
 1

Abstract—This paper presents a new methodology for building

and evolving hierarchical fuzzy systems. For the system design, a

tree-based encoding method is adopted to hierarchically link low

dimensional fuzzy systems. Such tree structural representation

has by nature a flexible design offering more adjustable and

modifiable structures. The proposed hierarchical structure

employs a type-2 beta fuzzy system to cope with the faced

uncertainties, and the resulting system is called the Hierarchical

Interval Type-2 Beta Fuzzy System (HT2BFS). For the system

optimization, two main tasks of structure learning and parameter

tuning are applied. The structure learning phase aims to evolve

and learn the structures of a population of HT2BFS in a multi-

objective context taking into account the optimization of both the

accuracy and the interpretability metrics. The parameter tuning

phase is applied to refine and adjust the parameters of the

system. To accomplish these two tasks in the most optimal and

faster way, we further employ a multi-agent architecture to

provide both a distributed and a cooperative management of the

optimization tasks. Agents are divided into two different types

based on their functions: a structure agent and a parameter

agent. The main function of the structure agent is to perform a

multi-objective evolutionary structure learning step by means of

the Multi-Objective Immune Programming algorithm (MOIP).

The parameter agents have the function of managing different

hierarchical structures simultaneously to refine their parameters

by means of the Hybrid Harmony Search algorithm (HHS). In

this architecture, agents use cooperation and communication

concepts to create high-performance HT2BFSs. The performance

of the proposed system is evaluated by several comparisons with

various state of art approaches on noise-free and noisy time series

prediction data sets and regression problems. The results clearly

demonstrate a great improvement in the accuracy rate, the

convergence speed and the number of used rules as compared

with other existing approaches.

Index Terms—Beta function, hierarchical representation, interval

type-2 fuzzy system, multi-agent architecture, multi-objective

structure learning.

I. INTRODUCTION

He recent years have witnessed a growing interest in type-

2 fuzzy logic systems due to their ability to handle high

levels of uncertainties faced in dynamic real world and

changing environments [1]. In fact, these uncertainties are

Y. Jarraya, S. Bouaziz and A. M. Alimi are with the Research Groups in

Intelligent Machines (REGIM-Lab), University of Sfax, National Engineering

School of Sfax (ENIS), BP 1173, Sfax, 3038, Tunisia (e-mail:
yosra.jarraya@ieee.org; souhir.bouaziz@ieee.org; adel.alimi@ieee.org).

H. Hagras is with the Computational Intelligence Centre, School of

Computer Science and Electronic Engineering, University of
Essex,Colchester, CO4 3SQ, U.K.(e-mail: hani@essex.ac.uk).

present in most applications and can be a result of different

sources such as the presence of noise in the training data,

linguistic uncertainties, the uncertainty in input and output

data as they usually contain inaccurate, incomplete, weak, and

sometimes false information [2]. Type-2 fuzzy logic systems

have been employed in various applications including pattern

recognition [3], intelligent control [4], mobile robots [5], time

series prediction [6], [7], function approximation [8], [9],

classification [10], [11]. This work presents a new interval

type-2 fuzzy system based on the Beta basis function [12],

[13] for system modeling. The proposed system is termed

interval type-2 Beta fuzzy system (IT2BFS).

In fuzzy logic systems, when the dimensionality and the

complexity of the given applications increase, the number of

used fuzzy rules will increase exponentially (the curse of

dimensionality problem [14]) which can reduce the

interpretability of the obtained rule base. As an alternative to

solve this problem, hierarchical fuzzy design was suggested in

the early 1990s by Raju and Zhou [15] to reduce the number

of fuzzy rules from an exponential function of system

variables to a linear one. In this case, instead of the use of a

standard high-dimensional flat fuzzy system, a number of

lower-dimensional sub-fuzzy models are linked in a

hierarchical way. This method of hierarchical modeling allows

the construction of fuzzy systems which are more interpretable

(with fewer rules) as well as being relatively accurate with

good approximation abilities. For example, suppose that the

standard fuzzy system illustrated in Fig.1a has 4 input

variables each represented by 5 fuzzy sets, then the total

number of rules is equal to 54 = 625 rules. However, in the

case of the hierarchical fuzzy system of Fig.1b, each subfuzzy

system (SFS) consists of 52 rules and, consequently, the total

rules number is equal to 3 ∗ 52 = 75 rules. This shows the

great rule reduction achieved by the hierarchical structure

which makes it a good candidate to solve high-dimensional

problems.

Recently, hierarchical fuzzy design has attracted increasing

attentions and many works have been proposed to build or to

optimize these systems [16–22]. However, most of the

existing hierarchical systems employed type-1 fuzzy models.

To the author’s knowledge, very few publications can be

found in the literature that address the use of fuzzy type-2

hierarchical design [5], [23], [24]. In this paper, we will

develop a novel hierarchical IT2BFS based on a tree structural

representation called the hierarchical interval type-2 Beta

fuzzy system (HT2BFS). Hence, instead of using a standard

IT2BFS with high dimension, the input variables are

distributed over different sub-interval type-2 fuzzy models

having lower dimensions.

A Multi-Agent Architecture for the Design of

Hierarchical Interval Type-2 Beta Fuzzy System

Yosra Jarraya, Souhir Bouaziz, Hani Hagras, Fellow, IEEE and Adel M. Alimi, Member, IEEE

T

 2

Fig. 1. An example of (a) usual flat standard fuzzy system, (b) hierarchical

fuzzy system

Traditionally, most of the existing learning methods for

type-2 fuzzy systems use single-objective learning techniques

such as the gradient descent algorithms [25-27], least-squares

methods [28], Evolutionary Algorithms (EAs) [29, 30], and

other hybridizations [8], [31]. In fact, most of the existing

approaches reported in the literature focused on improving

only the accuracy of type-2 models while the interpretability

was neglected. In order to optimize the model

comprehensibility as well as the accuracy, Multi-Objective

Evolutionary Algorithms (MOEAs) are employed in our

research. Multi-Objective Evolutionary Algorithms (MOEAs)

have widely spread over the past few years as an most

effective tool to optimize type1 fuzzy systems [32–34], but

until now, little works have exploited these algorithms to

optimize type-2 fuzzy systems [9], [11], [35]. In this work, we

will employ the Multi-Objective Immune Programming

(MOIP) in order to evolve the HT2BFS structures.

This paper focuses on two main tasks of HT2BFS

optimization which are a multi-objective structure learning

process and a parameter tuning process. To accomplish these

tasks in the most optimal and faster way, we further need a

multi-agent architecture to provide both a distributed and a

cooperative management of these optimization tasks. In fact, a

multi-agent system is a coherent and interactive system

formed by a set of agents with varied functions, which can

share information and cooperate with each other to complete

common goals [36]. An agent can be an abstract or a physical

entity that has the aspect of initiative, cooperation and

autonomy. In this study, a multi-agent architecture is proposed

to provide a distributed coordinated environment of

optimization. Based on their functions, agents are classified

into two categories: a structure agent and a parameter agent.

Indeed, the structure agent executes the proposed MOIP

algorithm as a multi-objective structure optimization phase.

The function of this agent is to learn the structures of a

population of HT2BFSs with the objective of attending a good

interpretability-accuracy trade-off. Once a set of optimal

structures is obtained, a number of parameter agents are

launched for further parallel tuning of the parameters encoded

on these optimized structures. Each parameter agent will

execute its own Hybrid Harmony Search (HHS) algorithm

[37] for parameters adjustment. The tuned parameters are the

interval type-2 Beta membership function parameters and the

consequent parts of fuzzy rules. And then, we go back to

improve the structures again by the structure agent. The loop

continues until a stopping criterion is reached, and as a final

result, an optimal HT2BFS is obtained. This new approach

shows its efficiency in terms of high learning capacities, good

convergence speed and a smaller rule base.

The rest of this paper is structured as follows: section II

defines the proposed interval Type-2 Beta Fuzzy System. The

MOIP and the HHS algorithms used in the training process are

respectively presented in sections III and IV. The evolutionary

HT2BFS is detailed in section V. Next, the employed multi-

agent architecture for structure and parameter optimization

processes is described in section VI. Simulation results with a

comparative study are presented in section VII. And finally,

the conclusion is drawn in section VIII.

II. THE INTERVAL TYPE-2 BETA FUZZY SYSTEM

A. Interval Type-2 Beta Membership Function

A type-2 fuzzy set (T2FS) �̃� is characterized by a type-2

membership function 𝜇𝐴(𝑥, 𝑢) which is expressed by [38]:

 �̃� = {(𝑥, 𝑢), 𝜇𝐴(𝑥, 𝑢)|𝑥 ∈ 𝑋 , 𝑢 ∈ [0, 1] } (1)

where 𝜇𝐴(𝑥, 𝑢) is a type-1 fuzzy set called the secondary set

with 0 ≤ 𝜇𝐴(𝑥, 𝑢) ≤ 1. 𝐽𝑥 is the primary membership of �̃�

denoted by [38]:

 𝐽𝑥 = {(𝑥, 𝑢)|𝑢 ∈ [0, 1], 𝜇𝐴(𝑥, 𝑢) > 0} (2)

When all the secondary grades 𝜇�̃�(𝑥, 𝑢) equal 1, then the

T2FS (�̃�) is named an interval type-2 fuzzy set (IT2FS) [39].

The uncertainty in the primary MF is expressed by a bounded

region named the footprint of uncertainty (FOU). The FOU

provides additional degrees of freedom and it is delimited by

two MFs called the Upper Membership Function (UMF),

�̅�𝐴(𝑥), and the Lower Membership Function (LMF), 𝜇𝐴(𝑥).

The choice of the shape of MFs is important since it has an

impact on the performance of the fuzzy system. Different

shapes of MFs are usually used in the fuzzy logic literature

like triangular, gaussian, trapezoidal, etc. However, since the

piece-wise linear MFs (like triangular and trapezoidal MFs)

are formed from straight line segments, they are not smooth at

the corner points specified by the parameters. Symmetric bell-

shaped (such as gaussian) membership functions are also

widely used since they present more smoothness, but they are

unable to define asymmetric MFs. On the other hand, the Beta

MF proposed by Alimi [12], [13] can generate richer forms

than those functions. The Beta function has universal

approximation proprieties and is able to approximate other

usual functions such as triangular, gaussian or trapezoidal

functions [40]. For example, [40] demonstrated the capacity of

Beta function to approximate the Gaussian function and noted

that the reverse is not true. In addition, the Beta function is

characterized by its high flexibility and its ability to generate

rich shapes (asymmetry, linearity, etc.). The Beta membership

function is defined by:
𝛽(𝑥; 𝑐, 𝜎, 𝑝, 𝑞) = (3)

{
[1 +

(𝑝+𝑞)(𝑥−𝑐)

𝜎𝑝
]

𝑝

 [1 −
(𝑝+𝑞)(𝑐−𝑥)

𝜎𝑞
]

𝑞

 𝑖𝑓 𝑥 ∈]𝑐 −
𝜎𝑝

𝑝+𝑞
, 𝑐 +

𝜎𝑝

𝑝+𝑞
[

0 𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒

where c is the center of the function and 𝜎 is its width. p and q

are the form parameters, 𝑝, 𝑞 > 0.

