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Abstract

Increasing the capacity of recurrent neu-
ral networks (RNN) usually involves aug-
menting the size of the hidden layer, with
significant increase of computational cost.
Recurrent neural tensor networks (RNTN)
increase capacity using distinct hidden
layer weights for each word, but with
greater costs in memory usage. In this pa-
per, we introduce restricted recurrent neu-
ral tensor networks (r-RNTN) which re-
serve distinct hidden layer weights for fre-
quent vocabulary words while sharing a
single set of weights for infrequent words.
Perplexity evaluations show that for fixed
hidden layer sizes, r-RNTNs improve lan-
guage model performance over RNNs us-
ing only a small fraction of the parameters
of unrestricted RNTNs. These results hold
for r-RNTNs using Gated Recurrent Units
and Long Short-Term Memory.

1 Introduction

Recurrent neural networks (RNN), which com-
pute their next output conditioned on a previously
stored hidden state, are a natural solution to se-
quence modeling. Mikolov et al. (2010) applied
RNNs to word-level language modeling (we refer
to this model as s-RNN), outperforming traditional
n-gram methods. However, increasing capacity
(number of tunable parameters) by augmenting the
size H of the hidden (or recurrent) layer — to
model more complex distributions — results in a
significant increase in computational cost, which
is O(H2).

Sutskever et al. (2011) increased the perfor-
mance of a character-level language model with
a multiplicative RNN (m-RNN), the factored ap-
proximation of a recurrent neural tensor network

(RNTN), which maps each symbol to separate hid-
den layer weights (referred to as recurrence matri-
ces from hereon). Besides increasing model ca-
pacity while keeping computation constant, this
approach has another motivation: viewing the
RNN’s hidden state as being transformed by each
new symbol in the sequence, it is intuitive that dif-
ferent symbols will transform the network’s hid-
den state in different ways (Sutskever et al., 2011).
Various studies on compositionality similarly ar-
gue that some words are better modeled by matri-
ces than by vectors (Baroni and Zamparelli, 2010;
Socher et al., 2012). Unfortunately, having sepa-
rate recurrence matrices for each symbol requires
memory that is linear in the symbol vocabulary
size (|V |). This is not an issue for character-level
models, which have small vocabularies, but is pro-
hibitive for word-level models which can have vo-
cabulary size in the millions if we consider surface
forms.

In this paper, we propose the Restricted RNTN
(r-RNTN) which uses only K < |V | recurrence
matrices. Given that |V | words must be assigned
K matrices, we map the most frequent K − 1
words to the first K − 1 matrices, and share the
K-th matrix among the remaining words. This
mapping is driven by the statistical intuition that
frequent words are more likely to appear in di-
verse contexts and so require richer modeling, and
by the greater presence of predicates and function
words among the most frequent words in standard
corpora like COCA (Davies, 2009). As a result,
adding K matrices to the s-RNN both increases
model capacity and satisfies the idea that some
words are better represented by matrices. Re-
sults show that r-RNTNs improve language model
performance over s-RNNs even for small K with
no computational overhead, and even for small
K approximate the performance of RNTNs us-
ing a fraction of the parameters. We also exper-
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iment with r-RNTNs using Gated Recurrent Units
(GRU) (Cho et al., 2014) and Long Short-Term
Memory (LSTM) (Hochreiter and Schmidhuber,
1997), obtaining lower perplexity for fixed hidden
layer sizes. This paper discusses related work (§2),
and presents r-RNTNs (§3) along with the evalua-
tion method (§4). We conclude with results (§5),
and suggestions for future work.

2 Related Work

We focus on related work that addresses lan-
guage modeling via RNNs, word representation,
and conditional computation.

Given a sequence of words (x1, ..., xT ), a lan-
guage model gives the probability P (xt|x1...t−1)
for t ∈ [1, T ]. Using a RNN, Mikolov et al. (2010)
created the s-RNN language model given by:

ht = σ(Whxt + Uhht−1 + bh) (1)

P (xt|x1...t−1) = xTt Softmax(Woht + bo) (2)

where ht is the hidden state represented by a vec-
tor of dimension H , σ(z) is the pointwise logistic
function, Wh is the H × V embedding matrix, Uh

is the H×H recurrence matrix, Wo is the V ×H
output matrix, and bh and bo are bias terms. Com-
putation is O(H2), so increasing model capacity
by increasing H quickly becomes intractable.

