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Abstract—The ever-increasing demand for biometric solutions
for the internet of thing (IoT)-based connected health applications
is mainly driven by the need to tackle fraud issues, along with the
imperative to improve patient privacy, safety and personalized
medical assistance. However, the advantages offered by the IoT
platforms come with the burden of big data and its associated
challenges in terms of computing complexity, bandwidth avail-
ability and power consumption. This paper proposes a solution
to tackle both privacy issues and big data transmission by
incorporating the theory of compressive sensing (CS) and a
simple, yet, efficient identification mechanism using the electro-
cardiogram (ECG) signal as a biometric trait. Moreover, the
paper presents the hardware implementation of the proposed
solution on a system on chip (SoC) platform with an optimized
architecture to further reduce hardware resource usage. First,
we investigate the feasibility of compressing the ECG data while
maintaining a high identification quality. The obtained results
show a 98.88% identification rate using only a compression ratio
of 30%. Furthermore, the proposed system has been implemented
on a Zynq SoC using heterogeneous software/hardware solution,
which is able to accelerate the software implementation by a
factor of 7.73 with a power consumption of 2.318 W.

Index Terms—Internet of things (IoT), compressive sensing
(CS), zynq SoC, reconstruction algorithms, pattern recognition.

I. INTRODUCTION

With the aging world population, the rising cost of health-
care has put many challenges to governments and healthcare
providers. Thus, strong urge to explore all the available com-
munication infrastructures and powerful computing embedded
platforms to support an unobtrusive, reliable and cost effective
patient remote monitoring in order to provide sustainable,
secure and personalized services to patients.

Wearable technology and continuous monitoring using the
internet of things (IoT) is causing an explosion in biometric
data. The latter can be combined with other factors such as
medical history records to better understand the patient’s con-
dition and enhance the provided clinical assistance. However,
IoT-based connected health applications face issues related to
both big data transmission/processing and user privacy [1].

In a typical monitoring scenario, each patient uses a partic-
ular sensing device which is linked to a unique identifier in
order to be recognized at cloud server [2]. However, different
users can use the same device resulting in merging the health
record for different patients into one single labelled record
which can lead to serious inaccuracies in the medical diagno-
sis, hence, causing life threatening problems. In addition, the
accuracy of these records is imperative for health organizations
to keep track of individual patients and manage the overall
patient population. Therefore, patients identification within the

continuous monitoring platforms will reduce misdiagnoses and
increase effective treatment.

Thus, offering a solution that can address both big data
issues and user privacy challenges is an imperative task to
address for the next generation of remote monitoring plat-
forms. This paper puts forth a platform for wireless moni-
toring that offers an identification mechanism as well as it
provides energy optimization by compressing the data before
transmission. The proposed solution is based on two pillars,
compressive sensing (CS), to reduce the number of samples
transmitted and a simple, yet, effective pattern recognition
approach to identify different individuals.

CS [3], [4] is an emerging paradigm that has gained con-
siderable attention among signal processing community. CS
aims to capture a compressed form of sparse signals directly
without going through traditional sampling and compression
paradigms. To this end, rather than collecting the values of
uniformly spaced points in the signal, random compressive
measurements are collected, where each measurement value
correspond to the weighted summation of the entire signal.
In addition, the compressed data capture enough information
about the signal which enable a near-optimal recovery for the
original data using sophisticated reconstruction algorithms, for
instance, orthogonal matching pursuit (OMP) [5]. CS aims at
shifting the complexity from the sensors which are usually
resources constrained and self powered to the receiver side
which is usually installed on computing platforms with relaxed
constraints.

On the other hand, identification systems rely on pattern
recognition mechanisms in order to match a given data signa-
ture from a particular individual against a dataset of acquired
signatures. Identification systems based on biometric traits
rely on the unique and intrinsic behavioral (gait, interaction
gestures and voice) and/ or physiological (DNA, Iris, face and
electrocardiogram (ECG)) characteristics of individuals. Ide-
ally, an identification system should grant an easy, universal,
unique and permanent identification. However, an acceptable
biometric system can satisfy relaxed constraints depending on
the requirements and the purpose of the application.

ECG-based identification can be traced back to the work
of Biel et al.[6] and irvine et al. [7]. The main idea is to
use the ECG characteristics which differ from a person to
another as a biometric measure to distinguish between different
individuals. The key stage in ECG based identification is to
extract the most significant information from the ECG by
means of feature selection techniques. Feature selection aims
at identifying the features that provides significant information
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about the data and discard the features that are irrelevant and
do not contain any discriminatory information.

To this end, two approaches could be distinguished: (i)
characteristic-based methods [8] that use the ECG fiducial
points and (ii) waveform-based methods [9] in which the mor-
phology of entire ECG segment is analyzed. Characteristic-
based features represent the fiducial points of the ECG which
correspond to the P, QRS, T waves [10]. Fiducial points are
points of interest within the heart electrical activities. The
amplitude, duration and the correlation between these points
can be used as reference for individual identification [6], [7],
[11]. On the other hand, non-fiducial approaches are used
to extract discriminatory information from the ECG segment
either with partial detection of the fiducial points [9], [12],
[13], [14], [15] or by using the entire ECG segment to extract
the salient information from the data without detecting any of
the R peaks [16].

