the first experiment, we aimed to

explore the performance of NTBEA and found that it outperformed the well-

known RMHC with less standard deviation when applied to a noisy environ-

ment. In the second experiment, we aimed to investigate if the NTBEA would

be capable of evolving game parameters that provide players with score-hunger

behaviour to obtain score in the same trends as pre-defined functions. In this

chapter, all of the previous chapter contents, excluding the introduction, are

summarized in the Summary section and the conclusion of the research done

is given in the Conclusion section.

6.1 Summary

In Chapter 2, a number of related works have been reviewed to provide the

readers with the earlier contributions of the relevant fields and techniques. The

130 Chapter 6. Summary & Conclusion

works are categorized into Automatic Game Design, General Video Game AI (GV-

GAI) framework and Evolutionary Algorithms.

1. In Automatic Game Design, reviewed published literatures are further di-

vided into 4 sub-categories. The first are the early proof-of-concept works,

which the authors aimed to investigate the possibility of AI-assisted Game

Design. The latter three are more about the tasks that AI techniques can be

applied to assist, with the first two are related to auto-generation of game

components, which is also known as procedural content generation. They

are either focusing on only level/map generations or proposing a com-

plete game generation (level/map and game rules). Last but not least, the

research works related to automatic tuning of game parameters from the

fixed game space have been explored and discussed, as that is the main

task of our research.

2. As one of the domains we selected to do auto-parameterization is GVGAI,

related research of the framework are reviewed in 2.2. First, the previ-

ous works leading to the origin of the framework are outlined to provide

readers with the motivation. Next, the the competition tracks along with

their technical detail published works are summarized, with our research

would be most related to the game design track. Finally, a few publications

that related to game design for GVGAI have been studied and discussed.

To the best of my knowledge, those are all of the works in such field until

the date that chapter was written.

3. An evolutionary approach was employed to do automatic parameter tun-

ing in our experiments. Therefore evolutionary algorithm literatures were

reviewed next. Since the field is popular and the EA nature is widely

applicable to various domains, I selected only some important works to

give outline of general improvements throughout the years first. Then the

6.1. Summary 131

applications of EAs in game domain were explored. Most of the game-

designed literatures with evolutionary algorithms would be already men-

tioned in the game design related work section (2.1), therefore they were

not re-mentioned again in 2.3 to avoid unnecessary content duplication.

In Chapter 3, essential background knowledge is provided to the readers

with the intention that it would assist them to fully understand the research

that this dissertation is presenting. The first necessary knowledge topic involves

Space Battle game and its variant called Space Battle Evolved that was used in this

research, then General Video Game AI (GVGAI) Framework. The readers have been

given a detailed guidance into how the framework is working, along with a

comprehensive interpretation of Video Game Description Language (VGDL) that

is being used as the description language of this framework. The GVGAI im-

plementation details of the selected three games: Defender, Seaquest and Waves,

were described, along with the human-language interpretation of each descrip-

tion. Next, the algorithm behind all general game playing agents applied were

explained, along with their implementation into GVGAI framework. Another

necessary background knowledge that had been described in Chapter 3 is about

the selected EA called N-Tuple Bandit Evolutionary Algorithm (NTBEA), and an-

other state-of-the-art EA called Random Mutation Hill Climber (RMHC) and its

variant designed for this research. NTBEA is an EA for noisy optimization, first

proposed in [11], and first applied to Game AI by Prof. Simon Mark Lucas. In

that paper only a brief summary of how the algorithm operates was given, while

a more detailed explanation was revealed here in 3.3.3.

Chapter 4 clarified the settings and problem definition, in preparation for

the experiments. This includes Space Battle Evolved game parameter space and

the fitness calculation procedures employed in the first experiment. Next, we

described game space for the three GVGAI games, and the fitness function cal-

culation of the second experiment. The game space for all three games, defined

132 Chapter 6. Summary & Conclusion

in VGDL, were illustrated and all parameters to be tuned by the EA were de-

scribed. Each game has its defined parameter space in the order of 1010, means

there are 10 trillions combinations of possible parameters. Therefore it is obvi-

ous that brute-force strategy is infeasible, and some domain specific knowledge

is necessary to select an appropriate set. However, as we aimed to propose a

general approach, and as the optimization task we are solving is not trivial (i.e.

it is not obviously seen or easily deducted how the parameter set should look

like), we have decided not to include any game-related knowledge into param-

eter tuning. Instead, we had introduced new rules for all games, which involve

setting the start and end time step that the enemies are allowed to spawn, and

included these parameters into the game space. Theoretically, adjusting these

parameters would directly affect the score received, as well as its trend, hence

there should be at least one suitable setting to fit each of our target function. We

were expecting that the EA should be able to notice these parameters and evolve

them accordingly.

