
 

1534-4320 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSRE.2017.2726779, IEEE
Transactions on Neural Systems and Rehabilitation Engineering

IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. X, NO. X, JANUARY 201X 1

Current Source Density Estimation Enhances the
Performance of Motor-Imagery related

Brain-Computer Interface
Dheeraj Rathee∗, Haider Raza, Girijesh Prasad Senior Member, IEEE, Hubert Cecotti Senior Member, IEEE

Abstract—The objective is to evaluate the impact of EEG
referencing schemes and spherical surface Laplacian (SSL) meth-
ods on the classification performance of motor-imagery (MI)
related brain-computer interface systems. Two EEG referenc-
ing schemes: common referencing, common average referencing
(CAR) and three surface Laplacian methods: current source den-
sity (CSD), finite difference method, and SSL using realistic head
model, were implemented separately for pre-processing of the
EEG signals recorded at the scalp. A combination of filter bank
common spatial filter for features extraction and support vector
machine for classification was used for both pairwise binary
classifications and four-class classification of MI tasks. The study
provides three major outcomes: (i) the CSD method performs
better than CR providing a significant improvement of 3.02 %
and 5.59 % across six binary classification tasks and four-class
classification task, respectively; (ii) the combination of a greater
number of channels at the pre-processing stage as compared to
the feature extraction stage yields better classification accuracies
for all the Laplacian methods; (iii) the efficiency of all the surface
Laplacian methods reduced significantly in the case of a fewer
number of channels considered during the pre-processing.

Index Terms—Motor imagery, Brain-computer interface, Pre-
processing, Spatial filtering, Spherical surface Laplacian.

I. INTRODUCTION

Electroencephalographic oscillations, recorded over the
scalp, can be the basis of alternative modes of communica-
tion and control, in particular as brain-computer interfaces
(BCIs) [1], [2], [3]. Non-invasive EEG-based BCI systems
acquire neural signals at scalp level, analyse them to evaluate
specific features of EEG activity that are related to voluntary
imagery/execution tasks and, finally utilise the outcomes as
control signals that are further relayed to efferent devices.
During the past few decades, these systems hold a signifi-
cant amount of research interest due to the relative ease of
conducting experiments, inexpensiveness, and minimal risk to
participants. In general, there are two ways to generate the
class-specific features. Firstly, time-domain potentials gener-
ated in response to specialized external stimulation (e.g., P300,
steady-state evoked potentials, and evoked potentials), imple-
mented in case of reactive BCI systems [4], [5]. Secondly,
features generated from spontaneous brain signals generated
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during the performance of endogenous tasks, for instance,
motor imagery (MI), emotion imagery, and mental arithmetic
tasks, considered during active BCI paradigms [6], [7]. The
latter approach of BCI implementation is highly popular, in
particular, MI-related BCI which is one of the most explored
EEG-based paradigms [8], [9], [10].

The overall performance of MI-related BCI system depends
on various factors, e.g., pre-processing of the raw brain sig-
nals, extraction of information (features) related to the motor
task, and finally the application of the extracted features to
the output device (controlling process). Most of the current
research studies focus on feature extraction algorithms and
their optimization for performance improvement although pre-
processing operations can affect the performance of the system
significantly [11], [12], [13]. The pre-processing stage gener-
ally involves cleaning the raw EEG data for unwanted artefacts
(e.g., external noise, muscular, and ocular interferences) and/or
reducing the effect of volume conduction (VC) and non-
stationarity from scalp acquired EEG signals [14], [15]. All
these measures account for the significant increase in the
signal-to-noise ratio (SNR) and hence improvise the perfor-
mance of BCI systems. The complex multi-dimensional EEG
data recorded at scalp level provide a direct inference of the
electrical activity associated within a large neuronal population
of the brain cortex. VC results from the mixing of spatial-
temporal information generated at the cortical sources of the
brain as the tissues and bone structure between the brain cortex
and the scalp induce superimposition of electrophysiological
dynamics of the signal [16], [17].

Several measures can be applied for minimizing the effect
of volume conduction at scalp level recordings. Different
referencing schemes (e.g., Common referencing (CR), Bipolar,
Common average referencing (CAR)) and Laplacian filtering
methods (e.g., Hjorth, spline surface Laplacian methods) have
been implemented earlier for this purpose [18], [19], [20],
[21], [22] (for further details refer to [23]). Apart from these,
independent component analysis (ICA) [24], principal com-
ponent analysis (PCA) [25], and advanced source localization
techniques (i.e. beamforming, sLORETA) [26], [27] have been
utilised for enhancement of the BCI performance. Addition-
ally, recent studies using source localization techniques have
shown that linear inverse transforms can be applied in real time
and have shown significant improvement in motor imagery
task classification [28], [29], [30]. The Laplacian filtering can
contribute to the enhancement of SNR by reducing the spatial
noise [31] and hence assists in constraining the potential
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sources of brain activity [32]. The surface Laplacian has spatial
bandpass characteristics that depend on factors such as the
spacing of the electrodes and any spatial smoothing of the
particular implementation of the Laplacian being considered.
Signals such as sensorimotor rhythms are often focused (i.e.,
they have a relatively high spatial frequency) relative to
artifacts such as eye blinks and EKG. In addition, since the
surface Laplacian emphasizes local sources, it minimizes the
signal components volume conducted from distant sources.
The surface Laplacian also improves spatial resolution [33]
and thus can aid source identification. The role of the surface
Laplacian in source constraint can be evaluated in part by the
extent to which it produces signals that are uncorrelated.

