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Abstract
From social dining in households to product assembly inmanufacturing lines, goal-directed reasoning and cooperationwith other agents in
shared workspaces is a ubiquitous aspect of our day-to-day activities. Critical for such behaviours is the ability to spontaneously anticipate
what is doable by oneself as well as the interacting partner based on the evolving environmental context and thereby exploit such
information to engage in goal-oriented action sequences. In the setting of an industrial task where two robots are jointly assembling
objects in a sharedworkspace,we describe a bioinspired neural architecture for goal-directed action planning based on coupled interactions
between multiple internal models, primarily of the robot’s body and its peripersonal space. The internal models (of each robot’s body and
peripersonal space) are learnt jointly through a process of sensorimotor exploration and then employed in a range of anticipations related to
the feasibility and consequence of potential actions of two industrial robots in the context of a joint goal. The ensuing behaviours are
demonstrated in a real-world industrial scenario where two robots are assembling industrial fuse-boxes from multiple constituent objects
(fuses, fuse-stands) scattered randomly in their workspace. In a spatially unstructured and temporally evolving assembly scenario, the
robots employ reward-based dynamics to plan and anticipate which objects to act on at what time instances so as to successfully complete
as many assemblies as possible. The existing spatial setting fundamentally necessitates planning collision-free trajectories and avoiding
potential collisions between the robots. Furthermore, an interesting scenario where the assembly goal is not realizable by either of the
robots individually but only realizable if they meaningfully cooperate is used to demonstrate the interplay between perception, simulation
of multiple internal models and the resulting complementary goal-directed actions of both robots. Finally, the proposed neural framework
is benchmarked against a typically engineered solution to evaluate its performance in the assembly task. The framework provides a
computational outlook to the emerging results from neurosciences related to the learning and use of body schema and peripersonal space
for embodied simulation of action and prediction. While experiments reported here engage the architecture in a complex planning task
specifically, the internal model based framework is domain-agnostic facilitating portability to several other tasks and platforms.
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Introduction

From dining together to intelligently passing the ball in a soccer
game, humans reason about how to act together in shared spaces

in a goal-oriented manner. Similarly, at an individual level, from
a rat’s way-finding towards potential rewards in a complex maze
[1] to a chimp’s use of a rake to reach an otherwise unreachable
object [2], cognitive agents effortlessly plan actions in space and
time to fulfil goals of the self (and the others). This fundamental
ability to explore, identify, internalize and exploit possibilities
afforded by the structure of one’s immediate environment is crit-
ical for any artificial agent to exercise purposeful and intelligent
behaviour in a messy world of objects, choices, relationships and
other acting agents. The inherent complexity of this problem is
revealed when we face the challenge of enabling robots to oper-
ate in unstructured and shared environments. Concrete solutions
in this context are sought in a broad range of domains from
assisted living for elderly to the industrial assembly line, in
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general any environment where multiple agents need to operate
in shared workspaces.

To this effect, the article presents an internal model based
neural architecture for goal-directed reasoning and coopera-
tion1 between multiple robots, validated in a real-world indus-
trial assembly task: where robots operate jointly to realize goals
like assembling a complex object from its constituent parts.
The underlying challenge is to flexibly deal with the spatially
unstructured and temporally evolving nature of the assembly
scenario to enable the operating robots to reason continuously
about which objects to act on at what time instances so as to
jointly or individually realize as many assemblies as possible.
Therefore, rather than considering the joint assembly as a mere
collision avoidance problem between robots and objects, this
article proposes a reasoning framework that dynamically plans
robot movements to maximize the assembly success rate as
well as avoids any obstacles during multi-robot operations.
While the assembly setup serves as a compelling scenario to
explore the problem and address the synergistic interaction
between multiple subsystems involving perception-action-
learning-reasoning to enable goal-oriented behaviours, the ar-
chitecture itself is domain-agnostic facilitating portability to
several other domains.

A variety of computational models for spatial representation
and reasoning have been proposed in the robotics literature. For
example, previous work [3–5] on task-sequence planning for
cooperative robots, applied in tasks like inspection operations
formulate planning as variations of the travelling salesman or
task assignment problem. These works employ simulated an-
nealing, harmony searches, consensus bundling and different
non-linear optimization methods for near-optimal solutions
[6]. In another recent study [7] on multi-robot cooperation in-
volving pick and place tasks, authors propose combining part-
dispatching rules to coordinate robots. This is realized by inte-
grating a greedy randomized adaptive search procedure
(GRASP) and a Monte Carlo strategy (MCS). Conventional
approaches like rapidly exploring random tree (RRT) algorithms
have also been applied to bin-picking tasks [8]. Toussaint and
Georick [9] provide a planning method based on probabilistic
inference and demonstrate on a dual arm humanoid in reaching
tasks, albeit applicable in structured environments only. Most of
the other models in literature are based on constraints, logical,
algebraic or ontological approaches (see [10–13] for a summa-
ry). Apart from the fact that these approaches cannot manage
numeric, topological and imprecise knowledge at the same time
[10, 14–17], demonstrations of the capabilities of these ap-
proaches have still been restricted to tasks that are carried out
in controlled static conditions. Further, the imposition of

pre-programmed optimality constraints specific to bodily and
environmental conditions renders the models inflexible and in-
applicable while porting to new tasks: a desirable feature need-
ing innovative solutions [18].

Previous works applying artificial neural networks in
industrial assemblies has mainly focused on the tuning of
process parameters (such as force control parameters) to
deal with part variations and system uncertainties [19].
The major drawbacks to these methods, however, are that
they are all highly specialized to specific problems and
must be reworked whenever modifications are introduced
to the assembly setup or the robot. Other machine learning
techniques such as genetic algorithms have also been ex-
plored extensively for assembly sequence and scheduling
optimization [20–26] but their application to actual robotic
tasks is relatively limited with the exception to recent
works by Marvel and colleagues [27, 28]. Their studies
present genetic algorithm based self-optimization methods
for parameter tuning which can predict when certain pa-
rameter sequences are likely to result in superior assembly
performances. However, these works per se do not address
spatial reasoning or cooperation between multiple robots in
assembly tasks and the models proposed therein make no
claims as computational instantiations of any cognitive
phenomena like body schemas or peripersonal spaces.

Separately, computational models for peripersonal (and
task-related) space representation of robots have been pro-
posed in literature and used in the context of primitive actions
like reaching [29–32] and object recognition [33, 34]. Recent
years have also seen the emergence of computational models
facilitating human-robot interactive manipulation tasks rang-
ing from simple ones—dealing with ‘give, show, make acces-
sible’ to the cooperating human—to more advanced models
that involve proactive task selection and cooperation [35, 36].
Traditionally, these tasks have been considered as spatial
problems solved by robots using sophisticated geometric ro-
tation or line-of-sight computation to infer what their human
partner could see in a scene [35] and thus engage in simple
cooperative actions.