In this work we present a unified framework for an ECG-
based biometric system by exploiting the CS theory. The
main objective is to present a SoC solution that reduces the
overall power consumption while maintaining a high, reliable
identification accuracy. The proposed framework is able to
achieve 98.88% identification rate using only a compression
ratio of 30% of the original signal size, as a result this
would significantly reduce the energy transmission due to the
smaller data size. In addition, as the proposed work is based
on a heterogeneous re-configurable SoC, it can be integrated
together with other ECG monitoring applications without any
additional sensory equipment. The main contributions of this
paper are the following:
• Propose and model an ECG-based identification system

by exploring the CS concept at the acquisition step. The
proposed system is quantified in terms of reconstruction
quality, identification rate and execution time in order to
confirm with real-time requirements.

• Introduce a way to integrate the CS and identification unit
into heterogeneous re-configurable hardware. This allows
the implementation of a highly adaptive and scalable
high-performance data processing system.

The remaining sections of this paper are organized as
follow, section II provides a brief overview of CS concept and
its associated reconstruction algorithms. Section III presents
the modelling and software implementation results for the
proposed platform. In section IV, a detailed analysis of the
OMP algorithm and its optimized architecture and its hardware
implementation. Section V discusses the hardware implemen-
tation results. Section VI concludes the paper.

II. COMPRESSIVE SENSING OVERVIEW

The conventional acquisition paradigm samples the signal
based on its bandwidth rate, a particular signal with a band-
width of W should be sampled at least at frequency fs ≥ 2W
to fully preserve its information. Usually, the collected data are
big and highly redundant, thus, the signal is often compressed
by discarding the redundancy within the signal [17]. The
compression would benefit the whole system by reducing the
delays and the cost of the wireless communication as well as
simplifying the computation process.

Subsequently, to avoid acquiring huge amount of redundant
samples, a very interesting theory, namely CS, has been pro-
posed in [3], [4]. CS suggests that it is possible to surpass the
limitation of Nyquist-Shannon sampling paradigm by leverag-
ing a particular structure that wide class of real world signals
exhibit. CS states that if the information rate of the signal
is less than its bandwidth rate, i.e., signal is either sparse or
compressible, than it is possible to capture all the information
without any loss using a fewer number of samples than what
the Nyquist-Shannon theorem states. Hence, CS enables a
potentially large reduction in the sampling and computation
costs for sensing signals with sparse or compressible behavior
[18].

A. CS Encoder

Consider the orthogonal basis {Ψi}ni=1 that spans Rn, any
signal x ∈ Rn can be expressed as a linear combination
of the elements of Ψ with the elements of the vector s =
[s1, s2, · · · , sn]T such that x =

∑n
i=1 Ψisi. The signal x is

said to be k-sparse if the vector s has only k � n non-zero
entries. The matrix Ψ is called the sparsifying matrix in the
context of CS. For instance, discrete cosine transform (DCT)
and discrete wavelet transform (DWT) have been widely used
as sparsifying basis for bio-medical signals [19].

The CS encoder performs both acquisition and compression
simultaneously to acquire directly a compressed form of the
signal. In the CS encoder, the input signal x is multiplied by
a tall random sensing matrix, hence, the acquisition process
in CS can be modeled by:

y = Φx = ΦΨs = Θs (1)

where Φ ∈ Rm×n represents the sensing matrix used to
acquire and compress the data, Moreover, The ratio m

n is
defined as the compression ratio (CR).

The design of the sensing matrix should comply with two
conditions, namely, incoherence and the restricted isometry
property (RIP) [20]. Incoherence guarantees that each sparse
vector x is mapped into a dense vector y, i.e. each sensing
sequence is able to collect part of the signal information
content. Whereas, the RIP condition guarantees that mapping
x from an n-dimensional space to m-dimensional space pre-
serves the `2 norm of the signal and the distance between any
two distinct signals x and x′ is preserved. Both conditions
can be guarantees by exploring random matrices [21]. A
matrix Φ with entries drawn from an independent and identical
distribution holds both the RIP and the incoherence conditions
with any fixed sparsifying basis Ψ. In addition, Bernoulli
matrices hold the same level of guaranties [22].

B. CS Decoder

Fast and efficient reconstruction algorithms are keys to
incorporate CS in real world applications, thus, several re-
construction algorithm classes have been proposed in the
literature. Nevertheless, the well recognized algorithms falls
under the umbrella of two major algorithmic approaches,
namely, convex optimization and greedy algorithms.
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1) Convex Optimization: Convex optimization are based on
`1-minimization and they were proposed as an alternative to
the `0 minimization solver as it is an NP-hard problem for any
large matrix Φ [23]. The `1-minimization approach, known as
basis pursuit (BP) [23], considers the following solution:

x̂ = argmin ‖x‖1 subject to y = Φx (2)

A noisy acquisition model adapts itself by considering
either basis pursuit denoising (BPDN) solution [24] or least
absolute shrinkage and selection operator (LASSO) approach
[25] depending on the apriori knowledge of the noise level.

