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H I G H L I G H T S

• Combined experimental/theoretical
method to predict redox potentials of
fuel cell catalysts.

• Highly accurate results for broad set of
experimental conditions and reference
electrodes.

• Simple side chain modifications allow
improvement of open circuit voltage
of up to 10%.

• Newly identified catalyst with even
higher potential providing improve-
ment of ≈25%.
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A B S T R A C T

This article presents a combined experimental/theoretical approach to accurately predict electrochemical redox
potentials based on potential energy calculations. The approach works for experimental setups using different
solvents and different reference electrodes and compensates for shortcomings in the prediction of redox po-
tentials originating from the choice of DFT functional, basis set, and solvation model. The methodology is ap-
plied to two different sets of iron containing complexes which are used as redox catalysts in Chemically
Regenerative Redox Fuel Cells (CRRFCs). For both sets of iron complexes with different 5 N donor ligands, an
average deviation to the experimental values of< 0.02V is obtained. Expectedly, the deviation is slightly larger
with changes being made in the first coordination shell, but is still within the predictive limit. The scheme is then
applied to obtain ligands with both improved properties and lowest production cost.

For the 21st century, fuel cells are regarded as one of the most
promising approaches to efficiently convert chemical energy into
electrical energy. Conventional Proton Exchange Membrane (PEM) fuel
cells use precious metals like platinum to catalyze the oxygen reduction
reaction at the cathode:

O2 + 4 H+ + 4e− → 2 H2O

However, catalyst degradation and the cost of high Pt loading prevent
the broader commercialization of fuel cells. Recently, very promising results
were obtained by use of iron based molecular catalysts [1] in combination
with a solution-phase redox mediator by means of a new flow-through
cathode [2,3], see Fig. 1. Similar to the approach with molybdenum based
polyoxoanions [4,5] the slow oxygen reduction reaction is performed in the
bulk solution rather than on the surface of a precious metal electrocatalyst,
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making it very flexible and adaptable when combining different molecular
catalysts and mediators [6,7].

A key measurable parameter of catalysts and redox mediators, which
relates directly to the voltage efficiency of the redox fuel cell, is the redox
potential. Experimentally, the determination of a redox potential itself is a
routine measurement, however the synthesis, optimization and purification
processes can be very time consuming and costly. A fast, efficient and cheap
method to predict accurately the redox potential, especially for smaller
modifications of already synthetized complexes would significantly reduce
experimental characterization of potential candidates and therefore reduce
time to market. It should, however, be kept in mind that a high redox po-
tential and therefore a high cell voltage does not necessarily guarantee a
high power fuel cell performance, as this also needs a high current density.
The latter, however, does not depend on the redox potential, but on the very
complex electron transfer kinetics, which – among others – is influenced by
factors like the rate of charge transfer between the cathode and the med-
iator or the mediator and the iron catalyst in its different intermediate states
of oxygen reduction.

Applying computational modelling to predict redox potentials has a
surprisingly long history. Already in 1949, Maccoll [8] applied the
Hückel theory [9] to establish a correlation between the energies of the
lowest unoccupied molecular orbital (LUMO) in conjugated organic
molecules and their experimental redox potentials. Since then, more
sophisticated quantum mechanical methodologies like density func-
tional theory (DFT) have been applied to predict redox potentials using
the Gibbs free energy of a redox couple, ΔG0, which is directly linked to
the standard one-electron redox potential, Eredox

0 :

= −ΔG FEredox
0 0 (1)

The simplest approximation to calculate the change in the Gibbs
free energy, ΔG0, is via frequency calculations of the optimized struc-
tures. It can then be obtained from the difference of the potential en-
ergy, ΔE SCF( ), and several correction terms (zero point energy cor-
rection, ΔE ZPE( ), thermal enthalpy correction, ΔH thermal( ), and
thermal entropy correction, TΔS).

= − = + + −ΔG ΔH TΔS ΔE SCF ΔE ZPE ΔH thermal TΔS( ) ( ) ( ) (2)

However, this approximation introduces an unsystematic error and in
addition, the frequency calculations, depending on the size of the molecules,
can be computationally expensive compared to a normal geometry optimi-
zation procedure. On top, the choice of DFT functional, basis set, and sol-
vation model influence the accuracy of the predictions [10–13] leading to too
large deviations from the experimental values and therefore preventing an
easy use as predictive model. To compensate for these shortcomings, several
different computational approaches have been proposed as nicely outlined in
the recent review by Truhlar and coworkers [11]. These methods, however,
lack the simplicity to be used for screening molecules by non-theoreticians.