In contrast to direct geometric processing of perceptual and
spatial information for reasoning and inference, the proposed
framework looks at learning and formation of internal models
instead. This approach is motivated by evidence from neuro-
sciences related to embodied simulation and prediction
[37–40] in particular:

a) Simulation of action: We can activate motor structures of
the brain in a way that resembles activity during a normal
action but does not cause any overt movement [39, 41];

b) Simulation of perception: Imagining perceiving some-
thing is actually similar to perceiving it in reality, only
difference being that the perceptual activity is generated
by the brain itself rather than by external stimuli [42, 43];

1 Cooperation in this article refers to an indirect form of cooperation, akin to
stigmergy wherein actions of one robot change the environment to enable the
other robot to complete an otherwise unrealizable task. This occurs without
any direct communication between the two robots.
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c) Anticipation: There exist associative mechanisms that en-
able both behavioural and perceptual activity to elicit oth-
er perceptual activity in the sensory areas of the brain.
Most importantly, a simulated action can elicit perceptual
activity that resembles the activity that would have oc-
curred if the action had actually been performed [38, 44].

Guided by these studies, we describe a bioinspired
neural architecture for goal-directed reasoning and coop-
eration between multiple robots based on the coupled
interactions between the internal models representing
the robot’s body and its peripersonal space. These two
interacting internal models engage in a range of antici-
pations related to the feasibility and consequences of the
actions of oneself and the interacting partner to allow
planning in a complex environment in the context of a
joint goal. Both the internal models (of the body and its
peripersonal space) are jointly learnt through a process
of sensorimotor exploration. The neuroscientific per-
spective — that internal models of both the environment
and the body are intertwined to synergistically interact
in goal-directed behaviours and hence they should be
developed in parallel [38, 45, 46] — further substanti-
ates our modelling approach. The proposed neural
framework exploits several well-grounded computational
concepts in literature mainly,

a) the idea of growing neural gas [47] (an extension of self-
organizing maps [48]) for internal representation of the
peripersonal space;

b) neural field dynamics [49, 50] to organize goal-directed
reasoning and cooperative behaviour in shared spaces;

c) the idea of reward fields [51] for reasoning about action
sequences based on the unfolding spatiotemporal dynam-
ics of the task;

d) learning of such behaviour-modulating reward fields over
experience gained through exploration [52];

e) the idea of passive motion paradigm (PMP) [53–55]
based on the notions of Equilibrium Point Hypothesis
[56, 57], internal simulation theory [58] and synergy for-
mation [59] for internal representation of the agent bodies
for simulation, reasoning and execution of goal-directed
actions.

While some interesting internal models of the body have
been proposed in the literature [60, 61], these models have
neither been applied to any complex planning tasks such as
assembly nor applied in complex industrial environments. The
architecture presented here exploits the internal models of
body and space, building up on [51, 52], by hypothesizing
their synergistic interaction on multiple embodiments for rea-
soning and goal-oriented cooperation in complex real-world
industrial assembly tasks.

Contributions of This Work

The main contributions of the work described in this article
are:

a) A neural framework for joint learning of internal models
of the body and the peripersonal space for any robotic
embodiment though sensorimotor exploration.

b) A reward-based dynamics for the proposed framework
that facilitates a range of anticipations related to spatial
planning and cooperation in a goal-directed manner.

c) Implementation of the framework developed in (a and b)
on two industrial robots operating in a shared workspace
in a real-world industrial assembly line, performing com-
plex joint assemblies.

d) Benchmarking of the proposed neural framework against
a typical industrial solution designed for the same assem-
bly task to evaluate success performance.

Additionally, open source code for learning and use of
these task agnostic internal models along with necessary doc-
umentation is made available online (see the Supplementary
Information).

The remainder of the paper is organized as follows:
the ‘The Robots and the Experimental Setup’ section
gives a description of the employed robots and their en-
vironment as well as outlines the assembly task. In ‘The
Computational Framework’ section, we present the inter-
nal models for body and task-space of the robots. We
specially focus on two key aspects of the internal
models: (a) their acquisition through exploration by the
two robots discussed in ‘Internal Body Model’ and
‘Internal Model for Peripersonal Space Representation’
sections, and (b) their coupled interaction with a reward
field dynamics that generates goal-directed behaviour,
discussed in a following section. In the ‘Goal-Directed
Spatial Reasoning for Joint Operation in Shared
Workspace’ section, we report results of robots
performing in parallel an industrial assembly task in un-
structured environmental scenarios. In the ‘Cooperation
Between the Robots to Achieve Otherwise Unrealizable
Goals’ section, we show how the two robots use the
proposed framework to internally simulate sequences of
actions and operate jointly in a purposeful manner to
realize an otherwise unrealizable assembly task. The last
section concludes the paper.

The Robots and the Experimental Setup

The neural framework for reasoning and cooperation present-
ed in this paper is implemented on an industrial platform to
perform assembly tasks. Figure 1a gives an overview of the set
up on which experiments were carried out. This robotic
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platform consists of two industrial manipulators, namely the
Stäubli [62] RX130B and TX90L robots each with 6 degrees
of freedom providing high flexibility and precision. The plat-
form includes a servo-electric two-finger parallel gripper from
SCHUNK PowerCube [63], one for each robot. The
manufacturer-offered PowerCube API library provides func-
tions to control the grippers. The platform is augmented with a
Kinect PrimeSense camera for visual perception. The camera
is the only source of external sensory input to the robots.
Visual perception is structured around two major components.
The first of these components is concerned with the detection
of objects [64] of interest in RGB-D images that have been
captured with the Kinect sensor. Following the detection pro-
cess, location of the detected objects in space is estimated
using a 3D pose estimation method from Lourakis and
Zabulis [65]. The industrial setup has a workspace tray
mounted in front of the two robots on which objects for as-
sembly are arbitrarily placed (Fig. 1b–e). Both the robots and
the camera are calibrated to the same frame of reference with

the origin lying on the surface of the workspace tray (see Fig.
1a). The workspace is limited in X and Y directions to the area
visible to the camera, that is an effective volume of 700 ×
800 × 350 mm3. Standard objects used in industrial assembly
like fuses and fuse-box stands were used for all experiments
(see Fig. 1b–e).

Assembly Task Fuses and fuse-box stands are scattered around in
the workspace and the robots have to complete maximum num-
ber of possible fuse-box assemblies (i.e. insert fuses into fuse-
stands). Figure 1b–e shows various possible types of scenarios
that robots have to deal with. Appropriate action sequences must
be generated by both robots based on the setup of objects in the
workspace to compete assemblies quickly and successfullywhile
operating in parallel. As an example, scenario shown in Fig. 1b is
well-structured to allow spontaneous and collision-free
operation of both robots during assembly process (for example:
the RX robot assembling one fuse-box (FB1) and the TX robot
assembling the other fuse-box (FB2)). In the scenario shown in

RX130B

TX90L
Industrial Jig

Workspace Tray

Camera

B

C

D
E

A

Scene 4 (Goal unrealizable without mutual cooperation and 
spatial reasoning)

Robotic Platform

Scene 1 (Structured)

Scene 2 (Unstructured)

Scene 3 (Unstructured & redundant)

Fig. 1 a The robotics platform used for experiments with two robots, the
camera and the workspace tray. b–e The typically different possible
setups in which objects can be lying in the workspace. b A structured
scenario where a fuse-box with three fuses is near each robot and parallel
assembly can be easily realized. c An unstructured setup where objects

are lying in random places and reasoning is essential for successful joint
assembly. d An unstructured and redundant setup where there are more
than two fuse-boxes to work with. e A scenario where none of the two
robots can reach all the desired objects, so the assembly is not realizable in
a direct way without mutual cooperation and spatial reasoning
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Fig. 1c, objects are scattered arbitrarily in the workspace. Hence,
planning which robot acts on which object (at different time
instances) is necessary to realize multiple joint assemblies by
the robots. Acting without reasoning will result in collisions be-
tween the robots, collision with the objects, and time-consuming
serial assembly sequence. The scene depicted in Fig. 1d is both
unstructured and redundant (more fuse-box holes than fuses)
requiring further reasoning about which two of the three fuse-
boxes to work with. Figure 1e shows an interesting scenario
where the assembly is not directly realizable by either of the
two robots since all the desired objects for a complete assembly
are not reachable (for example, fuse-box stand is not reachable to
the TX robot and fuses are not reachable to the RX robot). In
general, based on the spatial configuration, appropriate action
sequences must be generated by both robots to operate in parallel
(with collision avoidance) and realize assemblies successfully.

