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Abstract

In this paper, we develop a nonparametric methodology for estimating and testing time-varying

fund alphas and betas as well as their long-run counterparts (i.e., their time-series averages).

Traditional linear factor model arises as a special case without time variation in coefficients.

Monte Carlo simulation evidence suggests that our methodology performs well in finite sam-

ples. Applying our methodology to U.S. mutual funds and hedge funds, we find most fund

alphas decrease with time. Combining our methodology with the bootstrap method which

controls for ‘luck’, positive long-run alphas of mutual funds but hedge funds disappear, while

negative long-run alphas of both mutual and hedge funds remain. We further check the ro-

bustness of our results by altering benchmarks, fund skill indicators and samples.
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HIGHLIGHTS 
 

 Challenge the view a time-invariant scalar (e.g., alpha) can capture fund skill 

 A nonparametric method to estimate and testing time-varying fund alphas and betas. 

 Our methodology performs well in various cases of Monte Carlo Simulations 

 Combine our method with bootstrap to control for `luck' in time dimension. 
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1. Introduction

The Efficient Market Hypothesis (EMH) implies that funds should not have skills to per-

sistently beat the market, which raises two classical questions regarding fund performance

evaluation: i) Do (a group of, or on average) funds have skills or not? ii) If they have skills,

are these skills persistent? Taking fund alphas as the fund skill indicator, the traditional linear

factor models have been widely employed in the literature1. Unfortunately, the inherent as-

sumption of constant alphas and factor loadings (betas), does not empirically holds at either

the asset or portfolio level (see Ang and Kristensen (2012) and the references therein), and

hence may distort the validity of the standard factor models with misleading inferences.

We suggest these two questions can, however, be answered simultaneously if the alphas

(and betas) are viewed as time-varying coefficients at every time point, instead of period-

specific constants. To this end, we propose a nonparametric methodology to estimate and test

time-varying fund alphas and betas, which imposes no parametric assumptions on the time

variation of alphas and betas2. Specifically, we first present an estimator for the time-varying

fund alphas and betas, and then construct a Generalized Likelihood Ratio (GLR) statistic to

test whether the estimated alphas are indeed time-varying or not. To evaluate the overall per-

formance of funds, we also construct their long-run counterparts: the time-series averages of

time-varying fund alphas and betas. To illustrate the flexibility of our methodology, we combine

1Following the main literature, we use the net alphas (i.e., fund alpha net of all management expenses and

12b-fees) as fund skill indicator. Our main perspective is therefore in line with many other studies that are

primarily concerned with the abnormal return that fund investors can earn by investing in mutual funds, see e.g.,

Fama and French (2010).

2The nonparametric method has been previously used in this area either via bootstrap methods (e.g., Kosowski

et al. (2007); Blake et al. (2014)), or to help construct approaches to detect false discoveries (e.g., Barras et al.

(2010); Bajgrowicz and Scaillet (2012); Bajgrowicz et al. (2015)).
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our methodology with the bootstrap approach to design three new fund bootstrap schemes to

control for ‘luck’. Thus, we are able to distinguish whether the superior fund performance is

due to luck or to skill.

Our approach has several advantages. First, we have proposed a formal statistical ap-

proach to identify time-varying alphas and betas for an individual fund from a general per-

spective, which constitutes a methodological novelty and a unique contribution to fund per-

formance evaluation. The time-series averages of the obtained time-varying alphas are a more

accurate indicator of fund skills than OLS alphas, which can be further cross-sectionally refined

using any approach applying to the OLS alphas.

Second, due to the nonparametric nature of our estimates, we do not need to assume

any ex ante linear or nonlinear relationship between the fund returns and the factors. Instead,

our methodology adopts a ‘let-data-speak’ approach to reveal the relationship between the fund

returns and the factors, which means that our methodology does not only gauge the magnitude

of alpha for an individual fund at each time point, but also uncover the plausible source of the

alpha: stock-picking or market-timing (see, e.g., Kacperczyk et al. (2014)). The former is

often represented by the unexplained alpha in a linear model of market-related factors, while

the latter is captured by including an additional squared market returns (Treynor and Mazuy

(1966); Jiang et al. (2007); Chen et al. (2010); Blake et al. (2013)).

Third, our estimates only require a series of kernel-weighted least squares regressions. If

the genuine alphas and betas are indeed time-invariant rather than time-varying, our method-

ology degenerates to its special case: the standard linear factor models.

Fourth, we extend the traditional bootstrap methods for fund performance evaluation

(e.g., Kosowski et al. (2006); Fama and French (2010)) by capturing the time variations.

Kosowski et al. (2006) and Fama and French (2010) distinguish alphas from luck and skills

by comparing the estimates from bootstrap simulations of the cross-section of funds with zero
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alphas to the actual cross-section of fund alphas. The idea is that the returns of the funds

in a simulation run have the properties of actual fund returns, except they set true alpha to

zero in the return population from which simulation samples are drawn. The simulations thus

describe the distribution of alpha estimates when there is no abnormal performance in fund re-

turns. Comparing the distribution of alpha estimates from the simulations to the cross-section

of alpha estimates for actual fund returns allows them to draw inferences about the existence

of skilled managers. However, as noted in the literature (Fama and French, 2010, page 1925),

one major caveat of this method is that ‘Because we randomly sample months, we also lose any

effects of variation through time in the regression slopes in (1). (The issues posed by time-varying

slopes are discussed by Ferson and Schadt (1996).) Capturing time variation in the regression

slopes poses thorny problems, and we leave this potentially important issue for future research’.

Adapted from Kosowski et al. (2006) and Fama and French (2010), we compare estimates of

long-run alphas from bootstrap simulations of the cross-section of funds with zero alphas across

time periods to the actual cross-section of fund long-run alphas. Our method thus provides a

remedy for the drawback of the existing literature.

Even in simulated funds with only 200 time-series observations, our methodology per-

forms well in different cases, including i) constant α and constant β; ii) constant α but time-

varying β , iii) time-varying α but constant β , and iv) time-varying α and time-varying β .

Applying our methodology to the legendary Fidelity Magellan fund, we find a positive

and significant long-run alpha using the time-varying Fama-French-Carhart 4-factor model.

Furthermore, the alpha is time-varying and decreases from positive before the 1980s to in-

significant and further to negative in the 2000s. We conclude that though it was once a star

fund, it definitely is not any longer.

Applying our methodology to the whole mutual and hedge funds industry, we find that

most net fund alphas are time-varying and in general, with a decreasing trend. Only 1% (19%)
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of mutual (hedge) funds have positive and significant long-run net alphas, while 9% (9%) have

negative and significant long-run net alphas. Combining our methodology with the bootstrap

approach to control for ‘luck’, positive long-run alphas of mutual funds but hedge funds disap-

pear, while negative long-run alphas of both funds remain3.

Our results are robust in altering the number of factors in our benchmark fund perfor-

mance evaluation model, adding back fees and expenses to fund returns, as well as sub-sample

analysis. They are not robust when using the value-added measure from Berk and Van Binsber-

gen (2015) instead of fund alphas, or using the Vanguard index fund as the passive benchmark

portfolio alternative to the traditional Fama-French factors4. This is not surprising as this is

also the case in existing performance evaluation studies (e.g., Kosowski et al. (2006); Barras

et al. (2010); Fama and French (2010); Berk and Van Binsbergen (2015)).

Our idea of time-varying alphas can be traced back to the earlier conditional beta model

(e.g., Ferson and Schadt (1996)) and the conditional alpha and beta model (e.g., Christopher-

son et al. (1998)), which add a factor conditional on the state of the economy to the original

unconditional model of Jensen (1968)5. Perhaps due to its simplicity, this setup has been

used with few doubts (for recent examples, see, Fung et al. (2008); Ferson and Lin (2014);

Kacperczyk et al. (2014)). Using kernel-based method, our methodology uses all the data in

an efficient way to estimate time-varying alphas and betas, and hence nests almost all extant

3We use “fund alpha" and “alpha" interchangeably in this paper. We focus on the fund skills in this paper, but

our results hold when we limit our sample to the periods after the current portfolio manager taking control. Put

differently, we focus on fund skills in general instead of specific manager skills.

4Benchmark means the next best investment opportunity available to investors rather than the fund at the

same time. For fund performance evaluation, we must compare the fund performance with the performance of

its benchmark (Berk and Van Binsbergen (2015)).

5Typically, this strand of literature assumes a different but constant beta (and/or an alpha) according to

whether the returns of the market factor is below or above the risk-free rate.
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conditional beta models and conditional alpha and beta models as special cases.

Our work complements Mamaysky et al. (2008), which justifies the existence of time-

varying alphas and betas for mutual funds. Unlike their Kalman filter approach, which is

specifically developed for identifying the market-timing abilities, our methodology aims to

identify the overall time-varying skills of funds. While their model hinges on the assumption

that assets under management within a fund are reallocated on the basis of some unobserved

factor (market-timing), we follow the mainstream literature and build up our model on the

observable factors.

Compared with the model in Ang and Kristensen (2012), our approach is specifically de-

signed for fund performance evaluation. We argue that this kind of nonparametric methodol-

ogy is more suitable for measuring fund alphas than assets, given the wide variety of dynamic

complex strategies used in funds (see, e.g., Brown and Goetzmann (1997) for discussion). Un-

like their study, we have i) used the GLR statistic to test whether the fund alphas are indeed

time-varying or not; ii) quantified the finite sample properties of our time-varying alpha and

beta estimates relative to their OLS and/or rolling OLS counterparts via Monte Carlo simula-

tion; iii) combined our time-varying model with the bootstrap approach to control for ‘luck’.

The remainder of the paper proceeds as follows. In Section 2, we introduce our nonpara-

metric time-varying methodology, the associated estimators and various model specifications.

Section 3 investigates the finite sample properties of our methodology using Monte Carlo sim-

ulations. Section 4 describes our data and applies our methodology to a representative ‘star’

fund, and to the whole mutual fund and hedge fund industry, respectively. Section 5 combines

our time-varying estimators with the extant refinements (using the popular bootstrap approach

as an example) to further distinguish skill from luck for fund performance evaluation. Section

6 explores further robustness of the mutual fund results in Section 5 by using a variety of

alternative fund skill indicators as well as benchmark portfolios. Section 7 concludes.
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2. Methodology

As mentioned in the Introduction, the traditional fund performance evaluation methodol-

ogy assumes constant alpha and betas which is rejected by real data. In this section, we propose

a time-varying coefficient model which is able to catch the time variation of alpha and betas.

In addition, we use the local linear method to estimate the model and construct specification

tests for the model.

2.1. Nonparametric time-varying coefficient model

For a balanced or unbalanced panel of N funds, at any time point t we use ri t to denote

the excess return for the ith fund, for i = 1, · · · , N and t = 1, · · · , Ti, where Ti denotes the

time length for the i-th fund. For the simplicity of notations, here we simply use T to denote

the length of time. Let x t = (x1t , · · · , xK t)′ to denote the K observable and common tradable

factors (e.g., Fama-French type of factors). To capture the potential time variations of the fund

alphas and betas, we propose the following time-varying coefficient factor model to evaluate

fund performance:

ri t = αi(t) +
K∑

j=1

βi j(t)x j t + ei t , for i = 1, · · · , N ; t = 1, · · · , Ti; j = 1, · · · , K . (1)

where αi(t) is the vector of time-varying alphas across fund i and βi j(t), j = 1, · · · , K are the

corresponding time-varying factor loadings. We do not need to impose any ex ante parametric

constraints on the dynamics of alphas and betas, which allows for a richer set of time paths

for alphas and betas. Importantly, although we maintain the canonical assumption that errors

and factor returns are orthogonal for comparison reasons, we do not rule out any potential

relationship between alphas/betas and the factor returns.

If for a specific fund i, its alpha and betas are indeed time-invariant rather than time-

varying, model (1) degenerates to its special case which has been widely used in the existing
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literature since Jensen (1968): ri t = αi +
∑K

j=1βi j x j t + ei t . Our method therefore nests the

traditional one as a special case.

2.2. Estimating the time-varying alphas and betas

Following the econometrics literature on time-varying coefficient models (e.g., Cai (2007),

Cheng et al. (2017)), we employ the local linear estimation method to estimate the unknown

coefficient functions in model (1) .

For the sake of notational simplicity, we denote γi(τt) = (αi(t),βi1(t), · · · ,βiK(t))′ where

τt = t/T . This scaled time is required for the justification of asymptotic properties of the local

linear estimator. Please refer to Robinson (1989) for more details. Under the assumption that

γi(·) has a continuous second order derivative, we approximate γi(τt) by a linear function of

τ ∈ [0, 1] given as

γi(τt)≈ γi(τ) + γ
(1)
i (τ)(τt −τ),

where γ(1)i (τ) is the first order derivative of γi(τ).