Chapter 5 presented all aspects of the experiment taken. It started by giving

an overview of all different settings along with the control variables and fixed

parameters applied. Two experiments, for Space Battle Evolved and GVGAI are

discussed. For Space Battle Evolved, the game were evolved by three evolu-

tionary algorithms: RMHC, biased-RMHC and NTBEA. Based on the results,

it can be concluded that NTBEA was more robust than the others and better

fulfilled the objective we would like. For GVGAI games, the experiment con-

sisted of two phases: evolution and validation. In evolution phase, the NTBEA

were employed to evolve parameter sets for each setting (a specific game, with a

specific target score function trend, using a specific loss calculation method), all

played by RHEA. Fitness values of each game parameter set (individual) gen-

eration were recorded and plotted to observe its growing trend. Step-by-step

score of every gameplays for each setting were also recorded and compared for

each generation range. The difference of score between all adjacent time steps

6.2. Conclusion 133

(that were usually mentioned as ’slope’ or just ’score difference’) were also com-

puted from the recorded score and plotted. The evolution phase results were

analyzed and compared between three aspects: different games comparison, bi-

asing and non-biasing loss calculation comparison, and comparing between the

results from within-group target function. Validation phase involves playing

the evolved games with another AI controller, in this case MCTS, and see if the

score obtained are the same, or similar, to the target functions. Again, score in

every steps were recorded and plotted in comparison with the target function.

As the NTBEA can provide more than one best solutions, based on the selection

criteria, the results of these criteria were compared and only the best between

these were shown in later comparisons. Similar to the evolution phase, the re-

sults were analyzed by comparing between-game, between-target functions and

between bias & non-bias loss calculation.

6.2 Conclusion

In this section, I give the conclusion from all main and minor hypotheses formed

in chapter 1 and chapter 5. There are some inconclusive hypotheses in general

cases, but the experiment results in our domains give positive outcomes. These

would be labelled as Inconclusive (+). The conclusion for all hypotheses of the

first experiment are:

• HM1: NTBEA is more robust to noise in noisy environments than stan-

dard hill-climbing evolutionary algorithms: Correct

The conclusion of this is drawn from the results in 5.1. Figure 5.1 shows

that the fitness values for the evolved games from NTBEA had signifi-

cantly less standard deviation than both versions of RMHC used in the

Space Battle Evolved experiment. This means that NTBEA is less suscep-

tible to noise.

134 Chapter 6. Summary & Conclusion

• HM3: General Video Game Playing controllers can be used as substitu-

tions for human players in automatic game parameterization.: Inconclu-

sive (+)

We have applied two general video game controllers (One Step Look Ahead

(1SLA) as amateur player and Monte Carlo Tree Search (MCTS) as skilful

player) to do playtests instead of human in parameter evolution task. The

positive results from Figure 5.1 and human feedbacks indicate that the ap-

proach employed is practical and able to produce good results, although

more testers are needed to validate the hypothesis.

• HS1: The games evolved by NTBEA satisfy human preferences more

compared to both RMHC-based algorithms: Inconclusive (+)

Two human players have tested some of the evolved games and provided

valuable reviews. Both players preferred the new game evolved using the

NTBEA, while they offered mixed opinions on the RMHC games. More

testers are needed to validate this hypothesis in general cases.

Next, our conclusions on each hypothesis for GVGAI experiment are:

• HM2: NTBEA can be applied to tune game parameters to provide spe-

cific pre-defined player score trend, for any players playing the game:

Correct

The results in the validation phase (5.2.2) are similar to those in the last

generation ranges of the same setting in the evolution phase (5.2.1), despite

the fact that they were playing by different controllers. This is adequate to

conclude that the games evolved using our approach give the same player

experience in score trend aspect.

• HM3: General Video Game Playing controllers can be used as substitu-

tions for human players in automatic game parameterization: Inconclu-

sive (+)

We used RHEA during evolution phase and MCTS during validation phase.

6.2. Conclusion 135

From our observations of some final games, the EA was able to find some

sensible parameter values. For example, in the Defender with left-sigmoid

target function, the EA adjusted the portal open/close time so it opens and

closes earlier than right-sigmoid. This is reasonable since the left-sigmoid

function has higher increasing rate in the beginning. It is fair to assume

that the EA adjusted this based on the behaviour of RHEA, which is re-

liably score hunger, and MCTS also produced the similar score trend in

validation phase. Therefore, it can be concluded that using general video

game agents as substitutions for human players is practical and able to

produce good results at least in our domain.

• HG1: NTBEA can evolve game parameters to fit the same target func-

tions for any games: Inconclusive (+)

As seen from the results in 5.2.1, the average score trends when using the

same target function are similar, regardless of the games. This means that

our fitness calculation is general enough to apply with the three games

tested.

• HG2: Biasing the loss calculation helps NTBEA in our optimization

task: Incorrect

The results from 5.2.1 point out that there are both positive and negative ef-

fects of biasing the loss calculation. The advantage is that the EA was more

sensitive to the changes and reacted more to them, while the disadvantage

is that it neglected the errors in the area that increment rate = 0. However,

based on the results from validation phase (5.2.2), B-NRMSE did not have

any advantages over NRMSE. Therefore it is sufficient to conclude that bi-

asing the loss calculation does not improve performance of the EA in this

optimization task.

