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ABSTRACT 

Naturally occurring mutations found in one of the two W-loop substructures in human 

cytochrome c are associated with low blood platelet count (thrombocytopenia). Both W-loops 

participate in the formation of conformers associated with cytochrome c peroxidase activity 

and apoptotic function. At alkaline pH values the Met80 ligand to the ferric heme iron 

dissociates and a lysine residue in the 71-85 W-loop coordinates to the iron. The alkaline 

isomerisation has been the focus of extensive kinetic studies and it is established that a 

deprotonation triggers the release of the Met80 ligand (pKtrigger). A second deprotonation 

stabilises a pentacoordinate heme form (pKa2). In this study, site-directed variants at the 41 

and 48 positions in the 40-57 W-loop and at the 81 and 83 positions in the 71-85 W-loop 

reveal that conformational transitions in the 71-85 W-loop, leading to the alkaline or 

peroxidatic conformers, are controlled by the 40-57 W-loop. We find that the variants causing 

thrombocytopenia, G41S and Y48H, lower the pKtrigger and increase pKa2. Our results are 

presented in a mechanistic framework, depicted by a cube, that accounts for the pH 

dependencies of the equilibrium and kinetic parameters governing the alkaline transition of 

the native protein and W-loop variants. The data are most consistent with the trigger for 

Met80 replacement by a lysine being a deprotonation within a hydrogen bonded unit that 

links the two W-loops rather than an individual group. Such a proposal aligns with the entatic 

contribution made by the same unit in controlling the Met80-Fe(III) bond strength.  
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INTRODUCTION 

Mitochondrial cytochrome c (Cc) is a small (104 ± 10 amino acids), globular water-soluble 

protein with a heme group covalently attached to the polypeptide chain via thioether bonds to 

the cysteines of a CXXC motif 1. Cc possesses a high degree of secondary structure, with the 

polypeptide fold containing five α-helices and two Ω-loops (Fig. 1). At pH 7 the heme iron is 

hexacoordinate with His18 and Met80 acting as the axial ligands (Fig. 1). From its re-

discovery by Keilin in 1925 2 until 1996 the role of Cc was considered to be solely that of an 

electron carrier in the mitochondrial respiratory chain, oscillating between its Fe(II) and 

Fe(III) oxidation states 1. Now, however, it is firmly established that Cc is a multifunctional 

protein with roles that extend beyond its primary function of acting as an electron shuttle in 

oxidative phosphorylation 3. Roles in apoptosis, redox signalling and an involvement in the 

mitochondrial oxidative folding machinery have been discovered 3-5. Under apoptotic 

conditions, Cc complexes with the phospholipid cardiolipin (CL) to gain peroxidase activity 
6, translocates into the cytosol to create the multicomponent caspase activating apoptosome 7, 

and enters the nucleus where it impedes nucleosome assembly 8. This multifunctional nature 

of Cc arises, in part, from the flexibility of its polypeptide fold coupled with the lability of the 

axial Met80 ligand in the Fe(III) state. The two Ω-loops (Fig. 1) are central to the 

conformational flexibility of ferriCc 9, 10, and play critical roles in the altered alkaline 

isomerisations of medically-significant natural mutations of human Cc (hCc), as shown 

herein. 

 FerriCc has five pH dependent conformational states linked by protonation events 

corresponding to four distinct pKa values 11. The hexacoordinate His/Met form, commonly 

referred to as the native state or state III Cc, dominates at and around neutral pH. Upon 

titrating state III Cc to alkaline pH, an alkaline conformer is formed (state IV Cc) 11, that 

results from the disruption of the Fe-S(Met80) bond and replacement of the Met80 residue as 

an axial ligand with a Lys residue located in the 71-85 W-loop; Lys 73, Lys79 or a mixture of 

the two depending upon solution conditions 12-14. This conformational change in ferriCc is 

known as the alkaline transition and when measured under equilibrium conditions has an 

apparent pKa of ~ 9, depending on species and solution conditions 1, 15, 16. From pH jump 

kinetic data, Davis and co-workers 17 identified an ionisable group, with a pKa of ~ 11, that, 

following deprotonation, is coupled to a slow conformational change that leads to the 

dissociation of the Met80 ligand and its replacement by a Lys. The identity of this 

‘triggering’ ionisation has sparked intense debate in the Cc literature, but the unequivocal 
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identification of the trigger group (or groups) has not been satisfactorily deduced 16, 18. 

Extensive spectroscopic endeavours have identified several possible groups that may serve as 

the trigger 3, 14, 16. Deprotonation of the incoming ligand i.e. Lys73 and/or Lys79 has been 

considered itself to be the trigger 19, despite chemically Lys-modified Cc showing that even 

though the modified Lys side chains are not ionisable, the alkaline isomerisation still occurs 

with a small upward shift in 

the apparent pKa by ~0.5 to 

that of the unmodified protein 
20, 21. Other groups to be 

suggested as the trigger have 

included His18 15, 22, 23, the 

ligand to the heme iron, 

Tyr67 17, 24, an internal H2O 

molecule (wat166 in yeast Cc 

X-ray structure) 25, and a 

heme propionate 26, 27. 

Interestingly, the latter three 

groups all interact with each 

other through an extensive H-

bond network that also 

includes Asn52 and Thr78 and culminates in the OH group of Tyr67 H-bonding to the Sg 

atom of Met80 28-30 (Fig. 1). Through this H-bond network, communication between the 40-

57 W-loop and the 71-85 W-loop occurs (Fig. 1).  

 The two W-loops are the first structural units to unfold on Cc’s unfolding pathway 31-

34 with the unfolding rate of the 71-85 W-loop equivalent to the rate of the slow 

conformational change associated with Lys coordination, following Met80 dissociation in the 

alkaline isomerisation. The 40-57 W-loop unfolding rate is equal to that of an internal 

deprotonation rate at pH values > 10.5, an ionisation process that is not assigned to the trigger 

group 21, 35. Thus, the trigger mechanism and the formation of the alkaline conformer would 

appear to be governed by the interplay between the two W-loops. Based on the relationship 

between the unfolding rates of the W-loops and key events in the alkaline isomerisation, 

Maity et al. 35 have provided a counter-view to the schemes requiring a triggering ionisation 

for the alkaline isomerisation. They suggest that a triggering ionisable group additional to the 

	
	

Figure 1: X-ray structure of hCc (PDB entry 3zcf). The 
location of amino acids, a water molecule (grey sphere) and 
the resulting hydrogen bonding networks shown in red 
dashes, that may form a unit and have a role in ‘triggering’ 
the transition of the Met80 bound state of hCc (state III) to 
the alkaline conformer (state IV) as discussed in the main 
text. Note that the side chain of Ser47 is not shown.	



	 5 

Lys that becomes the replacement ligand is not needed, pointing out that since the alkaline 

isomerisation is an equilibrium reaction that will populate the lowest free-energy state, a pH-

dependent trigger is not needed in a kinetic sense 35. However, as we discuss later, this view 

has not generally found acceptance in the field with subsequent publications being based on 

the scheme of Davis et al. 17. 