In this study, a Beta primary MF having an interval-valued

secondary MF is employed and called the interval type-2 Beta

membership function (IT2BMF). This function is

 3

characterized by a fixed center c, an uncertain width 𝜎 and

uncertain form parameters p and q:

{
𝛽(𝑥; 𝑐, 𝜎, 𝑝, 𝑞) = [1 +

(𝑝+𝑞)(𝑥−𝑐)

𝜎𝑝
]

𝑝

[1 −
(𝑝+𝑞)(𝑐−𝑥)

𝜎𝑞
]

𝑞

𝜎 ∈ [𝜎𝐿 , 𝜎𝑈], 𝑝 ∈ [𝑝𝐿 , 𝑝𝑈] 𝑎𝑛𝑑 𝑞 ∈ [𝑞𝐿 , 𝑞𝑈]
 (4)

where 𝜎𝐿 , 𝜎𝑈, 𝑝𝐿 , 𝑝𝑈 , 𝑞𝐿 𝑎𝑛𝑑 𝑞𝑈 are positive real values
with 𝜎𝐿 < 𝜎𝑈, 𝑝𝐿 < 𝑝𝑈 𝑎𝑛𝑑 𝑞𝐿 < 𝑞𝑈. The upper and the
lower Beta MFs are respectively denoted by:

 {
�̅�𝐴(𝑥) = 𝛽(𝑥; 𝑐, 𝜎𝑈 , 𝑝𝑈 , 𝑞𝑈)

𝜇𝐴(𝑥) = 𝛽(𝑥; 𝑐, 𝜎𝐿 , 𝑝𝐿 , 𝑞𝐿) (5)

The use of IT2BMFs provides flexibility and capacity to

create more variant MF shapes. In comparison with the

gaussian function, the Beta function relies on two additional

form parameters (p and q) which allow a greater flexibility in

the modeling of type-2 fuzzy sets. Hence, different shapes of

FOUs can be created using the IT2BMF. Fig. 2 presents some

examples of interval type-2 Beta MFs with uncertain 𝜎, p and

q having different FOU.

Fig. 2. Examples of Interval Type-2 Beta MFs with different FOU

B. Interval Type-2 Beta Fuzzy System

In this paper, the Interval A2-C1 TSK fuzzy model [41] is

adopted and using IT2BMFs, the system is termed the interval

type-2 Beta fuzzy system (IT2BFS). In the IT2BFS, the

antecedent parts of each fuzzy rule are interval type-2 Beta

fuzzy sets, while the consequent parts are of TSK nature

having interval weights. Consider an IT2BFS with n inputs

𝑥𝑖(𝑖 = 1, . . , 𝑛), one output and M fuzzy rules, the jth rule can

be written as follows:

𝐼𝑓 (𝑥1 𝑖𝑠 �̃�1𝑗) 𝑎𝑛𝑑 … 𝑎𝑛𝑑 (𝑥𝑛 𝑖𝑠 �̃�𝑛𝑗) 𝑡ℎ𝑒𝑛 𝑌𝑗 = 𝐶0𝑗 +

 𝐶1𝑗𝑥1 + ⋯ + 𝐶𝑛𝑗𝑥𝑛 (6)

where 𝑗 = 1, . . . , 𝑀; �̃�𝑖𝑗 are the antecedent fuzzy sets modeled

by the IT2BMFs; 𝐶𝑖𝑗 are the consequent sets formed by

interval type-1 fuzzy sets; 𝑌𝑗 is the 𝑗𝑡ℎ rule output. The 𝑗𝑡ℎ rule

firing strengths are evaluated using the product t-norm

operator:

{
𝐹𝑗(𝑥) = [𝑓𝑗(𝑥) , 𝑓𝑗(𝑥)]

𝑓𝑗(𝑥) = ∏ 𝜇𝑛
𝑖=1 (𝑥𝑖), 𝑓𝑗(𝑥) = ∏ 𝜇𝑛

𝑖=1 (𝑥𝑖)
 (7)

where 𝑓𝑗(𝑥) and 𝑓𝑗(𝑥) are respectively the lower and the upper

firing strengths.

The type-reduced set is an interval fuzzy set defined by its two

end points, its left end point (𝑦𝑙) and its right end point (𝑦𝑟):

𝑦 = [𝑦𝑙 , 𝑦𝑟] = ∫ …
𝑦1

 ∫
𝑦𝑀

∫ …
𝑓1

 ∫
𝑓𝑀

1 (
∑ 𝑓𝑗 𝑦𝑗

𝑀
𝑗=1

∑ 𝑓𝑗 𝑀
𝑗=1

⁄) (8)

where 𝑦𝑗 ∈ 𝑌𝑗 , 𝑦𝑗 = [𝑦𝑗
𝑙 , 𝑦𝑗

𝑟] and 𝑓𝑗 ∈ 𝐹𝑗. The type-reduced

end points 𝑦𝑙 and 𝑦𝑟are calculated through the KM algorithm
using center of sets type-reduction [20]. Finally, the final
output is defuzzified and calculated as follows:

 𝑦 = (𝑦𝑙 + 𝑦𝑟)/2 (9)

III. MULTI-OBJECTIVE IMMUNE PROGRAMMING ALGORITHM:

MOIP

A. Dominance and Pareto-Optimality

A minimization multi-objective problem has the following

form:

 𝑀𝑖𝑛𝑓(𝑥) = [𝑓1(𝑥), . . , 𝑓𝑘(𝑥)] (10)

subject to:
 𝑔𝑗(𝑥) ≤ 0 , 𝑗 = 1, … , 𝑝 (11)

 ℎ𝑗(𝑥) ≤ 0 , 𝑗 = 1, … , 𝑞 (12)

where k defines the number of objective functions 𝑓𝑗: ℝ𝑛 → ℝ.

𝑥 = [𝑥1, … , 𝑥𝑛]𝑇 is the vector of decision variables. 𝑔𝑗(𝑥) and

ℎ𝑗(𝑥) are the functions representing the constraints of the

problem. p and q are respectively the number of equality and

inequality constraints. Unlike single objective optimization,

multi-objective optimization considers that there is no unique

optimum solution considering all objectives, but rather there

are several solutions that provide different compromises

between the objectives known as non-dominated or Pareto

optimal solutions. Those solutions are generated using the

Pareto dominance concept [42]. The main idea of dominance

concept is that a given solution 𝑥 can dominate another

solution 𝑦 if and only if:

- 𝑥 is not worse than 𝑦 in any of the objectives;

- 𝑥 is strictly better than 𝑦 in at least one of the objectives;

Solution 𝑥 is named Pareto optimal if there is no solution in

the search space that dominates it. In the objective space, the

set of Pareto optimal solutions is called the Pareto optimal

front or Pareto front.

B. Basic Single-Objective Algorithm: IP

The Immune Programming (IP) [43] is a population-based

algorithm inspired from the clonal selection principle. It

operates with a population of antibodies modeled by tree

structures and uses the following three principal operators to

evolve new generations:

- Cloning operator: allows the multiplication of the best

candidates in the population. It presents more chance to

explore a favorable region in the solution space.

- Mutation operator: applied to modify an antibody (tree)

according to its fitness value. In this work, four mutation

operators were employed which are: pruning (replace a

randomly selected sub-tree by a random leaf node); growing

(replace a randomly selected leaf node by a random sub-

tree); modifying all leaf nodes randomly; modifying one leaf

node randomly.

- Replacement operator: allows the replacement of an

antibody of the population with another one generated at

random. This operator is one of the most responsible factors

of the population diversity.

 4

C. Multi-Objective Algorithm: MOIP

The IP algorithm proved its efficiency in different studies, but

it is still often used as a single optimization algorithm. In this

work, we propose an extended multi-objective version of the

IP algorithm called the Multi-Objective Immune Programming

algorithm (MOIP). This algorithm is able to improve the

structures of a given population of antibodies with the

consideration of more than one objective function. To achieve

such multi-objective optimization goals, the MOIP

methodology combines the Pareto-dominance principles with

IP operators and uses an elitist strategy in its evolution. This

strategy makes use of an external elitist archive A (secondary

population) in order to store the best non-dominated

antibodies (solutions) found so far over the generations.

The main steps of the algorithm consists of initialization of

population, evaluation, Pareto-dominance selection, applying

IP operators, and reiterating the search on population until a

near optimal Pareto front is obtained.

In addition, in the case of single objective optimization, a

child is usually selected over its parent if it has better fitness

value. In MOIP, the superiority is measured as a dominance

relationship, and a child is selected over its parent only if this

latter dominates its parent. As a result, as the search

progresses, the different solutions move more closer to the

true Pareto front.

On the other hand, among the desirable characteristics of

the obtained Pareto front is to have evenly spaced solutions

covering the largest possible area of the front. Hence, we

further use the crowding distance measure (applied in Non-

dominated Sorting Genetic Algorithm II: NSGA-II [44]) to

improve the diversity of solutions and to maintain a well-

distributed front. In fact, the crowding distance gives a density

estimation of solutions that surround one selected solution. A

large average crowding distance allows a better diversity in

the front. Suppose that 𝑐𝑑(𝑥𝑖) represents the crowding

distance of 𝑥𝑖 (solution of the front). 𝑐𝑑(𝑥𝑖) is evaluated by

the following steps:

i) Initialization: 𝑐𝑑(𝑥𝑖) = 0 ;

ii) For each objective function 𝑓𝑗 do:

 Sort the front’s solutions along 𝑓𝑗 ;

 𝑐𝑑(𝑥𝑖)= 𝑐𝑑(𝑥𝑖) + 𝑓𝑗 (the solution preceding 𝑥𝑖 in

the ordered sequence) - 𝑓𝑗(the solution following

𝑥𝑖 in the ordered sequence);

The flow chart of the MOIP algorithm is presented by Fig. 3.

When applying the dominance criterion on a population, the

antibodies are evaluated and checked for dominance relations

among the population. Using the definition of Pareto

dominance, an antibody is called a non-dominated antibody

when it is not dominated by any other antibodies in the

population. Then, the non-dominated solutions found are

stored in the elitist archive A. The size of this archive is

restricted to a predefined number. This restriction is imposed

by a pruning process executed as follows: If the size of the

archive (solutions number) is greater than MaxSize, then the

crowding distances of all individuals of the archive are

calculated and sorted in a descending order. The first MaxSize

solutions are then selected to update the archive. Such pruning

process aims to limit the archive size while preserving its

diversity and spread along the front.

Fig. 3. Flow chart of the MOIP algorithm

IV. THE HYBRID HARMONY SEARCH ALGORITHM: HHS

The HHS algorithm [37] is an evolutionary music-inspired

meta-heuristic algorithm inspired from the improvisation of

music: a musician (decision variable) plays (creates) a note

(value) to reach a good state of harmony (global optimum).

Inspite of its efficiency, the Harmony Search algorithm

(HS) in its original version [45] contains some weaknesses. In

fact, it is remarkable that, the harmony memory is usually

stable and doesn’t present changing values in the

improvisation. Thus, in general, the standard HS algorithm has

a small probability of providing new harmony vectors with

good qualities. Therefore, there is a need to add a dynamic

aspect allowing the creation of various values in memory with

respect to their allowable ranges. This aspect is provided by

the embedding of the Particle Swarm Optimization (PSO)

algorithm which can generate after every iteration a new

population totally different and nearer to the optimal solution.

So, a hybridization between the HS and the PSO algorithm is

proposed in [37] and called the Hybrid Harmony Search

(HHS) algorithm. Indeed, the dynamic and stochastic aspects

of particles velocities in PSO orientate the research to the right

areas of the search space. In this case, the vectors of memory

in HS are treated as particles taken from the swarm and the

new values of memory for the new improvisation are supplied

by the novel positions attained by the particles. For each

particle 𝑗, the velocity 𝑣𝑗 and the position 𝑥𝑗 are calculated by

the following equations:

Return the Pareto front formed by
the archive solutions

StrIter = StrIter + 1

Updated Archive A

Apply dominance criterion

Combine the new population and the archive solutions

Updated population

Apply IP operators: Cloning/Mutation/Replacement

Combine the population and the archive solutions

StrIetr = 0

Evaluate each individual of the population

Create initial random population of antibodies and an empty archive A

 Size(A) > MaxSize?

Apply dominance criterion on the population and store

non-dominated solutions on the archive A

F2

F1

Pruning of A

No

Yes

Pruning of A

No

Yes

Yes

No

Size(A) > MaxSize?

 StrIter >= MaxIter?

 5

𝑣𝑗(𝑡 + 1) = 𝛹(𝑡)𝑣𝑗(𝑡) + 𝑐1𝜑1 (𝑝𝑗(𝑡) − 𝑥𝑗(𝑡)) +

𝑐2𝜑2 (𝑝𝑔(𝑡) − 𝑥𝑗(𝑡)) (13)

𝑥𝑗(𝑡 + 1) = 𝑥𝑗(𝑡) + (1 − 𝛹(𝑡)) 𝑣𝑗(𝑡 + 1) (14)

where 𝑐1 and 𝑐2 are acceleration factors, 𝑗1 and 𝑗2 are random

numbers in [0,1]. 𝛹 is the inertia factor. 𝑝𝑗 is the local best

position (attained by the 𝑗𝑡ℎ particle) and 𝑝𝑔 is the global best

position (attained by the swarm).

