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Matsuoka’s CPG With Desired Rhythmic Signals
for Adaptive Walking of Humanoid Robots

Yong Wang

Abstract—The desired rhythmic signals for adaptive walking
of humanoid robots should have proper frequencies, phases,
and shapes. Matsuoka’s central pattern generator (CPG) is able
to generate rhythmic signals with reasonable frequencies and
phases, and thus has been widely applied to control the move-
ments of legged robots, such as walking of humanoid robots.
However, it is difficult for this kind of CPG to generate rhythmic
signals with desired shapes, which limits the adaptability of walk-
ing of humanoid robots in various environments. To address this
issue, a new framework that can generate desired rhythmic sig-
nals for Matsuoka’s CPG is presented. The proposed framework
includes three main parts. First, feature processing is conducted
to transform the Matsuoka’s CPG outputs into a normalized limit
cycle. Second, by combining the normalized limit cycle with robot
feedback as the feature inputs and setting the required learning
objective, the neural network (NN) learns to generate desired
rhythmic signals. Finally, in order to ensure the continuity of the
desired rhythmic signals, signal filtering is applied to the out-
puts of NN, with the aim of smoothing the discontinuous parts.
Numerical experiments on the proposed framework suggest that
it can not only generate a variety of rhythmic signals with desired
shapes but also preserve the frequency and phase properties of
Matsuoka’s CPG. In addition, the proposed framework is embed-
ded into a control system for adaptive omnidirectional walking of
humanoid robot NAO. Extensive simulation and real experiments
on this control system demonstrate that the proposed framework
is able to generate desired rhythmic signals for adaptive walking
of NAO on fixed and changing inclined surfaces. Furthermore, the
comparison studies verify that the proposed framework can sig-
nificantly improve the adaptability of NAO’s walking compared
with the other methods.
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I. INTRODUCTION

VER the last few decades, a variety of biologically

inspired control methods has been proposed for control-
ling the movements of legged robots, most of which mimic
the functions of central pattern generator (CPG) [1]-[3]. A
CPG is a biological neural network (NN) which exists in
invertebrate and vertebrate animals, and is responsible for
the coordinated rhythmic movements of animals, such as
breathing, chewing, and locomotion. A CPG generates coor-
dinated multidimensional rhythmic signals through the mutual
interconnection of a group of neurons. Studies conducted
by neuroscientist have facilitated the design of neuron mod-
els for artificial CPG networks which attempt to imitate the
behaviors of their biological counterparts. Matsuoka’s CPG
is a representative kind of CPG based on the neuron model
proposed by Matsuoka [4]-[6], which has several attractive
properties. First, it allows direct modulation of the frequencies
and phases of the generated rhythmic signals by adjusting the
values of some internal parameters and weights among neu-
rons. In addition, it is also possible to make the generated
rhythmic signals couple to the dynamics of mechanical sys-
tems automatically via rhythmic feedback, which is called the
entrainment property [7]. During the coupling, the frequency
of the generated rhythmic signals is synchronized with that
of rhythmic feedback, and the final phase differences between
the generated rhythmic signals and the rhythmic feedback are
stable. Moreover, as demonstrated in [8], when the rhythmic
feedback is large enough, it is possible to suppress the oscil-
lation of the Matsuoka’s CPG outputs, which shows faster
entrainment and is helpful to maintain the balance of walking
of humanoid robots.

Due to the above properties, Matsuoka’s CPG has been
extensively applied to legged robots. In 1991, Taga et al. [9]
pioneered the use of Matsuoka’s CPG for walking control
of a simulated bipedal model. Williamson [7] exploited the
entrainment property of a simple Matsuoka’s CPG for arm
joint control of a humanoid robot and achieved a range of
rhythmic behaviors. Endo et al. [8] created the robust step
motion of humanoid robot QRIO by allocating the Matsuoka’s
CPG neurons in the task space coordinate system and utilizing
the entrainment property. Endo et al. [10] also took advan-
tage of the entrainment property and applied a policy gradient
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method to learn a feedback controller for Matsuoka’s CPG,
which enables QRIO to walk stably in both simulation and
reality. The entrainment property is also successfully used for a
quadrupedal robot Tekken to achieve adaptive walking on sev-
eral irregular terrains [11]. In addition, Zhang and Zheng [12]
and Liu et al. [13] made quadrupedal robots walk up and
down hill adaptively by designing the proper control strate-
gies based on Matsuoka’s CPG combined with proper robot
feedback. Researchers have manually adjusted the parameters
of Matsuoka’s CPG to obtain appropriate frequency and phase
differences among the generated rhythmic signals [12], [13].
Liu et al. [14], [15] employed a control strategy to map
the Matsuoka’s CPG outputs to the trajectories of NAO’s
end effectors. Moreover, they introduced the pitch angle of
NAO’s upper body as robot feedback to make NAO adaptively
ascend and descend a slope. Recently, with the development
of numerical optimization techniques, the internal parameters
and weights of the Matsuoka’s CPG network can be tuned by
making use of several powerful optimization algorithms such
as evolutionary algorithms. As a result, the proper phase dif-
ference of multidimensional rhythmic signals can be obtained
for versatile movements of humanoid robots [16]-[20].

From the above introduction, it can be seen that current
studies focus mainly on the frequency and phase properties of
Matsuoka’s CPG when applying it to control the movements
of legged robots. Note, however, that the precise adjust-
ment of signal shape has been ignored unreasonably, which
limits the adaptability of robot movement in various environ-
ments. Taking the walking of humanoid robots as an example,
the shapes of the Matsuoka’s CPG outputs should meet the
required center of pressure (COP) trajectory to ensure that
the humanoid robot can walk stably and adaptively on differ-
ent inclined surfaces. However, it is impossible to precisely
adjust the shapes of the Matsuoka’s CPG outputs through
simply modulating the internal parameters as well as weights
among neurons, or introducing robot feedback. Therefore, how
to obtain rhythmic signals with desired shapes is worthy of
in-depth investigations.

To address this issue, we propose a new framework in
this paper, which can generate desired rhythmic signals for
Matsuoka’s CPG. Overall, the main contributions of this paper
can be summarized as follows.

1) In the proposed framework, we design three main parts:

a) feature processing; b) NN learning; and c) signal
filtering. Feature processing aims at transforming the
Matsuoka’s CPG outputs into a normalized limit cycle,
which not only eliminates the shape information of the
Matsuoka’s CPG outputs but also preserves their tem-
poral information. Afterward, NN learning generates
desired rhythmic signals by learning from the feature
inputs, which consist of the normalized limit cycle and
robot feedback. Finally, signal filtering seeks to ensure
the smoothness of the desired rhythmic signals.

2) The proposed framework is the first attempt to generate
rhythmic signals with desired shapes while preserving
the frequency and phase properties of Matsuoka’s CPG.
Moreover, it has several additional advantages, such as
the ability to generate various desired rhythmic signals
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Fig. 1. Neuron model of Matsuoka’s CPG. The lines ending with white and
black dots indicate the excitatory and inhibitory connections, respectively.

with high precision and the robustness against noise
induced by the rhythmic feedback.