To approach the problem at hand with as little resources as possible, we
took a combined experimental/theoretical approach: For our predictions, we
rely on small, simple and fast potential energy calculations, E (SCF), while
substituting the more time consuming calculations by experimental values
reported in the literature or from in-house measurements. It is significantly
faster than the conventional approaches and therefore affordable for research
groups without computational resources beyond a desktop PC e.g. within
small and medium sized enterprises (SMEs). In addition, it predicts the redox
potentials very accurately with R2 values of 0.99, see below.

The rationale behind our approach is that for a class of very similar
molecules, the correction terms in equation (2) are considered to be
approximately constant, resulting in a correlation between the redox
potential, Eredox

0 , and the corresponding potential energy, ΔE SCF( ):

∼ +E ΔE SCF const( )redox
0 (3)

In order to obtain the redox potentials relative to the normal hy-
drogen electrode E NHE( )0 , (or any other reference electrode) the va-
lues for the hydrogen half-reaction can also be included in the constant
providing a correlation between the standard electrode potentials re-
lative to the normal hydrogen electrode, E NHE( )0 , and the energy
difference between two redox states of the investigated molecule, in our
case between the Fe(II) and the Fe(III) states of the iron complexes:

∼ − +E NHE E SCF Fe II L E SCF Fe III L const( ) ( , ( ) ) ( , ( ) )0 (4)

Of particular interest for this study were iron complexes with 5N donor
ligands based on the trilen and the N4Py structures (Scheme 1). The starting
geometries of the three complexes [Fe(II)trilen (R=H/Cl/SO3Na)-OH2]2+

were obtained by manually substituting the functional groups of the ligand
and exchanging Cl− to H2O in the crystal structure of [Fe(II)trilen (R=H)-
Cl]+ [14]. The same procedure was followed to generate the starting geo-
metry of [Fe(II)N4Py(R=H/CH3)-OH2]2+ from the crystal structure of [Fe
(II)N4Py(R=H)-Cl]+ [15]. Crystal structures for [Fe(II) (Bz-tpen)-X] with
X=CH3COO−/OCN−/Cl−/SCN−/Br−/I−/CH3CN [16–18] and [Fe(III)
(Bz-tpen)-X] with X=CH3O− [19], [20] were directly taken from the lit-
erature and were modified manually to obtain starting geometries for
X=OH−/F−.

The initial structures were optimized using the B3LYP hybrid functional
[21–26], which has been used for redox calculations [10,12,27,28]. The
B3LYP functional is also known to correctly predict the lowest energy spin
state of iron complexes [28,29] (see also supporting information for details),
in combination with the def2-SVP basis set [30], which has also demon-
strated to provide good geometries for transition metal complexes [31–33].
All calculations were performed using the ORCA software package [34].
Single point calculations were performed on top of the optimized geome-
tries using the def2-TZVP basis set [30,35] together with the COSMO
methodology [36] (using ε=36.6 for acetonitrile and ε=80.4 for water as
solvent).

Fig. 1. Schematic working principle of a PEM fuel cell using the FlowCath® technology. Rather than reducing the oxygen at the cathode, an iron complex (Fe(II)L) is
used as catalyst to reduce the oxygen with a mediator acting as electron source.
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1. Iron complexes with the same 5N-ligand: Bz-trilen complexes in
acetonitrile

Our first set of structures is based on iron complexes with the same Bz-
trilen ligands, see Scheme 1. For all structures, three spin states were calcu-
lated for both Fe(II) and Fe(III) species: Singlet, triplet and quintet for the Fe
(II) state and doublet, quartet and sextet for the Fe(III) state (for details see
SI). All Fe(II) complexes converged to a high spin (quintet) as their ground
state, except from [Fe(II) (Bz-tpen)-NCCH3]2+, for which the ground state is a
singlet, in agreement with experimental findings [17]. All Fe(III) complexes
have a sextet as lowest spin state, except from [Fe(III) (Bz-tpen)-NCCH3]3+

and [Fe(III) (Bz-tpen)-OH]2+, for which the ground state is a doublet. For Fe
(Bz-tpen)-NCCH3, this demonstrates the influence of the π* orbitals of the
NCCH3 molecule, which interact with the d-orbitals of the iron, therefore
stabilizing a low spin configuration in both oxidation states. The energy
difference between the lowest energy state of the Fe(II) and the Fe(III) spe-
cies, ΔE (SCF), is plotted against the experimental redox potential, in this case
E0(Fc/Fc+), see Fig. 2.