Apart from the hypotheses, there are a number of observations noticed in

different aspects from the results.

136 Chapter 6. Summary & Conclusion

• Defender is the most challenging game to fit in all target functions

It had been formally analyzed earlier that Defender would be difficult to fit

with positive increasing functions because of the initial game rules. Most

of the games played usually ended up having low final score values, often

in negative. Waves and Seaquest did not suffer much as Waves does not

penalizes the players via negative score signal as much as Defender and

Seaquest does not do it at all apart from when the players have lost.

• The EA are capable of reacting differently with different target func-

tions

We expected that NTBEA should have the ability to react to the different

target trends, only via the fitness values given alone. As seen from various

examples in 5.2.1, the trend curves of the early generations of each compar-

ison pair/group were similar, but had become more distinctive in the later

generations. The validation results in 5.2.2 also confirm this, with most of

the comparing examples are obviously dissimilar. This is the evidence that

our approach is applicable with varieties of score functions.

• Later increasing functions are easier to fit

Although this is reasonable and should be foreseeable with a careful anal-

ysis, we did not realize it until the results were observed. With the game

space defined, we expected that the EA would be able to find the specific

parameters that directly involve ’opening’ and ’closing’ of enemy portals

and tuned them based on only the fitness values, that were provided ac-

cording to the loss values from the target functions. The functions that

increasing later (higher slope area after step 250) need only a single crucial

parameter to be tuned, which is the ’opening’. On the other hand, early-

growing functions (higher slope area before step 250), require two param-

eters, the time step for ’opening’ and ’closing’ portals. Based on this, it is

sensible why fitting the later-increasing functions are easier.

6.2. Conclusion 137

• NTBEA reacts similarly to all non-piecewise linear target functions, but

showing signs of struggling more with higher m

• NTBEA reacts differently to logarithmic and exponential target func-

tions, and able to produce alike score-difference trends with the target

function

• NTBEA reacts differently to left and right shifted-sigmoid functions,

and able to produce alike score-difference trends with the target func-

tions

• The EA failed to react with the sudden shifted of the increasing rate of

the target functions and could not respond as expected

The results from fitting double linear piecewise functions were unsatisfac-

tory, with all of them have shown the behaviour of normal linear functions.

Since the value of m for these were defined before the results from single

linear functions were observed, it is highly probable that our pre-set dou-

ble linear piecewise functions were too steep.

In this chapter, I have summarized the contents of all previous sections

and concluded the findings deducted from the experimental results. Although

the NTBEA has shown a promising ability in evolving game parameters for our

both tasks, there are still weak points and improvable aspects spotted. Possible

future works are described in the next chapter.

139

Chapter 7

Future Works

The research done in this project has shown that NTBEA is robust to noisy en-

vironment and able to evolve games that provide specific player experience we

defined. The first task is evolving Space Battle Evolved parameter so it could dis-

tinguish players from skill-depth. For the second task, we selected 3 GVGAI

games and used NTBEA to evolve parameters that provide specific pre-defined

game score trend. There are certain numbers of possible future works visible.

Some of them could be performed immediately by analyzing the existing re-

sults in other viewpoints, while some others require further experimentations,

and extra investigations and preparations are necessary for the rest.

7.1 Further Analysis

There are a couple of possible analysis that could be done with our current re-

sults. The first one would be to perform another between-function comparison,

but grouped them by whether they are ’early-increasing’ or ’later-increasing’.

The reason behind this is that it might be interesting to rank the EA performance

between these same-increment area functions.

Another interesting comparison to do is evolution-validation results com-

parison. Specifically, to compare the evolution results from the last few gener-

ations and the validation results of the same setting. This might give a clearer

picture that MCTS score trends in validation phase are similar to RHEA in the

140 Chapter 7. Future Works

last few generations. In Chapter 5 they were only compared with the target

functions, which some of them are difficult to fit.

Last but not least, the evolved games should have been visualized and played

manually to analyze if they do have the characteristics we expected. It is prob-

able that the games evolved to fit the same target functions might share some

certain features (e.g. the time step that the enemies are spawned), but it is also

possible that EA might find a complete different ways to fit the same function

for different games.

7.2 Further Experiment

This section discusses the further experiments that could be done after some

trivial modifications. The first one would be to re-run the same experiments

with higher number of same-setting samples. The results in Chapter 5 are from

10 distinct evolutions for each setting, similar with the validations that each final

games were played 10 times each. Then the outcomes of these were averaged

and reported. Increasing the runs would probably reduce the standard deviation

and strengthen the conclusion raised in Chapter 6.

Some further experiments could be done with slightly different sets of target

functions. As mentioned a couple of times in both Chapter 4 and 5, double

linear piecewise functions should be modified. The first adjustment would be to

make it less steep, by reducing the higher m value. Another possibly beneficial

alteration would be to move the shift point more towards the middle step (250)

to give the EA more information.