The RNTN proposed by Sutskever et al. (2011)
is nearly identical to the s-RNN, but the recurrence
matrix in eq. (1) is replaced by a tensor as follows:

ht = σ(Whxt + U
i(xt)
h ht−1 + bh) (3)

where i(z) maps a hot-one encoded vector to
its integer representation. Thus the Uh tensor
is composed of |V | recurrence matrices, and at
each step of sequence processing the matrix cor-
responding to the current input is used to trans-
form the hidden state. The authors also proposed
m-RNN, a factorization of the U i(xt)

h matrix into
Ulhdiag(vxt)Urh to reduce the number of param-
eters, where vxt is a factor vector of the current
input xt, but like the RNTN, memory still grows
linearly with |V |. The RNTN has the property that
input symbols have both a vector representation
given by the embedding and a matrix representa-
tion given by the recurrence matrix, unlike the s-
RNN where symbols are limited to vector repre-
sentations.

The integration of both vector and matrix rep-
resentations has been discussed but with a focus

on representation learning and not sequence mod-
eling (Baroni and Zamparelli, 2010; Socher et al.,
2012). For instance, Baroni and Zamparelli (2010)
argue for nouns to be represented as vectors and
adjectives as matrices.

Irsoy and Cardie (2014) used m-RNNs for the
task of sentiment classification and obtained equal
or better performance than s-RNNs. Methods that
use conditional computation (Cho and Bengio,
2014; Bengio et al., 2015; Shazeer et al., 2017) are
similar to RNTNs and r-RNTNs, but rather than
use a static mapping, these methods train gating
functions which do the mapping. Although these
methods can potentially learn better policies than
our method, they are significantly more complex,
requiring the use of reinforcement learning (Cho
and Bengio, 2014; Bengio et al., 2015) or addi-
tional loss functions (Shazeer et al., 2017), and
more linguistically opaque (one must learn to in-
terpret the mapping performed by the gating func-
tions).

Whereas our work is concerned with updating
the network’s hidden state, Chen et al. (2015)
introduce a technique that better approximates
the output layer’s Softmax function by allocating
more parameters to frequent words.

3 Restricted Recurrent Neural Tensor
Networks

To balance expressiveness and computational cost,
we propose restricting the size of the recurrence
tensor in the RNTN such that memory does not
grow linearly with vocabulary size, while still
keeping dedicated matrix representations for a
subset of words in the vocabulary. We call these
Restricted Recurrent Neural Tensor Networks (r-
RNTN), which modify eq. (3) as follows:

ht = σ(Whxt + U
f(i(xt))
h ht−1 + b

f(i(xt))
h ) (4)

where Uh is a tensor of K < |V | matrices of size
H ×H , bh is a H ×K bias matrix with columns
indexed by f . The function f(w) maps each vo-
cabulary word to an integer between 1 and K.

We use the following definition for f :

f(w) = min(rank(w),K) (5)

where rank(w) is the rank of word w when the
vocabulary is sorted by decreasing order of uni-
gram frequency.

This is an intuitive choice because words which
appear more often in the corpus tend to have more
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Figure 1: PTB test PPL as K varies from 1 to
10000 (100 for gated networks). At K = 100, the
r-RNTN with f mapping already closely approxi-
mates the much bigger RNTN, with little gain for
bigger K, showing that dedicated matrices should
be reserved for frequent words as hypothesized.

variable contexts, so it makes sense to dedicate a
large part of model capacity to them. A second ar-
gument is that frequent words tend to be predicates
and function words. We can imagine that predi-
cates and function words transform the meaning
of the current hidden state of the RNN through
matrix multiplication, whereas nouns, for exam-
ple, add meaning through vector addition, follow-
ing Baroni and Zamparelli (2010).