Prior research studies that involve qualitative comparison
of different spatial transformation methods often restrict their
analysis to different algorithms or to different parameters for
the same algorithm (e.g., different parameters of CSD, source
imaging techniques, or different ICA algorithms) [31], [32],
[34]. Other published works emphasize on the theoretical
perspectives during comparing different referencing schemes
or Laplacian filtering methods, with little or no consideration
of their impact on BCI performance [35], [36]. Although the
findings of these studies may contribute significantly in the
optimisation of the algorithms, limited information has been
provided for the BCI researchers regarding improvement in
classification accuracies. A recent study showed enhancement
of binary classification accuracies during motor imagery task
with CAR implementation as compared to CR [37]. However,
the findings of the study are preliminary (only 5 subjects and
two classes) and did not include spline based Laplacian meth-
ods, which recently attracted a lot of EEG-based studies [20],
[38].

In this paper, we evaluate the impact of two referencing
schemes: CR (left mastoid) and CAR, and three spherical sur-
face Laplacian (SSL) filtering methods: current source density
(CSD) [20], [39], finite difference method (SSF ) [38], and SSL
using realistic head model (SSR) [22], on the classification
performance of MI-based BCI systems. The raw EEG signal
was pre-processed separately using above mentioned five
methods and SVM classifier has been implemented for binary
and multi-class classifications based on features generated by
filter-bank CSP algorithm. Furthermore, the effect of reducing
the number of the channels at the pre-processing level and
at feature extraction level has also been studied. Here, we
have not considered the discrete methods such as the Hjorth’s
Laplacian [19], which is a planar scheme (i.e., subtracting
the linearly-weighted potential of the nearest neighbors) as
the estimates fail at the edges of a two-dimensional montage,
effectively reducing the number of channels with available
EEG data [31], [40]. Thus, implementation of Hjorth’s Lapla-
cian may restrict the analysis as the availability of the pre-
processed EEG channels will not be uniform across the
different competing methods. Additionally, a study involving
empirical comparison of various spatial filtering methods
showed better performance of CAR as compared to small
laplacian method [41].

The remainder of this paper is organized as follows: Sec-
tion II provides a detailed description of the various referenc-

ing schemes and Laplacian methods applied for pre-processing
the raw EEG data. Section III describes the EEG dataset
included in the study and applied methodology with complete
signal processing pipeline. Section IV illustrates the results of
Spatial and temporal analysis, comparison of performances of
FBCSP based MI-BCI, and effect of the different combinations
of number of channels selected during pre-processing and
feature extraction step. Section V provides a discussion of
the outcomes, impact, and limitation of this study along with
possible future enhancements.

II. REFERENCING AND LAPLACIAN FILTERING METHODS

A. Common Reference(CR)

Scalp EEG signal acquisition systems use differential ampli-
fiers by taking the measurements of two electrodes (the main
channel and a reference channel) as input and generate a signal
for the corresponding EEG channel as the difference between
the two inputs with subsequent amplification. The choice of
input electrodes to each amplifier is known as a montage. The
most basic montage is CR, where the potential difference at
each electrode in the montage is computed with a common
reference, for instance, left mastoid, right mastoid or ear lobe.

B. Common Average Reference(CAR)

The CAR scheme can be implemented by subtracting the
average potential of all EEG channels from scalp potential of
each channel. The method enhances the SNR by reducing the
noise common to all the channels [42]. If the scalp potentials
are assumed to be generated by point sources, and the whole
head is uniformly covered by EEG channels (symmetrically
and equally spaced), the CAR transforms the scalp potential
distribution into a zero-mean spatial potential distribution [42].
Although the assumptions of uniform and complete channel
coverage as well as point sources are generally difficult to
manage in practice, the referencing scheme still provides
nearly reference free scalp EEG recordings. The CAR montage
can be implemented according to the equation,

bi = ai −
N∑
j=1

(aj/N) (1)

where ai ∈ R1×T is the potential difference between ith chan-
nel and a common reference, N is the number of channels,
and T is the number of time samples in each channel data.