Under neutral conditions state III ferriCc can access a non-native conformer that has 

peroxidatic activity 36. This arises due to an equilibrium between the hexacoordinate His/Met 

form and a pentacoordinate form in which the Met80 has dissociated 37. The population of 

this conformer is exceedingly low but nevertheless sufficient for being the cause of the 

observed peroxidatic behaviour of Cc in the presence of H2O2 36, 38. Under healthy conditions 

this conformer assists in controlling the levels of reactive oxygen species (ROS) but during 

the early phases of mitochondrial apoptosis it peroxidises the phospholipid CL 6. Three 

mutations in the hCc gene leading to the G41S, Y48H and A51V variants in the 40-57 W-

loop, have been discovered 39-42 and result in a rare autosomal dominant disorder, 

thrombocytopenia, where patients have a low platelet count resulting from increased 

mitochondrial apoptosis 39. In vitro studies have revealed the G41S and Y48H variants have 

an increased population of the peroxidatic form 10, 30, 43, in the order WT < G41S < Y48H, 

and the apparent pKa of the alkaline transition is lowered by ~ 1 pH unit 10. NMR studies 

have provided firm evidence that the increased population of the pentacoordinate form in the 

G41S and Y48H variants arises through extensive dynamic fluctuations in the 40-57 W-loop 

and to a lesser extent in the 71-85 W-loop 9, 10. Thus, these findings support the notion that a 

dynamic coupling between these two structural units play a key role in accessing the 

peroxidatic conformer of hCc, as well as the formation of the alkaline conformer. 

 To explore further the conformational transitions that lead to the dissociation of the 

Met80 ligand and the switch of ligand to the alkaline conformer we have used site-directed 

variants in the two W-loops of hCc. We reveal that the conformational transitions in the 70-85 

W-loop, that give rise to the alkaline and peroxidatic conformers, are controlled by the 

dynamics of the 40-57 W-loop, which also regulates the pKa values of two ionisable groups 

that are involved in Met80 dissociation. Our results are discussed within a mechanistic 

framework that brings the various conformational and protonation/deprotonation events into 

a consistent whole, and provides a platform from which to design future experimental 

approaches.  
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MATERIALS AND METHODS 

Site-directed mutagenesis, over-expression and sample preparation  

The I81A, V83G and I81A/V83G variants of hCc were constructed using the Quikchange 

mutagenesis (Stratagene) protocol (see Supporting Information). Over-expression of wild-

type (WT) hCc and all variants was carried in E. coli BL21(DE3) RIL cells (Invitrogen) and 

purified as previously described 30. Horse heart Cc (Sigma, type VI) was used without further 

purification. Oxidized Cc proteins were prepared by the addition of excess K3[Fe(CN)6], 

followed by removal of K3[Fe(CN)6] and K4[Fe(CN)6] and exchanged into a desired buffer 

using a PD-10 column (GE Healthcare). Protein concentration was determined with a Cary 

60 spectrophotometer (Agilent) and a molar extinction coefficient (e) of 106 mM-1 cm-1 at 

409 nm. Horse heart carboxymethyl Cc (Cm-Cc), in which the heme is pentacoordinate due 

to the Met80 ligand being caboxymethylated and no longer able to coordinate to the heme 

iron, was prepared as previously described 44. 

 

Chemical denaturation and alkaline pH titrations  

Far-UV CD spectra at 20 oC was recorded in the wavelength range 250-190 nm with an 

Applied Photophysics Chirascan CD spectrophotometer (Leatherhead, UK) for oxidized 

proteins in 10 mM potassium phosphate, 50 mM potassium fluoride pH 6.5. The stabilities of 

the oxidized variants were determined by titrating a 6 M stock solution of guanidine 

hydrochloride (GuHCl) (Fluka) to a 20 µM protein sample and the changes in molar 

ellipticity at 222 nm (q222nm) monitored. All titrations were carried out in triplicate. The 

fraction unfolded (Fu) at any given [GuHCl] was determined 45 and the free energy of 

unfolding (DGunf) and dependence of DGunf on denaturant concentration (m value) calculated 

using an equation for a two-state unfolding process 46. The pH dependence of the 695 nm 

band in the UV-visible spectrum was monitored at 20 oC by determining its absorbance at 

various values of pH for a solution of 100 µM oxidized Cc in a quartz cuvette (Hellma) with 

a small aliquot of K3[Fe(CN)6] present to maintain an oxidizing environment. The pH of the 

buffer (20 mM sodium phosphate pH 6.0) was adjusted with microliter aliquots of 1 M 

NaOH and measured after each addition using a semi-micro glass pH electrode. pH titrations 

were repeated up to three times and with different batches of proteins. Data were fitted to a 

one-proton ionisation equilibrium equation to yield an apparent pKa, designated herein as 

pK695. 

 



	 7 

Azide binding kinetics 

An Applied Photophysics (Leatherhead, UK) SX20 stopped-flow spectrophotometer 

thermostatted at 25 ± 0.1 oC and equipped with both photomultiplier and diode array 

detection systems was used to monitor the kinetics of azide (N3
–) binding to the oxidized 

proteins. A stock solution of 2 M sodium azide (Sigma-Aldrich) were prepared in 50 mM 

MES pH 7.0 and diluted to the desired [N3
–] with the same buffer containing 2 M NaCl to 

maintain the ionic strength. Reaction time-courses were taken at 420 nm with [N3
–] varying 

between 0.08 and 2 M before mixing and 10 µM protein (before mixing). All transients were 

fitted to a single exponential function yielding both pseudo first-order rate constants and 

amplitudes. Assuming N3
– binding to oxidized Cc is an SN1 mechanism, in which the 

hexacoordinate heme form is in equilibrium with a pentacoordinate form, the latter being the 

form that binds N3
–, then, as outlined previously 9, equations 1 and 2 may be derived that 

describe the Kapp and the dependence of kobs for N3
– binding as a function of [N3

–]. 

 

𝐾"## = 	𝐾&(
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In these equations, K = k1/k-1, where k1 and k-1 are the rate constants for Met80 dissociation 

and association respectively and KD = k-2/k2, with k2 the pseudo-first order rate constant for 

N3
– binding i.e. k2 = k'[N3

–], where k' is the second order rate constant and kobs is ~ k1 at high 

[N3
–]. 

 

Peroxidase assays  

Peroxidase assays of the oxidised hCc variants were carried out in the absence and presence 

of liposomes using H2O2 (Sigma-Aldrich) and 2,2-Azinobis(3-ethylbenthiazoline-6-sulfonic 

acid) (ABTS) (Sigma-Aldrich). The phospholipids 1,1’,2,2’-tetraoleoyl cardiolipin (TOCL) 

and 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) (AVANTI Polar Lipids, USA) were 

mixed in a 1:1 ratio and vortexed with the appropriate amount of buffer (20 mM sodium 

phosphate pH 6.5) and sonicated for 5 min in a high power sonicating water bath filled with 

ice-cold water to give the desired stock concentration as previously described 30. The 

oxidation of ABTS was monitored at 730 nm on a Hewlett-Packard 8453 diode-array 

spectrophotometer scanning between 190 and 1100 nm and thermostatted at 20 oC. The 



	 8 

reaction was initiated by the addition of 1 mM H2O2 (after 40 s) to a series of cuvettes 

containing 5 µM oxidized Cc and 200 µM ABTS with or without 25 µM TOCL/DOPC from 

a 2.5 mM stock. Using the wavelength pair 475-730 nm the slope of each trace (post-lag 

phase) was determined to obtain a rate in A/s. The rate of oxidized Cc turnover is reported in 

s-1 obtained by dividing A/s by the product of the concertation of oxidized ABTS (e = 14 

mM-1 cm-1) and the total protein concentration of 5 µM. All assays were carried out in 

triplicate with errors reported as the standard error. 

 
pH jump kinetics 

Various high pH buffers consisting of 50 mM KCl, 50 mM boric acid (pH 7 - 9) or 50 mM 

CAPS (pH 9 - 13) were prepared and stocks of oxidized proteins prepared in H2O and diluted 

to experimental concentrations in 50 mM KCl, to maintain ionic strength during mixing in 

the spectrophotometer, to a pH of ~ 7. pH jump experiments were initiated in the stopped-

flow spectrophotometer by mixing protein solutions with an equal volume of high pH buffer. 