In this context, we describe a bioinspired neural architec-
ture for goal-directed cooperation based on the coupled inter-
actions between multiple internal models, primarily the ro-
bots’ bodies and their peripersonal spaces. The internal
models of each robot’s body and its peripersonal space are
learnt jointly through a process of sensorimotor exploration
and then used to engage in a range of anticipations related to
the feasibility and consequence of potential actions of oneself
and the other (in the context of a joint assembly). In the fol-
lowing sections, we describe how these internal models are
learnt and applied in real-world setups for an efficient parallel
assembly of industrial objects by two robots.

The Computational Framework

The following two sub-sections summarize the two internal
models that are jointly learnt and form the core of the proposed
architecture: (1) internalmodel of the body and (2) internalmodel
of the peripersonal space. An important feature of the architecture
is that both these models are learnt from the same data generated
during sensorimotor exploration of a robot in its reachable
workspace through a process of random motor babbling. This
is outlined in Fig. 2a which shows diagrammatically the main
stages of the learning process of the two internal models. Finally,
the third sub-section describes how the coupled interaction be-
tween these internal models provides us with a framework for
spatial reasoning in a parallel assembly task.

Internal Body Model

The internal model of the body is based on the motor control
theory known as passive motion paradigm (PMP) [53–55, 66]
that draws on prominent ideas like the synergy formation [59]
and the Equilibrium Point Hypothesis [67, 68]. PMP offers a
shared computational basis for simulation and generation of
action in articulated structures of arbitrary complexity and

redundancy. Intuitively, the idea is that given a target for robot
end-effector to reach, the process to determine the distribution
of work across its joints can be represented as an ‘internal
simulation on the body model’. The internal simulation calcu-
lates how much each joint would move if an externally in-
duced force (i.e. the goal) pulls the end-effector by a small
amount towards the target. This process of relaxation is like
coordinating the movements of a puppet by means of attached
strings: as the puppeteer pulls the task relevant tip of the body
to a target, the rest of its body elastically reconfigures to allow
the tip to reach the target. PMP can be defined computation-
ally in the following steps:

(1) Given a target, generate a target-centred virtual force
field in the extrinsic space:

F ¼ Kext sT−sð Þ

Where sT is the target, s is the current position of the end-
effector and Kext is the virtual stiffness of the attractive field in
the extrinsic space. Kext determines the shape and intensity of
the force field. In the simplest case, Kext is proportional to the
identity matrix and this corresponds to an isotropic field, con-
verging to the goal target along straight flow lines.

(2) Map the force field from the extrinsic space into virtual
torque field in the intrinsic space:

T ¼ J qð ÞT F

where J(q)T is the transposed Jacobian matrix which is always
well-defined. In the next section, we show how these
Jacobians can be derived from a learnt internal body model.

(3) Relax the arm configuration to the applied field:

q˙ ¼ Aint∙T

Where Aint is the virtual admittance (or joint compliance)
matrix in the intrinsic space that leads to the distribution of the
torques among the joint rotations. In the simplest case, it is an
identity matrix.

(4) Map the arm movement into the extrinsic workspace:

s˙ ¼ J qð Þ∙q˙

(5) Integrate over time until equilibrium:

s tð Þ ¼ ∫tt0 J qð Þq˙ dτ
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The last step integration gives us a trajectory with the equi-
librium configuration s(t) defining the final position of the
robot in the extrinsic space.

To put in words, at each time step of this cyclic computa-
tional process, target goal xT in the extrinsic space induces
virtual disturbance forces F on the end-effector, which are
modulated by the virtual stiffness Kext. These forces are then
mapped into equivalent torques T; this projection is imple-
mented by the transpose Jacobian J(q)T. These virtual torques
T cause incremental joint rotations q̇ as allowed by the com-
pliances Aint of different joints. The incremental change in
joint space q̇ is mapped to the extrinsic space ẋ using the
Jacobian matrix J(q), causing a small displacement of the
end-effector towards the intended target. This process pro-
gresses cyclically till the time the algorithm converges to an
equilibrium state reaching the target. While in depth discus-
sions on PMP and its extensions and implementations on var-
ious robotic platforms are available in [55, 69] and [66, 70],
here, we briefly highlight some key advantages of the PMP
formulation against the traditional analytical approaches in
robotics:

1. There is no kinematic inversion or cost function optimi-
zation since all computations are well posed (one-to-one).

Hence, PMP is computationally inexpensive especially
while coordinating highly redundant robots. In this sense,
PMP is closely linked to other approaches based on active
inference [71] that also avoid inverse kinematics. Two
recent reviews discuss the pros and cons of these ap-
proaches in detail [72, 73].

2. A solution is guaranteed and there are no singularities.
This applies even in cases where the target is unreachable.
In such a case, the final solution or the output of the
forward model (i.e. the end-effector location) provides
useful geometric information to trigger further reasoning;
such as the desired length of a tool to reach the target.

3. PMP offer runtime configurability. PMP networks can be
assembled on the fly based on the nature of the motor task
and the body chains or tools chosen for execution.

In the context of this article, what is important is the
fact that PMP is not only able to generate real actions
but also simulate imaginary movements predicting the
sensory consequences of the imagined actions. This is
very consistent with the recent research confirming
common underpinnings for real and imagined actions
[39, 72]. In our view, the internal body model acts as
a link or the middleware between the real and imagined

Random motor 
babbling 

movements by 
robot

S: End 
effector 
positions

Weight files

Internal Body 
Model: Jacobians 
and PMP simulation 

Weight files

Internal model for 
peripersonal space: 
neural & reward 

fields

Q: Motor 
commands

Feed Forward 
Neural Network

Growing Neural 
Gas (GNG)

A

B

Fig. 2 a This block diagram shows the stage of data generation by a robot
followed by learning of the two internal models. Random babbling
movements of the robot in the workspace give rise to two data sets: one
of joint rotation readings and the other set of corresponding coordinates of
the end-effector. A standard feedforward network learns the mapping
between the intrinsic and extrinsic spaces using error-backpropagation.
The Jacobian is then extracted from the learnt connectivity matrices
(weight files) which represents the internal body model for action

simulation and execution. At the same time, a growing neural gas is
used to learn the topology of the peripersonal space using the set of
end-effector coordinates generated during babbling. The learnt GNG net-
work is stored as connectivity matrix and sensory weight matrix (weight
files) to serve as the representation of the peripersonal space of a robot. b
A feed forward neural network composed of an input layer {qi}, two
hidden layers {zj} and {yl} and an output layer {xk}. See the text for
details
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actions. Running internal simulations on an intercon-
nected set of neuronal networks must be the main func-
tion of the body schema in humans. We believe the
proposed PMP model provides a possible computational
formulation to explain the results from neuroscience.
Further, PMP augments the idea that cognitive motor
processes such as action planning shares the same rep-
resentations with motor execution [58]. This allows a
cognitive agent to reason about and plan its actions in
the environment beforehand in a goal-directed fashion
[37, 38, 74]. In this sense, PMP framework closely res-
onates with the embodied simulation hypothesis
discussed in the Introduction.