We also perform initial experiments with r-
RNTNs using LSTM and GRUs. A GRU is de-
scribed by

rt = σ(W r
hxt + U r

hht−1 + brh) (6)

zt = σ(W z
hxt + U z

hht−1 + bzh) (7)

h̃t = tanh(W h
h xt + Uh

h (rt � ht−1) + bhh) (8)

ht = zt � ht−1 + (1− zt)� h̃t (9)

and an LSTM by

ft = σ(W f
h xt + Uf

hht−1 + bfh) (10)

it = σ(W i
hxt + U i

hht−1 + bih) (11)

ot = σ(W o
hxt + Uo

hht−1 + boh) (12)

c̃t = tanh(W c
hxt + U c

hht−1 + bch) (13)

ct = it � c̃t + ft � ct−1 (14)

ht = ot � tanh(ct) (15)

We create r-RNTN GRUs (r-GRU) by making Uh
h

and bhh input-specific (as done in eq. (4)). For r-
RNTN LSTMs (r-LSTM), we do the same for U c

h

and bch.

4 Materials

We evaluate s-RNNs, RNTNs, and r-RNTNs by
training and measuring model perplexity (PPL) on
the Penn Treebank (PTB) corpus (Marcus et al.,
1994) using the same preprocessing as Mikolov
et al. (2011). Vocabulary size is 10000.

For an r-RNTN with H = 100, we vary the ten-
sor size K from 1, which corresponds to the s-
RNN, all the way up to 10000, which corresponds
to the unrestricted RNTN. As a simple way to eval-
uate our choice of rank-based mapping function f ,
we compare it to a pseudo-random variant:

fmod(w) = rank(w) mod K (16)

We also compare results to 1) an s-RNN with
H = 150, which has the same number of parame-
ters as an r-RNTN with H = 100 and K = 100.
2) An m-RNN with H = 100 with the size of
factor vectors set to 100 to match this same num-
ber of parameters. 3) An additional r-RNTN with
H = 150 is trained to show that performance
scales with H as well.

We split each sentence into 20 word sub-
sequences and run stochastic gradient descent via
backpropagation through time for 20 steps with-
out mini-batching, only reseting the RNN’s hid-
den state between sentences. Initial learning rate
(LR) is 0.1 and halved when the ratio of the valida-
tion perplexity between successive epochs is less
than 1.003, stopping training when validation im-
provement drops below this ratio for 5 consecu-
tive epochs. We use Dropout (Srivastava et al.,
2014) with p = .5 on the softmax input to reduce
overfitting. Weights are drawn from N (0, .001);
gradients are not clipped. To validate our pro-
posed method, we also evaluate r-RNTNs using
the much larger text81 corpus with a 90MB-5MB-
5MB train-validation-test split, mapping words
which appear less than 10 times to 〈unk〉 for a to-
tal vocabulary size of 37751.

Finally, we train GRUs, LSTMs, and their r-
RNTN variants using the PTB corpus and parame-
ters similar to those used by Zaremba et al. (2014).
All networks use embeddings of size 650 and a
single hidden layer. Targeting K = 100, we set
H = 244 for the r-GRU and compare with a
GRU with H = 650 which has the same num-
ber of parameters. The r-LSTM has H = 254
to match the number of parameters of an LSTM

1http://mattmahoney.net/dc/textdata.html
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PTB text8 PTB
Method H # Params Test PPL # Params Test PPL Method H # Params Test PPL
s-RNN 100 2M 146.7 7.6M 236.4 GRU 244 9.6M 92.2

r-RNTN f 100 3M 131.2 11.4M 190.1 GRU 650 15.5M 90.3
RNTN 100 103M 128.8 388M - r-GRU f 244 15.5M 87.5
m-RNN 100 3M 164.2 11.4M 895.0 LSTM 254 10M 88.8
s-RNN 150 3M 133.7 11.4M 207.9 LSTM 650 16.4M 84.6

r-RNTN f 150 5.3M 126.4 19.8M 171.7 r-LSTM f 254 16.4M 87.1

Table 1: Comparison of validation and test set perplexity for r-RNTNs with f mapping (K = 100 for
PTB, K = 376 for text8) versus s-RNNs and m-RNN. r-RNTNs with the same H as corresponding
s-RNNs significantly increase model capacity and performance with no computational cost. The RNTN
was not run on text8 due to the number of parameters required.

with H = 650. The training procedure is the
same as above but with mini-batches of size 20,
35 timestep sequences without state resets, initial
LR of 1, Dropout on all non-recurrent connections,
weights drawn from U(−.05, .05), and gradients
norm-clipped to 5.