First order rate constants (kobs) were obtained by fitting reaction time-courses to either a 

single or at pH values above 10.5 a double exponential function. Experiments were repeated 

in triplicate and with different batches of proteins with errors reported the standard error. All 

kinetic analysis was conducted using the software ProKineticist (Applied Photophysics).  

 

Electron Paramagnetic Resonance (EPR) spectroscopy  

Samples for EPR spectroscopy were frozen in Fluorochem SQ EPR tubes (Derbyshire, UK). 

To minimize the effect of slightly different tube sizes on the quantitative results, only tubes 

with an outer diameter of 4.05 ± 0.07 mm and an inner diameter of 3.12 ± 0.04 mm (mean ± 

range) were used. This ensured a low random error (1-3%) in the EPR signal intensities of a 

control protein solution when frozen in these selected tubes. Two methods of sample freezing 

for low temperature EPR measurements were used. For the slow freeze method, 250 µl of 

sample was dispensed into the bottom of an EPR tube and the tube placed into methanol kept 

on dry ice. The Rapid Freeze-Quenching (RFQ) of samples was performed by a combined 

use of an Update Instrument (Madison, WI) mixing machine and a home-built apparatus for 

freezing the ejected mixtures on the surface of a rapidly rotating aluminium disk kept at 

liquid nitrogen temperature. Details of the RFQ method are given in 47. All EPR spectra were 

measured at 10 K on a Bruker EMX EPR spectrometer (X-band). A spherical high-quality 

Bruker resonator ER 4122 (SP 9703) and an Oxford Instruments liquid helium system were 
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used to measure the low temperature EPR spectra. To estimate absolute concentrations of the 

high spin (HS) and low spin (LS) ferric heme forms in the Y48H hCc EPR spectra at pH 11, 

a calibration experiment was performed with horse heart Cm-Cc, in a range of buffers (pH 

4.5 – pH 8.5) yielding samples with variable composition of the HS and LS ferric heme 

forms. Experimental procedures and analysis used to determine the respective HS and LS 

heme concentrations are detailed in Supporting Information. 

 

RESULTS 

Site-directed variants of hCc used in this work 

The 71-85 W-loop of mitochondrial Cc is the most highly sequence-conserved region of Cc, 

with variation at only the 81 and 83 positions. Moving up the phylogenetic tree from yeast to 

mammals an increase in side chain volume at the 81 and 83 positions is observed 48. In yeast 

iso-1 Cc an Ala and a Gly are found at the 81 and 83 positions, respectively, whereas in hCc 

an Ile and a Val, respectively, are present. Bowler and colleagues 48 have put forward the idea 

that steric constraints imposed by the 81 and 83 positions in mammals may influence the 

kinetics and thermodynamics of non-native Cc conformers. To assess the contribution of the 

residue volume in hCc at the 81 

and 83 positions to Met80 ligand 

lability and the peroxidatic and 

alkaline isomerisation, the single 

I81A and V83G, and the double 

I81A/V83G variants were 

constructed. These 71-85 W-loop 

variants together with the G41S 

and Y48H variants located in the 

40-57 W-loop have been used to 

probe the kinetic and ionisation 

processes associated with the 

alkaline isomerisation of hCc.  

 

Global stability of the 81 and 83 

variants  

	
Figure 2: Chemical denaturation of oxidized 71-85 W-
loop hCc variants. Data plotted as the fraction 
unfolded versus GuHCl concentration with solid-lines 
representing fits to the data using a two-state 
equilibrium unfolding equation. The determined 
thermodynamic parameters are reported in Table 1. 
WT hCc is included for comparison under identical 
experimental conditions.	
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The effect on the global stability of the 81 and 83 variants of hCc was determined by 

chemical denaturation using far-UV CD spectroscopy. From the data plotted in Figure 2, 

values for DGunf, Cm and m have been determined and are reported in Table 1, together with 

values previously reported for WT hCc under identical conditions 9, 10. All variants display a 

small concomitant decrease in DGunf and m value relative to the WT protein. The most 

pronounced decrease is for the double variant with a DDGunf of 1.45 kcal mol-1. The m value 

is a measure of the change in hydrophobic surface area that has become desolvated upon 

denaturation, with the decrease in m values for all variants indicative of a more compact 

structure in the denatured state. The small magnitude of the changes observed with the 71-85 

W-loop variants contrasts with the behaviour reported for the two variants in the 40-57 W-

loop 10. A DDGunf of 3.9 and 5.6 kcal mol-1 for the G41S and Y48H variants, respectively, has 

been determined along with a more pronounced decrease in m value, which together highlight 

a more significant destabilisation of the folded state in the 40-57 W-loop variants than for the 

71-85 W-loop variants.  

 

Local stability of the 81 and 83 variants  

Local stability was tested by N3
–  binding kinetics, a probe that is considered to report on the 

Met80-Fe(III) bond lability. Binding of N3
– to oxidized hCc follows an SN1 mechanism, in 

which the hexacoordinate heme form (Met80-bound) is in equilibrium with a pentacoordinate 

form (Met80-off), the latter being the form that binds N3
–. Upon mixing N3

– with oxidized 

hCc an optical transition occurs caused by the dissociation of the Met80 ligand from the 

heme iron and the binding of N3
–  in its place 9. The reaction time-course of this transition for 

Table 1: Summary of thermodynamic and kinetic parameters for WT human ferriCc and 
variants in the 71-85 W-loop determined by GuHCl denaturation and azide binding 
kinetics. 
	

 WT I81A V83G I81A/V83G 
GuHCl denaturation 

DGunf (kcal mol-

1) 
10.65 ± 0.55a 9.75 ± 0.20 9.95 ± 0.10 9.20 ± 0.12 

m (kcal mol-1) 4.10 ± 0.25a 3.80 ± 0.10 3.85 ± 0.15 3.65 ± 0.20 
Cm (M) 2.60 ± 0.05a 2.60 ± 0.02 2.60 ± 0.02 2.55 ± 0.02 

azide binding 
Kapp (M) 0.31 ± 0.03 0.24 ± 0.02 0.30 ± 0.03 0.10 ± 0.01 
k1 (s-1) 5.8 ± 1.5 14.9 ± 6.4 4.5 ± 0.5 > 70 
k-2 (s-1) 3.5 ± 0.4 5.9 ±0.5 1.7 ± 0.2 3.1 ± 0.l 

aData taken from ref. 10. 
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the 71-85 W-loop variants conformed to a simple exponential, as reported previously for the 

WT protein and the G41S and Y48H variants under the same experimental conditions 9, 10. 

Over a broad range of [N3
–] the normalized amplitudes of such reaction time-courses follow a 

simple hyperbolic binding isotherm (Fig. 3) enabling an apparent equilibrium constant (Kapp) 

for N3
– binding to be determined using equation 1 with Kapp values reported in Table 1. 