Experimenting with other target functions, such as middle-shift-sigmoid or

some negative functions might also be interesting. Although Seaquest would

less likely to achieve that and the EA might end up evolving a very difficult

game to minimize the score trend.

7.3. Extensions and Improvements 141

Another possible experiment is to evolve the game using different behaviour

GVGP agents, as the two we used here are both score-hunger.

7.3 Extensions and Improvements

One main extension that we would like to do is to extend this to other games

in GVGAI framework, to validate the generality of the approach. This would,

however, require designing the game spaces, which at the moment have to be

done manually and carefully for each game.

Another possible improvement that would require further studies and in-

vestigations is NTBEA parameter adjustment. There are a few fixed parameters

such as the number of neighbour individuals. Tweaking these internal parame-

ters appropriately might significantly improve the EA performance.

Lastly, the fitness calculation is another aspect that could be improved. We

used normalized RMSE as it is widely applied in regression analysis loss calcu-

lation. It is possible that there is a more suitable fitness calculation method that

gives more information to the EA than this.

143

References

[1] J. Togelius and J. Schmidhuber, “An Experiment in Automatic Game De-

sign”, in Computational Intelligence and Games, 2008. CIG’08. IEEE Sympo-

sium On, IEEE, 2008, pp. 111–118.

[2] C. Browne and F. Maire, “Evolutionary Game Design”, IEEE Transactions

on Computational Intelligence and AI in Games, vol. 2, no. 1, pp. 1–16, 2010.

[3] D. Ashlock, “Automatic Generation of Game Elements via Evolution”, in

Computational Intelligence and Games (CIG), 2010 IEEE Symposium on, IEEE,

2010, pp. 289–296.

[4] N. Sorenson and P. Pasquier, “Towards a Generic Framework for Auto-

mated Video Game Level Creation”, Applications of Evolutionary Computa-

tion, pp. 131–140, 2010.

[5] M. J. Nelson and M. Mateas, “Towards Automated Game Design”, in Congress

of the Italian Association for Artificial Intelligence, Springer, 2007, pp. 626–

637.

[6] M. Cook and S. Colton, “Multi-faceted Evolution of Simple Arcade Games”,

in Computational Intelligence and Games (CIG), 2011 IEEE Conference on, IEEE,

2011, pp. 289–296.

[7] N. Shaker, M. Nicolau, G. N. Yannakakis, J. Togelius, and M. O’neill, “Evolv-

ing Levels for Super Mario Bros using Grammatical Evolution”, in Com-

putational Intelligence and Games (CIG), 2012 IEEE Conference on, IEEE, 2012,

pp. 304–311.

144 REFERENCES

[8] D. Perez, J. Togelius, S. Samothrakis, P. Rohlfshagen, and S. M. Lucas, “Au-

tomated Map Generation for the Physical Traveling Salesman Problem”,

IEEE Transactions on Evolutionary Computation, vol. 18, no. 5, pp. 708–720,

2014.

[9] A. Isaksen, D. Gopstein, J. Togelius, and A. Nealen, “Discovering Unique

Game Variants”, in Computational Creativity and Games Workshop at the 2015

International Conference on Computational Creativity, 2015.

[10] D. Perez-Liebana, S. Samothrakis, J. Togelius, T. Schaul, S. M. Lucas, A.

Couëtoux, J. Lee, C.-U. Lim, and T. Thompson, “The 2014 General Video

Game Playing Competition”, IEEE Transactions on Computational Intelli-

gence and AI in Games, vol. 8, no. 3, pp. 229–243, 2016.

[11] K. Kunanusont, R. D. Gaina, J. Liu, D. Perez-Liebana, and S. M. Lucas,

“The N-Tuple Bandit Evolutionary Algorithm for Automatic Game Im-

provement”, in IEEE Proceedings of the Congress on Evolutionary Computa-

tion (CEC), 2017.

[12] G. A. Miller, “WordNet: A Lexical Database for English”, Communications

of the ACM, vol. 38, no. 11, pp. 39–41, 1995.

[13] H. Liu and P. Singh, “ConceptNet—A Practical Commonsense Reasoning

Tool-kit”, BT technology journal, vol. 22, no. 4, pp. 211–226, 2004.

[14] M. Nelson and M. Mateas, “Recombinable Game Mechanics for Auto-

mated Design Support”, in AIIDE, 2008.

[15] J. M. Thompson, “Defining the Abstract”, Game & Puzzle Design, vol. 1, no.

1, pp. 83–86, 2015.

[16] N. Shaker, G. N. Yannakakis, and J. Togelius, “Feature Analysis for Mod-

elling Game Content Quality”, in Computational Intelligence and Games (CIG),

2011 IEEE Conference on, IEEE, 2011, pp. 126–133.

REFERENCES 145

[17] A. Liapis, H. P. Martínez, J. Togelius, and G. N. Yannakakis, “Adaptive

Game Level Creation through Rank-based Interactive Evolution”, in Com-

putational Intelligence in Games (CIG), 2013 IEEE Conference on, IEEE, 2013,

pp. 1–8.