It is evident, that due to the combination of experimental and

theoretical values, the predicted values for E0(Fc/Fc+) are highly ac-
curate (R2= 0.99), see Table 1. Therefore the methodology can be used
to quantify the effect of changes in the first coordination shell of the
redox active complexes. This holds equally true for different spin states,
as demonstrated for the Fe(Bz-tpen)-NCCH3 complex.

The calculated set of structures all have 5 N ligand donors,
straightforwardly justifying that the thermal and entropic corrections
can be approximated as constant, see equation (3). The important task
remains to validate whether the methodology works for a different
solvent/reference electrode and, more importantly for changes in the
ligand. The following section demonstrates complexes with modified
ligands in water.

2. Ligand modifications: aqueous trilen and N4Py complexes

Our second set of structures is based on iron complexes with dif-
ferent 5 N donor ligands related to trilen and N4Py, see Scheme 1. As in
the previous case, for all structures, three spin states were calculated for
both Fe(II) and Fe(III) states; singlet, triplet and quintet for the Fe(II)
state and doublet, quartet and sextet for the Fe(III) state (for details see
SI). All Fe(II) complexes converged to a high spin (quintet) as their
ground state, except from Fe(II)N4Py(R=Me), for which the ground
state is a singlet. While the energy difference is very small, this is in
agreement with significant changes observed in the UV/vis spectrum of
Fe(II)N4Py(R=H) and Fe(II)N4Py(R=Me). The lowest spin state of
all Fe(III) complexes is a doublet. The energy difference between the
lowest energy state of the Fe(II) and the Fe(III) species, ΔE (SCF), is
plotted against the experimental redox potential, in this case E0(NHE),
see Fig. 3.

As for the previous case, due to the combination of experimental
and theoretical values, the predicted values for E0(NHE) are highly
accurate (R2= 0.99), see Table 2. The methodology then can be used to
quantify the effect of adding electron donating (R=CH3) and electron
withdrawing (R=CF3,CN) groups to the ligand. The electron with-
drawing groups reduce the electron density of the ligand in the vicinity
of the iron center and therefore reduce the stabilization by coulombic
interactions between the ligand and the iron center. This effect is
stronger for the higher charged Fe(III) than for the Fe(II) center and the
energy gap between the two species increases, resulting in a higher
redox potential. Depending on the substituents, R, different ligands
might cause a change of the pH in solution, which will influence the
redox potential. For the measurements of the redox potentials it is

Scheme 1. Structure of the three used 5-N donor ligands used for parametrization and the fluorinated trilen ligand containing the trifluoromethyl (TFM) group.

Fig. 2. Correlation between the calculated energy difference between the Fe(II)
and Fe(III) structures, ΔE (SCF) and the redox potential E0(Fc/Fc+). The filled
squares are the values obtained from the experimental redox potentials for [Fe
(II) (Bz-tpen)-X] with X=CH3O−/OCN−/Cl−/SCN−/Br−/I−/CH3CN co-
ordinating to the iron center. The open squares show the calculated values for
X=OH−/F−/CH3COO−. The dashed lines demonstrate the extrapolation be-
yond the measured range of redox potentials. For details see also Table 1.

Table 1
Calculated energy difference between the Fe(II) and Fe(III) structures, ΔE (SCF), and the resulting redox potential E0(Fc/Fc+) in acetonitrile for Fe(Bz-tpen)-X. The
experimental values are given in parenthesis.

X CH3O− OH− F− CH3COO− OCN− Cl− SCN− Br− I− CH3CN

ΔE (SCF)/(kcal/mol) 102.3 103.5 113.3 114.9 116.5 118.6 118.0 119.9 112.1 128.5
E0(Fc/Fc+)/V −0.305

(−0.293a)
−0.265 0.060 0.113 0.167

(0.145b)
0.237
(0.216b)

0.216
(0.223b)

0.281
(0.255b)

0.318
(0.350b)

0.565
(0.576b)

a Averaged value for RO− taken from Table 2 of Flores-Leonar [37].
b Taken from Ortega-Villar [17].

K. Sen et al. Journal of Power Sources 399 (2018) 443–447

445



important to ensure that they are carried out under the same experi-
mental conditions.

Predicting the redox potential of unknown ligands may involve
extrapolation beyond the known experimental range (0.608V–0.780V,
solid line in Fig. 3), as by default we try to identify complexes with
higher redox potentials than the ones already measured experimentally.
The improvement in open circuit voltage for the best candidate
(R=CN) is≈ 10%.