2) Greedy Algorithms: Greedy algorithms have been
widely exploited in CS applications due to their relatively
simple framework which provides a fast reconstruction with a
low implementation cost. These methods enhance iteratively
the approximation for the signal by making locally optimal
choices. Greedy algorithms consist of two main steps, ele-
ment(s) selection and coefficients update. These methods are
usually initialized with a residual r[0] = y, signal estimate
x̂[0] = 0 and empty support set Γ = [ ]. At each iteration j,
single or multiple elements from the sensing matrix are added
to the support set, the signal estimate is calculated using a
least square approach x[j] = Φ†Ty. Additionally, the residual
is minimized r[j] = y − ΦTx[j]. The algorithms halt when
the residual norm is smaller than a predefined threshold.

Currently, the well established greedy algorithms include
OMP [5], compressive sampling matching pursuit (CoSaMP)
[26] and subspace pursuit (SP) [27].

III. PROPOSED SYSTEM AND ITS SOFTWARE
IMPLEMENTATION

The main motivation of the proposed system is to tackle
two issues facing patients monitoring, which are high power
consumption and user privacy. Therefore, the key features
provided by the proposed system are, 1) data transmission
load reduction and 2) high-quality identification rate per-
formance. To this end, two blocks are implemented, CS-
based coding/decoding and identification block using machine
learning algorithms. The necessity to compress ECG in remote
monitoring applications is well established [28]. Furthermore,
CS has been proven to outperform state-of-the-art compressing
techniques in several setups in terms of power consumption,
high compression and reconstruction quality [29], [30], [31],
[32].

The CS-based coding stage consists of compressing each
2-sec ECG before transmission. Since the ECG signal is
already acquired, we apt for digital CS [33]. This approach is
performed by multiplying the signal by a tall sensing matrix
Φ ∈ RM×N . In the design of sensing matrix, the elements of
Φ have been drawn from three different distributions, namely,
random, Bernoulli and sparse distribution. In the case where Φ
is a sparse matrix, the approaches can be seen as a non-uniform
sampler (NUS) [34], where the CS encoder picks an M
samples randomly from the whole N dimension ECG signal.
Exploring the NUS architecture would reduce significantly
the implementation complexity of the CS encoder [35]. On
the other hand, decoding is a straightforward approach where

the original N -dimensional ECG is reconstructed from the
M -dimensional signal using OMP algorithm. Furthermore,
the usefulness of the reconstructed ECG data is evaluated in
terms of one particular application, namely, ECG-based patient
identification.

A. System Overview

The proposed CS-based identification is presented in Fig. 1.
The system comprises of compression stage, a reconstruction
phase and a pattern recognition unit. The latter consists of
ECG pre-processing, features extraction and identification.
Fig. 1. illustrates the overall framework of the investigated
system.

The experimental data used to quantify the proposed system
are obtained from PhysioNet-MIT Arrhythmia Database [36],
which offers free web access to multi-channel ECG. The
database contains recordings (30 minutes) sampled at 360 Hz
with 11 bits precision. Each record contains normal and abnor-
mal heart beat morphologies. The MIT Arrhythmia Database
were collected from 47 subjects (Records 201 and 202 came
from the same male subject). Fig. 2, presents three different
recordings collected from the MIT-arrhythmia database.

Afterward, the ECG dataset has been divided into two
subsets, the first one is used for extracting the features in
order to train the identification model and the second one
is used to validate and test the performance of the proposed
platform. The training features set is extracted directly from
the original ECG signal without undergoing any compression
phase. Whereas, the testing ECG data are first compressed,
transmitted to the CS decoder in order to be reconstructed us-
ing OMP algorithm. Afterward, the classification is performed
and quantified in terms of true identification rate and real-time
processing.

B. Reconstruction quality

In order to assess the reconstruction quality, the percent
root-mean-square difference (PRD) has been used to quantify
the amount of distortion in the reconstructed ECG signals.
The PRD can be linked to the quality of reconstructed ECG
for medical diagnosis through the work of Zigel et al. [37],
where a PRD value less than 9% is considered acceptable for
physician based diagnosis. However, a less restricted condition
can be considered for computer based medical diagnosis
applications such as heart rate estimations [38]. The PRD is
calculated as follow:

PRD(%) = 100× ‖x− x̂‖2
‖x‖2

Such that x and x̂ represent the original and the reconstructed
ECG signals, respectively.

In addition, a major challenge in any biometric system is
the real-time constraint. Thus, in order to achieve real-time
performance, all the processing and computation to identify
one ECG segment should be performed before the next ECG
segment arrives to the the decoder. Therefore, in this work a
real-time reconstruction window of 1 sec has been established.
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Fig. 1: Overall system diagram. The proposed system consists of an offline compression block and heterogeneous soft-
ware/hardware reconstruction and identification blocks.
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Fig. 2: Samples from recording 100, 115 and 228 [36].
The plots represents a 4-sec recordings from three different
patients.

Subsequently, in order to present trustworthy results, MAT-
LAB Monte Carlo simulations have been conducted over the
whole data contained in the MIT-arrhythmia database. a 1-
min recording has been collected from each subject and each
subject recording has been divided into 60 ECG segments of
360 samples. An overall of 2880 reconstruction processes have
been conducted. The orthonormal Symlet-4 wavelet matrix has
been adopted as sparsifying basis. In addition, three different
settings have been considered in the design of the sensing
matrix by using a dense random matrix, a sparse matrix and
a Bernoulli matrix.