3) Based on the proposed framework, we develop a con-
trol system for adaptive omnidirectional walking of
humanoid robot NAO on various inclined surfaces. In
this control system, the rhythmic signals generated by
the proposed framework are adopted as the rhythmic
compensations for the Matsuoka’s CPG outputs, two
types of robot feedback are incorporated with the aim
of enabling NAO to adapt itself to the changing envi-
ronments, and a learning objective is defined for NN
learning to generate desired rhythmic signals. Moreover,
a popular evolutionary algorithm, called differential evo-
Iution (DE) [21], is applied to train the weights of
NN.

4) The effectiveness of this control system is demonstrated
by both the simulation and real experiments of NAO’s
walking on a fixed inclined surface and a changing
inclined surface. Moreover, we compare the proposed
framework with other methods to verify its superiority.

The rest of this paper is organized as follows. Section II

introduces the preliminary knowledge regarding Matsuoka’s
CPG and its limit cycle. The details of the proposed framework
are presented in Section III. Section IV reports the experimen-
tal results with the proposed framework. Section V describes
the control system for adaptive omnidirectional walking of
NAO and the corresponding experimental results are given in
Section VI. Finally, Section VII concludes this paper.

II. PRELIMINARY KNOWLEDGE
A. Matsuoka’s CPG

The activity of a biological neuron is usually represented
as a continuous-variable neuron model [22], [23]. Different
from the commonly used neuron model [24], the neuron
model proposed by Matsuoka takes the adaptation effect into
account, which has been proven to play an important role
in the generation of rhythmic signals [4]-[6]. Each neuron
model in Matsuoka’s CPG can be formulated as (1)-(3) and
the corresponding structure is shown in Fig. 1

N

Ty = ¢ — u; — Py — Z w;jyj + feedback; )
J=1j#

Vi = yi — Vi )

yi = max(0, u;) (3)

where u; is the internal state of the ith neuron, v; represents the
degree of adaptation effect, y; is the positive part of u;, u; and v;
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TABLE I
PARAMETER SETTINGS OF MATSUOKA’S CPG

parameter value
N 2
T1 1.47543
To 1.8442875
c 2.0
B8 4.01
w12, w21 3.0
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Fig. 2. Matsuoka’s CPG outputs and the limit cycles in different phase
planes. (a) Matsuoka’s CPG outputs. (b) Limit cycles.

represent the differential of u; and v;, respectively, 1 and 1
determine the frequency of the Matsuoka’s CPG outputs, the
tonic excitation ¢ modulates the amplitude of the Matsuoka’s
CPG outputs, B is the weight of adaptation effect, w;; is the
connecting weight between the ith and jth neurons, N is the
total number of neurons in Matsuoka’s CPG, and feedback; is
the rhythmic feedback from robots or external environments.
In these equations, t; and t; also influence the shapes of
the Matsuoka’s CPG outputs, and feedback; is essential for
the stable coupling between the Matsuoka’s CPG system and
mechanical systems.

B. Limit Cycle

In mathematics, the limit cycle is defined as a closed tra-
jectory in a phase plane that arises in a dynamic system
with stable oscillation outputs [25]. Matsuoka’s CPG is a
2N-dimensional dynamic system, which includes some tun-
able parameters as shown in (1)—(3). It is noteworthy that
the Matsuoka’s CPG outputs are sensitive to these parameters.
With proper parameter settings, Matsuoka’s CPG can gener-
ate stable rhythmic signals forming limit cycles [4]—[6]. In this
paper, the parameters of Matsuoka’s CPG were set as in Table I
based on the experimental studies in Sections IV and VI. Here,
we consider a Matsuoka’s CPG with two neurons (i.e., N = 2)
and suppose that feedback, = feedback, = 0. There are four
state variables: u1, u, v2, and v». Accordingly, four rhythmic
outputs are generated. As shown in Fig. 2(a), the four rhythmic
outputs are stable since they oscillate continuously over time
without attenuation or divergence. As a result, these outputs
can form limit cycles. In Fig. 2(b), we plot four limit cycles,
which are in the u; — vy plane, the u; — uy plane, the vi — o
plane, and the uy — vy plane, respectively.

III. PROPOSED FRAMEWORK
A. Overview of the Proposed Framework

Matsuoka’s CPG, as formulated in (1)—(3), is a differential
equation system. As a result, the Matsuoka’s CPG outputs are
coupled in time and space so that output shapes vary with
the adjustment of frequency and phases. Therefore, once the
frequency and phases of the Matsuoka’s CPG outputs are spec-
ified, the shapes of these outputs are also determined. This
relationship may drastically limit the adaptability of walking
of humanoid robots when Matsuoka’s CPG is applied for walk-
ing control. On the one hand, assuming that humanoid robots
walk in a fixed environment, if the frequency and phases need
to be adjusted, the new shapes resulting from such adjustment
may not be suitable for the current environment and thus cause
humanoid robots to fall down. On the other hand, assuming
that humanoid robots walk in a changing environment, within
the adjustable range of frequency and phases, there may not
exist proper shapes for walking of humanoid robots due to
the change of environment. Therefore, it poses a grand chal-
lenge for humanoid robots to adaptively walk in both fixed
and changing environments.

Based on the above consideration, this paper proposes a
new framework to regenerate the desired rhythmic signals
whose shapes are not related to the frequency and phases of
the Matsuoka’s CPG outputs. In principle, each period of the
rhythmic signal generated by Matsuoka’s CPG is usually a
continuous curve. It is well-known that with a sufficient num-
ber of hidden neurons, NN is able to fit any continuous curve
in an interval via learning [26], [27]. Therefore, the proposed
framework aims at applying NN to learn to regenerate desired
rhythmic signals for Matsuoka’s CPG.

To achieve this, three aspects should be considered.

1) Can the Matsuoka’s CPG outputs be directly used as the
feature inputs of NN? If the answer is no, then how can
the Matsuoka’s CPG outputs be processed?

2) What are the structure and learning objective of NN?
How can the NN’s weights be trained, and how can the
desired rhythmic signals to suit the changing environ-
ments be generated?

3) Are the rhythmic signals generated by NN smooth when
the frequency is changing? If the answer is no, then how
can the discontinuous rhythmic signals be smoothed?

In our framework, three parts are designed to deal with the
above three aspects, namely, feature processing, NN learning,
and signal filtering. Fig. 3 depicts the proposed framework.
Next, we will introduce each of these three parts.

B. Feature Processing

In fact, there exist two issues if we directly use the
Matsuoka’s CPG outputs as the feature inputs of NN. First,
the Matsuoka’s CPG outputs are expressed as points sampled
on equal time intervals on the computer. However, these sam-
ple points are usually not uniformly distributed because of the
irregular shapes of the Matsuoka’s CPG outputs, which has a
negative effect on the performance of NN learning to regener-
ate desired rhythmic signals. Second, due to the fact that the
shapes of the Matsuoka’s CPG outputs are related to frequency
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and phases, the shapes of the rhythmic signals generated by
NN will also be related to the frequency and phases of the
Matsuoka’s CPG outputs.