[18] R. Lara-Cabrera, C. Cotta, and A. J. Fernández-Leiva, “On Balance and

Dynamism in Procedural Content Generation with Self-Adaptive Evolu-

tionary Algorithms”, Natural Computing, vol. 13, no. 2, pp. 157–168, 2014.

[19] A. Liapis, G. N. Yannakakis, and J. Togelius, “Generating Map Sketches for

Strategy Games”, in European Conference on the Applications of Evolutionary

Computation, Springer, 2013, pp. 264–273.

[20] M. Shaker, M. H. Sarhan, O. Al Naameh, N. Shaker, and J. Togelius, “Auto-

matic Generation and Analysis of Physics-based Puzzle Games”, in Com-

putational Intelligence in Games (CIG), 2013 IEEE Conference on, IEEE, 2013,

pp. 1–8.

[21] N. Shaker, M. Shaker, and J. Togelius, “Evolving Playable Content for Cut

the Rope through a Simulation-Based Approach”, in AIIDE, 2013.

[22] E. L. Lawler, J. K. Lenstra, A. R. Kan, D. B. Shmoys, et al., The Traveling

Salesman Problem: A Guided Tour of Combinatorial Optimization. Wiley New

York, 1985, vol. 3.

[23] A. Isaksen, D. Gopstein, and A. Nealen, “Exploring Game Space Using

Survival Analysis”, in FDG, 2015.

[24] J. Liu, J. Togelius, D. Pérez-Liébana, and S. M. Lucas, “Evolving Game

Skill-Depth using General Video Game AI Agents”, in IEEE Proceedings of

the Congress on Evolutionary Computation (CEC), 2017.

[25] D. Perez-Liebana, S. Samothrakis, J. Togelius, S. M. Lucas, and T. Schaul,

“General Video Game AI: Competition, Challenges and Opportunities”,

in Thirtieth AAAI Conference on Artificial Intelligence, 2016.

146 REFERENCES

[26] J. Levine, C. Bates Congdon, M. Ebner, G. Kendall, S. M. Lucas, R. Mi-

ikkulainen, T. Schaul, and T. Thompson, “General Video Game Playing”,

2013.

[27] B. Goertzel and C. Pennachin, Artificial General Intelligence. Springer, 2007,

vol. 2.

[28] Y. Björnsson and S. Schiffel, “General Game Playing”, Handbook of Digital

Games and Entertainment Technologies, pp. 23–45, 2017.

[29] M. Genesereth, N. Love, and B. Pell, “General Game Playing: Overview of

the AAAI Competition”, AI magazine, vol. 26, no. 2, p. 62, 2005.

[30] M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling, “The Arcade Learn-

ing Environment: An Evaluation Platform for General Agents”, J. Artif.

Intell. Res.(JAIR), vol. 47, pp. 253–279, 2013.

[31] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare,

A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al., “Human-

level Control through Deep Reinforcement Learning”, Nature, vol. 518, no.

7540, pp. 529–533, 2015.

[32] Y. LeCun, Y. Bengio, et al., “Convolutional Networks for Images, Speech,

and Time Series”, The handbook of brain theory and neural networks, vol. 3361,

no. 10, p. 1995, 1995.

[33] C. J. Watkins and P. Dayan, “Q-learning”, Machine learning, vol. 8, no. 3-4,

pp. 279–292, 1992.

[34] R. D. Gaina, D. Pérez-Liébana, and S. M. Lucas, “General Video Game for

2 Players: Framework and Competition”, in Computer Science and Electronic

Engineering (CEEC), 2016 8th, IEEE, 2016, pp. 186–191.

[35] J. Liu, D. Perez-Liebana, and S. M. Lucas, The Single-Player GVGAI Learn-

ing Framework - Technical Manual, 2017. [Online]. Available: http://www.

liujialin.tech/publications/GVGAISingleLearning_manual.pdf.

http://www.liujialin.tech/publications/GVGAISingleLearning_manual.pdf
http://www.liujialin.tech/publications/GVGAISingleLearning_manual.pdf

REFERENCES 147

[36] A. Khalifa, D. Perez-Liebana, S. M. Lucas, and J. Togelius, “General Video

Game Level Generation”, in Proceedings of the 2016 on Genetic and Evolu-

tionary Computation Conference, ACM, 2016, pp. 253–259.

[37] A. Khalifa, M. C. Green, D. Perez-Liebana, and J. Togelius, “General Video

Game Rule Generation”, in Computational Intelligence and Games (CIG), 2017

IEEE Conference on, IEEE, 2017, pp. 170–177.

[38] D. Ashlock, D. Perez-Liebana, and A. Saunders, “General Video Game

Playing escapes the No Free Lunch Theorem”, in Computational Intelligence

and Games (CIG), 2017 IEEE Conference on, IEEE, 2017, pp. 17–24.