Let zt be a column vector whose elements are respectively x t and x t(τt −τ). Let θi(τ) =
�
γi(τ)′,γ

(1)
i (τ)

′�′, model (1) can be written as

ri t ≈ z′tθi(τ) + ei t . (2)

The parameter vector θi(τ) can be estimated by minimizing the locally weighted sum of squares:

T∑
t=1

(ri t − z′tθi(τ))
2Kh(τt −τ), (3)

where Kh(u) = K(u/h)/h, K(·) is a kernel function, and h > 0 is the bandwidth satisfying that

h→ 0 and Th→∞ as T →∞.
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The local linear estimator of θi(τ) is the minimizer of (3) and is given by

bθi(τ; h) =


 ST,0(τ) S′T,1(τ)

ST,1(τ) ST,2(τ)



−1
 RT,0(τ)

RT,1(τ)


 ,

where

ST, j(τ) =
1
T

T∑
t=1

x t x
′
t(τt −τ) jKh(τt −τ), RT, j(τ) =

1
T

T∑
t=1

x t(τt −τ) jKh(τt −τ)ri t .

The first K+1 components of bθi(τ; h) are the estimators of fund alpha and betas at τ, i.e., the

estimators of (αi(τ),βi1(τ), · · · ,βiK(τ))′. We present the detailed steps to construct confidence

intervals for the time-varying alphas and betas in Appendix A.

For practical use of the proposed estimator, we need to choose a kernel function and a

bandwidth. In the nonparametric literature, there is almost a consensus that the choice of

kernel function is trivial but the bandwidth is critical. In this study, we use the Epanechnikov

kernel function which is widely used in empirical applications. For the bandwidth selection,

throughout the paper we use the normal reference rule that h= 1.06ωT−1/5, whereω denotes

the standard deviation of the smoothing variable6.

2.3. Testing time-varying alphas

After we obtain the estimates of time-varying fund alphas and betas, financial economists

may further ask whether the estimated fund alphas are indeed time-varying or not. To answer

this question, we construct a GLR test statistic following Fan et al. (2001). The GLR method has

6Our results are robust to some other kernel functions including the Gaussian function, and several main-

stream bandwidth selection methods (for example, cross-validation or plug-in method). The results are available

upon request.
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been widely used in nonparametric hypothesis testing, see for example Fan and Jiang (2005),

Cai (2007) and Cheng (2017).

Let us consider the hypothesis testing problem

H0 : αi(t) = αi versus H1 : αi(t) 6= αi, t = 1, 2, · · · , T,

where αi is a constant (e.g., αi = 0 if we want to test whether αi(t) = 0).

Assuming the error distribution is normal N(0,σ2), the log-likelihood function for model

(1) is − T
2 log(2πσ2) − 1

2σ2

∑T
t=1

�
ri t −αi(t)− x ′tβi(t)

�2
. Replace the unknown function αi(t)

and βi(t) by the local linear estimators bαi(t) and bβi(t), respectively and then define RSS1 =
∑T

t=1

�
ri t − bαi(t)− x ′t bβi(t

�
)2. We can obtain the log-likelihood under H1 by maximizing over

the parameter σ2,

`(H1) = −
T
2

log(2π)− T
2

log(RSS1)−
T
2

.

Similarly, the log-likelihood under H0 is given by

`(H0) = −
T
2

log(2π)− T
2

log(RSS0)−
T
2

,

where RSS0 =
∑T

t=1

�
ri t − eαi − x ′t eβi(t)

�2
and eαi, eβi(t) are the estimators of αi and βi(t) under

H0, respectively.

Following Fan et al. (2001), we define the following GLR statistic:

TS = `(H1)− `(H0) =
T
2

log
RSS0

RSS1
≈ RSS0 − RSS1

RSS1
. (4)

It can be shown that TS asymptotically follows standard normal distribution (e.g., Fan et al.

(2001)) under H0, and thus critical values can be obtained accordingly. The normal approxi-

mation usually does not perform well in finite samples. Thus we adopt a bootstrap refinement,
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which has been outlined in Appendix B.

2.4. Long-run alpha analysis

The question then arises of how to evaluate a fund’s overall performance during a specific

time period, especially when its performance spans across both positive and negative values,

which is a typical case in our fund sample. As a logical choice, we develop a long-run alpha

estimator which is the average of the time-varying alphas across time. This is more accurate

than the traditional OLS alpha estimator because our long-run alpha estimator is directly de-

rived from the time-varying alphas, and is more robust due to the nonparametric nature of the

methodology.

To measure the long-run performance for fund managers, we first estimate model (1) to

obtain the the estimate for unknown function αi(t) for the i-th fund, i = 1, 2, · · · , N , with

the proposed local linear estimation method. Let bαi(t) denote the estimate of αi(t) and then

following Ang and Kristensen (2012), we obtain the long-run alpha for the i-th fund by com-

puting the average 1
Ti

∑Ti

t=1 bαi(t), in which Ti denotes the length of time series for the i-th fund.

Note that in Section 2.1, we simply assume each fund has the same time length T , which is a

special case here. We allow that each fund may have different durations. Following Theorem

2 in Ang and Kristensen (2012), we can compute the asymptotic variance for the estimate of

long-run alpha, based on which we can construct the confidence interval of long-run alpha.

3. Simulation Study

In this section, we examine the finite sample performance of our time-varying coefficient

time series model using fund returns simulated from the one-factor CAPM model below.

ri t = αi(t) + βi(t)x t + ei t , (5)
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where x t is generated from a Gaussian distribution with mean 0.08/12 and standard deviation
p

0.152/12 and ei t is generated from a Gaussian distribution with mean 0 and standard devi-

ation 0.02, αi(t) and βi(t) are generated from the following four Data Generating Processes

(DGPs).

DGP1: Constant α and constant β . αi and βi are generated from U[−0.1/12,0.1/12] and

U[0.5,1.5] respectively, where U[a, b] denotes uniform distribution over the support of

[a, b].

DGP2: Constant α but time-varying β . αi(t) = αi, βi(t) = 1+100sin(2πt/T )/T , where αi

is generated from U[−0.1/12, 0.1/12].

DGP3: Time-varying α but constant β . αi(t) = ai + 0.1 sin(πt/T ), where ai is generated

from U[−0.1/12,0.1/12]. βi is generated from U[0.5, 1.5].

DGP4: Time-varying α and time-varying β . αi(t) = ai+0.1 sin(πt/T ), βi(t) = 1+100 sin(2πt/T )/T ,

where ai is generated from U[−0.1/12, 0.1/12].

We can see that DGP1 and DGP2 focus on the cases where the fund alphas are constants

and DGP3 and DGP4 consider the cases where the fund alphas are time-varying. In particular,

since t/T ∈ [0, 1], the functional form of fund alpha in DGP 3 and DGP4 will be increasing

and then decreasing which is consistent with the prediction of Berk and Green (2004).

For each DGP, we generated N = 200 funds and we set the time length T to be 200, 400 and

800, respectively. We measure the accuracy of local linear estimation method by computing

Mean Squared Error (MSE) for bαi(t) and bβi(t) separately as follows:

MSE(bαi(t)) =
1

N T

N∑
i=1

T∑
t=1

(bαi(t)−αi(t))
2 , MSE(bβi(t)) =

1
N T

N∑
i=1

T∑
t=1

� bβi(t)− βi(t)
�2

.
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The results of mean squared errors for coefficient functions in DGPs 1-4 are presented

in Table 1, from which we find that the values of MSE are quite small. For instance, the

MSE of bαi(t) is less than one basis point in all cases. When the sample size increases, the

MSE decreases, indicating that the local linear estimation method has very good finite sample

performance. We plot the median of estimated coefficient functions bαi(t) (bβi(t)) under DGPs

1-4 with T = 200, 400 and 800 in Figure 1 (Figure 2). Under each DGP, the estimated curve

comes closer to the true curve with the increase of sample size.

4. Time-varying Fund Performance Evaluation

We now apply the time-varying fund performance evaluation methodology to real data

of fund returns net of all management expenses and 12b-fees in two scenarios: for a single

representative mutual fund, all U.S. mutual funds and all U.S. hedge funds, respectively. We

first introduce our fund data sets as follows.

4.1. Data and descriptive statistics

We first apply our methodology to a representative mutual fund: Fidelity Magellan fund

(NASDAQ Ticker Symbol: FMAGX; CRSP Fund Identifier: 11943). Of course, there are many

other candidates as the single representative mutual fund, but we choose Fidelity Magellan

fund for several reasons. First of all, due to its prolonged superior performance, the Fi-

delity Magellan fund has been deemed as a skilled ‘star’ fund extensively in academic studies

(e.g., Wermers (2000); Kosowski et al. (2006); Huang et al. (2007); Berk and Van Binsbergen

(2015)). Moreover, the former manager of the Fidelity Magellan fund, Peter Lynch, has been

considered a legendary fund manager for a long time by practitioners and the press (e.g., Mar-

cus (1990)) and this fund is possibly the world’s best known actively managed mutual funds.

In addition, although its Asset Under Management (AUM) historically varies substantially, the
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Fidelity Magellan fund had been the single largest mutual fund in the world for a long period

with the AUM over $100 billion before it was overtaken by Vanguard’s passive S&P 500 index

fund in April 2000. Finally, the Fidelity fund family is arguably one of the longest-lived active

mutual fund families, with an inception date as early as in 1930. Accordingly, the fund offers

us a long sample from June 1963 to March 2017 in monthly frequency7.

We then apply our methodology to all the active U.S. mutual funds similar to Harvey and

Liu (2018); Ferson and Chen (2017). We obtain active U.S. equity mutual funds data from

the Center for Research in Security Prices (CRSP) Survivor-Bias-Free Mutual Fund database

for the 1984-2011 period. The sample period is exactly the same as that of Harvey and Liu

(2018) and Ferson and Chen (2017) for comparison reasons. We exclude the index funds. To

mitigate omission bias (Elton et al. (2001)) and incubation and back-fill bias (Evans (2010)),

we exclude observations prior to the reported year when the mutual funds were entered into

the database, and the funds which do not report a year of organization. We only include the

funds which have initial Total Net Assets (TNA) above $10 million and more than 80% of their

holdings in equity markets. To avoid the look-ahead bias, we do not exclude funds whose TNA

subsequently fall below $10 million. These screens leave us with a sample of 2557 mutual

funds with at least 30 months of fund returns8.

After that, we apply our methodology to U.S. equity-oriented hedge funds similar to Ferson

and Chen (2017). To be specific, we obtain U.S. equity-oriented hedge funds data from Lipper

TASS for the 1994-2011 period. The sample period is identical to that of Ferson and Chen

7We have used the Fidelity Magellan fund in daily frequency from September 1st, 1998 to December 30th,

2016, and obtained qualitatively similar results.

8Similarly, Harvey and Liu (2018) and Ferson and Chen (2017) have obtained a sample of 3619 and 3716

mutual funds with at least 8 months of returns over the same period, respectively. We follow Hunter et al. (2014)

by using 30 months as our threshold as it adds robustness to our results.
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(2017) for comparison reasons. To mitigate back-fill bias, we remove the first 24 months of

returns and returns before the dates when funds first entered into the database, and funds

with missing values in the field for the add date (Ferson and Chen (2017)). We only include

those categorized for a given month as either dedicated short bias, event-driven, equity market

neutral, fund-of-funds or long/short equity hedge. Similar to the mutual fund sample, we

require that a fund to have an initial TNA above $10 million as of the first date of entry. These

screens leave us with a sample of 2072 mutual funds with at least 30 months of fund returns.

Table 2 presents summary statistics of the mutual fund and hedge fund data in our paper.

We find that they share similar characteristics with the data sample used in Ferson and Chen

(2017). The main characteristics are summarized as follows.

• The range of average returns across funds is much greater in the hedge fund sample

(−0.114∼ 0.173) than that in the mutual fund sample (−0.09∼ 0.06).

• The median of estimated alpha from the Fung-Hsieh seven-factor (Fung and Hsieh (1997,

2001) model9 for the hedge funds is positive, while the one from the Fama-French-

Carhart four-factor (Carhart (1997)) for the mutual funds it is slightly negative. The tails

of the cross-sectional alpha distributions extend to larger values for the hedge funds. For

example, the upper 5% tail value for the alphas in the hedge fund sample is 1.2% per

month, while for the mutual funds it is only 0.4%. In the left tails the two types of funds

also present different alpha distributions, with a thicker lower tail for the alphas in the

hedge fund sample.