To address these two issues, the Matsuoka’s CPG outputs
must be processed before they become the inputs of NN,
which is called feature processing in this paper. We denote
the processed Matsuoka’s CPG outputs as a feature vector
X(@) = (x1(), x2(8), ..., xx(t)), where k is the dimension of
feature vector. The elements of this feature vector are the NN’s
inputs. To enable NN to generate desired rhythmic signals at a
specified frequency via learning, we consider that this feature
vector should satisfy the following four conditions, where ¢
denotes the time variable.

1) Each element of X(¢) should be a rhythmic signal.

2) The value of X(¢) should be different at different times in

each period. That is, Vt;, ¢ € [nT, (n+ 1)T) and t; # t;,
X(t;) # X(tj), where T denotes a period and 7 is a natural
number.

3) In each period, the sample points of X(¢) with respect to
the equal time intervals should be uniformly distributed
in the feature space. This means that the distances
between any two adjacent sample points in time are
equal; thus, the variance of these distances tends to be
zero, which can be expressed as

2

1< 1«
30| &) = X))’ = S 7(X(5) = X(141))” | =0

i=1 Jj=1
@)

where m is the number of sample points in a period,
and #; and t;1 are the ith time and the (i + 1)th time,
respectively.

4) The shape of the feature space formed by X(7) should

be fixed.

Next, we analyze the rationality of these four conditions.
If we expect that the outputs of NN are rhythmic signals,
the inputs must be rhythmic signals. Therefore, condition 1)
can ensure that NN’s outputs are rhythmic signals. If there
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Fig. 5. Limit cycle normalization. In this figure, a blue point represents a
sample point.

exists a one-to-one mapping between the inputs and outputs,
then all NN’s outputs can be different in a period when
all NN’ inputs are different. In this way, any curve can be
approximated by NN in a period. Accordingly, NN is able to
approximate any desired rhythmic signal. Hence, condition 2)
is necessary. In principle, the curve fitting performance of NN
in an interval benefits from the uniformly distributed sample
points. Thus, condition 3) is very useful for NN to generate the
desired rhythmic signals. As pointed out, X(¢) is the processed
Matsuoka’s CPG outputs. If we make the shape of the feature
space formed by X(#) fixed, the shapes of the rhythmic signals
generated by NN will not be influenced by the frequency and
phases of the Matsuoka’s CPG outputs. Therefore, condition 4)
is also indispensable.

It is clear that if these four conditions could be satis-
fied, then the aforementioned two issues of the Matsuoka’s
CPG outputs would be addressed. To satisfy these four con-
ditions, the feature processing proposed in this paper includes
two steps: 1) feature selection and 2) limit cycle normal-
ization. Specifically, the aim of the former is to satisfy
conditions 1) and 2), and the aim of the latter is to satisfy
conditions 3) and 4).

1) Feature Selection: First, we intend to select a feature
vector from the Matsuoka’s CPG outputs to satisfy conditions
1) and 2). As introduced in Section II-B, if Matsuoka’s CPG
is associated with proper parameter settings, all the outputs
will satisfy condition 1) since they are rhythmic signals. Thus,
the feature vector selected from the outputs also satisfies con-
dition 1). Subsequently, we discuss how to select a feature
vector satisfying condition 2). If only one output is selected,
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Fig. 6. Further explanation of ¢ in the limit cycle of Fig. 5(a).

for example ug, it is impossible for the feature vector to sat-
isfy condition 2). As illustrated in Fig. 4, due to the fact that
u; is thythmic, there must exist two moments in one period,
for example 74 and 7p, to make u;(t4) = u1(tp). As a result,
the following issue will occur: if we expect that the outputs
at t4 and tg are different, NN cannot achieve this. In addition,
if two outputs forming a limit cycle that crosses over itself
are selected, such as u; and up in Fig. 2(b), it still suffers
from the above issue since the NN’s outputs are the same at
two moments of the intersection point. Therefore, it is neces-
sary to select two outputs of Matsuoka’s CPG which can form
a limit cycle without crossing over itself, such as u; and v;
in Fig. 2(b).

In this paper, the feature vector selected from the
Matsuoka’s CPG outputs is expressed as X'(r) = (x] (1), x5 (1)),
where x/l (1) and x/z (r) form a limit cycle without crossing over
itself.

2) Limit Cycle Normalization: As shown in Fig. 2(b), the
shapes of limit cycles formed by the Matsuoka’s CPG outputs
are usually irregular, and thus the sample points on these limit
cycles are not uniformly distributed [Fig. 5(a)]. In addition,
the shapes of the limit cycles are affected by the frequency
and phases of the Matsuoka’s CPG outputs. The above phe-
nomena result in X’(r) not meeting both conditions 3) and 4).
Therefore, we need to eliminate the shape information in X’ (¢)
while preserving the temporal information. To achieve this, we
propose a technique, called limit cycle normalization, to pro-
duce a normalized limit cycle. The advantages are twofold:
1) the sample points on the normalized limit cycle are uni-
formly distributed and 2) the shape of the normalized limit
cycle is fixed. As shown in Fig. 5, limit cycle normalization
is separated into three stages: 1) phase variable transformation;
2) time restoration; and 3) normalization.

In the first stage, X'(r) is transformed into a 1-D phase
variable ¢. Fig. 5(a) and 5(b) show this transformation, which
can be formulated as

¢ = atan2(x] (1) — X)) 5)

where X/, = (x|, x,) is an arbitrary point in the interior of
the limit cycle (x| (), x}(?)). Fig. 6 further explains ¢ in the
limit cycle of Fig. 5(a). From Fig. 6, we can observe that
the shape of a limit cycle is dependent on two factors. The
first is the distances between X/ and all sample points in a
period, and the second is the distances between any two adja-
cent sample points in a period. In contrast, the change of ¢
from one time to another time depends only on the distance
between the two adjacent sample points. As a consequence,
by transforming X’ (¢) into ¢, partial shape information of the
limit cycle has been excluded. Moreover, ¢ still contains the
temporal information of a limit cycle.

/ /
— X1 X5 (1)

Fig. 7. Sampling process of ¢ in one period.

Next, we explain the second stage—the time restoration.
For the sake of clarity, we put the sample points of one period
in Fig. 5(b) into Fig. 7, where #p is the time variable in one
period T. It is necessary to point out that the value of T is
unknown, and thus 7p cannot be determined. However, ¢ is
known. Therefore, our aim is to restore fp by making use
of ¢. It is obvious from Fig. 7 that the distribution of #p
is uniform, while the distribution of ¢ is not uniform. The
mapping between ¢ and fp in Fig. 7 can be regarded as a
sampling process [28]. Based on the sampling process in [28],
we can obtain the following continuous expression from the
probability distributions of ¢ and #p:

(tp) /

Then, (6) is discretized as follows:

Zp (#)]A (7)

where A¢; = ¢j — ¢j—1 and q&j is the phase at p;.
p(¢)) is defined as
1/]ad|

¢' = —
PO = ST g

where m indicates the number of sample points in the limit
cycle of one period and is recalculated if AgyA¢pr—1 < O at
the kth time.