A simple global description of this algorithm is given by the

following main steps:

– Step1: Formulation of the problem and initialization of the

parameters which include:

 • Harmony Memory Consideration Rate (HMCR): rate of the

randomly selected values from the memory (0≤HMCR≤1);

 • Harmony Memory Size (HMS): equivalent to population

size;

 • Pitch Adjustment Rate (PAR): rate of the altered values

that was originally taken from the memory (0≤PAR≤1);

 • Number of Improvisations (NI): the maximum number of

generations;

 • FW or BW: the width of the fret or bandwidth;

– Step2: Random initialization of the harmony memory (HM);

– Step3: Improvisation of a new harmony;

– Step4: Update of the harmony memory;

– Step5:

 • Determines the best local and global positions;

 • Calculates the particle velocity according to (13);

 • Update of the particle position according to (14);

– Step6: Verification of the stopping criterion;

Readers may refer to [37] to get more details about this

algorithm.

V. EVOLUTION OF THE HIERARCHICAL INTERVAL TYPE-2

BETA FUZZY SYSTEM

A. The Hierarchical Interval Type-2 Beta Fuzzy System:

HT2BFS

The hierarchical modeling of interval type-2 beta fuzzy

systems is treated in this study. Thus, instead of designing a

standard high dimensional IT2BFS, which is a common

practice, the input variables are distributed over different sub-

fuzzy models having lower dimensions. Consequently, each

individual sub-fuzzy model having a moderate dimension will

form a surface in all the hierarchy. For that, a tree-based

encoding scheme is used to represent the hierarchical system.

The reason for choosing the tree encoding method is that the

tree has by nature a flexible hierarchical representation. Such

encoding scheme can provide more adjustable and modifiable

structures by means of existing or modified tree-based

learning approaches, i.e., IP, Genetic Programming (GP), Ant

Programming (AP), and so on. The proposed system is named

the Hierarchical Interval Type-2 Beta Fuzzy System

(HT2BFS). A possible tree structural representation (with 4

input variables and 4 hierarchical levels) and its corresponding

HT2BFS are illustrated in Fig. 4a. The proposed HT2BFS is

characterized by a set of non-leaf nodes N and leaf nodes L.

Non-leaf nodes are formed by different sub-fuzzy models of

IT2BFS type while leaf nodes are formed by original input

variables. The node set S of the system is described as follows:

Fig. 4. a) A possible tree structural representation, (b) The corresponding

HT2BFS: the tree node set S= { 𝐵𝐹𝐼𝐼41
1 , 𝐵𝐹𝐼𝐼21

2 , 𝐵𝐹𝐼𝐼22
3 , 𝑥1, 𝑥2, 𝑥3, 𝑥4}

S = N ∪ L = {𝐵𝐹𝐼𝐼𝑐𝑖
𝑙 / 𝑐 ∈ {2, … . , 𝑁𝑁}, 𝑖 ∈ {1, … . , 𝑇}, 𝑙 ∈

{1, … . , (𝑀𝐿 − 1)}}∪{𝑥1,…,𝑥𝑀} (15)

where 𝐵𝐹𝐼𝐼𝑐𝑖
𝑙 represents a sub-fuzzy model of IT2BFS type

formed by c inputs (children) and one evaluated output. NN

defines the tree’s maximal degree (nodes number), i is the

index of the BFII having c children, T is the occurrence

number of BFII having c offspring, l presents the level index

of the tree and ML is the maximum number of levels (the

tree’s depth); 𝑥1,…,𝑥𝑀 are the original input variables

illustrating the L leaf node set.

For the HT2BFS evaluation, each 𝐵𝐹𝐼𝐼𝑐𝑖
𝑙 receives c inputs

and calculates one output. Some 𝐵𝐹𝐼𝐼𝑐𝑖
𝑙 calculate and generate

their output to be exploited as inputs for other 𝐵𝐹𝐼𝐼𝑐𝑖
𝑙 . The

evaluation of the HT2BFS is done recursively from level to

level (from left to right), and the root node generates finally

the output of the whole tree-based system.

The rules at each non-leaf node were created as follows:

Considering Fig. 4b as an exemple of a generated HT2BFS,

the rules for each 𝐵𝐹𝐼𝐼𝑐𝑖
𝑙 are of TSK nature taking the

following format:

𝐵𝐹𝐼𝐼22
3 : 𝑅𝑖

𝑙=3 ∶ 𝐼𝑓 (𝑥1 𝑖𝑠 �̃�1𝑖
3) 𝑎𝑛𝑑 (𝑥2 𝑖𝑠 �̃�2𝑖

3) 𝑡ℎ𝑒𝑛
 𝑌𝑖

3 = 𝐶0𝑖
3 + 𝐶1𝑖

3 𝑥1 + 𝐶2𝑖
3 𝑥2 (16)

 𝐵𝐹𝐼𝐼21
2 : 𝑅𝑗

𝑙=2 ∶ 𝐼𝑓 (𝑦1 𝑖𝑠 �̃�1𝑗
2) 𝑎𝑛𝑑 (𝑥2 𝑖𝑠 �̃�2𝑗

2) 𝑡ℎ𝑒𝑛

 𝑌𝑗
2 = 𝐶0𝑗

2 + 𝐶1𝑗
2 𝑦1 + 𝐶2𝑗

2 𝑥2 (17)

 𝐵𝐹𝐼𝐼41
1 : 𝑅𝑘

𝑙=1: 𝐼𝑓 (𝑥1 𝑖𝑠 �̃�1𝑘
1) 𝑎𝑛𝑑 (𝑦2 𝑖𝑠 �̃�2𝑘

1) 𝑎𝑛𝑑

(𝑥3 𝑖𝑠 �̃�3𝑘
1) 𝑎𝑛𝑑 (𝑥4 𝑖𝑠 �̃�4𝑘

1) 𝑡ℎ𝑒𝑛 𝑌𝑘
1 = 𝐶0𝑘

1
 +𝐶1𝑘

1 𝑥1 + 𝐶2𝑘
1 𝑦2 + 𝐶3𝑘

1 𝑥3 + 𝐶4𝑘
1 𝑥4 (18)

where:

- 𝑖 = 1, . . . , 𝑀3; M3 presents the rules number of 𝐵𝐹𝐼𝐼22
3 ; �̃�1𝑖

3

and �̃�2𝑖
3 are the antecedent fuzzy sets modeled by the

IT2BMFs; 𝐶0𝑖
3 , 𝐶1𝑖

3 𝑎𝑛𝑑 𝐶2𝑖
3 are the consequent sets formed by

interval type-1 fuzzy sets; 𝑌𝑖
3 is the 𝑖𝑡ℎ rule output.

- 𝑗 = 1, . . . , 𝑀2; M2 presents the rules number of 𝐵𝐹𝐼𝐼21
2 ; �̃�1𝑗

2

and �̃�2𝑗
2 are the antecedent fuzzy sets modeled by the

IT2BMFs; 𝐶0𝑗
2 , 𝐶1𝑗

2 𝑎𝑛𝑑 𝐶2𝑗
2 are the consequent sets formed by

interval type-1 fuzzy sets; 𝑌𝑗
2 is the 𝑗𝑡ℎ rule output.

- 𝑘 = 1, . . . , 𝑀1; M1 presents the rules number of 𝐵𝐹𝐼𝐼41
1 ;

�̃�1𝑘
1 , �̃�2𝑘

1 , �̃�3𝑘
1 and �̃�4𝑘

1 are the antecedent fuzzy sets modeled

by the IT2BMFs; 𝐶0𝑘
1 , 𝐶1𝑘

1 , 𝐶2𝑘
1 , 𝐶3𝑘

1 and 𝐶4𝑘
1 are the

consequent sets formed by interval type-1 fuzzy sets; 𝑌𝑘
1 is the

𝑘𝑡ℎ rule output.

- 𝑥1, 𝑥2, 𝑥3 and 𝑥4 are original input variables; y1, y2 and y3

are respectively the outputs of 𝐵𝐹𝐼𝐼22
3 , 𝐵𝐹𝐼𝐼21

2 and 𝐵𝐹𝐼𝐼41
1 and

are calculated by (9).

- y3 is the output of the whole HT2BFS.

 6

B. Initialization of HT2BFSs Population

In general, initial fuzzy rule generation is usually considered

as a time-consuming and a difficult task since it needs expert

knowledge information. One way of solving this difficulty is

to use a clustering technique allowing an automatic extraction

of an initial rule base. Clustering methods have been

frequently used in the literature for the identification of both

type-1 and type-2 fuzzy systems [46- 49]. In the same context,

the subtractive clustering algorithm is applied in this study to

derive the initial rules of each sub-fuzzy model from the

available data and to determine the initial MFs locations. The

use of such technique allows the optimization processes

applied afterwards to converge in a shorter time.

The subtractive clustering algorithm is a fast and

unsupervised algorithm used to divide the input data into

smaller and meaningful subgroups named clusters, so that the

items in the same cluster are as homogenous as possible. For

this algorithm, the number of clusters is automatically defined

based on a measure of data density in space. Hence, the

obtained clusters centers will define the centers of MFs, and

each center of a cluster will be transformed into a fuzzy rule.

Based on this concept, the subtractive clustering algorithm is

applied in the initialization step for the generation of an initial

population of HT2BFSs.

To do this, first of all, a random population of initial trees

having random structures is created; i.e. with random number

of levels in [3, LMax] and with random number of nodes in [2,

NMax], where LMax is the maximum level number and NMax

is the maximum number of child nodes for each non-leaf node

(degree of the tree). NMax and LMax are fixed according to

the studied problem. In fact, the generation process of a tree

structure is realized with a random and recursive way. It’s an

automated random process done recursively from top to

bottom and from left to right. Non-leaf nodes are randomly

distributed over the levels. Concerning the way of

arrangement of original inputs in the different levels, original

input variables are randomly chosen to be assigned for non-

leaf nodes. The minimum size of each tree is equal to 5 and its

maximum size is calculated as following:

 𝑆𝑖𝑧𝑒𝑀𝑎𝑥 =
𝑁𝑀𝑎𝑥𝐿𝑀𝑎𝑥−1

𝑁𝑀𝑎𝑥−1
 (19)

After the initial generation of random population of trees, each

tree is examined separately, and starting from the lowest level,

the subtractive clustering algorithm is applied recursively by

depth-first method. Consequently, for each non-leaf node, its

child nodes are clustered in order to create the corresponding

interval type-2 Beta sub-fuzzy model 𝐵𝐹𝐼𝐼𝑐𝑖
𝑙 . The number of

rules, the rule base in each 𝐵𝐹𝐼𝐼𝑐𝑖
𝑙 and the MFs locations are

automatically defined by the clustering algorithm.

The embedding of such initialization clustering step allows

both an automatic extraction of fuzzy rules from input data

and also creates a better distribution of the Beta MFs centers.

Consequently, the initial population will be composed of

relatively good solutions of HT2BFSs, and this can save many

generations of evolutionary search later. More details about

this clustering method are presented in [46].

C. The Evolutionary HT2BFS: E_HT2BFS

The Evolutionary HT2BFS (E_HT2BFS) is a systematic

design method of HT2BFSs. The HT2BFS evolution is

Fig. 5. The flowchart of the E_HT2BFS

considered as a search problem in both structure and

parameter spaces. So, starting with a random population of

trees having different structures, an initial population of

HT2BFSs is derived by recursively clustering leaf nodes of

input variables of each tree. Next, two main optimizations

processes are iteratively applied: the HT2BFS structure

learning and the HT2BFS parameter tuning. The structure

learning phase is applied in a multi-objective context

considering two objectives which are the accuracy

maximization (by minimizing the error) and the

interpretability maximization (by reducing the rules number).