Acquisition of the Internal Body Model

The body schema representation is acquired using ran-
dom motor babbling movements of a robotic arm in its
peripersonal space while the end-effector location is
tracked through visual perception. This gives rise to
sensorimotor data: a training set of joint rotation read-
ings with the corresponding coordinates of the end-ef-
fector. Using joint angle vectors as input and the corre-
sponding 3D end-effector location vectors as desired
output, a feedforward neural network with two hidden
layers is trained through backpropagation of error.
Thereafter, the Jacobian can be recovered from the
weights of the trained neural network: that represents
the body schema, mapping the extrinsic to the intrinsic
spaces. Below we discuss the process of acquisition of
the Jacobian matrix J(q).

Let a vector q represent the state of a robot in the intrinsic
joint space for a given pose and a vector s identifies the posi-
tion of the end-effector of the robot in the extrinsic workspace
for that pose. Then the kinematic transformation s = f(q) can
be expressed as: ṡ ¼ J qð Þ∙q̇ where J(q) is the Jacobian ma-
trix of the transformation. We train a multilayer feed forward
neural network (see Fig. 2b) with two hidden layers to learn
the mapping s = f(q) where q = {qi} is the input vector (of joint
angles) and s = {sk} is the output vector (representing 3D
position/orientation of the end-effector). z = {zj} and y = {yl}
vectors are the output of first and second hidden layer units
respectively. Equation 1 expresses the mapping, where
Ω = {ωij} are connection weights from the input layer to first
hidden layer,O = {ojl} are the connection weights between the
hidden layers, W = {wlk} are the connection weights from the
second hidden layer to the output layer, h = {hj} are the net
inputs to the neurons of the first hidden layer and p = {pl} are
net inputs to the second hidden layer. Neurons in the two
hidden layers fire using the activation function g which repre-
sents the hyperbolic tangent function tanh(); the output layer
neurons are linear.

s ¼ f qð Þ⇒

hj ¼ ∑iωij qi
z j ¼ g hj

� �
pl ¼ ∑ jojl z j
yl ¼ g plð Þ

sk ¼ ∑lwlk yl ¼ ∑lwlk ∙g ∑ jojl z j
� �

⇒ sk ¼ ∑lwlk ∙g ∑ jojl∙g ∑iωij qi
� �� �

8>>>>>>>>><
>>>>>>>>>:

ð1Þ

After training the neural network using sensorimotor data
generated by the robot, the Jacobian J(q) can be extracted
from the learnt weight matrices using the chain rule, as in
the following expression:

J qð Þ ¼ ∂sk
∂qi

¼ ∑
l
wlk ⋅g−1 plð Þ ∑

j
ojl⋅g−1 hj

� �
ωij ð2Þ

Since each robot has 6 joints, the input vector consisted of 6
values and the target vector consists of the corresponding 3D
location. The number of neurons in first and second hidden
layers of the neural networks was determined heuristically as
32 and 41, respectively. The neural network was trained using
Levenberg–Marquardt algorithm. Over five different training
runs of 2000 epochs each, results showed that the network
converged very well, with an average root mean square error
of the approximator less than 0.04 mm at the test.

The Body Model in Goal-Directed Reasoning

The Jacobians extracted from the trained network are inserted at
appropriate steps in the above given PMP computational algo-
rithm. The Jacobians provide the PMP dynamics with a manip-
ulable representation of the body; i.e. a body model that can be
used as a forward/inverse model for goal-directed simulation
and execution of actions in real world. In the context of this
work, a robot can then use the acquired internal body model to
‘imagine’/simulate reaching movement to a given target and
anticipate if the target is reachable or not without making any
real movement. This provides the robot with the information of
the feasibility of any planned reaching without entering a risk of
unexpected failures to reach. In addition, since the forward
kinematics of the internal model of body (neural PMP) com-
putes a movement trajectory from the current to the goal posi-
tion in the extrinsic space, imagined movements of multiple
robots in a shared workspace can be explored for possible col-
lisions between the robots before any execution of real move-
ments. An alternative course of actions can be planned to realize
the goal in case collisions between the imagined movement
trajectories are detected.

Internal Model for Peripersonal Space Representation

In this section, we describe the internal model for a sparse
representation of the peripersonal space of a robot. Such an
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internal representation is needed to perform a non-uniform
quantization of the peripersonal space, thus simplifying the
target selection during the assembly task. This representation
of space is learnt using a Growing Neural Gas (GNG) algo-
rithm [47] from the same data used to learn the internal model
of body (neural PMP). GNG is an unsupervised incremental
network model that can learn important topological relations
in a given set of input vectors by means of a simple Hebb-like
learning rule. The model continues learning, adding new neu-
rons and connections until a performance criterion is met.

Acquisition of the Peripersonal Representation

To begin the learning process, the robot randomly explores
different spatial locations in its workspace through motor bab-
bling; these spatial locations/end-effector coordinates St form
the sensory input to the growing neural gas. The free variables
that are learnt in this algorithm are as follows. The size of the
resulting matrix is indicated inside the parenthesis.

1) N: No. of neurons in the GNG network (N).
2) si: Sensory weights for each neuron (N × D), these are

randomly initialized;D: degrees of freedom in the sensory
space, which is 3.

3) errori: Local estimate of representational error, i.e. the
accumulated difference between the actual perception
and the best matching unit in the GNG (N). This informa-
tion is particularly useful for growing the GNG.

4) Ageij: Age of lateral connection for pruning off excess and
less valuable lateral connections in the GNG (N ×N). Age
of all connections is initialized to zero in the beginning.

5) Wij: Lateral weights (these are edges that encode
neighbourhood) (N × N).

Below, the algorithm for learning the neural map through
randomly generated sequences of sensory S data is outlined as
a sequence of steps (a–g):

(a) Initialization: Start with one single neuron with random-
ly initialized sensory weights si.

(b) Acting and observing: Babble to a random location and
acquire the sensory information St. t stands for time or
iteration number of the exploration (see Fig. 3 for
details).

(c) Estimating the winner: Of all the neurons that exist in the
GNG at that point of time, find the neuron ‘i’ that shows
maximum activity for the observed sensory stimulus St at
time/iteration t. This implies finding the neuron ‘i’ that
has sensory weights si such that ∣|si − St|∣ has the
smallest value, among all neurons existing in the GNG
at that instance of time.