Afterward, #p; is expressed as follows:

Y11/ Agj| x |Ag| _ i
pdY I 1 /1Agl  papd YIS /1A

where 0 < i < m, p(tp;) is a constant due to the uniform
distribution of p;, and Z 11 /IA¢;| is also a constant since
¢ is known.

Thus, based on (9), fp; can be easily restored by utilizing ¢;,
and #p; is uniformly distributed over the interval [0, T] where
T =m/Ip(tp) 75" 1/|A¢11.

Overall, compared with the first stage, all the shape infor-
mation of the limit cycle has been excluded in the time
restoration.

The last stage is to obtain the final feature vector that
satisfies conditions 3) and 4), as shown in Fig. 5(d). Let

. [ 2mip;
t =
-

2 tp;
t =
e

dg|.

p(¢) = (tp)‘ ‘ =>1p (6

(sz

®)

(10)

(11)
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where #; is the kth time, 7z = (n — 1)T + tp;, and n indicates
the nth period. Due to the fact that x%(tk) + x%(tk) =1, tp; is
projected onto the unit circle. The final feature vector is for-
mulated as X(#x) = (x1 (), x2(tx)). Consequently, the irregular
limit cycle formed by X'(¢) is transformed into a normalized
one formed by X(#). Furthermore, the sample points on this
normalized limit cycle are uniformly distributed.

Remark 1: After feature selection and limit cycle normal-
ization, the final feature vector X(f;) satisfies all the four
conditions. Since the normalized limit cycle is the unit circle,
its shape is always fixed regardless of the shape of the limit
cycle formed by X'(¢). Additionally, it can be seen that the
sample points on the normalized limit cycle and those on the
limit cycle formed by X'(¢) has a one-to-one correspondence.
Therefore, one can conclude that the normalized limit cycle
discards all information about the shape of the Matsuoka’s
CPG outputs while preserving the temporal information. As a
result, the shapes of the rhythmic signals generated by NN will
not be affected by the frequency and phases of the Matsuoka’s
CPG outputs when X (#;) is used as the feature input of NN.

C. Neural Network and Learning

The structure of NN consists of three layers: 1) the input
layer; 2) the hidden layer; and 3) the output layer. The adja-
cent layers are fully connected by weights, as shown in Fig. 8.
For the input layer, in addition to the normalized limit cycle,
robot feedback is added. The reason is because robot feed-
back is a reflection of the state of an environment; thus, it
enables NN to learn to generate desired rhythmic signals for
different environments. The output layer is responsible for gen-
erating rhythmic signals. The nodes of both the input and the
output layers can be added flexibly. Therefore, it is easy to
add robot feedback from various sensors to the input layer,
and more than one desired rhythmic signal can be generated
simultaneously in one network.

The shape of the rhythmic signal generated by NN is deter-
mined by NN’s weights. Many weight training methods have
been proposed for NN learning to fit a curve in an inter-
val [29], [30], which are also applicable to our framework to
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generate desired rhythmic signals. However, different weight
training methods suit different situations. When the desired
rhythmic signals are known in advance, such as the imi-
tation learning of walking control of humanoid robots, the
required learning objective can be explicitly expressed as the
difference between the desired rhythmic signals and the NN’s
outputs. Under this condition, the stochastic gradient decent
method (SGD) [29] is a good choice for NN weight train-
ing. When the desired rhythmic signals are unknown, such
as adaptive walking of humanoid robots on different sur-
faces, the required learning objective can only be implicitly
expressed as some stability criteria. Under this condition, an
evolutionary algorithm is a preferred method. Therefore, it is
necessary to choose an appropriate weight training method for
NN learning to generate desired rhythmic signals according to
the characteristics of the situations.

D. Signal Filtering

Feature processing ensures that NN’s outputs are continu-
ous if the frequency of the Matsuoka’s CPG outputs is fixed,
which is beneficial for smooth control of the robot’s trajec-
tory. However, if we need to change the frequency of the
Matsuoka’s CPG outputs to suit the dynamics of the robot’s
mechanical system (entrainment property) after learning, the
NN’s outputs will be discontinuous due to the change in the
number of sample points (i.e., m) in each period. For exam-
ple, as shown in Fig. 9, the desired rhythmic signal is a
sine-like signal. After NN learning, NN generates rhythmic
signal Y (shown in the green line). When the frequency of the
Matsuoka’s CPG output (shown in the blue line) increases at
226 s, Y becomes discontinuous during the transition between
two periods.

In order to tackle this issue, a modified first-order low-pass
filter for NN’s outputs is proposed as follows:

Y —Y

m(n) —m(n — 1| x fc+1
where Y denotes NN’s outputs, Yy denotes the final desired
rhythmic signals, m(n) is the number of sample points in the
nth period, and fc is a constant to control the smoothness of Y.
By making use of (12), as shown in Fig. 9, when the frequency
of the Matsuoka’s CPG output is fixed, Yy is consistent with
Y because of m(n) = m(n — 1). However, when the frequency
of the Matsuoka’s CPG output changes at 226 s, ¥ becomes
discontinuous. At this time, m(n) #= m(n — 1) and the filter-
ing function in (12) starts working. Under this condition, the
change of Y is slower than that of ¥ during the transition
due to the characteristic of the first-order low-pass filter. As a
result, by transforming Y into Yy, the discontinuous part of Y
is smoothed.

Remark 2: Tt is noteworthy that the nonlinear dynamic sys-
tem proposed in [31] also learns to generate rhythmic signals
with desired shapes. Furthermore, [32] and [33] show that the
system in [31] is able to learn the frequency, which is similar
to the entrainment property of Matsuoka’s CPG. However, to
achieve the adaptive walking of humanoid robots, there are two
limitations in [31]-[33]. First, it takes several periods to learn
the frequency, which may not meet the real-time requirement

YfZYf+

12)
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Fig. 10. Framework outputs, the Matsuoka’s CPG outputs, and the desired
rhythmic signals at a specified frequency. The desired rhythmic signals are
similar to (a) y = 0.25sin(¢), (b) y = 0.25(sin(¢) + sin(2¢)), and (¢c) y =
0.25(sin(7) + sin(31)), respectively.

for adaptive walking of humanoid robots because the desired
frequency in this case commonly changes in a short time due
to perturbation. Second, the systems are on open-loop state,
without considering feedback pathways. Thus, their capability
to generate the desired rhythmic signals to suit the changing
environments is limited. In contrast, in our framework, due to
feature processing, the advantages of temporal properties of
Matsuoka’s CPG can be maintained. As pointed out in [8],
the frequency adaptation of Matsuoka’s CPG is fast. Thus,
our framework is suitable for adaptive walking of humanoid
robots. Moreover, by integrating robot feedback as a part of
NN’s feature inputs, our framework allows NN learning to
generate desired rhythmic signals for the changing environ-
ments. In addition, since the output nodes of NN can be added
flexibly, it is easy to learn multiple desired rhythmic signals
simultaneously in one network, which is beneficial for the
trajectory control of high-dimensional systems like humanoid
robots.