C. Current Source Density (CSD) Method

Current source densities (CSDs) over the scalp can be
estimated by the method presented by Perrin et al. [20], [39],
with spherical spline interpolations. The process involves the
projection of the real scalp surface onto the sphere followed
by spherical interpolation of the scalp potentials using spher-
ical spline surfaces. Let us consider the similar case as of
Section II-B. The cosine distance between different pairs of
electrode interpolation locations can be calculated by:

cos(P,Q) = 1− (xP − xQ)2 + (yP − yQ)2 + (zP − zQ)2

2
(2)
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where the Cartesian coordinates of the channel locations P and
Q are (xP , yP , zP ) and (xQ, yQ, zQ), respectively. Further, the
transformation matrices can be obtained using the following
expressions:

H(l) = − 1

4π

∞∑
n=1

(
(2n+ 1)2

nm(n+ 1)m

)
·Kn(l) (3)

G(l) =
1

4π

∞∑
n=1

(
2n+ 1

nm(n+ 1)m

)
·Kn(l) (4)

where, Kn(l) is the Legendre polynomial of degree n, and
m is the spline flexibility index. In this study, we choose the
values of n and m as 50 and 4, respectively. It should be noted
that the values of Kn(l) can be calculated by the following
recurrence relation:

(n+ 1)Kn+1(l) = (2n+ 1)Kn(l)− nKn−1(l) (5)

The transformation matrices have to be estimated only once,
based on the Cartesian coordinates of the electrode locations.
Finally, the current source densities can be determined by
implementing the equation as below

C(E) =
N∑
i=1

ciH(cos(E,Ei)) (6)

where, E is the particular spherical projection and ci a
computable constant for the ith electrode, can be obtained
by solving following equations:

(G+ λ)C + Tc0 = A (7)
T ′C = 0

where,

T ′ = [1, 1, . . . , 1]

C ′ = [c1, c2, ..., cN ]

A′ = [a1, a2, ..., aN ]

G = (Gi,j) = G(cos(Ei, Ej))

λ = smoothing constant(1.0e− 5)

The estimation process of CSDs involves three major steps.
The first step is to generate two transformation matrices termed
G and H using Eqs. (3), (4), and (5). These transformation
matrices depend only on the number and relative position
of surface locations included in the EEG montage (i.e., their
cosine distances), which can be estimated using Eq. (2). For
this reason, these matrices have to be computed only once for
any given EEG montage. The second step is to compute the
constant vector (ci) using Eq. (7). The length of the constant
vector is equal to number of electrodes in the EEG montage.
The final step is to compute the CSD values for each EEG
channel data using Eq. (6).

D. Finite-difference (SSF ) method

The SSF method, presented by Oostendorp et al. [38],
provides the approximation of surface Laplacian operator on
a triangulated 3D spherical surface. Thus, an interpolation
for scalar functions on a rectangular grid on a planar surface

is extended to the interpolation function on a closed three-
dimensional triangulated surface. If the potential is measured
in a regular rectangular grid, the surface Laplacian Ls(i, j) at
grid point (i, j) can be estimated by averaging the acquired
potentials a(k, l) at the direct neighbors of (i, j) using:

Ls =
1

d2
(ai−1,j + ai+1,j + ai,j−1 + ai,j+1 − 4ai,j) (8)

where, d is the distance between the nodes in the grid.
If the grid of known potential values is irregular, the above

method can be replaced by one of the methods proposed by
Huiskamp [43], in which the value of the surface Laplacian
at electrode position lo can be estimated from appropriately
weighted potential readings of the direct neighbors at positions
li in a triangular grid, where i ∈ {1, . . . ,M}, and M is
the number of direct neighbors. This approximation can be
expressed by:

Ls =
4

r̄η

M∑
i=1

(
1− cos(φ−i )

sin(φ−i )
+

1− cos(φ+i )

sin(φ+i )

)
.

1

ri
(ai − a0) (9)

where, ri is the length of vector ~ri = ~li − ~l0, r̄ is the mean
value of ri over all M direct neighbors of ~l0. φ−i is the angle
from ~ri−1 to ~ri and φ+i is the angle from ~ri to ~ri+1. η is a
normalization factor and given as:

η =
M∑
i=1

(
1− cos(φ−i )

sin(φ−i )
+

1− cos(φ+i )

sin(φ+i )

)
(10)

E. Spline surface Laplacian filtering for Realistic head
geometry(SSR)

The SSR method has the advantage of being readily appli-
cable to the surfaces defined by MRI-based triangular meshes
without the help of any intermediate representations, and it
does not require any coordinate transformations as well [22].
The implementation of SSR involves a two-step operation.
The first step is to estimate a continuous potential distribution
function F (r) using the discrete inputs from various EEG
electrode locations using a 3D polyharmonic spline inter-
polation scheme (Eq. 11), identical to the spherical spline
Laplacian [17].

F (r) =
N∑
i=1

pKi
m−1(r) +Qm−1 (11)

where, Ki
m−1(r) is a polyharmonic radial basis function,

Qm−1 (osculating polynomial) acts as a smoothing function
for the spline, and p is the spline coefficient.