The MOIP is used in the multi-objective structure learning

phase, while the HHS is employed in the parameter tuning

phase. The two algorithms are alternately applied until an

optimal HT2BFS is obtained. The flowchart of the E_HT2BFS

is illustrated in Fig. 5. As we can see from this figure, the

multi-objective structure learning phase generates a Pareto-

optimal front of non-dominated HT2BFSs, and then the most

suitable solution (having a good trade-off between the two

objectives) is selected to undergo the next parameter tuning

phase. The stopping criterion here is to find a near-optimal

HT2BFS or to reach the maximum number of global

iterations. If the stopping criterion is not validated, another

round of structure optimization is performed. In this case, the

new population is formed by the best found HT2BFS having

tuned parameters concatenated with a set of random generated

individuals.

VI. MULTI-AGENT ARCHITECTURE FOR HT2BFS EVOLUTION:

MA_HT2BFS

A multi-agent system (MAS) is considered as one of the

most important branches in the distributed intelligent area. In

general, a multi-agent architecture ensures a global

organization between autonomous and coordinated agents in a

distributed way. This architecture allows agents to interact

together in order to accomplish common aims and to break the

complexity of the given tasks [36]. In this study, our goal is to

perform an optimization process for a population of HT2BFSs

in the most efficient and fastest way. A key limitation of the

E_HT2BFS (presented in section V.C) is its concentration on

the parameter optimization of only one solution causing the

loss of the other solutions of the pareto front. Indeed, all of the

front’s solutions have optimized structures and their

exploitation can improve a lot the optimization process and

can reduce the training time. Although the search for an

optimal solution using the E_HT2BFS gives good results, it

requires many iterations of learning since it usually relies on

random populations in the structure learning rounds. To

Stop

Yes

No

Multi-Objective

Structure Learning

Goal solution

Best HT2BFS

Initialization

Parameter tuning

 7

overcome this drawback, a multi-agent architecture is

proposed in this study to efficiently parallelize the

optimization task between different agents with the goal of

adjusting and exploiting all of the front’s solutions in order to

contribute to the optimization process. Based on their

functions, agents in this architecture are partitioned into two

different types: a structure agent and a parameter agent. The

functions of these agents are detailed in the next two

subsections, and the third subsection will detail the negotiation

protocol and how the communication and the cooperation

between those agents are realized.

A. Structure Agent Description

In general, the modeling of a fuzzy logic system requires

the consideration of two important metrics which are the

accuracy and the interpretability. The accuracy reflects the

fuzzy system’s capability of representing the real system in a

faithful way. However, the interpretability refers to the ability

of presenting the designed system in an understandable way.

Although the accuracy and the interpretability objectives are

generally in conflict, MOEAs can approximate a set of

solutions named Pareto optimal solutions having various

tradeoffs of these objectives. In the same context, a structure

agent is created for multi-objective structure optimization

purpose. Its principle function is to undergo an exploration

step of the search space. The structure agent executes the

proposed MOIP algorithm and takes into consideration the

enhancement of both the accuracy and the interpretability

metrics. The predictive performance of the system (accuracy)

is expressed by the Root Mean Squared Error (RMSE) or the

Mean Squared Error (MSE). The RMSE is used as objective

function in the case of testing time series problems, while the

MSE is used as objective function in the case of regression

problems:

𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 1: 𝑅𝑀𝑆𝐸 = √ 1

𝑚
∑ (𝑦𝑡

𝑗
− 𝑦𝑜𝑢𝑡

𝑗
)

2
𝑚
𝑗=1 (20)

𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 1: 𝑀𝑆𝐸 =
1

2∗𝑚
∑ (𝑦𝑡

𝑗
− 𝑦𝑜𝑢𝑡

𝑗
)𝑚

𝑗=1

2
 (21)

where m defines the samples number, 𝑦𝑡
𝑗
 and 𝑦𝑜𝑢𝑡

𝑗
 are

respectively the desired output and the calculated output. The

rule base complexity (interpretability) is expressed by the

number of fuzzy rules:

𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒2: 𝐼𝑛𝑡𝑒𝑟𝑝𝑟𝑒𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 𝑅 (22)

where R defines the rules number.

The structure agent firstly takes as input a population of

different structures of HT2BFSs (antibodies) and then

executes the proposed MOIP algorithm taking into account the

following points:

- Learn and evolve the structures of the population and

consider both the accuracy and the interpretability metrics as

two objectives to optimize by the multi-objective algorithm.

- Use of the three immune programming operators (cloning,

mutation and replacement) combined with a dominance

concept to guide the search through an optimal Pareto-front of

non-dominated solutions of HT2BFSs.

- Use of an elitist strategy based on the exploitation of an

external archive of population in order to store elite solutions.

- Ensure a diversity maintenance mechanism and keep a well-

distributed front based on the crowding distance procedure.

- Generate as output an optimal set of evolved population

(Pareto optimal solutions). These solutions have different

structures and they illustrate the obtained set of HT2BFSs with

different accuracy-interpretability tradeoff.

B. Parameter Agent Description

The parameter agent is an autonomous agent created for

parameter tuning purpose to refine existing solutions. Its main

function consists of applying the HHS algorithm as a hybrid

evolutionary optimization algorithm to perform a parameter

tuning phase. The selected parameters for adjustment are the

interval type-2 Beta MF parameters (𝑐, 𝜎𝐿 , 𝜎𝑈 , 𝑝𝐿 , 𝑝𝑈 , 𝑞𝐿 ,
𝑞𝑈) and the consequent parts of fuzzy rules. To do this, the

parameter agent takes firstly as input a given HT2BFS

structure, and then it encodes the parameters of this selected

HT2BFS in a matrix representation and initializes the rest of

the population at random. Next, it executes the HHS algorithm

to evolve the population and generates finally an optimum

matrix of tuned parameters. The parameter agent encodes at

the end the best parameters found in the fixed structure to be

its final output. It should be noted that the RMSE previously

defined is used by this agent as an objective function.

C. Multi-Agent Architecture: Communication between the

Structure Agent and the Parameter Agents

The MA_HT2BFS is a multi-agent system capable of

distributing and organizing the optimization task between the

structure agent (the initiator) and a number of parameter

agents (the participants). In such system, cooperation and

interaction between agents take place to reach a common goal

which is the generation of an optimal HT2BFS in a reduced

time and with a less cost. An HT2BFS solution is called

optimal or near optimal if it has the optimum structure with

the optimum set of parameters. That means that this solution

has the best distribution of nodes by levels in such a way that

its evaluation meets the two desired objectives (accuracy and

interpretability features).

To reach this goal, a negotiation protocol is needed to

organize the communication and to guarantee the information

exchange among agents. In fact, different negotiation

protocols have been presented in the literature, the first and the

most known one is the contract net protocol [50]. The main

idea of this protocol is to decompose the problem into sub-

problems by a central agent or a manager. This latter

announces the sub-problems to the other system’s agents, and

then it collects their propositions to solve the problem. Here,

the central agent is responsible for supervising the tasks

execution and the treatment of their execution results. This

protocol is more useful in conditions where all worker agents

cooperate to attain the same goal.

In this work, we have used a negotiation protocol similar to

the contract net protocol. In this protocol, the structure agent

plays the role of an initiator agent or a manager, while the

parameter agents are presented as participant agents. Fig. 6

illustrates the flowchart of the MA_HT2BFS, where G and

Iter correspond respectively to the number of generations and

the global number of iterations. StrIter and PramIter_i define

respectively the structure iteration number and the parameter

iteration number of agent i. The following description gives

 8

more details about the communication scenario assured by the

negotiation protocol.

After the execution of the MOIP on a population of

HT2BFSs by the structure agent, a Pareto front of non-

dominated solutions is generated. Indeed, this Pareto contains

a set of HT2BFSs solutions having different structures. Here,

the main next task is to undergo a parameter tuning phase to

all these structures. In fact, this task is difficult to do by one

agent as the solutions have different structures. Therefore, the

structure agent who acts as an initiator and a central agent,

decomposes the main task to several sub-tasks in order to

break its complexity. So, the initiator starts a negotiation

session and sends a call to all the participants (parameter

agents) announcing the beginning of a communication session.

Then, the initiator sends each solution of the Pareto front to a

participant agent. It should be noted that the number of the

front’s solutions is equal to the number of the called

participant agents. At this level, participant agents answer by

an approval message; they execute in parallel a parameter

optimization step to refine solutions and then they send their

proposals to the structure agent. This latter evaluates the

received solutions based on their levels of accuracy and

interpretability. And according to the validation of the

stopping criterion, the structure agent decides if it will

continue the learning process or not. The stopping criterion

here is to find among the obtained high-quality HT2BFSs a

sufficient solution representing the best trade-off between the

objectives or to reach the maximum number of global

iterations.

If one of the stopping criteria is attained, then the initiator

sends an ’accept-proposal’ message to the winner participant

agent and takes its solution as the best final solution. The

initiator also sends a ’reject-proposal’ message to the other

participants and closes the negotiation session.

If the stopping criterion is not yet reached, the initiator

exposes another novel population for further structure

optimization. This population is formed by the solutions

proposals of the participant agents concatenated with the

population already optimized by the structure agent in the

previous round. As a result of this step, another Pareto front of

optimal solutions is generated and will be sent for further

parameter tuning, and in this case three alternatives are

possible:

 If the same number of participant agents is needed (in

comparison with the previous round), in this case the

initiator sends a ’counter-proposal’ message to all the

existing participants containing the proposed structure to

optimize (taken from the front).

 If the number of needed participant agents is less than the

previous round (the number of the front’s solutions is

reduced), in this case the initiator will reject the extra

agents by sending them a ’Quit’ message. And, a set of

’counter-proposals’ containing the new structures are

sent to the rest of needed agents.

 If the number of needed participant agents is more than

the previous round (the number of the front’s solutions is

increased), in this case, the initiator will create new

participant agents to receive the extra solutions.

By this manner, instead of choosing just one solution from

the front and tuning it, our multi-agent system aims to give the

same chance to all the solutions to contribute to the learning

process. This will prevent the other non-dominated solutions

from being lost and enable their exploitation in the next round.

As a result, the search space is enlarged, and the fact that all

the optimized solutions will join the next population for

further structure optimization, this will speed up the whole

optimization process and will avoid the extra computations.

Fig. 6. The flowchart of the MA_HT2BFS

Structure n (Str_n)
Structure 1 (Str_1)

Stop

New population (Str_1 ,…, Str_n)

No

Initialize a population of HT2BFSs with

random structures

Goal solution ?

MOIP

Pareto Front

Parameter Agent 1

Structure Agent

HHS HHS

Parameter Agent n

Iter = Iter + StrIter

Iter = Iter + Mean

(PramIter_1, …, PramIter_n)

…….

G = G + 1

Identify the winner

parameter agent and

evaluate its solution

G=0

Iter = 0

Yes

Evaluate fitness of each HT2BFS

Best parameter matrix_n

Encode matrix_n on Str_n

Best parameter matrix_1

Encode matrix_1 on Str_1

 9

VII. SIMULATION RESULTS

In this section, the performance of the MA_HT2BFS is

evaluated under both noise-free and noisy environments. The

simulations include three kinds of forecasting time series

problems. We also studied the impact of artificial additive

noise for two cases of time series experiments. The

experiments were also conducted over large-scale real-world

regression problems.

The proposed system is implemented using the Matlab

platform: the parallel computing toolbox and the distributed

computing toolbox are exploited for the modeling of the multi-

agent architecture, while the implementation of interval type-2

fuzzy logic systems was performed by the use of interval type-

2 fuzzy logic toolbox [51]. The employed trees have degrees

between 2 and 5 and depths between 2 and 4 (as a minimum

and maximum). In addition, we used for each MF of each

input a different FOU. For the MOIP training algorithm, the

parameters are initialized as follows: population size = 20,

probability of cloning Pc = 0.7 and probability of replacement

Pr = 0.5. For the HHS tuning algorithm, the parameters are

initialized with the following values: size of population = 20,

PARmin = 1e-05, PARmax = 1, HMCR = 0.9, c1=0.2 and

c2=0.7. Results are generated after 10 runs and then are

averaged. To evaluate the efficiency of the MA_HT2BFS

system, several comparisons with state of the art fuzzy/neural

learning methods are made taking into account the accuracy

(measured via RMSE), convergence speed (measured via the

number of Function Evaluations (NFEs) and the global

number of Iterations (Iter)) and Interpretability (measured

based on the rule base complexity and fuzzy rules number(R)).