Figure 3 illustrates the obtained performance in terms of
PRD. Furthermore, it presents the averaged reconstruction
time for the three different settings. The reconstructed time
presented is required for an ECG window of 1 sec. It is worth
mentioning that the operating system where the algorithms
have been implemented is 64-bit Windows 7 professional, with
a processor of an intel core i7-3770 @ 3.4Ghz CPU and a

RAM of 16.0 GB.
From Figure 3, the following observations can be drawn:
• Intuitively, by increasing the number of samples, the

obtained results show an improvement in the reconstruc-
tion quality. In addition, a good reconstruction quality
is achieved around a CR of 0.3 where the achieved
PRD is about 7%. The obtained results show inferior
performance compared to some recent studies for CS-
based ECG reconstruction [28], [32], [39]. However, to
establish a fair comparison, the same ECG data should be
used. Therefore, besides the average PRD achieved using
all the ECG signal in the MIT-arrhythmia database, we
run several independent analysis to compare our obtained
findings with results presented in the literature using
the same ECG signal records. In [28], the author used
Records 107, 118, and 119 and they have achieved a
PRD of 2.6 for a CR=0.4. Subsequently, using the same
records, our results revealed a PRD of 2.66, 2.7 and 2.55
for Bernoulli, random and sparse matrices, respectively,
using the same values of CR. In [32], the authors used
the record 107 only, the results obtained showed a very
good recovery (PRD<2) using only CR=0.4. In our
analysis, the best-obtained PRD=3.5 is achieved using
a random matrix. Moreover, in [39], authors selected
randomly a 100 segment form the entire MIT database,
where each segment has a length of N=512. The results
showed a PRD < 9 for a CR= 0.6. However, it is
worth mentioning that the obtained results showed to
have similar results with the only work in the literature
that stated that the entire MIT-Arrhythmia has been used
for compression/reconstruction [40]. For a CR=0.25, the
proposed approach in [40] achieved a PRD=9 compared
to PRD=10 achieved by our proposed approach. Table
I provides a summary and a comparison between the
proposed work and the best case performance presented
in the literature in terms of PRD.

• The design of the sensing matrix does not have a remark-
able impact on the reconstruction performance. However,
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TABLE I: Summary of ECG reconstruction approaches per-
formances in terms of PRD

Reference Record Used CR PRD
[28] 107, 118, and 119 0.4 2.6

Proposed work 107, 118, and 119 0.4 2.55
[32] 107 0.4 < 2

Proposed work 107 0.4 3.5
[41] 100, 102, 230, and 109 0.4 < 2

Proposed work 100, 102, 230, and 109 0.4 2.5
[40] All records 0.3 7

Proposed work All records 0.3 7.5

a slight improvement on the reconstruction speed can be
achieved using sparse sensing matrix in the high quality
reconstruction regime, i.e, for CR values greater than
0.35. Therefore, it can be argued that using a Bernoulli
and sparse matrix would be beneficial in the design of
both CS encoder (the compression operation) [22] and
the CS decoder (based on the obtained results).
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Fig. 3: Reconstruction quality for different sensing matrix
setting. The reconstruction quality is quantified in terms of
PRD (PRD < 9 indicates a good recovery) and recovery time.

In addition, we elaborate in particular the performance of
the proposed CS-based compression scheme for the abnormal
beats in the used ECG database in order to assess its ability
to achieve similar results as stated in Figure 3. Thus, from the
MIT database [36], we select the Records 106 and 201 for the
testing. These records are observed to include a remarkable
number of Premature ventricular contraction (PVC) beats. In
fact, the Records 106 and 201 show to have 520 and 198 PVC
beats respectively.

Table II shows the obtained PRD for the two records
with a CR value ranging from 0.3 to 0.55. For the sake of
simplicity, only the results obtained using Bernoulli matrices
are presented as sparse and dense random matrices achieved
similar results. The obtained results revealed a drop in the
quality of reconstruction for the two records. For instance, for
the Record 107 that has only 57 PVC heartbeats, a PRD < 2
is achieved for a CR of 0.4 compared to 6.87 and 5.34 for the
records 106 and 201 respectively. Nevertheless, although even
with this inferior quality of signal, CS can still be efficiently
applied to achieve a good recovery quality using only a CR
of 0.3.

TABLE II: Reconstruction performance for PVC heartbeats in
terms of PRD

Record Compression ratio
0.3 0.35 0.4 0.45 0.5 0.55

106 8.20 7.58 6.87 6.40 5.83 5.33
201 6.66 6.10 5.62 5.34 4.88 4.76

C. Identification

The CS-based ECG biometric system stores the ECG train-
ing data in a matrix TR ∈ RJT×L where J represents the
number of training segments and L denotes the number of
samples in each training set. Where each row of TR presents
a single ECG training segment. However, prior to building
up the training set TR, all the ECG recordings undergo a
reprocessing stage in order to remove the baseline wander
(BW) and power line interference [42]. A 1−40 Hz band-pass
filter has been applied to each ECG recording, followed by the
Pan-Tompkins algorithm [43] to detect accurately the R peaks.
In fact, correct and reliable personal identification based on
ECG treats depends mainly on the significant discriminatory
features that have to be extracted from the ECG signal. In
the proposed system, the fiducial-based feature extraction
approach has been used [44]. In such approach, the most
important samples are the ones located within the PQRST
wave. In a typical ECG, the duration of the PQRST wave
spans about 0.4 sec [45] . Therefore, for an ECG sampled
at 360 Hz, the PQRST wave should contain around 120-140
samples. Subsequently, in order to detect these samples, the R
peak should be detected first and a window of L samples that
includes the samples around it should be considered.