[39] D. H. Wolpert and W. G. Macready, “No Free Lunch Theorems for Opti-

mization”, IEEE transactions on evolutionary computation, vol. 1, no. 1, pp. 67–

82, 1997.

[40] X. Neufeld, S. Mostaghim, and D. Perez-Liebana, “Procedural Level Gen-

eration with Answer Set Programming for General Video Game Playing”,

in Computer Science and Electronic Engineering Conference (CEEC), 2015 7th,

IEEE, 2015, pp. 207–212.

[41] C. B. Browne, E. Powley, D. Whitehouse, S. M. Lucas, P. I. Cowling, P.

Rohlfshagen, S. Tavener, D. Perez, S. Samothrakis, and S. Colton, “A Sur-

vey of Monte Carlo Tree Search Methods”, IEEE Transactions on Computa-

tional Intelligence and AI in games, vol. 4, no. 1, pp. 1–43, 2012.

[42] T. Bäck and H.-P. Schwefel, “An Overview of Evolutionary Algorithms for

Parameter Optimization”, Evolutionary computation, vol. 1, no. 1, pp. 1–23,

1993.

[43] M. Mitchell, An Introduction to Genetic Algorithms. MIT press, 1998.

[44] I. Rechenberg, “Cybernetic Solution Path of an Experimental Problem”,

1965.

[45] ——, “Evolution Strategy: Optimization of Technical Systems by means of

Biological Evolution”, Fromman-Holzboog, Stuttgart, vol. 104, 1973.

148 REFERENCES

[46] H. Schwefel, Numerische Optimierung von Computer-modellen Mittels der Evo-

lutionsstrategie. Interdisciplinary Systems Research, 26, 1977.

[47] L. J. Fogel, A. J. Owens, and M. J. Walsh, “Artificial Intelligence through

Simulated Evolution”, 1966.

[48] D. B. Fogel, “An Analysis of Evolutionary Programming”, in Proceedings

of the First Annual Conference on Evolutionary Programming, 1992, pp. 43–51.

[49] D. B. Fogel, L. J. Fogel, and J. W. Atmar, “Meta-evolutionary Program-

ming”, in Signals, systems and computers, 1991. 1991 Conference record of the

twenty-fifth asilomar conference on, IEEE, 1991, pp. 540–545.

[50] J. H. Holland, “Outline for a Logical Theory of Adaptive Systems”, Journal

of the ACM (JACM), vol. 9, no. 3, pp. 297–314, 1962.

[51] J. H. Holland, Adaptation in Natural and Artificial Systems: An Introductory

Analysis with Applications to Biology, Control, and Artificial Intelligence. MIT

press, 1992.

[52] B. Kazimipour, X. Li, and A. K. Qin, “A Review of Population Initializa-

tion Techniques for Evolutionary Algorithms”, in Evolutionary Computa-

tion (CEC), 2014 IEEE Congress on, IEEE, 2014, pp. 2585–2592.

[53] M. L. Mauldin, “Maintaining Diversity in Genetic Search.”, in AAAI, 1984,

pp. 247–250.

[54] D. Gupta and S. Ghafir, “An Overview of Methods Maintaining Diver-

sity in Genetic Algorithms”, International journal of emerging technology and

advanced engineering, vol. 2, no. 5, pp. 56–60, 2012.

[55] K. A. De Jong, “Analysis of the Behavior of a Class of Genetic Adaptive

Systems”, 1975.

[56] T. Friedrich, P. S. Oliveto, D. Sudholt, and C. Witt, “Analysis of Diversity-

preserving Mechanisms for Global Exploration”, Evolutionary Computa-

tion, vol. 17, no. 4, pp. 455–476, 2009.

REFERENCES 149

[57] L. J. Eshelman and J. D. Schaffer, “Preventing Premature Convergence in

Genetic Algorithms by Preventing Incest.”, in ICGA, vol. 91, 1991, pp. 115–

122.

[58] D. E. Goldberg, J. Richardson, et al., “Genetic Algorithms with Sharing for

Multimodal Function Optimization”, in Genetic algorithms and their applica-

tions: Proceedings of the Second International Conference on Genetic Algorithms,

Hillsdale, NJ: Lawrence Erlbaum, 1987, pp. 41–49.

[59] X. Shen, M. Zhang, and T. Li, “A Multi-objective Optimization Evolution-

ary Algorithm addressing Diversity Maintenance”, in Computational Sci-

ences and Optimization, 2009. CSO 2009. International Joint Conference on,

IEEE, vol. 1, 2009, pp. 524–527.

[60] H.-G. Beyer, “Evolutionary Algorithms in Noisy Environments: Theoret-

ical Issues and Guidelines for Practice”, Computer methods in applied me-

chanics and engineering, vol. 186, no. 2, pp. 239–267, 2000.

[61] Y. Jin and J. Branke, “Evolutionary Optimization in Uncertain Environments-

A Survey”, IEEE Transactions on evolutionary computation, vol. 9, no. 3, pp. 303–

317, 2005.