Equation 1 shows that when K is < 1, as here since the concentration of the pentacoordinate 

species is low, then Kapp is ~ KD/K. With the assumption that N3
– binding to the 

pentacoordinate species is not directly affected by the mutation in the protein then KD will be 

similar for both the WT protein and variants, so that the ratio of Kapp values (WTKapp/variantKapp) 

reflects the ratio of K values (variantK/WTK). For justification of this assumption see Supporting 

Information. On this basis I81A/V83GK > I81AK > V83GK = WTK and thus these data indicate that 

the pentacoordinate form of the I81A/V83G variant is more populated than in either the two 

single variants or the WT protein. The relationship between kobs and [N3
–] under the 

conditions employed is almost linear for the 71-85 W-loop variants, as has previously been 

reported for WT hCc and the G41S and Y48H variants 9, 10. Equation 2 predicts that the 

relationship between kobs vs [N3
–] follows a hyperbola, where a curve is expected to reach a 

plateau (i.e. k1, the Met80 ligand dissociation rate). In the present work, as in previous studies 

	
Figure 3: Azide binding to the oxidized 71-85 W-loop variants of hCc compared with 
data for the WT protein at pH 7.0 and 25 oC. A) Amplitude changes from the reaction 
time-courses obtained using stopped-flow spectroscopy at 420 nm plotted against 
azide concentration. Data are fitted to a hyperbolic equation to yield Kapp values 
reported in Table 1. B) The rate constants (kobs) determined for azide binding with 
solid lines representative of fits to equation 2, to give k1 and k-2 values reported in 
Table 1. DM is the I81A/V83G variant.	
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9, 10, it was not possible to explore a sufficiently high [N3
–] so a plateau region could not be 

reached. Given this, the errors in k1 are large whereas k-2 (from the kobs intercept and N3
– 

dissociation constant) have more reliable values. Nevertheless, the k1 values determined in 

this way follow the same pattern as observed for K with I81A/V83Gk1 > I81Ak1 > V83Gk1 = WTk1 

(Table 1) consistent with a more labile Met80 ligand for the double variant but a low N3
– 

dissociation rate constant (k-2) and hence a low Kapp. 

 

Peroxidase activity of the 81 and 83 variants 

Cc can act as a peroxidase, either on its own 36 or in conjunction with binding to CL in the 

early stages of apoptosis 6. The peroxidase activities of the position 81 and 83 variants were 

tested in the absence and presence of CL liposomes. A lag phase in the peroxidase kinetics of 

Cc (Fig. 4A inset) has been reported 48-50 and has recently been assigned to the oxidative 

activation of a pre-catalytic form leading to the formation of oxidised proteoforms with high 

peroxidatic activity 51. These species consist of a pentacoordinate heme form, in which the 

	
Figure 4: Peroxidase activity and the pH dependence of the 695 nm absorbance band 
for the oxidized 71-85 W-loop variants of hCc. A) Illustrative reaction time courses 
(inset) for the oxidation of ABTS by oxidized hCc upon addition of H2O2 (dashed line) 
with (+CL) and without CL-containing liposomes. The maximum rates of ABTS 
peroxidation obtained from such reaction time courses for the WT and the 71-85 W-loop 
variants plotted with (+CL) and without CL-containing liposomes. The error bars are the 
standard errors from triplicate measurements. B) The decrease of the normalised 
absorbance at 695 nm plotted as a function of pH for the WT and 71-85 W-loop variants. 
Solid-lines are representative fits to the data using a one-proton equilibrium equation 
with apparent pKa values reported in Table 2.	
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Met80 ligand is dissociated and subsequently becomes oxidised, together with an oxidised 

Tyr67 and carbonylated Lys72/73 51. It is noteworthy that the 71-85 W-loop variants in the 

absence of CL-liposomes do not display the distinct lag phase after addition of H2O2 as seen 

in the WT hCc (Fig. 4A inset). The complete absence of a lag phase has also been observed 

with the G41S and Y48H variants 10, 30. The 71-85 W-loop variants all display increased 

peroxidase activity relative to the WT hCc in the absence of CL-liposomes, of the order I81A 

> V83G = I81A/V83G > WT. As expected, in the presence of CL-liposomes the peroxidase 

activity is further enhanced, particularly for the I81A variant with an order of activity, I81A > 

I81A/V83G > V83G = WT. It is noteworthy that whilst decreasing the residue volume at the 

81 and 83 positions leads to a peroxidase rate increase compared to the WT protein, the 

enhancement is considerably lower than with the G41S and Y48H variants, where a 3 and 7-

fold increase, respectively, relative to the WT hCc is observed 10.  

 

Equilibrium alkaline isomerisation of the 81 and 83 variants  

The contribution of the amino acid at the 81 and 83 positions in hCc to the formation of the 

alkaline conformer was tested under equilibrium conditions. The 695 nm band in the 

absorption spectrum of Cc reports on the presence of the Met80(Sg)-Fe(III) heme bond 1, 52. 

On increasing the pH the 695 nm band decreases in intensity due to a transition involving 

dissociation of a single proton that results in Met80 dissociation and its replacement by a Lys 

residue present in the 71-85 W-loop, creating the state IV species 11. The apparent pKa of this 

alkaline transition is the parameter determined in these experiments. The I81A variant does 

not alter the apparent pKa relative to the WT protein (Table 2), but an increase of 0.8 pH units 

is observed for the V83G variant (Table 2). In contrast the double I81A/V83G variant has a 

pKa value 0.4 pH units higher than the WT but notably 0.4 units lower than the V83G variant 

giving an apparent pKa pattern of V83G > I81A/V83G > I81A = WT. Thus, the pKa of the 

I81A/V83G variant is an example of biochemical epistasis, whereby the V83G variant has a 

different effect in combination with the I81A variant than on its own. A shift to a higher pKa 

for the V83G and I81A/V83G variants is consistent with a destabilisation of the alkaline state 

relative to the WT protein. In contrast the G41S and Y48H variants in the 40-57 W-loop have 

apparent pKa values lower by ~ 1 pH unit than the WT protein, and are thus consistent with a 

stabilisation of the alkaline form relative to WT hCc (Table 2).  

 

Kinetics of the alkaline transition below pH 10 for the W-loop variants 
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To elucidate the mechanistic features of the transition to the alkaline conformer, and to assess 

the effect of the respective variants in the 71-85 and 40-57 W loops have on this, the kinetics 

of the transition were investigated using a series of stopped-flow pH jump experiments. The 

kinetics of the alkaline transition in Cc is generally discussed in terms of the simple model 17 

(Scheme 1) in which deprotonation of a group, that is yet to be identified and is termed the 

trigger, initiates a conformational change that leads to the substitution of the Met80 ligand by 

a Lys residue from the 71-85 W-loop.  

 

 
Scheme 1 

 

In Scheme 1, hCc-Htrig depicts the His/Met hexacoordinate protein with the trigger 

protonated, hCc the His/Met hexacoordinate protein with the trigger deprotonated, and hCc-

Lys a hexacoordinate conformer of Cc having undergone a conformational change that 

includes replacement of Met80 as the axial ligand by a Lys residue. Ka1 and Kc are 

equilibrium constants for the protonation/deprotonation and the conformational change, 

respectively, and kf1 and kb1 are the forward and backward rate constants associated with the 

second step, respectively. On jumping from pH 7.0 to higher pH values, optical transitions 

for WT hCc consistent with those reported previously for horse and hCc were observed 21, 53, 

54. In the pH range 7.0 to 10.0, WT hCc along with all variants displayed a single spectral 

transition, with the Soret band blue-shifted (Fig. 5A) and the 695 nm band bleached. This 

transition could be adequately fitted to a single exponential phase (inset Fig. 5A), although 

distribution of residuals indicated the possible presence of minor components, as has been 

previously discussed 54. The rate constant (kobs1) of this single exponential increased as 

expected with increasing pH 17. This behaviour is shown in Figure 5B in which, for clarity, 

log kobs1 is plotted as a function of pH. Given that the deprotonations of the trigger are very 

fast, the model in Scheme 1 yields equation 3, relating kobs1 to Ka1, kf1 and kb1 

 

k?@A* = k@* + kB*
CD1

CD1)E:
   (3) 
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Equation 3 indicates that kobs1 follows a simple titration curve in which kobs1 takes the value 

kb1 at low pH and kb1 + kf1 at high pH values, i.e. kobs1 increases with pH. The data plotted in 