(d) Growing when needed: New neurons are incorporated
into the GNG when the difference between the actual

perception and the best matching unit say ‘i’ becomes
too large. To make this detectionmore robust, we assume
that every neuron in the GNG has a measure of its own
local representational error that accumulates with respect
to time. For this purpose, we use a low pass filter at a
timescale τe = 10 as in equation below:

τ eerrori˙ ¼ −errori þ 1−
1ffiffiffiffiffiffi
2π

p
σe

e
− Si−Sð Þ2

2σ2e

 !

Whenever this error measure exceeds a threshold called
vigilance, errori > v (in our case v = 0.25), we generate a
new neuron j with the codebook vector equal to the current
perception. Gaussian kernel width σe = 1 was used.

(e) Adapting the sensory weights: Now adapt the sensory
weights of the winner and its topological neighbours
(all neurons laterally connected to the winning neu-
ron) by small fractions ew and en of the distance as
follows:

si←si þ ew S−sið Þ; Winner i
sn←sn þ en S−sið Þ;∀n ∈Neighbours ið Þ

ew, en ∈ [0, 1]. While setting ew and en too high usually
results in an unstable network, with nodes moving all around
all the time, setting them too low often makes training slow
and ineffective. In all our experiments, we choose the follow-
ing values: ew = 0.04 and en = 0.0006.

(f) Adapting the lateral weights: Lateral weightsWij are sim-
ply edges between neurons that encode neighbourhood
and possible state transitions. These links permit spread-
ing of activity in the direction of the gradient of value
field and are locally adapted in response to dynamic
changes in the world. We employ the simplest mecha-
nism to organize the lateral weights, as proposed by
Fritzke [47]. This technique involves growing a lateral
connection between successive best winning neurons ‘k’

and ‘i’ with a lateral weight initialized as Wik = 1,
incrementing the age of all other neighbouring lateral
connections, and finally pruning off the connections
whose age cross an age threshold Agemax (in our case
equal to 25).

(g) Pruning: Finally eliminate the dead neurons (with no
lateral connections) existing in the system and proceed
with the next step of sensory input observation and an-
other incremental phase of learning the free variables in
the system using the procedure mentioned above. As
newer regions in the workspace are explored, the internal
map grows and becomes more densely connected. This
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Fig. 3 a The 10 K location points reached by the TX robot during
exploration. b The resulting learnt Growing Neural Gas (GNG). c The
gradual growth of the GNG for the TX robot with increasing exploration
in its peripersonal space. In the figure, t refers to the number of points in

space reached by the robot or iterations of learning. d The workspace
between the robots as represented by the GNG maps of the two robots.
The two networks overlap in the workspace where both robots can reach
to perform assembly tasks
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process continues till the time the internal map becomes
almost quasi stationary.

During this process of training, the robot babbled to about
10,000 locations in its workspace area before settling to a
sparse representation of the area explored. Figure 3a shows
the generated data points in the workspace of the TX robot and
Fig. 3b shows the corresponding learnt GNG network grown
to a size of 478 interconnected neurons. Figure 3c shows the
topology of the evolving GNG as new incoming sensory in-
formation St keeps coming or in other words as the robot
explores more and more locations in its workspace. Another
GNG network representing the peripersonal space of the RX
robot is learnt using the same technique. In our results, the
GNG network for RX robot grew to a size of 476 neurons.
Figure 3d shows the overall structure of the workspace with
the two robots and the two GNG networks representing their
peripersonal spaces. There is an overlap between the networks
representing the intersecting peripersonal areas where both the
robots can operate. Before we go into the next section that
describes how this representational scheme can be exploited
to serve as a general substrate for realizing goal-directed plan-
ning and cooperation, below we highlight the relevance of the
proposed approach from a neuroscientific perspective.

In humans, peripersonal space representations are pivotal
in the sensory guidance of motor behaviour, allowing us to
interact with objects and with other people in the space around
us [75–77]. It is widely argued that body schema and
peripersonal space representations share underlying brain net-
works. Recent studies have provided evidence that perceiving
objects in peripersonal space activates a set of interconnected
parietal and frontal areas overlapping with the set subtending
voluntary motor action and motor imagery [75, 76, 78]. This
trend of research was one of the key motivations to our work
for designing a systemwith intertwinedmodels for body sche-
ma and peripersonal space. Here, we emphasize that our mod-
el training approach is also very consistent with the neurosci-
entific perspective that the representations or internal models
of both the space and the body are deeply intertwined [45] and
synergistically interact to facilitate goal-directed behaviour,
and hence, they should be developed in parallel [38, 46].
Furthermore, neuropsychological studies show that brain con-
structs rapidly modifiable representations of space, centred on
different body parts (i.e. hand-centred, head-centred, and
trunk-centred). The size of these peripersonal spaces also
varies for different stimulated body parts [79]. There is also
convincing evidence to show that peripersonal space process-
ing operates in a very plastic and dynamic manner, e.g.
peripersonal space of arms is extended due to tool-use [75]
and gets shrunk due to amputations [80]. Relating to our case,
the industrial robots TX and RX are not identical (TX is a
smaller robot), and for many other tasks they are used sepa-
rately, sometimes extended with tools coupled to their

grippers. Hence, we deploy separate GNGs for the two differ-
ent robots.

Spatiotemporal Reward Field Dynamics for Goal-Directed
Reasoning

Now that each robot has a representation of its workspace, we
discuss the mechanisms to organize the action sequence of the
robots in a goal-oriented way. By providing each robot with
information on what object to act on and when, the two robots
can complete the assembly task successfully. An optimal ac-
tion sequence will maximize parallel operation of the two
robots during assembly and minimize involvement of any
other mechanisms needed for collision avoidance which delay
the assembly process.

To organize goal-oriented assembly, a reward-based neural
field is applied to the GNG network on top of the sensory
input driven neural field in the network. The spatiotemporal
dynamics of the reward field organizes the sequence of the
actions taken by each robot by prioritizing execution of ac-
tions which fetch maximum reward. Such a reward field can
be based on a default plan [51, 52] or can be learnt by robots
through exploration and experience (see the Supplementary
Information). The layout of the workspace in our experimental
setup is such that the position of the robots is roughly sym-
metric along the y-axis of the workspace. Therefore, a good
strategy is to structure the instantaneous reward gained by a
robot when acting on an object as a function of the distance (in
y-axis only) of the object from the robot. This would imply for
a robot to minimize entering the overlapping workspace (see
Fig. 3c) and to keep within its unshared workspace for as
many successful assemblies as possible. This default reward
Ri associated with a neuron i is given by

Ri ¼ 1

Z
e
− yi−Yð Þ2

2σ2
R þ Rc

 !