On the other hand, the compressed testing data are first
reconstructed, then, the same approach for pre-processing and
feature extraction are applied to build up the testing data-set
TM ∈ RJM×L.

To further quantify the quality of the CS-based identifi-
cation, the validity of the reconstructed data for individual
identification has been carried out. To this end, the K-nearest
neighbour algorithm (KNN) [46] has been explored. KNN
represents one of the widely used classification techniques
in machine learning problems. KNN requires two data sets
as an input, the training data TR set and the label data set
CT ∈ RJT×1 which assign a unique class label for the ECG
training segments from the same individual. Then, for each
ECG testing segment, KNN compares the k distances between
the given test segment and its k nearest training segments.
Consequently, the test segment is assigned with the same
class as the class of the majority of its k nearest neighbours.
KNN algorithm depends on the parameter k, this coefficient
determines how many neighbours influence the classification.
If k = 1, the case is simply assigned to the class of its nearest
neighbour.

Table III presents the successful identification rate accuracy
achieved by using KNN algorithm as a classifier. To provide
a consistent evaluation for the validity of the reconstructed
data for classification, the testing data were used for iden-
tification with and without compression. For the latter, the
achieved identification accuracy is presented in the column
labelled original data. It is worth mentioning that for KNN,
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the algorithm parameter is set to be k = 1. In addition, the
length of features set segment has been set to three different
value L = {51, 71, 101}. The obtained results shows the ECG
biometric system achieves a high identification rate up to
98.88%.

Moreover, it is clear that increasing the number of samples
in the acquired data from each individual would render a better
reconstruction, and subsequently a high identification rate is
achieved. However. for the low CR range i,e., CR < 0.2, the
identification quality is unacceptable, this can be explained by
the fact that the R peaks can not be detected properly due
to the highly distorted reconstructed data. Moreover, by using
a 35% of the samples a near optimal accuracy is achieved
and a maximum of 3.2% , 5.4% and 3.7 % drop-down is
obtained using only 25% of samples for L = 101, L = 71
and L = 51, respectively, compared to classification accuracy
using directly the data without compression. In Overall, the
achieved identification rate from the compressed data is similar
to the existing methods used the original ECG signals, which
have identification rates 98% [42], 99.6% [47] and 99.5% [44]
respectively.

TABLE III: Identification rate for different testing periods

L
Original Compression ratio

Data 15 20 25 30 35 40
51 95.68 49.05 78.64 91.96 94.37 95.6 95.68
71 97.27 47 83.83 91.89 95.41 97.27 97.27

101 98.88 54.65 88.37 95.65 96.37 97.82 98.55

Furthermore, Table IV quantifies the performance of the
system using different values of k = {1, 2, 3, 4} using L =
101. The reported results show that shows that selecting only
the single nearest training sample (k = 1) to assign the class
of the testing segments provides the highest identification rate
compared to the other cases.

TABLE IV: Identification rate using different values of k

k
Compression ratio

25 30 35 40
k = 1 95.65 96.37 97.82 98.55
k = 2 92.02 95.65 97.10 97.82
k = 3 89.85 94.92 97.82 98.55
k = 4 89.13 94.92 96.37 96.37

D. Execution time

Furthermore, enabling real-time processing is an imperative
constraint to fulfill. Thus, for any continuous monitoring
system, if the time required to process on ECG segment
exceeds the real-time window, several issues would occur.
Therefore, the proposed framework is quantified in term of
the entire identification process for one single segment includ-
ing reconstruction, pre-processing and classification. Figure
4 presents the normalized execution time over the real-time
window. The results show that whatever, the CR value adopted,
the entire identification process consumes at most 0.6 of the
real time window. In addition, it is clear that the reconstruction
time consumes the majority of the entire identification system.
The reason is that the reconstruction process includes different
blocks of matrix-vector multiplications and matrix inversion.

More details and analysis for the complexity and execution
time for the different stages will be discussed in the following
sections.

Fig. 4: Normalized execution time. The obtained results reveal
that the reconstruction operation is the most time consuming
process in the identification stage.

IV. HARDWARE IMPLEMENTATION

The proposed ECG recognition system consists mainly of
the following four components: 1) ECG signal loading, 2)
ECG signal reconstruction, 3) R peak detection, and 4) KNN
classifier. The compressed ECG signals are firstly loaded, and
then the OMP algorithm is applied on the compressed ECG
signal in order to reconstructed the original ECG signals. Sub-
sequently, the Pan-Tompkins is applied on the reconstructed
signal to detect the R peaks. Finally, a KNN classifier is used
to classify the data clusters. The proposed system has been
modeled with C++ in Xilinx Vivado HLS environment [48].
In Vivado HLS, the proposed system is implemented in C++,
and then synthesised and translated to a Hardware Description
Language (HDL). A set of pragma directives have been used to
optimize the codes for generating high performance hardware
IP cores.