IV. EXPERIMENTS ON THE PROPOSED FRAMEWORK

The aim of this section is to empirically investigate whether
the proposed framework can generate various desired rhythmic
signals. In addition, we reveal several additional advantages
of the proposed framework, including the effectiveness of
limit cycle normalization, the ability to generate desired rhyth-
mic signals while preserving the entrainment property of
Matsuoka’s CPG, and the robustness against noise induced
by rhythmic feedback. Note that we do not incorporate robot
feedback into the proposed framework in this section, but this
is discussed in Section V.

A. Generating Desired Rhythmic Signals

In this experiment, the proposed framework learns to
generate three desired rhythmic signals simultaneously. The

MEAN SSE AND STANDARD DEVIATION PROVIDED BY OUR FRAMEWORK

TABLE 11

WITH AND WITHOUT LIMIT CYCLE NORMALIZATION

Our framework with Our framework without
[P limit cycle normalization | limit cycle normalization
Mean SSE+Std Dev Mean SSE4Std Dev
3.688575 0.9789+0.9397 45.5537+14.9778
2.76643125 0.694140.5959 34.9482+12.0246
1.8442875 0.4500+0.2410 21.6416£6.4499

a
— Matsuoka's CPG output
— framework output

— _desired rhythmic signal

a
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Fig. 11. Training results when 15 = 1.8442875 in a typical run. (a) Our
framework with limit cycle normalization. (b) Our framework without limit
cycle normalization.

desired rhythmic signals were similar to y = 0.25sin(?),
y = 0.25(sin(?) 4 sin(27)), and y = 0.25(sin(z) + sin(3¢)),
respectively. The parameter settings of Matsuoka’s CPG were
the same as in Table I and feedback; was set to zero. Then,
a frequency of the Matsuoka’s CPG outputs was specified.
Since the shapes of these desired rhythmic signals were known
in advance, the NN learning belongs to supervised learning,
and thus SGD [29] was applied for NN weight training. The
input layer of NN consisted of two linear neurons; the hid-
den layer consisted of 25 tanh neurons; and the output layer
consisted of three linear neurons. The whole number of sam-
ple points for NN learning was 49 500 (1980 s). Fig. 10
shows the framework outputs (the red lines) after learning,
which indicates that our framework can generate rhythmic
signals approximating the desired rhythmic signals (the green
dashed lines) well. However, in these scenarios, Matsuoka’s
CPG could only generate the rhythmic signals as shown in the
blue lines.

B. Effectiveness of Limit Cycle Normalization

We compared the precision of the rhythmic signals gener-
ated by our framework with and without limit cycle normaliza-
tion after NN learning. The parameter settings of Matsuoka’s
CPG were also the same as in Table I except for 7, which
was tuned for different signal frequencies and different limit
cycles (Fig. S-1 in the supplementary file). The desired rhyth-
mic signal was similar to y = 0.25(sin(#) 4+ 0.25sin(37)). Like
the experiment in Section IV-A, SGD was used as the training
method for NN’s weights. The input layer of NN consisted
of two linear neurons, the hidden layer consisted of 25 tanh
neurons, and the output layer consisted of one linear neuron.
The whole number of sample points for NN training was 49
500 (1980 s), and 500 points (20 s) were used to compute the
sum of squared errors (SSE) for precision comparison. SSE is
formulated as (13), where y; and y; represent the desired sig-
nal value and the framework output of the ith sample point,
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TABLE III
RHYTHMIC FEEDBACK WITH DIFFERENT FREQUENCIES

Time(s) feedbacky feedbacka
t <55 0 0
55 <t < 110 0.3sin(1.25¢) | -0.3sin(1.25t)
110 <t < 165 | 0.3sin(0.83t) | -0.3sin(0.83%)
165 <t < 250 | 0.3sin(1.00¢) | -0.3sin(1.00t)

T T T
15 external rhythmic feedback signal ~——— framework output without signal filtering

—— Matsuoka's CPG output

frequency

i

— framework output

250

time(s)

Fig. 12. Entrainment property of the framework output.

respectively

500

SSE=Y (5 — )"
i=1

(13)

The average SSE and standard deviation over 50 runs are
shown in Table IL. It is clear from Table II that our frame-
work with limit cycle normalization achieves higher precision
than our framework without limit cycle normalization, which
indicates that the uniform distribution of sample points on
the limit cycle is definitely beneficial for the performance of
NN learning. In addition, the experimental results in Table II
also show that our framework with limit cycle normalization
can generate desired rhythmic signals with similar precision at
different frequencies, regardless of the shapes of limit cycles
generated by Matsuoka’s CPG (Fig. S-1 in the supplementary
file). In Fig. 11, we also presented the experimental results of
NN learning when 1 = 1.8442875 for our framework with
and without limit cycle normalization.

C. Entrainment Property

One may be interested in whether our framework can also
preserve the entrainment property of Matsuoka’s CPG. As
pointed out previously, by introducing the rhythmic feedback
into feedback; in (1), the outputs of Matsuoka’s CPG will
entrain with the rhythmic feedback. In the proposed frame-
work, we have added three parts into the original Matsuoka’s
CPG: 1) feature processing; 2) NN learning; and 3) signal fil-
tering. If we can verify that the outputs of our framework can
still entrain with rhythmic feedback, then we can argue that our
framework has the capability to preserve the entrainment prop-
erty of Matsuoka’s CPG. To this end, we introduced rhythmic
feedback with different frequencies into feedback; after NN
learning. In our experiment, the desired rhythmic signal was
similar to y = 0.25sin(¢) + 0.25sin(3¢) just as in the experi-
ment in Section IV-B. The parameter settings were the same
as in Table I. The settings of rhythmic feedback signals are
shown in Table III, and the experimental results are presented
in Fig. 12.
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TABLE IV
RHYTHMIC FEEDBACK WITH NOISE

Time(s) feedback, feedbacksa
t < 130 0.3sin(0.822t) -0.3sin(0.822t)
t > 130 | 0.3sin(0.822¢)+0.3rand(-1,1) | -0.3sin(0.822¢)-0.3rand(-1,1)

-0.5

external rhythmic feedback signal
. Matsuoka's CPG output
I h

framework output

1 | I 1 | L
110 120 130 140 150 160 170 180 190 200 210
time(s)

Fig. 13. Robustness of the framework output against the noise from rhythmic
feedback.

It can be observed from Fig. 12 that after introducing rhyth-
mic feedback (the yellow line), the entrainment between the
Matsuoka’s CPG output (the blue line) and the rhythmic feed-
back appears. Meanwhile, the frequency and phase of the
framework output (the red line) track those of the Matsuoka’s
CPG output well, which indicates that the framework out-
put entrains with the rhythmic feedback. Moreover, unlike the
Matsuoka’s CPG output, the framework output can still main-
tain the desired shape when the frequency (the black line)
changes. The shape of the framework output slightly changes
only in the frequency changing phase because of the signal
filtering. For comparison, the framework output without the
signal filtering is shown in the green line, which is always
consistent with the red line with the exception in the fre-
quency changing phase. Obviously, the red line is smoother
than the green line in the frequency changing phase, which
also validates the effectiveness of the signal filtering.