A. Mackey-Glass Chaotic Time Series

1) Case 1: Noise-free Mackey Glass time series

The Mackey-Glass chaotic time series (MG) [52] is a

widely known benchmark problem usually adopted for

performance comparison with different approaches. The MG

is derived from the following differential equation:

𝑑(𝑥(𝑡))

𝑑𝑡
=

𝑎𝑥(𝑡−𝜏)

1+𝑥𝑐(𝑡−𝜏)
 − 𝑏𝑥(𝑡) (23)

Note that, if 𝜏 > 16.8, the series has a chaotic behaviour.

To make a meaningful comparison with related works, we use

the same initial conditions as in these works. Hence, we

choose a = 0.2, b = 0.1, c = 10, 𝜏 = 17 and 𝑥(0) = 1.2. Two

cases of input variables number are treated for this series. In

the first case, we used 4 input variables for the prediction of

MG at 𝑥(𝑡 + 6). These inputs are 𝑥(𝑡), 𝑥(𝑡 − 6), 𝑥(𝑡 − 12)

and 𝑥(𝑡 − 18). In the second case, the 𝑥(𝑡 + 6) is predicted

using 19 inputs which are 𝑥(𝑡), 𝑥(𝑡 − 1), 𝑥(𝑡 − 2), 𝑥(𝑡 − 3),

..., 𝑥(𝑡 − 18). 1000 observations were generated by applying

the fourth order Runge-Kutta method in (23). The first 500

data points are exploited for training while the remaining 500

data points are exploited for testing.

After performing 8 global iterations and 173 NFEs, the

obtained RMSE values for training and testing data are

respectively 6.9421e-16 and 6.7523e-16 (in the case of 4 input

variables). Tables I and II illustrate the simulation results for

the two cases and make comparisons between our proposed

model and other approaches from the literature. The training

and testing RMSE are respectively given by 𝑅𝑀𝑆𝐸𝑡𝑟 and

𝑅𝑀𝑆𝐸𝑡𝑠 in the tables. The results indicate that the

MA_HT2BFS can notably achieve better performance in the

two cases of 4 and 19 inputs and outperforms other existing

models.

Note that the MA_HT2BFS is compared with different

Type-1 FLSs, Type-2 FLSs and neural network learning

approaches. For Type-2 FLSs, our system is principally

compared with the SA-IT2FLS [53] which is an interval type-

2 fuzzy system optimized by the simulated annealing

algorithm, and with the memetic-T2FS [54] which uses a

variable-length genetic algorithm with a gradient descent

technique for the structure and parameters learning of the

interval type-2 fuzzy system. Our system is also compared to

the support vector-based interval type-2 fuzzy system: TSK-

SVR II [55] and to a general type-2 fuzzy system that uses

vertical-slices centroid type-reduction method: GT2FLS-

VSCTR [56].

For the TSK-SVR II [55] and the SA-IT2FLS [53]

approaches, the used number of rules is respectively 32 and 16

rules. It is remarkable that the MA_HT2BFS with fewer rules

(6 rules) could yield smaller error than its competitors. This is

due to the hierarchical nature of the system and the use of a

multi-objective optimization process which has a great impact

on the reduction of the resulting rule base without affecting

the system’s prediction performance.

TABLE I. COMPARISON RESULTS OF MACKEY-GLASS TIME-SERIES IN THE

CASE OF 4 INPUTS

Method 𝑅𝑀𝑆𝐸𝑡𝑟 𝑅𝑀𝑆𝐸𝑡𝑠

ADANN-EDA [59] 1.2e-02 -

FLNFN-CCPSO [60] 8.2e-03 8.4e-03

HMDDE-BBFNN [61] 9.4e-03 1.7e-02
LNF [62] 7.0e-04 7.9e-04

NARMA [63] 6.3e-04 6.2e-04

FBBFNT [57] 9.9e-07 2.0e-06
MA_EFBBFNT [58] 4.1e-11 4.1e-11

GT2FLS-VSCTR [56] 3.9e-02 3.9e-02

TSK-SVR II [55] - 7.0e-03
Memetic-T2FS [54] 3.1e-03 -

SA-IT2FLS [53] 9.0e-03 8.9e-03

MA_HT2BFS 6.9e-16 6.7 e-16

TABLE II. COMPARISON RESULTS OF MACKEY-GLASS TIME-SERIES IN THE

CASE OF 19 INPUTS

Method 𝑅𝑀𝑆𝐸𝑡𝑟 𝑅𝑀𝑆𝐸𝑡𝑠 NFEs

FNT [64] 2.7e-03 2.7e-03 -

FBBFNT_EGP&OPSO [65] 2.5e-05 2.5e-05 5,213,935
MA_EFBBFNT [58] 2.0e-06 2.0e-06 290,379

MA_HT2BFS 5.5e-13 9.4e-13 414

Other comparisons with existing neural network learning

approaches are also discussed, and we can remark from Table

I that the evolutionary neural system FBBFNT [57] can

generate high rates of accuracy but using a huge number of

 10

NFEs (more than 800,000). In the case of the MA_EFBBFNT

[58] which is an extended version of FBBFNT that integrates

a multi-agent architecture for training, this system succeeds to

generate similar low training and testing errors and with much

fewer number of function evaluations. In spite of this great

improvement in NFEs, the function evaluations number of

MA_EFBBFNT is still high (more than 158,000). As

compared with the results of these systems, the proposed

MA_HT2BFS seems to have better performance in terms of

reaching comparable errors with minimum NFEs (173).

In fact, the huge decrease in the number of function

evaluation is due to different reasons: firstly, the use of a

clustering technique in the initialization step allows the

generation of an initial population composed by relatively

good solutions. This initialization process combined with the

use of the powerful reasoning capacities of type-2 fuzzy

modeling yield to more quality outputs, and this could save

many iterations of optimization. Note that the FBBFNT based

systems [57], [58] use an initial random population with

totally random parameters which requires more generations of

evolutionary optimization. On the other hand, the multi-agent

architecture has also a powerful effect on the convergence

speed of our algorithm. The parallel training and cooperation

of several agents accelerate a lot the whole optimization

process.

2) Case 2: Noisy Mackey Glass time series

Since type-2 fuzzy systems are supposed to handle higher

uncertainty levels in comparison to their counterparts, the

MA_HT2BFS has been tested for the Mackey glass time series

when an additive noise is present in the training and/or testing

data and was compared with other existing systems. The

original data were affected by six different levels of Gaussian

noise with zero mean and STDs (𝜎) equal to 0.04, 0.08, 0.1,

0.2, 0.3 and 0.4. To allow a fair comparison with other works,

we use the same initial conditions as in [8], [31], [66], [67]

and we adopt 𝜏 = 30 and 𝑥(0) = 1.2. The same set of input

variables is used for all comparison models. In this

experimentation, 𝑥(𝑡 − 24), 𝑥(𝑡 − 18), 𝑥(𝑡 − 12) and 𝑥(𝑡 −
6) are used as four past values to predict 𝑥(𝑡). A total of 1000

data pairs were generated from the interval 𝑡 ∈ [124;1123].

The first 500 data points are used for training while the

remaining 500 data points are used for testing.

Based on different noise levels, we studied a comparison

between the MA_HT2BFS presented in this work and another

modified version of this system. The second considered

system for comparison is the multi-agent hierarchical Beta

fuzzy system (MA_HBFS) which employs type-1 Beta sub-

fuzzy models. It should be noted that the same initial

conditions and parameters were used for the two proposed

systems. In this sense, Fig. 7 illustrates the MA_HT2BFS and

the MA_HBFS prediction testing results in terms of training

with noise level σ=0.1 and noise-free for test.

Fig. 7. Prediction results of MA_HT2BFS (RMSEts = 0.031) and MA_HBFS (RMSEts = 0.078) trained with noise level 𝜎 = 0.1 and noise-free for test

Fig. 8. Pareto fronts generated by MA_HT2BFS and MA_HBFS (left) when the noise in the training data is 𝜎 = 0.04 and (right) when the noise in the training

data is 𝜎 = 0.4

 11

Furthermore, we analyze the results generated by the

MA_HT2BFS and the MA_HBFS when the training data are

affected by low and high levels of noise. Fig. 8 presents the

obtained Pareto fronts by the MA_HT2BFS and the

MA_HBFS under noise levels σ = 0.04 and σ = 0.4. It is

noticed from Fig. 8 that when the level of noise is low (σ =

0.04), the two systems achieve similar Pareto fronts. However,

when the level of noise grows to σ = 0.4, the MA_HT2BFS

generates a better Pareto front that dominates the front of the

MA_HBFS. Therefore, we can conclude from the experiments

that type-2 fuzzy sets have better noise tolerance than their

type-1 counterparts. On the other hand, the robustness of the

MA_HT2BFS over the MA_HBFS is also shown by training

the MA_HT2BFS and the MA_HBFS using noise-free

training data. Next, two levels of low and high Gaussian noise

(σ=0.04 and σ=0.4) were added to the testing data in order to

verify the robustness of the resulting hierarchical fuzzy

systems. The results of this experiment are shown in Table III.

The results show a better performance and tolerance to the

noise of the MA_HT2BFS in comparison with the other type-1

model in the case of very noisy testing data (σ=0.4).

In addition, Fig. 9 shows the evolution of the testing error

(𝑅𝑀𝑆𝐸𝑡𝑠) as the noise level increases for the two types of

FLSs. It should be noted that to make a fair comparison, we

compare in Fig. 9 only solutions having the same number of

rules (6 rules). We can observe that the impact of noise on the

RMSEts values is not the same for the two systems. For low

levels of noise, the MA_HT2BFS and the MA_HBFS systems

give similar 𝑅𝑀𝑆𝐸𝑡𝑠, as the noise level increases, the

MA_HT2BFS produce much lower RMSEts compared to its

type-1 counterpart.

Table IV shows a comparison between our technique and

other state of art techniques applied to noisy Mackey-Glass.

For the training part, the training set is created by adding

Gaussian noise with zero mean and STDs (𝜎) equal to 0.1 to

the original data 𝑥(𝑡). Three sets are generated for testing:

clean, 𝜎 = 0.1, and 𝜎 = 0.3. The best values having the lowest

error are marked in bold. As shown in Table IV, the

MA_HT2BFS outperforms the competing methods where

although the SIT2FNN outperforms the other techniques in

training and testing data, the MA_HT2BFS gives the best
𝑅𝑀𝑆𝐸𝑡𝑠 over testing data (with less or similar number of

rules) where the difference to competing techniques increase

when increasing the noise (with 𝜎 = 0.3).