Here, yi denotes the y-value of the sensory weight of ith
neuron and Y is the y-coordinate of the location of robot with
respect to origin. Rc (=1, in our experiments) is a constant
minimum reward to a robot for merely acting in the world. Z
is chosen such that

∑
i
Ri ¼ 1

This reward function based field dynamics will elicit max-
imum rewards for objects that are minimally distant from the
robot along the y-axis. Figure 4 shows the resulting reward
functions for the two robots that we used in all real-world
assembly tasks. From this graph, it is easy to conclude that
the spatiotemporal dynamics of the reward structure will en-
force each robot to prioritize acting on objects which are min-
imally distant from the robot in their y-axis.
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Localization of an Empty Area in the Workspace Using
the Internal Model for Peripersonal Space

In response to a sensory input S, the activity xi of a neuron in
the GNG network can be given by a Gaussian kernel which
compares the sensory weight si of a neuron i with the current
perceptual input S

xi ¼ 1

√2πσs
e− si−Sð Þ2=2σ2s

Clearly, for any sensory input (which is the 3D location (X,
Y, Z) of the centroid of any object in the scene), a neuronwhich
has internal sensory weights closest to the incoming signal
will exhibit the highest level of activity in the network and
thus best represents the input. For any given spatial layout
with n objects in a robot’s workspace, n neurons of the corre-
sponding robot’s GNG network will show maximal activa-
tions corresponding to the locations of the objects in the scene.
Neurons nearby these ‘most active neurons’ with also elicit
higher activity than the rest of the neurons in the network.
Thus, regions in the network where neurons are more active
than others represent the occupied areas in the workspace
where as regions which show least activity are empty areas
in the workspace of the robot.

During cooperative behaviour (see the ‘Cooperation
Between the Robots To Achieve Otherwise Unrealizable
Goals’ section), a robot may need to move objects from its
own non-shared workspace into the shared workspace for the
other robot to work with. Since the shared workspace can be
cluttered with objects, the spatial reasoning system must find
an empty area in the shared workspace for the robot to place
down an object (fuse). This is to avoid collision of the robot
gripper with objects in the scene. Using the spatial configura-
tion as the sensory input to the internal model of a robot’s
peripersonal space, we look at the activity of all the neurons

in the GNG network representing the shared workspace. The
activity of each neuron is a result of the cumulative influence
of sensory inputs that fall within a threshold distance to the
neuron’s weights. In our experiments, the threshold distance is
equal to the width of the robot’s gripper. The neuron which
shows least activity has its weights most distant from other
objects lying within the threshold distance. We look for a
neuron i with an activity xi

xi ¼ min∑
T

1

√2πσs
e− si−S jð Þ2=2σ2s

where Sj is the 3D location of every object that lies within the
distance threshold T from the neuron’s sensory weights si. The
area centred at the location of this neuron is an empty area
where the object can be safely placed down without colliding
with other objects in the workspace. Later in the ‘Cooperation
Between the Robots To Achieve Otherwise Unrealizable
Goals’ section, we show a case in which empty areas of spe-
cific radii are localized and exploited for cooperative behav-
iour between robots in situations where a single robot cannot
realize an assembly task on its own.

Coupled Interaction Between Internal Models of Body
and Space

The problem of two robots performing parallel assemblies in
shared workspaces is challenging both from the perspective of
reasoning and that of control as well. To plan action sequences
based on what objects to act on and when for time efficient
assembly; and to work safely and robustly requires multiple
subsystems providing different sub-functionalities to be co-
herently integrated. In the following lines, we give a descrip-
tion of the overall mechanism conceived to deal with the
multi-faceted problem of efficient parallel assembly described
in the ‘The Robots and the Experimental Setup’ section. The

Fig. 4 The structure of the default
reward functions used for the two
robots
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developed mechanism is a result of synergistic interaction
between mult iple subsystems (discussed in ‘The
Computational Framework’ section) working together.
Figure 5 depicts a block diagram of the main components of
the reasoning system and the flow of information between
these subsystems. Below we outline the functionalities pro-
vided by these subsystems and their coupled interactions for
realizing the assembly task:

1) Peripersonal space models with reward dynamics: These
GNG models account for representation of (1) reachable
workspace for a robot with a reward structure that evolves
over the course of assembly process as the scenario
changes; (2) shared workspace between the robots; and
(3) empty and occupied regions in the peripersonal spaces
of the two robots. These representations work as resource
allocators as described in the ‘Internal Model for

Peripersonal Space Representation’ section. Based on
the spatial configuration, these space representations allo-
cate sub-goals (fuses and holes) to both the robots using
the reward field dynamics. From the spatial layout of the
scene as perceived by the visual system, the configuration
of the scene (i.e. different objects and their 3D locations in
the workspace) generates neural field activity in the two
GNG models. In other words, the neural activity in these
GNG networks is an internal representation of the spatial
layout of the scene outside. Now, because of the corre-
sponding reward structures imposed upon the two GNG
networks, each GNG network elicits highest reward for a
particular object. Objects fetching highest rewards be-
come targets and their locations are forwarded to the in-
ternal model for body. Target selection occurs in two
steps: A robot’s GNG selects a target fuse followed by a
target hole whenever available.

External
World

Visual
Perception

Robots

Internal Model of the peripersonal
space (GNG)

Collision Detection, Collision Avoidance,
Target Reachability Check, Object Relocation

Spatial layout

Empty locations in
shared workspace

Actions

Targets/
Goals

Scene
Targets/sub-goals to act on;

allocated based on fetched rewards

Hole2 RX
Fuse3 TX

Internal Model of the Body (PMP)
Motor Commands

al M

Simulated trajectories:
reachability and collision checks

neural activations in GNG
networks at target selectionPerceived objects in

workspace

Snapshot of the scenario

Robots executing goal
directed actions Forward/Inverse computations on

the internal body model

Functional organization of the spatial reasoning system

: Simulations

Output of forward &
inverse models

Fig. 5 The overall spatial reasoning system with the building blocks and
the flow of information between them. An external world scenario of the
workspace is passed to a visual perception system that detects the objects
and their locations in the scene. This spatial configuration information is
forwarded to the internal model for peripersonal space representation
which based on the reward field dynamics chooses object(s) to work on
and allocates them as targets to the internal body model. The internal

body model performs action simulations generating motion trajectories.
These trajectories are evaluated for possible collisions. Synthesized motor
commands (from the body model) are forwarded to robots to execute
movements in parallel in case no collisions are detected, otherwise in
serial. The bottom panel shows some simulated results of parallel
operation of both robots without collision, anticipated collision and re-
planned motion after collision is detected
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2) Internal models of the body for simulated and real
actions: Given the reachable target goals for the two
robots, the PMP-based internal body models simulate
solutions in the joint space of the robots (motion tra-
jectories) to reach the targets.

Collision detection follows. From the anticipated motion
trajectories, possible collisions during parallel execution
of these simulated trajectories are estimated. To imple-
ment this, the 3D locations of the two distal joints
(nearest to the end-effector) of both the robots are com-
puted at multiple points along the two anticipated motion
trajectories. The 3D locations are calculated using forward
kinematics of the internal models. If the calculated dis-
tance between the joints in the extrinsic space is below a
threshold value any time during simulated motion, a pos-
sible collision is detected. In case no collision is detected,
synthesized motor commands corresponding to the two
trajectories are forwarded to robots to operate in the
workspace in parallel. As for example, the bottom left
panel of Fig. 5 shows two robots performing different
sub-tasks in simulation (e.g. grasping two different fuses).