In the second step, the SL operator ∇2
s is created over a

defined underlying surface, using the Laplace-Beltrami oper-
ator ∇2, which takes the form of the trace of the function’s
Hessian

Ls(F ) = ∇2
s(F ) = tr [∇∇F ] (12)

where, tr[.] is the trace operator.
By explicitly removing the surface normal component from

the gradient of the function F (r), the operator is restricted to
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(a) (b)

Fig. 1. (a) Montage of the acquired EEG data representing the 22 sensors used for pre-processing, and the 10 sensors used for feature extraction. (b) System
overview with the different processing steps.

the surface tangent plane. Further, SL is considered to be the
negative of the resulting operator to facilitate visualization and
source analysis [17].

∇2
s(F ) = −tr [∇(I − n′n)∇F ] (13)
∇2

s(F ) = −tr [∇∇F ] + tr [∇(n′n)∇F ] (14)

The second term on the right side of the above equation can
be further expanded as,

tr [∇(n′n)∇F ] = n(∇∇F )n′ + n(tr[∇n]).∇F +

(∇F )′(∇n)n′ (15)

The three expanded terms on the right side of Eq. 15 utilize
distinct levels of geometrical variations: information of surface
normals n, the trace of the curvature tensor ∇n, and the
complete form of geometry (i.e., Jacobian matrix of surface
normals). Furthermore, for generating analytical expression of
the SSR the surface is discretized using triangular mesh form,
where vertices and edges represent the continuous surface
geometry.

On a general surface given by a triangular mesh, the inter-
polation points are defined on the vertices of each triangle. The
vertex normal can be generated from the surrounding triangle
face normal while the weighting of a particular triangle face
normal is set to be inversely related to the face area of
that triangle [44]. To estimate the Jacobian matrix at each
triangle vertex, the one-ring neighbors of a particular vertex
is estimated at first, followed by calculation of the finite
difference of vertex positions and unit normal vectors on these
vertices.

III. MATERIAL AND METHODS

A. EEG Dataset

The BCI competition-IV [45], dataset 2A is a publically
available MI related EEG dataset. The dataset comprised of
4 classes (left hand, right hand, both feet, and tongue) MI
from nine subjects namely [A01-A09]. Two sessions, one for
training and one for evaluation, were recorded from each
subject. The data were recorded with 22 monopolar EEG
channels (with left mastoid as reference and right mastoid as
ground) and 3 monopolar electrooculogram (EOG) channels.
In this study, we have selected 10 channels near motor cortex
as depicted in Fig. 1(a), for feature extraction.

B. Filter Bank Common Spatial Pattern (FBCSP)

The filter bank common spatial pattern (FBCSP) is a widely
used feature extraction algorithm. FBCSP is an extension of
the common spatial pattern (CSP), where n different bandpass
filters are used at the first stage to decompose the data into
multiple frequency bands in the temporal domain [46]. CSP
is typically used to create spatial filters for detecting Event-
Related Desynchronization/Synchronization (ERD/ERS). A
total of 10 bandpass filters in MI-related frequency range
are used ([8-12], [10-14], [12-16],. . . ,[26-30]) for creating the
filter bank.

C. Signal processing

According to Fig. 1 (b) in MI related EEG-based BCI, the
following steps have been implemented for task detection:
raw EEG signal acquisition, pre-processing, feature extraction
(i.e. temporal and spatial filtering), and classification. Initially,
raw EEG signals from the complete set of 22 channels have
been considered and then pre-processing has been performed
to improve the spatial resolution using each of the following
methods: CR, CAR, CSD, SSF , and SSR. For SSR, we
used the default head MRI model provided with the SSLtool
toolbox [47]. Further, in feature extraction stage, a bandpass
filter bank has been applied to decompose the EEG signals into
different frequency bands (FBs) by employing an 8th order,
zero-phase forward and reverse bandpass Butterworth filter.
A total of 10 bandpass filters with overlapping bandwidths,
including [8-12], [10-14], [12-16], [14-18], [16-20], [18-22],
[20-24], [22-26], [24-28], [26-30] Hz, are used to process
the data from 10 EEG channels. Later, spatial filtering has
been performed on each FBs, which helps to maximize the
divergence of bandpass filtered signals under one class, and
minimize the divergence for the other class. In MI-related
BCI systems, both physical and imaginary movements cause
a growth of bounded neural rhythmic activity known as
ERD/ERS. The CSP algorithm is widely used for calculating
spatial patterns for detecting (ERD/ERS) [46]. Each combi-
nation of the bandpass filter and CSP algorithm calculates
the discriminative features that are distinct to the particular
frequency range. After doing CSP filtering, the discriminating
features have been extracted using a time window of 3 seconds
after the cue onsets. This particular time segment is responsible
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Fig. 2. Topographical plots representing the grand average correlation values (R2) between average bandpower values (within µ-band (8-12Hz) and β-band
(13-30Hz)) for six binary classification tasks and five referencing methods. R2 values were averaged over subjects and sessions and scalp plotted for all 22
electrodes.

for bagging MI related ERD/ERS activities. The features
obtained after applying CSP algorithms from all FBs are
merged to create the set of input features for training/testing
a classifier. Finally, the performance evaluation is obtained
by measuring the accuracies for both two-class (i.e. the six
pairwise binary classification tasks including four classes )
and four-class BCI approaches using a linear SVM classifier.
For the four-class approach, features were generated in one-
versus-rest condition and four linear SVM classifiers were
implemented for estimation of classification accuracies. In
our study, we trained the classifiers on the features of the
first session, while evaluated the performance on the second
session. Moreover, we repeated the whole process for three
different configurations of channel selection (i.e. 22/22, 22/10,
and 10/10). We use the couple (Ns0/Ns1) to denote the
number of sensors that are used for pre-processing (Ns0) and
for feature extraction (Ns1).