TABLE III. Performance comparison in terms of noise-free training data and

noisy testing data for Mackey-Glass time-series

Method

𝑅𝑀𝑆𝐸𝑡𝑟 𝑅𝑀𝑆𝐸𝑡𝑠

clean clean 𝜎=0.04 𝜎=0.4 #R

MA_HBFS 7.9e-16 7.6e-16 0.038 0.301 6

MA_HT2BFS 1.2e-16 1.2e-16 0.035 0.182 6

Fig. 9. Evolution of the 𝑅𝑀𝑆𝐸𝑡𝑠 values as the noise level increases for

testing data in the case of Mackey-Glass time-series

TABLE IV. COMPARISON RESULTS OF MACKEY-GLASS TIME-SERIES IN THE

CASE OF NOISE LEVEL 𝜎 = 0.1

Method
𝑅𝑀𝑆𝐸𝑡𝑟 𝑅𝑀𝑆𝐸𝑡𝑠

 𝜎=0.1 clean 𝜎=0.1 𝜎=0.3 #R

T
y
p

e-
1
 MA_HBFS 0.152 0.065 0.113 0.228 5

SONFIN [66] 0.113 0.054 0.108 0.256 10

T
y
p

e-
2

IT2FNN-SVR [8] 0.127 0.046 0.088 0.215 6

eT2FIS [67] 0.120 0.059 0.107 0.214 -

SEIT2FNN [31] 0.123 0.049 0.097 0.212 5

SIT2FNN [68] 0.088 0.041 0.087 0.215 5

𝑇2𝐻𝐹𝐼𝑇𝑀 [69] 0.123 0.042 0.135 0.365 -

MA_HT2BFS 0.118 0.039 0.082 0.181 5

B. Lorenz chaotic time series prediction

1) Case 1: Noise-free Lorenz time series

The Lorenz system is a model of fluid motion between a hot

surface and a cool surface [70]. This series is generated by the

following ordinary nonlinear differential equations:

 {

�̇� = 𝜎(𝑦 − 𝑥)
�̇� = −𝑦 − 𝑥𝑧 + 𝑟𝑥

�̇� = 𝑥𝑦 − 𝑏𝑧
 (24)

The x-coordinate of the equations is employed as the time

series. The parameters in (24) are most commonly selected to

be 𝜎= 10, r = 28 and b = 8/3. The data are obtained by solving

the described equations. For the prediction, (𝑡 − 4) ,𝑥(𝑡 − 3),

𝑥(𝑡 − 2) and 𝑥(𝑡 − 1) are used as the inputs of the system

while x(t) is the output. 1000 observations are generated, the

first 500 data pairs are employed for training and the other 500

are used for the test.

Table V shows the comparison for MA_HT2BFS against

other techniques where the MA_HT2BFS gives the best

compromise between solution quality, the convergence speed

and the rule base complexity.

 12

TABLE V. COMPARISON RESULTS OF LORENZ TIME-SERIES

Method 𝑅𝑀𝑆𝐸𝑡𝑟 𝑅𝑀𝑆𝐸𝑡𝑠 Iter NFEs #R

LNF [62] 3.9e-03 8.1e-03 - - -

RBLM-RNN [71] 1.8e-02 3.0e-02 1000 - -

FBBFNT [57] 7.4e-08 1.0e-07 3872 204,911 -

MA_HT2BFS 3.3e-16 2.1e-16 6 106 5

2) Case 2: Noisy Lorenz time series

We have also tested with noisy Lorenz time series.

Different levels of Gaussian noise with zero mean and 𝜎-

deviation are added to the training and testing data, i.e., 𝜎 =

{0.04, 0.08, 0.1, 0.2, 0.3, 0.4}.

The robustness of the MA_HT2BFS under a noisy

environment is compared with that of the MA_HBFS as

shown below. For the training part, the two systems were

trained using clean training data (no noise was added), while

for the testing part, two levels of Gaussian noise were added

including testing with 𝜎 = 0.04 and 𝜎 = 0.4 respectively. The

results of this experiment are shown in Table VI where the

MA_HT2BFS can clearly outperform its type-1 counterpart

specifically in the case of very noisy testing data (𝜎 = 0.4). In

Fig. 10, we show the impact of increasing the levels of noise

on the 𝑅𝑀𝑆𝐸𝑡𝑠values for the two proposed typ-1 and type-2

hierarchical fuzzy models. We can remark from the figure that

the MA_HT2BFS achieves significantly lower errors in

comparison with the MA_HBFS as the noise increases. This

affirms the noise resilience abilities of the MA_HT2BFS as

compared with its type-1 counterpart.

TABLE VI. PERFORMANCE COMPARISON IN TERMS OF NOISE-FREE TRAINING

DATA AND NOISY TESTING DATA FOR LORENZ TIME-SERIES

Method

𝑅𝑀𝑆𝐸𝑡𝑟 𝑅𝑀𝑆𝐸𝑡𝑠

clean clean 𝜎=0.04 𝜎=0.4 #R

MA_HBFS 8.1e-16 9.4e-16 0.036 0.419 7

MA_HT2BFS 7.6e-16 7.8e-16 0.033 0.282 7

Fig. 10. Evolution of the 𝑅𝑀𝑆𝐸𝑡𝑠 values as the noise level increases for

testing data in the case of Lorenz time series

C. Sunspot time series

We have also employed the Sunspot time series data set

which presents a real world non-stationary and highly-

complex time series showing the annual average relative

number of observed sunspot [72]. The dataset is recorded

between years 1700-1979. The training data are formed by

data points between 1700 and 1920, the testing data are

divided into two sets, the first set is from 1921 to 1955 and the

second is from 1956 to 1979. The inputs of the system are

𝑦(𝑡 − 4), 𝑦(𝑡 − 3), 𝑦(𝑡 − 2) and 𝑦(𝑡 − 1) and the output is

𝑦(𝑡). The dataset is available from:

http://www.ngdc.noaa.gov/stp/solar/ssndata.html.

Based on the different performance measures, Table VII

lists the simulation results of our system and makes a

comparison with other related works. After accomplishing two

generations (G=2), an optimal HT2BFS having 6 rules is

generated with 2.3195e-16 value for training RMSE. The

actual time series and the predicted output are illustrated

through Fig. 11. From the results table, we can notice a

significant improvement when applying the MA_HT2BFS in

the different measures of performance in comparison with the

other methods. For example, although the fuzzy wavelet

neural system FWNN [73] shows an improvement in the

number of global iterations (Iter=200) as compared with the

FBBFNT neural system [57] (Iter=3821), but it still uses many

rules in the prediction (16 rules). In our case, our model can

reach better rates of accuracy (RMSEts2) in less time (Iter=6

and NFEs=98) and using less complex rule base (6 rules).

TABLE VII. COMPARISON RESULTS OF SUNSPOT NUMBER TIME-SERIES

Method 𝑅𝑀𝑆𝐸𝑡𝑟 𝑅𝑀𝑆𝐸𝑡𝑠1 𝑅𝑀𝑆𝐸𝑡𝑠2 Iter NFEs #R

RFNN [74] - 7.4e-02 2.1e-01 - - -

FWNN-S [73] 2.5e-01 3.3e-01 5.2e-01 200 - 16

FWNN-R [73] 2.3e-01 3.3e-01 6.8e-01 200 - 16
FWNN-M [73] 2.4e-01 3.1e-01 6.0e-01 200 - 16

FBBFNT [57] 3.1e-08 7.2e-07 8.0e-07 3821 631,075 -

FBBFNT_EIP
&HBFOA [43]

1.9e-10 4.1e-10 7.2e-10 - - -

MA_HT2BFS 2.3e-16 5.4e-16 3.2e-16 6 98 6

Fig. 11. The desired output and the predicted output for the training, test 1 and

test 2 data in the case of sunspot number time series

 13

D. MA_HT2BFS for High-Dimensional Regression Problems

In order to analyze the performance of the MA_HT2BFS in

high-dimensional problems, we have employed four large-

scale real-world regression problems from the KEEL project

repository [75]. Table VIII shows the characteristics of the

data sets which have been selected from the most complex

problems of the KEEL project webpage (Available at

http://www.keel.es/). In fact, the considered problems present

an important challenge for the proposed system because of the

high number of data and features (input variables). The data

sets cover a range of input variables from 8 to 40 and a range

of examples from 13750 to 22784.

TABLE VIII. DATA SETS CHARACTERISTICS

Problem Abbr. Variables cases

Ailerons AIL 40 13750

California Housing CAL 8 20640

Elevators ELV 18 16559

House-16H HOU 16 22784

For all the problems, a 5-fold cross validation method was

performed. Therefore, we divided each data set into 5 equal

groups of samples where 4 groups are used for training and

one group is used for the test. For each of the five partitions,

six runs are executed resulting in a total of 30 runs per data

set. The final results are averaged over the 30 runs. This

experimentation does not aim to generate the lowest mean

square error (MSE) in comparison with other works, but it

aims to obtain in the same time the most accurate solution

having a reduced number of rules and with the least number of

function evaluations. The MA_HT2BFS is also compared to

three state-of-the-art fuzzy systems for regression problems.

Table IX presents the average rules number (#R), the average

training MSE (𝑀𝑆𝐸𝑡𝑟), the average testing MSE (𝑀𝑆𝐸𝑡𝑠) and

the average used NFEs for all the data sets. The best values

having the lowest error and the minimum number of rules are

marked in bold. Analyzing the results presented in Tables IX,

we can see that the MA_HT2BFS presents competitive results

in training and testing errors as compared with the other GFSs.

Focusing on the used number of rules, it is remarkable that the

proposed approach has the advantage of reaching competitive

errors using fewer number of rules. We can see that despite

the high number of examples, the number of rules generated

by the MA_HT2BFS is the lowest in most of the cases. This is

due to the great effect of the multi-objective immune

programming mechanism which is able to significantly

minimize the rules number while decreasing the error of the

system. Regarding the number of executed function

evaluations, the MA_HT2BFS succeeds to reach the desired

compromise between the accuracy and the interpretability

using a reduced number of NFEs. This is due to the

hierarchical structure of the system and due to the parallel

optimization process offered by the multi-agent architecture

which reduces the needed learning iterations.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a hierarchical representation of

interval type-2 beta fuzzy systems through a tree encoding

scheme. Hierarchical type-2 fuzzy modeling has been

considered in this study as a search problem and an

optimization task in both structure and parameter spaces. For

that, innovative hybrid stages of structure learning and

parameter tuning tasks were applied in order to obtain a near-

optimal system. To accomplish these tasks in the most optimal

way, we have further employed a multi-agent architecture to

efficiently parallelize and distribute the optimization tasks

between a structure agent and a set of parameter agents. Both

types of agents communicate and coordinate in order to

generate an optimal hierarchical fuzzy system in a reduced

time and with less cost. To do this, the structure agent applied

a multi-objective structure learning phase by means of the

MOIP algorithm which aims to obtain a set of improved

structures of HT2BFSs. This phase is presented in a multi-

objective context where the accuracy and the interpretability

were considered as two main objectives to reach. For the

tuning task, a number of parameter agents applied a parameter

tuning phase by means of the HHS algorithm in order to adjust

the parameters of the evolved structures.

The proposed hierarchical fuzzy design was implemented

for both type-1 and type-2 FISs and the robustness of the

MA_HT2BFS compared with the MA_HBFS was studied.

The two types of systems were applied for time series

prediction problems in the cases of absence of noise and under

noisy environments. A comparative analysis was presented

showing that when the used data are noise-free, or when the

level of noise is low, the two types of FLSs gave close results.

Therefore, the type-1 MA_HBFS is recommended to be used

in such situations offering simpler computation and

comparable error results. However, it has been observed that

in the cases of higher noise levels (large amounts of

uncertainty), the difference between the two systems becomes

more evident. For example, in the case of MG time series,

when the injected noise level is high (𝜎=0.4), the MA_HBFS

achieved an 𝑅𝑀𝑆𝐸𝑡𝑠 of 0.284 in comparison to the

MA_HT2BFS which gave an 𝑅𝑀𝑆𝐸𝑡𝑠 of 0.186 (i.e the

MA_HT2BFS offered about 35% improvement over its type-1

counterpart).