Since the signal reconstruction (OMP) block consumes the
most of the processing time in the proposed system discussed
in the previous section, an optimization scheme is proposed to
implement the OMP algorithm on hardware to accelerate the
process.

A. OMP analysis

The reconstruction is the process of solving equation (1)
in order to find the sparse representation s and subsequently
calculate the original ECG signal x. OMP algorithm is ini-
tialized with a residual r[0] = y, empty support set Γ = ∅
and maximum iteration number α. At each iteration i, the
algorithm iteratively chooses one of the columns of Θ that is
mostly correlated with the residual r and then it removes the
contribution of this column from Θ to compute next residual.
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A new estimate of the original signal is computed thereafter.
After α iterations, the final estimate of the original signal is
calculated.

Algorithm 1 : Orthogonal matching pursuit (OMP)
1. Inputs: The matrix Θ, measurements vector y, maximum iteration α.
2. Outputs: sparse signal approximation ŝ.
3. Initialize: r(0) = y, Γ (0) = [ ]
4. for i = 1, · · · , α do
5. Λ(i) = argmaxj |〈Θ, r(i−1)〉| {find k-column with highest
correlation}
6. Γ (i) = Γ (i−1) ∪ Λ(i) {concatenate k-column with
Γ}
7. ŝi = Θ†

Γ (i)y {least squares optimisation}
8. r(i) = y −Θŝ(n) {update the residual}
9.end for

The optimization problem (i.e. line 5 of Algorithm 1) is
solved by calculating correlation vector c as follows:

c = ΘT r(i−1) (3)

where r(i−1) is the residual vector at (i)th iteration. The
index of the component of c having the maximum absolute
value is firstly located, and then the corresponding column
is extracted from Θ and added to the matrix Γ (i) of the
extracted columns. After that, an error of the received and
residual signals is calculated during each iteration. An estimate
of the reconstructed signal s is finally obtained by solving the
following equation:

y = ΘΓ s (4)

1) Complexity Analysis of OMP Algorithm: As it can be
seen from the lines 5-8 of Algorithm 1, the OMP algorithm
consists mainly of 5 functions: 1) finding the best fitting
column (line 5); 2) update the existing matrix (line 6); 3)
least square optimisation (line 7); 4) updating the residual
(line 8); 5) solving equation (4). The computation of the first
four functions is performed sequentially and repeated for each
iteration, the fifth function is performed once the optimal re-
constructed signal has been found, and this is meaning that the
matrix inversion operation is only needed once, on contrast, the
matrix multiplication is needed in every iteration. Therefore,
in order to achieve the best overall performance and balance
the hardware usage, we optimised the matrix multiplications
from Function 1. In Function 1, the most computationally
intensive task is the matrix multiplication in equation (3),
where the size of the matrix Θ is m × n and the length
of residual vector r is m. The numbers of multiplications
and additions are m × n and m × (n − 1) respectively. In
Function 2, the major operations are matrix assignments and
comparisons, therefore, this is not a computationally intensive
stage. In order to calculate the least square optimization in
Function 3, a matrix multiplication is used, where the sizes of
the matrices are m× n and n×m respectively. This requires
m2×n multiplications and m2× (n−1) additions. Similar to
Function 2, Function 4 mainly involves subtraction operations.
Since Function 5 is performed once the optimal signal is
found and is calculated only once, the most important parts
of the overall complexity of OMP algorithm are resided in
Function 1 and 3. Due to the iterative nature of the OMP

algorithm, it is difficult to allow parallel execution in the
algorithm, and the functions inside iterations are data depen-
dent. The computation of five functions cannot be performed
concurrently. However, parallelism can be exploited at each
function level by running the processes inside each function
concurrently (e.g. matrix multiplications in Functions 1 and
3). Optimisations can be performed on all the operations to
achieve full parallelism and the minimum latency. However,
this will require huge resources and may not fit the size of the
used hardware device. Therefore, a heterogeneous processing
system consists of microprocessors and programmable logics
has been chosen to implement the OMP algorithm, where
the core computationally intensive tasks can be partitioned
to hardware side for the implementation. The other tasks are
then implemented on microprocessors. The details of the used
hardware platform and implementation results are presented
in the following section.

2) Optimisation of the OMP algorithm: As discussed in
the previous section, equation (3) is the main operations in
Function 1, let

Θ =


θ0,0 θ0,1 θ0,2 · · · θ0,n−1
θ1,0 θ1,1 θ1,2 · · · θ1,n−1
θ2,0 θ2,1 θ2,2 · · · θ2,n−1

...
...

...
...

...
θm−1,0 θm−1,1 θm−1,2 · · · θm−1,n−1

 (5)

Hence, ΘT r can be calculated as:

ΘT r =

[
m−1∑
i=0

θi,0ri,
m−1∑
i=0

θi,1ri, · · ·
m−1∑
i=0

θi,n−1ri,

]T
(6)

Pseudo code 1 is used to implement equation (6), where the
loop pipelining is another key optimization technique that used
to improve the throughput.