Objects in the peripheries of the overall workspace are
assembled first. However, as the scenario evolves during
the process of assembly, the spatial layout and hence the
reward structure pushes the two robots to operate towards
the middle of the overall workspace. The neural activity
fields in the two GNG networks with reward dynamics
select increasingly closely lying targets. Hence, despite
reward-efficient allocation of sub-goals by the internal
models for peripersonal spaces, collisions are possible in
the shared workspace. Whenever possible collisions are
detected from the anticipated motion trajectories as de-
scribed above (see for example a simulation result in Fig.
5 bottom middle panel), movements of the two robots need
to be re-planned to avoid collisions. Collison avoidance is
implemented by serializing the two robot actions one after
the other. This occurs by alternately allowing one of the
robots to complete its movement (a sub-task) while keep-
ing the other robot away from the shared workspace area at
an initialized location (Fig. 5 bottom right panel). A sub-
task completion is followed by moving the robot to an
initialization position and allowing the other robot to com-
plete its own sub-task.

However, in case a robot’s internal peripersonal space mod-
el selected a fuse but cannot find a reachable fuse-box hole in
the next target selection step, the model selects an empty lo-
cation in the shared workspace for the robot to place the fuse.
After this object relocation, another robot will find both the
fuse and fuse-box reachable and will trigger assembly.

The next section presents the experimental results which
demonstrate the coupled interaction between the internal
models for realization of the task of parallel assembly.

Results

Goal-Directed Spatial Reasoning for Joint Operation
in Shared Workspace

We describe a parallel assembly of fuse-boxes in a typical
real-world industrial setting as an example of goal-
directed reasoning by the robots employing the interacting
internal models. Figure 6 presents a set of panels captur-
ing the behaviour of the two industrial robots in an un-
structured setup (i.e. when objects are scattered at random
locations), where the goal is to jointly assemble fuse-
boxes in the workspace (in the present setup two fuse-
box stands and 6 fuses are present). Note that the
peripersonal space internal model itself is agnostic to the
number of objects or where they are, but will ensure max-
imum number of assemblies with both the robots working
in parallel.

The set of panels in Fig. 6 is sequentially numbered
through 1 to 8 following the order in which the robots carry
out actions to complete the assembly process. Each numbered
panel is associated with three snapshots:

a) The workspace as detected by the vision system (the top
left corner of each panel with objects as blue 3D-meshes).
Objects allocated in each assembly sub-task by the
peripersonal space models are shown enclosed in yellow
circles for the RX robot (on the left) and red circles for the
TX robot (on the right);

b) A view of the robots in action, the main panels. These
panels are numbered from 1 to 8 in the sequence in which
the assembly task unfolds. Up arrows and down arrows
depict respectively the ‘grasp-pickup’ and the ‘insert’ op-
erations of the two robots (coloured yellow for the RX
robot and red for the TX robot);

c) A top view of the state of activity in the RX and the TX
peripersonal GNG networks corresponding to the status
of target selection progress in the assembly task (below
each numbered robot view panel).

Highly rewarding neurons corresponding to new tar-
gets (and the neighbouring neurons) are denoted by stars
(black in colour for the RX robot and red colour for the
TX robot).

At the start of the assembly process, the spatial layout
of the scene imposes activity on the two peripersonal
GNG networks. The fuse nearest to a robot along y-
direction is rewarded the highest. Fuses that fetch maxi-
mum reward for each robot elicit highest activity in the
corresponding GNG networks (see GNG snapshot in
panel 1). These maximally rewarding fuses are forwarded
to the two body models of the robots. The internal body
models generate joint space solutions producing motion

570 Cogn Comput (2018) 10:558–576



trajectories to their respective targets. Using the forward
kinematics of the body models, two motion trajectories
are generated in extrinsic space and then analysed for
any possible collisions. In this case (panel 1), no colli-
sions between the trajectories are detected. Hence, the
body models send the synthesized motor commands to
both the TX and the RX robots to grasp the two fuses in

parallel. Next, the TX robot receives the first fuse-box
hole as a target to insert the grasped fuse (panel 2). The
TX body model generates the motion trajectory which is
compared to the RX robot’s current motion trajectory
and no possible collision is detected. Therefore, the TX
robot inserts the fuse and proceeds to grasp the next
target fuse allocated. Meanwhile, the RX robot also

1 2 3

4 5 6

7 8

Both robots grasp fuses in parallel TX inserts Fuse1 into Hole1 

Fuse2 RX

Fuse1 TX 
Hole1 TX

Hole2 RX
Fuse3 TX 

Fuse4 RX
Hole3 TX Hole4 RX

Fuse5 TX Hole5 TX

Hole6 RX

Fuse6 RX

RX inserts Fuse2 into Hole2 

and TX grasps Fuse3

TX inserts Fuse3 into Hole3 and 

RX grasps Fuse4
RX inserts Fuse4 into Hole4 

and TX grasps Fuse5

TX inserts Fuse5 into Hole5; 

RX moves away:avoids COLLISION

RX grasps Fuse6 RX inserts Fuse6 into Hole6

RX TX RX TX

RX

RX TX

Fig. 6 The two industrial robots operating parallelly during an assembly
task in a typical unstructured set up. Different panels numbered in a
sequence show how 6 fuses lying at various spatial locations are

successfully inserted into 6 holes by both robots operating in parallel.
See the text for details and refer to the supplementary video
(Online Resource 1)
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inserts the first fuse (panel 3). So far, the two fuses are
already assembled in parallel, without the need to trigger
any action re-planning for collision avoidance. Panel 4
shows the next sequence of actions with the RX robot
grasping another fuse while the TX robot inserting the
fuse it grasped in panel 3. So far, all the trajectories have
been collision free allowing parallel movements. Note
that with the targets in the peripheries of the workspace
assembled, the GNG neural fields must choose increas-
ingly close-by targets (see panel 5). Thus, the spatial
planning for parallel operation is slowly reaching its
limits, and further parallel operations will lead to colli-
sions as estimated from the next anticipated motion tra-
jectories. This triggers serialization of the next two
movement trajectories to avoid collisions. Hence as seen
in panels 6–7, where the TX robot is to insert the fuse 5
and the RX robot is to grasp the fuse 6, collision is
detected in the internal simulations of the two trajectories
in parallel. Therefore, as the TX robot inserts fuse 5, the
RX robot waits outside the workspace till the TX robot
completes the insertion and moves away, and then the
RX robot approaches fuse 6. Since no more fuses are
remaining, the TX robot initializes while the RX robot
inserts fuse 6. In this way, six fuses lying at various
spatial locations are successfully inserted with both ro-
bots operating collision-free in the shared workspace.
The internal models for peripersonal space representation
keep allocating sub-goals to the two robots at different
time instances during the evolution of the parallel assem-
bly, and internal body models keep generating simulated
movements to allow detection and avoidance of colli-
sions and real movements for assembly operations. The
reader i s re fe r red to the supplementary video
(Online Resource 1) showing the robots performing par-
allel assembly as described in this section.

Cooperation Between the Robots to Achieve
Otherwise Unrealizable Goals

In an assembly task like ours, since objects in the
workspace are positioned randomly, scenarios can arise
where neither of the two robots can perform assembly on
its own. As for example in Fig. 7c, where all the fuses in
the scene are in the peripersonal space of the TX robot,
none of them is reachable to the RX robot and vice versa
for the fuse-box stand. In this case, the TX robot can
pick up the fuses but cannot reach the fuse-box stand
to insert into; similarly, the RX robot cannot reach the
fuses in the first place to begin assembly. However, if the
robots choose to cooperate in a meaningful way, assem-
bly of the fuse-box can be performed. The idea is that
the TX robot can place the fuses at some empty location
in the shared workspace reachable to both the robots,

from where the RX robot can pick them up and insert
them into the fuse-box stand. Here, we describe this pro-
cess of cooperation using the results shown in Fig. 7.