9These seven factors (i.e., Bond Trend-Following Factor, Currency Trend-Following Factor, Commodity Trend-

Following Factor, Equity Market Factor, Size Spread Factor constructed from Russell 2000 index and S&P500, Bond

Market Factor and Credit Spread Factor) proposed by Fung and Hsieh (1997, 2001) are arguably more suitable

for the hedge funds than the Fama-French-Carhart four factors.
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• The sample volatility of the median hedge fund return (2.8% per month) is smaller than

for the median mutual fund (5.3%). The range of volatilities across the hedge funds

is greater, with more mass in the lower tail. Between the 10% and 90% quantiles, the

volatility range is 1.2% - 7.5% (1.2% - 6.7% in Ferson and Chen (2017)) for hedge funds,

and 3.6% - 7.8% (4.2% - 7.0% in Ferson and Chen (2017)) for mutual funds.

• The return autocorrelation is slightly higher for the hedge funds than mutual funds. The

median autocorrelation for the hedge (mutual) funds is 0.127 (0.121), and some of the

hedge funds have substantially higher autocorrelations.

4.2. Performance of individual funds

In this subsection, we examine the performance of the Fidelity Magellan fund based on the

monthly data from June 1963 to March 2017. We allow the coefficients in the Fama-French-

Carhart four-factor model to vary with time, that is, we consider the following time-varying

coefficient four factor model as our benchmark:

ri t = αi(t) + βi1(t)MKTt + βi2(t)SMBt + βi3(t)HM Lt + βi4(t)MOMt + ei t , t = 1, · · · , T (6)

where ri t denotes the excess return of fund i at time t. MKTt , SMBt , HM Lt and MOMt denote

the Fama-French-Carhart four factors, which are the Market excess return (MKT) factor, the

Small-Minus-Big (SMB) size factor, the High-Minus-Low (HML) value factor and the Momen-

tum (MOM) factor at time t, respectively. αi(t) and βi1(t),βi2(t),βi3(t),βi4(t) are unknown

time-varying functions.

We first obtain bαi(t) and bβi j(t) by local linear estimation, for j = 1, 2,3, 4. We also com-

pute the 95% confidence interval of estimated coefficients using the bootstrap procedure de-

scribed in Section 2.2. We compare the nonparametric estimation results with the traditional

OLS estimation and overlapping rolling estimations with a rolling window of 24 months (Fig-
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ure 3), 36 months (Figure 4) and 60 months (Figure 5), respectively. Several interesting

observations can be made.

First of all, we find a time-varying alpha which decreases from positive before the 1980s

to insignificant and then to negative in the 2000s. The declining trend of alpha mirrors the

fact that Peter Lynch generated a 2% monthly alpha on average AUM of roughly $40 million

over his first five-year managing period from 1977 to 1981, but only 20 basis points(bp) when

his AUM exceeded $40 billion over his last five-year managing period from 1986 to 1990. We

conclude that it was a star fund then, but definitely is not one now. Instead of asking the

question whether the fund has skills or not, we suggest that it might be a more proper question

to ask when the fund did have skills. A typical fund marketing strategy for funds is to advertise

the long history and positive historical OLS alpha. This may be misleading according to our

results, as neither the long history nor the positive historical OLS alpha necessarily signals good

contemporaneous fund performance. Our time-varying approach offers a remedy.

The magnitude of the four factor loadings make sense, as the beta for the MKT (HML)

factor surrounds one (zero), while the betas for the SMB size factor and the Momentum factor

decrease from one to zero, which indicates a decreasing explanatory power of these Fama-

French-Carhart factors on the alpha for the Fidelity Magellan fund. Overall, we conclude that

the Fidelity Magellan fund indeed had superior skills during its early period, but these skills

gradually vanished over time and have become inferior in recent years. This is consistent with

the stylized fact that the skilled funds have been decreasing since the 20th century (Kosowski

et al. (2006); Barras et al. (2010); Fama and French (2010); Pástor and Stambaugh (2012);

Pástor et al. (2015); Jones and Mo (2016); Ferson and Chen (2017)).

Compared with the rolling window estimation which is widely used in the finance lit-

erature, the nonparametric method has several advantages. First of all, our nonparametric

estimation method uses the observations in an efficient way as the kernel function automati-
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cally assigns larger weights to the observations closer to the estimated time point, and smaller

weights to the observations further away. Moreover, the choice of window length in traditional

rolling window estimation is mostly arbitrary, while the bandwidth in our method hinges on the

data. Finally, due to the flexible nature of nonparametric methodology, our model is extremely

useful when the true relationship between fund returns and factor returns is unknown.

In order to answer the two classical questions in the literature, namely - do funds have

skills? and if so, are these skills persistent?- we further conduct two formal statistical tests for

the potential constancy of the time-varying fund alphas. For the first question, we employ the

GLR test statistic in Section 2.3 to test the null hypothesis that the fund alphas are (constantly)

zero. We obtain a p value of 0, which strongly rejects the null hypothesis that the fund alpha

for the Fidelity Magellan fund is zero over our sample period.

To investigate the persistence of fund alphas and to test the null hypothesis that the fund

alpha is a constant, we use the GLR test by comparing the nonparametric model with a semi-

parametric model where the alpha is a constant while the betas are time-varying. We obtain

a p value of 0, which strongly rejects the null hypothesis that the fund alpha for the Fidelity

Magellan fund is a constant over the sample and justifies the use of our time-varying fund

performance evaluation methodology.

4.3. Long-run performance of mutual funds

In Section 4.2, we have justified the use of our methodology by investigating whether the

Fidelity Magellan fund outperforms the market and if so, whether the performance is persis-

tent or time-varying. Another question arising now concerns how many mutual funds with

significant alphas exist in the mutual fund industry? To answer this question, in this subsec-

tion we examine the long-run performance of the cross-section of 2557 U.S. domestic equity

mutual funds, instead of considering only the time-varying performance of one particular fund,

to answer this question.
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We measure the long-run performance for all the 2557 U.S. mutual funds following the

procedure outlined in Section 2.4 and plot the long-run alpha for all the 2557 mutual funds

in Figure 6. The range of long-run alpha is approximately between -0.047 and 0.064; and as

expected, most mutual funds have long-run alpha around zero. In contrast, the range of OLS

alpha is much wider, which is between -0.14 and 0.03. There is a much smaller amount of

mutual funds with significant alphas after accounting for time-variations, which means that

our nonparametric estimator has reduced the range of mutual fund alphas towards zero.

We plot the confidence intervals of the long-run alpha estimates for all the 2557 mutual

funds in the left top panel of Figure 6 based on the theoretical results (Theorem 2) in Ang

and Kristensen (2012). To see the long-run alpha estimates and the corresponding confidence

intervals more clearly, we present the results of the bottom 50 mutual funds with the smallest

long-run alphas and the top mutual 50 funds in the top panel of Figure 6. By checking whether

the confidence interval contains zero or not, we find that only 32 (about 1% of 2557) mutual

funds significantly outperform the market in the long-run, and 229 (about 9% of 2557) mutual

funds significantly underperform the market. For most mutual funds in our sample, the long-

run alphas are not significantly different from zero.

By checking whether the zero line is constantly inside the estimated confidence interval

or not, we find that among the top 5 and bottom 5 mutual funds, we reject the null hypothesis

H0 : αi(t) = 0 for most of the mutual funds at the conventional 5% level. In addition, similar

to the Fidelity Magellan fund, the alphas of most mutual funds have a decreasing trend.

4.4. Long-run performance of hedge funds

Similar to Section 4.3, we now examine the long-run performance of a cross-section of

2072 U.S. equity-oriented hedge funds in this subsection. Our question is analogical to one

of the research questions in Ferson and Chen (2017), i.e.: how many hedge funds are there

in the hedge fund industry with significant alphas? Instead of the Fama-French-Carhart four
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factors, we present the results from the time-varying Fung-Hsieh seven-factor model. Our

results remain qualitatively the same when we replace the Fung-Hsieh seven-factor model with

the Fama-French-Carhart four-factor model.

Compared with the results for the mutual fund industry in Section 4.3, we find a much

smaller portion of hedge funds have long-run alpha around zero, which is also as expected (see,

e.g., Ferson and Chen (2017)). By checking whether the confidence interval contains zero or

not, we find that only 389 (about 19% of 2072) hedge funds significantly outperform the

market in the long-run and 193 (about 9% of 2072) mutual funds significantly underperform

the market. For the rest of hedge funds in our sample, the long-run alphas are not significantly

different from zero.

For the hedge funds, the range of long-run alphas is approximately between -0.051 and

0.047, wider than the one of OLS alphas, which is between -0.031 and 0.045. There is a larger

amount of hedge funds with significant alphas after accounting for time-variations, which

means that our nonparametric estimator has expanded the range of mutual fund alphas away

from zero.

Similar to our mutual fund results, we reject the null hypothesis of a constant alpha for

most of the hedge funds at the 5% level of significance using the GLR test and find most hedge

fund alphas are decreasing with time as well. For brevity, we do not plot the long-run alphas

for the hedge fund industry and the time-varying alphas for the top 5 and the bottom 5 hedge

funds in the market, as they are qualitatively similar to Figure 7 and Figure 8, respectively.

It is beyond the aim and scope of this paper to investigate the reasons behind the decreas-

ing alphas. Based on the empirical evidence we have obtained so far, we speculate that fund

age is likely to be one reason (Pástor et al. (2015)), although more detailed examination with

all other possible related variables is required. Fund scale/size (e.g., Berk and Green (2004),

Chen et al. (2004)) and flows (Lou (2012)) may help explain the decreasing alpha for the Fi-

19



delity Magellan fund during its early period when its AUM dramatically increases from about

$20 million in 1963 to $100 billion in 2000, but perhaps not the continued deterioration of

alpha in the 21st century when its AUM drops back to about $15 billion until 2011. Other po-

tential explanations include manager changes (Khorana (1996), Dangl et al. (2008)), industry

size and competition (Pástor and Stambaugh (2012))), macroeconomic factors (Ferson and

Schadt (1996); Avramov et al. (2011); Glode (2011)), etc.

5. Skills versus ‘Luck’

As we have shown in Section 4, the fund alphas are time-varying and the long-run alphas

are significantly different from zero. The next question is: are these significant (and positive)

alphas due to genuine managerial skills or pure sampling variability, that is, to ‘luck’? To

answer this question, we combine our nonparametric model with the cross-sectional bootstrap

approach in earlier studies (e.g., Kosowski et al. (2006); Fama and French (2010)), and develop

three new bootstrap schemes. After that, we apply the proposed bootstrap schemes to the cross-

section of U.S. mutual funds and hedge funds, respectively. Put differently, in this section

we tackle the challenge of distinguishing skill from ‘luck’ in the framework of time-varying

coefficient models. We focus on the long-run performance of these funds, with special attention

paid to the funds with superior or inferior skills.

5.1. Three new bootstrap schemes with time-varying alphas

To distinguish the true skills from ‘luck’, we first estimate model (6) by local linear estima-

tion method and obtain bαi(t) and bβ ji(t), for j = 1, 2,3, 4. We also compute the bootstrapped

alphas and betas using the following bootstrap scheme. As we only use the intra-fund informa-

tion when bootstrapping, we call it the intra-fund bootstrap. Different from the aforementioned

literature, we allow both alphas and betas to be time-varying. Our intra-fund bootstrap scheme

is as follows:
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(1) Estimate the time-varying coefficient models for the N funds with estimators {bαi(t), bβi j(t)}
and residuals {bei t}. For each fund i, we obtain the long-run alpha as 1

Ti

∑Ti

t=1 bαi(t). Sort-

ing the funds based on their long-run alphas, we can obtain the 1% to 99% quantiles

accordingly.

(2) For each fund i, generate the bootstrap residuals {e∗i t}Tt=1 from the empirical distribution

of the residuals {bei t}Tt=1, and then generate r∗i t =
∑K

j=1 x j t
bβi j(t)+ e∗i t . In other words, the

alphas are imposed to be 0. We then re-estimate the model based on r∗i t and obtain the

N long-run simulated alphas.

(3) Replicate step 2 for B(= 200) times.

(4) Obtain the quantiles of the long-run alphas based on the simulated samples.

Thus steps (2) and (3) generate an artificial world where the alphas are zero across funds

and time periods. Funds with positive and negative long-run alphas exist in the bootstrap

samples but are due to sample variability (pure luck). Step (4) compares the distribution of

true long-run alphas with their bootstrap counterparts which allows us to make inference of

true skills.

We further propose an inter-fund bootstrap, which only differs from the intra-fund boot-

strap in the residual generation step. In the second step of the inter-fund bootstrap, we gener-

ate the bootstrap residuals {e∗i t} from the empirical distribution of the residuals {bei t}Ni=1, that is,

when we generate the residual at time t for the i-th fund, we actually use the cross-sectional

information from the residual series of all the N fund at time t. Then we generate bootstrap

sample by r∗i t = x ′t bβi(t) + e∗i t . The other steps are the same as that in the intra-fund bootstrap.