Figure 5B have been fitted with equation 3 to yield the pKa1 of the trigger, with values 

reported in Table 2. For the 81 and 83 variants, the pKa1 values all cluster around the value 

determined for the WT hCc and horse Cc (the latter used as a control in this work owing to 

the extensive literature on the pH jump kinetics of this protein 21, 53). In contrast, the G41S 

and Y48H variants reveal a lower pKa1 by > 1 pH unit (Table 2). Thus, the 40-57 W-loop 

variants strongly influence the deprotonation behaviour of the trigger, whereas the 71-85 W-

loop do not. Furthermore, as the decrease observed for the G41S and Y48H variants is 

reflected in the apparent pKa of the alkaline transition (Table 2) 10, the value of Kc must 

remain largely unchanged at ~102 (pKc = -2 so Kc = 100). This follows from the relationship, 

pKa = pKtrigger + pKc, stemming from Scheme 1. We are not able to determine Kc directly 

from our data (Fig. 5B) because the kb1 values are small (typically > 0.03 s-1), and either 

measured from small amplitude changes at an end of the titration (WT protein and the 81 and 

83 variants) or derived by extrapolation of the data to pH values much lower than explored in 

	
Figure 5: pH jump kinetics of the slow phase of ferric hCc and variants. A) Optical 
transitions observed from stopped-flow spectroscopy on mixing oxidised WT hCc (pH 7) 
with an equal volume of a pH 10 buffer. The red line represents the ferric hexacoordinate 
form (state III) at t = 2.5 ms and the black line corresponds to the hexacoordinate alkaline 
form (state IV) at t = 20 s. The spectral region between 500-800 nm has been magnified 5-
fold. Inset shows a typical reaction time-course at 420 nm (red) together with the 
corresponding fit to a single exponential function (black line) with residuals of the fit 
shown. B) The pH dependence of kobs1 for the slow phase of the alkaline transition. The 
lines are fits to the logarithmic transformation of equation 3 to yield the pKa1 (Table 2). 
Plots representing amplitudes are presented in Supporting Information.	
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the data set (G41S and Y48H). However, kf1 values are determined with a reasonable level of 

accuracy (Table 2). For horse Cc the kf1 value under our conditions correlates well with 

previous kinetic studies 21, 53, with the kf1 values for the variants and the WT hCc all on the 

same order of magnitude. This similarity in kf1 values is consistent with similar Kc values. 

 

Kinetics of the alkaline transition above pH 10 for the W-loop variants 

At higher pH values (> 10) a second rapid phase in addition to the slow phase (kobs1) was 

Table 2: Summary of parameters determined for the alkaline transition of horse heart and 
human ferricCc and variants. 
 

 WT 
horse 

WT 
human 

I81A V83G I81A/V83G G41S Y48H 

pK695 9.2 ± 
0.1 

 

9.3 ± 
0.2a 

9.4 ± 
0.2 

10.1 ± 
0.1 

9.7 ± 0.1 
 

8.5 ± 
0.2a 

8.4 ± 
0.1a 

pKa1 
(‘trigger’) 

11.5 ± 
0.1 

12.0 ± 
0.4 

11.6 ± 
0.1 

11.7 ± 
0.2 

11.8 ± 0.2 10.5 ± 
0.1 

10.4 ± 
0.2 

kf1 (s-1) 9.5 ± 
1.2 

17 ± 13 6.5 ± 
1.6 

8.9 ± 3.4 7.3 ± 2.5 8.4 ± 
1.3 

7.4 ± 1.4 

aData taken from ref. 10 

	

	
Figure 6: pH jump kinetics of the fast phase of the Y48H variant of hCc at pH > 
10.5. Optical transitions from stopped-flow spectroscopy on mixing oxidised Y48H 
hCc (pH 7) with an equal volume of a pH 11 buffer. The red line represents the 
ferric hexacoordinate protein (state III) at t = 3.5 ms, the blue line reflects the HS 
pentacoordinate form at t = 36 ms and the black line reflects the final 
hexacoordinate alkaline form (state IV) at t = 1 s. The spectral region between 500-
800 nm has been magnified 5-fold. Inset shows the reaction time-courses at three 
wavelengths with the residuals of the corresponding fit to a double exponential 
shown. Plots representing amplitudes are presented in Supporting Information.  
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observed for the WT protein and all W-loop variants, consistent with previous reports for 

horse Cc 21, 53, 55 and hCc 54 (inset Fig. 6). The rate constant (kobs2) is associated with the 

formation of a transient spectrum characteristic of a HS ferric heme species having a 

prominent band at 600 nm and possessing long wavelength features that obscure the 

bleaching of the 695 nm band at some pH values (Fig. 6) 21, 53. Thereafter, the spectrum 

decays to the final LS spectrum typical for ferriCc at high pH in which a Lys substitutes for 

Met80 as the sixth ligand (Fig. 6). It is notable that this HS intermediate is more highly 

populated in the Y48H and G41S variants than in WT hCc. The rate constant (kobs2) for this 

fast phase was also found to be pH dependent for all proteins studied (Fig. 7A and B). For 

WT hCc the kobs2 decreases with increasing pH in the range 10 to 11.5 and takes values 

similar to horse Cc (Fig. 7A). This behaviour can be represented by Scheme 2 and has been 

suggested to arise from a coupling between a conformational change that exposes a group 

that then undergoes deprotonation leading to the stabilisation (or facilitation) of the HS heme 

species 21. 

 

 
Scheme 2 

 

In Scheme 2, hCc-H (hexacoordinate His/Met) and pCc-H (pentacoordinate) represent the 

non-exposed and exposed group, respectively, and pCc the deprotonated HS heme form. The 

model presented in Scheme 2 leads to equation 4 to relate kobs2 with kf2, kb2 and Ka2 for the 

formation of the HS heme species. 

 

k?@A= = kB= + k@=
E:

(CD4)E:)
   (4) 

 

Equation 4 predicts that kobs2 decreases with increasing pH, as observed in Fig. 7A for horse 

Cc and WT hCc. Although the data are not sufficient to provide a clear pKa2 with confidence 

an estimate of ≤ 10 may be surmised from the shape of the relevant lines (Fig. 7A). In 

contrast the G41S and Y48H variants show very different behaviour, in that the kobs2 for 

production of the HS heme species increases with increasing pH and is readily observed at 

pH values > 10 (Fig. 7A). These data may be fitted to a one-proton ionisation equilibrium 

equation to yield a pKa2 of 11.1 ± 0.2 for the exposed group. Taken together these data imply 
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that deprotonation precedes the conformational change that leads to the dissociation of the 

Met80 ligand from the heme iron of the G41S and Y48H variants. Hence the mechanism of 

the alkaline isomerisation for the 40-57 W-loop variants, at least in terms of the appearance of 

intermediates on the pathway, is different to that of WT hCc and the 71-85 W-loop variants.  

 In contrast the 81 and 83 variants show different behaviour in kobs2 compared to either 

the WT or the 40-57 W-loop variants. Firstly, from pH values 7 to 10 no HS heme species 

was observed. At pH values > 10.5 the HS heme species for the 81 and 83 variants is detected 

with kobs2 values increasing with increasing pH up to pH 13 (Fig. 7B). Given the high pH at 

which we observe this increase in kobs2 we suggest that the process through which a HS heme 

species is generated is related to a more general denaturation of the protein rather than the 

process termed the alkaline isomerisation. 