D. Robustness Against Noise

When the outputs of Matsuoka’s CPG entrain with the
rhythmic feedback, the shapes of the outputs might be affected
by rhythmic feedback noise, which is harmful to robot control.
To test the robustness of our framework against this kind of
noise, after NN learned to generate the same desired rhythmic
signal as the experiment in Section IV-B, we introduced the
rhythmic feedback with noise into Matsuoka’s CPG. As shown
in Table IV, rand(—1, 1) is the noise, which is a uniformly
distributed random number between —1 and 1. The parame-
ter settings of Matsuoka’s CPG were the same as in Table 1.
The experimental results are shown in Fig. 13. From Fig. 13,
our framework is robust to the noise since it can maintain the
desired shape, while the shape of the Matsuoka’s CPG output
is affected by the noise.

V. CONTROL SYSTEM

Adaptive walking of humanoid robots is a challenging task
in the robotics field. The control trajectories for humanoid
robot walking must be adjustable and precise enough to
ensure the adaptability and stability in various environments.
However, the control system for humanoid robot walking
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Fig. 15. NAO and the outputs of Matsuoka’s CPG. (a) NAO’s end effectors
and the world frame. (b) Outputs of Matsuoka’s CPG.

based on Matsuoka’s CPG is difficult to generate various
desired control trajectories with high precision. Hence, in this
section, we embedded the proposed framework into a control
system based on Matsuoka’s CPG, with the aim of overcoming
this challenge and generating various desired control trajecto-
ries for humanoid robot NAO, which was walking on different
inclined surfaces.

A. Overview of the Control System

Fig. 14 shows the control system. The control strategy in
this system is similar to the one used in [14], which consid-
ers the Matsuoka’s CPG outputs as the trajectories of NAO’s
end effectors. Matsuoka’s CPG in this system consisted of
two neurons. We only used three Matsuoka’s CPG outputs
to control the trajectories of NAQO’s end effectors, i.e., right
foot, left foot, and torso. These trajectories are based on the
world frame, as shown in Fig. 15(a). The three Matsuoka’s
outputs (i.e., q1, g2, and ¢3) are given in (14)—(16), where p;
is calculated according to (9)

q1=y1—»n (14)

drip;
& = —o.5sin<%> 405

47‘[1‘[),'
= —COS{ —— ).
q3 T

Fig. 15(b) depicts the values of g1, g2, and g3.

Instead of only walking straight as in [14], our control sys-
tem allowed NAO to walk omnidirectionally. To achieve this,
a coordinate transformation from the Matsuoka’s CPG outputs
to NAO’s foot and torso trajectories was designed, which is
given in Appendix 1 of the supplementary file.

15)

(16)
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Fig. 16.
plane.

(a) Real slope in the sagittal plane. (b) Real slope in the lateral

The framework presented in Section III was embedded
into this control system, enabling it to generate the desired
trajectories for adaptive walking of NAO. The framework
outputs acted as rhythmic compensations for the Matsuoka’s
CPG outputs. For simplicity, we only considered the rhyth-
mic compensations for torso trajectories, which are essential
for the stability and adaptability of NAO when walking on
different surfaces. Thus, the framework output 3-D rhythmic
compensations corresponding to the 3-D torso trajectories.

Additionally, two kinds of robot feedback were introduced
to further module the Matsuoka’s CPG outputs and the rhyth-
mic compensations. These were the shape adaptation feedback
for NN and the frequency adaptation feedback for Matsuoka’s
CPG. For the shape adaptation feedback, two types of fusion
sensory information were used. The first type was the slope in
the sagittal plane (slopex), which indicates the real tilt angle of
the ground in the sagittal plane with respect to the flat ground,
as shown in Fig. 16(a) and formulated as

a7

where o1, an, and «3 are three joint angles and 6, is the tilt
angle of NAO’s upper body in the sagittal plane. In addition,
the second type was the slope in the lateral plane (slopey),
which indicates the real tilt angle of the ground in the lateral
plane with respect to the flat ground, as shown in Fig. 16(b)
and formulated as

slopex = o1 + a3 — g — by

slopey = p1 — B2 + 0, (18)

where 81 and B, are two joint angles and 6, is the tilt angle
of NAO’s upper body in the lateral plane. These two types of
fusion sensory information were able to make the framework
generate thythmic compensations for NAO to suit the inclined
surfaces. On the other hand, as far as the frequency adaptation
feedback is concerned, the rhythmic feedback (feedback, and
feedback,) from NAO’s mechanical system were introduced

(19)
(20)

feedback, = FsrR — FsrL
feedback, = —feedback,
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Fig. 17. Fixed inclined surface for NAO’s walking.

where FsrR and FsrL indicate the pressure signals from NAO’s
right and left feet, respectively. By integrating this kind of
feedback, the outputs of the control system could entrain with
the dynamics of NAO’s mechanical system, thus enhancing
the robustness of NAO’s walking.

B. Desired Rhythmic Compensations

In this control system, the desired trajectory of NAO’s
COP, which ensures that NAO walks stably on different sur-
faces, is considered as the learning objective to evaluate the
rhythmic compensations generated by our framework. The dif-
ference between the desired and the actual COP trajectories is
formulated as

Tjs

Dcop = Y _|xa(t) = COPy(t)| + |ya(t) — COPy(n)| (21)
t=0

where (x;(7), yq4(¢)) is the desired COP trajectory, and
(COP(t), COPy(1)) is the actual COP trajectory in NAO’s life
span Tj. In (22), penalty indicates the punishment for NAO’s

fElHl'Ilg do” n
Is

where #; is the moment when NAO falls down.

The final objective function (i.e., fitness) for evaluating the
rhythmic compensations generated by our framework can be
expressed as

penalty = < (22)

1)
maximize fitness = D L wopenalty (23)

cop
where w; and w, are two coefficients. In (23), the more accu-
rate the actual COP trajectory tracking the desired one and the
longer NAO walking stably without falling down, the higher
the value of fifness. By maximizing fitness, we can obtain the
desired rhythmic compensations.

Due to the fact that the desired rhythmic compensations
cannot be known a priori, an evolutionary algorithm is a
preferred method for NN weight training. During the past
two decades, DE has become one of the most popular evo-
lutionary algorithm paradigms and has been successfully
applied to solve numerous optimization problems in differ-
ent fields [21], [34], [35]. DE has strong global search ability.
In this paper, we applied DE to train NN’s weights to find the
desired rhythmic compensations.
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Fig. 18. (a) Rhythmic compensations generated by our framework. (b) Torso

trajectories after DE optimization, in which the green dashed lines indicate
the torso trajectories with rhythmic compensations, and the blue lines indicate
the torso trajectories without rhythmic compensations.

VI. EXPERIMENTS ON CONTROL SYSTEM

This section aims at verifying the effectiveness of the
control system for adaptive walking of humanoid robots.
Specifically, we investigated whether the proposed framework
can generate the desired rhythmic compensations to make
NAO adaptively walk not only on a fixed inclined surface but
also on a changing inclined surface.