Moreover, we consider a pooled bootstrap scheme, which means that we re-sample each

residual from the pool of all the residuals {bei t}N ,T
i=1,t=1. The rest is as the same as the intra-fund

bootstrap and the inter-fund bootstrap approach.
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5.2. Results for mutual funds

In this subsection, we apply the proposed intra-fund bootstrap, pooled bootstrap and inter-

fund bootstrap schemes to the cross-section of 2557 U.S. mutual funds to distinguish skill from

‘luck’. The results are presented in Table 3. The first two columns report the selected quan-

tiles and the Cumulative Distribution Function of the actual (Act) long-run alphas at selected

quantiles when they are ranked from the highest to the lowest. The next two columns re-

port the Cumulative Distribution Function of the simulated (Sim) ‘luck’ distribution as well

as the p values that correspond to the selected quantiles of the distribution of the simulated

long-run alphas generated by the intra-fund bootstrap scheme. Analogically, the remaining

four columns report the results generated by the pooled bootstrap and inter-fund bootstrap

scheme, respectively.

Our results are both similar to, and different from, the existing literature in a number

of ways. For instance, consistent with Carhart (1997) and Kosowski et al. (2006), we find

that the median mutual fund in our sample generates a Fama-French-Carhart risk-adjusted

monthly long-run alpha of -0.1% (annualized alpha of -1.2%), while the top and bottom 1%

mutual funds generate a Fama-French-Carhart risk-adjusted monthly long-run alpha of 0.7%

and -1.2%, respectively. Also, as further examples, we find the net-of-costs negative alphas of

all mutual funds below the median cannot be simply attributed to sampling variability (i.e.,

‘luck’), as all bootstrapped p values strongly reject this null hypothesis across the intra-fund

bootstrap, pooled bootstrap, and inter-fund bootstrap schemes. This finding indicates that the

investors, who have invested in the below-median mutual funds, would be much better off if

they put their investments in the low-cost index funds.

On the other hand, except for the top two mutual funds, we cannot reject the null hy-

pothesis that the performance of the above-median mutual funds is an artifact of sampling

variability (i.e., ‘luck’), either at 5% or 10% significance level. However, in our sample the top
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two mutual funds only have a short time-series span of 39 and 41 months, respectively. In

untabulated results which are available from the authors upon request, we arrived at the same

conclusion for the top two mutual funds as other above-median funds when we extend their

sample period from December 2011 to March 2017. That’s to say, even the performance of the

top two mutual funds are subject to the critique of sampling variability (i.e., ‘luck’) and our

results are disheartening for mutual fund investors.

Overall, we find little evidence that the significant and positive alphas are due to genuine

superior managerial skills, but strong evidence suggesting that the significant and negative

alphas are due to inferior managerial skills, at the conventional level of significance for most

of the mutual funds by our bootstrap schemes.

5.3. Results for hedge funds

This subsection applies the proposed intra-fund bootstrap, pooled bootstrap and inter-fund

bootstrap procedures to 2072 U.S. hedge funds to distinguish skill from ‘luck’. The results are

presented in Table 4, which is analogical to Table 3.

Consistent with page 12 in Ferson and Chen (2017), we find that the median hedge fund

in our sample generates a slightly positive Fama-French-Carhart risk-adjusted long-run alpha

which is negative for the median mutual fund as we have already shown in Section 5.3. Relative

to our mutual fund sample, the tails of the hedge fund cross-sectional alpha distribution include

much larger values, as the top and bottom 1% hedge funds generate a Fung-Hsieh seven-factor

risk-adjusted monthly long-run alpha of 2.1% and -1.8%, respectively.

Like mutual funds, the net-of-costs negative alphas of all hedge funds below the median

cannot be simply attributed to sampling variability (i.e., ‘luck’), as all bootstrapped p-values

strongly reject this null across the three bootstrap schemes. This finding indicates that the

investors, who have invested in the below-median hedge funds, would be much better off
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if they put their investments in the low-cost index funds instead. Unlike mutual funds, we

find that the performance of the median hedge funds is not subject to the critique of sampling

variability (i.e., ‘luck’), as we can reject the null hypothesis that the performance of the majority

of the top 20% hedge funds is an artifact of sampling variability (i.e., ‘luck’), albeit with a few

exceptions.

Overall, at the conventional level of significance, we find strong evidence that the sig-

nificant and positive long-run alphas are due to genuine superior managerial skills, and the

significant and negative long-run alphas are due to inferior managerial skills, especially using

our intra-fund bootstrap and inter-fund bootstrap procedures. Our results are roughly consis-

tent with those of Ferson and Chen (2017) but from a distinct perspective.

6. Robustness Checks

In Section 5, we use the net fund alpha and the Fama-French-Carhart 4-factor model to

conduct a large set of bootstrap tests to distinguish genuine managerial skills from luck and find

disheartening results for mutual funds investors. While net fund alpha measures the abnormal

return earned by fund investors, gross fund alphas measures the return the fund earns, and the

value-added measure from Berk and Van Binsbergen (2015) evaluates the money/value that

the fund extracts from capital markets10. In this section, we perform robustness checks to test

whether our results are sensitive to altering the number of factors in our benchmark model,

10By no means we have the intention to be involved in the re-heated debate on which measure is the

right/better measure of fund skill. They have all been used in the literature as indicators of fund skill, depending

on whether the researchers take the perspective of the fund investors, fund managers, etc. Nevertheless, almost

all existing fund indicators (including the ones we list here) are time-invariant constants, which are subject to

our key critique in this paper. Regarding this, our nonparametric technique offers more flexibility and has better

potential to capture the time variation in risk-taking of the funds.
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adding back fees and expenses to fund returns, using the value-added measure from Berk and

Van Binsbergen (2015) instead of fund alphas, using the Vanguard index fund as the passive

benchmark portfolio alternative to the traditional Fama-French factors, as well as sub-sample

analysis. For brevity, we report the results selectively to be reader-friendly. In general, we

demonstrate that our main findings for mutual funds are robust to these changes except for

using the value-added measure from Berk and Van Binsbergen (2015) instead of fund alphas,

and using the Vanguard index fund from Berk and Van Binsbergen (2015) as the benchmark

portfolio alternative to the traditional Fama-French-Carhart factors. This is unsurprising as it

is also the case in the literature relating to fund performance evaluation (e.g., Kosowski et al.

(2006); Barras et al. (2010); Fama and French (2010); Berk and Van Binsbergen (2015)). We

are aware of other benchmarks, fund skill indicators, and data sources, but since the main

contribution of this paper is methodological, we leave them for future research.

6.1. Altering the number of factors in the benchmark model

We use the Fama-French-Carhart 4-factor model as our benchmark simply due to the fact

that it is the most popular benchmark in the literature on mutual fund performance evalua-

tion. We do, however, fully acknowledge that there may be a certain degree of arbitrariness in

choosing such a benchmark. Other benchmark models such as CAPM and Fama-French 3-factor

model could also have been selected. To allay the concerns that our conclusion may hinge on

the choice of Fama-French-Carhart 4-factor model as our benchmark, we also substitute our

benchmark with CAPM and Fama-French 3-factor model, and selectively report the results

from the pooled bootstrap scheme in Panel A and B of Table 5, respectively. The results are

almost identical when we replace our benchmark of Fama-French-Carhart 4-factor model with

Fama-French 3-factor model. However, there are a greater number of under-performing mu-

tual funds surviving in our luck tests when we replace our benchmark of Fama-French-Carhart

4-factor model with CAPM. In general, our main results stay qualitatively unchanged.
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6.2. Adding back fees and expenses to fund returns

Another concern arises from a minor strand of literature (e.g., Fama and French (2010)),

which have proposed the gross alphas in place of net alphas as the indicator of fund skills. To

alleviate this concern, we follow the procedures of Fama and French (2010) and add back fees

and expenses to net fund returns and re-run our bootstrapping tests. Specifically, we calculate

gross returns as the net returns plus 1/12th of the fund’s annual expense ratio. When a fund’s

annual expense ratio is missing, we follow Fama and French (2010) and assume it is the same

as the average of other active mutual funds with similar Assets Under Management (AUM)11.

That’s to say, our gross fund returns include the costs in expense ratios but exclude other

costs such as trading costs, in light of the highlighted measurement issues in trading costs in

the appendix A of Fama and French (2010). Panel A, B, and C of Table 6 report the pooled

bootstrap results generated by using the long-run alphas estimated from the Fama-French-

Carhart 4-factor model, Fama and French 3-factor model and CAPM, respectively. Interestingly,

we find almost identical results from our bootstrap tests (for both top quantiles and bottom

quantiles) to those of net fund returns. If anything, the median actual long-run alphas (i.e.,

-0.000, -0.000, 0.000) estimated from the gross fund returns via the Fama-French-Carhart 4-

factor model, Fama and French 3-factor model and CAPM are generally higher than the ones

(-0.001, -0.001, -0.000) from net fund returns, which is not surprising due to the fact that we

have added back fees and expenses.

11Taking a tack different from Fama and French (2010), Berk and Van Binsbergen (2015) deal with the missing

expense ratios in a much more complex way using additional information from Morningstar, the Securities and

Exchange Commission (SEC) website, and the Electronic Data Gathering, Analysis, and Retrieval (EDGAR) system.
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6.3. Using the value-added measure instead of fund alphas

The indicators of fund skills also include non-alpha indicators that we cannot entirely

ignore for the sake of robustness reasons. Perhaps the strongest competitor so far to net alphas

and gross alphas is the value-added measure proposed by Berk and Van Binsbergen (2015),

although on page 4 immediately after their equation 1, they admit “The most commonly used

measure of skill in the literature is the unconditional mean of εi t , or the net alpha, ...". Specifically,

Berk and Van Binsbergen (2015) have proposed using the value-added measure, which is the

product of AUM and gross alphas, to measure fund performance, and argued that it is a better

measure than both net alphas and gross alphas12. Based on their suggestion, we construct our

value-added measure as the product of the gross alphas obtained in Section 6.2 (estimated

from the Fama-French-Carhart 4-factor model, Fama and French 3-factor model and CAPM,

respectively) and the natural logarithm of Total Net Asset Value (i.e., the variable “Mtna" in

CRSP database) for each mutual fund in our sample13. After that, we re-run our bootstrap

tests with our new value-added measure and report our results in Panel A, B, and C of Table 7.

The results for mutual funds look better, as our value-added measure suggests that both the

outperforming and underperforming mutual funds are due to luck and all the median values

of the actual value-added measure turn positive (0.001, 0.001, 0.003) no matter we use the

Fama-French-Carhart 4-factor model, Fama-French 3-factor model or the CAPM to estimate

12A possible extension of the value-added measure of Berk and Van Binsbergen (2015) is to use time-varying

gross alphas instead of their time-invariant gross alphas, which theoretically has better potential to capture the

time variation of the value-added.

13Strictly speaking, we should have used lagged AUM to make our value-added measure identical to Berk and

Van Binsbergen (2015). However, due to the persistence in AUM, the sample correlation coefficient between our

value-added measure and the measure constructed from lagged AUM is above 0.98 (no matter whether we lag

one month or one year) and hence we ignore this very subtle difference in this subsection as well as the next

subsection. Alternative results are available upon request.
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the gross alphas before constructing the value-added measure. This is expected, as Berk and

Van Binsbergen (2015) have demonstrated that their value-added measure is fundamentally

different from the fund alpha indicators (including both net fund alphas and gross fund alphas).

6.4. Using Vanguard index fund as the benchmark

Although the standard practice in fund performance evaluation is to simply adjust for risk

using the traditional factor models (e.g., the Fama-French-Carhart 4-factor model, Fama and

French 3-factor model or the CAPM), Berk and Van Binsbergen (2015) argue that it is worth

constructing an alternative passive investment opportunity itself. One reason for this is that

there has recently been an extensive debate on the extent to which the traditional factor models

accurately adjust for risk and which factor model is the best to achieve this goal (e.g., Hou et al.

(2015) and others). Another reason is that in some cases these traditional (e.g., Fama-French)

factors may either be unknown/unavailable to fund investors (in the early periods), or involves

intensive transaction costs (e.g., the momentum factor).