[62] S. Markon, D. V. Arnold, T. Back, T. Beielstein, and H.-G. Beyer, “Thresholding-

a Selection Operator for Noisy ES”, in Evolutionary Computation, 2001. Pro-

ceedings of the 2001 Congress on, IEEE, vol. 1, 2001, pp. 465–472.

[63] B. Levitan and S. Kauffman, “Adaptive Walks with Noisy Fitness Mea-

surements”, Molecular Diversity, vol. 1, no. 1, pp. 53–68, 1995.

[64] S. Rana, L. D. Whitley, and R. Cogswell, “Searching in the Presence of

Noise”, in International Conference on Parallel Problem Solving from Nature,

Springer, 1996, pp. 198–207.

[65] T. Ray, “Constrained Robust Optimal Design using a Multiobjective Evo-

lutionary Algorithm”, in Evolutionary Computation, 2002. CEC’02. Proceed-

ings of the 2002 Congress on, IEEE, vol. 1, 2002, pp. 419–424.

150 REFERENCES

[66] W. Cedeno and V. R. Vemuri, “On the Use of Niching for Dynamic Land-

scapes”, in Evolutionary Computation, 1997., IEEE International Conference

on, IEEE, 1997, pp. 361–366.

[67] D. E. Goldberg and R. E. Smith, “Nonstationary Function Optimization

Using Genetic Algorithms with Dominance and Diploidy.”, in ICGA, 1987,

pp. 59–68.

[68] R. K. Ursem, “Multinational GAs: Multimodal Optimization Techniques

in Dynamic Environments”, in Proceedings of the 2nd Annual Conference on

Genetic and Evolutionary Computation, Morgan Kaufmann Publishers Inc.,

2000, pp. 19–26.

[69] N. Hansen, A. S. Niederberger, L. Guzzella, and P. Koumoutsakos, “A

Method for Handling Uncertainty in Evolutionary Optimization with an

Application to Feedback Control of Combustion”, IEEE Transactions on

Evolutionary Computation, vol. 13, no. 1, pp. 180–197, 2009.

[70] A. Syberfeldt, A. Ng, R. I. John, and P. Moore, “Evolutionary Optimisation

of Noisy Multi-objective Problems using Confidence-based Dynamic Re-

sampling”, European Journal of Operational Research, vol. 204, no. 3, pp. 533–

544, 2010.

[71] T. Friedrich, T. Kötzing, M. S. Krejca, and A. M. Sutton, “The Compact Ge-

netic Algorithm is Efficient Under Extreme Gaussian Noise”, IEEE Trans-

actions on Evolutionary Computation, vol. 21, no. 3, pp. 477–490, 2017.

[72] S. M. Lucas, J. Liu, and D. Pérez-Liébana, “Efficient Noisy Optimisation

with the Sliding Window Compact Genetic Algorithm”, ArXiv preprint

arXiv:1708.02068, 2017.

[73] S. Risi and J. Togelius, “Neuroevolution in Games: State of the Art and

Open Challenges”, IEEE Transactions on Computational Intelligence and AI

in Games, vol. 9, no. 1, pp. 25–41, 2017.

REFERENCES 151

[74] D. B. Fogel, “Using Evolutionary Programing to Create Neural Networks

that are capable of Playing Tic-Tac-Toe”, in Neural Networks, 1993., IEEE

International Conference on, IEEE, 1993, pp. 875–880.

[75] ——, Blondie24: Playing at the Edge of AI. Morgan Kaufmann, 2001.

[76] D. B. Fogel, T. J. Hays, S. L. Hahn, and J. Quon, “Further Evolution of a

Self-Learning Chess Program.”, in CIG, 2005.

[77] J. B. Pollack, A. D. Blair, and M. Land, “Coevolution of a Backgammon

Player”, in Artificial Life V: Proc. of the Fifth Int. Workshop on the Synthesis

and Simulation of Living Systems, Cambridge, MA: The MIT Press, 1997,

pp. 92–98.

[78] D. E. Moriarty and R. Miikkulainen, “Discovering Complex Othello Strate-

gies through Evolutionary Neural Networks”, Connection Science, vol. 7,

no. 3-1, pp. 195–210, 1995.

[79] G. N. Yannakakis and J. Hallam, “A Generic Approach for Generating In-

teresting Interactive Pac-Man Opponents.”, in CIG, 2005.

[80] J. Togelius, S. Karakovskiy, J. Koutnik, and J. Schmidhuber, “Super Mario

Evolution”, in Computational Intelligence and Games, 2009. CIG 2009. IEEE

Symposium on, IEEE, 2009, pp. 156–161.

[81] Z. Buk, J. Koutnik, and M. Snorek, “NEAT in HyperNEAT substituted

with genetic programming”, Adaptive and Natural Computing Algorithms,

pp. 243–252, 2009.

[82] K. O. Stanley, B. D. Bryant, and R. Miikkulainen, “Real-time Neuroevolu-

tion in the NERO Video Game”, IEEE transactions on evolutionary computa-

tion, vol. 9, no. 6, pp. 653–668, 2005.