3. Fine tuning of ligand properties: aqueous TFM-trilen complexes

Results from the previous section suggest that trilen (R=CN)
should be used as new experimental lead structure. However, replacing
the SO3Na group reduces the solubility of the complexes and adding a
reactive CN group can cause side reactions and degradation of the
catalyst. The trifluoromethyl (TFM) group exerts a similar electron
withdrawing effect as CN, but is chemically inert. By changing the trilen
ligand into TFM-trilen, see Scheme 1, we are able to increase the redox
potential by roughly 0.2V, see Table 3. TFM-trilen (R= SO3Na) with a
predicted redox potential of 0.976V proves to be the best ligand among
the series studied by allowing for an increased open circuit voltage of
≈25%, reducing side reactions of the active oxygen species with the
methyl group of the trilen ligand and maintaining its solubility. A

potential synthetic route for the predicted ligand is outlined in Scheme
2, using H-trilen as synthetized by Mialane et al. [38] and then con-
verting its N-H group into a N-CF3 group [39,40]. Having identified a
catalyst with significantly increased redox potential, the future progress
depends on the synthesis of improved ligands and the identification of
improved mediator molecules which match the redox properties of the
new catalysts, while maintaining a high current density.

4. Conclusion

The combined experimental/theoretical method as described and
validated above provides an elegant way of calculating highly accurate
redox potentials in different solvents and with different reference
electrodes while requiring only a limited number of parameters: a
starting geometry (generally based on crystal structures of similar
molecules) and a limited amount of redox potentials, measured under
the same experimental conditions. No a priory information about the
spin states of the metal center is needed. This method provides a simple,
cheap and efficient way to guide and direct development of a class of
similar molecules having a direct impact on the performance of redox
fuel cells.

In the actual case of iron catalysts, as analyzed by the above
method, the redox potential increases with addition of electron
withdrawing groups (R= CN/CF3/SO3Na) and decreases with elec-
tron donating groups (R= CH3). The key parameter influencing the
redox potential is the amount of electron density at the donor atoms
of the ligand coordinating to the iron center. This effect is stronger
for the higher charged Fe(III) than for the Fe(II) center and the en-
ergy gap between the two species increases, resulting in a higher
redox potential. This effect is stronger the closer the electron with-
drawing group is located to redox active center, as evident from the
TFM-trilen case.

Fig. 3. Correlation between the calculated energy difference between the Fe(II)
and Fe(III) structures, ΔE (SCF) and the redox potential E0(NHE). The filled
squares are the values obtained from the experimental complexes [Fe(II)trilen
(R=H/Cl/SO3Na)-OH2]2+ and [Fe(II)N4Py(R=H/CH3)-OH2]2+. The open
squares show the calculated values for the complexes [Fe(II)trilen (R=CH3/
CF3/CN)-OH2]2+. The dashed lines demonstrate the extrapolation beyond the
measured range of redox potentials. For details see also Table 2.

Table 2
Calculated energy difference between the Fe(II) and Fe(III) structures, ΔE (SCF), and the predicted redox potential E0(NHE) for different 5 N donor ligands in aqueous
solution. The experimental values are given in parenthesis. It should be noted that a high redox potential on its own does not guarantee a high performance fuel cell.

N4Py
(R=H)

N4Py
(R=CH3)

trilen
(R=CH3)

trilen
(R=H)

trilen
(R=Cl)

trilen
(R=SO3Na)

trilen
(R=CF3)

trilen
(R=CN)

ΔE (SCF)/(kcal/mol) 124.2 124.5 124.9 127.1 131.1 131.8 135.3 136.1
E0(NHE)/V 0.615

(0.608a)
0.621
(0.615a)

0.630 0.676
(0.689a)

0.761
(0.757a)

0.775
(0.780b)

0.849 0.866

a Taken from Ref. [7].
b This work.

Table 3
Calculated energy difference between the Fe(II) and Fe(III) structures, ΔE (SCF),
and the predicted redox potential E0(NHE) for equivalent trilen and TFM-trilen
complexes. It should be noted that a high redox potential on its own does not
guarantee a high performance fuel cell.

trilen
(R=H)

trilen
(R= SO3Na)

TFM-trilen
(R=H)

TFM-trilen
(R= SO3Na)

ΔE (SCF)/(kcal/mol) 127.1 131.8 136.4 141.3
E0(NHE)/V 0.676 0.775 0.872 0.976
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