To explore this concern, we use the net return of the Vanguard S&P 500 index fund as the

alternative benchmark to the traditional factor models. We only use the Vanguard S&P 500

index fund instead of all 11 Vanguard index funds in Berk and Van Binsbergen (2015) for two

reasons: i) The number of mutual funds (i.e., 2557) in our sample is much smaller than the

one (i.e., 6054) in Berk and Van Binsbergen (2015), as we only take data from CRSP and focus

on funds that hold mainly U.S. equity (like Harvey and Liu (2018); Ferson and Chen (2017)

as well as many other studies). ii) Our sample starts from 1984 and the Vanguard S&P 500

index fund is the only one available at that time. We re-construct the net alpha (alternative

net alpha), gross alpha (alternative gross alpha) and value-added measure (alternative value-

added measure) via CAPM (using the net return of Vanguard S&P 500 index fund as the new

MKT factor) and report our pooled bootstrap test results in Panel A, B and C of Table 8, re-

spectively. Consistent with Section 9 of Berk and Van Binsbergen (2015), a strikingly different
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picture emerges14. The median value for net alphas, gross alphas, value-added measure are

0.003, 0.004 and 0.013, respectively, which are much larger than all the previous ones using

the traditional factor models as the benchmark. Moreover, the under-performing mutual funds

are no longer due to bad skills, and the outperformed mutual funds are no longer due to luck.

6.5. Sub-sample analysis

To further examine whether the cross-sectional distribution of the mutual fund industry

varies over our sample period, we implement a subsample analysis for the 1984–2001 period

since Harvey and Liu (2018) find “noticeable differences between the parameter estimates for

the 1984–2001 period and for full sample period". Although we share the sample periods with

Harvey and Liu (2018), we find few differences in our results from the pooled bootstrap tests

for the 1984–2001 period (see Tables 9 to 12) and for full sample period (1984–2011), thereby

justifying the robustness of our methodology. Arguably, the mutual funds look slightly better

for the 1984–2001 period than for our full sample period, as our pooled bootstrap test suggests

that in many cases the top 1% of them are due to genuine managerial skills rather than luck

which does not show up for the full sample period15. To a lesser extent, this tendency is

consistent with the existing literature (e.g., Kosowski et al. (2006); Barras et al. (2010); Fama

and French (2010); Ferson and Chen (2017)), and may be due to the fact that in the new

century the capital markets have become more efficient (cf., Bai et al. (2016)), or the increasing

size of the fund industry has made competition more intense and hence trading profits scarcer

(Pástor and Stambaugh (2012); Pástor et al. (2015)), or both.

14Interestingly, Fama and French (2010) have also considered this alternative but conclude differently on page

1922 that “The bottom line is that for efficiently managed passive funds, the costs missed in expense ratios are close

to zero. Thus, adjusting the benchmarks produced by (1) for estimates of these costs is unnecessary".

15Bear in mind that in the subsample period the number of mutual funds is smaller than 2557, so here the top

1% includes a smaller number of funds compared to our previous full sample analysis.
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7. Conclusion

In this paper, we introduce a time-varying coefficient model to evaluate fund performance.

The model allows us to capture the time variation in alphas and betas and thus allows us to

answer the two important questions: whether the funds have skills and if so, whether these

skills are persistent.

Applying our methodology to the legendary Fidelity Magellan fund, we find a time-varying

alpha which goes from being positive before the 1980s to being insignificant and then to being

negative in the 2000s. We conclude that although it was once a star fund, it no longer is.

Applying our methodology to the mutual and hedge funds industry, we find that most net

fund alphas are time-varying, with a general decreasing trend. We find that only 1% (19%) of

mutual (hedge) funds have positive and significant long-run net alphas, while 9% (9%) have

negative and significant long-run net alphas. Combining our methodology with the bootstrap

method which controls for ‘luck’, positive long-run alphas of mutual funds but hedge funds

disappear, while negative long-run alphas of both mutual and hedge funds remain.

We find benchmarks, fund skill indicators, and even data matter, which is not surprising as

this is also the case in the literature evaluating fund performance (e.g., Kosowski et al. (2006);

Barras et al. (2010); Fama and French (2010); Berk and Van Binsbergen (2015)).

Our work can be further extended in the following dimensions. First of all, although we

have shown that the fund performance generally decreases with time, we are yet to figure out

the mechanism for this phenomenon. Secondly, since benchmarks and fund skill indicators

are important to our results, it would be interesting to provide a more detailed comparison

and discussion. Last but not the least, we can further extend the time-varying fund evaluation

method to panel data setup which may help to catch cross-sectional dependence. We leave this

work for future research.
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Table 1: Mean Squared Errors (MSE) of the nonparametric estimates of the αi(t) and β ji(t). This table
reports the Mean Squared Errors (MSE) of nonparametric estimates of the αi(t) and β ji(t) from DGP1, DGP2,
DGP3 and DGP4, respectively. T is the time length.

DGP T MSE(bαi(t)) MSE(bβi(t))

DGP1
200 0.000015 0.008736
400 0.000008 0.005192
800 0.000005 0.002522

DGP2
200 0.000016 0.009680
400 0.000009 0.004768
800 0.000004 0.002423

DGP3
200 0.000016 0.008743
400 0.000009 0.005194
800 0.000005 0.002522

DGP4
200 0.000016 0.009708
400 0.000009 0.004774
800 0.000005 0.002425
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Table 2: Summary statistics. Monthly returns are summarized for mutual funds (top panel) and hedge funds
(bottom panel), measured in excess of the one-month return of a three-month Treasury bill. The values at the
cutoff points for various quantiles of the cross-sectional distributions of the sample of funds are reported. Each
column is sorted on the statistic shown. Nobs is the number of available monthly returns, where for the top left
(and bottom left) panel, there is no restriction while a minimum of 30 is required for the top right (and bottom
right) panel. Mean is the sample mean return, Std is the sample standard deviation of return, and Rho1 is the first
order sample autocorrelation. The alpha estimates are based on OLS regressions using the Fama-French-Carhart
four factors (Carhart (1997)) for mutual funds, while the Fung-Hsieh seven factors (Fung and Hsieh (1997, 2001)
are used for the hedge funds.

Quantiles
Mutual funds (full sample) Mutual funds (minimum 30 obs)

Nobs Mean Std Rho1 bαols Nobs Mean Std Rho1 bαols

Top 335 0.060 0.512 0.688 0.032 335 0.060 0.512 0.688 0.024
1% 333 0.021 0.117 0.406 0.008 335 0.018 0.114 0.361 0.008
5% 263 0.013 0.088 0.303 0.004 277 0.012 0.087 0.284 0.004

10% 223 0.010 0.078 0.254 0.003 232 0.010 0.077 0.243 0.003
20% 178 0.008 0.069 0.207 0.001 190 0.007 0.068 0.205 0.001
30% 149 0.006 0.062 0.172 0.001 163 0.006 0.062 0.173 0.001

Median 97 0.004 0.053 0.121 -0.000 118 0.004 0.054 0.127 -0.000
30% 53 0.002 0.046 0.062 -0.001 76 0.002 0.047 0.079 -0.001
20% 38 -0.000 0.042 0.020 -0.002 58 0.001 0.043 0.049 -0.002
10% 22 -0.003 0.036 -0.057 -0.003 44 -0.002 0.038 0.000 -0.003
5% 13 -0.008 0.030 -0.121 -0.005 38 -0.004 0.034 -0.052 -0.005
1% 9 -0.023 0.018 -0.287 -0.010 32 -0.010 0.022 -0.149 -0.009

Bottom 8 -0.090 0.002 -0.627 -0.141 31 -0.035 0.004 -0.551 -0.049

Quantiles
Hedge funds (full sample) Hedge funds (minimum 30 obs)

Nobs Mean Std Rho1 bαols Nobs Mean Std Rho1 bαols

Top 192 0.173 0.695 0.814 0.868 192 0.051 0.324 0.814 0.045
1% 172 0.026 0.173 0.579 0.024 182 0.021 0.156 0.584 0.020
5% 126 0.014 0.098 0.457 0.012 147 0.012 0.090 0.479 0.011

10% 102 0.009 0.075 0.390 0.008 124 0.009 0.071 0.409 0.008
20% 73 0.006 0.053 0.296 0.005 96 0.006 0.052 0.323 0.005
30% 56 0.004 0.042 0.234 0.004 78 0.004 0.042 0.265 0.004

Median 38 0.001 0.028 0.127 0.002 57 0.002 0.029 0.170 0.002
30% 22 -0.002 0.020 0.009 -0.000 46 -0.000 0.022 0.078 0.000
20% 16 -0.005 0.016 -0.072 -0.001 40 -0.002 0.018 0.021 -0.001
10% 11 -0.011 0.012 -0.188 -0.004 36 -0.005 0.014 -0.071 -0.003
5% 8 -0.018 0.009 -0.304 -0.009 33 -0.008 0.010 -0.133 -0.006
1% 3 -0.043 0.005 -0.518 -0.024 31 -0.018 0.007 -0.284 -0.014

Bottom 1 -0.114 0.000 -0.794 -1.513 31 -0.038 0.001 -0.492 -0.031
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Table 3: Net long-run alpha estimates from Fama-French-Carhart 4-factor model for mutual funds. This
table reports the Fama-French-Carhart risk-adjusted monthly alphas for both actual and simulated mutual funds,
ranked from highest (Top) to lowest (Bottom). In each column, we firstly report results for mutual funds with
the five highest long-run alphas on the top, followed by results for marginal mutual funds at different percentiles
in the right and left tail of the distribution respectively, as well as results for mutual funds with the five lowest
long-run alphas at the bottom. We report the results generated by the intra-fund bootstrap, pooled bootstrap and
inter-fund bootstrap schemes, in Panel A, B and C, respectively. The first two columns prior to the panels report
the selected quantiles and the Cumulative Distribution Function of the actual (Act) long-run alphas at selected
quantiles when they are ranked from the highest to the lowest, while the two columns in each panel report the
Cumulative Distribution Function of the simulated (Sim) ‘luck’ distribution as well as the p values that correspond
to the selected quantiles of the distribution of the simulated long-run alphas generated by each bootstrap scheme,
respectively. The p values for the three bootstrap schemes are based on the distribution of the best (worst) funds
in 200 bootstrap resamples.

Panel A: Intra-fund Panel B: Pooled Panel C: Inter-fund
Quantiles Act Sim p value Sim p value Sim p value

Top 0.064 0.028 0.000 0.016 0.000 0.028 0.095
2. 0.038 0.022 0.000 0.014 0.000 0.017 0.050
3. 0.013 0.020 0.990 0.014 0.485 0.013 0.295
4. 0.013 0.018 0.980 0.013 0.425 0.012 0.205
5. 0.012 0.017 0.980 0.012 0.405 0.011 0.195

1% 0.007 0.010 1.000 0.009 0.840 0.006 0.110
3% 0.005 0.006 1.000 0.006 0.965 0.004 0.150
5% 0.004 0.005 1.000 0.005 0.995 0.004 0.330

10% 0.002 0.003 1.000 0.004 0.995 0.002 0.750
20% 0.001 0.002 1.000 0.002 0.995 0.002 1.000
30% 0.000 0.001 1.000 0.002 0.995 0.001 1.000
40% -0.000 0.000 1.000 0.001 0.995 0.000 1.000

Median -0.001
40% -0.002 -0.000 0.000 -0.000 0.000 -0.000 0.000
30% -0.002 -0.001 0.000 -0.001 0.000 -0.001 0.000
20% -0.003 -0.001 0.000 -0.002 0.000 -0.001 0.000
10% -0.005 -0.003 0.000 -0.003 0.000 -0.002 0.000
5% -0.007 -0.004 0.000 -0.005 0.000 -0.003 0.000
3% -0.009 -0.005 0.000 -0.006 0.000 -0.004 0.000
1% -0.012 -0.008 0.000 -0.008 0.015 -0.006 0.000

5. -0.031 -0.015 0.000 -0.012 0.000 -0.009 0.000
4. -0.035 -0.016 0.000 -0.012 0.000 -0.010 0.000
3. -0.043 -0.018 0.000 -0.012 0.000 -0.010 0.000
2. -0.043 -0.020 0.000 -0.013 0.000 -0.012 0.000

Bottom -0.047 -0.027 0.030 -0.015 0.000 -0.014 0.000
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Table 4: Net long-run alpha estimates from the Fung-Hsieh 7-factor model for hedge funds. This table
reports the Fung-Hsieh seven-factor risk-adjusted monthly alphas for both actual and simulated hedge funds,
ranked from highest (Top) to lowest (Bottom). In each column, we firstly report results for hedge funds with
the five highest long-run alphas on the top, followed by results for marginal hedge funds at different percentiles
in the right and left tail of the distribution respectively, as well as results for hedge funds with the five lowest
long-run alphas at the bottom. We report the results generated by the intra-fund bootstrap, pooled bootstrap
and inter-fund bootstrap schemes, in Panel A, B and C, respectively. The first two columns prior to the panels
report the selected quantiles and the Cumulative Distribution Function of the actual (Act) long-run alphas at
selected quantiles when they are ranked from the highest to the lowest, while the two columns in each panel
report the Cumulative Distribution Function of the simulated (Sim) ‘luck’ distribution as well as the p values that
correspond to the selected quantiles of the distribution of the simulated long-run alphas generated by the each
bootstrap scheme, respectively. The p values for the three bootstrap schemes are based on the distribution of the
best (worst) funds in 200 bootstrap resamples.