The computational work has been performed on an Intel
Core i7-4790 with 16 GB of memory, using in-house programs
written in MATLAB V8.1 (The Mathworks, Natick, MA). The
Matlab codes for implementing three SSL methods have been
obtained from publicly available toolboxes(CSD toolbox [48],
SSLtool [22], and Fieldtrip [47]).

IV. RESULTS

A. Spatial and temporal analysis

To study the topographical responses of the methods, we im-
plemented a similar approach published in a recent study [15].
bivariate Pearsons correlation coefficients (R) between class
target (i.e., a dummy variable, coded −1 and +1) and band-
power features in µ (8-12Hz) and β (13-30Hz) frequency

bands for each electrode have been generated. These values
were estimated for each binary task pair, subject, and session
for 3 s of MI related period. Further group averaged R2

values (across subjects and sessions) were estimated and scalp
plotted over the 22 channel EEG montage for all pairwise
binary classification tasks and referencing methods in µ and β
frequency bands (see Fig. 2). The maplimit for all the topoplots
within a pairwise binary task is kept same for making the plots
comparable across various referencing methods and frequency
bands. Fig. 2 clearly depicts higher values of correlation for
CAR, CSD, SSF and SSR as compared to CR. Also, for
most of the pairs of classes, CSD topographic plots showed
relatively bigger yellow color spots as compared to other
methods. This evidently suggests that CSD provided better
spatial localization and higher values of R2. Furthermore, time
evolution plots of the averaged and normalized envelopes of
EEG signals (for µ and β frequency bands) from C3 and C4
channel for the four imagery classes are presented in Fig. 3.
Here, we included EEG data segment from 0 to 6 s from each
trial, including both the rest state and motor imagery state. The
envelope of the time series has been obtained using absolute
values of Hilbert transformed signals. The envelope plots show
better separability between two classes for three Laplacian and
CAR methods as compared to CR.

B. BCI performances
The SVM-based accuracies (in %) for each pairwise binary

classification task are presented in Tables I. Here, the CR
method has been selected as a baseline method for pairwise
comparisons with other methods. Wilcoxon signed rank test
reveals a statistically significant (p < 0.05, FDR corrected for
multiple comparisons) difference between the baseline method
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CR CAR CSD SSF SSR

Fig. 3. Time-Evolution plots of the bandpassed EEG signal envelopes for the µ-band and β-band of the C3 and C4 channels for the four imagery tasks. The
envelopes have been computed for both rest state and MI state (0 to 6 s). The values are normalized between 0 and 1. [a.u.: arbitrary units]

and CSD for all the binary classification tasks except for left
vs. tongue whereas CAR, SSF , and SSR failed to provide
consistent results. Furthermore, the differences between the
six binary classifications were evaluated to examine if there
exists a combination of two MI tasks among the four that
would emerge better than others but this evaluation showed
no statistically significant difference across the six binary
classification results. Table II provides the mean(SD) (across
six binary tasks) of classification accuracies for the five
referencing schemes. The results in Table II clearly showed
CSD provided highest accuracies for eight out of nine sub-
jects. The average performance across subjects and the six
binary classification tasks is 78.75 ± 11.81, 79.33 ± 11.53,
82.36±11.04, 77.48±12.23, and 78.06±11.93 for CR, CAR,
CSD, SSF and SSR methods, respectively. By considering all
the six binary tasks together, i.e., with 54 samples for each pre-
processing method, pairwise comparisons indicate a significant
difference between the baseline and the CSD method (p<10e-
8).

The classification accuracies for four-class BCI approach
are presented in Table III. The average performance across
subjects is 52.55±12.66, 53.51±11.12, 58.14±9.64, 52.74±
10.49, and 52.28 ± 9.59 for CR, CAR, CSD, SSF and SSR

methods, respectively (chance level accuracy=25%). Here,
the CR method has been selected as a baseline method for
pairwise comparisons with other methods. Wilcoxon signed
rank test reveals a statistically significant difference between
the baseline method and CSD (p = 0.0039) whereas other
comparisons failed to provide significant differences. More-

over, CSD enhances the four-class BCI accuracy by more than
5%.