[83] K. O. Stanley and R. Miikkulainen, “Evolving Neural Networks through

Augmenting Topologies”, Evolutionary computation, vol. 10, no. 2, pp. 99–

127, 2002.

152 REFERENCES

[84] L. Cardamone, D. Loiacono, and P. L. Lanzi, “Evolving Competitive Car

Controllers for Racing Games with Neuroevolution”, in Proceedings of the

11th Annual conference on Genetic and evolutionary computation, ACM, 2009,

pp. 1179–1186.

[85] E. J. Hughes, “Checkers using a Co-evolutionary On-line Evolutionary Al-

gorithm”, in Evolutionary Computation, 2005. The 2005 IEEE Congress on,

IEEE, vol. 2, 2005, pp. 1899–1905.

[86] D. Perez, S. Samothrakis, S. Lucas, and P. Rohlfshagen, “Rolling Horizon

Evolution versus Tree Search for Navigation in Single-player Real-Time

Games”, in Proceedings of the 15th annual conference on Genetic and evolution-

ary computation, ACM, 2013, pp. 351–358.

[87] R. D. Gaina, J. Liu, S. M. Lucas, and D. Pérez-Liébana, “Analysis of Vanilla

Rolling Horizon Evolution Parameters in General Video Game Playing”,

in European Conference on the Applications of Evolutionary Computation, Springer,

2017, pp. 418–434.

[88] R. D. Gaina, S. M. Lucas, and D. Perez-Liebana, “Rolling Horizon Evo-

lution Enhancements in General Video Game Playing”, in Computational

Intelligence and Games (CIG), 2017 IEEE Conference on, IEEE, 2017, pp. 88–

95.

[89] J. Liu, D. Pérez-Liébana, and S. M. Lucas, “Rolling Horizon Coevolution-

ary Planning for Two-player Video Games”, in Computer Science and Elec-

tronic Engineering (CEEC), 2016 8th, IEEE, 2016, pp. 174–179.

[90] N. Justesen, T. Mahlmann, and J. Togelius, “Online Evolution for Multi-

action Adversarial Games”, in European Conference on the Applications of

Evolutionary Computation, Springer, 2016, pp. 590–603.

[91] D. Churchill and M. Buro, “Portfolio Greedy Search and Simulation for

Large-scale Combat in StarCraft”, in Computational Intelligence in Games

(CIG), 2013 IEEE Conference on, IEEE, 2013, pp. 1–8.

REFERENCES 153

[92] C. Wang, P. Chen, Y. Li, C. Holmgård, and J. Togelius, “Portfolio Online

Evolution in StarCraft”, in Twelfth Artificial Intelligence and Interactive Digi-

tal Entertainment Conference, 2016.

[93] M. Ebner, J. Levine, S. M. Lucas, T. Schaul, T. Thompson, and J. Togelius,

“Towards a Video Game Description Language”, in Dagstuhl Follow-Ups,

Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, vol. 6, 2013.

[94] T. Schaul, “A Video Game Description Language for Model-based or In-

teractive Learning”, in Computational Intelligence in Games (CIG), 2013 IEEE

Conference on, IEEE, 2013, pp. 1–8.

[95] S. M. Lucas, “Learning to play Othello with N-tuple Systems”, Australian

Journal of Intelligent Information Processing, vol. 4, pp. 1–20, 2008.

	Declaration of Authorship
	Abstract
	Acknowledgements
	Introduction
	Literature Review
	Automatic Game Design
	Early Attempts: Proof of Concept
	Auto-Generate Full Game
	Auto-Generating Maps or Levels for Games
	Auto-tuning Game Parameters

	General Video Game Artificial Intelligence (GVGAI)
	Motivation and Origin
	Competition Tracks
	GVGAI for Game Design

	Evolutionary Algorithms
	General Improvements
	Applications in the Games Domain

	Background
	Space Battle
	GVGAI Framework
	Video Game Description Language
	Selected Games
	Controllers

	Evolutionary Algorithms
	Random Mutation Hill Climber (RMHC)
	Biased Mutation RMHC
	N-Tuple Bandit Evolutionary Algorithm (NTBEA)

	Approaches
	Space Battle Evolved
	Game Rules & Space
	Fitness Calculation

	GVGAI Game Rules & Space
	Seaquest
	Waves
	Defender
	Fitness Calculation
	Target Score Functions
	Loss Calculation & Fitness Value
	Fitness Calculation Summary

	Experiments & Results
	Space Battle Evolved
	GVGAI Games
	Evolving Game Parameters
	Different Games
	Biasing Loss Calculation
	Functions and Parameters

	Validating Evolved Games
	Best Individual Selection Criteria
	Different Games
	Normal NRMSE and Biased NRMSE
	Functions and Parameters

	Evolved Games

	Summary & Conclusion
	Summary
	Conclusion

	Future Works
	Further Analysis
	Further Experiment
	Extensions and Improvements

	References