Panel A: Intra-fund Panel B: Pooled Panel C: Inter-fund
Quantiles Act Sim p value Sim p value Sim p value

Top 0.047 0.067 0.865 0.031 0.045 0.031 0.130
2. 0.042 0.051 0.800 0.028 0.040 0.024 0.080
3. 0.040 0.045 0.710 0.026 0.025 0.021 0.060
4. 0.038 0.041 0.630 0.025 0.025 0.019 0.045
5. 0.038 0.038 0.465 0.024 0.020 0.018 0.025

1% 0.021 0.019 0.050 0.016 0.025 0.009 0.000
3% 0.012 0.012 0.185 0.011 0.085 0.006 0.000
5% 0.010 0.009 0.010 0.009 0.145 0.005 0.000

10% 0.007 0.006 0.000 0.007 0.380 0.003 0.000
20% 0.004 0.003 0.000 0.004 0.815 0.002 0.000
30% 0.002 0.001 0.015 0.002 0.855 0.001 0.000
40% 0.000 0.000 1.000 0.000 1.000 0.000 1.000

Median 0.000
40% 0.000 0.000 0.000 0.000 0.000 0.000 0.000
30% 0.000 0.000 0.000 0.000 0.000 0.000 0.000
20% 0.000 -0.000 0.715 0.000 0.130 -0.000 0.980
10% -0.003 -0.003 0.040 -0.002 0.045 -0.002 0.000
5% -0.007 -0.005 0.000 -0.004 0.005 -0.003 0.000
3% -0.009 -0.008 0.005 -0.006 0.010 -0.004 0.000
1% -0.018 -0.014 0.000 -0.010 0.005 -0.007 0.000

5. -0.036 -0.030 0.060 -0.018 0.030 -0.013 0.000
4. -0.039 -0.032 0.085 -0.020 0.035 -0.014 0.000
3. -0.044 -0.036 0.090 -0.021 0.020 -0.015 0.000
2. -0.047 -0.042 0.240 -0.023 0.020 -0.016 0.005

Bottom -0.051 -0.059 0.575 -0.027 0.050 -0.020 0.005
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Table 5: Net long-run alpha estimates from 3-factor model and CAPM for mutual funds via pooled bootstrap.
This table reports the risk-adjusted monthly alphas for both actual and simulated mutual funds, ranked from
highest (Top) to lowest (Bottom). In each column, we firstly report results for mutual funds with the five highest
long-run alphas on the top, followed by results for marginal mutual funds at different percentiles in the right and
left tail of the distribution respectively, as well as results for mutual funds with the five lowest long-run alphas at
the bottom. Panel A and B report the results generated by using the alphas estimated from the Fama and French
3-factor model and CAPM, respectively. The first column prior to the panels reports the selected quantiles. The
three columns in each panel report the Cumulative Distribution Function of the actual (Act) long-run alphas at
selected quantiles when they are ranked from the highest to the lowest, the Cumulative Distribution Function of
the simulated (Sim) ‘luck’ distribution, as well as the p values that correspond to the selected quantiles of the
distribution of the simulated long-run alphas generated by the each bootstrap scheme, respectively. The p values
for the three bootstrap schemes are based on the distribution of the best (worst) funds in 200 bootstrap resamples.

Panel A: 3-factor net α Panel B: CAPM net α
Quantiles Act Sim p value Act Sim p value

Top 0.049 0.015 0.000 0.019 0.015 0.160
2 0.031 0.014 0.000 0.018 0.014 0.090
3 0.013 0.013 0.420 0.018 0.013 0.070
4 0.013 0.012 0.375 0.016 0.013 0.150
5 0.013 0.012 0.345 0.015 0.013 0.145

1% 0.008 0.008 0.570 0.009 0.009 0.480
3% 0.005 0.006 0.825 0.007 0.007 0.440
5% 0.004 0.005 0.920 0.005 0.006 0.695

10% 0.003 0.004 0.975 0.004 0.004 0.830
20% 0.001 0.002 0.995 0.002 0.003 0.960
30% 0.000 0.002 0.995 0.001 0.002 0.955
40% -0.000 0.001 1.000 0.000 0.001 0.955

Median -0.001 -0.000
40% -0.002 -0.000 0.000 -0.001 -0.000 0.070
30% -0.002 -0.001 0.015 -0.002 -0.001 0.205
20% -0.003 -0.002 0.020 -0.002 -0.002 0.415
10% -0.005 -0.003 0.010 -0.004 -0.004 0.245
5% -0.007 -0.005 0.005 -0.006 -0.005 0.100
3% -0.009 -0.006 0.000 -0.007 -0.006 0.135
1% -0.012 -0.008 0.025 -0.012 -0.008 0.015

5 -0.029 -0.011 0.000 -0.029 -0.011 0.000
4 -0.032 -0.012 0.000 -0.030 -0.011 0.000
3 -0.035 -0.012 0.000 -0.035 -0.011 0.000
2 -0.046 -0.013 0.000 -0.036 -0.012 0.000

Bottom -0.049 -0.014 0.000 -0.038 -0.013 0.000
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Table 6: Gross long-run alpha estimates for mutual funds via pooled bootstrap. This table reports the
risk-adjusted monthly gross alphas for both actual and simulated mutual funds, ranked from highest (Top) to
lowest (Bottom). In each column, we firstly report results for mutual funds with the five highest long-run gross
alphas on the top, followed by results for marginal mutual funds at different percentiles in the right and left
tail of the distribution respectively, as well as results for mutual funds with the five lowest gross long-run alphas
at the bottom. Panel A, B, and C report the results generated by using the alphas estimated from the Fama-
French-Carhart 4-factor model, Fama and French 3-factor model and CAPM, respectively. The first column prior
to the panels reports the selected quantiles. The three columns in each panel report the Cumulative Distribution
Function of the actual (Act) long-run alphas at selected quantiles when they are ranked from the highest to the
lowest, the Cumulative Distribution Function of the simulated (Sim) ‘luck’ distribution, as well as the p values that
correspond to the selected quantiles of the distribution of the simulated gross long-run alphas generated by the
each bootstrap scheme, respectively. The p values for the three bootstrap schemes are based on the distribution
of the best (worst) funds in 200 bootstrap resamples.

Panel A: 4-factor gross α Panel B: 3-factor gross α Panel C: CAPM gross α
Quantiles Act Sim p value Act Sim p value Act Sim p value

Top 0.064 0.017 0.000 0.049 0.016 0.000 0.020 0.015 0.075
2 0.039 0.015 0.000 0.031 0.014 0.000 0.019 0.013 0.050
3 0.014 0.014 0.405 0.014 0.013 0.340 0.019 0.013 0.015
4 0.014 0.013 0.335 0.013 0.013 0.370 0.016 0.012 0.045
5 0.013 0.013 0.335 0.013 0.012 0.315 0.016 0.012 0.035

1% 0.009 0.009 0.645 0.009 0.009 0.350 0.010 0.010 0.365
3% 0.006 0.007 0.800 0.006 0.007 0.630 0.008 0.007 0.255
5% 0.005 0.006 0.935 0.005 0.006 0.755 0.007 0.006 0.235

10% 0.003 0.004 0.975 0.004 0.004 0.880 0.005 0.005 0.250
20% 0.002 0.003 0.985 0.002 0.003 0.990 0.003 0.003 0.410
30% 0.001 0.002 0.970 0.001 0.002 0.970 0.002 0.002 0.545
40% 0.000 0.001 0.990 0.001 0.001 0.990 0.001 0.001 0.555

Median -0.000 -0.000 0.000
40% -0.001 -0.000 0.000 -0.001 -0.000 0.000 -0.000 -0.000 0.665
30% -0.002 -0.001 0.000 -0.002 -0.001 0.000 -0.001 -0.001 0.730
20% -0.003 -0.002 0.000 -0.003 -0.002 0.005 -0.002 -0.002 0.745
10% -0.005 -0.003 0.000 -0.004 -0.003 0.015 -0.004 -0.004 0.555
5% -0.007 -0.005 0.000 -0.006 -0.005 0.010 -0.005 -0.005 0.270
3% -0.009 -0.006 0.000 -0.009 -0.006 0.005 -0.007 -0.006 0.175
1% -0.012 -0.009 0.050 -0.012 -0.008 0.040 -0.012 -0.009 0.050

5 -0.025 -0.012 0.005 -0.021 -0.011 0.015 -0.021 -0.011 0.010
4 -0.025 -0.012 0.010 -0.021 -0.012 0.025 -0.021 -0.011 0.010
3 -0.030 -0.013 0.005 -0.029 -0.013 0.005 -0.028 -0.012 0.000
2 -0.043 -0.014 0.000 -0.032 -0.014 0.010 -0.030 -0.012 0.005

Bottom -0.046 -0.017 0.005 -0.048 -0.016 0.000 -0.036 -0.014 0.005
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Table 7: Value-added (VA) measure for mutual funds via pooled bootstrap. This table reports the value-added
(VA) measures for both actual and simulated mutual funds, ranked from highest (Top) to lowest (Bottom). In each
column, we firstly report results for mutual funds with the five highest value-added (VA) measures on the top,
followed by results for marginal mutual funds at different percentiles in the right and left tail of the distribution
respectively, as well as results for mutual funds with the five lowest value-added (VA) measures at the bottom.
Panel A, B, and C report the results generated by using the alphas estimated from the Fama-French-Carhart 4-
factor model, Fama and French 3-factor model and CAPM, respectively. The first column prior to the panels
reports the selected quantiles. The three columns in each panel report the Cumulative Distribution Function of
the actual (Act) value-added (VA) measures at selected quantiles when they are ranked from the highest to the
lowest, the Cumulative Distribution Function of the simulated (Sim) ‘luck’ distribution, as well as the p values that
correspond to the selected quantiles of the distribution of the simulated value-added (VA) measures generated by
each bootstrap scheme, respectively. The p values for the three bootstrap schemes are based on the distribution
of the best (worst) funds in 200 bootstrap resamples.

Panel A: 4-factor VA Panel B: 3-factor VA Panel C: CAPM VA
Quantiles Act Sim p value Act Sim p value Act Sim p value

Top 0.201 0.082 0.000 0.156 0.079 0.005 0.097 0.074 0.120
2 0.083 0.071 0.175 0.086 0.069 0.155 0.094 0.067 0.070
3 0.073 0.066 0.210 0.084 0.063 0.120 0.074 0.063 0.195
4 0.066 0.062 0.260 0.081 0.060 0.095 0.072 0.061 0.185
5 0.063 0.059 0.265 0.081 0.057 0.060 0.070 0.059 0.160

1% 0.046 0.043 0.305 0.049 0.043 0.175 0.051 0.047 0.260
3% 0.032 0.032 0.495 0.034 0.032 0.315 0.037 0.035 0.315
5% 0.024 0.027 0.805 0.027 0.027 0.500 0.032 0.029 0.220

10% 0.017 0.020 0.875 0.018 0.020 0.735 0.023 0.022 0.285
20% 0.010 0.012 0.910 0.011 0.013 0.910 0.014 0.014 0.510
30% 0.006 0.008 0.860 0.006 0.008 0.945 0.009 0.009 0.520
40% 0.003 0.004 0.815 0.004 0.005 0.870 0.005 0.006 0.505

Median 0.001 0.001 0.003
40% -0.001 -0.001 0.510 -0.002 -0.001 0.285 0.000 -0.001 0.855
30% -0.004 -0.005 0.730 -0.004 -0.004 0.555 -0.002 -0.005 0.990
20% -0.007 -0.009 0.825 -0.007 -0.008 0.695 -0.005 -0.009 0.990
10% -0.013 -0.015 0.910 -0.013 -0.015 0.870 -0.010 -0.016 0.990
5% -0.020 -0.022 0.710 -0.018 -0.021 0.890 -0.015 -0.023 0.990
3% -0.025 -0.027 0.700 -0.025 -0.026 0.640 -0.021 -0.028 0.970
1% -0.043 -0.040 0.275 -0.037 -0.038 0.435 -0.036 -0.039 0.510

5 -0.057 -0.054 0.310 -0.052 -0.053 0.415 -0.057 -0.051 0.220
4 -0.068 -0.057 0.180 -0.053 -0.056 0.440 -0.079 -0.053 0.070
3 -0.085 -0.061 0.095 -0.060 -0.060 0.395 -0.082 -0.055 0.085
2 -0.100 -0.066 0.080 -0.084 -0.067 0.180 -0.088 -0.059 0.095

Bottom -0.143 -0.079 0.035 -0.141 -0.077 0.060 -0.093 -0.065 0.100
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Table 8: Alternative benchmark for mutual funds via pooled bootstrap and CAPM. This table reports the
alternative net alphas, alternative gross alphas, alternative value-added measure for both actual and simulated
mutual funds, ranked from highest (Top) to lowest (Bottom). In each column, we firstly report results for mutual
funds with the five highest alpha/VA measures on the top, followed by results for marginal mutual funds at
different percentiles in the right and left tail of the distribution respectively, as well as results for mutual funds
with the five lowest alpha/VA measures at the bottom. Panel A, B, and C report the results generated via CAPM by
using the alternative net alphas, alternative gross alphas, alternative value-added measure, respectively. The first
column prior to the panels reports the selected quantiles. The three columns in each panel report the Cumulative
Distribution Function of the actual (Act) long-run alpha/VA measures at selected quantiles when they are ranked
from the highest to the lowest, the Cumulative Distribution Function of the simulated (Sim) ‘luck’ distribution, as
well as the p values that correspond to the selected quantiles of the distribution of the simulated long-run alpha/VA
measures generated by each bootstrap scheme, respectively. The p values for the three bootstrap schemes are
based on the distribution of the best (worst) funds in 200 bootstrap resamples.