A. Adaptive Walking of NAO on Fixed Inclined Surface

1) Experiment in Simulation: First, we considered a fixed
inclined surface. A slope environment in Webots [36] was set
for NAO to walk on, in which the inclined angle was set to
8.592°; thus, the inclined angles in both the sagittal and lat-
eral planes were 6.077° (i.e., slopex = slopey = 6.077°), as
shown in Fig. 17. The desired COP trajectory (x4(t), y4(f)) is
presented in Appendix 2 of the supplementary file. Through
the experimental studies, the parameter settings of (21)—(23)
were the following: T;s = 70 s, w1 = 1.4, and wy = 2. The
population size of DE was set to 30, and the total generation
number was set to 45. The parameter settings of Matsuoka’s
CPG were the same as in Table I; thus, the period of the
control trajectories generated by the control system was about
6 s. The parameter settings of the coordinate transformation
in Appendix | of the supplementary file were the following:
stride, = 0.02, stridey, = 0.1, and A = 0. Therefore, the
walking speed of NAO was about 0.0133 m/s. By adjusting
stride, to a bigger stride, a greater speed can be obtained. The
outputs of the coordinate transformation for foot and torso tra-
jectories under these parameter settings are shown in Fig. S-2
of the supplementary file.

After DE optimization, Fig. 18 shows the rhythmic compen-
sations generated by our framework [the red lines in Fig. 18(a)]
and torso trajectories generated by the control system [the
green dashed lines in Fig. 18(b)] with respect to the best value
of fitness. Under this condition, slopex and slopey, which are
the slopes calculated by NAO in x and y directions (i.e., the
sagittal and lateral planes), are shown in Fig. S-3 of the supple-
mentary file. They are used as the shape adaptation feedback
in Fig. 14.

It can be seen that the rhythmic compensations generated by
our framework coincide with the characteristics of the slope



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

WANG et al.: MATSUOKA’s CPG WITH DESIRED RHYTHMIC SIGNALS FOR ADAPTIVE WALKING OF HUMANOID ROBOTS 11

« foot « foot
[—CcoP —CcoP
0.05 . 0.05 - i

TABLE V
MAXIMAL fitness OBTAINED BY THREE METHODS ON
DIFFERENT FIXED INCLINED SURFACES

B = The method in [14] .. .
Slope angle(degree) | Our method improved in this paper The original method in [14]
0 0.400884 0.362114 0.34556
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Fig. 19. (a) Actual COP trajectory, in which the black points are the posi-

tions of NAO’s feet. (b) COP trajectory when the control system excludes the
rhythmic compensation generated by our framework.
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Fig. 20. Frequency synchronization between the robot rhythmic feedback
(the yellow line) and the torso trajectory in y direction (the green dashed line).

Fig. 21.
world.

Snapshots of NAO’s walking on a fixed inclined surface in the real

environment shown in Fig. 17. That is, the rhythmic compen-
sation generated by our framework in x direction is positive
and in y direction is negative. Thus, the corresponding torso
trajectory in x direction is higher than the torso trajectory
without rhythmic compensation [shown in the top subgraph
of Fig. 18(b)], and the corresponding torso trajectory in y
direction is lower than the torso trajectory without rhythmic
compensation [shown in the middle subgraph of Fig. 18(b)].
In addition, due to the small value of rhythmic compensation
in z direction, the torso trajectories with and without rhythmic
compensation in z direction are similar [shown in the bottom
subgraph of Fig. 18(b)]. The above phenomenon is consis-
tent with the general way of compensation for adaptive slope
walking of humanoid robots [14], [15], [37]-[39]. From the
above discussion, we can conclude that, on the fixed inclined
surface, the stability of NAO’s walking depends mainly on the
rhythmic compensations in x and y directions, but relies less
on the rhythmic compensation in z direction.

The COP trajectory corresponding to the control trajectories
in Fig. 18 is shown in Fig. 19(a), which indicates that NAO
can stably walk on the fixed inclined surface. As a compar-
ative observation, Fig. 19(b) shows the COP trajectory when

the control system excludes the rhythmic compensations gen-
erated by our framework, which suggests that NAO cannot
walk adaptively on this fixed inclined surface and instead falls
down.

In Section IV-C, we have verified that our framework
exhibits the entrainment property. A question which arises nat-
urally is whether the control system still has this property after
integrating with our framework. To this end, we tested the
frequency synchronization between the control system output
and NAO’s rhythmic feedback. The experimental results are
shown in Fig. 20, in which the yellow line denotes the robot
rhythmic feedback in (19) and (20) and the green dashed line
is the torso trajectory in y direction (torsoy) after introducing
the robot rhythmic feedback. It can be seen that after about
15 s, the robot rhythmic feedback is activated, and the fre-
quency of the torso trajectory in y direction is automatically
adjusted to be synchronized with the frequency of the robot
rhythmic feedback. Therefore, the control system maintains
the entrainment property.

2) Experiment in the Real World: Based on the simulation
results, we made use of the control system to control the real
NAO. The angle of the real inclined surface was the same
as in the simulation. Snapshots of the experiment are shown
in Fig. 21, which indicate that NAO could also realize a stable
and adaptive walk on a fixed inclined surface in the real world.

3) Further Comparison With Other Methods: To further
demonstrate the advantage of our control system, comparison
studies were conducted. Among CPG-based control methods,
the method in [14] has been a competitive method for adap-
tive walking of humanoid robots in recent years. Due to its
similar control strategy, the method in [14] was chosen as the
compared method. Note, however, that it only adds the com-
pensation derived from the tilt angle of NAO’s upper body
0, for torso trajectory in x direction, thus achieving adaptive
walking of NAO on the sagittal plane. To ensure a fair com-
parison, we made some improvements to the method in [14] to
enable NAO to walk on both the sagittal and lateral planes. To
achieve this, the compensations for torso trajectories in x and
y directions were given in (24) and (25), and the compensation
for torso trajectory in z direction was still set to zero

(24)
(25)

comp, = kyslopex

comp,, = kyslopey

where comp, and comp, represent the compensations for
torso, and torsoy, respectively, and ki and k; are two
adjustable parameters. Note that k; and k» have an influence on
the adaptability of humanoid robots and were also optimized
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Fig. 22. Changing inclined surface for NAO’s circle walking.

framework (m)
o

- 2

torso, (m)
> o
5 o R

framework (m)
o

- }
torso, (m)
o
o R
3

framework (m)
°
- 2
torso (m)
s o
S

time(s) time(s)

(a) (b)

Fig. 23. (a) Rhythmic compensations generated by our framework. (b) Torso
trajectories after DE optimization, in which the green dashed lines indicate
the torso trajectories with rhythmic compensations, and the blue lines indicate
the torso trajectories without rhythmic compensations.

by DE in this experiment to maximize fitness in (23). For
comparison, we also reported the performance of the original
method in [14].