Pseudo code 1 :
1. Inputs: matrix Θ, ri−1 measurements is the residual vector at (i−1)th

iteration.
2. Outputs: c is the correlation vector.
3. for i = 1, · · · , n do
4. #pragma HLS PIPELINE
5. # pragma HLS ARRAY PARTITION variable=Θ block factor=f dim=1
6. # pragma HLS ARRAY PARTITION variable=r block factor=f dim=1
7. sum=0;
8. for j = 1, · · · ,m do
9. sum = sum+ θj,i × rj ;
10. end for
11. ci = sum;
12. end for

One of the major limitation of block random access memory
(BRAM) is that it has only two data ports. This significantly
limits the throughput of a read/write (or load/store) from/to
an array. The bandwidth could be improved by splitting the
array (a single BRAM resource) into multiple smaller arrays
(multiple BRAMs), that would effectively increase the number
of ports. For example, the array Θm,j , can be partitioned into
f small arrays in both dimensions by applying (#pragma
HLS ARRAY PARTITION block factor=f, where each array
has size of m/f × n/f . Similar strategy can be also applied
on Function 3 as well. Figure 5 shows the partitioned arrays.
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Fig. 5: Partitioned arrays. An array has been partitioned into
f small arrays to increase the data throughput
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lite

ACP ACP
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Fig. 6: An overview of the PL and PS system. The accelerator
coherency port (ACP) has been used to interface the hardware
co-processors and the rest of the system.

The proposed ECG recognition system has been imple-
mented first in C++ and validated in Xilinx Vivado HLS
environment. A set of pragma directives have been used to
optimise the hardware implementation with the goal to achieve
the optimal throughput with reasonable usage of hardware
resources. In this paper, a Zynq-7000 SoC device is used
for the proposed system. The proposed solution integrates
the software programmability of an ARM-based processor
with the hardware programmability of a FPGA. The IP cores
are connected via advanced extensible interface 4 (AXI4)
interfaces to the accelerator coherency port (ACP) of the ARM
CPU as well as connecting through a Direct Memory Access
(DMA) core in the programmable logic (PL) subsystem on the
Zynq-7000 SoC device. In this work, SDSoC (v2017.2) has
been used to interface the AP SoC PL hardware, the peripheral,
the DMA engine, an AXI timer as well as other data mover
logics [49]. The SDSoC is also used to design the AP SoC
PS software to manage the peripherals and loading the testing
data.

In Figure 6, the accelerator blocks have been implemented
in Vivado SDSoC, which is used to generate efficient interfaces
between the hardware co-processors and the rest of the system.
Similar to the optimisation of using Vivado HLS, different in-
terfacing options were explored through directive pragmas and
code refactoring. Those IP blocks were integrated with other

PS 7DDR3 DMA

AXI

SD 

Card

Accelerators
AXI2FIFO 

Adapter

Fig. 7: Implementation overview. The accelerator is inter-
connected with the processing system (PS) via advanced
extensible interface (AXI) interconnection blocks.

blocks of the design to be a heterogeneous embedded system.
The hardware implementation of the accelerators used 32-bit
floating-point arithmetic. As shown in Figure 7, the accelerator
is interconnected with the PS via AXI interconnection blocks.
The AXI2FIFO adapter block is used to convert the interface
from AXI to FIFO in order to connect with the accelerators,
and then the AXI DMA is used to move the processed data
back to the PS. The implementation of the ECG recognition
system was partitioned into two parts, one implemented on the
PL and the other one of the PS. For example, the blocks of
loading ECG signals, peak extraction and KNN classification
shown in Figure 8 have been purely implemented on the
PS7. On the other hand, the computationally intensive parts
of the OMP algorithm have been implemented on the PL for
acceleration. On the PS7 side, Linux operating system (OS)
is used to support the I/O accesses of the application, and the
open source Armadillo C++ linear algebra library is used to
support matrix maths from the KNN classification [50]. Figure
9 summarizes the processing flow in terms of software and
hardware data movements.

V. IMPLEMENTATION RESULTS

A. Vivado HLS Simulation

Prior to the hardware implementation, the proposed sys-
tem was validated using Vivado HLS C++ simulator. Once
the simulation has passed successfully, the C++ codes were
translated to HDL, and then register transfer level (RTL)
simulation is performed in order to validate the generated HDL
architecture. The same C++ test bench used in the C/C++
simulation was used for the C/RTL co-simulation. A number of
directive pragmas were used to guide the hardware generation
in order to achieve the best throughput. Finally, the Vivado
tool is used to complete the placement and routing of the
proposed implementation. The hardware resource utilisation
of the proposed implementation (i.e. Function 1 and 3) with
different directive pragmas (i.e. Pseudo code 1) are shown in
Figure 9.
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Fig. 8: An overview of the processing flow. The implemen-
tation of the ECG recognition system was partitioned into
two parts, Function 1 and 3 have been implemented on the
programmable logic (PL) and others are on the processing
system (PS).

As it can be seen from Figure 9, since all the arrays in the
loops have been partitioned with different factors, the usage
of hardware resources is dominant. In this work, the size of
the input matrices are m × n and n × m, where m = 102
and n = 256. The usage of flip-flops (FFs) and lookup tables
(LUT) has increased significantly when the factor of partition
is greater than 8. The usage of BRAM is almost stable when
the factor is greater than 2. However, the use of the DSP48E
units has gradually increased and the latency of the IP block is
dramatically decreased when the factor is increased. However,
the processing speed of this implementation is limited by the
array partition factor and pipeline pragmas, it improves the
latency by increasing the partition factor and as expected using
much more hardware resources. Although the factors of array
partitions have been increased accordingly and more hardware
resources have been used, however, the processing speed has
not improved significantly and the required hardware resources
for both implementations are significantly higher than others.
Therefore, the partition factor = 8 has been chosen for the final
hardware implementation in order to overcome the latency and
hardware utilisation trade-off.