C. Impact of altered number of channels at preprocessing
stage and feature extraction stage

The performances of three channel-selection configurations
((22/10), (10/10), and (22/22)) at the pre-processing stage
and feature extraction stage , have been evaluated for CAR,
CSD, SSF , and SSR, and the results are depicted in Fig 4.
The mean accuracies across the six binary classification tasks,
for each configuration, are 79.33 ± 11.53, 76.20 ± 11.89,
and 75.96 ± 12.40 for CAR; 82.36 ± 11.05, 79.69 ± 11.99,
and 77.67 ± 13.54 for CSD; 77.48 ± 12.23, 75.46 ± 12.74,
and 76.45 ± 13.07 for SSF ; 78.06 ± 11.93, 75.68 ± 13.02,
and 77.27 ± 12.82 for SSR. Pairwise comparisons with false
discovery rate (FDR) correction indicated that the (22/10)
system provides the best performance for both CAR and CSD
while (22/22) results in worst performance. Although for SSF ,
the pattern is different as we found no statistically signifi-
cant difference between (22/10) and (22/22) whereas (10/10)
configuration performed worst. Besides, SSF ’s performance
is significantly better in (22/10) when compared with (10/10).
For SSR, however, we found no significant differences across
the three configurations.

D. Impact of the position of CSD in the EEG signal processing
pipeline

The impact of the performance related to the position of
CSD was evaluated by comparing different feature extraction
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TABLE I
CLASSIFICATION ACCURACY (IN %) FOR THE CONFIGURATION (22/10): SIX PAIRWISE BINARY CLASSIFICATION RESULTS OBTAINED BY USING LINEAR

SVM CLASSIFIER. STATISTICAL SIGNIFICANCE (p− values) HAS BEEN ESTIMATED USING WILCOXON SIGNED RANK TEST.

Subj. Left vs. Right Left vs. Feet Left vs. Tongue
CR CAR CSD SSF SSR CR CAR CSD SSF SSR CR CAR CSD SSF SSR

A01 90.97 91.67 93.06 91.67 88.19 97.22 96.53 97.92 95.83 87.50 88.19 92.36 93.06 95.83 96.53
A02 61.11 61.81 68.06 59.03 56.94 75.00 74.31 81.94 69.44 75.00 72.22 68.75 72.22 65.28 65.28
A03 90.97 87.50 93.06 90.28 93.75 86.81 88.19 90.28 88.89 94.44 93.75 91.67 93.75 88.89 87.50
A04 69.44 70.83 77.08 77.08 67.36 75.00 83.33 87.50 79.17 75.00 86.11 88.89 87.50 88.89 89.58
A05 70.83 72.22 72.22 65.97 60.42 65.28 63.19 68.06 64.58 65.97 75.69 75.00 77.08 71.53 62.50
A06 65.28 62.50 65.97 64.58 64.58 70.83 68.75 70.83 70.83 65.97 66.67 66.67 70.83 65.28 65.97
A07 68.75 70.83 78.47 64.58 80.56 81.94 85.42 88.89 83.33 84.03 94.44 90.28 90.28 90.28 84.03
A08 92.36 95.14 97.22 95.83 95.83 75.00 79.17 77.08 77.08 87.50 83.33 79.86 84.03 68.06 76.39
A09 90.28 86.81 90.28 86.81 76.39 90.97 76.39 91.67 83.33 86.81 97.22 95.14 97.92 93.06 97.22

Mean 77.78 77.70 81.71 77.31 76.00 79.78 79.48 83.80 79.16 80.25 84.18 83.18 85.19 80.79 80.56
SD 12.99 12.68 11.87 14.12 14.53 10.26 10.21 10.05 9.93 10.17 10.66 10.85 9.81 12.88 13.53

p-value - 0.979 0.006 0.624 0.478 - 0.949 0.004 0.869 0.820 - 0.307 0.176 0.122 0.154

Subj. Feet vs. Tongue Right vs. Feet Right vs. Tongue
CR CAR CSD SSF SSR CR CAR CSD SSF SSR CR CAR CSD SSF SSR

A01 75.69 73.61 76.39 76.39 70.14 93.75 96.53 95.14 95.14 94.44 97.92 97.92 97.92 97.22 98.61
A02 77.78 75.69 83.33 63.89 79.86 68.75 76.39 90.28 68.75 68.75 66.67 69.44 70.83 64.58 70.83
A03 65.97 78.47 70.14 77.08 79.86 86.11 89.58 86.81 80.56 70.83 97.22 95.14 97.22 89.58 88.19
A04 68.06 71.53 68.06 67.36 70.83 83.33 87.50 93.75 90.28 90.97 76.39 86.11 84.72 84.72 72.22
A05 59.03 59.72 66.67 55.56 61.11 64.58 65.28 66.67 72.22 62.50 69.44 73.61 72.22 64.58 70.83
A06 63.89 63.19 70.83 61.81 64.58 73.61 72.92 74.31 70.83 59.03 60.42 65.28 65.28 65.97 67.36
A07 77.78 76.39 79.86 78.47 76.39 95.14 97.22 97.92 96.53 96.53 89.58 97.22 94.44 90.97 97.92
A08 85.42 84.03 87.50 70.83 71.53 72.22 74.31 77.78 82.64 77.08 65.28 62.50 68.06 56.94 86.11
A09 86.81 74.31 92.36 77.78 83.33 62.50 64.58 65.97 61.11 77.08 93.75 92.36 96.53 86.81 77.08