 

EPR spectroscopy to determine the population of the HS heme species 

EPR spectroscopy was used to verify that the intermediate species seen in the pH jump 

experiments was indeed a HS heme form. Based on the optical spectroscopy, a higher 

population of the HS species is found in the 40-57 W-loop variants and therefore the Y48H 

variant was selected for EPR experiments. At pH 7, slow freezing the Y48H variant produces 

a HS heme species, (g1 = 6.03, g2 = 5.67), which is absent in the rapid freeze-quenched 

	
Figure 7: The pH dependence of kobs2. The kobs2 values for WT hCc, horse Cc, the G41S 
and Y48H variants of hCc A) and the 70-85 W-loop variants B) plotted as a function of 
pH. The lines through the data points for hCc, horse Cc and the 70-85 W-loop variants is 
to indicate the trends in the data. The blue line in A is a fit to a one-proton equilibrium 
equation to yield an apparent pKa. This fit is to the combined results of the two 40-57 W-
loop variants.	
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(RFQ) sample (Fig. 8, A and B). There is also a difference in the intensities of the LS ferric 

heme signals (g1 = 3.05, g2 = 2.23) in the slow frozen and RFQ samples. These results 

highlight the effect different regimes of freezing (slow or fast) have on the quantities of 

quenched species that have been in dynamic equilibrium in the liquid phase just before 

freezing. The RFQ of the Y48H variant at 50 ms after the pH jump (pH 7 to 11) results in an 

EPR spectrum with a notable intensity of the HS ferric heme signal (g1 = 6.16, g2 = 5.76), and 

a significantly decreased LS ferric heme signal (as evident from its g1 = 3.10 component, Fig. 

8, B and C). The absolute concentrations of the HS ferric heme forms in the RFQ pH 11 EPR 

spectrum (84 µM, Fig. 8C), was determined from the Cm-Cc calibration experiment as 

	
Figure 8: The effect of the pH jump (pH 7 to pH 11) on the LS and HS ferric heme 
states in the Y48H variant of hCc determined by EPR spectroscopy. Final concentration 
of protein after mixing was 200 µM. A) EPR spectrum of protein at pH 7 mixed with an 
equal volume of the pH 7 buffer followed by slow freeze, B) protein at pH 7 mixed with 
an equal volume of the pH 7 buffer and RFQ at 50 ms, and C) protein at pH 7 mixed 
with equal volume of the pH 11 buffer and RFQ at 50 ms.  The concentration of the HS 
ferric heme form (indicated on the figure) was estimated from comparison with the acid-
alkaline transition of the HS and LS forms in Cm-Cc (see Supporting Information). The 
EPR spectra were measured at 10 K with the instrumental conditions the same as 
specified in Figure S3. To make all three spectra directly comparable, spectrum A was 
multiplied by a factor of 0.45 to account for imperfect packing of the freeze-quenched 
icicles in the EPR tubes. 
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described in the Supporting Information. This concentration constitutes approximately 42 % 

of the total heme concentration in the Y48H variant. 

 

DISCUSSION 

Reducing the side chain volume of the residue at position 81 and 83 in the 71-85 W-loop of 

hCc results in only a small increase in peroxidase activity. The double I81A/V83G variant 

has less peroxidase activity than the single I81A variant suggesting that replacing a Val at 

position 83 with the smaller side chain volume of a Gly compromises formation of the 

peroxidatic pentacoordinate state in the absence of the Ile81. This is consistent with studies of 

other proteins showing it is easier to accommodate a hole in a protein than a bulkier group 56. 

In the presence of CL, the compromising role of a Gly at the 83 position is somewhat 

relieved in the double variant, suggesting that there are differences in the peroxidatic 

conformer formed in the absence and presence of CL, consistent with CL binding causing a 

change in conformation of ferriCc. Nevertheless, the minimal enhancement of peroxidase 

activity observed with the 71-85 W-loop variants contrasts sharply with the up to 7-fold 

increase in activity for the 40-57 W-loop variants 10. Thus, the ferric G41S and Y48H variants 

must have higher concentrations of the pentacoordinate states, consistent with our N3
– 

binding studies (Table 1). Thus, in hCc the side chain volumes at the 81 and 83 positions in 

the 71-85 W-loop do not materially regulate the peroxidase activity, results consistent with a 

recent study in which the Ala81 and Gly83 residues in yeast iso-1 Cc were switched for Ile 

and Val, respectively, and showed the reciprocal behaviour 57.  

 Determining the pK695 value and employing kinetics to monitor the binding of 

exogenous ligands, such as N3
–, to ferriCc are widely considered to give information on the 

lability of the Fe(III)-S(Met80) bond. The trend in pK695 values, V83G > I81A/V83G > I81A 

= WT differs from the trend observed in peroxidase activity (Fig. 4A), most notably in that 

I81A has the highest activity. Furthermore, from N3
– binding kinetics, the determined 

affinities for N3
– binding and Met80-off rates (k1) both follow the same trend i.e. I81A/V83G 

> I81A > V83G = WT, implying that the double variant induces a more labile Met80 ligand 

with possibly greater ease of access for the N3
– to bind the ferric heme, whereas the V83G 

variant is identical to the WT protein. These results appear inconsistent with the trend in 

peroxidase activity and pK695 values. However, these various probes used to explore 

conformational changes around the heme - pK695, N3
– binding and peroxidase activity - report 

on related but different aspects of the heme protein dynamic. For example, in comparing N3
– 
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binding and peroxidase activity, where in both cases a ligand binds to the heme, it may be 

expected that subtle differences are exhibited between the different variants based on the 

physicochemical nature of the incoming ligand; H2O2, a small neutral molecule, vs N3,– a 

rigid linear anion). Whilst the I81A variant displays the greater peroxidase activity, the 

I81A/V83G variant has the greater facility to bind N3
–, implying that while I81A has a 

pentacoordinate form, it is not easily accessible to N3
–, whilst it is easily available to H2O2. 

Conversely, the high affinity of N3
– for the I81A/V83G variant is seen to arise from a low k-2 

(relative to the high Met80 off rate (see also Supporting Information)). This may be a 

consequence of N3
– being accommodated better in this variant which has the bulky groups 

removed. In addition, the pK695 value reflecting the removal of the coordinating Met80 does 

not necessarily give information on the population of the pentacoordinate form which is a 

prerequisite for peroxidase activity. Thus, we conclude that for I81A, although the pK695 

value is close to that of the WT protein the population of the pentacoordinate form at 

equilibrium is greater. There appears therefore to be modulation of the global effects of loop 

dynamics by bulky residues near Met80. 

A complete description of the pH dependencies of the equilibrium and kinetic 

parameters governing the alkaline transitions in hCc, requires adoption of a model that 

incorporates sufficient steps to provide a mechanistic description. There must be a minimum 

of two deprotonation steps (both fast), one for the trigger and one responsible for the 

transition to the HS heme species, as well as a conformational equilibrium between 

hexacoordinate (Met80-on) and pentacoordinate (Met80-off) forms. In addition, one must 

consider Lys binding to the pentacoordinate form to give the final hexacoordinate alkaline 

conformer (state IV). The simplest model that satisfies these requirements and is consistent 

with mechanisms given in Schemes 1 and 2, is depicted in Figure 9, where the various forms 

of ferriCc are placed at the corners of a cube. The edges of the back and front faces of the 

cube represent the protonation/deprotonation equilibria, horizontal edges refer to the trigger 

while vertical edges to the second ionisable group responsible for the appearance of the HS 

form (Fig. 9). The edges linking the back to the front face represent the conformational 

equilibria (i.e. hexa- to pentacoordinate). Also indicated are possible steps for Lys binding to 

the species populating the pentacoordinate face. Starting from WT Cc in state III (back left 

hand corner of the cube, H-hCc-Htrig) where both ionisable groups are protonated and the Cc 

is hexacoordinate, Scheme 1 follows the grey arrows where deprotonation of the trigger 

precedes conformational change to a pentacoordinate form (H-pCc), which subsequently 

binds Lys. All the variants studied follow this pathway, the pKtrig is however variant 
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dependent, being > 1 pH unit lower in the G41S and Y48H variants (Table 2). The formation 

of the observed HS heme species results from a conformational change preceding 

deprotonation (Scheme 2). Within the cube, this is depicted by the silver arrows. A minor 

population of the pentacoordinate form at pH 7 (H-pCc-Htrig), the existence of which is 

inferred from N3
– binding experiments 9, is stabilised by deprotonation of the second group. 