Additionally, we presented many comparisons with other

TABLE IX. Average results of the different algorithms. Results in this table (𝑀𝑆𝐸𝑡𝑟 and 𝑀𝑆𝐸𝑡𝑠) should be multiplied by 10−8, 10+9, 10−6 or 10+8 in the case of
AIL, CAL, ELV or HOU respectively

DATA SET

MA_HT2BFS 𝐹𝑆MOGFSe + TUNe [76] FRULER [78] 𝑀𝐸𝑇𝑆𝐾 − 𝐻𝐷𝑒 [77]

#R 𝑀𝑆𝐸𝑡𝑟 𝑀𝑆𝐸𝑡𝑠 NFEs #R 𝑀𝑆𝐸𝑡𝑟 𝑀𝑆𝐸𝑡𝑠 #R 𝑀𝑆𝐸𝑡𝑠 #R 𝑀𝑆𝐸𝑡𝑟 𝑀𝑆𝐸𝑡𝑠

𝐴𝐼𝐿40/13750 8.4 1.393 1.400 397.6 15 1.955 2.000 8.5 1.404 48.4 1.39 1.51

𝐶𝐴𝐿8/20640 6.3 2.934 2.965 257.2 8.4 2.94 2.95 15.4 2.110 55.8 1.64 1.71

𝐸𝐿𝑉18/16559 7.3 2.821 2.911 326.5 8 9.00 9.00 5.4 2.934 34.9 6.75 7.02

𝐻𝑂𝑈16/22784 6.4 9.421 9.512 367.1 11.7 9.35 9.40 12.1 8.005 30.5 8.29 8.64

 14

methods taken from the literature. The comparisons include

recent works of neural systems and type-1/type-2 fuzzy or

neuro-fuzzy systems. In most of the cases (noisy or noise free

time series), the proposed MA_HT2BFS provided better

testing error using similar or lower number of rules as

compared with the other state of the art methods. Simulations

on time series prediction problems showed good results and

proved that the MA_HT2BFS outperforms the other

competing methods even under a noisy environment.

Moreover, the performance of the proposed system was also

examined in the case of high-dimensional problems. For this

purpose, we have tested some large-scale regression problems

and we compared the results to other well-known existing

fuzzy systems. It is clear from the results that the

MA_HT2BFS with much fewer rules could yield smaller or

competitive error than the other existing GFSs.

Finally, for our future work, we will look to consider the

proposed system for real world applications areas.

REFERENCES

[1] J. M. Mendel, “Uncertain rule-based fuzzy logic systems: introduction
and new directions,” Upper Saddle River, NJ, USA: Prentice-Hall, 2001,

pp.131–184.

[2] J. M. Mendel, “Uncertainty, fuzzy logic, and signal processing,” Signal
Process., vol. 80, no. 6, pp. 913–933, Jun. 2000.

[3] O. Mendoza, P. Melín, and O. Castillo, “Interval type-2 fuzzy logic and

modular neural networks for face recognition applications,” Appl. Soft.
Comput., vol. 9, no. 4, pp. 1377–1387, Sep. 2009.

[4] E. A. Jammeh, M. Fleury, C. Wagner, H. Hagras, and M. Ghanbari,

“Interval type-2 fuzzy logic congestion control for video streaming
across ip networks,” IEEE Trans. Fuzzy Syst., vol. 17, no. 5, pp. 1123–

1142, Oct. 2009.

[5] H. Hagras, “A hierarchical type-2 fuzzy logic control architecture for
autonomous mobile robots,” IEEE Trans.Fuzzy Syst., vol. 12, no. 4, pp.

524–539, Aug. 2004.

[6] N. N. Karnik and J. M. Mendel, “Applications of type-2 fuzzy logic
systems to forecasting of time-series,” Inf. Sci., vol. 120, no. 1, pp. 89–

111, Nov. 1999.

[7] N. S. Bajestani and A. Zare, “Application of optimized type 2 fuzzy time
series to forecast taiwan stock index,” in 2009 2nd International

Conference on Computer, Control and Communication, Pakistan, Feb.

2009, pp. 1-6.
[8] C. F. Juang, R. B. Huang, and W. Y. Cheng, “An interval type-2 fuzzy-

neural network with support-vector regression for noisy regression

problems,” IEEE Trans. Fuzzy Syst., vol. 18, no. 4, pp. 686–699, Aug.
2010.

[9] A. B. Cara, C. Wagner, H. Hagras, H. Pomares, and I. Rojas,
“Multiobjective optimization and comparison of non singleton type-1

and singleton interval type-2 fuzzy logic systems,” IEEE Trans. Fuzzy

Syst.,
vol. 21, no. 3, pp. 459–476, Jun. 2013.

[10] M. Tang, X. Chen, W. Hu, and W. Yu, “A Fuzzy Rule-Based

Classification System Using Interval Type-2 Fuzzy Sets,” in Integrated
Uncertainty in Knowledge Modelling and Decision Making., Springer

Berlin Heidelberg, 2011, pp. 72–80.

[11] M. Antonelli, D. Bernardo, H. Hagras, and F. Marcelloni, “Multi-
objective evolutionary optimization of type-2 fuzzy rule-based systems

for financial data classification,” IEEE Trans. Fuzzy Syst., vol. 25, no. 2,

pp. 249-264, Apr. 2017.
[12] A. M. Alimi, R. Hassine, and M. Selmi, “Beta fuzzy logic systems:

Approximation properties in the siso case,” Int. J. Appl. Math. Comput.

Sci., vol. 10, no. 4, pp. 857–875, 2000.
[13] A. M. Alimi, R. Hassine, and M. Selmi, “Beta fuzzy logic systems:

Approximation properties in the mimo case,” Int. J. Appl. Math.

Comput. Sci., vol. 13, no. 2, pp. 225–238, 2003.
[14] M. L. Lee, H. Y. Chung, and F. M. Yu, “Modeling of hierarchical fuzzy

systems,” Fuzzy Sets Syst., vol. 138, no. 2, pp. 343–361, Sep. 2003.

[15] G. V. S Raju and J. Zhou, “Adaptive hierarchical fuzzy controller,”
IEEE Trans. Syst., Man, Cybern., vol. 23, no. 4, pp. 973–980, Jul. 1993.

[16] L. X. Wang, “Analysis and design of hierarchical fuzzy systems,” IEEE

Trans. Fuzzy Syst., vol. 7, no. 5, pp. 617–624, Oct. 1999.
[17] Y. Jarraya, S. Bouaziz, A. M. Alimi, and A. Abraham, “Evolutionary

multi-objective optimization for evolving hierarchical fuzzy system,” in

Proc. IEEE Cong. Evol. Comput., Sendai, Japan, May 2015, pp. 3163–
3170

[18] M. G. Joo and T. Sudkamp, “A method of converting a fuzzy system to

a two-layered hierarchical fuzzy system and its run-time efficiency,”
IEEE Trans. Fuzzy Syst., vol. 17, no. 1, pp. 93–103, Feb. 2009.

[19] K. Balázs, J. Botzheim, and L. T. Kóczy, “Hierarchical fuzzy system

modeling by genetic and bacterial programming approaches,” in Proc.
IEEE Int. Conf. Fuzzy Syst., Barcelona, Spain, Sep. 2010, pp. 1–6.

[20] X. J. Zeng and J. A. Keane, “Approximation capabilities of hierarchical

fuzzy systems,” IEEE Trans. Fuzzy Syst., vol. 13, no. 5, pp. 659–672,
Oct. 2005.

[21] F. L. Chung and J. C. Duan, “On multistage fuzzy neural network

modeling,” IEEE Trans. Fuzzy Syst., vol. 8, no. 2, pp. 125–142, Apr.
2000.

[22] P. Salgado, “Rule generation for hierarchical collaborative fuzzy

system,” Appl. Math. Model., vol. 32, no. 7, pp. 1159–1178, Jul. 2008.
[23] Z. Liu, C. L. P. Chen, Y. Zhang, and H. Li, “Type-2 hierarchical fuzzy

system for high-dimensional data-based modeling with uncertainties,”

Soft Comput., vol. 16, no. 11, pp. 1945–1957, Nov. 2012.
[24] Y. Jarraya, S. Bouaziz, A. M. Alimi, and A. Abraham, “Evolutionary

hierarchical fuzzy modeling of interval type-2 beta fuzzy systems,” in

2016 IEEE International Conference on Systems, Man, and Cybernetics
(SMC), Budapest, Hungary, Oct. 2016, pp. 003481–003486.

[25] J. M. Mendel, “Computing derivatives in interval type-2 fuzzy logic
systems,” IEEE Trans. Fuzzy Syst., vol. 12, no. 1, pp. 84–98, Feb. 2004.

[26] R. H. Abiyev and O. Kaynak, “Identification and control of time-varying

plants using type-2 fuzzy neural system,” in Int. Jt. Conf. Neural Netw.,
Atlanta, GA, USA, Jun. 2009, pp. 13–19.

[27] T. Kumbasar and H. Hagras, “A gradient descent based online tuning

mechanism for pi type single input interval type-2 fuzzy logic
controllers,” in in Proc. IEEE Int. Conf. Fuzzy Syst., Istanbul, Turkey,

Aug. 2015, pp. 1–6.

[28] G. M. Mendez and M. A. Hernandez, “Interval Type-1 Non-Singleton
Type-2 TSK Fuzzy Logic Systems Using the Hybrid Training Method

RLS-BP,” in 2007 IEEE Symposium on Foundations of Computational

Intelligence, Honolulu, HI, USA, Apr. 2007, pp.–374.

[29] N. Baklouti and A. M. Alimi, “Real time PSO based adaptive learning

type-2 fuzzy logic controller design for the iRobot Create robot,” in

2013 International Conference on Individual and Collective Behaviors
in Robotics, Sousse, Tunisia, Dec. 2013, pp. 15–20.

[30] O. Castillo, P. Melin, A. Alanis, O. Montiel, and R. Sepulveda,

“Optimization of interval type-2 fuzzy logic controllers using
evolutionary algorithms,” Soft Comput., vol. 15, no. 6, pp. 1145–1160,

Jun. 2011.

[31] C. F. Juang and Y. W. Tsao, “A self-evolving interval type-2 fuzzy
neural network with online structure and parameter learning,” IEEE

Trans. Fuzzy Syst., vol. 16, no. 6, pp. 1411–1424, Dec. 2008.

[32] F. Jiménez, G. Sánchez, and P. Vasant, “A multi-objective evolutionary
approach for fuzzy optimization in production planning,” J. Intell. Fuzzy

Syst., vol. 25, no. 2, pp. 441–455, 2013.

[33] M. Cococcioni, P. Ducange, B. Lazzerini, and F. Marcelloni, “A pareto-
based multi-objective evolutionary approach to the identification of

mamdani fuzzy systems,” Soft Comput., vol. 11, no. 11, pp. 1013–1031,

Sep. 2007.

[34] H. Ishibuchi and Y. Nojima, “Evolutionary multiobjective optimization

for the design of fuzzy rule-based ensemble classifiers,” Int. J. Hybrid

Intell. Syst., vol. 3, no. 3, pp. 129–145, Aug. 2006.
[35] A. Starkey, H. Hagras, S. Shakya, and G. Owusu, “A multi-objective

genetic type-2 fuzzy logic based system for mobile field workforce area

optimization,” Inf. Sci., vol. 329, pp. 390 – 411, Feb. 2016. Special issue
on Discovery Science.

[36] G. Weiss, “Multiagent systems: a modern approach to distributed

artificial intelligence,” MIT press, Cambridge, MA, USA, 1999.
[37] M. Ammar, S. Bouaziz, A. M. Alimi, and A. Abraham, “Hybrid

harmony search algorithm for global optimization,” in 2013 World

Congress on Nature and Biologically Inspired Computing, Fargo, USA,
Oct. 2013, pp. 69–75.

[38] J. M. Mendel, M. R. Rajati, and P. Sussner, “On clarifying some

definitions and notations used for type-2 fuzzy sets as well as some
recommended changes,” Inf. Sci., vol. 340, pp. 337–345, May 2016.

http://www.sciencedirect.com/science/article/pii/S1568494609000684#!
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.L%C3%A1szl%C3%B3%20T.%20K%C3%B3czy.QT.&newsearch=true
https://content.iospress.com/search?q=author%3A%28%22Jim%C3%A9nez,%20F.%22%29
https://content.iospress.com/search?q=author%3A%28%22S%C3%A1nchez,%20G.%22%29

 15

[39] J. M. Mendel, R. I. John, and F. Liu, “Interval type-2 fuzzy logic

systems made simple,” IEEE Trans. Fuzzy Syst., vol. 14, no. 6, pp. 808–
821, Dec. 2006.