Panel A: alternative net α Panel B: alternative gross α Panel C: alternative VA
Quantiles Act Sim p value Act Sim p value Act Sim p value

Top 0.021 0.018 0.190 0.022 0.016 0.075 0.123 0.084 0.075
2 0.021 0.016 0.130 0.021 0.015 0.035 0.104 0.075 0.050
3 0.021 0.015 0.110 0.021 0.014 0.015 0.086 0.071 0.155
4 0.019 0.015 0.110 0.020 0.014 0.025 0.086 0.069 0.120
5 0.019 0.014 0.100 0.020 0.013 0.020 0.085 0.066 0.095

1% 0.013 0.010 0.145 0.014 0.011 0.065 0.070 0.053 0.080
3% 0.010 0.007 0.010 0.011 0.008 0.015 0.057 0.039 0.010
5% 0.009 0.006 0.000 0.010 0.007 0.000 0.050 0.032 0.000

10% 0.007 0.004 0.000 0.008 0.005 0.000 0.039 0.024 0.000
20% 0.006 0.003 0.000 0.006 0.003 0.000 0.029 0.015 0.000
30% 0.005 0.002 0.000 0.005 0.002 0.000 0.023 0.010 0.000
40% 0.004 0.001 0.000 0.004 0.001 0.000 0.017 0.006 0.000

Median 0.003 0.004 0.013
40% 0.002 -0.001 0.995 0.003 -0.000 1.000 0.010 -0.002 1.000
30% 0.002 -0.001 0.995 0.002 -0.001 1.000 0.006 -0.005 1.000
20% 0.001 -0.002 0.995 0.001 -0.002 1.000 0.002 -0.010 1.000
10% -0.001 -0.004 0.995 -0.000 -0.004 1.000 -0.002 -0.018 1.000
5% -0.003 -0.006 0.990 -0.003 -0.006 0.995 -0.008 -0.025 1.000
3% -0.004 -0.007 0.975 -0.004 -0.007 0.985 -0.011 -0.031 0.995
1% -0.009 -0.009 0.530 -0.009 -0.010 0.640 -0.024 -0.043 1.000

5 -0.024 -0.012 0.005 -0.017 -0.012 0.060 -0.044 -0.056 0.830
4 -0.025 -0.012 0.005 -0.018 -0.013 0.075 -0.065 -0.058 0.260
3 -0.032 -0.013 0.005 -0.023 -0.013 0.015 -0.069 -0.061 0.205
2 -0.035 -0.013 0.000 -0.025 -0.014 0.010 -0.072 -0.064 0.240

Bottom -0.037 -0.014 0.000 -0.035 -0.015 0.005 -0.078 -0.072 0.295
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Table 9: Net long-run alpha estimates for mutual funds via pooled bootstrap (1984-2001). This table
reports the risk-adjusted monthly alphas for both actual and simulated mutual funds, ranked from highest (Top)
to lowest (Bottom). In each column, we firstly report results for mutual funds with the five highest long-run alphas
on the top, followed by results for marginal mutual funds at different percentiles in the right and left tail of the
distribution respectively, as well as results for mutual funds with the five lowest long-run alphas at the bottom.
Panel A, B and C report the results generated by using the alphas estimated from the Fama-French-Carhart 4-factor
model, Fama and French 3-factor model and CAPM, respectively. The first column prior to the panels reports the
selected quantiles. The three columns in each panel report the Cumulative Distribution Function of the actual
(Act) long-run alphas at selected quantiles when they are ranked from the highest to the lowest, the Cumulative
Distribution Function of the simulated (Sim) ‘luck’ distribution, as well as the p values that correspond to the
selected quantiles of the distribution of the simulated long-run alphas generated by the each bootstrap scheme,
respectively. The p values for the three bootstrap schemes are based on the distribution of the best (worst) funds
in 200 bootstrap resamples.

Panel A: 4-factor net α Panel B: 3-factor net α Panel C: CAPM net α
Quantiles Act Sim p value Act Sim p value Act Sim p value

Top 0.034 0.021 0.045 0.029 0.021 0.080 0.030 0.018 0.020
2 0.033 0.019 0.045 0.029 0.018 0.050 0.027 0.016 0.035
3 0.030 0.017 0.025 0.028 0.017 0.035 0.027 0.015 0.025
4 0.028 0.017 0.035 0.023 0.016 0.100 0.025 0.015 0.025
5 0.023 0.016 0.090 0.021 0.016 0.125 0.024 0.015 0.035

1% 0.016 0.012 0.160 0.015 0.012 0.165 0.014 0.012 0.190
3% 0.009 0.009 0.445 0.010 0.009 0.245 0.010 0.009 0.170
5% 0.006 0.007 0.625 0.007 0.007 0.525 0.008 0.007 0.370

10% 0.004 0.005 0.840 0.004 0.005 0.740 0.005 0.005 0.545
20% 0.002 0.003 0.905 0.002 0.003 0.910 0.003 0.003 0.585
30% 0.001 0.002 0.955 0.001 0.002 0.970 0.002 0.002 0.710
40% 0.000 0.001 0.980 0.000 0.001 0.985 0.001 0.001 0.610

Median -0.001 -0.001 -0.000
40% -0.002 -0.001 0.040 -0.002 -0.001 0.025 -0.001 -0.001 0.435
30% -0.003 -0.002 0.025 -0.003 -0.002 0.070 -0.002 -0.002 0.490
20% -0.004 -0.003 0.030 -0.004 -0.003 0.010 -0.004 -0.004 0.470
10% -0.007 -0.005 0.000 -0.007 -0.005 0.005 -0.006 -0.005 0.195
5% -0.010 -0.006 0.010 -0.010 -0.007 0.000 -0.009 -0.007 0.110
3% -0.012 -0.008 0.005 -0.013 -0.008 0.000 -0.011 -0.008 0.055
1% -0.016 -0.011 0.015 -0.016 -0.010 0.015 -0.015 -0.010 0.045

5 -0.030 -0.013 0.000 -0.032 -0.013 0.000 -0.021 -0.012 0.010
4 -0.031 -0.014 0.000 -0.033 -0.013 0.000 -0.029 -0.013 0.000
3 -0.043 -0.015 0.000 -0.033 -0.014 0.000 -0.030 -0.013 0.000
2 -0.043 -0.016 0.000 -0.046 -0.015 0.000 -0.036 -0.013 0.000

Bottom -0.047 -0.018 0.000 -0.049 -0.016 0.000 -0.038 -0.014 0.000
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Table 10: Gross long-run alpha estimates for mutual funds via pooled bootstrap (1984-2001). This table
reports the risk-adjusted monthly gross alphas for both actual and simulated mutual funds, ranked from highest
(Top) to lowest (Bottom). In each column, we firstly report results for mutual funds with the five highest gross
long-run alphas on the top, followed by results for marginal mutual funds at different percentiles in the right and
left tail of the distribution respectively, as well as results for mutual funds with the five lowest gross long-run
alphas at the bottom. Panel A, B and C report the results generated by using the alphas estimated from the Fama-
French-Carhart 4-factor model, Fama and French 3-factor model and CAPM, respectively. The first column prior
to the panels reports the selected quantiles. The three columns in each panel report the Cumulative Distribution
Function of the actual (Act) gross long-run alphas at selected quantiles when they are ranked from the highest to
the lowest, the Cumulative Distribution Function of the simulated (Sim) ‘luck’ distribution, as well as the p values
that correspond to the selected quantiles of the distribution of the simulated gross long-run alphas generated by
the each bootstrap scheme, respectively. The p values for the three bootstrap schemes are based on the distribution
of the best (worst) funds in 200 bootstrap resamples.

Panel A: 4-factor net α Panel B: 3-factor net α Panel C: CAPM net α
Quantiles Act Sim p value Act Sim p value Act Sim p value

Top 0.034 0.016 0.000 0.030 0.016 0.005 0.039 0.022 0.005
2 0.034 0.015 0.000 0.029 0.015 0.005 0.039 0.019 0.000
3 0.030 0.014 0.000 0.029 0.014 0.000 0.032 0.018 0.005
4 0.029 0.013 0.000 0.024 0.013 0.000 0.029 0.017 0.000
5 0.024 0.013 0.005 0.022 0.013 0.010 0.027 0.015 0.000

1% 0.020 0.011 0.005 0.017 0.011 0.030 0.022 0.013 0.000
3% 0.010 0.009 0.205 0.011 0.009 0.090 0.015 0.010 0.010
5% 0.008 0.007 0.260 0.009 0.007 0.165 0.012 0.008 0.015

10% 0.005 0.006 0.500 0.006 0.006 0.440 0.007 0.006 0.225
20% 0.003 0.004 0.670 0.003 0.004 0.650 0.004 0.004 0.480
30% 0.002 0.002 0.745 0.002 0.002 0.675 0.002 0.003 0.570
40% 0.001 0.001 0.635 0.001 0.001 0.755 0.001 0.001 0.510

Median 0.000 0.000 0.000
40% -0.001 -0.001 0.425 -0.001 -0.001 0.315 -0.001 -0.001 0.565
30% -0.002 -0.002 0.355 -0.002 -0.002 0.295 -0.002 -0.002 0.480
20% -0.004 -0.003 0.250 -0.004 -0.003 0.120 -0.004 -0.003 0.360
10% -0.007 -0.005 0.030 -0.007 -0.005 0.035 -0.006 -0.005 0.155
5% -0.010 -0.007 0.005 -0.010 -0.007 0.030 -0.010 -0.007 0.020
3% -0.011 -0.008 0.015 -0.012 -0.008 0.035 -0.012 -0.009 0.015
1% -0.015 -0.010 0.035 -0.016 -0.010 0.015 -0.018 -0.011 0.000

5 -0.029 -0.013 0.000 -0.029 -0.012 0.000 -0.030 -0.013 0.000
4 -0.030 -0.013 0.000 -0.032 -0.013 0.000 -0.031 -0.014 0.000
3 -0.030 -0.014 0.000 -0.033 -0.013 0.000 -0.031 -0.015 0.000
2 -0.043 -0.015 0.000 -0.033 -0.014 0.000 -0.032 -0.016 0.000

Bottom -0.046 -0.016 0.000 -0.048 -0.015 0.000 -0.033 -0.018 0.000
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Table 11: value-added (VA) measure for mutual funds via pooled bootstrap (1984-2001). This table reports
the value-added (VA) measures for both actual and simulated mutual funds, ranked from highest (Top) to lowest
(Bottom). In each column, we firstly report results for mutual funds with the five highest value-added (VA)
measures on the top, followed by results for marginal mutual funds at different percentiles in the right and left
tail of the distribution respectively, as well as results for mutual funds with the five lowest value-added (VA)
measures at the bottom. Panel A, B and C report the results generated by using the alphas estimated from
the Fama-French-Carhart 4-factor model, Fama and French 3-factor model and CAPM, respectively. The first
column prior to the panels reports the selected quantiles. The three columns in each panel report the Cumulative
Distribution Function of the actual (Act) value-added (VA) measures at selected quantiles when they are ranked
from the highest to the lowest, the Cumulative Distribution Function of the simulated (Sim) ‘luck’ distribution, as
well as the p values that correspond to the selected quantiles of the distribution of the simulated value-added (VA)
measures generated by the each bootstrap scheme, respectively. The p values for the three bootstrap schemes are
based on the distribution of the best (worst) funds in 200 bootstrap resamples.