In our experiment, different angles of the fixed slope were
tested. The experimental results are presented in Table V,
which shows the maximal fitness obtained by different meth-
ods over 20 independent runs. In Table V, “—” means that
NAO falls down. As shown in Table V, our method consis-
tently outperforms the two competitors. By implementing our
method, NAO could stably and adaptively walk on various
fixed inclined surfaces. Moreover, the experimental results in
Table V suggest that the performance of the method in [14]
could be improved by introducing the compensations for torso
trajectories in x and y directions.

B. Adaptive Walking of NAO on Changing Inclined Surface

1) Experiment in Simulation: To verify that the proposed
framework can generate desired rhythmic compensations for
NAO’s adaptive walking on a changing inclined surface, we
set a slope environment with a fixed inclined angle of 4.58°
as shown in Fig. 22. In the mean time, we made NAO walk
the circle on this inclined surface, and thus the slope was
always changing for NAO. By doing this, the slope environ-
ment was a changing inclined surface for NAO. The desired
COP trajectory (x4(f), yq(¢)) is presented in Appendix 2 of
the supplementary file. Through the experimental studies, the
parameters in (21)—(23) were set as T, = 250 s, w1 = 1.4, and
w> = 2. The population size for DE was equal to 30, and the
total generation number was set to 60. The parameter settings
of Matsuoka’s CPG were the same as in Table I; thus, the

IEEE TRANSACTIONS ON CYBERNETICS

- foot
—CoP

£
> 06
0.4
02
0
-0.2
02 0 02 0 02 04
x(m) x(m)
(a) (b)

Fig. 24. (a) Actual COP trajectory when NAO walks the circle on a changing
inclined surface. The COP trajectory is always located in the support region
(between the black points), and the black points are the positions of NAO’s
feet. (b) When the control system excludes the rhythmic compensation gener-
ated by our framework, the COP trajectory deviates from the support region,
and finally NAO falls down.

period of the control trajectories generated by the control sys-
tem was about 6 s. The parameters settings of the coordinate
transformation in Appendix 1 of the supplementary file were
the following: stride, = 0.02, stridey, = 0.1, and A0 = 7/36.
Therefore, the walking speed of NAO was about 0.0133 m/s,
and the radius of the circle of NAO’s walking was about 0.2 m.
Again, by adjusting stride, to a bigger stride, a greater speed
can be reached. Moreover, by adjusting A6, different radii of
the circle of NAO’s walking can be achieved. The outputs of
the coordinate transformation for foot and torso trajectories
under these parameter settings are shown in Fig. S-4 of the
supplementary file.

After DE optimization, the rhythmic compensations gener-
ated by our framework and the torso trajectories generated by
the control system corresponding to the best value of fitness
are shown in the red and green dashed lines in Fig. 23, respec-
tively. Under this condition, slopex and slopey are shown
in Fig. S-5 of the supplementary file. It is noteworthy that
slopex and slopey are used as the shape adaptation feedback
in Fig. 14.

Unlike the experimental results in Fig. 18(a) and Fig. S-3
of the supplementary file, in which rhythmic compensations
in x and y directions depend on slopex and slopey, respec-
tively, the experimental results of Fig. 23(a) and Fig. S-5 in
the supplementary file show that rhythmic compensations in
x and y directions are dependent on both slopex and slopey.
Actually, when NAO adaptively walks the circle on the chang-
ing inclined surface, both slopex and slopey have an influence
on the rhythmic compensations in x, y, and z directions.

In addition, according to the general way of compensation
for adaptive slope walking of humanoid robots [14], [15], [39],
when humanoid robots adaptively walk on a fixed inclined
surface, the rhythmic compensations for torso trajectories in
x and y directions are large, and the rhythmic compensation
for torso trajectory in z direction is small. The above phe-
nomenon has already been demonstrated in Section VI-A.
However, interestingly, from Fig. 23, we observe the oppo-
site phenomenon on this changing inclined surface, that is,
the rhythmic compensations for torso trajectories in x and y
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Fig. 25. Snapshots of NAO’s walking on a changing inclined surface in the
real world.

TABLE VI
MAXIMAL fitness OBTAINED BY THREE METHODS ON DIFFERENT
CHANGING INCLINED SURFACES

Slope angle(degree) | Our method 1;;;:‘;3‘}1‘1‘1"1;1’; le:ger The original method in [14]
0 0.158031 0.153600 0.149815
2 0.154490 0.146003 0.143387
1 0.1497235 - -
6 0.1293387 - =
8 0.058277 - -

directions are small, and the rhythmic compensation for torso
trajectory in z direction is large.

The actual COP trajectory (COP(t), COPy(t)) correspond-
ing to the optimized torso trajectories is shown in Fig. 24(a),
which confirms that NAO is able to walk stably on the chang-
ing inclined surface. As a comparative observation, Fig. 24(b)
shows the COP trajectory when the control system excludes
the rhythmic compensation generated by our framework,
which indicates that NAO cannot walk the circle on the
changing inclined surface and finally falls down.

2) Experiment in the Real World: We also used the control
system based on the simulation experiments to control the real
NAO. The angle of the real inclined surface was the same as in
the simulation. Fig. 25 shows the snapshots of the experiment,
which suggest that NAO can also walk on a changing inclined
surface in the real world stably and adaptively.

3) Further Comparison With Other Methods: We also con-
ducted comparison experiments on several changing inclined
surfaces with different slope angles. Similar to Section VI-A,
the original method in [14] and its improved version in this
paper were chosen as the compared methods. Table VI summa-
rizes the maximal fitness provided by different methods over
20 independent runs. In Table VI, “—” means that NAO falls
down. From Table VI, our method exhibits the best perfor-
mance in all the cases and makes NAO stably and adaptively
walk on more changing inclined surfaces. Again, the experi-
mental results in Table VI verify that the compensations for
torso trajectories in x and y directions can further improve the
performance of the method in [14].

VII. CONCLUSION

In this paper, a framework that can learn to generate desired
rhythmic signals for Matsuoka’s CPG has been presented.
The framework can not only generate rhythmic signals with
desired shapes but also preserve the frequency and phase prop-
erties of Matsuoka’s CPG. By introducing the robot feedback,
the framework is capable of generating desired rhythmic sig-
nals corresponding to different environments. Furthermore, by

embedding this framework into a control system, adaptive
walking was successfully achieved by humanoid robot NAO
in terms of both fixed and changing inclined surfaces.

Although the main aim of this paper is to overcome the
drawback that Matsuoka’s CPG cannot generate rhythmic sig-
nals with desired shapes, this issue also exists in other kinds
of CPG. Actually, the proposed framework is also feasible
for other kinds of CPG (e.g., Hopf [40] and VDP [41]). It
is because the irregular limit cycles of Hopf and VDP can
also be transformed into the normalized limit cycle via fea-
ture processing, which can be subsequently used as the feature
input of NN for learning to generate desired rhythmic sig-
nals. We believe that this paper will enhance the reliability of
CPG’s application in robot movement control. As our future
work, more powerful control systems based on the proposed
framework will be designed for adaptive walking of humanoid
robots on various challenging environments.

The videos of the experiments in the real world can be
downloaded from: http://www.escience.cn/people/yongwangl.
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