[40] A. M. Alimi, “Beta neuro-fuzzy systems,” TASK Quarterly Journal,

Special Issue on Neural Networks, vol. 7, no. 1, pp. 23–41, 2003.
[41] Q. Liang and J. M. Mendel, “An introduction to type-2 tsk fuzzy logic

systems,” in Proc. IEEE Int. Conf. Fuzzy Syst., Seoul, South Korea,

Aug. 1999, vol. 3, pp. 1534–1539.
[42] K. Deb, “Multi-objective optimization using evolutionary algorithms,”

John Wiley & Sons, Inc. New York, NY, USA , vol. 16, 2001.

[43] S. Bouaziz, A. M. Alimi, and A. Abraham, “Evolving flexible beta basis
function neural tree for nonlinear systems,” in Int. Jt. Conf. Neural

Netw., Dallas, USA, Aug. 2013, pp. 1–8.

[44] K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan, “A fast elitist non-
dominated sorting genetic algorithm formulti-objective optimization:

Nsga-ii,” in International Conference on Parallel Problem Solving From

Nature, Springer, 2000, pp. 849–858.
[45] Z. W. Geem, J. H. Kim, and G. V. Loganathan, “A new heuristic

optimization algorithm: harmony search,” Simulation, vol. 76, no. 2, pp.

60–68, Feb. 2001.
[46] S. L. Chiu, “Fuzzy model identification based on cluster estimation,” J.

Intell. Fuzzy Syst., vol. 2, no. 3, pp. 267–278, May. 1994.

[47] B. De Baets H. Vernieuwe and N. E. C Verhoest, “Comparison of
clustering algorithms in the identification of takagi–sugeno models: A

hydrological case study,” Fuzzy Sets Syst., vol. 157, no. 21, pp. 2876–

2896, Nov. 2006.
[48] Q. Ren, L. Baron, and M. Balazinski, “Type-2 takagi-sugeno-kang fuzzy

logic modeling using subtractive clustering,” in 2006 Annual Meeting of
the North American Fuzzy Information Processing Society, Montreal,

Canada, Jun. 2006, pp. 120–125.

[49] N. K. Kasabov and Qun Song, “Denfis: dynamic evolving neural-fuzzy
inference system and its application fortime-series prediction,” IEEE

Trans. Fuzzy Syst., vol. 10, no. 2, pp. 144–154, Apr. 2002.

[50] R. G. Smith and R. Davis, “Frameworks for cooperation in distributed
problem solving,” IEEE Trans. Syst., Man,Cybern., vol. 11, no. 1, pp.

61–70, Jan. 1981.

[51] J. Castro, O. Castillo, P. Melin, L. Martínez, S. Escobar, and I.
Camacho, “Building fuzzy inference systems witht he interval type-2

fuzzy logic toolbox,” in Analysis and Design of Intelligent Systems using

Soft Computing Techniques, Advances in Soft Computing, Berlin,

Heidelberg, Springer, 2007, vol. 41, pp. 53–62.

[52] M. C. Mackey and L. Glass, “Oscillation and chaos in physiological

control systems,” Science, vol. 197, no. 4300, pp. 287–289, Jul. 1977.
[53] M. Almaraashi and R. John, “Tuning of type-2 fuzzy systems by

simulated annealing to predict time series,” in Proceedings of the World

Congress on Engineering, London, U.K , Jul. 2011, vol. 2, pp. 976–980.
[54] I. Castro Leon and P. C. Taylor, “Memetic type-2 fuzzy system learning

for load forecasting,” in 2015 Conference of the International Fuzzy

Systems Association and the European Society for Fuzzy Logic and
Technology (IFSA-EUSFLAT-15), Gijon, Spain., Jun. 2015.

[55] V. Uslan, H. Seker, and R. John, “A support vector-based interval type-2

fuzzy system,” in IEEE Int. Conf. Fuzzy Syst., Beijing, China, Jul. 2014,
pp. 2396–2401.

[56] M. Almaraashi, R. John, A. Hopgood, and S. Ahmadi, “Learning of

interval and general type-2 fuzzy logic systems using simulated
annealing: Theory and practice,” Inf. Sci., vol. 360, pp. 21–42, Sep.

2016.

[57] S. Bouaziz, H. Dhahri, A. M. Alimi, and A. Abraham, “Evolving

flexible beta basis function neural tree using extended genetic

programming & hybrid artificial bee colony,” Appl. Soft. Comput., vol.

47, pp. 653–668, Oct. 2016.
[58] M. Ammar, S. Bouaziz, A. M. Alimi, and A. Abraham, “Multi-agent

evolutionary design of flexible beta basis function neural tree,” in Int. Jt.

Conf. Neural Netw., Beijing, China, Sep. 2014, pp. 1265–1271.
[59] J. P. Donate, X. Li, G. G. Sánchez, and A. S. de Miguel, “Time series

forecasting by evolving artificial neural networks with genetic

algorithms, differential evolution and estimation of distribution
algorithm,” Neural Comput Appl., vol. 22, no. 1, pp. 11–20, Jan. 2013.

[60] C. J. Lin, C. H. Chen, and C. T. Lin, “A hybrid of cooperative particle

swarm optimization and cultural algorithm for neural fuzzy networks
and its prediction applications,” IEEE Trans. Syst., Man, Cybern., Part

C (Applications and Reviews), vol. 39, no. 1, pp. 55–68, Jan. 2009.

[61] H. Dhahri, A. M. Alimi, and A. Abraham, “Hierarchical multi-
dimensional differential evolution for the designof beta basis function

neural network,” Neurocomputing, vol. 97, pp. 131–140, Nov. 2012.

[62] A. Miranian and M. Abdollahzade, “Developing a local least-squares

support vector machines-based neuro-fuzzy model for nonlinear and
chaotic time series prediction,” IEEE Trans. Neural Netw. Learn. Syst.,

vol. 24, no. 2, pp. 207–218, Feb. 2013.

[63] C. G. da Silva, “Time series forecasting with a non-linear model and the
scatter search meta-heuristic,” Inf. Sci., vol. 178, no. 16, pp. 3288–3299,

Aug. 2008. Including Special Issue: Recent advances in granular

computing.
[64] Y. Chen, B. Yang, J. Dong, and A. Abraham, “Time-series forecasting

using flexible neural tree model,” Inf. Sci., vol. 174, no. 3, pp. 219–235,

Aug. 2005.
[65] S. Bouaziz, H. Dhahri, A. M. Alimi, and A. Abraham, “A hybrid

learning algorithm for evolving flexible beta basis function neural tree

model,” Neurocomputing, vol. 117, pp. 107–117, Oct. 2013.
[66] C. F. Juang and C. T. Lin, “An online self-constructing neural fuzzy

inference network and its applications,” IEEE Trans. Fuzzy Syst., vol. 6,

no. 1, pp. 12–32, Feb. 1998.
[67] S. W. Tung, C. Quek, and C. Guan, “et2fis: An evolving type-2 neural

fuzzy inference system,” Inf. Sci., vol. 220, pp. 124–148, Jan. 2013.

[68] Y. Y. Lin, S. H. Liao, J. Y. Chang, and C. T. Lin, “Simplified interval
type-2 fuzzy neural networks,” IEEE Trans. Neural Netw. Learn. Syst.,

vol. 25, no. 5, pp. 959–969, May 2014.

[69] V. OJHA, V. Snasel, and A. Abraham, “Multiobjective programming for
type-2 hierarchical fuzzy inference trees,” IEEE Trans. Fuzzy Syst., vol.

PP, no. 99, pp. 1–1, Apr. 2017.

[70] E. N. Lorenz, “Deterministic Nonperiodic Flow,”, J. Atmos. Sci., vol. 20,
no. 2, pp. 130-141, Mar. 1963.

[71] D. T. Mirikitani and N. Nikolaev, “Recursive bayesian recurrent neural
networks for time-series modeling,” IEEE Trans. Neural Netw., vol. 21,

no. 2, pp. 262–274, Feb. 2010.

[72] A. J Izeman, “J.r. wolf and the zurich sunspot relative numbers,” Math.
Intell., vol. 7, no. 1, pp. 27–33, Mar. 1985.

[73] S. Yilmaz and Y. Oysal, “Fuzzy wavelet neural network models for

prediction and identification of dynamical systems,” IEEE Trans. Neural
Netw., vol. 21, no. 10, pp. 1599–1609, Oct. 2010.

[74] R. A. Aliev, B. G. Guirimov, B. Fazlollahi, and R. R. Aliev,

“Evolutionary algorithm-based learning of fuzzy neural networks. part 2:
Recurrent fuzzy neural networks,” Fuzzy Sets Syst., vol. 160, no. 17, pp.

2553-2566, Sep. 2009.

[75] J. Alcalá-Fdez, L. Sánchez, S. García, M. J. del Jesus, S. Ventura, J. M.

Garrell, J. Otero, C. Romero, J. Bacardit,V. M. Rivas, J. C. Fernández,

and F. Herrera, “Keel: a software tool to assess evolutionary algorithms

for data mining problems,” Soft Comput., vol. 13, no. 3, pp. 307-318,
Feb. 2009.

[76] R. Alcala, M. J. Gacto, and F. Herrera, “A fast and scalable

multiobjective genetic fuzzy system for linguistic fuzzy modeling in
high-dimensional regression problems,” IEEE Trans. Fuzzy Syst., vol.

19, no. 4, pp. 666–681, Aug. 2011.

[77] M. J. Gacto, M. Galende, R. Alcalá, and F. Herrera, “Metsk-hde: A
multiobjective evolutionary algorithm to learn accurate tsk-fuzzy

systems in high-dimensional and large-scale regression problems,” Inf.

Sci., vol. 276, pp. 63–79, Aug. 2014.
[78] I. Rodríguez-Fdez, M. Mucientes, and A. Bugarín, “Fruler: Fuzzy rule

learning through evolution for regression,” Inf. Sci., vol. 354, pp. 1-18,

Aug. 2016.

APPENDIX A: NOMENCLATURE

IT2BMF: Interval Type-2 Beta Membership Function.

IT2BFS: Interval Type-2 Beta Fuzzy System.

HT2BFS: Hierarchical Interval Type-2 Beta Fuzzy System.

E_HT2BFS: Evolutionary Hierarchical Interval Type-2 Beta

Fuzzy System.

MA_HT2BFS: Multi-Agent Hierarchical Interval Type-2

Beta Fuzzy System.

MA_HBFS: Multi-Agent Hierarchical Beta Fuzzy System.

MOIP: Multi-Objective Immune Programming.

HHS: Hybrid Harmony Search.

https://scholar.google.com/citations?user=PG3D8UMAAAAJ&hl=en&oi=sra
http://www.sciencedirect.com/science/article/pii/S0020025516301591#!
http://www.sciencedirect.com/science/article/pii/S0020025516301591#!

	I. INTRODUCTION
	II. The Interval Type-2 Beta fuzzy system
	A. Interval Type-2 Beta Membership Function
	B. Interval Type-2 Beta Fuzzy System

	III. Multi-Objective Immune Programming algorithm: MOIP
	A. Dominance and Pareto-Optimality
	B. Basic Single-Objective Algorithm: IP
	C. Multi-Objective Algorithm: MOIP

	IV. The Hybrid Harmony Search Algorithm: HHS
	V. Evolution of the Hierarchical Interval Type-2 Beta Fuzzy System
	A. The Hierarchical Interval Type-2 Beta Fuzzy System: HT2BFS
	B. Initialization of HT2BFSs Population
	C. The Evolutionary HT2BFS: E_HT2BFS

	VI. Multi-Agent Architecture for HT2BFS Evolution: MA_HT2BFS
	A. Structure Agent Description
	B. Parameter Agent Description
	C. Multi-Agent Architecture: Communication between the Structure Agent and the Parameter Agents

	VII. Simulation results
	A. Mackey-Glass Chaotic Time Series
	1) Case 1: Noise-free Mackey Glass time series
	2) Case 2: Noisy Mackey Glass time series

	B. Lorenz chaotic time series prediction
	1) Case 1: Noise-free Lorenz time series
	2) Case 2: Noisy Lorenz time series

	C. Sunspot time series
	D. MA_HT2BFS for High-Dimensional Regression Problems

	VIII. Conclusions and Future Work
	References
	Appendix A: nomenclature