5 Results

Results are shown in fig. 1 and table 1.
Comparing the r-RNTN to the baseline s-RNN

with H = 100 (fig. 1), as model capacity grows
with K, test set perplexity drops, showing that r-
RNTN is an effective way to increase model ca-
pacity with no additional computational cost. As
expected, the f mapping outperforms the baseline
fmod mapping at smaller K. As K increases, we
see a convergence of both mappings. This may be
due to matrix sharing at large K between frequent
and infrequent words because of the modulus op-
eration in eq. (16). As infrequent words are rarely
observed, frequent words dominate the matrix up-
dates and approximate having distinct matrices, as
they would have with the f mapping.

It is remarkable that even with K as small as
100, the r-RNTN approaches the performance of
the RNTN with a small fraction of the parameters.
This reinforces our hypothesis that complex trans-
formation modeling afforded by distinct matrices
is needed for frequent words, but not so much for
infrequent words which can be well represented
by a shared matrix and a distinct vector embed-
ding. As shown in table 1, with an equal number
of parameters, the r-RNTN with f mapping out-
performs the s-RNN with a bigger hidden layer.
It appears that heuristically allocating increased
model capacity as done by the f based r-RNTN
is a better way to increase performance than sim-

ply increasing hidden layer size, which also incurs
a computational penalty.

Although m-RNNs have been successfully em-
ployed in character-level language models with
small vocabularies, they are seldom used in word-
level models. The poor results shown in table 1
could explain why.2

For fixed hidden layer sizes, r-RNTNs yield
significant improvements to s-RNNs, GRUs, and
LSTMs, confirming the advantages of distinct rep-
resentations.

6 Conclusion and Future Work

In this paper, we proposed restricted recurrent
neural tensor networks, a model that restricts the
size of recurrent neural tensor networks by map-
ping frequent words to distinct matrices and infre-
quent words to shared matrices. r-RNTNs were
motivated by the need to increase RNN model
capacity without increasing computational costs,
while also satisfying the ideas that some words
are better modeled by matrices rather than vec-
tors (Baroni and Zamparelli, 2010; Socher et al.,
2012). We achieved both goals by pruning the size
of the recurrent neural tensor network described
by Sutskever et al. (2011) via sensible word-to-
matrix mapping. Results validated our hypothesis
that frequent words benefit from richer, dedicated
modeling as reflected in large perplexity improve-
ments for low values of K.

Interestingly, results for s-RNNs and r-GRUs
suggest that given the same number of parame-
ters, it is possible to obtain higher performance
by increasing K and reducing H . This is not the

2It should be noted that Sutskever et al. (2011) suggest
m-RNNs would be better optimized using second-order gra-
dient descent methods, whereas we employed only first-order
gradients in all models we trained to make a fair comparison.
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case with r-LSTMs, perhaps to due to our choice
of which of the recurrence matrices to make input-
specific. We will further investigate both of these
phenomena in future work, experimenting with
different combinations of word-specific matrices
for r-GRUs and r-LSTMs (rather than only Uh

h and
U c
h), and combining our method with recent im-

provements to gated networks in language model-
ing (Jozefowicz et al., 2016; Merity et al., 2018;
Melis et al., 2018) which we believe are orthogo-
nal and hopefully complementary to our own.

Finally, we plan to compare frequency-based
and additional, linguistically motivated f map-
pings (for example different inflections of a verb
sharing a single matrix) with mappings learned
via conditional computing to measure how exter-
nal linguistic knowledge contrasts with knowledge
automatically inferred from training data.
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