In the scenario depicted in Fig. 7, as the spatial layout
activates the neural fields in the peripersonal space
models, only the peripersonal space model (GNG net-
work) for the TX robot finds a target fuse but there is
no target fuse detected by the RX robot’s GNG network.
Though a fuse-box stand is reachable to the RX robot, it
must select a fuse first to start the assembly; therefore, it
keeps inspecting its peripersonal space constantly for any
fuses. Meanwhile, the target from the TX robot’s GNG
network is forwarded to the TX robot’s body model that
generates and executes a motion trajectory to grasp the
fuse. However, after the TX robot grasps the fuse, its
peripersonal space model cannot detect a fuse-box hole
as the next target. In this case, the TX robot’s peripersonal
space model selects an empty area within the shared
workspace as a dummy target to place the fuse (see Fig.
7a, b). The shared space boundary limits are applied on
the robot’s GNG representation for localization of the
empty area. The process of identifying an empty area in
the shared workspace is discussed before in the ‘Internal
Model for Peripersonal Space Representation’ section.
The TX robot places down the fuse at the empty location
in the shared workspace (Fig. 7c). In the next step, as the
spatial layout activates the GNG network of the RX robot
again, a target fuse is found. The fuse is grasped by the
RX robot (Fig. 7d). Following this, a target hole is also
selected by the RX’s GNG network into which the RX
robot inserts the fuse (Fig. 7e). Next, through GNG acti-
vations, the TX robot gets another fuse as target.
Thereafter, the same sequence of actions as carried out
for the first insertion above is repeated for all the fuses
until the assembly task is complete (Fig. 7f). In summary,
the interactive action sequence during cooperation is: (1)
GNG selection of a fuse by TX; (2) PMP grasping of the
fuse by TX; (3) GNG selection of an empty area by TX;
(4) PMP placing of the fuse in the empty area by TX; (5)
GNG selection of the fuse by RX; (6) PMP grasping of
the fuse by RX; (7) GNG selection of fuse-box hole by
RX; (8) PMP insertion of the fuse into the hole by RX;
and (9) repeat steps 1 to 8 until fuse-box assembled.

Conclusion

Goal-oriented cooperation with other agents in a shared
workspace is a ubiquitous aspect of our day-to-day ac-
tivities and fundamentally requires a synergistic interac-
tion between multiple core subsystems involved in per-
ception, action, learning, prediction and reasoning. In
the setting of a real-world industrial assembly scenario
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where multiple robots are jointly operating in a shared
workspace to realize a goal (in this case the assembly
of a fuse-box), we described a bioinspired neural archi-
tecture for goal-directed cooperation based on the
coupled interactions between multiple internal models,
primarily of the robots’ body and its peripersonal space.
The proposed architecture was evaluated/benchmarked
against a state of the art industrial system performing
the same assembly task (see the Supplementary
Information). The overall performance of the presented
architecture was comparable in all aspects against the
industrial benchmarking system. To our knowledge, this
is one of the first works that employ interacting, learnt
internal models of the body and the peripersonal space
in complex spatial reasoning assembly tasks. It is also
an early attempt to pave way for the application of
cognitive modelling approach to industrial environments
after a rigorous benchmarking process against typically
engineered methods.

The rationale behind the computational framework is
guided on one hand by the emerging studies from

neurosciences that provide converging evidence related to
the existence of internal representations of the body as well
as the peripersonal space in the brain [55, 72, 81] and on
the other hand emerging evidence in support of the embod-
ied simulation hypothesis towards generation of cognitive
behaviour [38, 40]. That humans have an integrated, inter-
nal representation of their body is strongly suggested by
the variety of pathological conditions which can only be
explained by a deficient internal representation [82] or by
sensory illusions [83]. Modern neuroscience has greatly
enriched the concept, with numerous studies [84] identify-
ing cortical areas in fronto-parietal cortex integrating pro-
prioceptive and exteroceptive sensory information to main-
tain a coherent /updated internal representation of the spa-
tiotemporal organization of the body. Further, distributed,
multi-centred neural activity is consistently detected in the
brain during different conditions like imagination of move-
ment (what is doable by oneself), observation/imitation of
other’s actions (what the other is doing/can do) and com-
prehension of language [39–41]. The general insight
emerging from this body of literature is that the

Fig. 7 a The different motion trajectories followed by the two robots to
cooperatively insert a fuse into fuse-box. TX (blue trajectory) places the
fuse in the empty area from where RX (red trajectories) picks it up and
inserts into fuse-box. b The top view of the activity in GNG networks and
the minimally activated neuron (in black colour) within a threshold
distance (see the ‘Internal Model for Peripersonal Space
Representation’ section for mathematical details). The place in the
workspace corresponding to the neural weights of this neuron is the

empty location (green star) in the shared workspace. c The TX robot
placing down the fuse at the empty location. The RX robot picks up the
fuse (in d) from where TX placed it. e RX inserting the fuse. f The
completion of the assembly task by the robots repeating the same
sequence of actions till all holes are filled. Refer to the supplementary
material (Online Resources 2 and 3) for videos of the assembly using
cooperation between robots
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fundamental problems of shaping motor output during ac-
tion execution and providing the self with critical informa-
tion related to feasibility, consequence and understanding
of potential actions (of oneself or others) to engage in goal-
directed reasoning are closely intertwined. From an evolu-
tionary perspective too, in organisms with complex bodies
and inhabiting unstructured environments, actions are
goal-oriented and not just stimulus oriented, fundamental-
ly requiring covert simulation and overt execution of action
to seamlessly alternate during the maturation of purposive
behaviour and social interaction: to maximize success and
ensure survival.

In this context, how multiple internal models (of the
body and the peripersonal space) are concurrently learnt
by two cooperating robots through a process of sensorimo-
tor exploration and then exploited to engage in a range of
anticipations related to the feasibility and consequence of
potential actions thereby facilitating joint goal-directed op-
eration was demonstrated in a range of unstructured sce-
narios. Note that the proposed internal simulation based
architecture is domain-agnostic, i.e. independent of the ac-
tual task being realized by the two robots in the shared
workspace, although in the ‘Results’ section, the

behaviours were demonstrated by means of a fuse-box as-
sembly task. This is because the learnt internal models
themselves capture the invariant aspects, i.e. the robots
own body and its peripersonal space and such a task in-
variant representation can be easily recycled to reason
about any arbitrary joint goals with diverse objects in the
shared workspace. Particularly, in an industrial environ-
ment, the capability to reconfigure/reuse basic assembly
line operation for novel products, with a specified group
of cooperating robots in a short duration is a critical desir-
able feature urgently needing innovative solutions [18].
The bioinspired internal models based neural architecture
seamlessly facilitates reuse to new tasks. Figure 8 shows
the two robots jointly working in the same work cell in a
different assembly scenario, driven by same computational
architecture. Given that the internal models are acquired
locally by the individual robots, the proposed architecture
could be scaled up further with more robotic agents than
two as demonstrated in this article and work is presently
underway in this direction.
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