B. Implementation Results

The proposed system has been implemented on the Xilinx
Zedboard, which is equipped with a Zynq-7000 All Pro-
grammable SoC XC7Z020-CLG484, 512 MB DDR3 memory
and 16 GB SD card. In addition, the corresponding software
(i.e. drivers, control codes and streaming phase) and hardware
are partitioned and implemented using the Xilinx SDSoC
development environment. In the proposed implementation,

TABLE V: Hardware resources usage of the proposed imple-
mentation of functions 1 and 3

Resource Used Total Utilisation (%)
DSP48E 95 220 43
BRAM 112 140 80

LUT 53190 53200 99
FF 68257 106400 64

TABLE VI: Power consumption estimation of the proposed
implementation

Utilization Details Power (W) Utilization (%)

Dynamic Power

Clock 0.120 5%
Signals 0.189 8%
Logic 0.092 4%

BRAM 0.242 10%
Consumption DSP 0.034 1%

MMCM 0.106 5%
PS7 1.535 67%

Static Power Device Static 0.18 7%Consumption

the lengths of ECG signal and residual vector is 256 and
102 respectively. The hardware resources usage for the two
functions (i.e. 1 and 3 ) is shown in Table V.

The hardware utilization results are based on the imple-
mentation using the pipeline and array partition pragma on a
Zynq-7000 xc7z020 SoC. Based on the utilisation report, 99
(%) of the LUTs, 43(%) of the DSP48E and 64 (%) of the
FFs are used to implement the matrix multiplications within
the functions 1 and 3 (i.e. Pseudo code 1), these functions
contain which have been implemented in parallel, it uses most
of the resources. It is worth noting that the target Zynq SoC
has a relatively small chip capacity in Xilinx 7 series family,
which means that the proposed architecture is area-efficient,
and can be easily deployed on a low-cost FPGA or integrated
on a large chip.

1) Power Consumption: The details of the estimated power
consumption of the implementation are summarised in Table
VI. The PS7 consumes more power than the PL; this is
due to the fact that the ARM dual core Cortex-A9 based
processing system has much higher running frequency than
the PL and it runs other parts of the application, drivers and
control programs. Compare to the PS7, the custom logic blocks
consume only a small portion of the total on-chip power
consumption. In terms of power consumption, we obtained
the power analysis from Xilinx Vivado [48], the total on-chip
power consumption estimation for the implementation is 2.318
W, which includes 1.535 W and 0.783 W from the PS and the
PL respectively.

TABLE VII: Processing time of the proposed implementation

Function 1 Function 3 Overall
(Clock
Cycles)

(Clock
Cycles)

(Clock
Cycles)

Hardware Accelerated 293100 1297913 718788320
Implementation
Software Only 2260106 47703939 5558058708
Implementation
Estimated Speedup 36.7 7.71 7.73
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(a) (b)

Fig. 9: The recourse utilizations of the proposed implementation. (a) Function 1: finding the best fitting column (b) Function
3: least square optimisation.

2) Timing Analysis: The running frequencies of the ARM
processors and the PL are 650 and 148 MHz respectively.
The processing time of the proposed system is measured by
counting the number of clock cycles of the ARM processor
that is used to wait for the results from the accelerators.
Table VII shows the comparison between the software and
hardware implementations of the accelerators in terms of the
processing time in CPU clock cycles and millisecond. Based
on the achieved results, the processing speeds of functions 1
and 3 are 0.45 ms and 1.99 ms respectively, which are 36.7
and 7.71 times higher than pure software implementation of
the same functions. In addition, the overall processing time
is 7.73 times faster than the software implementation. The
proposed heterogeneous implementation uses 2.318 W, where
only 0.783 W are consumed by the PL, and it is only 33%
overhead than the pure software implementation.

VI. CONCLUSION

The combination of ECG biometric with CS concept
presents an appealing technique that would grant reliable
solution to both big data transmission and privacy issues facing
the connected health applications.

The paper proposes a framework for patient identification
that leverages a CS acquisition scheme and a simple and
efficient machine learning tool in order to identify patient from
their collected data, hence, provide patient-specific diagnosis
and treatment.

The proposed approach introduces a way to integrate the
CS decoder and identification unit into a heterogeneous re-
configurable hardware. This allows the implementation of a
highly adaptive and high-performance data processing system.
The obtained performance shows promising results, where a
98.88% identification rate is achieved using only compression
ratio of 30%, which means that it only needs 30% of the
original signal to achieve a significant identification accuracy.
As a result of this, it would significantly reduce the energy
transmission due to the smaller data size. Furthermore, the
heterogeneous software/hardware implementation on the Zynq
SoC platform is able to fasten the overall processing time by
a factor of 7.73 with a cost of 2.318 W power consumption,

which offers much better performance per watt compared with
the pure software solution.
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