Mean 73.38 72.99 77.24 69.91 73.07 77.78 80.48 83.18 79.78 77.47 79.63 82.18 83.02 77.93 81.02
SD 9.67 7.48 9.12 8.24 7.41 12.22 12.58 12.31 12.47 13.78 15.00 14.45 13.89 14.76 12.04

p-value - 0.333 0.004 0.071 0.720 - 0.003 0.001 0.273 0.793 - 0.131 0.008 0.278 0.765

TABLE II
AVERAGE CLASSIFICATION ACCURACIES (IN %) FOR FIVE REFERENCING

SCHEMES ACROSS SIX BINARY TASKS. THE GRAND MEAN, SD AND
p− values ARE ESTIMATED BY CONSIDERING ALL THE SIX BINARY
TASKS AND NINE SUBJECTS TOGETHER (I.E. 54 ACCURACY VALUES).
STATISTICAL SIGNIFICANCE HAS BEEN ESTIMATED USING WILCOXON

SIGNED RANK TEST.

Subj. CR CAR CSD SSF SSR

A01 90.62 91.44 92.25 92.01 89.24
A02 70.25 71.06 77.78 65.16 69.44
A03 86.81 88.43 88.54 85.88 85.76
A04 76.39 81.37 83.10 81.25 77.66
A05 67.48 68.17 70.49 65.74 63.89
A06 66.78 66.55 69.68 66.55 64.58
A07 84.61 86.23 88.31 84.03 86.57
A08 78.94 79.17 81.94 75.23 82.41
A09 86.92 81.60 89.12 81.48 82.99

Grand Mean 78.76 79.33 82.36 77.48 78.06
SD 11.81 11.53 11.04 12.23 11.92

p-value - 0.2067 1.29e-08 0.1067 0.4779

systems: 1) FBCSP only, 2) CSD on the raw signal and
then FBCSP, 3) bandpass filtering followed by CSD on each
frequency band and then CSP, 4) same as 3 but without CSP,
i.e. with bandpower features only, and 5) CSD on the raw EEG
data followed by bandpower feature extraction. The variations
of performance in relation to the place of CSD in the signal
processing pipeline are depicted in Fig. 5, by considering the
set of 22 channels for pre-processing, and 10 channels for
classification. In the systems 4 and 5, i.e. without CSP, the
number of features is therefore 100. Across the six binary

TABLE III
CLASSIFICATION ACCURACY (IN %) FOR THE CONFIGURATION (22/10):
4-CLASS CLASSIFICATION RESULTS OBTAINED BY USING LINEAR SVM

CLASSIFIERS IN ONE-VERSUS-REST CONFIGURATION. THE CHANCE LEVEL
ACCURACY IS 25%. STATISTICAL SIGNIFICANCE (p− values) HAS BEEN

ESTIMATED USING WILCOXON SIGNED RANK TEST.

Subj. CR CAR CSD SSF SSR

A01 65.97 68.05 67.70 63.54 66.31
A02 36.46 43.06 49.65 44.79 42.71
A03 57.99 51.74 58.33 59.03 53.13
A04 50.35 57.99 58.68 44.79 56.60
A05 37.50 42.36 48.26 36.81 40.28
A06 37.85 42.71 43.40 42.01 40.97
A07 60.42 61.81 66.32 58.33 60.42
A08 56.94 44.44 58.68 63.19 48.96
A09 69.44 69.44 72.22 62.15 61.11

Mean 52.55 53.51 58.14 52.74 52.28
SD 12.66 11.12 9.64 10.49 9.59

p-value - 0.5313 0.0039 1 0.9141

classification tasks, the average accuracy is 78.75 ± 11.82,
82.36±11.05, 80.92±11.13, 70.64±11.15, and 70.90±11.66
with the five feature extraction systems. Post-hoc analyses with
a Wilcoxon signed rank test indicated that the solution 2, i.e.,
to apply CSD on the raw signal, provides the best performance.
Without CSP, there was no difference between applying CSD
after or before bandpassed signals. Finally, the results confirm
the impact of CSP in the increase of the accuracy.
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(a) CAR

(b) CSD

(c) SSF

(d) SSR

Fig. 4. Difference of performance in relation to the number of sensors
selected for pre-processing and classification. The couple (Ns0/Ns1) denotes
the number of sensors used for pre-processing (Ns0) and for feature extraction
(Ns1). The error bars represent the standard error across subjects.

Fig. 5. Difference of performance in relation to the position of CSD in the
feature extraction pipeline. The error bars represent the standard error across
subjects.