Thus, the observed HS form is either pCc-Htrig or pCc (or both), with both these species 

decaying through Lys binding (Fig. 9). The 71-85 W-loop variants do not deviate from this 
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mechanism and therefore the residue volume at the 81 and 83 positions do not alter this 

ionization process or the route in the cube that can be taken to the HS form. In contrast, for 

the 40-57 W-loop variants, it is observed that the pH dependence of kobs2 reflects a 

mechanism in which deprotonation precedes conformational change (Fig. 7A). As the pKa2 

value of 11.1 is higher than the pKtrig for the G41S and Y48H variants (Table 1) it seems 

unlikely that the same ionising group is responsible for these two pKa values. Also, it is 

difficult to construct a model in which a single trigger group is simultaneously responsible 

	
	
Figure 9: Mechanistic pathway linking deprotonation and conformational changes in 
hCc. The three dimensions of the cube represent two deprotonations (“trigger” and 
another group possibly His18, see main text) and a conformational change leading to 
Met80 dissociation. The front face of the cube shows the pentacoordinate forms 
(denoted by pCc) which in principle can bind an amino group donated by a Lys residue. 
The likely routes through the mechanistic framework are indicated by the larger grey 
and silver arrows, for the WT protein and the 71-85 W-loop variants, with the pale blue 
arrows indicating the route for the G41S and Y48H variants to populate the pCc-Htrig 
species, which then follows the silver arrows. See text for further details. 
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for two apparently quite different transitions, namely the slow (alkaline transition) and fast 

(formation of HS) processes. Taking this view, and by not complicating the model further, we 

conclude, that the enhanced dynamics of the 40-57 W-loop observed in the G41S and Y48H 

variants makes the second group available for deprotonation. In these proteins then, the initial 

step takes H-hCc-Htrig to hCc-Htrig (pale blue arrows Fig. 9) and thereafter the conformational 

change leads to the pentacoordinate HS species that we observe.  

 Having devised the cube to depict the kinetics of the alkaline transition, what may be 

the titratable groups responsible for the alkaline transition and the transition to the HS state? 

Several possibilities in respect to the nature of the trigger have been extensively discussed in 

the literature 3, 14, 16, 18, 58. Whilst the present study does not provide the definitive answer to 

the nature of the trigger, our results do further illuminate the properties of the trigger and how 

these relate to the mechanism of the alkaline transition as portrayed in the cube (Fig. 9). We 

consider first the alkaline transition which leads to the substitution of Met80 by a Lys and has 

an apparent equilibrium pKa of ~9 16 with a triggering ionisation pKtrig of ~12. The G41S and 

Y48H hCc variants have a lower pKtrig (Table 2) and have enhanced dynamics in the 40-57 

W-loop compared with the WT protein 9, 10. The pH jump kinetics for the T49V variant of 

horse Cc paints a similar picture, in that the triggering pKa is lowered with respect to WT 

horse Cc to 9.1 59. Thr49 hydrogen-bonds (H-bonds) to HP-6 which in turn H-bonds to Thr78 

(Fig. 1). Disrupting communication to the heme propionate-6 (HP-6) in the T49V variant has 

a more severe effect on the triggering pKa than either of the disease variants and accounts for 

the apparent pKa of 7.0 59. From a functional perspective, the disease variants do not lower 

the triggering pKa sufficiently for Lys coordination to dominate at neutral pH, thus ensuring a 

balance of Met80 coordination needed for electron transfer and the pentacoordinate form for 

pro-apoptotic peroxidase activity. Moreover, it is further apparent that distant H-bonding 

networks communicating with the Met80 ligand and the 40-57 W-loop are important in 

controlling the Met80 dissociation. Solomon and co-workers 60, 61 have reported that the 

strength of the Fe(III)-Sg(Met80) bond is enhanced by an entatic contribution of the protein 

derived from a H-bonding network that includes the coordinating Met80, Tyr67/wat166, 

Asn52 and Thr78. We may add to this network the heme propionate groups, which serve to 

communicate with the 40-57 W-loop (Fig. 1). Thus, an attractive proposition is that the loss 

of a single proton from within this linked H-bonded unit can disrupt it, weakening the Fe(III)- 

Sg(Met80) bond. The pKa of this deprotonation must be high because of the H-bonded nature 

of the network. In the case of the G41S and Y48H variants, the substitutions in the 40-57 W-
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loop alter the H-bond network to HP-7 and the Asn52, and may lower the pKa of this 

stabilising unit and hence lower the triggering pKa and thus the apparent pKa of the alkaline 

transition.  

 Our suggestion that it is a H-bonded unit that provides the triggering ionisation rather 

than an individual group has not been made previously and it neatly brings together a 

considerable body of experimental data. Early NMR and X-ray crystallographic data first 

indicated that the network involving HP-7 was dynamic in solution continually being 

disrupted and reformed 1. Subsequent site-directed mutagenesis experiments have revealed 

that the network is altered in the N52I and N52I/Y67F variants of yeast iso-1 ferriCc, 

particularly with respect to the location of wat166 29, and the Y67H and Y67R variants of 

yeast ferriCc behave similarly to the G41S and Y48H variants of hCc in having a more labile 

Fe(III)-Sg(Met80) bond and enhanced peroxidase activity 62. Moreover, pH-jump stopped-

flow FT-IR data shows that a HP substituent ionises as well as a Tyr residue during the 

alkaline isomerisation 63, 64. Several studies using site-directed variants of the alkaline ligands 

(i.e. Lys) in yeast iso-1 Cc have provided further evidence to indicate a role of a HP 

ionization in modulating the kinetics of the alkaline transition 65, 66.  

 Through substitution of coordinating Lys residues (73 or 79) with His or Ala residues 

in yeast iso-1 Cc, Bowler and colleagues 58, 65, 66 have highlighted that multiple ionisations are 

involved in the kinetics of the alkaline transition; a concept close to our proposal of an 

ionisation within a H-bonded unit constituting the trigger. Furthermore, the His substitutions 

reveal that ionisation of the incoming ligand can have a prominent kinetic role 58, 65, 66. 

Although not directly stated it may follow that Lys79 i.e. the incoming ligand is itself the 

trigger as has been proposed elsewhere 19. In hCc, Lys79 unlike Lys73 (the other 

coordinating residue) is H-bonded between the backbone carbonyl of Ser47 and its side chain 

Ne amine, thus stabilising and creating a link between the two W-loops (Fig. 1). This H-bond 

is proposed to increase the pKa of the Lys79 amine to ~ 12 i.e. the experimentally determined 

pKtrig (Table 2) 35. Deprotonation of this H-bonded amine group may now change the 

dynamics of the W-loops and enhance the propensity to dissociate the Met80 ligand, with the 

deprotonated Lys79 now able to coordinate the ferric heme. In this model, variants in the 40-

57 W-loop that alter the H-bond pattern, and themselves change the dynamics of the loops, 

result in disruption of the H-bond between Lys79 and the carbonyl of Ser47, that in turn leads 

to the drop in the pKa of the Lys, which is reflected in the lower trigger pKa of the G41S and 

Y48H variants (Table 2). However, a significant counter argument against Lys79 as the 
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trigger is that removal of its titratable amine group by chemical modification leaves the 

apparent pKa of the alkaline transition essentially unchanged 20, 21. On this basis, we favour as 

discussed, deprotonation within a H-bonded unit that disrupts the linkage between the two W-

loops. Additional support for this view is found from the pKtrig of 10.8 determined for the 

K79A variant of yeast iso-1 Cc 14, similar to our observations for the disease variants. 