Panel A: 4-factor VA Panel B: 3-factor VA Panel C: CAPM VA
Quantiles Act Sim p value Act Sim p value Act Sim p value

Top 0.150 0.073 0.005 0.161 0.075 0.000 0.147 0.083 0.030
2 0.147 0.064 0.000 0.150 0.067 0.000 0.119 0.075 0.075
3 0.133 0.061 0.000 0.135 0.063 0.000 0.118 0.072 0.055
4 0.133 0.058 0.000 0.122 0.060 0.000 0.114 0.070 0.050
5 0.129 0.055 0.000 0.118 0.058 0.000 0.105 0.069 0.070

1% 0.093 0.047 0.010 0.088 0.050 0.015 0.087 0.059 0.070
3% 0.051 0.037 0.035 0.051 0.038 0.040 0.057 0.046 0.125
5% 0.038 0.031 0.130 0.041 0.033 0.085 0.048 0.038 0.160

10% 0.025 0.023 0.340 0.027 0.025 0.300 0.034 0.028 0.190
20% 0.015 0.015 0.475 0.015 0.016 0.605 0.021 0.017 0.225
30% 0.009 0.009 0.500 0.009 0.010 0.730 0.013 0.010 0.235
40% 0.005 0.005 0.480 0.004 0.005 0.695 0.008 0.004 0.155

Median 0.001 0.001 0.003
40% -0.002 -0.003 0.785 -0.002 -0.003 0.695 0.000 -0.005 0.950
30% -0.005 -0.008 0.860 -0.005 -0.008 0.835 -0.003 -0.011 0.990
20% -0.011 -0.013 0.830 -0.011 -0.014 0.820 -0.009 -0.017 0.980
10% -0.020 -0.022 0.725 -0.021 -0.022 0.600 -0.017 -0.026 0.995
5% -0.029 -0.029 0.450 -0.030 -0.030 0.440 -0.026 -0.035 0.960
3% -0.037 -0.035 0.305 -0.040 -0.036 0.220 -0.034 -0.040 0.830
1% -0.056 -0.046 0.135 -0.054 -0.046 0.180 -0.052 -0.049 0.305

5 -0.062 -0.054 0.205 -0.071 -0.054 0.095 -0.066 -0.054 0.130
4 -0.062 -0.056 0.290 -0.072 -0.056 0.105 -0.077 -0.056 0.045
3 -0.072 -0.059 0.130 -0.076 -0.059 0.100 -0.082 -0.058 0.045
2 -0.085 -0.062 0.080 -0.084 -0.062 0.095 -0.088 -0.060 0.045

Bottom -0.143 -0.070 0.000 -0.141 -0.069 0.005 -0.093 -0.065 0.045
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Table 12: Alternative benchmark for mutual funds via pooled bootstrap and CAPM (1984-2001). This
table reports the alternative net alphas, alternative gross alphas, alternative value-added (VA) measures for both
actual and simulated mutual funds, ranked from highest (Top) to lowest (Bottom). In each column, we firstly
report results for mutual funds with the five highest long-run alphas/VAs on the top, followed by results for
marginal mutual funds at different percentiles in the right and left tail of the distribution respectively, as well as
results for mutual funds with the five lowest long-run alphas/VAs at the bottom. Panel A, B and C report the results
generated via CAPM by using the alternative net alphas, alternative gross alphas, alternative value-added measure,
respectively. The first column prior to the panels reports the selected quantiles. The three columns in each panel
report the Cumulative Distribution Function of the actual (Act) long-run alphas/VAs at selected quantiles when
they are ranked from the highest to the lowest, the Cumulative Distribution Function of the simulated (Sim) ‘luck’
distribution, as well as the p values that correspond to the selected quantiles of the distribution of the simulated
long-run alphas/VAs generated by the each bootstrap scheme, respectively. The p values for the three bootstrap
schemes are based on the distribution of the best (worst) funds in 200 bootstrap resamples.

Panel A: alternative net α Panel B: alternative gross α Panel C: alternative VA
Quantiles Act Sim p value Act Sim p value Act Sim p value

Top 0.032 0.021 0.045 0.032 0.019 0.015 0.160 0.100 0.045
2 0.031 0.019 0.040 0.031 0.017 0.005 0.136 0.089 0.080
3 0.030 0.018 0.025 0.031 0.017 0.005 0.126 0.084 0.085
4 0.029 0.017 0.015 0.029 0.016 0.005 0.120 0.081 0.095
5 0.027 0.017 0.020 0.028 0.016 0.010 0.117 0.080 0.085

1% 0.018 0.014 0.130 0.020 0.014 0.045 0.102 0.069 0.060
3% 0.013 0.011 0.125 0.016 0.011 0.055 0.073 0.053 0.080
5% 0.011 0.009 0.080 0.013 0.010 0.030 0.062 0.045 0.065

10% 0.009 0.006 0.045 0.010 0.007 0.040 0.051 0.032 0.010
20% 0.007 0.004 0.005 0.008 0.004 0.000 0.034 0.019 0.000
30% 0.005 0.002 0.000 0.006 0.003 0.000 0.024 0.010 0.000
40% 0.004 0.001 0.000 0.005 0.001 0.000 0.019 0.004 0.000

Median 0.003 0.003 0.014
40% 0.002 -0.001 1.000 0.002 -0.001 1.000 0.008 -0.008 1.000
30% 0.001 -0.003 0.995 0.001 -0.003 1.000 0.003 -0.014 1.000
20% -0.001 -0.004 0.995 -0.000 -0.004 1.000 -0.001 -0.021 1.000
10% -0.003 -0.006 0.995 -0.003 -0.007 1.000 -0.009 -0.032 1.000
5% -0.006 -0.008 0.975 -0.005 -0.009 0.990 -0.018 -0.041 1.000
3% -0.008 -0.009 0.830 -0.008 -0.010 0.945 -0.024 -0.047 1.000
1% -0.012 -0.012 0.390 -0.012 -0.012 0.565 -0.040 -0.057 0.975

5 -0.019 -0.014 0.035 -0.017 -0.014 0.110 -0.056 -0.065 0.770
4 -0.024 -0.014 0.000 -0.018 -0.014 0.100 -0.067 -0.066 0.425
3 -0.025 -0.014 0.000 -0.023 -0.015 0.015 -0.069 -0.068 0.400
2 -0.035 -0.015 0.000 -0.025 -0.015 0.015 -0.072 -0.071 0.345

Bottom -0.037 -0.016 0.000 -0.035 -0.017 0.000 -0.078 -0.078 0.380
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Figure 1: The nonparametric estimates of alphas from simulated data. This figure plots the estimated bαi(t)
from simulated data in each row (column) with T=200, 400 and 800 (from DGP1, DGP2, DGP3 and DGP4),
respectively.
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Figure 2: The nonparametric estimates of betas from simulated data. This figure plots the estimated bβi(t)
from simulated data in each row (column) with T=200, 400 and 800 (from DGP1, DGP2, DGP3 and DGP4),
respectively.
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Figure 3: The estimated net alphas and betas of the Fidelity Magellan fund. This figure plots the Fidelity
Magellan fund performance evaluation results using monthly returns. In each graph, the black solid line denotes
the corresponding nonparametric estimates ofαi(t) or β ji(t) and the black dotted line denotes their corresponding
95% confidence interval. The red dashed line denotes the corresponding time-invariant OLS estimates of αi(t)
or β ji(t), while the blue dash-doted line denotes the corresponding rolling OLS estimates of αi(t) or β ji(t) with
a rolling window of 24 months, respectively.
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Figure 4: The estimated net alphas and betas of the Fidelity Magellan fund. This figure plots the Fidelity
Magellan fund performance evaluation results using monthly returns. In each graph, the black solid line denotes
the corresponding nonparametric estimates ofαi(t) or β ji(t) and the black dotted line denotes their corresponding
95% confidence interval. The red dashed line denotes the corresponding time-invariant OLS estimates of αi(t)
or β ji(t), while the blue dash-doted line denotes the corresponding rolling OLS estimates of αi(t) or β ji(t) with
a rolling window of 36 months, respectively.
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Figure 5: The estimated net alphas and betas of the Fidelity Magellan fund. This figure plots the Fidelity
Magellan fund performance evaluation results using monthly returns. In each graph, the black solid line denotes
the corresponding nonparametric estimates ofαi(t) or β ji(t) and the black dotted line denotes their corresponding
95% confidence interval. The red dashed line denotes the corresponding time-invariant OLS estimates of αi(t)
or β ji(t), while the blue dash-doted line denotes the corresponding rolling OLS estimates of αi(t) or β ji(t) with
a rolling window of 60 months, respectively.
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Figure 6: The estimated net alphas of the whole mutual fund industry. This figure plots the long-run alpha
estimates and 95% confidence intervals by both nonparametric local linear estimation method and traditional OLS
estimation method for the whole cross-section of mutual funds. The top panel shows the nonparametric estimates
of long-run alpha for all the 2557 funds, the top 50 funds and the bottom 50 funds, respectively, while the bottom
panel shows long-run alpha estimates and 95% confidence intervals by both nonparametric local linear estimation
method and traditional OLS estimation method for all the 2557 funds, the top 50 funds (with the largest long-run
alphas) and the bottom 50 funds (with the smallest long-run alphas), respectively.
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Figure 7: The estimated time-varying net alphas of the top 5 mutual funds. This figure plots the confidence
interval of the estimated alpha curve for the top 5 funds with CRSP fund number =37271, 37640, 31182, 8432,
8434 respectively. In each graph, the black solid line denotes the corresponding nonparametric estimates of αi(t);
the blue dashed line denotes the 95% confidence interval and the green dotted line denotes the zeros.
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Figure 8: The estimated time-varying net alphas of the bottom 5 mutual funds. This figure plots the
confidence interval of the estimated alpha curve for the bottom 5 funds with CRSP fund number= 34474, 28964,
2620, 5369, 2117 respectively. In each graph, the black solid line denotes the corresponding nonparametric
estimates of αi(t); the blue dashed line denotes the 95% confidence interval and the green dotted line denotes
the zeros.
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Appendix

The content of this Appendix section is as follows. We present the detailed steps to con-

struct confidence intervals for the time-varying alphas and betas defined in subsection 2.2 in

Appendix A. We then present in Appendix B the procedure we adapt to obtain the p value of

our proposed GLR statistic defined in subsection 2.3.

Appendix A. Constructing confidence intervals for the time-varying alphas and betas

To further conduct more statistical inference, we construct the 95% confidence interval for the

local linear estimator using the following bootstrap procedure. Although we could alternatively

use the asymptotic results in Cai (2007) to construct the confidence interval, in finite samples

it has been shown that bootstrap procedure can result in more satisfactory results.

(1) Based on the local linear estimator, we can first compute the residuals by

bei t = ri t − bαi(t)−
K∑

j=1

bβi j(t)x j t .

(2) We sample e∗i t from {bei t}Tt=1 and then generate a bootstrap sample by

r∗i t = bαi(t) +
K∑

j=1

bβi j(t)x j t + e∗i t .

(3) Based on the bootstrap sample {r∗i t , x1t , · · · , xK t}, we estimate the unknown coefficient

functions in model (1) and save the estimated coefficient function as bα(1)∗i (t) and bβ (1)∗ji (t),

for j = 1, · · · , K .

(4) Repeat steps (2) and (3) for B times and obtain bα(b)∗i (t) and bβ (b)∗ji (t), for b = 1, 2, · · · , B.

(5) Calculate the 2.5% and 97.5% quantiles of the series {bα(b)∗i (t)}Bb=1 to obtain the 95%

confidence interval of bαi(t). Similarly we can obtain the confidence interval for bβ ji(t).
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Appendix B. Obtaining the p value of the GLR statistic

Here, we briefly explain the nonparametric bootstrap approach to obtain the p value of our

proposed GLR statistic defined in Section 2.3.

(1) Generate the bootstrap residuals {e∗i t}Tt=1 from the empirical distribution of the residuals

{eei t}Tt=1, where eei t = ri t − eαi − x ′t eβi(t). Define r∗i t = eαi + x ′t eβi(t) + e∗i t .

(2) Calculate the bootstrap test statistic TS∗ based on the sample {x t , r∗i t}Tt=1.

(3) Repeat the above steps (1) and (2) for B times.

(4) Compute TS based on the original sample. Reject the null hypothesis H0 when TS is

greater than the upper-α point of the conditional distribution of TS∗ given {x t , r∗i t}Tt=1.

The p value of the test is simply the relative frequency of the event {TS∗ ≥ TS} in the

replications of the bootstrap sampling.
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