V. DISCUSSION AND CONCLUSION

Pre-processing methods are often overlooked and the focus
for improving MI based BCI has been mainly on feature ex-
traction techniques that maximize the difference between two
classes. Although, with the present study, we found that the
feature extraction methods do play a major role in improving
classification accuracy, implementing efficient pre-processing
techniques can further enhance the performance of a BCI sys-
tem. Five different pre-processing methods, namely, common
reference, common average reference, current source density,
finite-difference, and spherical surface Laplacian with realistic
head geometry, have been compared in order to address their
effect on FBCSP based MI-related BCI performance. More
particularly, we have shown that current source density pro-
vides improvement of about 3% (in case two-class approach)
and 6% (in case four-class approach) compared to the widely
used common average referencing. Moreover, the study also
estimates the effect of varying the number of EEG channels
distinctly during pre-processing stage and feature extraction
stage. As we included various distinct algorithms in our signal
processing pipeline (i.e. CSD, bandpass filtering, and CSP)
which can be positioned in several ways, the impact of all
possible combinations, for instance, changing the position of
CSD (the winning pre-processing method) and utilising the
technique with and without FBCSP on the performance of
MI-related BCI has also been studied.

Our analysis yielded several major outcomes. The compara-
tive analysis of all the six binary BCI classification accuracies
and four-class classification approach for (22/10) combination
showed better performance of CSD method as compared
to other methods. Furthermore, the performance differences
are statistically significant in five out of six comparisons. A
recent study also showed better efficiency of CSD than finite-
difference (SSF ) as well as CAR method for counteracting
muscular noise in scalp EEG signals [36]. Grand averaged
(across all subjects and all binary classifications) analysis of
performances showed CAR and CR as better pre-processing
methods as compared to SSF and SSR. The results related to
the impact of the number of channels for pre-processing and
feature extraction (classification) indicated three key findings.
First, choosing a large number of channels at pre-processing
stage (possibly whole scalp coverage) and confining to the mo-
tor cortex related channels during feature extraction, yielded
better classification accuracies for all the Laplacian methods
as compared to other combinations. Second, the efficiency
of all the methods reduced significantly with a decrease in
the number of channels considered during the pre-processing
(e.g. from (22/10) to (10/10)), showing the importance of
acquiring the signal with a large number of channels. Third,
the number of channels for classification should be reduced
after the Laplacian methods as the inclusion of all the channels
add redundant information to the classifier (the performance
of the (22/10) was better than (22/22)). The study involving
variation in the position of CSD method in EEG signal pro-
cessing pipeline displayed that applying the bandpass filtering
before CSD decreased the classification accuracies in all six
comparisons and hence supports the utilisation of CSD as the
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first step in the pipeline. Finally, CSD with FBCSP enhanced
the grand mean accuracy by approximately 17% as compared
to CSD without CSP.

There are several limitations to be considered while using
surface Laplacian for BCI systems and and can be taken into
account in future studies. First, montage density of EEG data
is a critical consideration, affecting both the surface potential
and surface Laplacian estimates [49]. A dense electrode array
EEG montage (64 or more electrodes), providing whole head
coverage and with inter-electrode distances less than 2 cm, are
generally preferred to a low-density EEG montage (less than
21) with inter-electrode distances greater than 6 cm [36]. Per-
haps, this issue can be seen as a possible cause of the reduced
effectiveness of the two other Laplacian methods other than
CSD (i.e SSF and SSR). But for BCI application, affording
high-density montage may not be a suitable choice for varied
reasons, e.g., high preparation time, subject inconvenience
and it adds to the computational complexity of the system.
Second, the pursuit of the maximum accuracy in estimation
of the surface Laplacian has strengthened the predominant
consideration of high spatial sampling of the EEG signal
in particular to avoid spatial aliasing and other topographic
misrepresentations [50], [51]. However, this principle either
rejects the usefulness of low density or it overlooks the evi-
dence that the surface Laplacian transform still renders more
useful EEG measures than those obtained from direct surface
potentials. Here, we consider that the usefulness of surface
Laplacian must be determined with regards to the research
objective and in the case of BCI research, their effectiveness
can majorly be assessed in terms of the classification accuracy
to predict the targeted identity. Third, with surface Laplacian
pre-processing, several studies showed suppression of low
spatial frequency (i.e., originating from deep and/or distributed
generator sources) by the Laplacian effect of spatial high-
pass filtering. Although the phenomenon has been studied for
EEG coherency, its possible effect on spatial filtering based
feature extraction methods (as for FBCSP) still needs to be
determined [52].

BCI illiteracy is a significant issue in BCI, and new robust
methods have to be proposed to improve the accuracy of
command detection. Thanks to CSD, we have shown that it
is possible to significantly improve the performance of both
binary classification tasks and multi-class classification task
accuracies. Because the method depends only on the position
of the sensors on the scalp, and not the paradigm itself, it
can be easily used and integrated into a signal processing
pipeline for motor imagery detection. Finally,the methods
described in this study are already available in freely accessible
toolboxes (e.g. CSD toolbox, SSLtool, and Fieldtrip), and they
are therefore ready to be used within a signal processing
framework dedicated to the recognition of motor imagery for
BCI [22], [47], [48].
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