Therefore, removing Lys79 can be interpreted as disrupting the communication between the 

two W-loops leading to the perturbation of the unit that governs the pKtrig (see above). 

Deprotonation of the proximal His18, to generate a histidinate species, has also been 

suggested to be the trigger 15, 22, 23, 67. Whereas we can’t discount this possibility, beyond 

noting that it does not account for data such as the stopped-flow FT-IR measurements 

implicating a HP referred to above, and, as Rosell et al. 14 note, it does not account either for 

data acquired with position 82 variants, we would rather retain this group for consideration as 

the titratable group responsible for the second deprotonation step and formation of the HS 

heme species (vide infra).  

Both optical and EPR spectroscopy demonstrate that at pH values > 10 a HS heme 

species is present. The kinetic data for the WT and 71-85 W-loop variants presented in Figure 

7B are consistent with Scheme 2 and are in full agreement with Englander and colleagues 21, 

who suggest that the transition to the HS heme form proceeds via exposure through a 

conformational change of a hidden group, which on deprotonation forms a HS heme species 

that subsequently decays by Lys binding to the ferric heme ion. The conformational change 

that exposes the group is unknown. However, for simplicity, and because we are seeking to 

stabilise a HS form, we suggest that the conformational transition that is seen in the WT 

protein leads to the dissociation of the Met80 ligand (Fig. 9). We envisage that this 

conformational change, leading to a pentacoordinate HS heme form in ferriCc, is the same 

one allowing N3
– binding to the ferric heme. Under this model, dissociation of the Met80 

exposes a group, which once deprotonated stabilises the HS heme form (this sequence of 

events is as depicted with silver arrows in the cube (Fig. 9)). Gadsby et al.23 have determined 

indirectly through EPR and MCD spectroscopy that the proximal His18 heme ligand has a 

pKa of 11 in the hexacoordinate (His/Met) form of ferriCc. Deprotonation of this group has a 

powerful trans effect on the Fe(III)-S(Met80) bond leading to dissociation and formation of a 

pentacoordinate form. We propose a reciprocal argument; namely, that the Met80 

association/dissociation equilibrium in state III ferricCc leads to a population of 

pentacoordinate form in which the pKa of the His18 is lowered. Thus, the mechanism 



	 27 

depicted in Scheme 2 and in the cube proceeds via dissociation of Met80 and stabilisation of 

the resulting HS species by deprotonation of the coordinated His18 with a pKa now lowered 

to ~ 9 for the WT and the 71-85 W-loop variants (Fig. 7A). Note that such low pKa values for 

ionisation of Fe(III) bound histidines to histidinate have been observed in other heme proteins 

such as cytochrome c’ 68 and E. coli cytochrome b562 69. For the G41S and Y48H variants the 

mechanism is changed and direct deprotonation of the coordinated His18, prior to Met80 

dissociation must occur (Fig. 7A). Bowler and colleagues have structurally illustrated that a 

non-native state of Cc can generate a water channel involving the 40-57 W-loop, allowing 

access to the proximal His18 ligand 48 and our NMR data support this view of dynamic 

access to the proximal His18 through the increased dynamics in the 40-57 W-loop 9, 10. Such 

direct deprotonation of the His18 in the His/Met state would have a pKa ~11 23, in keeping 

with the observed pKa2 for the G41S and Y48H variants. 

The functional significance of the alkaline transition of Cc may be related to 

peroxidatic function by examination of Fig. 9. Peroxidase activity requires a pentacoordinate 

form and thus any of the four species populating the front face of the cube are candidates for 

this role. As our peroxidase activities were determined at pH 6.5 the major species will be 

protonated and thus one candidate is the H-pCc-Htrig (Fig. 9). This species certainly is more 

readily accessed in the two disease variants as demonstrated by relatively rapid N3
– binding 

and high peroxidase activity 9, 10. Furthermore, the disease variants have a lower pK695 9, 10, 

which implies greater access to the species pCc-H and as Lys is more protonated at this lower 

pH we may expect more of this pentacoordinate species at equilibrium than in the WT 

protein. The role (if any) played by the second ionisation (pKa2; His18) is more difficult to 

ascertain. For example, the population of species pCc-Htrig depends upon pKa2 values 

(equilibria attained instantly) and the conformational equilibrium (equilibria attained slowly). 

It is clear experimentally however that where we see this putative HS species in pH jump 

experiments, it is always at a higher concentration in the G41S and Y48H variants than in the 

WT protein (as seen by optical and EPR meausrements). Thus, although it is difficult to 

pinpoint which pentacoordinate forms are responsible for peroxidase activity at a given pH, 

the disease variants always have a higher population of pentacoordinate forms and thus 

greater peroxidase activity.  

 

CONCLUSION 
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In our discussion of the alkaline transition we have chosen to frame our thoughts in terms of a 

H-bonded unit which may be disrupted by deprotonation leading to a reorganisation of the 

protein structure in order to minimise the free energy of the system. This approach is not in 

conflict necessarily with the views of Englander and colleagues, who argue that there need 

not be a specific triggering group in a kinetic sense 35. However, it is agreed by all literature 

that a deprotonation, preceding any conformational change, with an intrinsic pKa ~12 is an 

essential feature of the alkaline transition. Although, arguments that it is the deprotonation of 

the incoming Lys ligand may be all that is required to compete for the sixth coordination 

position and hence initiate the global transition, it is our view that this is difficult to make 

compatible with results showing that modifications of possible Lys groups so they may not 

act as ligands leave the alkaline transition relatively unperturbed. Furthermore, a mechanism 

where an incoming deprotonated lysine stabilises a pre-existing minor pentacoordinate form 

(through binding) appears not to be consistent with the pH jump experiments which show 

that deprotonation precedes conformational change. Moreover, our results on the 40-57 W-

loop variants show that the intrinsic pKa measured by pH jump is decreased by 1 pH unit. 

Bearing this in mind, it is immediately apparent from a structural viewpoint how this could 

be achieved through disruption of the H-bonded network that incorporates the Met80, 

Tyr67/wat166, Asn52, Thr78 and HP unit.  
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SUPPORTING INFORMATION 

Experimental procedure for preparing the I81A, V83G and I81A/V83G variants of hCc, 

ustification for an invariant KD in the interpretation of azide binding kinetics, dependence of 

amplitudes from pH jump stopped-flow experiments and determination of high spin ferric 

heme concentration by EPR spectroscopy. Table S1, average and standard deviations of the 

concentrations of the high spin and low spin ferric heme forms in carboxymethyl cytochrome 

c at different pH values. Figure S1 correlations between the thermodynamic and kinetic 

parameters governing azide binding to hCc and variants. Figure S2 amplitude of absorbance 

changes following pH jump experiments with hCc and the Y48H variant. Figure S3, low 

temperature EPR spectra of 150 µM carboxymethyl cytochrome c at different pH values. 
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Figure S4, the pH dependence of the high spin and low spin ferric heme forms in 

carboxymethyl cytochrome c. 
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